

ibm.com/redbooks

WebSphere and .NET d .NET
Coexistencetence

Peter Kovari
Victoria Amor

Jason Anderson
Darren Bassett
Jeremy Bauer

John Catlin
Paula Dantas

Han Wen Kam
Ajit Mungale
Kieran Scott

James Tussing

In-depth view of the supporting
technologies

Interoperability scenarios and
their implementation

Working sample code

Front cover

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

WebSphere and .NET Coexistence

March 2004

International Technical Support Organization

SG24-7027-00

© Copyright International Business Machines Corporation 2004. All rights reserved.
Note to U.S. Government Users Restricted Rights -- Use, duplication or disclosure restricted by GSA ADP
Schedule Contract with IBM Corp.

First Edition (March 2004)

This edition applies to WebSphere Application Server V5.02 on AIX, Linux, Windows 2000
Server, Windows 2003 Server.

Note: Before using this information and the product it supports, read the information in
“Notices” on page ix.

Contents

Notices . ix
Trademarks . x

Preface . xi
The team that wrote this redbook. xii
Become a published author . xv
Comments welcome. xv

Part 1. Introduction . 1

Chapter 1. J2EE introduction . 3
1.1 Architecture . 5

1.1.1 Overall architecture . 5
1.1.2 Layer technologies (application architecture) 6
1.1.3 Standard support. 8
1.1.4 Platform support . 8
1.1.5 Programming languages . 9
1.1.6 Deployment units . 9
1.1.7 Runtime execution environment . 11
1.1.8 Life cycle management . 13
1.1.9 Remote object discovery. 14
1.1.10 Remote Method Invocation . 14
1.1.11 Web Services . 15
1.1.12 Transaction management . 16
1.1.13 Security . 17
1.1.14 Load balancing and failover . 20
1.1.15 Application logging . 20

1.2 Development . 21
1.2.1 Writing a Java application using a text editor 22
1.2.2 WebSphere Studio Application Developer (IDE). 24

1.3 Testing. 29
1.3.1 WebSphere Studio Application Developer . 29

1.4 Deployment . 33
1.4.1 Packaging J2EE applications . 33
1.4.2 Deploying the packaged applications . 35

1.5 Runtime . 37
1.5.1 WebSphere Application Server . 38

1.6 Administration . 44
© Copyright IBM Corp. 2004. All rights reserved. iii

Chapter 2. .NET introduction . 49
2.1 Architecture . 50

2.1.1 Overall architecture . 50
2.1.2 Layered services (application architecture). 55
2.1.3 Standard support. 59
2.1.4 Platform support . 59
2.1.5 Programming languages . 60
2.1.6 Deployment units . 60
2.1.7 Runtime execution environment . 63
2.1.8 Life cycle management . 65
2.1.9 Remote object discovery. 68
2.1.10 Remote invocation . 68
2.1.11 Web Services . 69
2.1.12 Transaction management . 69
2.1.13 Security . 70
2.1.14 Load balancing and failover . 72
2.1.15 Application logging . 73
2.1.16 Versioning . 74

2.2 Development . 75
2.2.1 Writing a C# application using text editor . 75
2.2.2 Microsoft Visual Studio .NET (IDE) . 77
2.2.3 Source code management . 81

2.3 Testing. 82
2.3.1 Debugging and unit testing . 82
2.3.2 Performance and load testing . 85

2.4 Deployment . 88
2.5 Runtime . 90
2.6 Administration . 90

Chapter 3. An architectural model for coexistent applications. 93
3.1 Coexisting heterogeneous technologies . 94

3.1.1 Layered application model . 95
3.1.2 Concentric layered application model . 98
3.1.3 Bridging layers and address spaces . 99
3.1.4 Interoperation layer abstraction. 101
3.1.5 Summary. 105

Part 2. Scenarios . 107

Chapter 4. Technical coexistence scenarios . 109
4.1 Introduction . 110
4.2 Fundamental interaction classifications. 111

4.2.1 Stateful synchronous interaction . 112
4.2.2 Stateless synchronous interaction . 115
iv WebSphere and .NET Coexistence

4.2.3 Stateless asynchronous interaction . 117
4.2.4 Stateful asynchronous interaction . 120
4.2.5 RPC interface style . 123
4.2.6 Document interface style. 124
4.2.7 Argument by value paradigm . 125
4.2.8 Argument by reference paradigm . 127
4.2.9 Distributed object architecture. 129
4.2.10 Message Oriented Architecture. 130
4.2.11 Service-oriented architecture . 131
4.2.12 Conclusions and recommendations . 131

4.3 Layer interaction classifications. 132
4.3.1 Interaction case a: client logic to client logic 138
4.3.2 Interaction case b: client logic to presentation logic 145
4.3.3 Interaction case c: client logic to business logic 152
4.3.4 Interaction case d: presentation logic to presentation logic 160
4.3.5 Interaction case e: presentation logic to business logic 167
4.3.6 Interaction case f: business logic to business logic. 174
4.3.7 Interaction case g: business logic to resource 182
4.3.8 Interaction case h: resource to resource. 195
4.3.9 Conclusion and recommendations . 201

4.4 Technical solution mapping. 202
4.4.1 Stateful synchronous integration solution candidates 203
4.4.2 Stateless synchronous integration solution candidates 214
4.4.3 Stateful asynchronous integration solution candidates 219
4.4.4 Other potential candidate technical solutions (to be proven) 223
4.4.5 Some last resource integration technologies 226

Chapter 5. Scenario: Asynchronous . 229
5.1 Problem definition . 230

5.1.1 Description of the problem . 234
5.1.2 Considerations . 234

5.2 Solution model. 237
5.2.1 A solution to the problem . 238
5.2.2 Simple scenario details . 240
5.2.3 .NET consumer to WebSphere service provider. 242
5.2.4 WebSphere consumer to .NET service provider. 254

Chapter 6. Scenario: Synchronous stateful . 261
6.1 Problem definition . 262

6.1.1 Description of the problem . 262
6.1.2 Considerations . 266
6.1.3 Constraints . 274
6.1.4 Recommendations . 276
 Contents v

6.2 Solution model using the ActiveX Bridge . 279
6.2.1 A solution to the problem . 279
6.2.2 Simple scenario details . 279

6.3 Solution model using the Interface Tool for Java 289

Chapter 7. Scenario: Synchronous stateless (WebSphere producer and
.NET consumer) . 297

7.1 Problem definition . 299
7.1.1 Description of the problem . 299
7.1.2 Considerations . 300

7.2 Solution model. 303
7.2.1 A solution to the problem . 303
7.2.2 Service provider . 303
7.2.3 Service consumer . 313

7.3 Extended solution . 321
7.4 Recommendations . 326

Chapter 8. Scenario: Synchronous stateless (WebSphere consumer and
.NET producer) . 329

8.1 Solution model. 330
8.1.1 A solution to the problem . 330
8.1.2 Service provider . 331
8.1.3 Service consumer . 346
8.1.4 Test . 358

8.2 Extended solution model . 359

Chapter 9. Scenario: Web interoperability . 367
9.1 Introduction . 368
9.2 Shared presentation components . 368

9.2.1 Configuring Microsoft IIS for shared presentation. 370
9.3 Session state interoperability . 376

9.3.1 Problem definition . 376
9.3.2 WebSphere Application Server session management 377
9.3.3 Microsoft .NET session management . 381
9.3.4 Considerations . 385
9.3.5 Recommendations . 395

9.4 Data propagation. 395
9.4.1 Problem definition . 395
9.4.2 Description of the problem . 396
9.4.3 Considerations . 397
9.4.4 Solution model . 402
9.4.5 URL redirection implementation . 405
9.4.6 Form-based propagation implementation . 412
9.4.7 Recommendations . 418
vi WebSphere and .NET Coexistence

9.5 Integrated security . 418
9.5.1 WebSphere security . 420
9.5.2 .NET security. 420
9.5.3 Integrating authentication . 421
9.5.4 Integrating authorization . 425

Part 3. Guidelines . 427

Chapter 10. Supporting technologies . 429
10.1 Web Services . 430

10.1.1 Technologies for Web Services . 430
10.2 Client applications . 439

10.2.1 Web browser . 440
10.2.2 J2EE clients . 441
10.2.3 Windows .NET clients . 443

10.3 Server pages . 443
10.3.1 Servlets and JSPs. 443
10.3.2 ASP.NET. 446

10.4 Distributed components. 451
10.4.1 EJBs . 452
10.4.2 .NET Remoting . 454

10.5 Database access. 456
10.5.1 EJBs . 458
10.5.2 JDBC. 459
10.5.3 ADO.NET . 460

10.6 Messaging middleware . 463
10.7 Back-end integration . 466

10.7.1 J2C . 466
10.7.2 .NET . 466

10.8 Other integration technologies . 467
10.8.1 ActiveX Bridge. 468
10.8.2 IBM Interface Tool for Java . 468

Chapter 11. Quality of service considerations . 471
11.1 Scalability . 472

11.1.1 WebSphere . 472
11.1.2 .NET . 475

11.2 Performance . 478
11.2.1 WebSphere . 478
11.2.2 .NET . 480

11.3 Availability . 482
11.3.1 WebSphere . 483
11.3.2 .NET . 483

11.4 Security . 484
 Contents vii

11.4.1 WebSphere . 485
11.4.2 .NET . 487

11.5 Transactionality . 489
11.5.1 WebSphere . 490
11.5.2 .NET . 491

11.6 Manageability . 493
11.6.1 WebSphere . 493
11.6.2 .NET . 496

11.7 Maintainability . 498
11.7.1 WebSphere . 498
11.7.2 .NET . 499

11.8 Portability. 499
11.8.1 WebSphere . 500
11.8.2 .NET . 500

11.9 Web Services . 501

Part 4. Appendixes . 511

Appendix A. Lotus Domino and .NET coexistence 513
A.1 Web Services integration . 514

A.1.1 Domino provider, .NET consumer . 515
A.1.2 .NET service provider, Domino service consumer 537

A.2 Using the COM interface. 538
A.2.1 Domino as a COM server, .NET as a client 540

Appendix B. Additional material . 567
Locating the Web material . 567
Using the Web material . 568

System requirements for downloading the Web material 568
How to use the Web material . 568

Abbreviations and acronyms . 571

Related publications . 573
IBM Redbooks . 573
Other publications . 573
Online resources . 574
How to get IBM Redbooks . 578
Help from IBM . 578

Index . 579
viii WebSphere and .NET Coexistence

Notices
This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult
your local IBM representative for information on the products and services currently available in your area.
Any reference to an IBM product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product, program, or service that
does not infringe any IBM intellectual property right may be used instead. However, it is the user's
responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document.
The furnishing of this document does not give you any license to these patents. You can send license
inquiries, in writing, to:
IBM Director of Licensing, IBM Corporation, North Castle Drive Armonk, NY 10504-1785 U.S.A.

The following paragraph does not apply to the United Kingdom or any other country where such provisions
are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES
THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer
of express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made
to the information herein; these changes will be incorporated in new editions of the publication. IBM may
make improvements and/or changes in the product(s) and/or the program(s) described in this publication at
any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in any
manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of the
materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Information concerning non-IBM products was obtained from the suppliers of those products, their published
announcements or other publicly available sources. IBM has not tested those products and cannot confirm
the accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on
the capabilities of non-IBM products should be addressed to the suppliers of those products.

Screen shot(s) reprinted by permission from Microsoft Corporation.

This information contains examples of data and reports used in daily business operations. To illustrate them
as completely as possible, the examples include the names of individuals, companies, brands, and products.
All of these names are fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:
This information contains sample application programs in source language, which illustrates programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs in
any form without payment to IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating platform for which the
sample programs are written. These examples have not been thoroughly tested under all conditions. IBM,
therefore, cannot guarantee or imply reliability, serviceability, or function of these programs. You may copy,
modify, and distribute these sample programs in any form without payment to IBM for the purposes of
developing, using, marketing, or distributing application programs conforming to IBM's application
programming interfaces.
© Copyright IBM Corp. 2004. All rights reserved. ix

Trademarks
The following terms are trademarks of the International Business Machines Corporation in the United States,
other countries, or both:

AIX®
DB2®
developerWorks®
Domino Designer®
Domino™
ibm.com®
IBM®
Lotus Notes®
Lotus®
MQSeries®

Notes®
OS/390®
OS/400®
Redbooks (logo) ™
S/390®
SAA®
SecureWay®
SupportPac™
Tivoli®

™

Wave®
WebSphere®
XDE™
z/OS®
zSeries®
alphaWorks®
HACMP™
IBM®
Redbooks™
IBM Eserver™

Rational is a registered trademark of International Business Machines Corporation and Rational Software
Corporation, in the United States, other Countries or both.

Rational® ClearCase®

The following terms are trademarks of other companies:

Intel, Intel Inside (logos), MMX, and Pentium are trademarks of Intel Corporation in the United States, other
countries, or both.

Microsoft, Windows, Windows NT, the Windows logo, Visual Studio, and the Visual Studio logo are
trademarks of Microsoft Corporation in the United States, other countries, or both.

Java and all Java-based trademarks and logos are trademarks or registered trademarks of Sun
Microsystems, Inc. in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

SET, SET Secure Electronic Transaction, and the SET Logo are trademarks owned by SET Secure
Electronic Transaction LLC.

Other company, product, and service names may be trademarks or service marks of others.
x WebSphere and .NET Coexistence

Preface

This IBM® Redbook explores the different coexistence scenarios for the
WebSphere® and the .NET platforms. This book is a good source of information
for solution designers and developers, application integrators and developers
who wish to integrate solutions on the WebSphere and .NET platforms.

Part 1, “Introduction” on page 1 is a quick introduction to the J2EE (WebSphere)
and .NET technologies. It also depicts a basic architectural model which can be
used to represent both WebSphere and .NET applications.

Part 2, “Scenarios” on page 107 identifies several potential technical scenarios
for coexistence via point-to-point integration between applications deployed in
the IBM WebSphere Application Server and applications deployed in the
Microsoft® .NET Framework. This part provides in-depth technical details on
how to implement certain scenarios using today’s existing technologies. The
implementations for stateless asynchronous, stateful and stateless synchronous
presentation (Web) integration include technologies such as Web Services,
messaging middleware, native interfaces, etc.

Part 3, “Guidelines” on page 427 provides general guidelines for solution
developers. A list of supporting technologies can help with the solution
implementation. Chapter 11, “Quality of service considerations” on page 471 is a
collection of services available on both platforms.

The “Appendixes” on page 511 go further by showing other IBM technologies
and describing two integration solutions between Lotus® Domino™ and .NET
applications.
© Copyright IBM Corp. 2004. All rights reserved. xi

The team that wrote this redbook
This redbook was produced by a team of specialists from around the world
working at the International Technical Support Organization, Raleigh Center.

The team who wrote the book (left to right): Ajit Mungale, Jeremy Bauer, Paula Dantas, Kieran Scott, Darren
Bassett, John Catlin, James Tussing, Peter Kovari

Peter Kovari is a WebSphere Specialist at the International Technical Support
Organization, Raleigh Center. He writes extensively about all areas of
WebSphere. His areas of expertise include e-business, e-commerce, security,
Internet technologies and mobile computing. Before joining the ITSO, he worked
as an IT Specialist for IBM in Hungary.

Victoria Amor is an IT Specialist in IBM WebSphere and Lotus Domino at IBM
Spain. Her areas of expertise include WebSphere support, particularly the areas
of security and administration, and design and consultancy in Lotus Domino. She
has worked within IBM for six years, participating in remarkable e-business
projects such as the Sydney Olympic Games where she was responsible for all
Lotus Domino Servers in the Games System Center. Currently, she is working for
ITS department in Services Delivery. She has previously co-authored the IBM
WebSphere V4.0 Advanced Edition: Security redbook, SG24-6520.

Jason Anderson is a Senior Software Design Engineer in IBM's Applied Web
Services Design Center, focusing on distributed technologies and the next
generation of IBM products. Prior to working at IBM, Jason was the Chief
Technology Officer of Agital Software Corporation where he ran the Research
and Development organization and created the company's flagship product The
xii WebSphere and .NET Coexistence

XML Network Server. Before Agital, Jason worked in a variety of product teams
at Microsoft, including Internet Explorer, MS's Java™ Virtual Machine, the
Common Language Runtime, and most recently as an Architect for Microsoft's
XML Services group.

Darren Bassett is an Advisory IT Specialist working for the Infrastructure and
Systems Management group of IBM Global Services in the United Kingdom.
Darren has five years of experience with IBM, specializing in Java, Java 2
Enterprise Edition and WebSphere Application Server. He has worked on a
number of high-profile customer projects within the United Kingdom, delivering
software development and infrastructure solutions for the WebSphere
Application Server platform. Darren holds a first class bachelors degree in
Computer Science from Kingston University.

Jeremy Bauer is a Staff Software Engineer at IBM in Rochester, Minnesota. In
his seven years with IBM, he has worked on IBM DB2® database middleware
and end user applications for the iSeries IBM Eserver. This includes
development roles in the IBM iSeries Access for Windows® and IBM iSeries
Access for Web products. His most recent work includes development of an
ADO.NET driver for the iSeries server. Jeremy recently completed his Masters of
Software Engineering at the University of Minnesota and is considering pursuing
a doctorate in Computer Science.

John Catlin is an Application Architect for the IBM Software Group Services in
the UK.

Paula Dantas is an IT Specialist in IBM Brazil working in the Software Group.
She has been working with WebSphere products for two years and her main
responsibility is to provide technical sales support to customers using
WebSphere Application Server and WebSphere Portal Server, which includes
delivery of Proof-of-Concepts, Proof-of-Technologies, Pre-sales Presentations,
Demonstrations, Software installation and configuration, Skills transfer to
Business Partners, Customers, SWG sales force, etc. Before working with
WebSphere, she was responsible for developing Lotus Notes® applications for
the Latin America SWG team. She works in Rio de Janeiro, Brazil.

Han Wen Kam is an Advisory IT Specialist for IBM Open Computing Centre,
based in Singapore. He has experience in the design and development of Web
Services and J2EE applications with core software product skills in WebSphere
Application Server and WebSphere Studio. Working with business partners, Han
has also spent time developing and conducting technical courses for developers
in ASEAN. Han has contributed technical articles to WebSphere Developer
Domain and was also the recipient of the "Asia Pacific WebSphere Field
Technical Sales Specialist of the Year 2002" award at the Annual Asia Pacific
Software e-business University held in Shanghai.
 Preface xiii

Ajit Mungale has a total of seven years of experience and has been working
with IBM GSI as a Senior Software Engineer for the last four years. He has
extensive experience with Microsoft technologies and has worked with almost all
languages and technologies. He also has experience with IBM products,
including IBM WebSphere and MQ.

Kieran Scott is a Solution Specialist working for the IBM WebSphere Platform
Solution Test, part of System House, which focuses on improving ease of
integration and interoperability of WebSphere Platform components. He
specializes in the area of Web Services and makes use of his expertise in J2EE
and WebSphere Studio to test functionality and performance of Web Services as
part of wider cross-platform scenarios. In this role, Kieran works as a developer,
tester, designer and author, and also has the opportunity to work with customers
in an advisory capacity. His work includes the use of many different IBM
products, and also involves interoperability testing between IBM and Microsoft
technologies, such as the .NET Framework.

James Tussing is the President and Principle Architect of Axiom, Ltd., an IBM
Business Partner and consulting services firm, specializing in EAI and Network
Security and headquartered near Columbus, Ohio, USA. James is an IBM
Certified Specialist, Developer and Solutions Expert for IBM WebSphere MQ. He
specializes in EAI architecture, multi-platform middleware product development
and integrating Microsoft .NET with the enterprise.

Thanks to the following remote participants for their contributions to this project:

Lawrence Lourduraj

Thanks to the following people for their contributions to this project:

Cecilia Bardy
Gail Christensen
Mark Endrei
Geert Van de Putte
Carla Sadtler
Margaret Ticknor
Jeanne Tucker

International Technical Support Organization, Raleigh Center

Denise Gabardo
Massimiliano Parlione
Carlo Randone
Rajasi Saha
Andre Tost
xiv WebSphere and .NET Coexistence

Become a published author
Join us for a two- to six-week residency program! Help write an IBM Redbook
dealing with specific products or solutions, while getting hands-on experience
with leading-edge technologies. You'll team with IBM technical professionals,
Business Partners and/or customers.

Your efforts will help increase product acceptance and customer satisfaction. As
a bonus, you'll develop a network of contacts in IBM development labs, and
increase your productivity and marketability.

Find out more about the residency program, browse the residency index, and
apply online at:

ibm.com/redbooks/residencies.html

Comments welcome
Your comments are important to us!

We want our Redbooks™ to be as helpful as possible. Send us your comments
about this or other Redbooks in one of the following ways:

� Use the online Contact us review redbook form found at:

ibm.com/redbooks

� Send your comments in an Internet note to:

redbook@us.ibm.com

� Mail your comments to:

IBM® Corporation, International Technical Support Organization
Dept. HZ8 Building 662
P.O. Box 12195
Research Triangle Park, NC 27709-2195
 Preface xv

http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/
http://www.ibm.com/redbooks/
http://www.ibm.com/redbooks/
http://www.redbooks.ibm.com/contacts.html

xvi WebSphere and .NET Coexistence

Part 1 Introduction

Part 1
© Copyright IBM Corp. 2004. All rights reserved. 1

2 WebSphere and .NET Coexistence

Chapter 1. J2EE introduction

The purpose of this chapter is to provide an introduction to and overview of the
Java 2 Platform, Enterprise Edition (J2EE) and the IBM technologies that
implement it. The intended audience for this chapter consists of readers who are
familiar with the Microsoft .NET Framework and who wish to gain a better
understanding of J2EE for comparison purposes.

This chapter discusses the following items:

� The J2EE architecture, including application components, packaging and
deployment, the runtime environment, and the standard services provided by
the J2EE platform.

� Design considerations for J2EE applications, including a discussion of the
IBM Rational® XDE™ design tooling.

� Development tools for J2EE applications, including the IBM WebSphere
Studio Application Developer V5.1 integrated development environment and
other open source tools for automation of the build and deployment process.

� Testing tools available for J2EE applications.

� How J2EE applications are deployed, and the tools available to aid the
process.

1

© Copyright IBM Corp. 2004. All rights reserved. 3

� IBM WebSphere Application Server V5, examining the packages available
and the runtime architecture of IBM’s J2EE compliant application server.

� Finally, this chapter discusses the administration options available for IBM
WebSphere Application Server V5
4 WebSphere and .NET Coexistence

1.1 Architecture
This section presents a discussion of the architecture of the Java 2 Enterprise
Edition platform and the distributed applications that execute upon it. The
discussion focuses on the following items:

� Java 2 Platform, Enterprise Edition architecture and logical application layers.

� J2EE support for standards, platforms and programming languages.

� J2EE application components and how they are packaged and deployed.

� The J2EE runtime environment and life cycle management.

� Standard services provided by J2EE application servers, including quality of
service considerations.

1.1.1 Overall architecture
The J2EE specification defines a standard application programming model and
platform for distributed applications in the J2EE environment. The architecture
for the J2EE platform is illustrated in Figure 1-1.

Figure 1-1 J2EE components, containers and services

The J2EE programming model defines four types of application components:

� Application clients

These components execute in a container in a client process that is distinct
from the server processes, though not necessarily remote. They provide a
rich set of functionality and for the remainder of this book are referred to as fat

Database

Applet

J2SE

Applet
Container

Application
Client

Container

Application
Client

J2SE

JM
S

JAAS
JAXP

JDBC

JN
DI

RM
I-IIO

P

JSP servlet
JM

S

JAAS
JTA

JAXP
JDBC

Connectors

Java
Mail

JAF

J2SE

Web
Container

JNDI

R
M

I-IIO
P

EJB

EJB
Container

J2SE

JM
S

JAAS
JTA

JAXP
JDBC

Connectors

Java
Mail

JAF

JNDI

RM
I-IIO

P

 Chapter 1. J2EE introduction 5

clients. They have full access to the J2EE server side components and
services.

� Applets

These are lightweight client components that execute in the container with
restricted access to system resources. Typically, the container executes in a
Web browser or handheld device.

� Web components

Web components comprise Java Server Pages and Java servlets. They
execute in the Web container of a J2EE application server. These Web
components are typically concerned with presentation and control logic in a
distributed J2EE application.

� Enterprise Java Beans

Enterprise Java Beans (EJB) are server side components that execute in the
EJB container of an application server. Their purpose is to implement
business logic and model business data.

The containers themselves perform functions on behalf of, and provide services
to the applications that execute within them. For a more detailed overview of the
containers please refer to “Containers” on page 12.

1.1.2 Layer technologies (application architecture)
Throughout this book, a five-layer model is used to represent the logical layers of
a distributed enterprise application. The mapping of J2EE application
components, containers and other artifacts onto the five-layer model are
illustrated in Figure 1-2 on page 7.
6 WebSphere and .NET Coexistence

Figure 1-2 Logical Application layers

A layer can be considered as a logical grouping of components with common
functionality; the function of each layer is briefly described below:

� Client

The Client layer contains client applications, these reside in a client process
that can be remote from or local to the server processes. When considering
this in the context of J2EE, this is the layer where fat clients and Java Applets
reside.

� Presentation

The Presentation layer is where processing of presentation and control logic
occurs. In the Model-View-Controller paradigm, this layer contains the view
and control elements. For a J2EE application, this layer contains JSPs and
servlets executing in a Web container.

� Business

The applications business logic executes in the business layer. The typical
J2EE components that execute in this layer are Enterprise Java Beans and

RDBMS EIS
Web

Services
Resource

Resource
Adapters W

SD
L

JT
A

ID
L

JM
S

JN
D

I

JC
A

JD
BC

R
M

I-I
IO

P

Integration

EJB
EJB

ContainerBusiness

JSP Servlet Web
ContainerPresentation

Fat
Client Applet

Client
Container

Applet
ContainerClient

J2EE Components J2EE Containers,
Services & Resources
 Chapter 1. J2EE introduction 7

associated helper classes. In the Model-View-Controller paradigm, this layer
contains components that model the business and the data.

� Integration

The integration layer is where J2EE services and other integration
middleware such as message queueing software and enterprise information
system connectors reside.

� Resource

The Resource layer represents any resource to which a distributed
application may connect. For instance, this could be a relational database or
an enterprise information system.

1.1.3 Standard support
Java 2 Platform, Enterprise Edition is a specification that defines a standard
application programming model and runtime environment for the creation and
execution of distributed enterprise applications. In terms of its relationship with
other Java 2 platforms, Java 2 Enterprise Edition can be considered to be a
superset of the Java 2 Platform Standard Edition (J2SE).

While Sun Microsystems invented and retains control over the Java language
itself, the Java 2 Enterprise Edition is a result of the contributions of a number of
enterprise software vendors including IBM.

Control over the evolution of the Java 2 Enterprise Edition and other Java
technologies is retained by the Java Community Process (JCP). This is an open
organization whose members’ prime responsibility is to guide the development
and approval of Java technical specifications. The Java Community Process also
considers submissions for enhancements to the Java technologies from
non-members. This collaboration of interested parties has been particularly
successful in ensuring that Java technology has remained open.

The specification incorporates a compatibility test suite. Vendors can certify their
J2EE implementations against this test suite.

1.1.4 Platform support
A feature of all Java applications is their independence from the underlying
operating system on which they execute. This platform independence is

Note: Our diagram illustrates the J2EE services in the logical hierarchy as
entities separate from the containers. In the physical J2EE platform, the
services are actually provided by the client, Web and EJB containers.
8 WebSphere and .NET Coexistence

achieved by executing the code in a virtual machine, known as the Java Virtual
Machine (JVM), which abstracts the code from the operating system.

Provided that a Java Virtual Machine exists for a given platform, then Java 2
Enterprise Edition applications can run on it.

The Java runtime is available on numerous platforms.

WebSphere is available in the following platforms:

� AIX® 4.3.3 4330-10 Maintenance level, 5.1 5100-02 or 5100-03 Maintenance
level, 5.2

� Windows 2000 Advanced Server Service Pack 3, 2000 Server Service Pack
3, 2003 Server, Enterprise, 2003 Server, Standard, NT 4.0 Service Pack 6.0a

� Red Hat Linux 8, Enterprise Linux WS/ES/AS for Intel® 2
� SuSE Linux 7.3 for Intel, SLES 7 2.4
� UnitedLinux 1.0
� OS/400® 5.1, 5.2
� Red Hat Linux 7.2 for s/390
� SuSE SLES 7 for zSeries®
� HP-UX 11iv1
� Solaris 8, 9

1.1.5 Programming languages
Language support in Java 2 Enterprise Edition is limited to Java.

Java applications run within the Java Runtime Environment (JRE) and obtain
services from that runtime, such as language independence and garbage
collection. Java code is managed by the JRE. In order for a Java program to call
anything that is not managed by the JRE, for instance a C-style function within a
Dynamic Link Library (DLL) on Windows, it is necessary to leave the managed
code environment during the call into the DLL.

The Java Native Interface (JNI), provided as part of the Java 2 Standard Edition,
enables interaction with applications written in native code, but this is achieved at
the expense of code portability.

The Java Native Interface allows you to call unmanaged, native code from within
the Java Runtime Environment and vice-versa.

1.1.6 Deployment units
The Java 2 Enterprise Edition defines a standard model for packaging and
deploying enterprise applications, as shown in Figure 1-3 on page 10.
 Chapter 1. J2EE introduction 9

Figure 1-3 J2EE Packaging model

Application components are assembled into modules, which may then be
deployed into a J2EE application server. If so desired, the modules may also be
packaged into an enterprise application module, allowing the entire application to
be deployed as a single unit. Each module also includes a deployment
descriptor; the purpose of this XML file is to describe to the runtime container
how the module should be deployed.

The contents of each module are as follows:

� Enterprise Java Bean Module

This module contains the deployed Enterprise Java Beans and the client side
stubs required for remote method invocation. It may also contain additional
Java helper classes which perform actions on behalf of the EJBs. Also
included is an EJB deployment descriptor. The EJB module is deployed as a
Java archive (.jar) file.

C
o
m
p
o
n
e
n
t
s

M
o
d
u
l
e
s

J
2
E
E

A
p
p
l
i
c
a
t
i
o
n

EJB
Jar

Web
War

Client
Jar

Resource
Rar

EJB Helper
Classes

JSP Servlet

Helper
Classes

Client
Classes Libraries Resource

Classes
Native

Libraries

EJB
Module

Web
Module

Application
Client

Module

Resource
Adapter
Module

DD DD DD DD

DDEnterprise Application
Module
10 WebSphere and .NET Coexistence

� Web Module

The Web module contains the Web application; typically, this will include Java
Server Pages, Java Servlets, utility classes and any external libraries
required by the Web application. This module may also include static Web
content such as HTML pages and images. The module also includes the Web
deployment descriptor, and is assembled as a Web archive (.war) file.

� Application Client Module

Client side applications are fat clients that interact with J2EE server
applications. They are packaged as application client modules using the Java
archive (.jar) file format. An application client actually executes in a client
container, so in addition to the classes required to implement the client, the
module also includes the libraries required by the client container runtime and
the application client deployment descriptor.

� Resource Adapter Module

A resource adapter is a system-level software driver that enables a J2EE
application to connect to Enterprise Information Systems (EIS). The resource
adapter module contains the Java classes and native libraries required to
implement a Java Connector Architecture (JCA) resource adapter to an EIS.
The module is assembled as a Resource adapter archive (.rar) file. As with all
other module types, the resource adapter module also incorporates a
deployment descriptor.

Configuration
The WebSphere Application Server V5 configuration is stored in XML formatted
configuration files. These files are stored in a directory structure that is mapped
to the server deployment structure (cell/node/server).

For both single server and servers in a cell, the configuration files are stored in
files. In a cell environment, the Deployment Manager takes care of the
synchronization of the files between the nodes.

It is not recommended that you alter the files to make configuration changes for
WebSphere. Use one of the administration tools which WebSphere provides, for
example: Administrative Console or wsadmin.

1.1.7 Runtime execution environment
The Java runtime environment is a virtual machine, known as the Java Virtual
Machine (JVM). This execution engine acts as an abstraction layer between the
host operating system and the Java application, enabling platform
independence. Like any physical machine, the virtual machine has an instruction
 Chapter 1. J2EE introduction 11

set and provides services to the Java application such as memory management
and input and output operations.

Java programs are compiled into machine independent byte code. The Java
Virtual Machine interprets this byte code at runtime. Optimizations are also
provided, in the latest JVMs, by the HotSpot compiler. This works by identifying
frequently executed code segments and then repeatedly optimizing them for
execution. Operating system specific optimizations also exist, allowing the Java
Virtual Machine to scale.

Containers
The Java 2 Enterprise Edition application server facilitates development of
distributed applications by providing a number of containers that provide services
to the applications deployed within them. The type of services provided to the
application by the container include security, transactions, object pooling and
naming services. The availability of such services enables the application
developer to focus on implementing business and presentation logic.

The following containers are defined by the J2EE specification:

� Web container

In addition to managing the Web applications and components that are
deployed within it, the Web container is responsible for providing the following
services to Web applications:

– On startup of the application server, the container establishes a transport
mechanism between the Web server and the Web container. This
communication channel is used by the container to receive requests and
send responses on behalf of the Web applications running within it.

– The container manages a configurable pool of worker threads for the
processing of servlet and Java Server Page requests.

– Session management is also provided by the Web container. It is
responsible for creating and invalidating sessions, providing a session
tracking mechanism and writing and reading session data on behalf of the
Web application.

– The Web container also provides a virtual hosting mechanism, allowing a
single application server to masquerade as multiple Web sites.

� EJB container

The EJB container is responsible for managing the life cycle of the Enterprise
Java Beans deployed within it and providing threading and transaction
support to them. The container also provides a caching mechanism to
optimize access to EJBs.
12 WebSphere and .NET Coexistence

� Client container

The client container is installed separately on the client and manages the
runtime environment for fat client applications. J2EE application client
containers provide standard services to the client application, including
remote object discovery and remote method invocation, thus allowing the
application client to access business logic on server side components such
as EJBs, and also providing access to other resources.

� Java Connector Architecture (JCA) container

The JCA container provides a pluggable and configurable bridging
mechanism for J2EE applications to access Enterprise Information Systems.
IBM WebSphere Application Server V5 implements this bridging mechanism
as a separate container within the application server.

1.1.8 Life cycle management
In Java 2 Enterprise Edition, there are two levels of object life cycle
management. The Java Virtual Machine provides life cycle management of Java
objects, while life cycle management of J2EE application components is a
function of the container; see “Containers” on page 12.

In Java, it is the responsibility of the Java Virtual Machine to dynamically load,
link and initialize classes and interfaces. The task of loading a class is delegated
either to the bootstrap classloader of the JVM or a user defined classloader. To
load a class or interface, the classloader will first attempt to locate a binary
representation of the class or interface by traversing the classpath and then
create an object instance from the binary representation. Linking is the process
of taking the class or interface and combining it into the runtime state of the Java
virtual machine so that it can be executed. Upon successful instantiation, the
class or interface is finally initialized by executing its init() method.

During the life cycle of an object, the JVM maintains a table of references to that
object.

Object destruction is also the responsibility of the Java Virtual Machine. This is
achieved by means of a garbage collection process that runs periodically to
clean up any dereferenced objects. The algorithm used in garbage collection is
dependent upon the implementation of the JVM. Generally, though, garbage
collection is implemented as a mark and sweep algorithm. In this algorithm, the
garbage collection process starts by locating all dereferenced objects in the
memory heap and marks them for deletion. In the second phase, the garbage
collector removes, or sweeps, the marked objects from the memory heap. JVM
technology has improved significantly, resulting in improved performance of the
garbage collection process. These enhancements include optimizations such as
 Chapter 1. J2EE introduction 13

memory heap defragmentation, short and long lived object heaps and
multi-threaded garbage collection.

The life cycle management of J2EE components such as servlets and EJBs is
the responsibility of the container in which they reside.

Object pooling
Object pooling is a mechanism employed in many object-oriented languages that
enables the reuse of objects. The advantages of using a pooling mechanism is
that it avoids the overhead of continuous object creation and destruction, and
improves memory usage: fewer objects have to be created since they are shared
amongst clients.

Java 2 Enterprise Edition application servers incorporate object pooling
mechanisms to improve application performance. In WebSphere Application
Server, object pools such as JDBC connection pools are created by the
application server and made available as resources to J2EE applications. It is the
responsibility of the application server to manage the object pool.

1.1.9 Remote object discovery
Object location in Java 2 Enterprise Edition is achieved via a directory structure
known as the CosNaming namespace, in which the application may store
references to objects. Objects are referenced in the namespace by being bound
to a unique name. To locate a particular object, the application performs a lookup
on the binding name.

This mechanism provides transparent discovery of objects, which if running in a
clustered environment may not be located within the same virtual machine or
even on the same physical machine. In WebSphere Application Server V5, each
managed server process maintains its own unique view of the namespace; this is
known as the local namespace. Typically, for an application server, the
namespace will contain references for the applications and resources configured
in that server. The local namespaces are linked to form a global namespace for
the entire cell. Thus, any object within the global namespace can be located from
any managed server process.

An application programmer interface called the Java Naming and Directory
Interface (JNDI) is provided to allow programmatic access to the namespace.

1.1.10 Remote Method Invocation
The Java 2 Standard Edition provides a mechanism for calling methods on
remote objects, called Remote Method Invocation. This technology is leveraged
14 WebSphere and .NET Coexistence

in Java 2 Enterprise Edition to provide a distributed computing business tier
through the Enterprise Java Beans (EJB) application programming interface.

Remote Method Invocation uses a common mechanism for invoking methods on
a remote object, stubs and skeletons. The stub is located on the client or local
system and acts as a proxy to the remote object. The client makes a method call
on the stub which then handles the complexities of the remote method call. This
mechanism makes the underlying communications transparent to the client. As
far as the client is concerned, the method call appears local.

When a method on the stub is invoked, the following actions occur.

1. The stub establishes a connection to the Java Virtual Machine where the
remote object resides.

2. Method parameters are written and transmitted to the remote Java Virtual
Machine. This process is more frequently known as marshalling.

3. The stub then waits for the return value from the method invocation.

4. When received the return value is read or unmarshalled.

The underlying communication protocol for Remote Method Invocation is the
Internet Inter-ORB Protocol (IIOP). The use of the IIOP protocol in J2EE
facilitates legacy application and platform integration by allowing objects written
in other CORBA-enabled languages to communicate with Java-based
applications.

1.1.11 Web Services
Web Services standards are still evolving within J2EE and are currently being
integrated into the specification. However, the importance of Web Services as an
integration technology has not been overlooked by J2EE vendors and many,
including IBM, provide varying levels of support for the standards.

IBM WebSphere Application Server V5 and its associated development tool, IBM
WebSphere Studio Application Developer, provide support for the following Web
Services standards and concepts:

� Simple Object Access Protocol (SOAP).

� Web Services Description Language (WSDL).

� Universal Description. Discovery and Integration (UDDI).

� Web Services Invocation Framework (WSIF).

� Web Services Inspection Language.

� Web Services security.

� Workflows and business processes.
 Chapter 1. J2EE introduction 15

� Web Services gateway.

� Java API for XML-based Remote Procedure Calls (JAX-RPC)

� JSR-109, which standardizes how Web Services are deployed into a J2EE
container.

For a full discussion of Web Services and IBM tooling support, refer to the IBM
Redbook WebSphere Version 5 Web Services Handbook, SG24-6891.

1.1.12 Transaction management
The J2EE specification states that product vendors must transparently support
transactions that involve multiple components and transactional resources within
a single J2EE product. This requirement must be met irrespective of whether the
product is implemented as a single process, multiple processes on a single
network node or multiple processes on multiple network nodes.

The following J2EE components are considered transactional resources and
must, therefore, support transactions:

� Java Database Connectivity (JDBC) database connections.

� Java Messaging Service (JMS) sessions.

� Connectors for resource adapters specifying XA compliant transactions.

The specification, however, does not specify any particular protocol for
supporting transaction interoperability across multiple J2EE products.

Transaction support must be provided for applications comprising combinations
of Web components accessing multiple Enterprise Java Beans within a single
transaction. Furthermore, support must be provided for each component
accessing one or more connections to access one or more transactional
resources.

Transactions may not, however, span a request from a client. This implies that a
transaction initiated in a Web component must complete before the response is
returned to the client.

The key point about the specification requirements is that transactions must be
managed by the container, and therefore J2EE application developers need only
concern themselves with whether their business process requires transactional
support or not.
16 WebSphere and .NET Coexistence

1.1.13 Security
Almost every enterprise has security requirements and specific mechanisms and
infrastructure to meet them. While the implementation and levels of service
provided by enterprise security systems may vary, they all address the following
considerations to some extent.

� Authentication

This mechanism addresses how entities that are attempting to communicate
prove to one another that they are who they say they are.

� Access control for resources

This is the process of ensuring that access to protected application resources
is restricted to only those users or groups of users who have authority to
access them.

� Data integrity

Data integrity considerations address how to validate that data passed
between two entities has not been modified in some way by a third party while
in transit.

� Confidentiality or data privacy

Mechanisms relating to confidentiality or data privacy deal with how to ensure
that data can only be read by those users who are authorized to do so.

� Non-repudiation

Non-repudiation is a way of providing absolute proof that a particular user
performed some action.

� Auditing

Auditing is the process of creating a tamper proof trail of security-related
events in order to evaluate security policies and mechanisms, and when used
in conjunction with non-repudiation, to provide evidence of malicious user
actions.

The J2EE specification defines a number of goals for security within J2EE
applications:

� Portability

The J2EE security model must support the concept of portability. In other
words, it must be implemented in such a manner that J2EE applications are
decoupled from the underlying security implementation.

� Transparency

J2EE application developers wishing to implement security in their
components should not need to understand security in order to do so.
 Chapter 1. J2EE introduction 17

However, in practice, a developer should at least have an understanding of
the security considerations addressed above.

� Isolation

This is related to the portability requirement. What the specification says here
is that authentication and access control should be performed in accordance
with instructions provided in the deployment descriptors, and managed by the
systems administrator. This ensures that the application is decoupled from
the underlying security implementation.

� Extensibility

The J2EE specification provides security application programmer interfaces.
Provided that the application restricts itself to using these APIs for
implementing security in its components, it will retain independence from the
underlying platform, and thus retain portability.

� Flexibility

The application should not impose a specific security policy, rather it should
facilitate the implementation of security policies.

� Abstraction

The mapping of security roles and access requirements to environment
specific security roles, users and policies should be specified in the
applications deployment descriptors. The deployment descriptors should also
document which security properties can be modified by the deployer.

� Independence

Required security behaviors and deployment contracts should be
implementable using a variety of popular security technologies.

� Compatibility testing

The J2EE security model should be described in such a way that an
implementation can readily be certified as compatible or not.

� Secure interoperability

Application components executing in a J2EE product must be able to invoke
services provided in a different J2EE product, irrespective of whether the
same security policy is used.

Figure 1-4 on page 19 illustrates how WebSphere Application Server leverages
the security provided by the operating system and other Java and J2EE
components.
18 WebSphere and .NET Coexistence

Figure 1-4 WebSphere environment security layers

Due to the layered nature of the WebSphere Application Server security model,
the security considerations described earlier in this section are automatically
addressed by services provided in the operating system and the J2EE security
model.

When developing a J2EE application for WebSphere Application Server, it is
important that decisions relating to security be made early in the application
development life cycle, preferably during the design phase.

In J2EE applications, security is configured through the deployment descriptors,
and it is the responsibility of the container to enforce the security policy.

WebSphere Application Server provides implementations of user authentication
and authorization mechanisms providing support for various user registries:

� Local operating system User registry

� LDAP User registry

� Custom User registry

Operating System Security

JVM 1.3

Java 2 Security

Corba Security / CSIv2

J2EE Security API

WebSphere Security

Naming
User Registry
JMX MBeans

HTML
Servlet / JSP
EJBs
WebServices

Access Control

WebSphere Application resources

WebSphere Security

Java Security

Platform Security
 Chapter 1. J2EE introduction 19

Authentication mechanisms supported by WebSphere are:

� Simple WebSphere Authentication Mechanism (SWAM)

� Lightweight Third Party Authentication (LTPA)

For a more detailed discussion of security in IBM WebSphere Application Server
V5, refer to the IBM Redbook IBM WebSphere V5.0 Security, SG24-6573.

1.1.14 Load balancing and failover
The specification does not make any comment with regards to the partitioning of
services or functions between machines, servers or processes. The only concern
is that the implementation meet the specification.

In order to provide a resilient, scalable platform, J2EE vendors provide products
which can be distributed and load balanced across several machines. IBM
WebSphere Application Server V5 provides the following features:

� Scalability
� Load balancing
� Availability
� Maintainability

This is implemented by allowing the replication and clustering of homogenous
application servers so that applications can be horizontally and vertically scaled
and the workload balanced across them.

For a more detailed discussion on load balancing and failover for IBM
WebSphere Application Server, refer to the IBM Redbook IBM WebSphere V5.0
Performance, Scalability and High Availability, SG24-6198.

1.1.15 Application logging
The J2EE specification makes no reference to how logging should be
implemented by product providers. Consequently, vendors implement logging
independently of one another.

IBM WebSphere Application Server provides several general purpose logs:

� Java Virtual Machine logs

These logs are created by redirecting the output streams of the JVM, stdout
and stderr.

� Native logs

These logs are created by redirecting the output streams of the JVM process
and any native modules that it references.
20 WebSphere and .NET Coexistence

� Trace log

This log can be enabled to trace internal components of the application
server. It is useful in problem determination when information recorded in the
other logs is insufficient.

� Service log

This log records all WebSphere system events.

How logging is implemented in a J2EE application is left to the discretion of the
application developers. However, there are logging APIs available for purchase
from a number of vendors. One of the most widely used APIs for logging is the
log4j API available from the Apache Software Foundation at the following URL:

http://jakarta.apache.org/log4j

1.2 Development
It is possible to develop a Java application using a text editor, but developing
Web applications requires more than just writing Java code. That is where tooling
comes into play. IBM WebSphere Studio Application Developer is an integrated
development environment for building, testing, and deploying J2EE and Web
Service applications.

A programming model should describe the entire model for developing,
deploying and maintaining applications in an information system. J2EE
specification breaks the life cycle of an application into six different roles or
responsibilities making the development process easier.

J2EE product provider
The product provider is the company that designs and makes available for
purchasing the J2EE platform, APIs and other features defined in the J2EE
specification. Any vendor that implements the J2EE platform according to the
Java 2 Platform, Enterprise Edition Specification is considered in this role. For
example, IBM is a J2EE product provider because it implements J2EE in
WebSphere products.

Tool provider
This is the person or company which implements tools to enable other tasks on
the J2EE platform to be development, assembly, packaging, deploying and
monitoring tools. IBM is a tool provider with products like WebSphere Studio
Application Developer, Tivoli® Tools, and so on.
 Chapter 1. J2EE introduction 21

http://jakarta.apache.org/log4j

Application component provider
The application component provider is responsible for developing components of
the application and the deployment descriptors. The application component
provider develops the Web components, enterprise beans, applets, or
application clients for use in J2EE applications.

Application assembler
The application assembler is responsible for combining components from
application component providers into a J2EE application EAR file. The
assembler or deployer can edit the deployment descriptor directly or use tools
that correctly add XML tags according to interactive selections. The following
tasks are performed to deliver an EAR file that contains the J2EE application:

� Assembles EJB JAR and Web components (WAR) files created in the
previous phases into a J2EE application EAR file.

� Specifies the deployment descriptor for the J2EE application.

� Verifies that the contents of the EAR file are well formed and comply with the
J2EE specification.

Application deployer
This is the company or person that installs and configures the J2EE application
into the Runtime Environment (into the J2EE server). During the configuration,
the deployer follows instructions supplied by the application component provider
to resolve external dependencies, specify security settings, and assign
transactions attributes.

System administrator
The system administrator is responsible for administrating the computing and
networking infrastructure where J2EE applications run and oversees the runtime
environment.

As you can see, the output for one role is the input to the next one.

1.2.1 Writing a Java application using a text editor
In this section, we are going to demonstrate how to develop a Hello World
application in Java using a text editor, then how to compile and execute it. In this
example, we are going to use Notepad, but you can use any editor program, like
the DOS edit command, or in UNIX, vi or emacs.
22 WebSphere and .NET Coexistence

Java programs usually have different phases to be executed:

� Edit
� Compile
� Execute

1. In the text editor, write the code below and save the file as Hello.java.

Figure 1-5 Hello World java code

2. To compile the java program, open a DOS command prompt window and
type: javac Hello.java at the location of the source.

The javac command compiles the program and translates the Java program
into bytecodes which is the language understood by the Java interpreter.

Figure 1-6 Compiling the code

Unlike in .NET, the compiler generates a bytecode class which then runs in
the JVM and is portable between various platforms. The Java compiler does
not generate .exe files on the Windows platform.

Note: You will need the JDK (Java Developer’s Kit) installed in your computer
before you start. JDK is a set of tools including the compiler (javac), the
interpreter (java) and other tools used by Java developers.
 Chapter 1. J2EE introduction 23

To see other options for the Java compiler, type javac.

Figure 1-7 Java compiler options

3. If the program compiles correctly, a file called Hello.class will be created. This
is the file that contains the bytecodes.

To execute Hello.java, type java Hello in the command prompt window.

Figure 1-8 Execution of the program

1.2.2 WebSphere Studio Application Developer (IDE)
IBM's WebSphere Studio Application Developer is a powerful, yet easy-to-use
Integrated Development Environment (IDE) for J2EE application development,
analogous to Microsoft's Visual Studio .NET, the IDE for developing Microsoft
.NET based solutions.

WebSphere Studio Application Developer is written to J2EE specifications
(supporting both J2EE 1.2 and 1.3 application development), and provides the
tools, editors and wizards for rapid development of all J2EE artifacts, including
24 WebSphere and .NET Coexistence

Java classes, servlets, HTML files, JSP pages, Enterprise Java Beans (EJBs),
Web Services, and XML deployment descriptors, all accessible from a single
user interface. It is built on top of the Eclipse framework, open source project
(designed by IBM), allowing it to benefit from the platform's extensibility through
new wizards and plugins.

There are several products in the WebSphere Studio family:

� WebSphere Studio Site Developer

A robust, easy-to-use development environment for building, testing and
maintaining dynamic Web sites and Web Services. Intended for professional
developers of dynamic Web applications and sites.

� WebSphere Studio Application Developer

Extends the functionalities of Site Developer to include support for
programmers working on business logic, including advanced Web Services
and EJBs.

� WebSphere Studio Application Developer - Integration Edition

Contains all functionality of WebSphere Studio Application Developer but
extends this for accelerated development and integration of complex
applications.

� WebSphere Studio Enterprise Developer

Extends the Integration Edition to bring the power of J2EE and rapid
application development to diverse enterprise environments.

We will be focusing on the use of WebSphere Studio Application Developer in
this book; Figure 1-9 on page 26 shows the view of the application after the first
start.
 Chapter 1. J2EE introduction 25

Figure 1-9 WebSphere Studio Application Developer

The development environment of WebSphere Studio Application Developer is
similar in look and feel to that of Visual Studio .NET, so users familiar with the
Visual Studio .NET environment should find it relatively straightforward to come
to grips with the WebSphere Studio IDE.

WebSphere Studio Application Developer includes the following tools for
development:

� Web development
� Relational database development
� XML development
� Java development
� Web Services development
� Team collaboration
� Enterprise Java Bean (EJB) development tools
� Plug-in development

In WebSphere Studio Application Developer, perspectives are a role-based
collection of views and editors, and present just the tools needed for the task at
hand. For example, the Java perspective is designed for the role of the Java
26 WebSphere and .NET Coexistence

developer, and presents only the tools required for tasks associated with Java
development. Or, there is the Server perspective, which has the tools for
administering and creating server instances and configurations for the test
environment. A perspective is made up of several views which are separate
windows that provide specific ways of viewing and working with resources
associated with the roles in that perspective. The tooling also has editors which
allow you to create and modify the resources (for example: the Java editor, the
XML editor, and so on).

WebSphere Studio Application Developer has the following predefined
perspectives for development roles:

� Java perspective
� Java Browsing perspective
� Java Type Hierarchy perspective
� Web perspective
� J2EE perspective
� Server perspective
� XML perspective
� Plug-in Development perspective
� Resource perspective
� Data perspective

Perspectives are highly customizable, allowing the user to add, remove or
arrange views and editors as they choose. There is even the option of creating a
completely new perspective if none of the pre-defined ones match the needs of
the developer.

The workbench loads up into the J2EE perspective by default, which contains
views specific to J2EE development. For example, the J2EE Hierarchy provides
a hierarchical view of your J2EE resources, and provides an easy way to view
the deployment descriptor tree of your J2EE applications and modules, and to
quickly navigate to editors for component objects.

When developing a J2EE application with WebSphere Studio Application
Developer, the user creates an Enterprise Archive Project (EAR Project). Within
the EAR project, multiple J2EE artifacts (as listed above) are organized into
Projects. An EAR Project in WebSphere Studio Application Developer is
analogous to a Solution in Visual Studio .NET.
 Chapter 1. J2EE introduction 27

Figure 1-10 Similarities of the WebSphere Studio project hierarchy and the J2EE
application structure

The structure of the file system in WebSphere Studio mirrors the structure of a
J2EE application as defined in the J2EE specification. At the top level, there is
the EAR project (analogous to the J2EE Application EAR file) with its deployment
descriptor (application.xml). If the EAR project is expanded in the J2EE
Hierarchy view, the J2EE modules contained within that EAR are visible,
including the Java Client JAR files, EJB JAR files and Web application WAR files,
each with its own deployment descriptors.

In WebSphere Studio, a single folder is used to represent each project, each
containing the files and metadata required for deployment of the application to a
server. These folders include the directories as defined in the J2EE
specifications, such as the META-INF directory for EJBs and WEB-INF for
WARs. Within the EJB projects, one can view the EJBs they contain, and
likewise for the Web application, WAR projects where one can see the servlets
and JSPs contained within the WAR file.

For more details on WebSphere Studio Application Developer and the
WebSphere Studio family, refer to WebSphere Studio Application Developer
Version 5 Programming Guide, SG24-6957.

EAR
Project

EJB
Project

Web
Project

Client
Project

EJB
DD

Client
DD

Web
DD

Application
DD

HTML,
GIF, etc.

Enterprise
Bean

Client
ClassServlet JSP

EJB
Module
JAR file

Web
Module

WAR file

Client
Module
JAR file

DD = Deployment Descriptor

J2EE
Application

EAR file

web.xml

application.xml

ejb-jar.xml

Application
Developer
28 WebSphere and .NET Coexistence

Source code management
WebSphere Studio has built-in plugins (Eclipse plugins) to support source code
management and versioning. The following clients are supported in WebSphere
Studio:

� Rational ClearCase®
� CVS

Eclipse itself has several other plugins developed to support source code
management; some of them are free from open source projects, others are third
party applications.

1.3 Testing
This section provides information about testing.

1.3.1 WebSphere Studio Application Developer
The WebSphere Studio Application Developer IDE provides extensive features
for debugging and testing J2EE applications, including:

� Integrated Debugger
� Server tools for testing and deployment
� Performance profiling

Integrated debugger
WebSphere Studio Application Developer has an integrated debugging utility
allowing the user to detect and diagnose errors in their programs, which can be
running either on the local machine or remotely.

The debugger allows the user to control the execution of the program by setting
breakpoints in the code, suspending launches, stepping through code, and
examining the values of variables.
 Chapter 1. J2EE introduction 29

Figure 1-11 The debug perspective

There is a predefined perspective, as shown in Figure 1-11, which is dedicated to
the role of debugging. This perspective contains a view to show the breakpoints
in the code, a view for inspecting the values of variables, a process view to show
a list of running and terminated processes, and a debug view to show threads of
execution and stack frames.

Server tools for testing and deployment
The server tools include the WebSphere Unit Test Environment, which is a
lightweight test environment identical in functionality to a production server and
supports testing of applications on local and remote servers. It offers a runtime
identical to that of the full WebSphere Application Server, but without the added
complexity of deployment one would encounter in a full production server. The
test server has the ability to load projects and class files directly from the
WebSphere Studio workspace directories, meaning there is no need to package
and publish the projects to the server.

The user can therefore test solutions in WebSphere Studio Application
Developer without having to go through the trouble of deploying to a full server,
30 WebSphere and .NET Coexistence

and because of the identical runtime functionality, he/she can be confident that if
the application works in the Test Environment then it will also work on the real
server. WebSphere Studio Application Developer also has the ability to deploy to
and test applications on a remote WebSphere server.

Within the Test Environment, the tester has the ability to define multiple server
configurations, enabling testing of an application on a variety of different server
types and in different test environments. This also means that the testing can be
extended to previous versions of the server runtime. For example, in
WebSphere Studio Application Developer V5.1, there is the ability to test in
WebSphere V5.0 and in WebSphere V4.0, ensuring backward compatibility of
your applications.

Testing of Web and EJB projects in WebSphere Studio Application Developer is
very straightforward. The user simply has to select the project they would like to
test and select Run on Server from the context menu. If the project is not yet
associated with a server instance, WebSphere Studio will automatically create
one, start it, and run the project on the server. Testing Web projects will involve
an HTML page being displayed in the embedded Web browser, from which the
user can test the functionality of the Web project code. Testing an EJB project
will start the Universal Test Client.

Universal Test Client
The Universal Test Client is a Web-based application included in WebSphere
Studio Application Developer, allowing the user to test functionality of EJBs from
a Web browser.
 Chapter 1. J2EE introduction 31

Figure 1-12 The Universal Test Client

The tester can use the Universal Test Client to create() or find() an instance on
a bean, which they can then invoke methods on, passing relevant parameters as
required, and viewing the results in the browser.

Performance profiling
WebSphere Studio Application Developer has a perspective for Profiling and
Logging, to help users identify, isolate and fix performance bottlenecks in their
application code, such as:

� Memory leaks
� Low throughput
� Deadlocks
� System resource constraints (for example: not enough memory)

The profiling tools included in the WebSphere Studio IDE provide the ability to
determine problems early in the application development cycle, therefore
reducing the possibility of finding serious issues in the final performance testing
phase. They also give architects and designers the opportunity to make any
necessary architectural or design changes early on.
32 WebSphere and .NET Coexistence

The tooling collects runtime information about a program and can display the
results in both graphical and non-graphical forms to help visualization of the
program execution and explore different patterns in the execution.

The tools are useful for performance analysis and for gaining a deeper
understanding of your Java program. You can use them to view object creation
and garbage collection, execution sequences, thread interaction, and object
references. They also enable you to see which operations take the most time,
and help you to find and solve memory leaks. You can easily identify repetitive
execution behavior and eliminate redundancy, while focusing on the highlights of
an execution.

1.4 Deployment
This section describes the process of packaging and deploying a J2EE
application to the WebSphere Application Server.

1.4.1 Packaging J2EE applications
Before a J2EE application can be deployed, it must first be packaged into a J2EE
application EAR file. The subcomponents of a J2EE application can also be
packaged individually into their respective, required J2EE containers; for
example, a WAR file for a J2EE Web Project, an EJB JAR file for a J2EE EJB
Project, and a Client JAR file for a J2EE Client Project.

These operations can be done in several different ways, and this chapter will
focus on two options: from a command line interface and using the export tools
from within WebSphere Studio Application Developer.

Command line
When performing complex and potentially frequently repeated operations,
command line tools can improve the process with the use of scripting to
automate the processes, thereby reducing the need for constant human
interaction and improving speed and accuracy of large operations. One such
commonly used tool for packaging J2EE applications for use in WebSphere
Application Server is Ant.

Ant (which stands for “Another neat tool”) is a Java based build tool, similar to
Make, but where Make uses operating system shell-based commands, Ant uses
Java classes to perform its operations, making it platform-independent. There
are many pre-written operations built into Ant, which are sufficient to perform the
most common build operations. If extended functionality is required, then
additional operations can be written in Java which can then be used by Ant.
 Chapter 1. J2EE introduction 33

Ant uses XML scripts to build, deploy, test, and run many other operations the
user may require for Java projects. XML is used to describe the operations
required in the build and the targets they are to be executed upon. Running the
relevant scripts will automatically build and package J2EE projects with no more
interaction required from the user.

See http://ant.apache.org/ for more information about how to use Ant.

Application Assembly Tool (AAT)
The Application Assembler Tool (AAT) is a Java GUI application to help
application assemblers to build deployable applications for the WebSphere
Application Server.

The deployable packages, enterprise archives (EAR), can be built from scratch
or the existing ones can be modified. AAT does not provide support for
application development.

For more information on the Application Assembly Tool, refer to the WebSphere
Infocenter at:

http://www-3.ibm.com/software/webservers/appserv/infocenter.html

WebSphere Studio Application Developer
For each of the J2EE components (EJB JAR, WAR, Client JAR and EAR
projects) represented in WebSphere Studio Application Developer, there is an
Export function which creates a J2EE package for the project.

For example, to export an Enterprise Application Project, you simply select the
enterprise application project folder in the Navigator or J2EE Hierarchy View that
you wish to export, right-click and select Export from the context menu. This will
start up a simple wizard to guide the user through the packaging process, and
will create a deployable EAR file. This EAR file will include all files defined in the
Enterprise Application project as well as the appropriate module archive files for
each J2EE module project defined in the deployment descriptor, such as Web
archive (WAR) files and EJB JAR files.

The process is identical for packaging individual J2EE components, since
WebSphere Studio Application Developer has export wizards for EJB modules
(resulting in an EJB JAR file), Web modules (resulting in a WAR file) and Client
modules (a JAR file).

When exporting EJB projects (or Enterprise Application projects which contain
EJB projects), there is an option in the Export wizard to Generate Deploy and
RMIC code. This is a necessary step before the user can run the enterprise
beans on a server. If this option is selected in the wizard, then it will automatically
generate and compile deployment and RMIC code for the selected EJBs.
34 WebSphere and .NET Coexistence

http://ant.apache.org/
http://www-3.ibm.com/software/webservers/appserv/infocenter.html
http://www-3.ibm.com/software/webservers/appserv/infocenter.html

1.4.2 Deploying the packaged applications
Once the EARs, WARs, JARs or EJB JARs have been exported, they can be
deployed to a server. The server in this case is the WebSphere Application
Server.

Deployment is the process of installing applications into application servers,
without the need for customizing the application code for each server
environment. The J2EE 1.3 specification assigns three explicit duties to the
deployer:

� Install the application files on the application server.
� Configure the application for the particular operational environment.
� Start the newly deployed application.

The appeal of the J2EE specification is that once the applications have been
written and packaged once, they can be deployed to many different
environments without changing the code. This is possible because:

� The application module contains instructions for its deployment in the form of
the deployment descriptor.

� The deployment descriptor provides application specific information, but
leaves certain information unspecified, such as the specifics of the
environment to which the application is to be deployed. The deployer
provides such information at deployment time, along with any other
information required for successful application deployment.

For example, the deployment descriptor may contain information about security
roles, but it would be up to the deployer to map such roles to actual specific users
in the target environment.

As with the process of packaging the applications, deployment can be performed
using either command line tools or by using the WebSphere Administrative
Console.

Command line
There is a command line tool included as part of WebSphere Application Server,
called WebSphere Studiomin, a powerful scripting interface that supports a full
range of administrative commands. WebSphere Studiomin is the non-graphical
alternative to using the Administrative Console. The WebSphere Studiomin tool
is intended for production environments and unattended operations.

For example, to install an application from an EAR file to a server, the following
simple command would be used:

$AdminApp install c:/MyStuff/application1.ear {-server serv2}
 Chapter 1. J2EE introduction 35

The above command would be enough to automatically install the
application1.ear enterprise application to server serv2, with no more interaction
required by the user. Similar commands can also be used to modify configuration
attributes.

For more information on, and how to use WebSphere Studiomin, see the
WebSphere InfoCenter at:

http://www-3.ibm.com/software/webservers/appserv/infocenter.html

Also refer to the IBM Redbook IBM WebSphere Application Server V5.0 System
Management and Configuration, SG24-6195.

WebSphere Administrative Console
The WebSphere Administrative Console is a J2EE Web-based graphical
interface which will guide the user through deployment and systems
administration tasks. It is extremely useful for helping the user get started
exploring the available management options, and there are wizards to guide the
user through the more complicated processes.

Deployment of an application is performed by simply selecting Install New
Application from the console; the wizard will guide the user through the
deployment process.

During application installation, the deployer provides environment-specific
information required to run the application. The wizard presents the deployer with
a series of questions (or GUI panels) to collect configuration information related
to the application and its modules. The tools automatically choose default values
for various pieces of required information, based on the current environment
configuration.

For a full discussion of WebSphere Application Server administration refer to the
IBM Redbook IBM WebSphere Application Server V5.0 System Management
and Configuration, SG24-6195.

Hot deployment and dynamic reloading
WebSphere Application Server supports hot deployment and dynamic reloading,
which involve making changes to an application and its contents without having
to restart the application server.

Hot deployment is the process of adding new components such as WAR files,
EJB JAR files, EJBs, servlets and JSP files to a running application server
without having to restart the server. In most cases, restarting the application is all
that will be required to pick up the changes.
36 WebSphere and .NET Coexistence

http://www-3.ibm.com/software/webservers/appserv/infocenter.html

Dynamic reloading of existing components is the ability to change an existing
components without having to restart the application server, for example,
changing the implementation of a servlet, or changing a deployment descriptor of
a Web module.

Using this approach, there is no need to use command line administration tools
or the WebSphere Administration Console. Changes can simply be made to the
application files on the file system accessed by the server.

See “Updating applications” in the InfoCenter for more information about hot
deployment and dynamic reloading.

1.5 Runtime
Access to enterprise business logic and data from heterogeneous devices and
technologies poses a significant technical challenge: the implementation of logic
and data needs to be client neutral. Using a multi-layer architectural approach is
a natural way to deal with this issue. Enterprise applications can be partitioned in
a number of layers that are logically independent, although they may physically
reside on the same machine or run in the same process.

The J2EE specification defines a packaging structure which maps perfectly to
the multiple layer architecture shown in Figure 1-13.

Figure 1-13 Multi-layer architecture

Tier-0
Clients

Tier-1
Presentation Logic

Tier-1
Clients

Business
Connections

Tier-2
Business Logic

Tier-3
Data Store

PvC

Document
Exchange

Message
Exchange

 EJB

 JSP
 Servlet

 EJB

workflow
 Chapter 1. J2EE introduction 37

Application servers provide the J2EE-compliant runtime environment to
enterprise applications. The application server provides a Web container, EJB
container, and various services for enterprise applications. In this section, we will
describe the functionality of IBM WebSphere Application Server and its runtime
environment architecture.

1.5.1 WebSphere Application Server
IBM WebSphere Application Server V5 is an application server which provides
the runtime environment for business applications by implementing the J2EE
(Java 2 Enterprise Edition) specification, conforming to the J2EE 1.3 version.
WebSphere exceeds many of the J2EE specification implementing additional
services in order to provide broader functionality or to bring future extensions into
the product earlier.

The base WebSphere architecture gives flexibility to the system architecture
level, not addressed in the J2EE specification, by separating the managed
processes and implementing an overall administration system.

IBM WebSphere Application Server has some different offerings, each having its
own specific capabilities and functions, as follows:

� WebSphere Application Server Express
� WebSphere Application Server (base)
� WebSphere Application Server Network Deployment
� WebSphere Application Server Enterprise
� WebSphere Application Server for z/OS®

More details can be found at
http://www-3.ibm.com/software/webservers/appserv/, or in the IBM Redpaper
WebSphere Application Server V5 Architecture, REDP-3721.

In this section, we will focus on the runtime environment of WebSphere
Application Server base package and WebSphere Application Server Network
Deployment.

Before we discuss the details of the runtime architecture, it is important to
understand some fundamental concepts.
38 WebSphere and .NET Coexistence

http://www-3.ibm.com/software/webservers/appserv/

Figure 1-14 System management topology

� A cell is an aggregation of nodes in a single logical administration domain. In
a cell, there is going to be a single Deployment Manager.

� A node is a set of managed servers on a physical machine in a topology
composed of one or more machines. A node contains an IBM WebSphere
Application Server installation.

� A managed process is any instance of a JVM that can be managed in a
WebSphere V5 environment. Application Servers are managed processes,
but JMS Servers (a special type of server that runs the integrated JMS
infrastructure) fall in this category too. Other examples of managed
processes are the Node Agent and the Deployment Manager.

� A node agent is responsible for managing all the servers on the node.

� The deployment manager manages the multiple nodes in a distributed
topology. Its main purpose is to provide the ability to perform centralized
administration in the cell.

WebSphere Application Server: base configuration
The base configuration of WebSphere Application Server V5 includes only the
application server process. There is no node agent or Deployment Manager in
this configuration. Each instance of application server is administered separately.
Figure 1-15 on page 40 shows an overview of the runtime architecture in a base
installation. The node agent comes with the base product but is not active until
the server gets attached to a cell.

Deployment Manager

Node Agent

Process B Process A

Node Agent

Process C Process D

 Node A Node B

Cell
 Chapter 1. J2EE introduction 39

Figure 1-15 IBM WebSphere Application Server runtime architecture

WebSphere Application Server works with a Web server to handle requests for
dynamic content from Web applications. The Web server plugin is used to
communicate between the Web server and the application server and to
determine if the request that comes from the client should be handled by the
Web server or by the application server.

There is an embedded Web server in the application server for exchanging
HTTP/HTTPS requests/responses with an external Web server.

The application server is the primary component of WebSphere. It runs in a Java
Virtual Machine (JVM), providing the runtime environment for the application’s
code. It provides the containers that execute the Java application components
and also provide services to the applications deployed within them. We have
already described the containers in a previous section: “Containers” on page 12.

Apart from the containers, the application server provides other services:

� Object Request Broker (ORB)
� Security services using Java Authentication and Authorization Service

Config
repository

(file)Web
browser

client

EJB container

Web container

Application Server

Embedded JMS Server

Node
Agent

Node

Java
client

Client container

Application
Database

Ad
m

in
ap

pl
ic

at
io

n

Ad
m

in
 s

er
vi

ce

Admin
UI

Scripting
client

C
us

to
m

er

ap
pl

ic
at

io
n

(e
ar

)

HTTP server

WebSphere
plug-in Embedded

HTTP server

J2C container

Web
Services
engine

Name Server (JNDI)

Security server
40 WebSphere and .NET Coexistence

� Java Management Extension Framework
� Transaction management
� Messaging Interfaces
� Naming services (JNDI)
� E-mail interfaces
� Connectors to back-end systems
� Database connection (JDBC) and connection pooling
� Trace service
� Performance Monitoring Interface.

Web Services technology is provided as a set of APIs in cooperation with the
J2EE applications. The WebSphere Application Server V5.0.2 base product
supports the following implementations:

� JSR 101 (JAX-RPC) 1.0 - Java APIs to support emerging industry XML based
RPC standards.

� JSR 109 1.0, which defines the Web Services support within a J2EE
environment.

� SAAJ 1.1, which is the SOAP with Attachments API for Java.

� WS-I Basic Profile 1.0, which is a set of non-proprietary Web Services
specifications, along with clarifications to those specifications which promote
interoperability.

� WS-Security, which describes enhancements to SOAP messaging to provide
quality of protection through message integrity, message confidentiality, and
single message authentication.

� ASTK support, an application server toolkit.

� SOAP/JMS support that allows SOAP messages to flow over a messaging
transport.

� WSIF (Web Services Invocation Framework).

� Web Services caching, which leverages servlet caching support and
introduces caching SOAP requests.

� JSR 109 performance monitoring support.

� UDDI4J V2.0, providing full support of the UDDI V2 specification, support for
multiple SOAP transports, debug logging, and configuration capabilities.

� Apache SOAP 2.3.

The Admin service runs within each server JVM, providing functions to
manipulate configuration data for the application server and its components. The
configuration is stored in a set of XML files and these are stored in the server’s
file system.
 Chapter 1. J2EE introduction 41

The scripting client gives flexibility over the Web-based administration
application, allowing administration using a command line interface. It uses the
Bean Scripting Framework (BSF) which makes possible the usage of scripting
language functions for configuration and control.

There is an embedded messaging server which is a full JMS server running in the
application server. The JMS server is used for support of message-driven beans
and messaging within a WebSphere cell. In the base configuration, it runs in the
same JVM as the application server. In the Network Deployment version, it is
separated from the application server and runs in a separate dedicated JVM.

The customer applications are the business applications that follow the J2EE
specification. They are all packaged into Enterprise Application Archives (EAR
files).

The application database runs on the database server and stores data used by
the customer applications.

The security server contains the security settings regarding authentication and
authorization functionality.

The name server provides a service that is used to register all EJBs and J2EE
resources hosted by the application server.

WebSphere Application Server Network Deployment
This version of WebSphere Application Server Network Deployment is an
extension of the base one. It includes support for multiple nodes, clusters, and
load balancing. It provides centralized administration of multiple nodes, allowing
you to administer nodes on multiple machines. Figure 1-16 on page 43 shows
the details of the architecture.
42 WebSphere and .NET Coexistence

Figure 1-16 IBM WebSphere Application Server Network Deployment runtime
architecture

The Deployment Manager is one of the components of the Network Deployment
package. It provides a single point of administration for all elements in the cell
because it contains the master copy of the configuration/application files. The
master configuration repository contains all cells’ configuration data.

The node agent is an administrative process which is responsible for some
functions such as file transfer services, performance monitoring and
configuration synchronization.

WebSphere Application Server Network Deployment V5 provides a private
UDDI that implements V2.0 of the UDDI specification.

The Web Services Gateway is a runtime component that provides configurable
mapping based on WSDL documents. It maps any WSDL-defined service to
another service on any available transport channel. You use the IBM Web

Config
repository

(file)

Master
repository

(file)

Web
browser

client

EJB container

Web container

Application Server

Embedded JMS Server

Node Agent

Node

Java
client

Client container

Application
Database

Ad
m

in
 s

er
vi

ce

Admin
UI

Scripting
client

C
us

to
m

er

ap
pl

ic
at

io
n

(e
ar

)

HTTP server

WebSphere
plug-in Embedded

HTTP server

J2C container

Web
Services
engine

Name Server (JNDI)

Security server

Cell
Deployment Manager

Admin
application

(.ear) Name Server (JNDI)

Admin Service

Admin Service

Session
Database

Web Services
Gateway (.ear)

UDDI registry
(.ear)

Application Server
 Chapter 1. J2EE introduction 43

Services Gateway to handle Web Service invocations between Internet and
intranet environments. You use it to make your internal Web Services available
externally, and to make external Web Services available to your internal systems.

This package also includes the Edge Components, which improve the
capabilities of load balancing and enhanced caching.

For more information about supported hardware and software APIs of
WebSphere Application Server, go to:

http://www-3.ibm.com/software/webservers/appserv/doc/v50/prereqs/
prereq502.html

1.6 Administration
When we talk about administrating a J2EE application, there are two different
categories that come up:

� Application life cycle management tasks, such as installing, updating,
uninstalling, monitoring, new applications in the J2EE Server

� Server resource management, which includes adding, removing and
configuring resource managers, security, availability, performance, and
scalability

Companies have critical enterprise applications running on their systems, so
managing a dynamic application server environment is not easy.

J2EE specification provides a technology called JMX which provides a
management architecture, APIs and services for building Web-based,
distributed, dynamic and modular solutions to manage Java enabled resources.

More details about the specification can be found at:

http://jcp.org/aboutJava/communityprocess/final/jsr003/index.html

There are tools available that help to monitor the runtime environment and
enterprise applications. IBM WebSphere Application Server provides a set of
tools which are useful for the system administrator on a daily basis:

� WebSphere Administrative Console

� Command-line operational tools

� WebSphere scripting: IBM WebSphere Application Server includes a scripting
tool called WebSphere Studiomin

� Java APIs: the Java-based JMX APIs can be accessed directly by custom
Java applications
44 WebSphere and .NET Coexistence

http://www-3.ibm.com/software/webservers/appserv/doc/v50/prereqs/prereq502.html
http://jcp.org/aboutJava/communityprocess/final/jsr003/index.html

The WebSphere Administrative Console is a Web-based administration interface
installed as a standard J2EE 1.3 compliant Web application. In the base
configuration, it runs on the application server and can only manage that
application server. In the Network Deployment configuration, it is installed under
the Deployment Manager.

Figure 1-17 WebSphere Administrative Console

The Administrative Console provides a centralized navigation to configuration
tasks and runtime information, allowing the administration of multiples nodes and
of nodes on multiple machines.

All WebSphere Application Server configuration data is stored in XML files; you
can interact with it through the Administrative Console or use the scripting facility
called WebSphere Studiomin.

The scripting tool is based on the Bean Scripting Framework (BSF); its
architecture works as an interface between Java applications and scripting
languages. For example , JACL is a supported language based on the scripting
language TCL. One of the major advantages of using JACL and WebSphere
 Chapter 1. J2EE introduction 45

Studiomin is that JACL offers robust features and prebuilt functions. The
programming model for JACL is easy for Java developers to use and allows
customers to utilize their existing investment in scripting skills.

The advantage of BSF is that scripts are not tied to a specific application or
implementation. Any number of languages can access Java objects and
interoperate with each other.

The JMX specification defines an interface called MBeanServer for
communicating with MBeans; the scripting interface called AdminControl is
based on this interface. WebSphere Studiomin uses the same interface as a user
would using the Web Console to make configuration changes and control the
WebSphere server.

MBeans are simple JavaBeans that perform operational or configuration
changes on resources.

The Java Management Extensions (JMX) are a framework that provides a
standard way of exposing Java resources to a systems management
infrastructure. By Java resources, we mean a wide range of objects, such as
enterprise applications, Web modules, but also application servers, clusters, and
so on.

The framework allows a provider to implement functions such as listing the
configuration settings and allowing users to edit them. It also includes a
notification layer, which can be used by the management applications to monitor
events such as the startup of an application server.

WebSphere Application Server Network Deployment allows you to manage
multiple WebSphere Application Server V5 nodes from a single, central location.
Distributed administration requires Network Deployment to be installed on a
single machine in the environment.

The machine on which you install Network Deployment does not require
WebSphere Application Server to be installed. Once you have installed and
started the network deployment instance, you can use the addNode tool
provided with WebSphere Application Server to add a WebSphere Application
Server instance (node) to the network deployment cell. Once a node has been
added to a network deployment cell, the Network Deployment Manager for the
cell assumes responsibility for the configuration of any application server nodes
that belong to the cell. The Network Deployment Manager creates configuration
files for each WebSphere Application Server node which has been added to its
cell.

WebSphere Application Server Network Deployment provides a master
repository of configuration and application data for the cell. WebSphere
46 WebSphere and .NET Coexistence

Application Server administrative clients are used to provide centralized
functionality for:

� Modification of configuration settings in the master repository.

� Installation, update, and uninstallation of applications on application server(s)
in the cell. In the process, the Enterprise Application Archive (EAR) files and
deployment descriptors are also stored in the master repository.

The changes are committed to the master repository and then published to the
nodes of the cell.

Figure 1-18 Distributed administration

config
repository

config
repository

Application
Server

Application
Server

Admin
service

Node
Agent

Node

Deployment
Manager

Cell

Admin
service

Admin
service

Admin
service

Application
Server

Application
Server

Admin
service

Node
Agent

Node

Admin
service

Admin
service

Master
repository
 Chapter 1. J2EE introduction 47

48 WebSphere and .NET Coexistence

Chapter 2. .NET introduction

This chapter provides an overview of .NET, the .NET Framework, its capabilities
and the technologies and specifications that make it up. This chapter is intended
for those with a knowledge of J2EE and WebSphere who wish to gain a better
understanding of .NET.

This chapter discusses the following items:

� What .NET is and how it is architected, including application components,
packaging and deployment, the runtime environment, the standard services
provided by .NET and the underlying technologies upon which it is built.

� Design considerations for .NET applications.

� Development tools for .NET applications, including the Microsoft® Visual
Studio® .NET Integrated Development Environment and other development
tools.

� Testing tools available for .NET applications.

� How .NET applications are deployed, and the tools available to aid in the
management of this process.

� The application server applicable to .NET Web applications, examining the
runtime architecture of application components at all layers within the
application architecture.

� Administration requirements and tools for the .NET application.

2

© Copyright IBM Corp. 2004. All rights reserved. 49

2.1 Architecture
This section defines and describes .NET, what it is and how it is implemented.
We will cover the overall architecture, application design patterns, the runtime
and services provided by .NET and its underlying technologies.

2.1.1 Overall architecture
The question, “What is .NET?” is not often met with a clear and meaningful
answer. Two reasons for this might be:

� Microsoft’s branding strategy uses this name extensively and in a wide variety
of products.

� .NET is a collection of technologies.

Some background and history
Microsoft has been investing in its flagship operating system for over two
decades now, improving Windows stability, scalability and performance as well
as adding enterprise Quality of Service capabilities through various add-on
offerings and Software Development Kits.

With the Component Object Model (COM), Microsoft provided an object-oriented
application development model for the Windows platform to replace the Win32
C-style API. This model provided some pseudo language-independence
between Visual Basic and C++. COM was later extended with ActiveX to include
additional features in the object model and the beginnings of a distributed
capability called Remote Automation. This networking capability was further
refined in Distributed COM (DCOM).

Microsoft then began adding Quality of Service capability to COM with a
transaction coordinator product called Microsoft Transaction Services (MTS)
which not only provided commit and rollback capabilities, but also extended the
life cycle management of server-side COM objects, allowing advanced
capabilities such as multi-threaded object pooling, which manages the life cycle
of instances of server-side COM objects as they are utilized by remote clients.

Microsoft then merged these Quality of Service capabilities of MTS with COM
creating something called COM+.

Microsoft entered the Web application development market with the release of its
Web and application server product called Internet Information Services (IIS).
This server, along with Microsoft’s Internet browser (Internet Explorer) supported
Visual Basic Scripting as a way to create dynamic Web applications. Combining
these Web-centric technologies with the Quality of Service of COM+ begat a
50 WebSphere and .NET Coexistence

comprehensive architecture for Internet Application development called
Microsoft DNA (Distributed interNet Applications).

Microsoft DNA is a set of design patterns and an architecture for developing
scaleable Internet or Web-based e-commerce applications. Central to DNA was
a concept of logical partitioning of applications into layers, as seen in Figure 2-1.

Figure 2-1 Microsoft DNA introduced the n-tier architecture to Microsoft developers.

This logical model was not intended to denote any physical implementation. The
intention was for code to reside on the physical node that made the most sense,
but each unit of code was to have a function in one of these layers, expose itself
appropriately to layers above and use the services of the layers below.

Underlying DNA from an architectural and product standpoint was the operating
system, COM+ and several additional products for specific purposes, including:

� Internet Information Services: A Web server and application server that
supports hosting of dynamic Web applications. This is analogous to
WebSphere Applicaton Server and Apache Web Server.

� Active Server Pages: Written in a variant of Visual Basic, these server-side
application components reside on an Internet Information Services and
provided presentation to a Web user. VBScript provided a client-side scripting
language similar to JavaScript for various tasks.

� COM+ Components: Written in either Visual Basic or Visual C++, these
components provided business logic components for an application. These
components could live on any physical host and provide services to Web or
Windows applications.

� Active Data Objects: Known as “ADO,” this is a set of COM objects used for
accessing relational data.

� SQL Server: Providing a Relational Data Base Management System.

Data and Data Storage

Business Logic

Presentation
 Chapter 2. .NET introduction 51

Evolution.NET
As Microsoft was beginning to promote DNA as the Internet Application
Architecture of the future, other changes were also occurring in the computing
industry. Significant among these were Web Services and Java 2 Enterprise
Edition. As acceptance of these technologies began to grow, Microsoft evolved
DNA and the technologies underlying it to embrace them, and what they created
received the name “.NET”.

Microsoft .NET is built upon the underlying operating system and products which
made up DNA, including the Windows Operating System and COM+. The OS
and COM+ environments have been significantly enhanced and extended to
support the new features which have been added on top.

The key values .NET itself provides are as follows:

1. Encapsulates the Windows operating system and its Quality of Service
mechanisms within industry standard protocols such as those involved in
Web Services and Web applications.

2. Provides a runtime environment for application software with services like
garbage collection, exception management and namespace support.

3. Provides enhanced programming language independence and a new
programming language - C#.

4. Provides a rich Framework of pre-built classes that perform functions many
applications need.

As shown in Figure 2-2 on page 53, the way .NET provides these values is
through implementation of a Common Language Runtime and a Framework on
top of COM+ and the Operating System. The purpose of the Common Language
Runtime is to provide language independence and execution code management.
The Framework provides access to the underlying Quality of Service
mechanisms such as COM+ and simplifies many tasks such as building and
consuming Web Services, Remoting and other features we will discuss in more
detail later.
52 WebSphere and .NET Coexistence

Figure 2-2 .NET provides access to, and adds value to, underlying services

In Figure 2-2, we note that various underlying products continue to play their
respective roles while the framework extends them. These products have also
been enhanced to provide additional features and many have be rebranded for
.NET. For instance:

� A new version of the OS has been released called Windows Server 2003.

� COM+ was upgraded from v1.0 to v1.5 and has been rebranded as
Enterprise Services under .NET.

� ADO has been enhanced and rebranded as ADO.NET.

� Internet Information Services has been enhanced and is now at V6.0.

It is important to understand that .NET is built upon (and therefore relies upon
and attempts to fully exploit) these underlying products. For instance, .NET
provides a new feature called Windows Forms. This feature provides a thick
client GUI from an easy to use set of classes. .NET is built from the ground up to
take full advantage of Windows.

Key differentiators
If you are familiar with WebSphere Applicaton Server, you know that it is a
product implementation of the Java 2 Enterprise Edition (J2EE) specification, in
which many of the key services provided to applications are defined. J2EE
defines the standardized external protocols used for inter-process and

Win32

Active
Directory COM+

Internet
Information

Server
ADO

.NET Common Language Runtime

.NET Framework

Applications
 Chapter 2. .NET introduction 53

inter-application communication and integration. It also provides the target
platform (the Java Virtual Machine) in which all code runs. WebSphere
Application Server adds value to J2EE where it is useful and possible to do so.

Figure 2-3 The building blocks of WebSphere and .NET

In the same spirit, .NET can be described as a product implementation built upon
COM+ and other products from Microsoft. In this case, .NET provides the
implementation of standard interfaces such as Web-based access via HTTP,
XML and Web Services while utilizing the underlying Quality of Service
mechanisms which are optimized for the platform, which is Windows. .NET adds
value to COM+ where it is useful.

As products, both WebSphere Application Server and .NET aim at scalability to
the enterprise for large e-business and enterprise applications and Web
Services, and being as ubiquitous as possible. The services they provide to the
applications are very similar in many respects and, as you will see, applications
are architected for these environments in strikingly similar ways.

Client

Apps

Business
Partners

Apps

Data

Legacy,
ERPWebSphere

J2EE

J2SE
Any OS

Standards

Standards
C

onn

Client

Apps

Business
Partners

Apps

Data

Legacy,
ERP.NET

COM+

Win32

Standards

Standards
C

onn
54 WebSphere and .NET Coexistence

2.1.2 Layered services (application architecture)
Microsoft describes how to architect applications for .NET using published
patterns. These patterns are described in a highly consistent manner and are
available online at:

http://www.microsoft.com/resources/practices/default.asp

Figure 2-4 Layered Services Architecture advocated by Microsoft Patterns

The design patterns provided by Microsoft for .NET for enterprise applications
describe an n-layer model that is not specific about what the layers contain, but
rather extolls the benefits of layered design. They then provide simplified
three-layer version of the n-layer model as a starting point for designing your own
solutions. This three-layer model is similar to that advocated under Microsoft
DNA. If we set that model beside the standard model we are using for reference
(see Figure 2-4), we see that the Presentation layer of Microsoft’s basic pattern
encompasses both the client and Presentation layers of our model and that the
resource and business layers overlap our integration layer. To help understand
the reasons for this, we will discuss each layer of Microsoft’s model in more detail
and place the components that make it up into our reference model for clarity.

Presentation layer
The Presentation layer provides the user experience. For thin clients, it consists
of Active Server Page.NET (ASP.NET) components executed under Internet

Important: Standing alone, the key distinction between the approaches is
this: Java 2 Enterprise Edition’s focus is platform independence while .NET’s
focus is language independence.

Presentation

Business

Client

Integration

Resource

Presentation

Business

Client

Integration

ResourceData and Data Storage

Business Logic

Presentation
 Chapter 2. .NET introduction 55

http://www.microsoft.com/resources/practices/default.asp
http://www.microsoft.com/resources/practices/default.asp

Information Services (IIS). Although the .NET Presentation layer may contain
client-side scripting via VBScript or JScript, for thin clients the ASP.NET
components do the vast majority of the presentation work.

Figure 2-5 Presentation layer

ASP.NET objects can include other ASP.NET objects with these interactions
often following the well-known model-view-controller pattern.

Table 2-1 .NET to J2EE Analogues - Client and Presentation Layers

Business layer
The business layer provides reusable objects that perform discrete business
functions. These are accessed by the Presentation layer to perform these
functions and provide business context views of resources and other
applications.

The business layer contains objects running under the .NET Common Language
Runtime, known as “managed code” and COM+ components which do not run
under the CLR, known as “unmanaged code”.

Figure 2-6 Business layer

.NET J2EE

Windows Forms Java Client

JScript and VBScript Java Script

Active Server Pages.NET Java Server Pages

Presentation

Client
Presentation

VBScriptJScriptForms

ASP.NET

Business

Integration

Business Logic .NET
Classes

COM+
Objects
56 WebSphere and .NET Coexistence

The placement of these components in the business layer does not imply
location. They may or may not run on the same machine as the Web or
application server or the fat client. They may run on dedicated application
machines or even on the same machines as the resources they utilize.

When objects do not live on the same machine, .NET facilitates remote
invocation between these objects using something called “.NET Remoting”.
Remoting is analogous to RMI under J2EE and provides for remote invocation of
.NET components via SOAP or a proprietary binary over TCP protocol. You can
read more about .NET Remoting on the Microsoft MSDN Web site.

Objects within the business layer will work with each other in various layers of
abstraction. For instance, one object may exist to provide a service interface to
one or more others via an XML Web Service interface.

Table 2-2 .NET to J2EE Analogues - Business layer

There are a variety of Quality of Service mechanisms with which objects in the
business layer may participate, including transactions and life cycle
management. These are discussed in more detail later.

Data/Resource layer
Although Microsoft design patterns refer to this layer as the data layer, our
reference architecture expands this to provide access into any resource required
by the application business components. This can include databases, files, and
interfaces to other systems.

Figure 2-7 Data / Resource layer

.NET J2EE

COM+ objects Classes, Beans, Enterprise Java Beans

.NET Classes Classes, Beans, Enterprise Java Beans

Web Services Web Services

Remoting Remote Method Invocation

Integration

ResourceData and Data Storage
Data

Data
Components

Connectors
 Chapter 2. .NET introduction 57

The Microsoft patterns advocate abstraction of data and other resources with
.NET Classes designed to provide access to Business layer objects. These
components isolate the access code into a single location and abstract the data
representation and access patterns from the business objects to minimize the
impact to business objects of changes in data structure or providers.

Connectors are objects or collections of objects that access specific resource
technology, as opposed to business objects which abstract business functions.
So, while access to the accounting system might be abstracted at a business
level by a business object, a connector may be used by that object to provide
access into the technology behind which the accounting system sits, for example
the middleware used to access the accounting system.

Summary
To complete the picture and relate the architecture of a .NET application with that
of a common WebSphere application, Figure 2-8 on page 58 depicts application
architecture under .NET using our reference architecture. This picture contains
acronyms for brevity, many of which we have already covered and all of which
are at least defined in this book.

Figure 2-8 Application Architecture under .NET

Client

Presentation

Business

Integration

Resource

Fat Client VBScript

ASP.NET

.NET Classes

Connectors Data Access
Components

COM+ and
Native SQLServer EIS

AD
O

.N
ET

Interop

R
em

oting

W
eb S

vcs

Web Services

H
IS

Service
Control Mgr

Internet
Info Svr

IIS

CLR Browser

XML Doc
Remoted .NET Classes

XM
L

58 WebSphere and .NET Coexistence

If we compare this figure with Figure 2-8, we find that .NET and J2EE offer
solutions to many of the same problems. In the end, building enterprise scale
Web based or Web enabled applications is the primary goal of both.

2.1.3 Standard support
The .NET Framework is built on top of the Microsoft Windows operating system,
it is a proprietary Microsoft technology. Although .NET itself implements many
standards, the application environment is not an implementation of any standard.

Once an application is developed for the .NET environment, there are no
alternatives for running or porting the application to another application server or
another operating system.

2.1.4 Platform support
The Microsoft .NET Framework is designed for Windows operating system. To
run any .NET application, the client or server must have a runtime called.NET
redistributable, the same as the Java Runtime in WebSphere environment. The
.NET redistributable is freely available on the Microsoft site. For configuring
server side application, it is recommended that you use Windows 2000 Server or
higher. The following list describes various possible Windows platforms for client
and server application.

� Client

– Microsoft Windows 98 and editions

– Microsoft Windows Millennium Edition

– Microsoft Windows NT® 4.0 Workstation with Service Pack 6.0a or later

– Microsoft Windows NT 4.0 Server with Service Pack 6.0a or later

– Microsoft Windows 2000 Professional

– Microsoft Windows 2000 Server family

– Microsoft Windows XP Home Edition

– Microsoft Windows XP Professional

– Microsoft Windows Server 2003 family

� Server

– Microsoft Windows 2000 Professional with Service Pack 2.0

Important: When it comes down to it, the J2EE developer discussing ‘beans’
and ‘containers’ and the .NET developer discussing ‘components’ are talking
about the same thing.
 Chapter 2. .NET introduction 59

– Microsoft Windows 2000 Server family with Service Pack 2.0

– Microsoft Windows XP Professional

– Microsoft Windows Server 2003 family

2.1.5 Programming languages
While WebSphere focuses one language on many platforms, the Microsoft .NET
focuses multiple language support on the Microsoft Windows platform. The .NET
languages follow Common Language Specification (CLS) - the minimum set of
features that compilers must support to target runtime. Currently, the .NET
supports more than 20 languages, including vendor supported languages.

The Visual Studio .NET comes with following languages developed and
supported by Microsoft:

� Visual Basic.NET

� Microsoft C#

� Microsoft J#

� Visual C++

Moreover, the Visual Studio .NET supports scripting languages like JScript.NET
and VBScript. There are numerous other third party languages also available.

The .NET Framework supports so many languages because each language
compiler translates the source code into Microsoft intermediate language which
is a CPU-independent set of instructions which can be efficiently converted to
native code.

2.1.6 Deployment units
The .NET deployment is different from the Java 2 Enterprise Edition. Assemblies
are deployment units and are basic building blocks used by the .NET
Framework. When an application is compiled in .NET, the output of the
compilation produces an assembly which can be either an executable file (*.exe)
or a dynamic link library file (*.dll). In general, an assembly consists of four
elements:

1. Assembly metadata

2. Type metadata

3. IL code

4. Resources
60 WebSphere and .NET Coexistence

Figure 2-9 Assembly and Metadata

Assemblies do not face problems like DLL or versioning because they are
self-describing through metadata called a manifest. The manifest contains the
assembly’s identity and version information, a file table containing all files that
make up the assembly and the assembly reference list for all external
dependencies. The self-describing nature of assemblies overcomes the
dependency on the registry and therefore simplifying deployment. The Common
Language Runtime uses the manifest at runtime to ensure the proper version of
a dependency is loaded.

The resources in an assembly consist of image files like .bmp or .jpg and other
files required for application.

The assembly can be private or shared depending on the visibility.

A private assembly is an assembly that is visible to only one application and
deployed in within the directory structure of the application. The CLR finds these
assemblies through a process called probing. The version information is not
enforced for private assemblies because the developer has complete control
over the assemblies.

A shared assembly is used by multiple applications on the machine and stored in
Global Assembly Cache. Assemblies deployed in the global assembly cache
supports side-by-side execution and must have a strong name to avoid any
confliction. Side-by-side execution in the .NET Framework allows multiple

Assembly
myApp.exe or myCOM.dll

Metadata

Type Metadata

Assembly Metadata

IL Code

Resources (.gif, .bmp)

Metadata

Base Classes
Classes

Interfaces
Data Members

Security Permissions
Exported Types

Other Assemblies

Name
Version
Culture

Assembly Manifest

Type Descriptions
 Chapter 2. .NET introduction 61

versions of an assembly to be installed and running on the machine
simultaneously, and allows each application to request a specific version of that
assembly.

The behavior of assembly or application can be changed using configuration
files which are discussed in next section.

Configuration files in .NET
The common language runtime locates and binds to the assemblies using a
configuration file. The configuration file contains information related to
application, machine or security settings and stored in XML format. By updating
the configuration file, the developer or administrator can change the way in which
the application works. Settings in configuration files can be accessed in code by
using interfaces. The .NET has three basic configuration files:

� Application configuration file

The application configuration file consist information about the application.
The Common Language Runtime uses this configuration file to get the
information about assembly binding policy, the location of remote objects and
the ASP.NET runtime settings.

The executable applications, like Windows Forms or Console application
settings, are stored in the [applicationName].exe.config file.

The Web applications like ASP.NET or Web Service settings are stored in the
Web.config file.

� Machine configuration file

The machine configuration file contains information about the machine that
can be applied to the ASP.NET runtime, built-in remoting channels and
assembly binding. This file is located in the CONFIG directory of the runtime
install path of the .NET Framework as shown:

C:\WINNT\Microsoft.NET\Framework\v1.1.4322\CONFIG

Note this file is stored in different folder for each version of .NET. In the above
example, the v1.1.4322 refers to version 1.1 of the .NET Framework.

� Security configuration file

The security configuration files contain information about the code group
hierarchy and permission sets associated with a policy level.

This file is stored depending on policy level. For example, for enterprise policy
the file enterprisesec.config is stored in the same folder as the
machine.config file. The user policy configuration file named security.config is
stored in the user profile sub tree folder.
62 WebSphere and .NET Coexistence

2.1.7 Runtime execution environment
The Common Language Runtime (CLR) is the heart of the .NET Framework and
provides a runtime environment for .NET applications. The CLR is similar in
function to the Java Virtual Machine (JVM) in the WebSphere environment and
provides a fundamental set of services that all programs can use. The Java
bytecode can be interpreted as well as compiled, and it is the only language that
the JVM runs. The Common Language Runtime has ability to compile managed
code once and run on any CPU and operating system that supports the runtime.
The CLR runs Intermediate Language, which is created from any .NET
programming language, such as VB.NET and C#. The figure below shows the
role of the Common Language Runtime while executing the managed code.

Figure 2-10 Common Language Runtime in .NET Framework

In the .NET Framework, managed code is the code which follows the Common
Language Specification (CLS). The managed code gets compiled into the
Microsoft Intermediate Language (MSIL). The Common Language Runtime
provides a just-in-time compiler that compiles the MSIL into the machine
language and then runs it, because all programs use the common services in the
CLR, no matter which language they were written in. The Common Language
Runtime follows the Common Type System (CTS), which is a master set of data

Common Language Specification

Compiler

MSIL

Common Language Runtime
JIT Compiler

Native

Unmanaged
Code

Compiler

Operating System

Managed
Code
 Chapter 2. .NET introduction 63

types. Due to the Common Type System, managed code written in various
languages can interoperate with programs written in another CLR language.

Some of the features of Common Language Runtime are:

� Garbage collection
� Cross language integration
� Base Class Library Support
� Thread Support
� Exception Manager
� Security
� IL to Native
� Class Loader

Web Container
The role of the Web Container is to provide a standards-based wrapper around
the application interfaces so they can be accessed via industry standard
protocols such as HTTP.

The Web Container under .NET is Internet Information Services (IIS). Its role is to
contain Web content including HTML, DHTML and ASP.NET content, as well as
manage access into other components such as Web Services and Remoted
objects. IIS also hosts and manages other Internet content such as FTP sites and
SMTP servers. IIS manages security around all Internet resources.

IIS may be managed via the Internet Services Manager, via the command line or
via a Web based administration interface. Web application configuration and
management is a combination of managing IIS and configuring the application
components via XML-based configuration files that are stored in the directory
from which the application or component is served by IIS. These files are always
called web.config and they can be used to control a great deal about how the
application operates, including session management, runtime debugging
settings, security access control and much more.

Internet Information Services (IIS) performs the following functions:

� Serves HTML, DHTML to browsers.

� Serves Active Server Pages.NET (ASP.NET) pages and components for Web
based applications.

� Manages access to Web Services.

� Manages access to .NET Classes that support Remoting via HTTP. We will
discuss this in more detail later.
64 WebSphere and .NET Coexistence

2.1.8 Life cycle management
Life cycle management discusses how code comes into and out of execution.
Under .NET, much of the life cycle management that occurs is inherited from
underlying technology and the operating system, but the Common Language
Runtime is a major new component in this management process. Here we will
overview the systems and subsystems that provide life-cycle management for
the various kinds of components that make up .NET applications.

All .NET applications run under the low-level control of the Common Language
Runtime. In addition, Web based applications, remotable service providers and
Web Services run under the control of Internet Information Services. Services
and server-side components run under the control of the Service Control
Manager.

Common Language Runtime life cycle management
In .NET, the Common Language Runtime dynamically loads assemblies as they
are required. The first time an assembly is loaded, it is just-in-time (JIT) compiled
to compiler-specific code at the method level. The first time a method is called, it
is JIT compiled by the Common Language Runtime and executed. If it is called
for again within the same process, the compiled code is executed. This process
of JIT compiling and executing occurs at the method level until execution is
complete.

During execution, the Common Language Runtime is responsible for managing
memory via the garbage collection mechanism. The garbage collector allocates
and releases memory as execution takes place. When a new process is
initialized, a contiguous amount of memory is allocated for the process by the
Common Language Runtime. This space is known as the Managed Heap. As
each new object is created, memory is allocated from the managed heap
contiguously. Allocating memory from the managed heap is faster than allocating
unmanaged memory and, because the address spaces for each new object are
contiguous, accessing the objects also occurs quickly. The Common Language
Runtime has several performance optimizations as well, including allocating
large objects in a separate heap by dividing the heap into three areas, called
generations based on the types and ages of objects collected.

As memory is no longer required by the application, the Common Language
Runtime determines the best time to collect those unused items and performs
the collection. There is a cooperative relationship between the Just-In-Time
Compiler and the Common Language Runtime that allows the Common
Language Runtime to determine when objects and memory are no longer
needed by an application. The Common Language Runtime performs collection
processes and various times throughout the life-cycle of a process to clean these
up.
 Chapter 2. .NET introduction 65

Internet Information Services life cycle management
In addition to the services provided by the Common Language Runtime, the life
cycle of Active Server Page.NET (ASPX) application components is managed by
Internet Information Services and run under its control and within its process.

The Active Server Pages.NET page framework functions in an entirely stateless
and disconnected model. As such, each time a page is requested by a client, it is
loaded and when execution is complete, it is unloaded. During this life-cycle, a
variety of events are generated in a specific sequence. During each of these
events, some information is available to the page and the controls it contains and
some information is not. Certain information is persisted between these phases
and some is not.

For a complete discussion of these events, please refer to the Microsoft Web site
at the following address:

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpguide/
html/cpconcontrolexecutionlifecycle.asp

In addition to traditional Web applications, .NET classes that support Remoting
via HTTP/SOAP and Web Services run under the control of the Internet
Information Services. For more information on Remoting, see “Remote
invocation” on page 68. For more information on Web Services, see “Web
Services” on page 69.

Server components
In addition to the management provided by the Common Language Runtime,
Enterprise Services under .NET provides the ability to create and run .NET
applications as server-side components. When a .NET assembly is made
available as a server-side component, its execution is isolated from the process
of the consumer application. Server-side components run in their own process
which is managed by the Service Control Manager (SCM).

The Service Control Manager is responsible for bringing the object into existence
when it is requested by an application and handing a handle back to the client
that called it. Sophisticated operations such as object pooling are made possible
via the Service Control Manager, allowing multiple instances of an object to be
brought up based on the number of incoming requests for that object. Objects
that are managed by the Service Control Manager implement methods which the
Service Control Manager calls in order to manage the life-cycle of each instance
of the object.

Like library objects, server objects can be configured to function in a variety of
ways, including determining the security context under which they run, whether
they participate in transactions, whether they are activated under the caller’s
context or under another well-known context. In addition, server-side objects can
66 WebSphere and .NET Coexistence

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpguide/html/cpconcontrolexecutionlifecycle.asp

implement special invocation patterns such as Object Pooling in order to manage
multiple clients and the resources each resource is using. This is discussed in
more detail in “Object pooling” on page 67.

Windows Services
Windows Services were formerly known as NT Services. They have been around
a long time. Windows Services are applications that run in the background. They
can be started and stopped administratively locally and remotely whether a user
is logged on the system or not.

Windows Services often provide background “daemon-like” functions in the
Windows operating systems and typically do not interact with the screen. .NET
applications may function as NT Services.

The execution life cycle of Windows Services is managed by the Service Control
Manager, which uses methods implemented by the application developer to
manage the execution life cycle.

As before, Windows Services differ significantly from other types of applications
written for .NET. For a more complete description of both the life-cycle
management process and the differences between Windows Services and other
applications, please see the Microsoft Web site at:

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/vbcon/html
/vbconintroductiontontserviceapplications.asp

Object pooling
Object pooling can be used to improve application performance in cases where
object instantiation is a relatively time consuming operation. When a poolable
object is instantiated (typically by an object factory), it is placed into a pool. When
an object is needed, an unused object may be retrieved from the object pool. Not
only does connection pooling help to reduce instantiation costs, it also helps to
reduce the cost of garbage collecting additional objects at runtime. In general,
object pooling is most beneficial when objects can be and are frequently reused.

There are two primary types of object pooling provided by the .NET Framework.
The most common type is pooling of ADO.NET database connection objects.
This type of pooling is very similar to JDBC connection pooling. In ADO.NET,
pooling occurs on a per-provider basis. For example, SQL Server and DB2
providers each provide their own connection pooling facility. ADO.NET
connection pooling is typically controlled by an option on the connection string.
See 10.5.3, “ADO.NET” on page 460 for more information on ADO.NET.

The second type of object pooling is provided though interfaces and classes
provided by the System.EnterpriseServices namespace. This namespace
 Chapter 2. .NET introduction 67

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/vbcon/html/vbconintroductiontontserviceapplications.asp

provides .NET components access to COM+ enterprise services, including
object pooling. Objects pooled in this manner must inherit from the
ServicedComponent class. By applying the ObjectPooling attribute to a serviced
component, values such as the maximum and minimum pool size may be
specified to tune performance.

2.1.9 Remote object discovery
At the time of this writing, the .NET Framework does not provide a standard
naming and location service for publishing and locating remote objects. Instead,
an application using a remote object must know the URL of the object it wants to
reference.

Do not confuse .NET remoting object discovery with Web Service discovery. The
.NET Framework contains a full implementation of UDDI, the Web Service
discovery protocol. Web Service discovery is discussed further in section 2.1.11,
“Web Services” on page 69 and in later sections.

2.1.10 Remote invocation
Similar to Java Remote Method Invocation, .NET provides a mechanism called
Remoting. Remoting provides an object framework allowing .NET objects to run
and communicate in a distributed environment. Remoting in .NET does not use
Microsoft’s DCOM or COM+ facility. Instead, it is exposed through a set of .NET
classes. It offers greater flexibility than DCOM, including the ability to
communicate over multiple types of channels. By default, the .NET Framework
provides two types of channels, TCP and HTTP. These channels have both
advantages and disadvantages that make them better or less suited for specific
types of applications.

The .NET TCP channel uses a binary socket connection, similar to DCOM. The
TCP channel is used in conjunction with a binary object formatter. The main
advantage of using TCP is that it is typically faster since data is transmitted in
binary format. There is little to no additional parsing involved in packaging and
unpackaging data to be sent over the network. The main disadvantage of using a
TCP channel is that it requires additional TCP ports to be accessible and is
typically only suited for an intranet environment.

The .NET Framework provides an additional channel, the HTTP channel, for
providing remoting capabilities. The HTTP channel uses the XML SOAP format
for remote method invocation. The advantage of using the HTTP channel is that
it uses the standard HTTP protocol so it can be used over the Internet without
opening additional TCP/IP ports in a firewall. The disadvantage of using a HTTP
channel is that it is typically slower due to the added processing required when
68 WebSphere and .NET Coexistence

formatting requests and replies to and from XML and .NET objects. See 10.4.2,
“.NET Remoting” on page 454 for a more in-depth discussion on .NET Remoting.

2.1.11 Web Services
The Microsoft .NET Web Services Framework is similar to IBM WebSphere in
that it uses standard protocols and services to provide and locate Web Services.

In addition, the .NET Framework provides components for building Web Services
with these standard protocols and services:

� Simple Object Access Protocol (SOAP)

The .NET Framework supports both RPC and Document style SOAP.

� Web Services Discovery Language (WSDL)

� Universal Description, Discovery, and Integration (UDDI)

In addition to using automated features of Visual Studio .NET to facilitate
creating Web Services, Web Services can also be created in a less convenient,
but more flexible manner. The .NET Software Development Kit (SDK) contains
several tools for working with Web Services.

� soapsuds.exe

The soapsuds tool generates runtime assemblies capable of accessing a
remoting service provider given a XSD definition.

� wsdl.exe

The wsdl tool generates Web Services and Web Service client proxies based
on a WSDL definition.

� disco.exe

The disco tool searches a specified Web server for Web Services discovery
documents and saves them locally. Typically, disco.exe is used to discover
Web Services and then wsdl.exe is used to generate client code to access the
service.

All these tools are built based on classes provided by the .NET Framework.
Therefore, all the same functionality is available at runtime and may be used
within an application for dynamic Web Services discovery and consumption.

2.1.12 Transaction management
Transactions are a key ingredient in building remote and distributed applications.
By using transactions, remote and distributed applications can run multi-step
operations and roll back any or all of these operations if there is a failure. The
.NET Framework provides support for the following transactional components:
 Chapter 2. .NET introduction 69

� Microsoft Message Queuing (MSMQ)

Microsoft Message Queuing support is provided directly through objects in
the .NET System.Messaging namespace. This namespace contains the
object MessageQueueTransaction which provides MSMQ level transactional
support. This is typically called a one-phase or level one transaction since it
encapsulates one level of processing.

� ADO.NET data transactions

ADO.NET data providers typically include database level transaction support.
The larger ADO.NET database providers, including IBM DB2 UDB, Microsoft
SQL Server, and Oracle also provide the capability to allow database
connections to automatically participate in distributed transactions. Like
Microsoft Message Queueing, non-distributed ADO.NET transactions are a
one-phase transaction.

� Serviced components

The .NET System.EnterpriseServices namespace, as introduced in “Object
pooling” on page 67 also includes the capability to provide distributed
transaction support. .NET Serviced components are built on top of COM+ and
must be registered as a COM+ component. A registered component may
participate in distributed transactions involving other transactional
components. Wrapping a Microsoft Message Queuing or ADO.NET
transaction in a distributed transaction is generally referred to as multi-phase
commitment.

The level of transactional support required varies greatly from application to
application and must be determined on a per-application basis. Generally,
transactions involve a considerable amount of overhead and should only be used
where they are required. Non-distributed transactions typically have less
overhead but are limited to their respective component while distributed
components require COM+ services and must coordinate transactions through a
third entity. On Microsoft platforms, this entity is the Distributed Transaction
Coordinator (DTC). A complete discussion of the Distributed Transaction
Coordinator is beyond the scope of this book.

2.1.13 Security
Security is a critical component of enterprise applications. The ability to
effectively provide authentication, access control, data integrity, privacy,
non-repudiation, and auditing within an enterprise application are some of the
requirements of building a secure system.

The .NET Framework contains a multi-layered security approach to meet these
requirements. Each layer provides various services which may be used to
70 WebSphere and .NET Coexistence

secure applications at different levels. At the most general level, .NET provides
the following security services.

� Operating system level security

At the lowest level, the operating system controls access to the file system
and other system level resources.

� Runtime code level security

The .NET Common Language Runtime does strict runtime type verification
and code validation. These two features help to eliminate code execution
problems caused by type mismatches, bad function pointers, memory bounds
overruns, and many other runtime problems.

� Tamper-proof assemblies

Assemblies can be strong named by signing them with a public/private key
pair. When the assembly is signed, a hash is generated based on the
contents of the assembly. This hash is then encrypted with the private key. If
the contents of the assembly are changed and the assembly is not re-signed,
the hash will no longer match, thus the assembly will be marked as corrupt.
Signing assemblies can be extremely important in keeping them from being
injected with malicious code.

� Role-based security

The role-based security allows for application-level security within the .NET
Framework. Role-based security can be configured at the enterprise,
machine, and user levels. This is accomplished by creating permission sets
based on attributes such as site, URL, and publisher and then applying them
to code groups. Policies can be configured directly with XML configuration
files or by using the .NET configuration snap-in, available from the Windows
control panel.

� Secure Sockets Layer (SSL)

Secure Sockets Layer is the industry standard for network data encryption. It
may be used transparently by various .NET components to provide secure
network communications.

� Data encryption components

The System.Security.Cryptography namespace of .NET Framework includes
classes for cryptography, hashing, and authentication. Many standard

Note: Role-based security is configured using XML files located on the file
system. Without access restrictions on these files, they can be easily
modified to allow unauthorized access to resources.
 Chapter 2. .NET introduction 71

symmetric and asymmetric cryptography providers are supported, including
RC2, RSA, and TripleDES.

� Authentication services

Several methods of authentication are available for use by .NET applications
and services. Authentication comes into play when connections are initiated
with a remote service. The most common users of authentication services
are:

– ASP.NET

Supported authentication methods include Integrated Windows, Forms,
and Microsoft Passport. However, authentication can also occur at the IIS
Web server level. IIS allows anonymous, basic, digest, certificate, and
integrated authentication.

– ADO.NET

Authentication methods vary from provider to provider. For example, the
Microsoft SQL Server provider supports both integrated and SQL Server
authentication.

– Remoting

When hosted by IIS, remote objects can use IIS and ASP.NET Windows
authentication. If a TCP channel is used, there is no built-in authentication
service available.

– Messaging

Built-in authentication, authorization and encryption services are available
when using messaging services.

– Web Services

IIS and ASP.NET services are also available to Web Services. Other
custom approaches, such as passing them as part of the SOAP header,
are also available.

2.1.14 Load balancing and failover
Load balancing and failover capabilities under .NET come from the underlying
and supporting technologies upon which it is built.

Server clustering
Server clustering has been around since the days of NT and has been enhanced
to provide additional features. With clustering, a multi-server Web application can
provide service despite hardware failures on individual services.
72 WebSphere and .NET Coexistence

Although clustering is very powerful, it is a non-trivial implementation which must
be properly planned in advance. Shared disk storage is ideally used between the
clustered servers to hold common configuration and state information. The
application is written to react to lost connectivity and services by re-establishing
connections to database and other resources when they suddenly become
unavailable.

For more information on Microsoft Server Clustering, see the Microsoft Web site
at:

http://www.microsoft.com/windows2000/technologies/clustering/default.asp

Network Load Balancing
The Windows Server provides a feature known as Network Load Balancing,
which is designed to evenly distribute Web-based traffic between servers and,
should a server become unavailable, reroute traffic to another server.

In practice, Network Load Balancing is also a function of the network itself. Any
considerations of this should involve careful selection of the technology to be
used based on the application requirements (HTTP, FTP, SMTP, ports, other).

For more information on Network Load Balancing from Microsoft, see the
Microsoft Web site at:

http://www.microsoft.com/technet/treeview/default.asp?url=/TechNet/
prodtechnol/windows2000serv/deploy/confeat/nlbovw.asp

2.1.15 Application logging
Application logging includes the ability to track and monitor performance, provide
auditing capabilities, and debug problems. The .NET Framework provides
several technologies that can be used to provide standard logging features.
These technologies are:

� Performance counters

The .NET Framework provides components for creating, updating,
monitoring, and grouping performance counters.

� Trace class

The .NET Framework includes a standard class named Trace for tracing
program execution. Trace may be enabled using online precompiler
directives, compiler options, or at runtime using the configurable TraceSwitch
class.
 Chapter 2. .NET introduction 73

http://www.microsoft.com/windows2000/technologies/clustering/default.asp
http://www.microsoft.com/technet/treeview/default.asp?url=/TechNet/prodtechnol/windows2000serv/deploy/confeat/nlbovw.asp
http://www.microsoft.com/technet/treeview/default.asp?url=/TechNet/prodtechnol/windows2000serv/deploy/confeat/nlbovw.asp
http://www.microsoft.com/windows2000/technologies/clustering/default.asp
http://www.microsoft.com/technet/treeview/default.asp?url=/TechNet/prodtechnol/windows2000serv/deploy/confeat/nlbovw.asp
http://www.microsoft.com/technet/treeview/default.asp?url=/TechNet/prodtechnol/windows2000serv/deploy/confeat/nlbovw.asp

� Windows Management Interface (WMI)

A .NET application can monitor and record system status using the Windows
Management Interface. This resource may be accessed through classes in
the System.Management namespace.

� Windows event log

Complete access to the Windows event log is available through the EventLog
component in the System.Diagnostics namespace. Using this component,
applications can create new events, read existing events, and respond to
events requiring input. See Figure 2-11 for an example of entries created in
the Windows event log using .NET.

Figure 2-11 Creating entries in the Windows event log using .NET

In addition to these facilities, additional logging for Web applications is provided
by Internet Information Services (IIS) and ASP.NET. Internet Information
Services and ASP.NET provide the following additional features:

� ASP.NET component trace

This type of logging can be enabled on a per-application or per-page basis.
ASP.NET trace allows trace data to be displayed on the current page or in an
external document.

� Internet Information Services Web site and application-level configurability

The majority of logging configuration capability resides as site level
configuration options. At the site level, options such as a client IP Address,
user name, and host port may be chosen. At the application level, the option
whether to log visits may be changed.

2.1.16 Versioning
The .NET Framework provides a robust scheme for versioning assemblies. By
versioning assemblies, multiple versions of a same named object, in the same
namespace, may be loaded into memory at the same time. This capability
provides backward compatibility in cases where an application was built with one
74 WebSphere and .NET Coexistence

version of an assembly and does not work with follow-on versions of that
assembly. This also virtually eliminates the possibility of back-leveling an
assembly, a common problem with traditional Windows applications.

Figure 2-12 Object versioning within the .NET Global Assembly Cache

Assembly versioning is most transparent and effective when an assembly is
strong named and installed into the Global Assembly Cache (GAC). The .NET
Global Assembly Cache is a repository for commonly used assemblies. Unless
specified by configuration and policy files, the .NET assembly loader loads
generically specified assemblies from the Global Assembly Cache before
searching and loaded same named assemblies from other locations. The Global
Assembly Cache requires assemblies to be strong named and may contain
multiple versions of the same assembly or same versioned assemblies with
different culture information. See Figure 2-12 for an example of assembly
versioning.

2.2 Development
In the Microsoft .NET environment, the development can be done using either a
text editor like Notepad or the Visual Studio .NET Integrated Development
Environment (IDE). This section covers how to write, compile and run an
application in your development environment.

2.2.1 Writing a C# application using text editor
This is same as writing Java code in a text editor and then compiling using the
command prompt. Let's take an example of writing a C# application in Notepad.

Global Assembly Cache

MyAssembly.dll
Version 1.1.0.0

MyAssembly.dll
Version 1.0.0.0

MyAssembly2.dll
Version 1.0.0.0MyAssembly3.dll

Version 1.0.0.0MyAssembly4.dll
Version 1.0.0.0

MyApp.exe

MyNewApp.exe
 Chapter 2. .NET introduction 75

The steps are:

1. Write the code in the text editor of your preference.

a. Save the code with a .cs extension.

b. Compile and run the application.

The following screen capture is a very simple C# code written in Notepad.

Figure 2-13 C# code in Notepad

2. Compiling the code using a command prompt:

The C# compiler has different options to compile the source file, some of
them listed in following table:

Table 2-3 C# Compiler options

To learn more about compiler options, run the csc /? command.

Compiler Option Result

csc HelloWorld.cs Creates HelloWorld.exe file

csc /target:library HelloWorld.cs Cerates a HelloWorld.dll file

csc /out:OtherName.exe HelloWorld.cs Creates an OtherName.exe
76 WebSphere and .NET Coexistence

Figure 2-14 Available compiler options

3. Running the application from the command prompt:

To run an executable in Java environment, you have to pass the file name
with a Java command. In the .NET environment, run an executable type
name of the .exe file and press Enter. In the following snippet, HelloWorld.cs
is first compiled using the csc command and then run by just typing the
executable file name.

Figure 2-15 Compiling and running C# program

2.2.2 Microsoft Visual Studio .NET (IDE)
Developing applications in Integrated Development Environment is quite simple
and fast and allows Rapid Action Development (RAD). The Environment is
integrated with version control software such as Visual Source Safe (VSS) for
easy management of code.The editor in Integrated Development Environment
has some common features what the WebSphere Studio has like IntelliSense
(type-ahead) and Drag-Drop design.
 Chapter 2. .NET introduction 77

The Visual Studio .NET has different editions like Professional, Enterprise
Developer, Enterprise Architect. Each edition has its own features. In addition to
these editions, special language specific editions are available such as Visual
Basic.NET Standard Edition and Visual C# Standard Edition primarily for
hobbyist, students and beginners.

When you open the Microsoft Visual Studio, you get the Start Page with three
panes; the Projects pane has details about the history of the projects, the Online
Resources pane to get the online samples and the My Profile pane to set the
personalized settings.

Figure 2-16 Start Page in Visual Studio .NET

The Integrated Development Environment has different windows such as the
Tool window, Code window, Properties window and Solution Explorer window.

Except for the Code window, the windows can be hide using the Auto Hide
feature. For example, in the following diagram, the Server Explorer and the
Toolbar windows are hid using the Auto Hide feature.
78 WebSphere and .NET Coexistence

Figure 2-17 The Visual Studio Integrated Development Environment

To start a new project in Visual Studio, select File -> New -> Project from the
main menu. The New Project window appears as shown next.

Code
Window

Solution
Explorer

Properties
Window

Dynamic Help
Window

Toolbox
Window

Server
Explorer
Window Window
 Chapter 2. .NET introduction 79

Figure 2-18 The New Project Window in Visual Studio .NET

In the Integrated Environment, various types of projects can be created by
selecting the appropriate template. The user can add more than one project for
development. This feature helps while debugging Class Libraries with another
application.

Table 2-4 describes various templates available for projects.

Table 2-4 Project templates

Template Description

Windows Application Creates new Windows or Desktop project
refers to traditional rich client applications.

Class Library Creates new DLL Project or to crate
components that typically encapsulate
some business logic.

Windows Control Library Creates new control project which can be
used on windows application - as
traditional ActiveX control.

Smart Device Application To create new smart device project for
example PDAs.
80 WebSphere and .NET Coexistence

To create an application, select the language for coding from Project Types and
then select the application type from Templates.

To build the project, various options are available in the Build menu; to run the
project, click the Run button on the toolbar.

2.2.3 Source code management
The code management in the .NET Framework can be implemented by using
Microsoft Visual Source Safe (VSS). The Microsoft Visual Source Safe is a
repository to manage project files. The VSS is tightly integrated with Visual
Studio and therefore has some advantages compared to other third party
products.

The user can see the latest version of any file, make changes, and save a new
version in the database. By doing check-in or check-out, the user can get or save
the files, respectively.

ASP.NET Web Application To create new ASP.NET Web application
project - dynamic and data driven browser
based applications.

ASP.NET Web Service To create new Web Service project.

ASP.NET Mobile Web Application To create Mobile application project.

Web Control Library Creates Web control project that can be
used on Web form allowing code reuse
and modularization.

Console Application Creates console application project to run
on DOS command prompt.

Windows Service Creates windows service project that runs
in background.

Empty Project Creates an empty project or solution. You
can avoid creation of default files and can
insert your own files.

Empty Web Project Creates an empty Web project.

Template Description
 Chapter 2. .NET introduction 81

2.3 Testing
Application testing and debugging involves various activities on an individual unit
of deployment basis, as well as a cross-application and often inter-application
basis with the goal of ensuring that each individual unit of software works,
individually and collectively, as designed.

When we test whether a component, collection of components or even a
collection of applications behaves as designed in terms of what it does, this is
known as functional testing. It is also important to be able to thoroughly
understand system performance and capacity based on predefined design
parameters. This is known as performance and load testing.

2.3.1 Debugging and unit testing
Given that the developer’s role is to produce correct code, it is to be hoped that
the first person to test code is the one who wrote it. Functional testing that occurs
during the development and initial debugging process primarily involves the IDE
and often begins immediately after the compiler is through, rooting out the most
obvious coding errors.

Visual Studio.NET provides the essential tools for the software developer.
Applications are developed under Visual Studio.NET as Projects within a
Solution file. Each Project will result in a separate assembly. Debugging options
and features are, therefore, set at the project level. This allows the developer to
control which debug features are enabled for each assembly involved in testing.

Debug settings
The behavior of the Visual Studio.NET debugger is customizable, allowing the
user to control such things as warning levels, how breakpoints can be set, how
data members and variables are displayed across the entire debugging IDE,
creating a comfortable personalized environment for the developer.

Building a project for debugging: debug builds
The debugging capability is enabled by the creation of a “debug build,” which
creates, in addition to the executable code, the additional symbols and
information required to allow the debug facility to associate execution code with
source code.

Under Visual Studio.NET, the type of build created is controlled at the project
level through the Configuration Manager dialog, which is accessed from the
Project Properties page as depicted in Figure 2-19 on page 83.
82 WebSphere and .NET Coexistence

The build configuration for each project is selectable, allowing the developer to
build release versions of some components while continuing to debug others.
Generic Debug and Release configurations are provided by default. Additional
custom configurations can also be created for each project within a solution.
These configurations allow the developer to refine the debugging environment
further on an assembly by assembly basis.

Any assembly built from a .NET project built with the Debug configuration set can
be fully debugged via Visual Studio.NET.

Figure 2-19 Configuration Manager

In addition to controlling these configuration build options from the IDE’s visual
environment, command line facilities are also provided to enable script-based
control of builds for debugging.

Code animation
The Visual Studio.NET environment provides debugging animation support for a
large majority of the code that can be developed within the .NET environment.
This includes the following types of animation:

� Multi-language animation; ASP.NET, VB.NET, C#, C++, C.

� Support for managed (CLR) and unmanaged (binary) code and their
interoperation via .NET Interop.

� Services, Server-side COM+ objects, DLLs and other unmanaged objects.

� The ability to animate multi-threaded code.

� Animation of Class libraries.
 Chapter 2. .NET introduction 83

� Animation of .Net assemblies that take advantage of Remoting, both from the
client and server perspectives.

� Animation of Web Services as they are invoked.

� Remote debugging of code running on other physical nodes.

� Animation of SQL Stored Procedures for SQLServer.

When you are animating code, Visual Studio.NET allows you to step through all
execution regardless of threading or language concerns as long as the currently
executing project has been built with a debug build. If a debug build is not
available for the currently executing code, you can skip it or step through the
disassembly of your release-level code, which shows the instructions created by
your source.

Features available during animation include stopping execution, stepping
through, over, and into code, running to cursor, and resetting the current line. In
addition, you can view and modify variables, view registers and the memory
space in which your process is operating. You can debug one or multiple
processes simultaneously.

With symbols provided by Microsoft as part of the Platform and Framework
SDKs, you can also step through framework and operating system code
executed by your application.

The debugger allows you to decide how to handle exceptions during debugging
and provides an edit and continue feature which allows you to edit your code in
place during a debugging session and continue without rebuilding and starting
over.

Just-in-time debugging
The bugs that escape unit testing are usually the ones that occur in special
circumstances. These are often difficult to duplicate in a debugging environment.
A unique feature of Visual Studio.NET is the ability to turn on just-in-time
debugging for a given assembly.

With just-in-time debugging enabled, an exception within an assembly that was
started and is running outside the IDE will cause a dialog box to appear,
providing an opportunity to enter the debug mode with any debugging tool you
specify. This allows a developer to begin animating the code and easily identify
the location of the problem and the current execution state.

In Visual Studio.NET, just-in-time debugging across systems (remote debugging)
was disabled due to security issues.
84 WebSphere and .NET Coexistence

Tracing and debugging instrumentation
Tracing and debugging is an important cross-cutting consideration within any
application.

.NET provides a set of classes that allow developers to set up their applications
to make debugging and tracing information available to management tools at
runtime. The process of using these classes to enable tracing and debugging
functionality within applications is called instrumenting.

Tracing and debugging classes write their output to listeners. A listener is an
object that receives trace output and persists it somewhere (such as a log, a file,
a database or a screen).

Once the code is instrumented, you decide whether the tracing and debugging
statements will actually be included in the assembly by setting the Trace and
Debug conditional attributes in your project build settings. This prevents release
versions of the application from writing to debug listeners. Further control of trace
output is also available by including a Trace Switch object in your source code to
set severity levels and control which trace statements will produce output.

Instrumented applications can make information available about a wide variety of
execution and behavior parameters that can be used to better understand
execution.

Other debugging tools
Microsoft also provides some smaller utilities which are useful for debugging
various parts of a .NET application. Many of these utilities have been around for
some time and have been enhanced for the new environment. A brief list follows:

� ISAPI Web Debug Tool: Allows debugging of ISAPI filters commonly used in
Web applications.

� Spy++: Tracks controls, windows, threads and processes during execution to
aid in debugging.

� Visual Studio command prompt: Most things that can be done in Visual
Studio.NET can also be done from the command line. This simply opens a
command line session with all of the proper environment variables set for
Visual Studio.NET command line operations.

2.3.2 Performance and load testing
Any application’s functionality is only as useful as its ability to perform with
adequate speed for the planned number of users.
 Chapter 2. .NET introduction 85

This section discusses the performance tools, techniques and practices
commonly used for .NET applications.

Performance Monitor and counters
The Microsoft Operating System provides a tool for selectively measuring and/or
recording performance on any application, process or thread running on a local
or remote system. This tool is called Performance Monitor. Performance Monitor
works by listening to performance counters that are installed with the Common
Language Runtime and .NET Framework Software Developer’s Kit.

A performance counter is an object that reports performance information. The
operating system and products built upon it contain performance counters that
are automatically inherited by an application. These existing performance
counters cover a large array of performance information such as memory,
handles, threads, locking, loading of code, networking, and many more. This
means that Performance Monitor can be used to get a very detailed view of the
internal performance of any .NET application regardless of where it is running.

Figure 2-20 Performance Monitor

Classes provided in the System.Diagnostics namespace within .NET can be
used to instrument your application with custom performance counters or to
consume performance counter information programmatically in the same way
Performance Monitor does.
86 WebSphere and .NET Coexistence

By instrumenting your application using these classes, you can implement useful
counters in specific areas of your application where performance might be an
issue and the existing counters do not supply this information, for example, when
counting the number of people who use a specific feature of your application on
an ongoing basis.

Once implemented, these counters can then be viewed by anything that can
consume these counters, such as Performance Monitor or a customer listener
you create within your application.

The Microsoft Application Center Test
Included with Microsoft Visual Studio.NET for Enterprise Architects is a tool for
simulating several users simultaneously accessing various parts of your Web
application from browsers. This tool is called Application Center Test (ACT).

Figure 2-21 Application Center Test multi-browser-type sample

ACT allows you to observe various parts of the application while it run with a
simulated load. You can create tests via several methods including recording
real-time browser sessions. It can simulate multiple groups of users
simultaneously accessing a Web site using different browsers and different
 Chapter 2. .NET introduction 87

versions of browsers. Test sessions are scripted using either VBScript or JScript
and the tool comes with several sophisticated examples.

There is also a variety of third-party tools available with rich testing facilities.

2.4 Deployment
The deployment in .NET is quite easy and different from the traditional model; it
has no issues like DLL or COM registration and versioning. The deployment in
.NET consists of packaging and distribution and can be done in various ways .

� By copying files

This is the simplest way of moving a .NET application from one location to
another location. This can be done by using either the Copy Project
command available on the Project menu or by using the XCOPY DOS
command.

This method has limitations. Copying files does not register or verify the
location of assemblies, and for Web projects, it does not automatically
configure IIS directory settings.

� By using Setup and Deployment programs

A Setup and Deployment program is the professional way of deploying the
applications in a work environment. The advantages of using Setup and
Deployment projects are as follows:

– You can avoid overwriting of files that could cause other applications to
break.

– Registering and deploying of COM components or assemblies can be
implemented.

– The program shortcut can be added in to Windows’ Startup menu or onto
the Windows desktop.

– Interaction with the user, for example storing user information, licensing
and so on.

The Visual Studio .NET has several ways of creating a Setup and
Deployment project. Moreover, the third party Setup and Deployment
programs can be used for deploying the .NET applications.

The following snippet shows various Setup and Deployment projects
available in Visual Studio .NET.
88 WebSphere and .NET Coexistence

Figure 2-22 Setup and Deployment Projects in Visual Studio .NET

The following list describes various project types available in Visual Studio
.NET:

Table 2-5 Project types available in Visual Studio .NET

Project Type Purpose

Merge Module Project The Merge Module Project allows you to
share setup code between Windows
Installers and avoids versioning problems.
This creates a merge module (.msm file),
a single package that contains all files,
resources, registry entries, and setup logic
necessary to install a component.

Setup Project The Setup Project builds an installer for a
Windows-based application in order to
distribute an application. The resulting
Windows Installer (.msi) file contains the
application, any dependent files,
information about the application such as
registry entries, and instructions for
installation. The Setup project installs the
files into the file system of a target
computer.
 Chapter 2. .NET introduction 89

2.5 Runtime
The runtime environment for .NET applications is the Windows operating system
itself.

Since .NET managed applications are not binary code suitable for direct
execution on a given machine, they must run within the Common Language
Runtime.

The .NET Framework provides the Common Language Runtime and base
libraries that .NET applications use to access operating system features such as
the Windows.Forms namespace. New versions of Windows such as XP and
Windows Server 2003 come with all of the necessary products and features to
run .NET applications. However, older operating systems such as Windows 2000
require additional runtime components.

At the time of this writing, the current version of the .NET Framework is V1.1. A
redistributable version of this framework is downloadable from Microsoft’s Web
site.

The redistributable runtime can also be packaged with a Microsoft .NET
Application installation created under Visual Studio.NET in order to allow it to be
installed, if necessary, along with a .NET application.

For more information on the runtime for .NET, please see the following Web
location:

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dv_vstecha
rt/html/vstchdeployingvsusingactivedirectory.asp

2.6 Administration
Distributed and Web-based applications deployed on even a medium scale can
provide a significant administrative burden. The various products that provide the

Web Setup Project The Web Setup Project builds an installer
for a Web application. The setup installs
files into a virtual directory of a Web
server.

Cab Project The Cab project builds a cabinet file for
downloading to a Web browser.

Project Type Purpose
90 WebSphere and .NET Coexistence

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dv_vstechart/html/vstchdeployingvsusingactivedirectory.asp

features underlying .NET, such as the operating system, Enterprise Services,
COM, Internet Information Services, SQL Server and other products, all have
their individual management capabilities and tools. These tools are available
remotely in nearly every case and are conveniently collected together within the
Control Panel under Administrative Tools, as shown in Figure 2-23.

Figure 2-23 Administrative Tools

It is beyond the scope of this book to address each of these. However, we will
briefly discuss a few key additional management components provided by
Microsoft.

� Microsoft Operations Manager provides event-driven management for the
Windows platform and applications that implement Windows Management
Instrumentation (WMI). It allows consumption and utilization of information
provided through WMI and provides a platform on which to generate alerts or
take action based on specific events. For more information on Microsoft
Operations Manager, see the following Web site:

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/momsdk/htm
/momabout_7lgl.asp

� Windows Management Instrumentation (WMI) provides a common
instrumentation method and collection model for applications and underlying
technology. By implementing Windows Management Instrumentation in your
applications as discussed earlier in this chapter in “Tracing and debugging
 Chapter 2. .NET introduction 91

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/momsdk/htm/momabout_7lgl.asp

instrumentation” on page 85, and creating management agents, you can
incorporate application specific performance and execution information into
your management framework. In addition, the Windows Management
Framework contains many agents for managing specific protocols, products
and features of the operating system.

� Systems Management Server (SMS) provides management capabilities in the
areas of operating system configuration management. SMS can be used to
manage a large number of servers or workstations from the perspective of
implementing operating system and software updates and managing
configuration information on each device. For more information on SMS,
please see the following Web location:

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/momsdk/htm
/momabout_9fvx.asp

� The main administrative console for Internet Information Services is the
Internet Services Manager from the Control Panel Administrative Tools. This
tool can administer and manage the IIS nodes and Web sites. It works for
both local and remote nodes and can manage multiple nodes and Web sites.

� The Microsoft .NET Framework V1.1 Configuration and the Microsoft .NET
Framework V1.1 Wizards tools can help to configure, administer and manage
the .NET Framework. The wizards include:

– Adjust .NET Security
– Trust an assembly
– Fix an Application

� Active Directory provides a number of critical functions for the Windows
operating system, including providing a common directory for distributed
components, acting as a central authentication provider, managing users,
groups and individual machines. Active Directory provides a Group Policy
feature that enables administrators to define a host of policies for groups of
users and/or nodes. A technology known as IntelliMirror uses Group Policy
to enable software distribution and configuration management capability for
groups of machines and people.

For more information on the use of Active Directory in the administration role,
please refer to the following location:

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dv_vstecha
rt/html/vstchdeployingvsusingactivedirectory.asp
92 WebSphere and .NET Coexistence

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/momsdk/htm/momabout_9fvx.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dv_vstechart/html/vstchdeployingvsusingactivedirectory.asp

Chapter 3. An architectural model for
coexistent applications

Fundamental to a successful solution is an accurate understanding of a problem,
and of that problem’s domain (context). In order to evolve the understanding of a
problem, and in order to convey this understanding to others, it is important to
have a good model.

In this chapter, we will identify a basic architectural model which can be used to
represent both WebSphere applications and .NET applications. We will then
discuss how we can extend this model to deliver a composite view of these
applications as coexisting applications (delivering runtime functionality
composed from elements of both applications).

We will not attempt to advocate coexistence across heterogeneous
implementation technologies as a good technical design principle, simply
because it is not one. Our assumption is that you have already identified and
justified that you have a special (extraordinary) business need to deliver such an
implementation.

3

© Copyright IBM Corp. 2004. All rights reserved. 93

3.1 Coexisting heterogeneous technologies
Figure 3-1 illustrates the fundamental challenge we are addressing in this book.
That is, how can we combine functionality implemented in both WebSphere
technologies and .NET technologies to fulfill a single business request?

Figure 3-1 The challenge

While we will not recommend that you deliberately set out to design new
applications using a combination of dissimilar technology sets, we can envisage
scenarios where you may need to reuse an existing implementation across
technology boundaries.

Some architectural models deliberately set out to model an enterprise as a set of
cooperating services which are loosely coupled in an implementation technology
neutral way. Both message-oriented architectures and service oriented
architectures are examples of this approach. Sometimes, it is useful to think of
the relationship between these loosely coupled implementations as a delegation
model, where one component calls on the other to do some work on its behalf.

However, there are some situations where you just need to deliver a point in time
solution, without re-architecting the whole enterprise. Also, there are some
situations when you need a tighter binding between implementations that a
service-oriented or a message-oriented approach cannot easily deliver. In this
situation, it may be appropriate to think of these tightly coupled implementations
as a conjoined model, where both components wrestle with the work until a result
is obtained.

As with many software engineering problems, analysis and modeling are the
foundation to understanding the extent of a task, and to identifying an
appropriate solution. For our challenge of coexistence and integration between
applications deployed in WebSphere and applications deployed in the .NET

WebSphere
Application

.NET
Applcation

Java
Client

Application

.NET
Application

WebSphere
Applcation

.NET
Client

Application
94 WebSphere and .NET Coexistence

Framework, we need to identify an architectural model that is generic enough to
be suitable for illustrating any application from either technology set, and flexible
enough to allow us to explore how to combine these two hypothetical
applications in an appropriate way.

3.1.1 Layered application model
The classic application model presented in Figure 3-2 is probably familiar to most
readers. The objective of this model is to logically partition an application into a
stack of (conventionally) five layers. Each layer has separate technical concerns,
and each is used as a logical container for placement and classification of an
application’s components.

Figure 3-2 A simple layered application model

The Business layer (core)
The business layer is a logical container for application components that are the
core business functionality of an application. In a use case centric design, the
use cases are normally fulfilled by the code in this layer, or delegated to other
resources via the integration layer.

The Resource layer (dependencies)
The Resource layer is a logical container for dependencies that business layer
components rely upon in order to fulfill use cases. These resources could be
persistent data stores, other systems, other services or other applications, in
fact, anything that is external to the implementation scope of the modelled
(subject) application.

Typical Application

Presentation Layer

Client Layer

Business Layer

Integration Layer

Resource Layer
 Chapter 3. An architectural model for coexistent applications 95

The Client layer (invoker)
The Client layer is a logical container for the placement of consumers of use
cases, or initiators of use cases, which are fulfilled by application components in
the business layer. Examples of clients include fat GUI applications, Web
Browsers, and other systems.

The Presentation layer (core glue)
The Presentation layer is a logical container for application components
responsible for integrating components or systems in the Client layer, with
components in the business layer. Presentation components are conventionally
responsible for:

� Authenticating and authorizing the requester, validating the request, and
routing the request to the appropriate business layer component.

� Rendering the response from the business layer component into a format that
is appropriate for the requester.

The Integration layer (resource glue)
The integration layer is the logical container for application components that are
responsible for integrating components in the business layer with components in
the Resource layer. Integration layer components are conventionally responsible
for:

� Authenticating and authorizing the requester, validating the request, and
routing the request to the appropriate Resource layer component.

� Rendering the response from the Resource layer component into a format
that is appropriate for the requester.

This seemingly trivial model can be used to impose some real structure on an
application. It can be used as a starting point for modeling almost any new
application, or for modeling almost any existing application. The simplicity and
abstractness of this model is its most powerful feature. It allows us to take an
application and classify every application component by the deliberate act of
placing it into a layer.

One interesting feature of this layered model is that it does not necessarily
mandate any implementation technology. Consider Figure 3-3 on page 97, which
illustrates two layered application models in parallel coexistence; one model
represents an application deployed in WebSphere, and the other represents an
application deployed in the .NET Framework.

Figure 3-3 on page 97 models parallel coexistence, but the subject of this book is
how to get these two applications to combine functionality to fulfill a use case.
This indicates a need for interoperation between the two applications. If we
consider that the responsibility of the integration layer is to bridge between any
96 WebSphere and .NET Coexistence

abstracted resource and the business layer, we could, if we wished, remodel the
target application as a resource, and place an interoperation integration layer
between the calling application and the target application. This is illustrated in
Figure 3-4 and Figure 3-5 on page 98 from the perspective of a WebSphere
calling application and from the perspective of a .NET calling application.

Figure 3-3 Modeling coexistent applications with layers

Figure 3-4 Interoperation layers (WebSphere callers perspective)

WebSphere Application

Presentation Layer

Client Layer

Business Layer

Integration Layer

Resource Layer

.NET Application

Presentation Layer

Client Layer

Business Layer

Integration Layer

Resource Layer

WebSphere Application

Presentation Layer

Client Layer

Business Layer

Integration Layer

Resource Layer

.NET Application

Presentation Layer

Client Layer

Business Layer

Integration Layer

Resource Layer

In
te

ro
pe

ra
tio

n
In

te
gr

at
io

n
La

ye
r

Pseudo Resource Layer
(from the WebSphere applications

perspective)
 Chapter 3. An architectural model for coexistent applications 97

Figure 3-5 Interoperation layers (.NET callers perspective)

3.1.2 Concentric layered application model
The layered application model presented in Figure 3-2 on page 95 is a good
technique for illustrating logical application structures and the relationships
between two parallel applications. However, when we need to illustrate the
relationship between more than two applications then this model becomes a little
cumbersome.

Figure 3-6 on page 99 presents a variation of the layered application model,
where layers are presented as concentric circles, and each logical application
can potentially be split into multiple separate client applications, multiple
separate server applications and multiple separate resources, with separately
identified interoperation layers. This concentric layered modeling technique can
be used to illustrate both problem context and a logical layered structure for
multiple coexisting applications.

Once the relationship between multiple coexisting applications has been
established and modelled, each interoperation integration layer (for instance
between WebSphere Application #1 and .NET Application #1 in Figure 3-6 on
page 99) can then be modeled separately in more detail.

WebSphere Application

Presentation Layer

Client Layer

Business Layer

Integration Layer

Resource Layer

.NET Application

Presentation Layer

Client Layer

Business Layer

Integration Layer

Resource Layer

In
te

ro
pe

ra
tio

n
In

te
gr

at
io

n
La

ye
r

Pseudo Resource Layer
(from the .NET applications

perspective)
98 WebSphere and .NET Coexistence

Figure 3-6 An example using a concentric layered model it illustrate more complex relationships.

Like the flat layered model, this concentric layered model is a logical model. No
middleware is represented on the model. It illustrates relationships and
separations of concerns. Neither concrete solution or concrete deployment
schemes are implied.

3.1.3 Bridging layers and address spaces
If we extend Figure 3-4 on page 97 to include some common implementation
technologies to both the WebSphere application layers and the .NET application
layers, we get the situation illustrated in Figure 3-7 on page 100.

Fat
Client

Thin
Client

WebSphere
Application #1

.NET
Application #1

Resource

Business
Presentation

Integration

Fat
Client Thin

Client

Business
Integration

Integration
Business

Resource

Presentation

In
te

ro
pe

ra
tio

n
La

ye
r

Interoperation

Layer

RDBMS #1

.NET
Client #1J2EE

Client #2

WebSphere
Application #2

Resource

Web Service #1

Interoperation

Layer

Enterprise
Boundary

Interoperation

Layer

<<abstract>>

Web Service
Client #1

Thin
Client
 Chapter 3. An architectural model for coexistent applications 99

Figure 3-7 Typical layer technology mappings

Figure 3-7 also identifies some of the mechanisms that can be used for
integration between application layers within a each technology set.

The objective of this diagram is not to enumerate all of the possible technologies
that can be used to span the layers within each technology set, but to identify
that in order to communicate across a layer, or to communicate from one
component’s address space to another component’s address space, each side
of the communication must share a common understanding of transport,
protocol, state representation, and call context representation. The same applies
to communication between our hypothetical WebSphere application and our
hypothetical .NET application. It can be considered as just another application

JD
BC

Integration Layer

PD
F

et
c.

XM
L

H
TM

L

H
TM

L

Ja
va

Sc
rip

t

WebSphere Application

Presentation Layer

Client Layer

Business Layer

Resource Layer

Ap
pl

et

JS
P

Se
rv

le
t

XM
L

Ja
va

 B
ea

n

A
W

T

SW
IN

G

EJ
B

M
D

B

Ja
va

 B
ea

n

Ja
va

R
D

BM
S

ab
st

ra
ct

ed

JN
D

I

JM
S

JC
A

AP
I

W
eb

Se
rv

ic
es

Ap
p

Se
rv

ic
es

Ap
pl

ic
at

io
n

Integration Layer

.NET Application

Presentation Layer

Client Layer

Business Layer

Resource Layer

.N
ET

ab
st

ra
ct

ed

H
TM

L

Ja
va

Sc
rip

t

PD
F

et
c

XM
L

H
TM

L

AS
P.

N
ET

.N
ET

 A
ss

em
bl

y

C
O

M
+

AD
O

.N
ET

M
Q

AP
I

W
eb

Se
rv

ic
es

R
D

BM
S

Ap
p

Se
rv

ic
es

Ap
pl

ic
at

io
n

In
te

ro
pe

ra
tio

n
In

te
gr

at
io

n
La

ye
r

VB
Sc

rip
t

Ac
tiv

eX

XM
L

W
in

Fo
rm

ht
tp

D
C

O
M

W
eb

 S
er

vi
ce

s
so

ck
et M
Q

ht
tp

iio
p

rm
i

so
ck

et
JM

S

iio
p

W
eb

 S
er

vi
ce

s

Q; How?
A; Depends!

D
C

O
M

W
eb

 S
er

v'
s

JM
S

W
eb

 S
er

vi
ce

s

so
ck

etrm
i

iio
p

D
C

O
M

W
eb

 S
er

vi
ce

s
so

ck
et M
Q

100 WebSphere and .NET Coexistence

layer. How we do this will depend on the nature of the required by the
components in question, the dynamics of the required interaction between these
components and the identification of these commonalities.

We will pursue the classification of these inter-component interactions in
Chapter 4, “Technical coexistence scenarios” on page 109.

3.1.4 Interoperation layer abstraction
We can take the idea of modeling the target application as a pseudo Resource
layer, with an interoperation integration layer, and apply some additional
solution neutral principles to our generic coexistence architectural model.

A fundamental principle that we will advocate throughout this book is that neither
the client code or the service code should be exposed to the fact that they are
integrating to a dissimilar technology. This implies that they should be defended
from any of the details of the technology chosen for a given technical solution. To
deliver this separation of concerns between application deployment units and
interoperation deployment units, we propose the solution pattern illustrated in
Figure 3-8 on page 102 and Figure 3-9 on page 102.

Figure 3-8 on page 102 illustrates a Java client code deployed in WebSphere,
integrating with a service implementation deployed in the .NET Framework (for
the purpose of this discussion, we do not care which application layer our client
code and service code implementations reside in; this subject will be addressed
in Chapter 4, “Technical coexistence scenarios” on page 109). The client code
binds to a Java implemented service proxy, which represents the iCalculator
service to the client code (the iCalculator interface is used as an example
throughout this book, and is intended to be simple to understand, rather than to
be representative of a realistic interoperation scenario). The service code is
bound to, and invoked by, the service stub. The details of service endpoint
discovery, communication transport, communication protocol, data type
mapping, remote call mechanisms and context sharing are the concern of the
proxy and stub, and are not exposed in the iCalculator interface. As such, the
fundamental principle of separation of concerns is adhered to.

Figure 3-9 on page 102 is similar to Figure 3-8 on page 102, but from the
perspective of client code deployed in the .NET Framework invoking service code
deployed in WebSphere.
 Chapter 3. An architectural model for coexistent applications 101

Figure 3-8 Abstraction of integration technology (WebSphere client code perspective)

Figure 3-9 Abstraction of integration technology (.NET client code perspective)

Ideally, the language we use to define the semantics of the interface iCalculator
should be construction language neutral. Consider Figure 3-10 on page 103; it
illustrates an abstract meet in the middle interface from which the proxy’s top
interface and the service’s bottom interface are derived as language specific
bindings. The approach of defining a middle interface encourages the design of
versatile construction language neutral interfaces. Figure 3-10 on page 103
suggests IDL or WSDL as a potential formal interface specification syntax.

Service
CodeJava BeanClient

Code

WebSphere Application .NET Application
(Whatever) Application Layer

Assembly
request

<<service proxy>>
<<adapter>>

response

(Whatever) Application Layer

<<service stub>>
<<adapter>>

implements iCalculator

handle
request

<<Java>>

Interoperation Integration Layer

client code process boundary service code process boundary
inter process

communication

<<abstract>> <<.NET>>

Pseudo Resource Layer
(from the WebSphere applications perspective)

Service
Code Java Bean Client

Code

.NET ApplicationWebSphere Application
(Whatever) Application Layer

Assembly
response
request

(Whatever) Application Layer

implements iCalculator

handle
request

<<Java>>

Interoperation Integration Layer

client code process boundaryservice code process boundary
inter process

communication

<<abstract>><<Java>>

Pseudo Resource Layer
(from the .NET applications perspective)

<<service stub>>
<<adapter>>

<<service proxy>>
<<adapter>>
102 WebSphere and .NET Coexistence

Figure 3-10 Technology neutral middle interfaces

Figure 3-10 represents an ideal situation. In reality, if you have an existing
service interface, you could be forced into a bottom up scenario (Figure 3-11 on
page 104). Or, if you have an existing client interface, you may be forced into a
top down scenario (Figure 3-12 on page 104). Regardless of whether we are
considering a meet in the middle, top down, or bottom up scenario, the
fundamental principle here is that our primary definition of iCalculator is an
implementation neutral business interface, not an implementation interface.

iCalculator

iC
al

cu
la

to
r

iC
al

cu
la

to
r

WebSphere Application .NET Application
(Whatever) Application Layer (Whatever) Application Layer

Interoperation Integration Layer
<<concrete>>
<<.NET>>

Pseudo Resource Layer
(from the WebSphere applications perspective)

<<concrete>>
<<Java>>

Java syntax rendering
of the business
interface (top interface).

.NET syntax rendering
of the business
interface (bottom
interface).

Language agnostic rendering of
the the business interface
(middle interface).

i.e. IDL, WSDL.

ServiceClient Proxy Stub

<<abstract>>

Meet in the middle; the top
(proxy) and bottom
(service) interfaces are
derived form the middle
(business) interface
 Chapter 3. An architectural model for coexistent applications 103

Figure 3-11 Bottom up interface scenario with interface adapter

Figure 3-12 Top down interface scenario with interface adapter.

Adherence to this pattern defends the client code and the service code from
possible future integration technology changes, and is an architectural enabler
for managed phased migration from, for example:

iCalculator

iC
al

cu
la

to
r

WebSphere Application .NET Application
(Whatever) Application Layer (Whatever) Application Layer

Interoperation Integration Layer
<<concrete>>
<<.NET>>

Pseudo Resource Layer
(from the WebSphere applications perspective)

<<concrete>>
<<Java>>

ServiceClient Proxy Stub

<<abstract>>

<<concrete>>
<<.NET>>

iC
al

cu
la

to
r

Ad
ap

te
r

iF
oo

ey
C

al
c

iCalculator

iF
oo

ey
C

al
c

iC
al

cu
la

to
r

WebSphere Application .NET Application
(Whatever) Application Layer (Whatever) Application Layer

Interoperation Integration Layer
<<concrete>>
<<.NET>>

Pseudo Resource Layer
(from the WebSphere applications perspective)

<<concrete>>
<<Java>>

ServiceClient Proxy Stub

<<abstract>>

iC
al

cu
la

to
r

A
da

pt
er

<<concrete>>
<<.NET>>
104 WebSphere and .NET Coexistence

� .NET Framework business code to Java business code with enhanced
qualities service in WebSphere.

� Migration from a tactical integration solution today to a strategic integration
solution in the future.

Figure 3-13 illustrates the service illustrated in Figure 3-10 on page 103 migrated
from a .NET assembly deployed in the .NET Framework, to a local EJB deployed
in WebSphere without modification to the client code (this implies that an
abstract binding factory was used by the client code to resolve the concrete
instance of iCalculator to use at runtime).

Figure 3-13 Client code defended migration from .NET to enhancd quality of service in WebSphere

3.1.5 Summary
In this chapter, we have presented some advice on the subject of modeling the
problem domain for coexisting applications deployed in WebSphere and
applications deployed in the .NET Framework.

We have suggested that modeling coexisting applications using a combined
logical layered model, which spans multiple applications, can help us distill the
problem into a simple unified cross-technology architectural model. We can
apply this layered model regardless of whether or not the applications were
originally modeled this way.

Service
CodeJava BeanClient

Code

WebSphere Application
(Whatever) Application Layer

<<service proxy>>

implements iCalculator

handle
request

<<Java>>

JVM process boundary

<<Java>>

EJB

<<QOS decorator>>
 Chapter 3. An architectural model for coexistent applications 105

The value of building these models should be a good understanding of the
technical problem context, and an identification of each of the interoperability
points between coexisting applications.

We have indicated that we can, if we wish, model the target application as a
resource to the calling application. We can place an interoperability integration
layer between a calling application and the target application (target resource).
We then have a clean abstraction within which to place the technical solution for
the coexistence integration. Also, we have suggested that within the
interoperability integration layer, technology neutral business interface definitions
may be beneficial in delivering a risk managed interoperability and migration
strategy.
106 WebSphere and .NET Coexistence

Part 2 Scenarios

Part 2
© Copyright IBM Corp. 2004. All rights reserved. 107

108 WebSphere and .NET Coexistence

Chapter 4. Technical coexistence
scenarios

In this chapter, we expand on the architectural models introduced in Chapter 3,
“An architectural model for coexistent applications” on page 93.

We will identify several potential technical scenarios for coexistence via
point-to-point integration between applications deployed in the IBM WebSphere
Application Server and applications deployed in the Microsoft .NET Framework.

We will also identify some candidate technical solutions for these scenarios,
which we will consider in more detail in subsequent chapters.

4

© Copyright IBM Corp. 2004. All rights reserved. 109

4.1 Introduction
Ultimately, the choice of technical solution you make for your given WebSphere
and .NET application coexistence challenge should be based on a good
understanding of the specific problem you are addressing. This chapter is
intended to give you guidance in identifying the characteristics of your given
coexistence problem, identify some interaction scenarios, help you classify your
coexistence problem with respect to these scenarios and interaction
characteristics, and identify some candidate technical solutions for consideration.

With this in objective mind, we have divided this chapter into three sections:

� In 4.2, “Fundamental interaction classifications” on page 111, we will consider
the potential interaction styles and dynamics between any hypothetical
WebSphere application component and any hypothetical .NET application
component. The objective of this section is to help you classify the
interactions you need to resolve with your chosen technical solution(s).

� In 4.3, “Layer interaction classifications” on page 132, we will consider the
potential integration scenarios between coexistent WebSphere and .NET
applications. These scenarios will be limited in scope to point-to-point
scenarios (between only two applications). We will also present some
candidate solution models for each of these scenarios. These candidate
solution models will abstract the integration technology, which should make
them applicable to many technical integration solutions.

� In 4.4, “Technical solution mapping” on page 202, we will map candidate
technical solutions to the scenario and the interaction classifications
presented in the previous sections of this chapter (4.2, “Fundamental
interaction classifications” on page 111 and 4.3, “Layer interaction
classifications” on page 132). Some of the technical solutions presented in
this section will provide tight coupling: some can provide loose coupling. You
will need to choose which of these (if any) suit your needs. Remember that
the short term tactical choice may be different from the long term strategic
choice.

This approach may appear somewhat diagnostic. However, it is in fact intended
to help you decompose the problem into tangible or cogitable pieces, identify the
particular case you have, consider what an appropriate technical solution should
deliver to your given problem, then normalize to one of the identified technical
solutions.

This chapter will not attempt to advocate coexistence across heterogeneous
implementation technologies as a good fundamental design principle, since it is
not one. Our assumption is that you have already identified and justified that you
have a special (extraordinary) business need to deliver such an implementation.
110 WebSphere and .NET Coexistence

4.2 Fundamental interaction classifications
Before we identify candidate technical solutions to support runtime coexistence
and interaction of application artifacts deployed in IBM WebSphere and
application artifacts deployed in the Microsoft .NET Framework, we need to
identify the potential interaction characteristics between any two deployed code
units. A clear understanding of these interactions will help us classify our given
integration challenge and help us make more informed decisions when we are
identifying the appropriate technical solution.

Let’s start by enumerating the common potential interaction dynamics between
any two pieces of code. Fundamentally, these are:

� Stateful synchronous interaction

� Stateful asynchronous interaction

� Stateless synchronous interaction

� Stateless asynchronous interaction

Each of these interaction dynamics can have one of these interface styles:

� RPC interface style

� Document interface style

Each of these interface styles can have one of these interface argument
paradigms:

� Argument by value paradigm

� Argument by reference paradigm

This gives us sixteen basic potential interaction classifications:

1. Stateful synchronous RPC by value

2. Stateful synchronous RPC by reference

3. Stateful synchronous document by value

4. Stateful synchronous document by reference

5. Stateful asynchronous RPC by value

6. Stateful asynchronous RPC by reference

7. Stateful asynchronous document by value

8. Stateful asynchronous document by reference

9. Stateful synchronous RPC by value

10.Stateful synchronous RPC by reference
 Chapter 4. Technical coexistence scenarios 111

11.Stateful synchronous document by value

12.Stateful synchronous document by reference

13.Stateful asynchronous RPC by value

14.Stateful asynchronous RPC by reference

15.Stateful asynchronous document by value

16.Stateful asynchronous document by reference

These fundamental interaction classifications can apply between any two pieces
of code, irrespective of the implementation technology used and of whether the
two pieces of code are implemented in dissimilar technologies.

For a distributed application, these are probably the most common architectures:

� Distributed object architecture

� Service-oriented architecture

� Message-oriented architecture

Let’s consider these classifications further.

4.2.1 Stateful synchronous interaction

Note: It is possible to extend these classifications further by considering
hybrid interfaces that combine both pass by value, pass by reference, RPC
style and Document style. These hybrid classifications probably add nothing
to the process of identifying new interaction characteristics. However, when
you are choosing a technical solution, you need to ensure that the solution is
capable of meeting these hybrid interfaces if that is a requirement for your
given problem.

Definitions:

Stateful interaction: Called code (the service) holds information
(conversational state) on behalf of the calling code (the client) across multiple
method or function invocations.

Synchronous interaction: Calling code (the client) waits for (blocks) the called
code (the service) to complete its operation before continuing with any further
processing itself.

Stateful synchronous interaction: Interaction between the calling code (the
client) and the called code (the service) is both stateful and synchronous.
112 WebSphere and .NET Coexistence

Example 4-1 illustrates a pseudo interface definition which implies a stateful
interaction semantic between the client code that drives the interface and the
service code that implements the interface.

Example 4-1 Pseudo interface definition with a stateful semantic

interface iCalculator1
{

void setArg1([in]float arg1);
void setArg2([in]float arg2);
[retval]float add();
...

}

Example 4-2 illustrates pseudo client code implementation driving the
iCalculator1 interface from Example 4-1.

Example 4-2 Pseudo client code to invoke the interface from Example 4-1

...
float arg1 = 1;
float arg2 = 2;
float result = 0;
iCalculator1 objCalculator = new calculator();
objCalculator.setArg1(arg1);
objCalculator.setArg2(arg2);
result = objCalculator.add();
delete objCalculator;
assert(3 == result);
...

It can be seen that client code makes three method invocations of the service
implementation (setArg1(...), setArg2(...) and add()). In order for the
service implementation to correctly service the client’s request, it must maintain
state on behalf of the client across all three invocations. This implies that the
service implementation must be associated with a single client (or must be able
to distinguish between clients) until the client no longer requires its services (the
implication is that the service implementation is stateful).

Because multiple communications are required to fulfill a single task, this style of
interface can be classified as chatty or verbose. One disadvantage of this chatty
interface is that when the service implementation is deployed in another process
(either locally on the same physical machine, or remotely on a separate
machine), each method invocation results in an inter-process communication
(see Figure 4-1 on page 114).
 Chapter 4. Technical coexistence scenarios 113

Figure 4-1 An (implied) stateful chatty interface

When we consider the technical implications associated with bridging an
application deployed in WebSphere and an application deployed in the .NET
Framework, this chatty style of interaction is unattractive.

Figure 4-2 and Figure 4-3 on page 115 illustrate how chatty interfaces can be
given a concise façade to minimize inter-process communications. Applying
these techniques to chatty interfaces between a WebSphere application and
.NET application may result in a better performing solution than the chatty
interface.

Figure 4-2 A concise façade to a chatty service

Note: The technical implications associated with bridging these applications
are discussed in 4.3, “Layer interaction classifications” on page 132.

Client Code

<<stateful>>

Service
Implementation

Code

iC
al

cu
la

to
r1

setArg1(arg1)

setArg2(arg1)

add(arg1)

Client Process Service Process

add(arg1, arg2)
Client Code

iC
al

cu
la

to
r2 Service

Implementation
Facade
Code

<<stateless>> <<stateful>>

Service
Implementation

Code

iC
al

cu
la

to
r1

setArg1(arg1)

setArg2(arg1)

add(arg1)

Client Process Service Process
114 WebSphere and .NET Coexistence

Figure 4-3 A concise façade to a chatty client

4.2.2 Stateless synchronous interaction

Example 4-3 illustrates a pseudo interface definition which implies a stateless
interaction semantic between the client code that drives the interface and the
service code that implements the interface. This interface differs from the
interface in Example 4-1 on page 113, because all the arguments to the add()
method are passed as input parameters to the add() method itself. As a
consequence, the service implementation can service the client’s request in a
single method invocation (see Figure 4-4 on page 116). Consequently, the
service implementation has no requirement to maintain any client specific state
beyond the scope of a single service request. Example 4-4 on page 116
illustrates pseudo client code implementation driving the iCalculator2 interface
from Example 4-3.

Example 4-3 Pseudo interface definition with a stateless semantic

interface iCalculator2
{

[retval]float add([in]float arg1, [in]float arg2);
...

}

add(arg1, arg2)
Client Code

iC
al

cu
la

to
r2

Service
Implementation

Code

<<stateless>><<stateful>>

Service
Implementation

Facade
Code

iC
al

cu
la

to
r1

setArg1(arg1)

setArg2(arg1)

add(arg1)

Client Process Service Process

Definitions:

Stateless interaction: Called code (the service) does not hold information
(conversational state) on behalf of the calling code (the client) across multiple
method or function invocations.

Stateless synchronous interaction: Interaction between the calling code (the
client) and the called code (the service) is both Stateless and Synchronous.
 Chapter 4. Technical coexistence scenarios 115

Example 4-4 Pseudo client code to invoke the interface from Example 4-3 on page 115

...
float arg1 = 1;
float arg2 = 2;
float result = 0;
iCalculator2 objCalculator = new calculator();
result = objCalculator.add(arg1, arg2);
delete objCalculator;
assert(3 == result);
...

Figure 4-4 A stateless interface (implied)

Example 4-5 illustrates an alternative pseudo interface definition. This definition
also implies a stateless interaction semantic between the client code that drives
the interface and the service code that implements the interface. This differs from
Example 4-3 on page 115 in that it passes a state object instance (of type
iCalculator3Args) as the single input parameter to the add() method.
Example 4-6 on page 117 illustrates pseudo client code implementation driving
the iCalculator3 interface from Example 4-5.

Example 4-5 An alternative pseudo interface definition with a stateless semantic

interface iCalculator3Args
{

void setArg([in]float arg);
}

interface iCalculator3
{

[retval]float add([in]iCalculator3Args args);
...

}

add(arg1, arg2)
Client Code

iC
al

cu
la

to
r2

Service
Implementation

Code

<<stateless>>

Client Process Service Process
116 WebSphere and .NET Coexistence

Example 4-6 Pseudo client code to invoke the interface from Example 4-5 on page 116

...
float arg1 = 1;
float arg2 = 2;
float result = 0;
iCalculator3Args objCalculatorArgs = new calculator3Args
objCalculatorArgs.setArg(arg1);
objCalculatorArgs.setArg(arg2);
iCalculator3 objCalculator = new calculator();
result = objCalculator.add(objCalculatorArgs);
delete objCalculator;
assert(3 == result);
...

We have assumed that the implementation of interface iCalculator3Args in
Example 4-7 on page 118 is local to the client; do not assume this in real
scenarios.

These interfaces imply a stateless interaction, but it should remembered that
stateless is really a classification of an implementation, not a classification of an
interface. Do not assume an implementation is stateless just because its
interface implies that it is.

4.2.3 Stateless asynchronous interaction

Stateful interactions are generally synchronous (this is not always the case, but
frequently so). That is, if client code needs to make several invocations of a
service, and state needs to be maintained by the service implementation on
behalf of the calling client between these invocations, and the order (sequence)
of these invocations is important, then the client is generally synchronized with
the service. This normally means that the client invokes the service, then waits
(blocks) until the service responds and returns logical flow back to the client
before the client invokes the service again.

Definitions:

Asynchronous interaction: Calling code (the client) does not wait for (block)
the called code (the service) to complete its operation before continuing with
any further processing.

Stateless asynchronous interaction: Interaction between the calling code (the
client) and the called code (the service) is both Stateless and Asynchronous.
 Chapter 4. Technical coexistence scenarios 117

Because stateless interaction (generally) communicates all the state for a given
task in one invocation, stateless service implementations (generally) have more
potential to be implemented as asynchronous (non-blocking) implementations
than stateful service implementations.

Example 4-7 illustrates a pseudo interface definition which implies a stateless
asynchronous interaction semantic between the client code that drives the
interface and the service code that implements the interface. The implication is
that the delegateTask() method takes some abstracted state (a message or
document), acknowledges receipt of the message (returns logical flow to the
client), then processes the message in its own time.

Example 4-7 Pseudo interface definition(s) with a stateless asynchronous semantic

interface iBusinessProcess
{

void delegateTask([in]iMessage arg1);
...

}

Example 4-8 Pseudo client code to invoke the interface in Example 4-7

...
iMessage objMessage = new Trade(‘sell Microsoft stock, buy IBM stock’);
iBusinessProcess objTrader = TradeProcessor();
objTrader.delegateTask(objMessage);
...

A stateless asynchronous interaction does not necessarily imply messaging
middleware (such as WebSphere MQ). For example, a service proxy or a service
façade could deliver an asynchronous solution using threads.

Asynchronous processing is useful when a consumer requires independent
services from more than one service provider, especially when the elapsed time
for processing for any particular service provider is unpredictable or simply takes
too long. Since information provided back to the consumer at the time of service
initiation is scant, asynchronous operations typically are not used for real-time
queries, but are often used to initiate a request or action on the part of a service
provider.

Because stateless interaction communicates all the state for a given task in one
invocation, stateless service implementations have a greater potential to be
implemented asynchronously than do stateful interactions.
118 WebSphere and .NET Coexistence

Figure 4-5 Asynchronous interaction between consumer and service provider

Figure 4-5 illustrates an asynchronous request between a consumer and service
provider. As you can see, the service provider is written to consume incoming
requests and provide responses while the consumer provides the requests,
continues processing as the request is satisfied and then gets the response.
Although we show this entire activity taking place within a single consumer
execution, this is not a requirement. The only requirement to be considered
asynchronous is that the consumer not block execution between the request and
the response.

Although we represent the information being passed between the artifacts here
as messages, a stateless asynchronous interaction does not necessarily imply
messaging middleware. A service proxy or a service façade can also deliver an
asynchronous solution using threads. In the same way, the use of messaging
middleware does not automatically imply asynchronous invocation either. Many
applications that use messaging middleware are written using a synchronous
request/response paradigm.

Consumer Service Provider

Execution

Request
Service

…
Continue
Processing
…
...

Get
Response

Get
Request

…
Process
…

Put
Response

Message
{ Request }

Message
{ Response }
 Chapter 4. Technical coexistence scenarios 119

4.2.4 Stateful asynchronous interaction

Stateful interactions are usually synchronous. That is, if a consumer needs to
make several invocations of the service, and the state needs to be maintained by
the service implementation between these invocations, and the order (sequence)
of these invocations is important, then the consumer must be synchronized with
the service. This normally means that the consumer invokes the service, then
waits (blocks) until the service responds before invoking the service again.

Consider, then, how the management of state is simply the storing of state
information. Under the asynchronous paradigm, the state can be stored by the
service provider in the same way, but this often makes little sense because
asynchronous service providers are usually engineered so that they don’t have to
remain running. A better way to store state information for asynchronous
interaction is within the messages passed between the consumer and provider.

Although there are limitations to the type and amount of state information it is
possible to store, this makes for some interesting and useful new paradigms
regarding state where asynchronous operations occur as represented in the
following two figures.

Definition:

Stateful asynchronous interaction: Interaction between the calling code (the
client) and the called code (the service) is both Stateless and Asynchronous.

Important: We will not be considering stateful asynchronous interactions in
this book.
120 WebSphere and .NET Coexistence

Figure 4-6 Stateful interaction using multiple service providers

In Figure 4-6, we see that the messages contain a mutually agreed-upon
iStateInfo object containing state information. Because the message maintains
state, the service providers are capable of performing state-dependent
operations while the interaction remains asynchronous in nature.

In Figure 4-7 on page 122, we see that we can easily aggregate services as well
using the asynchronous paradigm while maintaining state information. Properly
engineered messages between the artifacts can help maintain the
loosely-coupled nature of these interactions.

Consumer Service Provider

Execution

Request
...
...
Get
Response
…
…
…
…
…
Request
…
…
Get
Response

Get
Request
…
Put
Response

Service Provider

Get
Request
…
Put
Response

Message
{ iStateInfo,

Request }

Message
{ iStateInfo,

Response }

Message
{ iStateInfo,

Request }

Message
{ iStateInfo,

Response }
 Chapter 4. Technical coexistence scenarios 121

Figure 4-7 Stateful asynchronous service aggregation

Finally, asynchronous processing allows the introduction of other powerful
middleware tools such as WebSphere Integrator. Integrator provides
sophisticated message transformation and routing capability, allowing the
creation of highly-sophisticated message flows between consumers and
providers.

Consumer Service Provider

Execution

Request
...
...
Get
Response
…
…
…
…
…
…
…
…
Get
Response

Get
Request
…
Put
Response

Service Provider

Get
Request
…
Put
Response

Message
{ iStateInfo,

Request }

Message
{ iStateInfo,

Response }

Message
{ iStateInfo,

Request }
122 WebSphere and .NET Coexistence

4.2.5 RPC interface style

Assuming a distributed or multi-process implementation, the interfaces in
Example 4-9 imply an RPC call paradigm.

Example 4-9 Some interfaces imply an RPC call style (assuming an inter-process call)

void fooey1([in]float arg1, [in]float arg2, [in]myclass arg3);
[retval]int fooey2([in,out]int arg1);

Examples of middleware infrastructure that support the RPC call style are
RMI/IIOP, the .NET TCP remoting channel, DCOM, and RPC style SOAP.

Definitions:

RPC (Remote Procedure Call) call mechanism: RPC is a generic term for a
protocol that allows calling code (the client) to invoke a procedure (the
service) over a distributed (cross-process or cross-network) environment. An
RPC protocol implementation abstracts the remote (inter-process) call
mechanism from both the client code and the service code. From both the
client implementations perspective and the service implementations
perspective, the call seems like a regular local (in-process) function call with
distinct and discrete arguments.

RPC interface style: An interface style in which each call argument represents
a simple, distinct and discrete piece of information that is strongly typed and of
a predetermined size. This interface style implies that each argument is
marshalled from the client to the service (and vice versa) as a distinct typed
value, and the marshalling infrastructure (the RPC call mechanism
implementation) understands the fundamental data type of each argument
being marshalled.
 Chapter 4. Technical coexistence scenarios 123

4.2.6 Document interface style

A document call paradigm implies that the middleware infrastructure supporting
the communication between a client and a service does not care about the
structure or type of the state (the message) that is being communicated. It only
cares about the message size and destination. However, both the client
implementation and the service implementation need to have a common
understanding of structure and semantics of the communicated state (message).

An example of a technology neutral message could be an XML Schema typed
XML document. With this example, both the client and this service have prior
knowledge of the structure of the communicated XML document from the XML
Schema, and both have prior knowledge of the semantic of the message
(delivered by the programmer at construction time as structure programming
constructs).

Examples of middleware infrastructure that support this call paradigm are
WebSphere MQ messaging, Microsoft MSMQ, and Document style SOAP.

Example 4-10 Some interfaces imply a Document call paradigm

void method3([in,out]byte[] arg1);
[retval]int method4([in]myXML arg1);

The interfaces illustrated in Example 4-5 on page 116 (iCalculator3) and
Example 4-7 on page 118 (iBusinessProcess) imply, but do not mandate, a
document call paradigm implementation.

Definitions:

Document interface style: An interface style in which all (or many) call
arguments are packaged by the calling code (the client) into one or more
compound documents (messages), and these documents are communicated
to the called code (the service).

Document call paradigm: A call mechanism that implies that all arguments are
marshalled from the client to the service (and vice versa) as untyped binary
arguments of determinable sizes, and that the remote call infrastructure (often
an RPC call mechanism implementation or a messaging middleware) does
not understand, or care about, the structure or semantic of the documents.

Obviously, both the calling code and the called code need to have a common
understanding of the structure and semantic of the communicated documents.
124 WebSphere and .NET Coexistence

Documents call paradigm and the RPC call mechanism
In reality, at an implementation level, both documents and fixed types are
serialized as bytes between processes and between network endpoints.
Figure 4-8 illustrates the document call paradigm as an abstraction over an RPC
call mechanism. The implication is that the document call paradigm is modeling
abstraction for the benefit of the relationship between client and service. The
interface to the service (or, depending on the technical solution, the interface to
the supporting middleware) delivers the document call paradigm.

Figure 4-8 The document call paradigm as an abstraction over an RPC call mechanism

4.2.7 Argument by value paradigm

Figure 4-9 on page 126 illustrates a pass by value paradigm using the
iCalculator3 interface from Example 4-5 on page 116 and Example 4-6 on
page 117. Note that real interfaces can (and frequently do) have both by value
and by reference arguments in the same interface definition.

Definitions:

Pass by value: When an interface argument (parameter) is a pass by value
argument, the called code (the service) receives a copy of the argument. Any
changes made to the value of a pass by value argument by the called code do
not affect the value of the caller’s original copy, and are not visible to the
calling code.

In-only arguments: Pass by reference arguments are often referred to as
in-only arguments. For example:

method([in]arg1); is equal to... method([byValue]arg1);

marshal l
foo(args)

Client Code

Client Process Service Process

Supporting
Infrastructure
(middleware)

Supporting
Infrastructure
(middleware)

Service Code
foo(args) foo(args)

RPC call paradigm
(from the middleware perspective)

RPC call paradigm or Document call paradigm (from the client & service perspective)

so
ck

et

so
ck

et
 Chapter 4. Technical coexistence scenarios 125

Figure 4-9 A pass by value paradigm

Java and all .NET programming languages support the argument by value
paradigm in a distributed environment.

One of the challenges in integration between WebSphere applications and .NET
applications across remote (or local) interfaces is that we need to identify a
technical solution that maps argument types from Java to .NET (and vice versa).

add([in]objCalculatorArgs)

Client Code

iC
al

cu
la

to
r3

A
rg

s

State
Container

Code

<<stateful>>

Client Process Service Process

iC
al

cu
la

to
r3

Service
Implementation

Code

<<stateless>>

setArg(arg1)

setArg(arg2)

objCalculatorArgs
= new

iC
al

cu
la

to
r3

A
rg

s

State
Container

Code

<<stateful>>
<<copy (or facsimile)>>getArg(...)

getArg(...)
126 WebSphere and .NET Coexistence

4.2.8 Argument by reference paradigm

Figure 4-10 illustrates a pass by reference paradigm using the iCalculator3
interface from Example 4-5 on page 116 and Example 4-6 on page 117. Note
that real interfaces can (and frequently do) have both by reference and by value
arguments in the same interface definition.

Figure 4-10 A pass by reference paradigm

Pass by reference interfaces can often result in chatty solutions. Contrast the
three inter-process communications in Figure 4-10 with the single inter-process
communication in Figure 4-9 on page 126.

Definitions:

Pass by reference: When an interface argument (parameter) is a pass by
reference argument, the called code (the service) receives a reference to the
caller’s instance of the argument. Any changes made to the value of a pass by
reference argument by the called code do affect the value of shared argument
instance, and are visible to the calling code (the client).

In/out arguments: Pass by reference arguments are often referred to as in/out
arguments. For example:

foo([in,out]arg1); is equal to... foo([byReference]arg1);

add([in,out]objCalculatorArgs)

Client Code

iC
al

cu
la

to
r3

A
rg

s

State
Container

Code

<<stateful>>

Client Process Service Process

iC
al

cu
la

to
r3

Service
Implementation

Code

<<stateless>>

setArg(arg1)

setArg(arg2)

objCalculatorArgs
= new

getArg(...)

getArg(...)
 Chapter 4. Technical coexistence scenarios 127

The Java language is pass by value for primitive types (int, float, boolean, etc.)
and pass by reference for complex types (arrays and objects). RMI and RMI/IIOP
follow the same pass by value and pass by reference rules as basic Java.

.NET is also pass by value for primitive types (int, struct, enum etc.) and pass by
reference for complex (arrays and object, including boxed primitive types). .NET
remoting can provide pass by reference for complex types.

One challenge for integration between WebSphere applications and .NET
applications across remote (or local) interfaces is that we need to identify a
technical solution that maps argument types from Java to .NET (and vice versa)
while maintaining the pass by reference paradigm.

Definition: boxing

In .NET, all types (even primitive types) are fundamentally objects. For
example, an int is actually an alias to the CTS System.Int32 type.
System.Int32 derives from System.ValueType, so it has pass by value
behavior.

Boxing is a .NET technique that allows a pass by value type to be treated as a
pass by reference type. For example:

//--- i is by default a ‘pass by value’ object ---
int i = 99;
//--- boxed_i is a ‘pass by reference’ copy of i ---
object boxed_i = i;
//--- unboxed_i is a ‘pass by value’ copy of boxed_i ---
int unboxed_i = (int)boxed_i;
128 WebSphere and .NET Coexistence

4.2.9 Distributed object architecture

Examples of technologies that support the distributed object paradigm in
WebSphere are:

� RMI between Java Objects

� RMI/IIOP between Java Objects and EJBs in WebSphere

� RMI/IIOP between Java (including EJBs in WebSphere) and CORBA
(encompassing many implementation languages)

An example of technologies that support the distributed object paradigm in .NET
is:

� TCP remoting between .NET components

It is not possible to integrate these sets of distributed object technologies directly:
you cannot, for example, create a .NET object from Java using RMI. This implies
that if a conjoined distributed object paradigm is important to your WebSphere
and .NET coexistence challenge, then we need to identify a technical solution
(bridging technology) that can handle this paradigm.

Definition:

Distributed object architecture: An extension of the object-oriented application
architecture which allows objects (that is, combined state and behavior) to live
across a physically distributed environment. Clients direct the life cycle of the
objects on a remote machine, maintain references to these remote objects,
set properties and invoke methods on them.

Note: Some open source projects are building IIOP remoting channels for
.NET. This has the potential to make Java and .NET integrable in a distributed
object architecture.
 Chapter 4. Technical coexistence scenarios 129

4.2.10 Message Oriented Architecture

An example of technologies that support the distributed object paradigm in
WebSphere is:

� WebSphere MQ between Java and .NET (and various other languages and
technologies).

An example of technologies that support the distributed object paradigm in .NET
is:

� Microsoft MQ .NET clients and .NET services (and also between COM and
.NET).

While MSMQ and WebSphere MQ (the technology formerly known as IBM MQ
Series) both deliver a message-oriented paradigm, they are not directly
compatible technologies. It is definitely possible to build (and parse) any given
message structure in both a WebSphere application and a .NET application; the
WebSphere MQ queue manager and the MSMQ queue managers are not
directly compatible or interoperable.

Luckily, WebSphere MQ provides both Java and .NET client APIs. This makes
WebSphere MQ a very good candidate solution technology for addressing
coexistence between WebSphere applications and .NET applications.

Definition:

Message Oriented Architecture: A model for point-to-point communication of a
message from one location to another. Point-to-point can be extended to
many-to-many communication (publish/subscribe pattern).

Document interface style: An interface style in which all (or many) call
arguments are packaged by the calling code (the client) into one or more
compound documents (messages), and these documents are communicated
to the called code (the service).

Document call paradigm: A call mechanism that implies that all arguments are
marshalled from the client to the service (and vice versa) as untyped binary
arguments of determinable sizes, and that the messaging infrastructure does
not understand, or care, about the structure or semantic of the message.

Obviously, both the calling code and the called code need to have a common
understanding of the structure and semantic of the communicated messages.
130 WebSphere and .NET Coexistence

4.2.11 Service-oriented architecture

Examples of technologies that support the service orient architecture are SOAP
Web Services, CORBA, DCE RPC. Message-oriented technologies and
distributed object technologies can also be used to implement service-oriented
solutions.

4.2.12 Conclusions and recommendations
Hopefully, we have provided you with sufficient information in this chapter to help
you consider and identify the characteristics for your given coexistence
integration challenges. The next section, 4.3, “Layer interaction classifications”
on page 132 should help you further classify your specific interaction case (or
cases).

Some design issues transcend implementation technologies. With this in mind,
we make the following technology neutral recommendations that we anticipate
will benefit integration between an application deployed in WebSphere and an
application deployed in .NET:

� Do not design chatty or stateful interfaces; they generally do not perform or
scale well.

� Design inter-process interfaces with coarse business granularity, not with fine
implementation granularity.

� Do not assume that an implementation is stateless just because its interface
implies a stateless interaction.

� Try to minimize inter-process and cross-machine communication.

� Try to take inter-process and cross-machine communication away from the
critical execution path. This implies that you should consider asynchronous
communications whenever pertinent.

Definition:

Service-oriented architecture; A distributed application architecture where
applications (can) both expose discrete functionality (behavior or services) to
calling applications (clients) and consume discrete functionality (behavior or
services) exposed by other applications (services).

Service interface definitions and service binding definitions are (generally)
implementation technology neutral, enabling abstraction (concealment) of the
client’s implementation technology for the service, and abstraction
(concealment) of the service’s implementation technology from the client.
 Chapter 4. Technical coexistence scenarios 131

� If you have to inter-operate with an existing chatty service interface, consider
using a façade in the service process. This is illustrated in Figure 4-2 on
page 114.

� If you have to interact with an existing chatty client, consider using a façade in
the client process. This is illustrated in Figure 4-3 on page 115.

� Stateless interfaces can be chatty; do not assume that they are not (see
Figure 4-10 on page 127).

� Consider using asynchronous techniques to reduce call blocking so as to
improve invocation responsiveness.

4.3 Layer interaction classifications
In the previous section, we identified several possible interaction classifications
between an application deployed in WebSphere and an application deployed in
the .NET Framework. In Chapter 3, “An architectural model for coexistent
applications” on page 93, we discussed a layered architectural model which can
be used to model software solutions for both J2EE applications and .NET
applications. Let’s take these interaction classifications and this layered
architecture, and enumerate some potential cross-technology and cross-layer
interaction scenarios for further consideration.

If we consider two hypothetical layered applications, one a WebSphere
application and the other a .NET application, the most likely layer-to-layer, single
point to single point interactions between these applications are as follows:

� Case a: Client layer to Client layer

� Case b: Client layer to Presentation layer

� Case c: Client layer to Business layer

� Case d: Presentation layer to Presentation layer

� Case e: Presentation layer to Business layer

� Case f: Business layer to Business layer

� Case g: Business layer to Resource layer

� Case h; Resource layer to Resource layer
132 WebSphere and .NET Coexistence

Figure 4-11 on page 134 and Figure 4-12 on page 135 illustrate these potential
interactions from the perspective of both the WebSphere application and the
.NET application. In each figure, we have also drawn an interoperation
integration layer separating the two coexistent applications’ strata.

Interactions from the perspective of an application deployed in WebSphere
(Figure 4-11 on page 134) have been labeled as follows:

� Case a1: WebSphere Client layer to .NET Client layer

� Case b1: WebSphere Client layer to .NET Presentation layer

� Case c1: WebSphere Client layer to .NET Business layer

� Case d1: WebSphere Presentation layer to .NET Presentation layer

� Case e1: WebSphere Presentation layer to .NET Business layer

� Case f1: WebSphere Business layer to .NET Business layer

� Case g1: WebSphere Business layer to .NET Resource layer

� Case h1: WebSphere Resource layer to .NET Resource layer

Note: We will be explicitly modeling one-to-one interactions between
coexistent WebSphere application layers and .NET application layers.
Depending on the scale of your given coexistence challenge, it is likely that
you will need to consider potential added complexities (such as concurrency
and quality of service) of many-to-many, one-to-many, or many-to-one runtime
interaction dynamics.

http://www.ibm.com/developerworks/patterns/
http://www.enterpriseintegrationpatterns.com/
 Chapter 4. Technical coexistence scenarios 133

http://www.ibm.com/developerworks/patterns/
http://www.enterpriseintegrationpatterns.com/

Figure 4-11 Potential cross-tier interactions from the perspective of a WebSphere
application

Interactions from the perspective of an application deployed in the .NET
Framework (Figure 4-12 on page 135) have been labeled as follows:

� Case a2: .NET Client layer to WebSphere Client layer

� Case b2: .NET Client layer to WebSphere Presentation layer

� Case c2: .NET Client layer to WebSphere Business layer

� Case d2: .NET Presentation layer to WebSphere Presentation layer

� Case e2: .NET Presentation layer to WebSphere Business layer

� Case f2: .NET Business layer to WebSphere Business layer

� Case g2: .NET Business layer to WebSphere Resource layer

� Case h2: .NET Resource layer to WebSphere Resource layer

WebSphere
Application

.NET
Application

Presentation
Layer

Client
Layer

Presentation
Layer

Client
Layer

Business
Layer

Integration
Layer

Resource
Layer

Integration
Layer

Resource
Layer

Business
Layer

a1

b1c1

d1

e1

f1

g1

h1

In
te

ro
pe

ra
tio

n
In

te
gr

at
io

n
La

ye
r

Pseudo Resource Layer
(from the WebSphere

applications perspective)
134 WebSphere and .NET Coexistence

Figure 4-12 Potential cross-tier interactions from the perspective of a .NET application

Each of these interactions assumes an event flow either horizontally across
identical coexistent layers (for example, case a: Client layer to Client layer), or
diagonally from one layer to a lower coexistent layer (for example, case c: client
to business). Each of these interaction cases has the potential to form the basis
of a solution model for an integration relationship between the layers of our
coexistent applications.

The fundamental event flow direction is down through the strata of our
applications layers. This is representative of typical client (user) initiated events.
In real applications, sometimes events are initiated up through the strata of
layers as callbacks (for instance, from the Business layer to the Client layer or
from the Resource layer to the Business layer). We will not be illustrating these
explicitly in this book, but it is not difficult to imagine how these events could be
modeled in a similar way.

.NET
Application

WebSphere
Application

Presentation
Layer

Client
Layer

Presentation
Layer

Client
Layer

Business
Layer

Integration
Layer

Resource
Layer

Integration
Layer

Resource
Layer

Business
Layer

a2

b2 c2

d2

e2

f2

g2

h2
In

te
ro

pe
ra

tio
n

In
te

gr
at

io
n

La
ye

r

Pseudo Resource Layer
(from the .Net applications

perspective)
 Chapter 4. Technical coexistence scenarios 135

In order to fulfill any one of these interaction cases (a1, a2, b1, b2 , etc.), certain
criteria need to be met by the candidate technical solution for the interoperation
integration layer. Specifically, we need the following features:

� A Head Protocol: a client technology bindable application programming
interface (API).

� A Service Discovery Mechanism: a mechanism for the client to either:

– Tell the interoperation layer the physical location of the service, or

– Give the interoperation layer a unique identifier, which will enable the
interoperation layer to resolve the physical location of the service.

� A Transport Mechanism: a common network and network protocol used
between the Head and Tail implementations.

� A Communication Protocol: a common set of rules used between the Head
and Tail implementations to represent:

– A service request
– A service response
– Argument type mapping
– Call context
– Multiple (stateful) call associations

� A Tail Protocol: a service technology bindable service provider interface
(SPI).

� A Service Binding/Hosting: a mechanism for the Tail implementation to either:

– Bind to an existing (hosted) service implementation, or

– Launch or host, then bind to, a new service implementation.

These interoperation criteria are illustrated in Figure 4-13 on page 137 from the
perspective of an interaction initiated by a runtime artifact in the .NET application
(with a .NET Head Protocol and Java Tail Protocol). A very similar model can be
drawn from a WebSphere applications perspective (with a Java Head Protocol
and .NET Tail Protocol).
136 WebSphere and .NET Coexistence

Figure 4-13 Interoperation integration layer criteria from the perspective of a .NET application

Fulfilment of these criteria will deliver service location and service
implementation transparency. Any technology which meets these criteria is a
candidate for consideration as a coexistence integration enabler. Any technology
that provides both Head and Tail implementations in both Java and .NET is a
very good candidate. Any technology that meets all of these criteria, including
Java and .NET Head and Tail implementations, using open standards, is a prime
candidate. Any technology that fails to meet any one of these criteria may not be
a suitable candidate, or may have limited (perhaps tactical) capabilities.

Figure 4-14 on page 138 illustrates the proxy-stub pattern. The proxy exposes a
business interface to the client implementation to bind to, acts as a proxy to the
real service implementation, adapts the communication from the business
interface to the integration solution’s Head Protocol, and thus abstracts the client
from the chosen integration solution. The stub adapts communication from the
integration solution’s Tail Protocol to the business interface, binds to the real
business implementation, invokes its services on behalf of the original client
code, and thus abstracts the service from the chosen integration solution. The
implementations of these proxies or stubs can vary considerably, depending on

Se
rv

ic
e

St
ub

Se
rv

ic
e

Pr
ox

y

Pseudo Resource Layer
(from the doNet applications

perspective)

Ta
il

H
ea

d

WebSphere Application .NET Application
(Whatever) Application Layer (Whatever) Application Layer

Interoperation Integration Layer <<concrete>>
<<.NET>>

Service
(responder)

Client
(requester)

Service
Binding / Hosting

Service
Location/Discovery

Transport
Mechanism

Call Context
Representation

Communication
Protocol

Tail
Protocol

(Java SPI)
Head

Protocol
(.NET API)

Type mapping

business
interface

business
interface
 Chapter 4. Technical coexistence scenarios 137

the required quality of service and on whether/how the chosen integration
solution supports these qualities of service.

Use of the proxy-stub pattern proves separation of concerns (business
interfaces, technical integration solution, adaption) and enables the entire
integration mechanism between WebSphere and .NET to be encapsulated
(concealed). This will allow us to choose any appropriate technical integration
solution (tactical or strategic) without impacting either the client implementation
code or the service implementation code. We will use the proxy-stub pattern
wherever possible in the candidate solution designs we will present for our
interaction cases.

Figure 4-14 The proxy-stub pattern

Let us consider each of these point-to-point interaction cases further and identify
some candidate solution models. If you already know that you are interested in a
specific interaction case, then please feel free to skip straight to the appropriate
subsection in this chapter.

4.3.1 Interaction case a: client logic to client logic
Let us consider the coexistence of an application deployed in WebSphere and an
application deployed in the .NET Framework via Client layer logic to Client layer
logic integration (case a). We can consider interaction between these two
applications from the following perspectives:

� Perspective a1: WebSphere to .NET

A runtime artifact executing within a Fat Java Client application, such as a
Swing client application or an AWT client application (possibly deployed in the
WebSphere Client Container), interacting with a runtime artifact executing
within a Fat .NET client application, such as a Windows Form application.

Service Stub

Service Proxy

Integration
Solution Tail

Integration
Solution H

ead

ServiceClient

Tail
Protocol

Head
Protocol

Business
Interface

Business
Interface
138 WebSphere and .NET Coexistence

� Perspective a2: .NET to WebSphere

A runtime artifact executing within a Fat .NET client application, such as a
Windows Form application, interacting with a runtime artifact executing within
a Fat Java Client application, such as a Swing client application or an AWT
client application (possibly deployed in the WebSphere Client Container).

are illustrated in Figure 4-15 on page 140.

Thin Java Clients and Thin .NET clients communicate directly with the
presentation tier using HTTP. It probably makes little sense to consider thin
Client layer to thin Client layer interactions. A potential hybrid scenario could be
peer to peer thin Client layer to fat client tier interaction (via http). With this
scenario, the fat client, deployed in a client tier, could be modeled as a pseudo
Presentation layer to the thin client.

Explanation: The phrase ‘thin client layer to fat client tier’ is intended to
represent a peer to peer interaction where a Web browser client
communicates via HTTP with another client application deployed on a desktop
PC. In this scenario, the fat client is an HTTP server to the thin client. This is
an interesting, but probably uncommon, solution architecture.

Definition: The following client application definitions apply to this book.

� Fat client - a generic description for a traditional GUI-based client tier
application.

� Thin client - a generic description for a Web browser hosted client tier
application.

� Fat Java Client - a fat client application implemented using Java
technologies (typically using Swing, AWT or SWT)

� Fat .NET client - a fat client application implemented using .NET
technologies (typically a Windows Form application)

� Thin Java Client - a thin client application that uses the downloaded client
side logic implemented using Java technology (typically JavaScript,
Applets or Java Beans).

� Thin .NET client - a thin client application that uses downloaded client side
logic implemented using .NET technology (typically VBScript or ActiveX
Components).
 Chapter 4. Technical coexistence scenarios 139

Figure 4-15 Interaction cases a1(WebSphere application’s perspective) and a2 (.NET
application’s perspective)

Interaction case a: structure and dynamism considerations
Consider the scenario where a .NET client application exposes some specialized
calculator functionality. Suppose that a Java client application requires this
functionality, and that it is considered an appropriate solution for the Java client
application to make a peer to peer call to the .NET client application. Figure 4-16
on page 141 illustrates a high-level objective model for case a1 (a very similar
model can be drawn for case a2).

Note: An iCalculator interface is used as an example throughout this book,
and is intended to be simple to understand, rather than representative of a
realistic interoperation scenario.

Client
Layer

Client
Layer

WebSphere Application .NET Application

Presentation Layer

Business LayerBusiness Layer

Integration Layer

Resource Layer

Integration Layer

Resource Layer

Presentation Layer

a1

a2
140 WebSphere and .NET Coexistence

Figure 4-16 A high-level objective model for case a1

Figure 4-17 on page 142 illustrates a candidate solution model for interaction
case a1. The proposed use of a Java service proxy and a .NET service stub
fulfills our design principles of separation of concerns and encapsulation of the
solution technology used for the interoperation integration layer. A very similar
candidate solution model can be drawn for interaction case a2.

Figure 4-18 on page 143 illustrates that interaction case a1 (and by implication,
a2) can be considered analogous to interaction case c1 (and c2). See 4.3.3,
“Interaction case c: client logic to business logic” on page 152.

If we take a moment to consider thin clients, it may be possible to envisage
invoking the service proxy illustrated in Figure 4-17 on page 142 using an applet,
or client side scripting in a browser-based application. However, this presents the
added complications of working with, or overcoming the default limitations of the
browser sandbox. For thin client applications, it could be strongly argued that this
service invocation should be performed from the Presentation layer as an analog
of interaction case e. See 4.3.5, “Interaction case e: presentation logic to
business logic” on page 167.

Fat
App

X

WebSphere Application .NET Application
Client Layer

a1

Client Layer

Fat
App

X

implements iCalculator

handle
requestrequest

response
 Chapter 4. Technical coexistence scenarios 141

Figure 4-17 Interaction Case a1: candidate solution model (a very similar model can be
drawn for interaction case a2)

Java Bean

Fat
App

X

Fat
App

X

WebSphere Application .NET Application

Integration Layer (null)

Resource Layer (null)

Presentation Layer (null)

Client Layer

Business Layer (null)

Presentation Layer (null)

a1

Business Layer (null)

Integration Layer (null)

Resource Layer (null)

Client Layer

Assembly

Interop Integration Layer

handle
request

<<service stub>><<service proxy>>

implements iCalculator
142 WebSphere and .NET Coexistence

Figure 4-18 case a1 is technically analogous to case c1

Interaction case a: component interaction classifications
For each of these interaction perspectives (case a1 and case a2), the interaction
between components can be considered to have one of the following integration
classifications:

� a: Stateful Synchronous Integration.

� b: Stateless Synchronous Integration.

� c: Stateless Asynchronous Integration.

� d: Stateful Asynchronous Integration (not considered further in this book).

It is possible to further decompose these interactions into finer levels of detail,
but these classifications will be adequate for modeling the technical challenges
and technical solutions addressed in this book.

This gives us six potential interaction cases to consider:

� Case a1.a: Stateful Synchronous Integration from WebSphere to .NET.

� Case a1.b: Stateless Synchronous Integration from WebSphere to .NET.

� Case a1.c: Stateless Asynchronous Integration from WebSphere to .NET.

a1 analogue (c1)

Client Layer

Fat
App

X

WebSphere Application .NET Application
Client Layer

Business Layer

Business
Logic

Presentation Layer (null)

implements iCalculator

Fat
App

X

Client Tier

Integration Layer

Resource Layer
 Chapter 4. Technical coexistence scenarios 143

� Case a2.a: Stateful Synchronous Integration from .NET to WebSphere.

� Case a2.b: Stateless Synchronous Integration from .NET to WebSphere.

� Case a2.c: Stateless Asynchronous Integration from .NET to WebSphere.

Figure 4-19 and Figure 4-20 on page 145 illustrate these interaction cases from
the perspective of a WebSphere application (cases a1.a, a1.b and a1.c) and a
.NET application (cases a2.a, a2.b and a2.c), respectively.

Figure 4-19 Interaction cases a1.a, a1.b and a1.c (WebSphere application’s perspective)

Client
Layer

Client
Layer

WebSphere Application .NET Application

Presentation Layer

Business LayerBusiness Layer

Integration Layer

Resource Layer

Integration Layer

Resource Layer

Presentation Layer

or

or

<<Stateful>> <<Synchronous>>

<<Stateless>> <<Synchronous>>

<<Stateless>> <<Asynchronous>>

a1.a

a1.b

a1.c
144 WebSphere and .NET Coexistence

Figure 4-20 Interaction cases a2.a, a2.b and a2.c (.NET application’s perspective)

4.4, “Technical solution mapping” on page 202 provides guidance on identifying
potential technical solutions for each of these interaction cases (a1.a, a1.b, a1.c,
a2.a, a2.b and a2.c).

4.3.2 Interaction case b: client logic to presentation logic
Let’s consider the coexistence of an application deployed in WebSphere and an
application deployed in the .NET Framework via Client layer logic to Presentation
layer logic integration (case b). We can consider interaction between these two
applications from these perspectives:

� Perspective b1: WebSphere to .NET

– A runtime artifact executing within a Fat Java Client application, such as a
Swing client application or an AWT client application (possibly deployed in
the WebSphere Client Container), interacting with a runtime artifact
executing within the Presentation layer of a .NET application (possibly an
ASP.NET artifact) deployed in IIS.

– A runtime artifact executing within a thin client application (possibly client
side Java presentation logic such as a Java Applet), interacting with a
runtime artifact executing within the Presentation layer of a .NET
application (possibly an ASP.NET artifact) deployed in IIS.

Client
Layer

Client
Layer

WebSphere Application .NET Application

Presentation Layer

Business LayerBusiness Layer

Integration Layer

Resource Layer

Integration Layer

Resource Layer

Presentation Layer

or

or

<<Stateful>> <<Synchronous>>

<<Stateless>> <<Synchronous>>

<<Stateless>> <<Asynchronous>>

a2.a

a2.b

a2.c
 Chapter 4. Technical coexistence scenarios 145

� Perspective b2: .NET to WebSphere

– A runtime artifact executing within a Fat .NET client application, such as a
Windows Form application, interacting with a runtime artifact executing
within the Presentation layer of a WebSphere application (possibly a JSP
or servlet) deployed in the WebSphere Web Container.

– A runtime artifact executing within a thin client application (possibly client
side native presentation logic such as an ActiveX Control), interacting with
a runtime artifact executing within the Presentation layer of a WebSphere
application (possibly a JSP or servlet) deployed in the WebSphere Web
Container.

are illustrated in Figure 4-21.

Figure 4-21 Interaction cases b1 (WebSphere application’s perspective) and b2 (.NET
application’s perspective)

Interaction case b: structure and dynamic considerations
Consider the scenario where a WebSphere application exposes some enterprise
configuration information at a fixed HTTP URL (perhaps an XML service
description file such as a WSIL file). Say that a fat client .NET application
requires this information at runtime to resolve service configuration. Figure 4-22
on page 147 illustrates a high-level objective model for case b2 (a very similar
model can be drawn for case b1).

Client
Layer

Client
Layer

WebSphere Application .NET Application

Presentation Layer

Business LayerBusiness Layer

Integration Layer

Resource Layer

Integration Layer

Resource Layer

Presentation Layer

b1 b2
146 WebSphere and .NET Coexistence

Figure 4-22 A high-level objective model for case b2

Figure 4-23 on page 148 illustrates a candidate solution model for interaction
case b2. This model uses a .NET service proxy to present a business style
interface (iConfig) to the client, and abstracts the integration solution from the
client. In this case, the Presentation layer logic hosted by WebSphere’s Web
container, which exposes the Servlet as a URL over HTTP. Consequently, we
have no need for a stub implementation (the Web container can be considered a
generic HTTP stub capable of binding to any (many) hosted URLs).

A very similar candidate solution model can be drawn for interaction case b2.

Presentation
Logic

Fat
App

X

WebSphere Application .NET Application

Presentation Layer

b2

Client Layer

handle
request

Integration Layer

Resource Layer

Business Layer
 Chapter 4. Technical coexistence scenarios 147

Figure 4-23 Interaction Case b1: candidate solution model (a very similar model can be
drawn for interaction case b2

For thin client applications communicating over HTTP, interaction cases b1 and
b2 initially seem like “business as usual.” It is certainly true to say that a Java
Presentation layer will have no problem serving ActiveX Controls or VBScript for
a .NET thin client application, and that a .NET Presentation layer will have no
problems serving Applets or Java Script for a Java thin client application.

Potential challenges arise when view renderings from both a Java Presentation
layer and a .NET Presentation layer are needed to coexist with conjoined state
dependencies on the same thin client view. This is illustrated in Figure 4-24 on
page 149. The challenge for this model is how to share state, via client
mediation, between the two Presentation layer subsystems. It may be possible to
devise some form of URL extension to pass a limited representation of state
between the two systems, but there will almost certainly be no middleware

WebSphere Application

Integration Layer

Resource Layer

b2

Presentation Layer (null)
Presentation Layer

Servlet

<<controller>>

Business Layer

.NET Application

Assembly

response
request

Client Layer

Fat
App

X

<<service proxy>>

Client Layer (null)

Integration Layer (null)

Resource Layer (null)

Business Layer (null)

implements iConfig

Interop Integration Layer
148 WebSphere and .NET Coexistence

support. It is strongly recommended that you do not do this. For more information
about state maintenance between Presentation layers, refer to Chapter 9,
“Scenario: Web interoperability” on page 367.

Figure 4-24 Caution: interaction cases b1 and b2 state conjoined Presentation layers

One of the few possible situation where it may be considered appropriate to
share thin client view renderings from both Presentation layers is as part of a risk
managed strategy for phased migration of a non trivial application from .NET to
WebSphere. In this scenario, it is imperative that a thorough analysis of
presentation state life cycle be undertaken. The output of this analysis will
identify state dependencies, and indicate where migration slice divisions exist.

Figure 4-25 on page 150 illustrates a hypothetical .NET application that has
already undergone Business layer migration to WebSphere, and is now having its
Presentation layer migrated, slice by slice, to WebSphere. The down side of this
approach is that during migration you need runtime support for both Presentation
layers.

Servlet

Thin
App

X

WebSphere Application .NET Application

Integration Layer

Resource Layer

Business Layer

Presentation Layer

b1/b2 conjoined

Business Layer (null)

Integration Layer (null)

Resource Layer (null)

Client Layer

request
re

sp
on

se
handle
request

<<service endpoint>>

ASP.NET

Presentation Layer

handle
request

request

response<<service endpoint>>

state!

Caution!
 Chapter 4. Technical coexistence scenarios 149

Figure 4-25 Managed phased migration of a Presentation layer from .NET to WebSphere

Interaction case b: component interaction classifications
For each of these interaction perspectives (case b1 and case b2), the interaction
between components can be considered to have one of the following integration
classifications:

� a: Stateful Synchronous Integration.

� b: Stateless Synchronous Integration.

� c: Stateless Asynchronous Integration.

� d: Stateful Asynchronous Integration (not considered further in this book).

WebSphere Application .NET Application

Integration Layer

Resource Layer

Business Layer

Presentation Layer

b1/b2 migration

Integration Layer (null)

Resource Layer (null)

Client Layer

M
ig

ra
tio

n
C

an
di

da
te

M
ig

ra
tio

n
C

an
di

da
te

M
ig

ra
tio

n
C

an
di

da
te

M
ig

ra
te

d
Sl

ic
e

M
ig

ra
te

d
Sl

ic
e

M
ig

ra
te

d
Sl

ic
e

M
ig

ra
te

d
Sl

ic
e

e2 e2 e2
Presentation Layer

Business Layer (null)

Thin
App

X

b2 b1
150 WebSphere and .NET Coexistence

It is possible to further decompose these interactions into finer levels of detail,
but these classifications will be adequate for modeling the technical challenges
and technical solutions addressed in this book.

This gives us six potential interaction cases to consider:

� Case b1.a: Stateful Synchronous Integration from WebSphere to .NET.

� Case b1.b: Stateless Synchronous Integration from WebSphere to .NET.

� Case b1.c: Stateless Asynchronous Integration from WebSphere to .NET.

� Case b2.a: Stateful Synchronous Integration from .NET to WebSphere.

� Case b2.b: Stateless Synchronous Integration from .NET to WebSphere.

� Case b2.c: Stateless Asynchronous Integration from .NET to WebSphere.

These cases are illustrated in Figure 4-26 and Figure 4-27 on page 152.

Figure 4-26 Interaction cases b1.a, b1.b and b1.c (WebSphere application’s perspective)

<<Stateless>> <<Asynchronous>>

<<Stateless>> <<Synchronous>>

Client
Layer

Client
Layer

WebSphere Application .NET Application

Presentation Layer

Business LayerBusiness Layer

Integration Layer

Resource Layer

Integration Layer

Resource Layer

Presentation Layer

or

or <<Stateful>> <<Synchronous>>

b1.a
b1.b

b1.c
 Chapter 4. Technical coexistence scenarios 151

Figure 4-27 Interaction cases b2.a, b2.b and b2.c (.NET application’s perspective)

4.4, “Technical solution mapping” on page 202 provides guidance on identifying
potential technical solutions for each of these interaction cases (b1.a, b1.b, b1.c,
b2.a, b2.b and b2.c).

4.3.3 Interaction case c: client logic to business logic
Let’s consider the coexistence of an application deployed in WebSphere and an
application deployed in the .NET Framework via Client layer logic to Business
layer logic integration (case c). We can consider interaction between these two
applications from these perspectives:

� Perspective c1: WebSphere to .NET

A runtime artifact executing within a Fat Java Client application, such as a
Swing client application or an AWT client application (possibly deployed in the
WebSphere Client Container), interacting with a runtime artifact executing
within the Business layer of a .NET application deployed in the .NET
Framework.

� Perspective c2: .NET to WebSphere

A runtime artifact executing within a Fat .NET client application, such as a
Windows Form application, interacting with a runtime artifact executing within

Client
Layer

Client
Layer

WebSphere Application .NET Application

Presentation Layer

Business LayerBusiness Layer

Integration Layer

Resource Layer

Integration Layer

Resource Layer

Presentation Layer

<<Stateless>> <<Asynchronous>>

<<Stateless>> <<Synchronous>>

or

or

<<Stateful>> <<Synchronous>>
b2.a

b2.b
b2.c
152 WebSphere and .NET Coexistence

the Business layer of a WebSphere application (possibly an EJB or an MDB)
deployed in the WebSphere EJB container.

Thin Java Clients and Thin .NET clients communicate directly with the
Presentation layer using HTTP. It probably makes little sense to consider thin
client to Business layer interactions. It may be possible for a thin client with client
side logic, such as a Java Applet or an ActiveX control, to interact directly with
business logic. However, with this scenario, technical difficulties such as
overcoming the restrictions imposed by the browser sandbox may prove
challenging.

These perspectives are illustrated in Figure 4-28.

Figure 4-28 interaction cases c1 (WebSphere application’s perspective) and c2 (.NET
application’s perspective)

Interaction case c: structure and dynamic considerations
Consider the scenario where a WebSphere application Business layer exposes
some specialized calculator functionality. Say that a .NET client application
requires this functionality, and that it is considered an appropriate solution for the
.NET client application to invoke the WebSphere applications business
functionality. Figure 4-29 on page 154 illustrates a high-level objective model for
case c1 (Figure 4-30 on page 155 illustrates an equivalent high-level objective
model for case c2).

Client
Layer

Client
Layer

WebSphere Application .NET Application

Presentation Layer

Business LayerBusiness Layer

Integration Layer

Resource Layer

Integration Layer

Resource Layer

Presentation Layer

c1 c2
 Chapter 4. Technical coexistence scenarios 153

Figure 4-29 A high-level objective model for case c1

Fat
App

X

WebSphere Application .NET Application

Integration Layer

Resource Layer

Presentation Layer (null)

Client Layer

Business Layer

Business
Logic

Presentation Layer (null)

c1

implements iCalculator

Integration Layer (null)

Resource Layer (null)

Integration Layer (null)
154 WebSphere and .NET Coexistence

Figure 4-30 A high-level objective model for case c2

Figure 4-31 on page 156 illustrates a candidate solution model for interaction
case c1. This model uses a proxy-stub pattern between the fat client and the
Business layer code. A Java proxy presents a business interface (iCalculator)
to the client, and abstracts the integration solution for the client. A .NET stub
represents the client to the .NET service implementation, and abstracts the
service from the integration solution.

Fat
App

X

WebSphere Application .NET Application

Integration Layer

Resource Layer

Presentation Layer (null)

Client Layer

Business Layer

Business
Logic

Presentation Layer (null)

c2

implements iCalculator

Integration Layer (null)

Resource Layer (null)

Integration Layer (null)
 Chapter 4. Technical coexistence scenarios 155

Figure 4-31 Interaction case c1: candidate solution model

Figure 4-32 on page 157 illustrates a candidate solution model for interaction
case c2. This model also uses a proxy-stub pattern between the fat client and the
Business layer code. A .NET proxy presents a business interface (iCalculator)
to the client, and abstracts the integration solution for the client. A Java stub
represents the client to the service’s EJB quality of service (QOS) decorator,
which in turn delegates to the Java service implementation.

Interop Integration Layer

Fat
App

X

WebSphere Application .NET Application

Integration Layer

Resource Layer

Presentation Layer (null)

Client Layer

Business Layer (null)

Java Bean

Business Layer

c1

Assembly

<<service stub>>

Assembly

<<business model>>

Resource Layer (null)

<<service proxy>>
<<interop facade>>

implements iCalculator

Presentation Layer (null)

Client Layer (null)
156 WebSphere and .NET Coexistence

Figure 4-32 Interaction case c2: candidate solution model

Definitions:

Decoration: using one object to attach additional responsibilities to another
object.

QoS decoration: attaching quality of service responsibilities to another object.
In this case, using an EJB to attach declarative qualities of service (potentially:
security, object pooling, transactions, workload management).

Assembly

Fat
App

X

EJB

WebSphere Application .NET Application

Integration Layer

Resource Layer

Client Layer

Business Layer

Java Bean

Business Layer (null)

<<service stub>>
<<EJB proxy>>

c2

<<QOS decorator>>

Interop Integration Layer

Presentation Layer (null)

Integration Layer (null)

Resource Layer (null)

Java Bean

<<business model>>

Client Layer (null)

Presentation Layer (null)

implements iCalculator

<<service proxy>>
 Chapter 4. Technical coexistence scenarios 157

Interaction case c: component interaction classifications
For each of these interaction perspectives (case c1 and case c2), the interaction
between components can be considered to have one of the following integration
classifications:

� a: Stateful Synchronous Integration.

� b: Stateless Synchronous Integration.

� c: Stateless Asynchronous Integration.

� d: Stateful Asynchronous Integration (not considered further in this book).

It is possible to further decompose these interactions into finer levels of detail,
but these classifications will be adequate for modeling the technical challenges
and technical solutions addressed in this book.

This give us six potential interaction cases to consider:

� Case c1.a: Stateful Synchronous Integration from WebSphere to .NET.

� Case c1.b: Stateless Synchronous Integration from WebSphere to .NET.

� Case c1.c: Stateless Asynchronous Integration from WebSphere to .NET.

� Case c2.a: Stateful Synchronous Integration from .NET to WebSphere.

� Case c2.b: Stateless Synchronous Integration from .NET to WebSphere.

� Case c2.c: Stateless Asynchronous Integration from .NET to WebSphere.

These cases are illustrated in Figure 4-33 on page 159 and Figure 4-34 on
page 159.
158 WebSphere and .NET Coexistence

Figure 4-33 Interaction cases c1.a, c1.b and c1.c (WebSphere application’s perspective)

Figure 4-34 Interaction cases c2.a, c2.b and c2.c (.NET application’s perspective)

4.4, “Technical solution mapping” on page 202 provides guidance on identifying
potential technical solutions for each of these interaction cases (c1.a, c1.b, c1.c,
c2.a, c2.b and c2.c).

<<Stateless>> <<Asynchronous>>

<<Stateless>> <<Synchronous>>

Client
Layer

Client
Layer

WebSphere Application .NET Application

Presentation Layer

Business LayerBusiness Layer

Integration Layer

Resource Layer

Integration Layer

Resource Layer

Presentation Layer

or

or
<<Stateful>> <<Synchronous>>

c1.a
c1.b

c1.c

Client
Layer

Client
Layer

WebSphere Application .NET Application

Presentation Layer

Business LayerBusiness Layer

Integration Layer

Resource Layer

Integration Layer

Resource Layer

Presentation Layer

<<Stateless>> <<Asynchronous>>

<<Stateless>> <<Synchronous>>

or

or

<<Stateful>> <<Synchronous>>

c2.a
c2.b

c2.c
 Chapter 4. Technical coexistence scenarios 159

4.3.4 Interaction case d: presentation logic to presentation logic
Let’s consider the coexistence of an application deployed in WebSphere and an
application deployed in the .NET Framework via Presentation layer logic to
Presentation layer logic integration (case d). We can consider interaction
between these two applications from these perspectives:

� Perspective d1: WebSphere to .NET

A runtime artifact executing within the Presentation layer of a WebSphere
application (possibly a JSP, servlet, or an underpinning Java Bean) deployed
in the WebSphere Web container, interacting with a runtime artifact executing
within the Presentation layer of a .NET application (possibly an ASP.NET
artifact) deployed in IIS.

� Perspective d2: .NET to WebSphere

A runtime artifact executing within the Presentation layer of a .NET
application (possibly an ASP.NET or an underpinning assembly) deployed in
IIS, interacting with a runtime artifact executing within the Presentation layer
of a WebSphere application (possibly a JSP, or a servlet) deployed in
WebSphere Web Container.

These perspectives are illustrated in Figure 4-35.

Figure 4-35 Interaction cases d1 (WebSphere application’s perspective) and d2 (.NET
application’s perspective)

Interaction case d: structure and dynamic considerations
In this case, the presentation logic from WebSphere interacts with the .NET
presentation logic, and vice-versa. The Presentation layer here represents the

Presentation
Layer

WebSphere Application .NET Application

Business Layer

Client LayerClient Layer

Integration Layer

Resource Layer

Integration Layer

Resource Layer

d1

d2

Business Layer

Presentation
Layer
160 WebSphere and .NET Coexistence

Web application layer; note that the client is called thin client in both the d1 and
d2, cases. This interaction model is a bit more complex than other cases; not
only do the Web applications interact with each other, but the user can be
involved in the communication.

Case d1 represents the situation where the client accesses the WebSphere Web
application and WebSphere interacts with the .NET Web application in order to
present the response.

Figure 4-36 A high-level objective model for case d1

Case d2 represents the situation where the client accesses the .NET Web
application and .NET interacts with the WebSphere Web application in order to
present the response.

Definition: The Model-View-Controller (MVC) pattern allows an abstraction
of the components of the user interface (GUI) to support easy development,
maintenance, and extensibility. The model is the program itself, the view
represents the input and the output of the program, the controller links the
view and the model.

Thin
App

X

WebSphere Application .NET Application

Integration Layer

Resource Layer

Presentation Layer

Client Layer

Presentation
Logic

Presentation Layer

d1

Presentation
Logic

Business Layer

Integration Layer

Resource Layer

Business Layer
 Chapter 4. Technical coexistence scenarios 161

Figure 4-37 A high-level objective model for case d2

Potential value:

� This solution model should enable migration of an application Business layer
code to WebSphere, allowing Presentation layer code to be migrated to
WebSphere in a subsequent phase.

Potential downsides:

� Both Microsoft IIS and the WebSphere Web Container need to be deployed
(until the .NET Presentation layer is migrated to WebSphere).

Expected issues with this solution model are:

� Sharing content (mostly static content).

� Session maintenance.

� Session state representation.

� Security between WebSphere and .NET.

The following interaction model is exercising redirection between Web
applications. The user accesses a Web application on one platfrom and the
response arrives from another Web application on the other platform. Redirection
involves further client interactions. The request does not flow directly from one

Thin
App

X

WebSphere Application .NET Application

Integration Layer

Resource Layer

Presentation Layer

Client Layer

Presentation
Logic

Presentation Layer

d2

Presentation
Logic

Business Layer

Integration Layer

Resource Layer

Business Layer
162 WebSphere and .NET Coexistence

application to the other but it goes back to the client application with a special
redirection response.

Figure 4-38 Interaction case d1: candidate solution model

In the alternative solution, both applications are involved in the process as
opposed to the original solution where one application just redirects based on the
requested URL.

Integration Layer

Resource Layer

Business Layer

Assembly

d1; redirect

.NET Application

Thin
App

X

WebSphere Application

Presentation Layer

Servlet

<<controller>>

URL

Client Layer

<<state>>

Business Layer

Integration Layer

Resource Layer

Presentation Layer

ASP.NET

<<controller>>

ASP.NET

<<view>>

AssemblyAssembly

<<service proxy>> <<state>>

implements iCalculator

<<business model>>

redirect
 Chapter 4. Technical coexistence scenarios 163

Figure 4-39 Interaction case d1: candidate solution model

Note: The other interaction alternative, where the applications forward the
request from one Web application on one platform to the other application on
the other platform, is not valid. Forwarding between two different platforms is
not supported by either platforms.

d1; redirect alternative

Thin
App

X

WebSphere Application

Presentation Layer

Servlet

<<controller>>

URL

Client Layer

Java Bean

<<service proxy>> <<state>>

EJB

Business Layer

<<business model>>

<<QOS decorator>>

Integration Layer

Resource Layer

Integration Layer

Resource Layer

Business Layer

Assembly

.NET Application

Presentation Layer

ASP.NET

<<controller>>

ASP.NET

<<view>>

AssemblyAssembly

<<service proxy>> <<state>>

<<business model>>

redirect
implements iCalculator
164 WebSphere and .NET Coexistence

Interaction case d: component interaction classifications
For each of these interaction perspectives (case d1 and case d2), the interaction
between components can be considered to have one of the following integration
classifications:

� a: Stateful Synchronous Integration.

� b: Stateless Synchronous Integration.

� c: Stateless Asynchronous Integration.

� d: Stateful Asynchronous Integration (not considered further in this book).

It is possible to further decompose these interactions into finer levels of detail,
but these classifications will be adequate for modeling the technical challenges
and technical solutions addressed in this book.

This give us six potential interaction cases to consider:

� Case d1.a: Stateful Synchronous Integration from WebSphere to .NET.

� Case d1.b: Stateless Synchronous Integration from WebSphere to .NET.

� Case d1.c: Stateless Asynchronous Integration from WebSphere to .NET.

� Case d2.a: Stateful Synchronous Integration from .NET to WebSphere.

� Case d2.b: Stateless Synchronous Integration from .NET to WebSphere.

� Case d2.c: Stateless Asynchronous Integration from .NET to WebSphere.

These cases are illustrated in Figure 4-40 and Figure 4-41 on page 166.

Figure 4-40 Interaction cases d1.a, d1.b and d1.c (WebSphere application’s perspective)

Business LayerBusiness Layer

Presentation
Layer

Presentation
Layer

WebSphere Application .NET Application
Client LayerClient Layer

Integration Layer

Resource Layer

Integration Layer

Resource Layer

or

or

<<Stateful>> <<Synchronous>>

<<Stateless>> <<Synchronous>>

<<Stateless>> <<Asynchronous>>

d1.a

d1.b

d1.c
 Chapter 4. Technical coexistence scenarios 165

Figure 4-41 Interaction cases d2.a, d2.b and d2.c (.NET application’s perspective)

4.4, “Technical solution mapping” on page 202 provides guidance on identifying
potential technical solutions for each of these interaction cases (d1.a, d1.b, d1.c,
d2.a, d2.b and d2.c).

Business LayerBusiness Layer

Presentation
Layer

Presentation
Layer

WebSphere Application .NET Application
Client LayerClient Layer

Integration Layer

Resource Layer

Integration Layer

Resource Layer

or

or

<<Stateful>> <<Synchronous>>

<<Stateless>> <<Synchronous>>

<<Stateless>> <<Asynchronous>>

d2.a

d2.b

d2.c
166 WebSphere and .NET Coexistence

4.3.5 Interaction case e: presentation logic to business logic
Let’s consider the coexistence of an application deployed in WebSphere and an
application deployed in the .NET Framework via Presentation layer logic to
Business layer logic integration (case e). We can consider interaction between
these two applications from these perspectives:

� Perspective e1: WebSphere to .NET

A runtime artifact executing within the Presentation layer of a WebSphere
application (possibly a JSP, servlet, or an underpinning Java Bean) deployed
in the WebSphere Web Container, interacting with a runtime artifact executing
within the Business layer of a .NET application (possibly an assembly or a
COM+ component) deployed in the .NET Framework.

� Perspective e2: .NET to WebSphere

A runtime artifact executing within the Presentation layer of a .NET
application (possibly an ASP.NET artifact or an underpinning assembly)
deployed in IIS, interacting with a runtime artifact executing within the
Business layer of a WebSphere application (possibly an EJB or MDB)
deployed in WebSphere EJB Container.

These perspectives are illustrated in Figure 4-42.

Figure 4-42 Interaction cases e1 (WebSphere application’s perspective) and e2 (.NET
application’s perspective)

Interaction case e: structure and dynamic considerations
Consider the scenario where a .NET application Business layer exposes some
specialized calculator functionality. Say that a WebSphere application

Presentation
Layer

WebSphere Application .NET Application

Business Layer

Client LayerClient Layer

Integration Layer

Resource Layer

Integration Layer

Resource Layer

e1 e2

Business Layer

Presentation
Layer
 Chapter 4. Technical coexistence scenarios 167

Presentation layer requires this functionality, and that it is considered an
appropriate solution for the WebSphere application to invoke the .NET
applications business functionality. Figure 4-43 illustrates a high-level objective
model for case e1 (the WebSphere calling application’s perspective).

Figure 4-43 A high-level objective model for case e1

Figure 4-44 on page 169 illustrates a high-level objective model for case e2 (the
.NET calling application’s perspective).

Thin
App

X

WebSphere Application .NET Application

Integration Layer

Resource Layer

Presentation Layer

Presentation
Logic

Client Layer

Business Layer

e1

Business
Logic

implements iCalculator
168 WebSphere and .NET Coexistence

Figure 4-44 A high-level objective model for case e2

The model illustrated in Figure 4-45 on page 170 presents a candidate solution
for interaction case e1. This model combines a model-view-controller (MVC) and
a proxy-stub pattern. The MVC pattern provides the structure and separation of
concerns for the Presentation layer of the WebSphere application. The
proxy-stub pattern provides the structure, separation of concerns and abstraction
for the integration solution. The Java proxy presents a business interface
(iCalculator) to the MVC controller (Java Servlet). The .NET stub represents
the client to the .NET service implementation, and abstracts the service from the
integration solution.

Thin
App

X

WebSphere Application .NET Application

Integration Layer

Resource Layer

Presentation Layer

Presentation
Logic

Client Layer

Business Layer

e2

Business
Logic

implements iCalculator
 Chapter 4. Technical coexistence scenarios 169

Figure 4-45 Interaction case e1: candidate solution model

The solution model illustrated in Figure 4-46 on page 171 extends the model
illustrated in Figure 4-45 by pushing integration down into the Business layer to
give a Business layer to Business layer interaction scenario (case f). This model
uses an EJB as a quality of service (QOS) decorator for the service proxy.

Thin
App

X

WebSphere Application .NET Application

Integration Layer

Resource Layer

Presentation Layer

Servlet

<<controller>>

JSP

<<view>>

Java Bean

Client Layer

Java Bean

Business Layer

Assembly

<<service stub>>
<<service proxy>>
<<interop facade>>

<<state>>

e1

Assembly

<<business model>>

implements iCalculator

Interop Integration Layer
170 WebSphere and .NET Coexistence

Figure 4-46 Interaction case e1 (f1); candidate solution model

Figure 4-47 on page 173 illustrates a candidate solution model for interaction
case e2. As with the model presented in Figure 4-45 on page 170T, this also
model combines a model-view-controller (MVC) and a proxy-stub pattern. The
MVC pattern provides the structure and separation of concerns for the
Presentation layer of the .NET application. The proxy-stub pattern provides the
structure, separation of concerns and abstraction for the integration solution. The
.NET proxy presents a business interface (iCalculator) to the MVC controller

Thin
App

X

EJB

WebSphere Application .NET Application

Integration Layer

Resource Layer

Presentation Layer

Servlet

<<controller>>

JSP

<<view>>

Java Bean Java Bean

Client Layer

Business Layer

<<business model>>

Java Bean

Business Layer

<<service proxy>>
<<interop facade>><<QOS decorator>>

<<state>><<EJB proxy>>

e1; QOS alternative (f1)

implements iCalculator

Assembly

<<service stub>>

Assembly

<<business model>>

Interop Integration Layer
 Chapter 4. Technical coexistence scenarios 171

(ASP.NET). The Java stub represents the client to the service’s EJB quality of
service (QOS) decorator, which in turn delegates to the Java service
implementation.

Interaction case e: component interaction classifications
For each of these interaction perspectives (case e1 and case e2), the interaction
between components can be considered to have one of the following integration
classifications:

� a: Stateful Synchronous Integration.

� b: Stateless Synchronous Integration.

Thin
App

X

WebSphere Application .NET Application

Integration Layer

Resource Layer

Presentation Layer

ASP.NET

<<controller>>

ASP.NET

<<view>>

Assembly

Assembly

Client Layer

Business Layer (null)

<<state>>

<<service proxy>>

e2

Interop Integration Layer

Integration Layer (null)

Resource Layer (null)

Client Layer (null)

Presentation Layer (null)

EJB

Business Layer

Java Bean

<<service stub>>
<<EJB proxy>>

<<QOS decorator>>

Java Bean

<<business model>> implements iCalculator
172 WebSphere and .NET Coexistence

� c: Stateless Asynchronous Integration.

� d: Stateful Asynchronous Integration (not considered further in this book).

It is possible to further decompose these interactions into finer levels of detail,
but these classifications will be adequate for modeling the technical challenges
and technical solutions addressed in this book.

This give us six potential interaction cases to consider:

� Case e1.a: Stateful Synchronous Integration from WebSphere to .NET.

� Case e1.b: Stateless Synchronous Integration from WebSphere to .NET.

� Case e1.c: Stateless Asynchronous Integration from WebSphere to .NET.

� Case e2.a: Stateful Synchronous Integration from .NET to WebSphere.

� Case e2.b: Stateless Synchronous Integration from .NET to WebSphere.

� Case e2.c: Stateless Asynchronous Integration from .NET to WebSphere.

These cases are illustrated in Figure 4-47 and Figure 4-48 on page 174.

Figure 4-47 Interaction cases e1.a, e1.b and e1.c (WebSphere application’s perspective)

Business LayerBusiness Layer

Presentation
Layer

Presentation
Layer

WebSphere Application .NET Application
Client LayerClient Layer

Integration Layer

Resource Layer

Integration Layer

Resource Layer

<<Stateless>> <<Asynchronous>>

<<Stateless>> <<Synchronous>>

or

or
<<Stateful>> <<Synchronous>>

e1.a
e1.b

e1.c
 Chapter 4. Technical coexistence scenarios 173

Figure 4-48 Interaction cases e2.a, e2.b and e2.c (.NET application’s perspective)

4.4, “Technical solution mapping” on page 202 provides guidance for identifying
potential technical solutions for each of these interaction cases (e1.a, e1.b, e1.c,
e2.a, e2.b and e2.c).

4.3.6 Interaction case f: business logic to business logic
Let’s consider the coexistence of an application deployed in WebSphere and an
application deployed in .NET via Business layer logic to Business layer logic
integration (case f). We can consider interaction between these two applications
from these perspectives:

� Perspective f1: WebSphere to .NET

A runtime artifact executing within the Business layer of a WebSphere
application (possibly an EJB or underpinning Java Bean) deployed within a
the WebSphere EJB Container, interacting with a runtime artifact executing
within the Business layer of a .NET application (possibly an assembly or a
COM+ component) deployed in the .NET Framework.

� Perspective f2: .NET to WebSphere

A runtime artifact executing within the Business layer of a .NET application
(possibly an assembly or a COM+ component) deployed within the .NET
Framework, interacting with a runtime artifact in the Business layer of a

WebSphere Application .NET Application

Business Layer Business Layer

Presentation
Layer

Presentation
Layer

Client Layer Client Layer

Integration Layer

Resource Layer

Integration Layer

Resource Layer

<<Stateless>> <<Asynchronous>>

<<Stateless>> <<Synchronous>>

or

or

<<Stateful>> <<Synchronous>>

e2.a
e2.b

e2c
174 WebSphere and .NET Coexistence

WebSphere application (possibly an EJB or MDB) deployed in WebSphere
EJB Container.

These two perspectives are illustrated in Figure 4-49.

Figure 4-49 interaction cases f1 (WebSphere application’s perspective) and f2 (.NET
application’s perspective)

Interaction case f: structure and dynamic considerations
Consider the scenario where a WebSphere application’s Business layer exposes
some specialized calculator functionality. Say that a .NET application
Presentation layer requires this functionality, and that it is considered an
appropriate solution for the WebSphere application to invoke the .NET
applications business functionality. Figure 4-50 on page 176 illustrates a
high-level objective model for case f2 (the .NET calling application’s perspective).
Figure 4-51 on page 177 illustrates a high-level objective model for case f1 (the
WebSphere calling application’s perspective).

Business
Layer

Business
Layer

WebSphere Application .NET Application

Presentation Layer

Client LayerClient Layer

Integration Layer

Resource Layer

Integration Layer

Resource Layer

Presentation Layer

f1

f2
 Chapter 4. Technical coexistence scenarios 175

Figure 4-50 A high-level objective model for case f2

Thin
App

X

WebSphere Application .NET Application

Integration Layer

Resource Layer

Presentation Layer

Presentation
Logic

Client Layer

Business Layer

f2

Business
Logic

implements iCalculator

Business
Logic

Fat
App

X

Business Layer
176 WebSphere and .NET Coexistence

Figure 4-51 A high-level objective model for case f1

Figure 4-52 on page 178 illustrates a candidate solution model for interaction
case f2. This uses a proxy-stub pattern to provide structure, separation of
concerns, and abstraction for the integration solution. The .NET proxy presents a
business interface (iCalculator) to an adjacent business tier artifact. The Java
stub in the WebSphere application presents the client to the service’s EJB quality
of service (QOS) decorator, which in turn delegates to the Java service
implementation.

For completeness, this model also illustrates both a fat client application binding
to the .NET business model, and thin client binding to the same (logical) .NET
assembly via its Presentation layer MCV controller ASP.NET.

Thin
App

X

WebSphere Application .NET Application

Integration Layer

Resource Layer

Presentation Layer

Presentation
Logic

Client Layer

Business Layer

f1

Business
Logic

implements iCalculator

Business
Logic

Fat
App

X

Business Layer
 Chapter 4. Technical coexistence scenarios 177

Figure 4-52 Interaction case f2: candidate solution model

Figure 4-53 on page 180 illustrates a candidate solution model for interaction
case f1. This uses a proxy-stub pattern to provide structure, separation of
concerns, and abstraction for the integration solution. The Java proxy presents a

Thin
App

X

Assembly

WebSphere Application .NET Application

Integration Layer

Resource Layer

Presentation Layer

ASP.NET

<<controller>>

ASP.NET

<<view>>

AssemblyAssembly

Client Layer

Business Layer

Assembly

Business Layer

<<service proxy>>
<<interop facade>>

<<state>> <<service proxy>>

f2

EJB

<<service stub>>
<<QOS facade>>

Java Bean

Interop Integration Layer

Fat
App

X

Assembly

Presentation
Layer (null)

<<business model>>

Integration Layer (null)

Resource Layer (null)

Client Layer (null)

Presentation Layer (null)

<<service proxy>>

implements iCalculator

<<business model>>
178 WebSphere and .NET Coexistence

business interface (iCalculator) to an adjacent Business layer artifact. The
.NET stub represents the client to the .NET service implementation.

For completeness, this model also illustrates both a fat client application binding
to a business model EJB, and a thin client binding to the same business model
EJB via its Presentation layer MCV controller servlet. Notice that two instances of
the same client side Java proxy implementation (as opposed to the single interop
proxy) are illustrated. Each Java proxy is deployed adjacent to its client (that is,
the Client Tier for the fat client, and the Presentation Tier for the thin client). Both
of these proxies bind to the same service EJB (this assumes the same
integration mechanism, such as RMI/IIOP between the WebSphere application
layers).
 Chapter 4. Technical coexistence scenarios 179

Figure 4-53 Interaction case f1: candidate solution model

Java Bean

Thin
App

X

EJB

WebSphere Application .NET Application

Integration Layer

Resource Layer

Presentation Layer

Servlet

<<controller>>

JSP

<<view>>

Java Bean Java Bean

Client Layer

Business Layer

Java Bean

Business Layer

<<service proxy>>
<<interop facade>>

<<state>><<EJB proxy>>

f1

Assembly

<<service stub>>

Assembly

<<business model>>

Interop Integration Layer

Fat
App

X

Java Bean

Presentation
Layer (null)

<<business model>>
<<QOS facade>>

Integration Layer (null)

Resource Layer (null)

Client Layer (null)

Presentation Layer (null)

<<EJB proxy>>

implements iCalculator

<<business model>>
180 WebSphere and .NET Coexistence

Interaction case f: component interaction classifications
For each of these interaction perspectives (case f1 and case f2), the interaction
between components can be considered to have one of the following integration
classifications:

� a: Stateful Synchronous Integration.

� b: Stateless Synchronous Integration.

� c: Stateless Asynchronous Integration.

� d: Stateful Asynchronous Integration (not considered further in this book).

It is possible to further decompose these interactions into finer levels of detail,
but these classifications will be adequate for modeling the technical challenges
and technical solutions addressed in this book.

This give us six potential interaction cases to consider:

� Case f1.a: Stateful Synchronous Integration from WebSphere to .NET.

� Case f1.b: Stateless Synchronous Integration from WebSphere to .NET.

� Case f1.c: Stateless Asynchronous Integration from WebSphere to .NET.

� Case f2.a: Stateful Synchronous Integration from .NET to WebSphere.

� Case f2.b: Stateless Synchronous Integration from .NET to WebSphere.

� Case f2.c: Stateless Asynchronous Integration from .NET to WebSphere.

These cases are illustrated in Figure 4-54 and Figure 4-55 on page 182.

Figure 4-54 interaction cases f1.a, f1.b and f1.c (WebSphere application’s perspective)

Business
Layer

Business
Layer

WebSphere Application .NET Application

Presentation Layer

Client LayerClient Layer

Integration Layer

Resource Layer

Integration Layer

Resource Layer

Presentation Layer

or

or

<<Stateful>> <<Synchronous>>

<<Stateless>> <<Synchronous>>

<<Stateless>> <<Asynchronous>>

f1.a

f1.b

f1.c
 Chapter 4. Technical coexistence scenarios 181

Figure 4-55 Interaction cases f2.a, f2.b and f2.c (.NET application’s perspective)

4.4, “Technical solution mapping” on page 202 provides guidance on identifying
potential technical solutions for each of these interaction cases (f1.a, f1.b, f1.c,
f2.a, f2.b and f2.c).

4.3.7 Interaction case g: business logic to resource
Let’s consider the coexistence of an application deployed in WebSphere and an
application deployed in .NET via Business layer logic to resource integration. We
can consider interaction between these two applications from these
perspectives:

� Perspective g1 isolated: WebSphere to .NET

A runtime artifact executing within the Business layer of a WebSphere
application (possibly an EJB or underpinning Java Bean) deployed within a
the WebSphere EJB Container, interacting with a runtime resource of a .NET
application.

� Perspective g2 isolated: .NET to WebSphere

A runtime artifact executing within the Business layer of a .NET application
(possibly an assembly or a COM+ component) deployed within the .NET
Framework, interacting with a runtime resource of a WebSphere application.

� Perspective g1/g2 concurrent isolated: both WebSphere and .NET

Runtime artifacts executing within the Business layer of a WebSphere
application and runtime artifacts executing within the Business layer of a

Business
Layer

Business
Layer

WebSphere Application .NET Application

Presentation Layer

Client LayerClient Layer

Integration Layer

Resource Layer

Integration Layer

Resource Layer

Presentation Layer

<<Stateful>> <<Synchronous>>

<<Stateless>> <<Synchronous>>

<<Stateless>> <<Asynchronous>>

f2.a

f2.b

f2.c

or

or
182 WebSphere and .NET Coexistence

.NET application both the access the same shared resource concurrently to
perform separate and distinct units of work.

� Perspective g1/g2 concurrent conjoined: both WebSphere and .NET

Runtime artifacts executing within the Business layer of a WebSphere
application and runtime artifacts executing within the Business layer of a
.NET application both the access the same shared resource concurrently (or
in close synchronization) to perform different aspects of the same logical unit
of work.

The high-level objective models for these perspectives are illustrated in
Figure 4-56, Figure 4-57 on page 184, Figure 4-58 on page 184 and Figure 4-59
on page 185.

Resources can simplistically divide resources, and the integration layer
technologies used expose these resource to Business layer components, into
the following categories:

� Relational Database: JDBC, ADO .NET, ODBC, API

� Enterprise Applications: JCA, MQ, MSMQ, API, RPC

� SOA Services: Web Services

� Operating System Services: API

Figure 4-56 A high-level objective model: case g1 isolated

WebSphere Application .NET Application

Business Layer

g1

Business
Logic

Business Layer

Integration Layer

Resource

Resource Layer
 Chapter 4. Technical coexistence scenarios 183

Figure 4-57 A high-level objective model: case g2 isolated

Figure 4-58 A high-level objective model: case g1and g2 concurrent isolation

WebSphere Application .NET Application

Business Layer

g2

Business
Logic

Business Layer

Integration Layer

Resource

Resource Layer

.NET Application

Business
Logic

Business Layer

WebSphere Application

Business
Logic

Business Layer

Integration Layer

Resource

Resource Layer

g1/g2 concurrent isolated
184 WebSphere and .NET Coexistence

Figure 4-59 A high-level objective model: case g1and g2 concurrent conjoined

Interaction case g: structure and dynamic considerations
Consider the scenario illustrated in Figure 4-60 on page 186. Both a WebSphere
application and .NET application share the same relational database resource.
When we consider each interaction in isolation (such as interaction case g1
isolated and interaction case g2 isolated), this is business as usual for each
application. The WebSphere application can use JDBC to operate on the
database data set in isolation. The .NET application can use ADO.NET to
operate on the database data set in isolation. In this scenario, isolation is
provided by the RDBMS in cooperation with the JDBC or ADO.NET driver.

g1/g2 concurrent conjoined

.NET Application

Business
Logic

Business Layer

WebSphere Application

Business
Logic

Business Layer

Integration Layer

Resource

Resource Layer

Sh
ar

ed
C

on
te

xt
 Chapter 4. Technical coexistence scenarios 185

Figure 4-60 Isolated interaction case g1 and g2: a shared database resource

The challenge for this model comes when pushing the coexistence scenario up
into the Business layer to give interaction case g1-g2 conjoined. Consider the
scenario where a single database resource is shared by coexistent WebSphere
and .NET Business layer implementations. Say both the WebSphere Business
layer component and the .NET Business layer component need to combine to
fulfill a single unit of work. This is illustrated in Figure 4-61 on page 187 from the

ADO.NET

EJB

WebSphere Application .NET Application

Presentation Layer

Client Layer

Business Layer

<<business model>>

Java Bean

<<business model>>

<<QOS decorator>>

Presentation Layer

Client Layer

RDBMS

Business Layer

Assembly

<<business model>>

JDBC

Integration Layer Integration Layer

Resource Layer

g1 isolated / g2 isolated / g1-g2 isolated

Interop Integration Layer
186 WebSphere and .NET Coexistence

perspective of a WebSphere application (analogous to case f1 extended), but it is
easy to imagine a similar model from a .NET applications perspective (analogous
to case f2 extended). The challenge for this scenario becomes the following: how
do we share runtime context between the Business layers and how can we
ensure that work performed by each Business layer is treated by the RDBMs as
a single unit of work?

Figure 4-61 Conjoined interaction case g1 and g2: a shared database resource as an
extension of case f1

Consider the scenario illustrated Figure 4-62 on page 188. Both a WebSphere
application and .NET application share the same application resource. The

ADO.NET

EJB

WebSphere Application .NET Application

Presentation Layer

Client Layer

Business Layer

<<business model>>

Java Bean

<<business model>>

<<QOS decorator>>

Presentation Layer

Client Layer

RDBMS

Business Layer

Assembly

<<business model>>

JDBC

Integration Layer Integration Layer

Resource Layer

Interop Integration Layer

g1-g2 conjoined
 Chapter 4. Technical coexistence scenarios 187

WebSphere application is illustrated integrating with the resource application via
a JCA connector, or via a bespoke client API. The .NET Framework has no
technical equivalent to JCA, so we have illustrated the .NET application
integrating with the resource application via a bespoke API. When we consider
each interaction in isolation (such as interaction case g1 isolated and interaction
case g2 isolated) this should be business as usual for the API or JCA
implementation.

Once again, the more challenging interaction case is case g1-g2 conjoined. This
interaction case is illustrated in Figure 4-63 on page 189 (analogous to case f1
extended).

Figure 4-62 Isolated interaction case g1 and g2: a shared application resource

API

EJB

Business Layer

<<business model>>

Java Bean

<<business model>>

<<QOS decorator>>

Enterprise Application

Business Layer

Assembly

<<business model>>

Integration Layer

Resource Layer

WebSphere Application .NET Application

Presentation Layer

Client Layer

Presentation Layer

Client Layer

Interop Integration Layer

JCA API

Integration Layer

or

or

g1-g2 conjoined
188 WebSphere and .NET Coexistence

An interesting candidate solution model for interaction case g1-g2 conjoined is to
make a decision to perform all interaction with a given resource through a single
integration layer. This is illustrated in Figure 4-64 on page 190 from both a
WebSphere applications perspective (case g1/f1 extended) and a .NET
applications perspective (case g2 / f2 extended). This removes the challenge of
both WebSphere application’s and .NET application’s integration layers needing
to cooperate to deliver a single unit of work, by simply removing one or another
of the integration layers from the solution. The challenge of sharing context
between the WebSphere application and the .NET application at the Business
layer remains.

Figure 4-63 Conjoined interaction case g1 and g2: a shared application resource as an
extension of case f1

API

EJB

Business Layer

<<business model>>

Java Bean

<<business model>>

<<QOS decorator>>

Enterprise Application

Business Layer

Assembly

<<business model>>

Integration Layer

Resource Layer

WebSphere Application .NET Application

Presentation Layer

Client Layer

Presentation Layer

Client Layer

Interop Integration Layer

JCA API

Integration Layer

or

or

g1-g2 conjoined
 Chapter 4. Technical coexistence scenarios 189

Figure 4-64 Interaction case g1 and g2: candidate solution model(s) for a shared application

Consider the scenario illustrated in Figure 4-65 on page 191, a WebSphere
application and a .NET application both sharing the same MQ enabled resource.
MQ is a proven strategic solution for the common challenge of integrating
enterprise applications. The message-oriented solution model delivered by
WebSphere MQ automatically addresses the needs of interaction case g1
isolated, case g2 isolated and case g1-g2 concurrent isolated. Once again, the
most challenging interaction case will be interaction case g1-g2 conjoined. The
difference is that with WebSphere MQ messaging, the context always flows as
part of the message.

API

EJB

WebSphere Application .NET Application

Presentation Layer

Client Layer

Business Layer

<<business model>>

Java Bean

<<business model>>

<<QOS decorator>>

Presentation Layer

Client Layer

Enterprise
Application

Integration Layer (null) Integration Layer

Resource Layer

g1-g2; shared app (f1)

Interop Integration Layer

Assembly

<<service proxy>> <<service stub>>

Java Bean

Assembly

Business Layer
<<business model>>

WebSphere Application .NET Application

Presentation Layer

Client Layer

Business Layer

Java Bean

Presentation Layer

Client Layer

Enterprise
Application

Integration Layer (null)

Resource Layer

g1-g2; shared app (f2)

Assembly

<<service stub>>

Java Bean Assembly

Interop Integration Layer

<<service proxy>>

Business Layer

JCA

EJB

<<business model>>

<<QOS decorator>>

<<business model>>

API

Integration Layer

or

or

Resource Layer (null)

<<business model>>
190 WebSphere and .NET Coexistence

Figure 4-65 Isolated interaction case g1 and g2: a shared queue to an IBM WebSphere
MQ enabled application

Consider the scenario illustrated in Figure 4-66 on page 192. It shows a
WebSphere application and .NET application sharing the same Web Services
enabled resource. Web Services are rapidly emerging as a prime strategic
solution for providing an implementation technology neutral integration solution.
The industry backing for these technologies, and the standardization effort being
exerted by IBM, Microsoft, and others, suggest that Web Services is going to be
the dominant strategic solution for integration and interoperation. This is
especially the case for solutions requiring integration and interoperability
between WebSphere applications and .NET applications.

IBM MQ .Net API

EJB

Business Layer

<<business model>>

Java Bean

<<business model>>

<<QOS decorator>>

g1-g2; shared app

Enterpise Application

Business Layer

Assembly

<<business model>>

JMS

Integration Layer Integration Layer

Resource Layer

WebSphere Application .NET Application

Presentation Layer

Client Layer

Presentation Layer

Client Layer

Interop Integration Layer

Shared Q
 Chapter 4. Technical coexistence scenarios 191

Once again, the challenges facing the g1-g2 conjoined interaction case
(Figure 4-67 on page 193) present the biggest challenge for coexistence.
However, the WS-Security and WS-Transactions Web Services specifications
are specifically addressing the issue of context sharing between implementation
technologies. As these specifications and implementations of these
specifications mature, Web Services will becomes the simplest way to solve
conjoined coexistence scenarios across any of our coexistent WebSphere and
.NET application layers.

Figure 4-66 Isolated interaction case g1 and g2: a shared Web Service enabled resource

Web Services

EJB

Business Layer

<<business model>>

Java Bean

<<business model>>

<<QOS decorator>>

Anything
(potentially)

Business Layer

Assembly

<<business model>>

Web Services

Integration Layer Integration Layer

Resource Layer

WebSphere Application .NET Application

Presentation Layer

Client Layer

Presentation Layer

Client Layer

Interop Integration Layer

g1 isolated / g2 isolated / g1-g2 isolated
192 WebSphere and .NET Coexistence

Figure 4-67 Conjoined interaction case g1 - g2: a shared Web Service enabled resource

Interaction case g: component interaction classifications
For each of these interaction perspectives (case g1 and case g2), the interaction
between components can be considered to have one of the following integration
classifications:

� a: Stateful Synchronous Integration.

� b: Stateless Synchronous Integration.

� c: Stateless Asynchronous Integration.

� d: Stateful Asynchronous Integration (not considered further in this book).

Web Services

EJB

Business Layer

<<business model>>

Java Bean

<<business model>>

<<QOS decorator>>

Anything
(potentially)

Business Layer

Assembly

<<business model>>

Web Services

Integration Layer Integration Layer

Resource Layer

WebSphere Application .NET Application

Presentation Layer

Client Layer

Presentation Layer

Client Layer

Interop Integration Layer

g1-g2 conjoined
 Chapter 4. Technical coexistence scenarios 193

It is possible to further decompose these interactions into finer levels of detail,
but these classifications will be adequate for modeling the technical challenges
and technical solutions addressed in this book.

This gives us six potential interaction cases to consider:

� Case g1.a: Stateful Synchronous Integration from WebSphere to .NET.

� Case g1.b: Stateless Synchronous Integration from WebSphere to .NET.

� Case g1.c: Stateless Asynchronous Integration from WebSphere to .NET.

� Case g2.a: Stateful Synchronous Integration from .NET to WebSphere.

� Case g2.b: Stateless Synchronous Integration from .NET to WebSphere.

� Case g2.c: Stateless Asynchronous Integration from .NET to WebSphere.

These cases are illustrated in Figure 4-68 and Figure 4-69 on page 195.

Figure 4-68 interaction cases g1.a, g1.b and g1.c (WebSphere application’s perspective)

Integration Layer

Business
Layer

Business
Layer

WebSphere Application .NET Application

Presentation Layer

Resource LayerResource Layer

<<Stateless>> <<Asynchronous>>

<<Stateless>> <<Synchronous>>

or

or <<Stateful>> <<Synchronous>>

g1.a
g1.b

g1.c

Presentation Layer

Integration Layer

Client LayerClient Layer
194 WebSphere and .NET Coexistence

Figure 4-69 interaction cases g2.a, g2.b and g2.c (.NET application’s perspective)

4.4, “Technical solution mapping” on page 202 provides guidance on identifying
potential technical solutions for each of these interaction cases (g1.a, g1.b, g1.c,
g2.a, g2.b and g2.c).

4.3.8 Interaction case h: resource to resource
The term resource is very vague. In order to effectively analyze resource to
resource interactions, we first must define what we consider to be a resource.
The general definition of a resource is “something that may be populated and
consumed.” Resources generally reside a level above the system software and
provide some shared service. This service may provide storage and retrieval of
data, a messaging system, or execute some action. The key things to remember
when defining a resource are purpose and generality. Simply, resources should
not be specific to any single business process and should provide some general
service or set of services. A line should be drawn between the business process
and the resources the process consumes with some sort of integration layer to
facilitate interaction between them.

Some examples of the most common resources are Relation Database
Management Systems, Message Queueing Systems, and directory services. All
these resources are very general and may be shared by multiple applications.
When we use the term resources, these are the types of resources we are
referring to.

WebSphere Application .NET Application

Integration Layer

Business
Layer

Business
Layer

Presentation Layer

Resource Layer Resource Layer

<<Stateless>> <<Asynchronous>>

<<Stateless>> <<Synchronous>>

or

or

<<Stateful>> <<Synchronous>>

g2.a
g2.b

g2.c

Presentation Layer

Integration Layer

Client Layer Client Layer
 Chapter 4. Technical coexistence scenarios 195

Resource-level interaction must be triggered by some event or sequence of
events that occurs in one of the layers above it. In some cases, it may even be a
timed event. An example of resource interaction is a trigger in a relational
database system. A trigger executes some code whenever a specific database
operation occurs. The code that is executed may require some external resource
or push some data to an external resource.

Now that we’ve discussed resources, let’s consider the coexistence of an
application deployed in WebSphere and an application deployed in the dotNet
environment with Resource layer logic integration. We can consider interaction
between these two resources from two possible perspectives:

� Perspective h1: A runtime artifact executing within the Resource layer of an
application deployed within an instance of WebSphere, initiating a
communication to an application artifact executing within the Resource layer
of an application deployed within an instance of the .NET Framework.

� Perspective h2: A runtime artifact executing within the Resource layer of an
application deployed within an instance of the .NET Framework, initiating a
communication to an application artifact executing within the Resource layer
of an application deployed within an instance of WebSphere.

These two perspectives are illustrated in Figure 4-70.

Figure 4-70 Resource to resource interaction

For each of these perspectives (h1 and h2), the interaction style can be
considered have one of the following classifications:

� a: Stateful Synchronous Integration.

� b: Stateless Synchronous Integration.

� c: Stateless Asynchronous Integration.

Resource
Layer

Resource
Layer

WebSphere Application .NET Application

Presentation Layer

Business LayerBusiness Layer

Integration LayerIntegration Layer

Client Layer

Presentation Layer

h1

h2

Client Layer
196 WebSphere and .NET Coexistence

It is possible to further decompose these interactions into finer detail, but these
classifications will be adequate for modeling the technical challenges and
technical solutions addressed in this book.

This give us six potential interaction cases to consider:

� Case h1.a: Stateful Synchronous Integration from WebSphere to .NET.

� Case h1.b: Stateless Synchronous Integration from WebSphere to .NET.

� Case h1.c: Stateless Asynchronous Integration from WebSphere to .NET.

� Case h2.a: Stateful Synchronous Integration from .NET to WebSphere.

� Case h2.b: Stateless Synchronous Integration from .NET to WebSphere.

� Case h2.c: Stateless Asynchronous Integration from .NET to WebSphere.

These cases are illustrated in Figure 4-71 on page 198 and Figure 4-72 on
page 199.

Let’s consider each of these interaction cases in turn, first from the perspective of
calls from WebSphere applications, then from the perspective of .NET
applications.

WebSphere application to .NET application
Let’s start with an example of resource to resource interaction, specifically from a
WebSphere to a .NET application. A scenario where this type of interaction may
occur is centered around the typical ‘Allow us to send you more information
regarding this product or service’ item seen on many Web forms when
registering a product or for a service. In this example, the registration application
is hosted by WebSphere Application Server. The Resource layer of this
application is the IBM DB2 relational database system. The database system
contains database tables containing registration information. Each time a new
user is registered, their personal information is stored in the database. The
database system also contains a trigger. A trigger is analogous to an event
listener with a specific set of criteria. When these criteria are met, the trigger is
fired. When the trigger is fired, a set of instructions is executed.

The criteria for firing the above trigger is a user choosing to receive more
information about the product or service they are registering. An outside
marketing company has been contracted to perform this service. The application
they use to send addition information uses .NET and their contact information is
stored using Microsoft SQL Server. The DB2 trigger performs a resource to
resource interaction, forwarding the user information to the SQL Server
database. The SQL Server database also has a trigger. This trigger informs the
application that a new customer is requesting its services. This request is
 Chapter 4. Technical coexistence scenarios 197

propagated up the logic chain and at the endpoint, the information is sent to the
user.

Figure 4-71 WebSphere application to .NET application

Of interest in this WebSphere and .NET coexistence scenario is not the process
itself, but the technologies and interactions used to perform resource to resource
interactions of this nature. The interaction cases below discuss these topics in
more detail.

Interaction case h1.a
This may be the least common scenario for resource to resource interaction.
However, this interaction case is possible. While each resource maintains its own
state, state of the interaction normally is not required. Cases where state is
important for resource to resource interaction might be database to database
replication, synchronization, or back-up. In these cases, each resource needs to
know what state it is in during the process.

Another situation where state may be important is for the registration scenario
above. The WebSphere application database may wish to store the user
selection for receiving more information. The application may allow the user to
change this value at a later date. By maintaining state, the trigger would know not
to send information to a user who already received information.

Interaction case h1.b
This interaction case, stateless synchronous, is the most likely for resource to
resource interaction. Typically, the resource requesting the interaction sends a
single request or multiple stateless requests to the secondary resource. This
case matches the interaction of our registration system. The DB2 database
trigger fires a single, stateless request to the SQL Server database.

Resource
Layer

Resource
Layer

WebSphere Application .NET Application

Presentation Layer

Business LayerBusiness Layer

Integration Layer

Client Layer

Integration Layer

Client Layer

Presentation Layer

or

or

<<Stateful>> <<Synchronous>>

<<Stateless>> <<Synchronous>>

<<Stateless>> <<Asynchronous>>

h1.a

h1.b

h1.c
198 WebSphere and .NET Coexistence

Interaction case h1.c
Asynchronous resource to resource interaction between a .NET and a
WebSphere application normally involves the use of messaging services. In a
coexistence scenario, each platform may be using the same message queue
resource provider or they may be using different providers. In either case,
messaging middleware is provided by each vendor to access messaging
resources. In a resource to resource interaction, the messaging provider, such as
IBM WebSphere MQ, may receive a message prompting some local processing.
This local processing may call a Java application, which in turn interacts with the
messaging resource on a .NET platform. This may be Microsoft MQ or
WebSphere MQ.

.NET application to WebSphere application
Resource to resource interaction from a Microsoft .NET application to a
WebSphere application may occur very similarly to the scenarios discussed
above. The same scenarios are possible, only the start and end points are
different. Each application has its own Resource layer which can be a relational
database system, messaging system, or some other resource. Using a
commercial resource provider such as IBM WebSphere MQ or IBM DB2 UDB is
one of the best ways to ensure there is adequate middleware (by the same
vendor or a third party vendor) to ensure cross-platform interoperability.

In addition to using commercial products for resource management, applications
may use and provide custom resource management. A Microsoft Windows
service or even a IBM WebSphere Web Service could be considered a resource.
The interaction cases below discuss some of the possibilities for custom
resource to resource interactions.

Figure 4-72 .NET application to WebSphere application

Resource
Layer

Resource
Layer

WebSphere Application .NET Application

Presentation Layer

Business LayerBusiness Layer

Integration Layer

Client Layer

Integration Layer

Client Layer

Presentation Layer

or

or

<<Stateful>> <<Synchronous>>

<<Stateless>> <<Synchronous>>

<<Stateless>> <<Asynchronous>>

h2.a

h2.b

h2.c
 Chapter 4. Technical coexistence scenarios 199

Interaction case h2.a
Similar to interaction case h1.a above, this interaction combination is unlikely in a
resource to resource scenario. Interaction case h2.b is more likely. However, this
interaction is possible and may be required in some situations. An example of
this type of interaction might be a Windows service that issues software and
feature licenses to its clients. The service needs to know the state of the license
and clients must renew licenses and inform the server of the features it is using.
A WebSphere application, executed from some resource, may need to access
this service. Hence, stateless synchronous resource to resource interaction
results. Other scenarios are also possible for stateful synchronous resource to
resource interaction.

Interaction case h2.b
Stateless, synchronous interactions are the most likely when performing
resource to resource interactions from a .NET application to a WebSphere
application. An example of this type of interaction might be a WebSphere Web
Service that gets called by the Resource layer of the .NET application. For
example, let’s say the .NET application accesses a custom resource that
provides driving route information for a given location. A WebSphere application
collects and compiles traffic information. This information is also available via a
Web Service provided by the Resource layer. The Resource layer for the .NET
application could also access this resource and return it along with route
information. This is just one example of resource to resource, stateless
synchronous interaction.

Interaction case h2.c
Similar to interaction case h1.c, asynchronous stateless interaction in a resource
to resource coexistence scenario should normally be done using a messaging
provider. There are currently few to no other good solutions available for this type
of interaction. One future possibility is one-way calls over IIOP from .NET to
Java, but there is currently no preferred IIOP provider for .NET.

Recommendations
The following are some recommendations and considerations for resource to
resource interaction between applications deployed across IBM WebSphere and
Microsoft .NET.

� Intranet versus Internet boundaries

– If resources are within an intranet, it is often easiest and most beneficial to
share them, if possible. For example, sharing a relational database
management system will allow simpler resource to resource interactions
than having two separate, dissimilar database systems.
200 WebSphere and .NET Coexistence

– Resource to resource connectivity can be a problem over a firewalled
Internet connection. Web Services and other specialized middleware can
overcome this problem. However, it should be kept in mind that many
resource providers normally do not provide a canned solution for this
problem.

� Resource interfaces

– What types of interfaces are available to each resource? Do they allow
direct resource to resource interactions? This is a common problem
between resource providers produced by different vendors. Often, some
sort of middleware must be used.

– Are the interfaces available for .NET and Java? Java is a more mature
technology so native interfaces are more likely. With .NET, some sort of
bridging technology may be required until a native version is provided.

� Interactions

– Typically, stateless synchronous interactions are the most common and
are suited to most situations. Maintaining state adds an extra burden to
both resource systems and in some cases, may not be an option for one
or both resources.

– If asynchronous interactions are required messaging software such as
IBM WebSphere MQ or Microsoft MQ should be used. There are few other
solutions available.

4.3.9 Conclusion and recommendations
In this chapter, we have identified many possible interaction cases. Some of
these interaction cases will be encountered frequently (perhaps case e, case f
and case g), some of these will be encountered infrequently (perhaps case a,
case c and case h), some are interesting but improbable (perhaps case d) and
some may not require much consideration (perhaps case b).

The recurring theme across most of the candidate solution models presented in
this section is the proxy-stub pattern. The proxy-stub pattern can be used to
provide the structure for separation of concerns between business interfaces,
client implementations, service implementations, adaption, and integration. The
proxy-stub is especially valuable in our scenarios of coexistence between
WebSphere applications and .NET applications. It is also especially valuable
when we need to consider deploying one tactical solution in the short term, and
a different strategic solution in the long term.

Whether or not you choose to use one of these candidate solution models, it is
our recommendation that you design an interoperation integration layer (using
the proxy-stub pattern, or some alternative pattern) to hide the integration
 Chapter 4. Technical coexistence scenarios 201

implementation from both the client implementation and the service
implementation.

One of the more difficult interaction cases to solve will probably always be
interaction case g1-g2 concurrent conjoined. As Web Services support for
context sharing matures, it is likely to become a standard solution for this
interaction case. In the meantime, prototyping and testing are going to remain
important techniques for proving, or disproving, alternative solution candidates
for this interaction case.

4.4 Technical solution mapping
This section is not intended to be prescriptive, but it is intended to indicate the
technical solutions that should be considered for the previously identified
cross-layer integration cases. The correct choice of technical solution for a given
coexistence challenge may be influenced by many factors, such as, but not
limited to:

� Targeted deployment environment: what middleware is already there?

� Strategic direction: is a given technical solution more appropriate for the
chosen strategy of the customer? Will you need to provide different solutions
to meet different strategic directions of different customers?

� Available time: do you need a quick solution, and are the developers already
familiar with one of these solutions?

� Available budget: what are the build, manage and maintenance costs of one
solution compared to another?

� Qualities of service: is one solution better suited than another to your
performance, security, scalability (etc.) needs?

� Manifold solutions: real coexistence problems may be compounds of more
than one of the interoperability cases identified in this chapter. If this is the
case, then it may make sense to deploy several (optimal) solutions.

� Solution rationalization: it may make sense to try and rationalize several
potential (optimal) solutions into a common (acceptable) solution.

� Technical solution maturity: your ideal (strategic) technical solution may still
be maturing. It may be deficient in a required characteristic, but on the cusp of
delivering all your requirements. In this scenario, if the interoperability
integration layer is well designed, it will normally be possible to totally abstract
the integration technology from both the client implementation code and the
service implementation code. This implies that, if it is appropriate, you should
be able to choose a tactical short term solution, then, with a minimum of
disruption, substitute it for the ideal (strategic) solution at a later date.
202 WebSphere and .NET Coexistence

Let’s consider some candidate technical integration solutions, and map them to
the interaction characteristics and interaction case we identified in section 4.2,
“Fundamental interaction classifications” on page 111 and section 4.3, “Layer
interaction classifications” on page 132.

4.4.1 Stateful synchronous integration solution candidates
This section discusses the stateful synchronous integration solution candidates
from two perspectives:

� “WebSphere applications perspective” on page 203

� “.NET applications perspective” on page 209

WebSphere applications perspective
Let’s consider stateful synchronous integration from the perspective of a
WebSphere application artifact invoking a .NET application artifact. This is
illustrated in Figure 4-73.

Figure 4-73 stateless asynchronous integration cases *1.a

Solution candidate: IBM Interface Tool for Java
The solutions we suggest for consideration will be relevant for the following
interaction cases.

� Case a1.a: Stateful Synchronous Integration between Client layer and Client
layer, from WebSphere to .NET, a recurrent solution candidate for this
interaction case.

� Case c1.a: Stateful Synchronous Integration between Client layer and
Business layer, from WebSphere to .NET, a recurrent solution candidate for
this interaction case.

Java
Artefact

WebSphere Application .NET Application
Whatever Layer

.Net
Artefact

Whatever Layer

*1.a

*1.a (stateful synchronous)
 Chapter 4. Technical coexistence scenarios 203

� Case e1.a: Stateful Synchronous Integration between Presentation layer and
Business layer from WebSphere to .NET, a recurrent solution candidate for
this interaction case.

� Case f1.a: Stateful Synchronous Integration between Business layer and
Business layer from WebSphere to .NET, a recurrent solution candidate for
this interaction case.

� Case g1.a: Stateful Synchronous Integration between Business layer and
Resource layer from WebSphere to .NET, an occasional solution candidate
for this interaction case if the resource is exposed locally as a .NET or COM
implementation.

Figure 4-74 illustrates an overview of IBM Interface Tool for Java. IBM Interface
Tool for Java leverages .NET COM interop features to provide stateful Java
proxies to .NET assemblies.

Figure 4-74 IBM Interface Tool for Java overview

In 4.2, “Fundamental interaction classifications” on page 111, we identified some
characteristics for consideration when classifying your given interaction cases.
Table 4-1 on page 205 identifies how/if the IBM Interface Tool for Java delivers
these characteristics.

Type Library(s)

.Net
Assembly(s)Java Client(s)

IBM Interface
Tool for Java

Runtime

This could be any Java code.
i.e. An EJB, a Java Bean, a
Servlet or JSP, or an AWT or
Swing client etc.

The IBM Interface Tool for
Java runtime provides as
statefull binding between the
Java proxies and their
associated COM IDispatch
interface.

A COM IDispatch interface
can be exported form .Net
Assemblies. IBM Interface
Tool for Java binds to COM
IDispatch interface.

IDispatch

IBM Interface
Tool for Java

Buildtime

Java proxy(s)
to .Net

Assembly(s)

ge
ne

ra
te

s Generated Java proxy classes
abstracts connection and
communication with the .Net
Assembly classes from the Java
client.

.Net runtime

import

export

The .Net runtime can
automatically provide an
IDispatch facade for .Net
assemblies at runtime.

Type libraries (can be
made to) contain an IDL
definitions of the IDispatch
interfaces for its associated
.Net assembly.

The IBM Interface Tool
for Java buildtime
generates Java proxy
classes for COM
IDispatch interfaces.
204 WebSphere and .NET Coexistence

Table 4-1 IBM Interface Tool For Java interaction characteristic matching

Note: IBM Interface Tool for Java is the technology formerly know as
Bridge2Java. See:

http://www.alphaworks.ibm.com/tech/bridge2java

Characteristic Supported Comments

By Value
argument
paradigm

yes -

By reference
argument
paradigm

yes -

Document
interface style

yes -

RPC interface
style

yes -

Distributed
object paradigm

potentially Yes, if used in combination with an inter-process
communication mechanism. See Figure 4-76
and Figure 4-77.

Service oriented
paradigm

no -

Message-
oriented
paradigm

no -

Call context
propagation

no -

Proxy Head
Protocol

API The proxies built by the IBM Interface Tool for
Java build-time use this API.

Stub Tail
Protocol

encapsulated Not exposed. Uses .NET’s in-built COM interop
services.

Service
discovery
mechanism

none Location is configured via the Windows Registry
and the .NET GAC.

Transport
mechanism

none IBM Interface Tool for Java is an in process
solution, but can be combined with inter-process
communication mechanisms. See Figure 4-76
and Figure 4-77.
 Chapter 4. Technical coexistence scenarios 205

http://www.alphaworks.ibm.com/tech/bridge2java
http://www.alphaworks.ibm.com/tech/bridge2java

The IBM Interface Tool for Java provides in-process binding to .NET assemblies.
As Figure 4-75 illustrates, the simplest solution candidate loads the Interface Tool
for Java runtime, and the assembly (and its CLR instance) into the the Java
clients JVM process.

Figure 4-75 IBM Interface Tool for Java: in-process solution candidate

If the .NET assembly you need to bind to is not local (not on the same machine),
or you want to keep the .NET assembly out of the JVM process, then you will
need a some sort of inter-process communication mechanism between the
Interface Tool for Java runtime, and the .NET assembly (the Interface Tool for
Java runtime is always loaded into the client’s JVM process).

Figure 4-76 on page 207 illustrates a solution candidate that uses .NET remoting
as the inter-process communication mechanism. This model extends Figure 4-75
by adding a .NET remoting proxy and stub to the interop integration layer.
However, with this solution, you still need a .NET assembly in the client process
to host the .NET remoting proxy. This means that a CLR instance will still be
loaded in the client’s JVM process. So this solution candidate delivers
inter-process communication, but it still puts a .NET CLR instance in the JVM
process, and it also adds extra build complexity.

Communication
protocol

encapsulated -

Service
binding/hosting

- Binds via the COM runtime.
Hosted using a .NET CLR shim defined in the
registry.

Open standards no -

Longevity Tactical As Web Services matures, it will probably
become the strategic choice for this interaction
characteristic.

Characteristic Supported Comments

Whatever Layer
<<.NET>>
<<COM Activated>><<Win32>>

Client

<<Java>>

Service
Proxy

<<Java>>
IBM Interface
Tool for Java

Runtime

Service
Assembly

Interop Integration Layer Whatever Layer

Client (JVM) Process Boundary
206 WebSphere and .NET Coexistence

Figure 4-76 IBM Interface Tool for Java: inter-process solution candidate: .NET remoting

Figure 4-77 illustrates a solution candidate that uses DCOM as the inter-process
communication mechanism. This solution model is simpler than that illustrated in
Figure 4-76 because we do not need to build .NET remoting proxies or stubs. It
also has the benefit of not requiring a .NET CLR to be loaded into the client’s
JVM process. It delivers complete separation between Java and .NET.

Figure 4-77 IBM Interface Tool for Java: inter-process solution candidate: DCOM

So far, each of these solution candidates has a dependency on the Windows OS.
Both the .NET assembly and the Integration Tool for Java runtime require
Windows. So, what do we do if our Java client code is deployed on another
platform?

Figure 4-78 on page 208 illustrates a solution candidate that extends the model
in Figure 4-75 on page 206, showing that we can design a solution where one
JVM (this needs to be on a Windows OS) is used to isolate interop integration
from the real Java clients executing on any Java supported OS. The interop JVM
could be a regular JVM or a WebSphere JVM, depending on whether or not you
use EJBs in your interop solution. Figure 4-79 on page 209 illustrates a similar
solution candidate that extends the model in Figure 4-77.

Client (JVM) Process Boundary

Service
Proxy

<<.NET>>

.NET TCP Remoting

Whatever Layer
<<.NET>>
<<Remoting Activated (CAO)>><<Win32>>

Client

<<Java>>

Service
Proxy

<<Java>>
IBM Interface
Tool for Java

Runtime

Service
Assembly

Interop Integration Layer Whatever Layer

Service Stub Process

Service
Stub

<<.NET>>
<<Channel Host>>

Client (JVM) Process Boundary

DCOM

Whatever Layer
<<.NET>>
<<COM Activated>><<Win32>>

Client

<<Java>>

Service
Proxy

<<Java>>
IBM Interface
Tool for Java

Runtime

Service
Assembly

Interop Integration Layer Whatever Layer

Service Process
 Chapter 4. Technical coexistence scenarios 207

Points to remember with the solution candidates in Figure 4-78 and Figure 4-79
on page 209 is that each time we put inter-process communication into our
solution model, we add complexity and latency. Do not forget that this can be a
pass by reference solution model. This could lead to some intensive chatty
runtime interactions, which is probably not a good thing.

The solution candidate in Figure 4-78 uses EJBs as a QoS decorator to the .NET
assembly. With this model, because the interop is in process, we can use
WebSphere security to control access to the assembly. The solution candidate in
Figure 4-79 on page 209 separates the JVM and the CLR, but may require both
WebSphere and Java security models, which introduces another potential
challenge.

As is so often true with software engineering problems, it may be a case of
trading one feature for another to arrive at a satisfactory solution.

Figure 4-78 IBM Interface Tool for Java: inter-process solution candidate: separation of concerns by JVM

Whatever Layer
<<.NET>>
<<COM Activated>><<Win32>>

Client

<<JavaBean>>

Service
Proxy

<<Java>>
IBM Interface
Tool for Java

Runtime

Service
Assembly

Interop Integration Layer Whatever Layer

Regular JVM or WebSphere JVM

Any JVM

Client

<<Java>>

Client

<<EJB>>
<<QOS Decorator>>

Client

<<Java>>
RMI/IIOP

RMI

<<Any OS>>

<<Windows OS>>
<<Interop JVM>>

WebSphere JVM

<<Any OS>>
208 WebSphere and .NET Coexistence

Figure 4-79 IBM Interface Tool for Java: inter-process solution candidate: separation of concerns by JVM.

Emerging solution candidate: Web Services WS-Addressing
Today, Web Services infrastructure (middleware) implementations do not have
an interoperable standard for stateful synchronous interaction between a client
and a service. It is probable that in the future, the WS-Addressing specification
will provide this standard. This implies that Web Services are likely to become a
strategic choice for stateful synchronous interaction for coexistent WebSphere
and .NET applications.

See http://www.ibm.com/developerworks/webservices/library/ws-add/ for
more information on WS-Addressing.

Potential candidate: IIOP remoting channels
See 4.4.5, “Some last resource integration technologies” on page 226.

.NET applications perspective
Let’s consider stateful synchronous integration from the perspective of a .NET
application artifact invoking a WebSphere application artifact. This is illustrated in
Figure 4-80 on page 210.

Whatever Layer

<<Win32>>

Client

<<JavaBean>>

Service
Proxy

<<Java>>
IBM Interface
Tool for Java

Runtime

Interop Integration Layer

Any JVM

Client

<<Java>>

Client

<<EJB>>
<<QOS Decorator>>

Client

<<Java>>
RMI/IIOP

RMI

<<Any OS>>

<<Windows OS>>
<<Interop JVM>>

WebSphere JVM

<<Any OS>>

Regular JVM or WebSphere JVM

<<.NET>>
<<COM Activated>>

Service
Assembly

Whatever Layer

Service Process

<<Windows OS>>
 Chapter 4. Technical coexistence scenarios 209

http://www.ibm.com/developerworks/webservices/library/ws-add/

Figure 4-80 stateless asynchronous integration cases *2.a

The solutions we suggest for consideration will be relevant for the following
interaction cases.

� Case a2.a: Stateful Synchronous Integration between Client layer and Client
layer, from .NET to WebSphere: a recurrent solution candidate for this
interaction case.

� Case c2.a: Stateful Synchronous Integration between Client layer and
Business layer, from .NET to WebSphere: a recurrent solution candidate for
this interaction case.

� Case e2.a: Stateful Synchronous Integration between Presentation layer and
Business layer from .NET to WebSphere: a recurrent solution candidate for
this interaction case.

� Case f2.a: Stateful Synchronous Integration between Business layer and
Business layer from .NET to WebSphere: a recurrent solution candidate for
this interaction case.

� Case g2.a: Stateful Synchronous Integration between Business layer and
Resource layer from .NET to WebSphere: an occasional solution candidate
for this interaction case if the resource is exposed locally as a Java or EJB
implementation.

Solution candidate: IBM WebSphere ActiveX Bridge
Figure 4-81 on page 211 illustrates an overview of WebSphere ActiveX Bridge.
WebSphere ActiveX Bridge provides a COM interface to the WebSphere Client
Container. We can leverage .NET COM interop features to provide stateful .NET
proxies to WebSphere Services and applications.

Java
Artefact

WebSphere Application .NET Application
Whatever Layer

.Net
Artefact

Whatever Layer

*2.a

*2.a (stateful synchronous)
210 WebSphere and .NET Coexistence

Figure 4-81 WebSphere ActiveX Bridge overview

In 4.2, “Fundamental interaction classifications” on page 111, we identified some
characteristics for consideration when classifying the given interaction cases
between coexistent WebSphere applications and .NET applications. Table 4-2
identifies if, and how, WebSphere ActiveX Bridge delivers these characteristics.

Table 4-2 WebSphere ActiveX Bridge characteristic matching

COM Proxy.Net Client(s) ActiveX Bridge
DLL

WebSphere
Client

Container

COM JNIInterop WebSphere
Application

RMI/IIOP

ServiceClient Bridge

Characteristic Supported Comments

By Value
argument
paradigm

yes -

By reference
argument
paradigm

yes -

Document
interface style

yes -

RPC interface
style

yes -

Distributed
object paradigm

yes EJB

Service-oriented
paradigm

no -

Message-
oriented
paradigm

no

Call context
propagation

some WebSphere ActiveX Bridge APIs exposes the
J2EE client programming model to the client
code. This enables the client to participate in
WebSphere security.
 Chapter 4. Technical coexistence scenarios 211

Figure 4-82 on page 213 illustrates a candidate solution model using WebSphere
ActiveX Bridge as the integration solution between .NET client code, and an
application deployed in WebSphere. This solution model uses a COM service
proxy to abstract WebSphere ActiveX Bridge from the .NET client code. The
.NET client code binds to the COM service proxy using .NET COM interop. As
you can see, with this solution, both a CLR instance and a JVM instance live
inside the client process.

Proxy Head
Protocol

API WebSphere ActiveX Bridge APIs exposes the
J2EE client programming model to the client
code.

Stub Tail
Protocol

- WebSphere ActiveX Bridge APIs exposes the
J2EE client programming model to the client
code.

Service
Discovery
Mechanism

JNDI WebSphere ActiveX Bridge APIs exposes the
J2EE client programming model to the client
code. This enables the client to use JNDI.

Transport
Mechanism

IIOP -

Communication
Protocol

RMI/IIOP -

Service
Binding/Hosting

WebSphere WebSphere ActiveX Bridge APIs exposes the
J2EE client programming model to the client
code. Services are hosted as EJBs in
WebSphere.

Open Standards Java
Community
Standards

Exposes Java J2EE standards to the client.

Longevity Tactical As Web Services matures, it will probably
become the strategic choice for this interaction
characteristic.
212 WebSphere and .NET Coexistence

Figure 4-82 WebSphere ActiveX Bridge as the integration solution between .NET client code, and an
application deployed in WebSphere

Figure 4-83 illustrates an alternative candidate solution model that separates the
.NET CLR and COM into separate processes. As usual, separating these
technologies into different processes can potentially have both benefits and
disadvantages. Once again, you may need to trade one feature for another to
arrive at a satisfactory solution.

Figure 4-83 Alternative candidate solution model, separating the .NET CLR and COM processes

Service

<<JavaBean>>

WebSphere JVM

Service

<<EJB>>
<<QOS Decorator>>

Client

<<.Net>>

WebSphere
Client

Container
(JVM)

.Net Client Process

.Net CLR

W
eb

Sp
he

re
Ac

tiv
eX

Br
id

ge RMI/IIOP

Interop Integration Layer

Service
Proxy

<<COM>>COM
interop

<<Windows OS>> <<Any OS>>

Note: Readers may be interested to know that the CLR is implemented as a
COM component. See the section “CLR Hosting” in the book Applied
Microsoft .NET Framework Programming, by Jeffrey Richter, ISBN
0-7356-1422-9.

Service

<<JavaBean>>

WebSphere JVM

Service

<<EJB>>
<<QOS Decorator>>

Client

<<.Net>>

WebSphere
Client

Container
(JVM)

.Net Client Process

.Net CLR

W
eb

Sp
he

re
Ac

tiv
eX

Br
id

ge RMI/IIOP

Interop Integration Layer

COM Service Proxy Process

Service
Proxy

<<COM>>
DCOM interop

<<Any OS>><<Windows OS>> <<Windows OS>>
 Chapter 4. Technical coexistence scenarios 213

For other solution candidates, refer to the following sections:

� “Emerging solution candidate: Web Services WS-Addressing” on page 209

� “Potential candidate: IIOP remoting channels” on page 209

4.4.2 Stateless synchronous integration solution candidates
This section discusses the Stateless Synchronous integration solution
candidates.

WebSphere and .NET applications
Let’s consider stateless synchronous integration from the perspective of a
WebSphere application artifact invoking a .NET application artifact, and from the
perspective of a .NET application articaft invoking a WebSphere application
artifact. These perspectives are illustrated in Figure 4-84 and Figure 4-85.

Figure 4-84 Stateless synchronous integration cases *1.b

Figure 4-85 Stateless synchronous integration cases *2.b

Java
Artefact

WebSphere Application .NET Application
Whatever Layer

.Net
Artefact

Whatever Layer

*1.b

*1.b (stateless synchronous)

Java
Artefact

WebSphere Application .NET Application
Whatever Layer

.Net
Artefact

Whatever Layer

*2.b

*2.b (stateless synchronous)
214 WebSphere and .NET Coexistence

The solutions we suggest for consideration will be relevant for the following
interaction cases.

� Case a1.b: Stateless Synchronous Integration between Client layer and
Client layer, from WebSphere to .NET: a recurrent solution candidate for this
interaction case.

� Case a2.b: Stateless Synchronous Integration between Client layer and
Client layer, from .NET to WebSphere: a recurrent solution candidate for this
interaction case.

� Case c2.b: Stateless Synchronous Integration between Client layer and
Business layer, from .NET to WebSphere: a recurrent solution candidate for
this interaction case.

� Case c1.b: Stateless Synchronous Integration between Client layer and
Business layer, from WebSphere to .NET: a recurrent solution candidate for
this interaction case.

� Case e1.b: Stateless Synchronous Integration between Presentation layer
and Business layer from WebSphere to .NET: a recurrent solution candidate
for this interaction case.

� Case e2.b: Stateless Synchronous Integration between Presentation layer
and Business layer from .NET to WebSphere: a recurrent solution candidate
for this interaction case.

� Case f1.b: Stateless Synchronous Integration between Business layer and
Business layer from WebSphere to .NET: a recurrent solution candidate for
this interaction case.

� Case f2.b: Stateless Synchronous Integration between Business layer and
Business layer from .NET to WebSphere: a recurrent solution candidate for
this interaction case.

� Case g1.a: Stateless Synchronous Integration between Business layer and
Resource layer from WebSphere to .NET: a frequent solution candidate for
this interaction case.

� Case g2.a: Stateless Synchronous Integration between Business layer and
Resource layer from .NET to WebSphere: a frequent solution candidate for
this interaction case.

Solution candidate: Web Services
You can find a description of the Web Services technology in Chapter 10,
“Supporting technologies” on page 429.

Figure 4-86 on page 216 illustrates an overview of Web Services from the
perspective of Java client code deployed in WebSphere invoking a .NET service
implementation deployed in the .NET Framework. Figure 4-87 on page 216
 Chapter 4. Technical coexistence scenarios 215

illustrates a similar overview from the perspective of .NET client code invoking a
Java service implementation deployed in WebSphere.

Figure 4-86 Web Services overview: WebSphere clients perspective

Figure 4-87 Web Services overview: .NET clients perspective

In 4.2, “Fundamental interaction classifications” on page 111, we identified some
characteristics for consideration when classifying your given interaction cases

.NET Service

Service .NET CLR instance

ASP.NET

TailHead

Apache AXIS

.NET
Binding

SOAP
over
HTTP

WebSphere JVM instance

Java Client

IIS

out...
Client Endpoint,
SOAP Request Encoder,
SOAP Request QOS Handling Code,
SOAP Request Dispatcher,
in...
SOAP Response Receiver,
SOAP Response QOS Handling Code,
SOAP Response Translator.

in...
SOAP Request QOS Handling Code*,
.NET Business Code
out...
SOAP Response QOS Handling Code*,

Java Client Code

JAXRPC/
Java

Binding

System.Web.
Services.*

in...
Service Endpoint (URL),
SOAP Request Receiver,
out...
SOAP Response Dispatcher.

in...
SOAP Request Translator,
Service Implementation Router,
out...
SOAP Response Encoder.

<<specific>>

.NET Client

Client .NET CLR instance

Head

Tail

Apache AXIS

SOAP
over

HTTP

WebSphere JVM instance

Java Service

out...
.NET Client Code
SOAP Request QOS Handling Code*
in...
SOAP Response QOS Handling Code*

Java
Binding

System.Web.
Services.*

.NET
Binding

Servlet

<<generic>>

out...
Client Endpoint,
SOAP Request Encoder,
SOAP Dispatcher,
in...
SOAP Response Receiver,
SOAP Response Translator.

in...
Service Endpoint (URL),
SOAP Request Receiver
out...
SOAP Response Dispatcher.

in...
SOAP Request Translator,
SOAP Request QOS Handling Code,
.NET Business Code
Service Implementation Router,
out...
SOAP Response Encoder,
SOAP Response QOS Handling Code*,

Java Business Code
216 WebSphere and .NET Coexistence

between coexistent WebSphere applications and .NET applications. Table 4-3
identifies if, and how, Web Services delivers these characteristics.

Table 4-3 Web Services characteristic matching

Characteristic Supported Comments

By Value Argument
Paradigm

yes Via [in] arguments (that is, using input message parts in
WSDL).

By Reference
Argument Paradigm

semantically Web Services are not an object remoting technology, so
they do not support true bidirectional references or
callbacks.
However, Web Services can use pass by value
mechanisms to deliver pass by reference semantics via
[in,out] arguments (that is, using paired input message
parts and output message parts in WSDL).

Document
Interface Style

yes Web Services support compound types as operation
arguments (message parts). Document style SOAP
delivers messages on the wire as documents, but this is
distinct from document interfaces (you can pass
documents as arguments to a Web Service using RPC
style SOAP).

RPC interface Style yes -

Distributed object
paradigm

no Web Services are a client and service implementation
neutral integration technology. Objects are not relevant,
they are implementation choices which should not be
exposed at a WSDL interface.

Service-oriented
paradigm

yes -

Message-oriented
paradigm

no However, SOAP messages can be delivered using
WebSphere MQ as a transport mechanism instead of
HTTP.

Call context
propagation

some / emerging WS-Security is implemented in the most recent toolkit from
IBM and Microsoft. WS-Transactions and WS-Coordination
are evolving standards that will probably be implemented in
future toolkits.

Proxy Head Protocol API WebSphere: JAX-RPC, Apache SOAP, Apache AXIS,
Apache WSIF.
.NET; System.Web.Service

Stub Tail Protocol - WebSphere: JAX-RPC, Apache SOAP, Apache AXIS,
Apache WSIF.
.NET: System.Web.Service
 Chapter 4. Technical coexistence scenarios 217

Service Discovery
Mechanism

UDDI
WSIL
DISCO?

Transport
Mechanism

various HTTP
HTTPS
WebSphere MQ, JMS
others

Communication
Protocol

SOAP -

Service
Binding/Hosting

- WebSphere: the WebSphere Web Container hosts a
single generic Apache routing Servlet, which binds to the
service implementation using the Apache implementation.

.NET: IIS host multiple service specific ASP.NET endpoints
which bind to the specific service implementation.

Open Standards yes Both WebSphere and .NET interoperate at standards level
with XML, XML Schema, SOAP and HTTP.

WebSphere: the proxy programming model is to
Apache.org open standards and the client programming
model is to JAX-RPC Java standards.

.NET: the proxy and the client programming model are
Microsoft standards.

Longevity Strategic Web Services look certain to be the industry standard
solution for integration between heterogeneous
implementations.

Characteristic Supported Comments

Note: Web Services are still an evolving technology. Basic SOAP Web
Services over HTTP have a formal measure of functional interoperability
between WebSphere and .NET (see: http://www.ws-i.org/). At the time of
writing, no formal measure of WS-Security interoperability between
WebSphere and .NET exists, nor do we yet have implementations of
WS-Coordination or WS-Transaction.

See http://www.ws-i.org/ for WS-I Basic Profile guidelines for delivering
interoperability between Web Service implementations, and tools for
measuring the interoperability of Web Services.
218 WebSphere and .NET Coexistence

http://www.ws-i.org/
http://www.ws-i.org/

Alternative solution candidate: WebSphere MQ
An alternative to the SOAP over HTTP solution is SOAP over MQ. Web Services
do not provide all the capabilities that a solution may require, for example
transactionality, delivery assurance, security, and so on. Switching to
WebSphere MQ on the transport layer, we can get this quality of service from the
messaging middleware.

Figure 4-88 SOAP over MQ alternative solution

4.4.3 Stateful asynchronous integration solution candidates
This section discusses the solution candidates for asynchronous integration
solutions.

WebSphere and .NET applications
Let’s consider stateless synchronous integration from the perspective of a
WebSphere application artifact invoking a .NET application artifact, and the
perspective of a .NET application artifact invoking a WebSphere application
artifact, as illustrated in Figure 4-89 on page 220 and Figure 4-90 on page 220.

.NET Service

Tail

Apache AXIS

SOAP
over
MQ

JVM

Proxy

CLR

System.Web.
Services.*

JMS

encode
SOAP

Message

put SOAP

m
essage

MQ.NET

.NET Message
Router

decode
SOAP

Message

ge
t S

OAP
mes

sa
ge

HeadClient

Java Client
foo

Interop Integration Layer

foo

Service
 Chapter 4. Technical coexistence scenarios 219

Figure 4-89 Stateless asynchronous integration cases *1.c

Figure 4-90 Stateless asynchronous integration cases *2.c

The solutions we suggest for consideration will be relevant for the following
interaction cases.

� Case a1.c: Stateless Asynchronous Integration between Client layer and
Client layer, from WebSphere to .NET: a recurrent solution candidate for this
interaction case.

� Case a2.c: Stateless Asynchronous Integration between Client layer and
Client layer, from .NET to WebSphere: a recurrent solution candidate for this
interaction case.

� Case c2.c: Stateless Asynchronous Integration between Client layer and
Business layer, from .NET to WebSphere: a recurrent solution candidate for
this interaction case.

Java
Artefact

WebSphere Application .NET Application
Whatever Layer

.Net
Artefact

Whatever Layer

*1.c

*1.c (stateless asynchronous)

Java
Artefact

WebSphere Application .NET Application
Whatever Layer

.Net
Artefact

Whatever Layer

*2.c

*2.c (stateless asynchronous)
220 WebSphere and .NET Coexistence

� Case c1.c: Stateless Asynchronous Integration between Client layer and
Business layer, from WebSphere to .NET: a recurrent solution candidate for
this interaction case.

� Case e1.c: Stateless Asynchronous Integration between Presentation layer
and Business layer from WebSphere to .NET: a recurrent solution candidate
for this interaction case.

� Case e2.c: Stateless Asynchronous Integration between Presentation layer
and Business layer from .NET to WebSphere: a recurrent solution candidate
for this interaction case.

� Case f1.c: Stateless Asynchronous Integration between Business layer and
Business layer from WebSphere to .NET: a recurrent solution candidate for
this interaction case.

� Case f2.c: Stateless Asynchronous Integration between Business layer and
Business layer from .NET to WebSphere: a recurrent solution candidate for
this interaction case.

� Case g1.c: Stateless Asynchronous Integration between Business layer and
Resource layer from WebSphere to .NET: an frequent solution candidate for
this interaction case.

� Case g2.c: Stateless Asynchronous Integration between Business layer and
Resource layer from .NET to WebSphere: an frequent solution candidate for
this interaction case.

Solution candidate; IBM WebSphere MQ
WebSphere MQ is the ideal solution for asynchronous integration of applications.
WebSphere MQ is available on several different platforms and provides all the
necessary functions and services required for asynchronous messaging. For
more information about WebSphere MQ, refer to the IBM Web site at:

http://www-306.ibm.com/software/integration/wmq/

You can also search for WebSphere MQ Redbooks on:

http://www.redbooks.ibm.com

In 4.2, “Fundamental interaction classifications” on page 111, we identified some
characteristics for consideration when classifying your given interaction cases
between coexistent WebSphere applications and .NET applications. Table 4-4 on
page 222 identifies if, and how, WebSphere MQ delivers these characteristics.
 Chapter 4. Technical coexistence scenarios 221

http://www.redbooks.ibm.com
http://www-306.ibm.com/software/integration/wmq/

Table 4-4 WebSphere MQ characteristic matching

Characteristic Supported Comments

By value
argument
paradigm

yes -

By reference
argument
paradigm

no Decoupled systems are not prepared for this
feature

Document
interface style

yes Messaging by default can handle this feature

RPC interface
style

no Not standardized

Distributed
object paradigm

no These are decoupled systems, distributed
applications are not the primary objective

Service-oriented
paradigm

no -

Message-
oriented
paradigm

yes -

Call context
propagation

possibly It can be implemented

Proxy Head
Protocol

-

Stub Tail
Protocol

-

Service
discovery
mechanism

-

Transport
mechanism

-

Communication
protocol

-

Service
binding/hosting

-

Open standards no Java standards (JMS) on the Java side.
MQ de facto standards on the .NET side.
222 WebSphere and .NET Coexistence

Solution candidate: Web Services - asynchronous façade
Web Services would be an ideal solution candidate for asynchronous
communication between different plaftorms. As of today, the technology is not
there yet, and asynchronous Web Services as a standard implementation do not
exist. It is the implementor’s responsibilty to develop Web Services that support
asynchronous communication. For more information about asynchronous Web
Services, refer to:

http://www-106.ibm.com/developerworks/webservices/library/ws-asynch1.html

4.4.4 Other potential candidate technical solutions (to be proven)
These technical solutions may be worth further consideration, but have not been
exercised in this redbook.

Apache WSIF
WSIF is an Apache.org open source project which enables developers to interact
with abstract representations of Web Services through their WSDL descriptions
instead of working directly with the SOAP APIs, which is the usual programming
model. With WSIF, developers can work with the same programming model
regardless of how the Web Service is implemented and accessed. Consequently,
WSIF delivers a Java to Many model to a Java client implementation, with
bridging and routing provided by WSIF, and configured via WSDL.

Longevity Strategic -

Characteristic Supported Comments
 Chapter 4. Technical coexistence scenarios 223

http://www-106.ibm.com/developerworks/webservices/library/ws-asynch1.html

Figure 4-91 WSIF delivers a Java to Many model

See: http://ws.apache.org/wsif/ for more details about WSIF.

Because WSIF abstracts the client from the services via WSDL, WSIF has the
potential to help with both coexistence cases and managed migration cases.
Figure 4-92 on page 225 illustrates WSIF used as a coexistence bridge between
Java and .NET. Figure 4-93 on page 225 illustrates that WSIF can be used as
part of a migration strategy to defend the client implementation from change
when a service is migrated to WebSphere.

Java

WebSphere Application Serivce Application
Whatever Layer Whatever Layer

WSIF Many

<definitions ...>...
 <binding name='foo' ...>...
 </binding>
 <service name='iCalculator' binding='foo'...>...
 </service>
</definitions>

<<WSDL>>

<<Service>><<Client>>
224 WebSphere and .NET Coexistence

http://ws.apache.org/wsif/

Figure 4-92 WSIF used as a bridge, routing between a Java client and a .NET Service
implementation via WSDL

Figure 4-93 WSIF used as a bridge, routing between a Java client and an EJB Service
implementation via WSDL (without modification of the client implementation)

Java

WebSphere Application .NET Application
Whatever Layer Whatever Layer

WSIF .Net
Assembly

<definitions ...>...
 <binding name='foo' ...>...
 <MS.NET:binding/>...
 </binding>
 <service name='iCalculator' binding='foo'...>...
 </service>
</definitions>

<<WSDL>>

<<Service>><<Client>>

Java

WebSphere Application .NET Application
Whatever Layer

.Net
Assembly

Whatever Layer

WSIF

EJB

<<WSDL>>

<<Service>><<Client>>

<<Service>>

<definitions ...>...
 <binding name='foo' ...>...
 <EJB:binding/>...
 </binding>
 <service name='iCalculator' binding='foo'...>...
 </service>
</definitions>
 Chapter 4. Technical coexistence scenarios 225

IIOP.NETIIOP.NET is a SourceForge.net open source project which provides
bidirectional interoperation between .NET, CORBA and J2EE distributed objects.
IIOP.NET implements a CORBA/IIOP remoting channel for the .NET Framework.

See http://iiop-net.sourceforge.net/ for more information about IIOP.NET.

IIOP.NET is released under the LGPL license; see:

http://www.gnu.org/copyleft/lesser.html

Ja.NET
Ja.NET is a commercial product from Intrinsic. Ja.NET includes a .NET remoting
implementation for .NET clients to bridge to J2EE and CORBA implementations
over IIOP.

See http://ja.net.intrinsyc.com/ja.net/info/ for more information about
Ja.NET.

The JNBridge JNBridge
JNBridge is a commercial product JNBridge. JNBridge includes a .NET remoting
implementation for .NET clients to bridge to J2EE and CORBA implementations
over IIOP.

See http://www.jnbridge.com for more information about JNBridge.

Janeva
Janeva is a commercial product from Borland. Janeva includes a .NET remoting
implementation for .NET clients to bridge to J2EE and CORBA implementations
over IIOP.

See http://www.borland.com/janeva/ for more information about Janeva.

SpiritWave
SpiritWave is a commercial product from SpiritSoft. SpiritWave includes a JMS
provider for Microsoft MSMQ.

See http://www.spirit-soft.com/products/wave/introducing.shtml for more
information about SpiritWave.

4.4.5 Some last resource integration technologies
This list of technologies is provided for completeness. If you use any of these
technologies to provide a technical solution, then you are writing your own
middleware. This means that you will responsible for providing and maintaining
226 WebSphere and .NET Coexistence

http://iiop-net.sourceforge.net/
http://www.gnu.org/copyleft/lesser.html
http://ja.net.intrinsyc.com/ja.net/info/
http://www.jnbridge.com
http://www.borland.com/janeva/
http://www.spirit-soft.com/products/wave/introducing.shtml

all (or most) of your required solution characteristics, as shown in Figure 4-13 on
page 137.

� Raw Sockets (both directions)

� RMI to JNI/NIO (Java to .NET)

� RMI/IIOP to JNI / NIO (WebSphere EJBs to .NET)

� JNI/NIO to RMI (.NET to Java)

� JNI/NIO to RMI/IIOP (.NET to WebSphere EJBs)

Please do not underestimate what might be involved in delivering a solution
using these low-level technologies, even for single case, short term, very tactical
solutions.
 Chapter 4. Technical coexistence scenarios 227

228 WebSphere and .NET Coexistence

Chapter 5. Scenario: Asynchronous

This chapter deals with the asynchronous interaction scenarios defined in 4.2.3,
“Stateless asynchronous interaction” on page 117 and 4.2.4, “Stateful
asynchronous interaction” on page 120 where the consumer is a .NET
application component and the service provider is a WebSphere component.

We will explore the problem spaces associated with these types of interactions,
define the solutions that exist to meet these problems and provide a few basic
examples of these solutions in action.

A great deal has been written about exactly how to code applications that
communicate asynchronously between these platforms. Our discussion will,
therefore, focus on the pros and cons of various methods from a solution point of
view rather than on the mechanics of the code in most instances.

For more details on asynchronous interactions between .NET and WebSphere
applications, the reader is referred to the IBM Redbook WebSphere MQ
Solutions in a Microsoft .NET Environment, SG24-7012.

5

© Copyright IBM Corp. 2004. All rights reserved. 229

5.1 Problem definition
We have been discussing interactions in the context of .NET and WebSphere
coexistence. However, in the business and technology worlds alike, there are
many places where asynchronous interactions are intuitively useful. Wherever
there are needs, solutions inevitably rise to meet them and these needs are no
different.

Message-oriented middleware has been used for decades now to provide a
mechanism for multi-platform integration which, by its nature, lends itself to
asynchronous use. WebSphere MQ is the most prolific middleware product in the
market in terms of market share, platform and language support. Companies all
over the world use MQ for business-critical integration and e-business and to
preserve and reuse past investments in systems that work. WebSphere MQ is
defined in more detail in “WebSphere MQ” on page 464.

Figure 5-1 Asynchronous message queuing

WebSphere MQ implements highly reliable asynchronous message queuing and
takes on the role of ensuring that messages sent from one program to another
arrive at their destination exactly once, without loss or corruption of the message
data.

Outside of message-oriented middleware and message queuing, asynchronous
programming techniques have also been around a long time and have specific
uses, mostly related to performance. As a programming technique,

Consumer Service Provider

Execution

Reliable
Message Queue

Request
Service

…
Continue
Processing
…
...

Get
Response

Get
Request

…
Process
…

Put
Response

Reliable
Message Queue
230 WebSphere and .NET Coexistence

asynchronous interaction requires the use of threads. Callback functions and
delegation threads are the usual tools of the trade for implementation.

A callback function is simply a function that handles the response of an
asynchronous service provider. The consumer or service provider will create a
separate delegation thread via some mechanism and then start that thread off
executing some code. Once the thread is off and running, the service provider
immediately returns control of the main thread back to the consumer. The
consumer then continues processing further work while the service provider
works on the request.

The service provider then calls the consumer’s callback method as the last (or
nearly the last) step in the process of providing the requested service.
Sometimes, the callback function is passed the response, sometimes it is used
as a mechanism to alert the consumer that the response is ready somewhere
else.

Figure 5-2 Asynchronous calling paradigm

Most people associate asynchronous interactions with stateless interactions, and,
in fact, most asynchronous interactions are indeed stateless. However,
asynchronous does not imply statelessness by necessity and sometimes there
are very good reasons to maintain state information within asynchronous
interactions.

Consumer

Service Provider

Execution

DoSomething ()
{

if (Service (input))
{

…
…
Continue execution
…
…

}
}

Callback(response)
{

…
}

Service (input)
{

Validate(input);
if valid

{
new thread
work (input)

}
return valid;

}

work (input)
{

...
Callback (response)

}

Call

Return

Callback
 Chapter 5. Scenario: Asynchronous 231

Interactions are considered to be stateful when information is kept about the
current state by some mechanism and operations being performed by any given
actor at any given time depend upon that information in some way. For instance,
in the stateful implementation, the calculator application keeps the current total in
a private variable in local memory during execution and uses each invocation of
each method. This common technique for implementing statefulness requires
two things:

1. That the service provider continue to exist between invocations.
2. That the same service provider be used for each add() operation.

But state is, in the end, merely information and order. If the information
representing state can be stored in the messages through which interaction
occurs, then some new possibilities emerge with regard to state. Take our
calculator, for example. If we represented the current total in the message itself,
then the fact that the service provider’s act of calculation occurs asynchronously
(at the same time that the consumer is doing other things) is not really relevant.

Figure 5-3 Stateful asynchronous works across multiple service providers

Consider Figure 5-3 and realize that it is not even relevant now which instance of
the service provider we utilize as long as the service itself is consistent. You may
notice that our service provider is stateless now. If we define stateless as “having
all information necessary to perform the business operation,” then the service
provider might be considered stateless in this case.

Consumer Service Provider

Execution

Request
...
...
Get
Response
…
…
…
…
…
Request
…
…
Get
Response

Get
Request
…
Put
Response

Service Provider

Get
Request
…
Put
Response

Message
{ iStateInfo,

Request }

Message
{ iStateInfo,

Response }

Message
{ iStateInfo,

Request }

Message
{ iStateInfo,

Response }
232 WebSphere and .NET Coexistence

In our synchronous, stateful example, we could have said the same thing about
our client since it used the add() method without regard to the state information.
What we have established is that the idea of stateful really applies to the entire
interaction, not all of the individual components.

As shown in Figure 5-3 on page 232, the consumer is responsible for maintaining
the order of the operations and does not proceed to the second request for
service until the initial response has been received. Although our diagram does
not show it, the consumer does not need to be the same invocation (process
instance) as long as the entire state is contained within the message.

If we consider Figure 5-4, we begin to see that stateful asynchronous interaction
can be a very powerful tool, enabling stateful aggregation of multiple service
providers and used to guarantee the order of processing (sequence) as well as
allowing the service requestor to continue performing other important work while
the services being consumed are processed.

Figure 5-4 Stateful Asynchronous interaction with service aggregation

It is important to underscore again that asynchronous techniques do not require
or imply message-oriented middleware. Asynchronous techniques can also be
applied as a programming technique internally within a process space, or via
distributed programming tools and techniques. Indeed, Web Services, which
have been the subject of much discussion in this book, can be implemented
asynchronously given that the underlying technologies for Web Services,
specifically the Web Services Description Language (WSDL), allow for explicit

Consumer Service Provider

Execution

Put
Request
...
…
GetThis()...
OrderThat()…
…
BeginThis()…
UtilitizeThat()…
CaptureThis()…
KindlyDoThis()…
Select()…
…
…
...
…
…
Get
Response

Get
Request
…
Put
Request

Service Provider

Get
Request
…
Put
Response

Message
{ iStateInfo,

Request }

Message
{ iStateInfo,

Response }

Message
{ iStateInfo,

Request }
 Chapter 5. Scenario: Asynchronous 233

definition of asynchronous interactions between service consumers and
providers.

From here, our focus will be to provide some details related to asynchronous
interoperability between WebSphere and .NET.

5.1.1 Description of the problem
This chapter addresses how application artifacts deployed in a .NET
environment may request the services of application artifacts deployed in a
WebSphere Application Server environment using asynchronous interaction and
vice-versa.

We will focus on stateless services, show a simple example of message-oriented
asynchronous interaction between a .NET application using the classes for
WebSphere MQ and a message-driven bean implemented under WebSphere
using JMS.

We will focus on reuse of the Calculator class written in Java for WebSphere that
we have been using in these scenario examples. We will choose to utilize one of
the stateless interfaces we created and access it in an asynchronous fashion.
Our consumer will be a .NET application. Whether it is an Active Server
Page.NET or a fat client really is not relevant to the interaction.

We will then discuss the same scenario, but accessing the .NET implementation
of Calculator from a J2EE client.

5.1.2 Considerations
This section describes the considerations should be taken into account when
designing a stateful asynchronous application.

Transports
The transports available for asynchronous communication between .NET and
WebSphere application artifacts include the following:

� WebSphere MQ provides a highly reliable messaging transport and
middleware for over 35 platforms.

� The MQ Transport for SOAP provides a transport for SOAP requests used in
Web Services. This topic is covered extensively in the IBM Redbook
WebSphere MQ Solutions in the Microsoft .NET Environment, SG24-7012.

� HTTP: the Web Services Description Language (WSDL) supports definition of
interaction between the service consumer and provider. By using document
invocation style and the operation modes one-way, as well as notification to
234 WebSphere and .NET Coexistence

define the interaction messages within the WSDL definition, Web Services
interaction can be implemented in an asynchronous fashion.

Interfaces
The following two interfaces are available for implementation.

Java Messaging Service
The Java Messaging Service (JMS) provides an interface into WebSphere MQ
for Java programs. It is discussed in more detail in “Java Messaging Service” on
page 235.

MQ Classes for .NET
IBM provides an unsupported (Category 2) SupportPac™ for WebSphere MQ
that contains .NET Classes for accessing MQ from within managed .NET
assemblies. This support pack requires MQSeries V5.2, V5.2.1 or WebSphere
MQ V5.3.

This SupportPac, MA7P, and instructions for download and installation, can be
found at the following link:

http://www-3.ibm.com/software/integration/support/supportpacs/individual/
ma7p.html

The MQ Classes for .NET provide an easy to use interface for .NET applications
written in Visual Basic.NET, C# as well as C++ with Managed Extensions. In
addition, an ActiveX wrapper is provided to help migrate existing Visual Basic V6
(pre-.NET) MQ applications that use the MQ ActiveX interface. For more
information, see the documentation that is provided with the service pack.

Security
If it is worth doing, it is probably worth protecting. Security for asynchronous
interaction is dependent somewhat upon the technologies used to implement the
interactions. Therefore, if security is important for your application, it should be
one of the key considerations for choosing such technology.

Note: The MQ Classes for .NET do not include any JMS implementation. You
either have to use WebSphere MQ messaging or you have to create your own
JMS messages programming with the existing classes.

If you want to create your own JMS messages, header and payload, refer to
the WebSphere MQ product guide: WebSphere MQ Using Java,
SC34-6066-01.
 Chapter 5. Scenario: Asynchronous 235

http://www-3.ibm.com/software/integration/support/supportpacs/individual/ma7p.html
http://www-3.ibm.com/software/integration/support/supportpacs/individual/ma7p.html
http://www-3.ibm.com/software/integration/support/supportpacs/individual/ma7p.html
http://www-3.ibm.com/software/integration/support/supportpacs/individual/ma7p.html

WebSphere MQ, for example, has advanced security features to protect
messages being transmitted between application artifacts, for authentication,
authorization and encryption which extend across platforms. For more
information on security for asynchronous interactions using WebSphere MQ,
please see the IBM RedBook WebSphere MQ Security in and Enterprise
Environment, SG24-6814.

Transactions
In a synchronous interaction, where the consumer waits for the service to be
provided, it is relatively easy to imagine transaction boundaries that make
intuitive sense as being, “from the time the request is successfully placed to the
time the response is successfully received.” However, in an asynchronous
interaction, where the request and response can be separated by days and
responses may not even be necessary or desired, transaction boundaries are
not so obvious.

In an asynchronous interaction, the scope of the transaction is not managed by
the consumer, but by each actor in the interaction, with the boundaries being the
interaction point itself.

Asynchronous interaction is primarily accomplished by allowing each interaction
between any application artifacts to be an entirely self-contained unit. As such,
each interaction can become a stand-alone “Unit Of Work” in the transactional
sense. In other words, the objective of the Transaction Coordinator being used
changes from “ensuring all the work was done” to something like “ensuring that
the request was placed successfully for the consumer” and “ensuring that the
request was received, the work was done and the response was sent
successfully for the provider.”

So if, in asynchronous interactions, transactions boundaries no longer cover the
entire interaction as they do in synchronous interactions, then does not that leave
a gap? The answer is, yes.

If you are using a reliable transport such as WebSphere MQ, which provides
assured message delivery, then this kind of transactional support is meaningful
and provides powerful and flexible transactional support across platforms.

If you are using other technologies to implement asynchronous interactions, then
corresponding choices will be available for transactional support and
corresponding transactional boundaries are affected very little. That is, an
asynchronous Web Service, for instance, that is implemented under WebSphere,
might perform a series of functions that are bound within a transactional Logical
Unit of Work, but the entire interaction with the consumer is not covered by this
transaction, only the work performed by the single Web Service.
236 WebSphere and .NET Coexistence

In either case, you must recognize that it is now possible for part of the
interaction to succeed and part of it to fail. When a service consumer
successfully submits a request and this request fails to process, additional action
must be taken to notify the consumer of this failure asynchronously if the
consumer cares about success.

5.2 Solution model
This section discusses the design and implementation of our solution to the
stateless asynchronous interaction from application artifacts in a WebSphere
Application Server application to application artifacts in a Microsoft .NET
application and vice versa.

The solution provided in this section restricts itself to providing a simplified
implementation that illustrates how asynchronous interoperability can be
achieved between WebSphere Application Server and Microsoft .NET Business
layer components. As such, we will reuse the Calculator class we created in
previous scenarios and access it in an asynchronous fashion.

So, our problem domain is this: allowing a Business layer .NET assembly to
invoke our Java Calculator via an asynchronous mechanism, and allowing a
Business layer Java application to invoke our .NET Calculator via an
asynchronous mechanism.

This section contains the following subsections:

1. A solution to the problem

Here we illustrate our solution design, including the rationale for some of the
design decisions taken. We then continue by presenting the details of our
implementation.

2. Simple scenario details

Here we describe the scenario we will be implementing as our solution.

3. .NET Consumer to WebSphere Service Provider

Here we detail the implementation of the scenario from the .NET consumer
making an asynchronous call to a WebSphere service.

4. WebSphere Consumer to .NET Service Provider

Here we detail the reverse of the above scenario - a WebSphere consumer
making an asynchronous call to a .NET service.
 Chapter 5. Scenario: Asynchronous 237

5.2.1 A solution to the problem
For our transport, we have chosen to illustrate asynchronous messaging
between these environments using WebSphere MQ. Since the MQ Transport for
SOAP was covered in the redbook WebSphere MQ Solutions in the Microsoft
.NET Environment, SG24-7012, we will not use Web Services technologies, but
stick to simple asynchronous messaging. This leaves us with the following
remaining design decisions:

� The interface that will be used to access WebSphere MQ in each case.
� Message payload formats.

Interface
On the .NET side, the interface between a client and service provider will use the
MQ Classes for .NET.

On the WebSphere side, since J2EE provides value-added mechanisms for the
Service Provider with regard to messaging, we will use different techniques for
the consumer and service providers. The WebSphere consumer will use the
Java Messaging Service to put a request message and then obtain the response.
The WebSphere service provider will be implemented as a Message-Driven
Bean.

Message format
Since our goal is not to provide a complex messaging tutorial, we will keep our
message format simple for our interaction. We will focus on stateless interaction
using the add(a1,a2) method of our calculator where a and b are the two
numbers we wish to add together.

We design two messages; a request and a response.

A request message is sent from the consumer to the service provider in order to
request service. It should contain all the information required to complete the
service being requested. Our request will be a simple comma-delimited string, for
example: “2,2”. Everything before the comma is the first argument. Everything
after the comma is the second argument. The message “2,2” will cause two to be
added to two.

A response message is sent from the service provider back to the consumer in
order to provide service. It should contain everything required to provide the
service being requested. In our case, we will choose to return the original request
message followed by a comma and then the response. So, our sample message
above would provide the response “2,2,4” from our addition calculator. Another
example would be: request(2,5), response(2,5,7).
238 WebSphere and .NET Coexistence

We have not designed in any error handling. In the real world, message
definitions include contracts depicting how consumers and providers will
communicate when errors occur and so forth.

Message headers
Having defined our payload, we must be aware of one other key item with regard
to messaging technologies and how they interact. They most key concept to
understand is the concept of message headers. Message headers are simply
prefaces to a message payload that provide information. Although applications
and business objects define their own headers (and almost always do) to contain
key information such as error handling, many of the underlying technologies also
provide headers.

WebSphere MQ, for instance, has several headers that it uses to provide
information about the destination of a message, to whom the response should be
sent, the platform on which the message originated and many other items.
Although they are accessible by the application, these headers are largely
invisible to two applications using WebSphere MQ to communicate.

However, differences arise when a technology used on one side creates a
header and that same technology is not used on the other side. In our case, we
have decided to use the Java Messaging Service as our interface to MQ from the
Java side. As shown in Figure 5-5, the Java Messaging Service, by default,
creates its own within the message. The JMS Header provides useful information
to the Java Messaging Service runtime about how to handle this message.

Figure 5-5 The JMS Header and its impact on message layout

Headers are created when messages are put to a queue. When a message is
read from the queue each layer of technology strips away its respective headers
as it provides information, sending the remaining payload to the layer above.

JMS Message over WebSphere MQ

MQ Headers JMS Header Payload

Non-JMS Message over WebSphere MQ

MQ Headers Payload
 Chapter 5. Scenario: Asynchronous 239

There are three approaches to consider:

� Message transformation

A message broker such as WebSphere Integrator can be used to transform
the message on the fly as it travels from consumer to provider and back.
Headers can be added and removed here as appropriate. This has the
advantage of keeping the interactions between the application artifacts much
more loosely coupled.

� Drop the header

This requires that the technology creating the header allows you to do this
and that the header itself provides no useful function in the case of the
implementation. In our case, JMS is built as an open messaging standard
interface that does not assume that WebSphere MQ or any product is running
underneath it. Hence, there is some duplication of functionality between the
JMS Header and the MQ Header. This is the option we will use.

In our solution, we decode the MQ message and extract the JMS Header
information.

� Ignore the header in the payload

This requires that the header be defined to the other application as part of the
payload. While this has the advantage of maintaining the header, such
maintenance is rarely useful given that headers are usually meant to be
manipulated on both sides. This has significant disadvantages and is seldom
recommended.

5.2.2 Simple scenario details
In our simple asynchronous implementation, the required processing of the
consumer and provider are easy to delineate.

Service consumer
The consumer’s responsibilities include:

� Formatting a request message properly
� Sending the request message
� Obtaining the response message
� Understanding the response message

Service provider
The service provider’s responsibilities include:

� Getting the message from the queue
� Obtaining the information required from the request message
� Business function execution
240 WebSphere and .NET Coexistence

� Utilizing any required transactional support
� Formatting the response message properly
� Sending the response message

System prerequisites
In order to build and execute the examples provided here, the following software
packages must be present on the corresponding systems. If both components
will be executed on the same system, then install all these products.

Version information corresponds to the versions we used in our example, not
minimum configuration requirements. For minimum configuration requirements
for these components, please refer to product documentation.

The .NET System
� Microsoft .NET Framework v1.1

� Microsoft Visual Studio.NET v1.1

� IBM WebSphere MQ v5.3

� Service Pack MA7P, which can be downloaded free from IBM at the following
address:

http://www-3.ibm.com/software/integration/support/supportpacs/individual/
ma7p.html

The WebSphere system
� IBM WebSphere Studio Applications Developer V5.1
� IBM WebSphere MQ v5.3

In addition to the above software, an environment needs to be created within
WebSphere MQ, including queue managers and queues as well as MQ channels
if multiple queue managers are being used. We do not cover creation of these
system objects here. For more information on how to perform these
administrative functions, see the WebSphere MQ product documentation.

Notes on installing MQ Classes for .NET
The MQ Service Pack MA7P installation is described by the Web site providing
the download. The Service Pack uses the Microsoft Installer to install itself, so
you download an MSI file and execute it like an application.

Chances are you have a virus protection package installed. During installation in
our vast and highly secure laboratory environment, we encountered a message
that indicated that a “malicious script” had been detected during installation. This
is caused by a script which registers a required .NET assembly into the Global
Assembly Cache using a command line utility.
 Chapter 5. Scenario: Asynchronous 241

http://www-3.ibm.com/software/integration/support/supportpacs/individual/ma7p.html

Once the service pack is installed, you will find several code examples for using
the MQ Classes for .NET in the following directory:
<WebSphere_MQ_Root>\Tools\dotnet\

Under this folder, there is a samples directory as well as some documentation for
the classes. Launch the DotNetClasses.chm file to find this documentation. The
documentation provides a simple and concise reference for the classes
supported and how they are intended to be utilized. Samples are provided for all
basic operations possible using the classes.

5.2.3 .NET consumer to WebSphere service provider
This section describes an implementation of asynchronous interaction from a
Microsoft .NET service consumer invoking a WebSphere service. We begin by
describing how to implement the WebSphere service, then discuss how the
service can be invoked from a .NET environment.

Figure 5-6 .NET client invoking WebSphere service

The service provider and consumer will normally reside on different machines,
linked by a network, and connected to different queue managers. Messages can
be sent between different queue managers by defining remote queues. This is
shown in Figure 5-7 on page 243.

Client WebSphere
MQ

WebSphere
Application

Server v5.0.2

WebSphere
MQ

Client WebSphere
MQ

WebSphere
Application

Server v5.0.2

Service
WebSphere

MQ
Client WebSphere

MQ

WebSphere
Application

Server v5.0.2

WebSphere
MQ

Microsoft .NET

Client WebSphere
MQ

WebSphere
Application

Server v5.0.2

WebSphere
MQ

request

response
242 WebSphere and .NET Coexistence

Figure 5-7 Accessing remote queue managers

The .NET client, using the MQ Classes for .NET, puts a message onto an MQ
queue. The message is then routed by WebSphere MQ to a remote instance of
the queue. This queue is then detected by a listener on the WebSphere service
provider, which invokes the back-end service and puts the result back onto a
queue.

In the scenario above, the .NET client talks to its local queue manager, QM1.
This queue manager has a remote queue definition for a queue managed by
another queue manager, QM2. The .NET client puts a message onto the remote
queue, and the WebSphere Application Server application retrieves the message
by communicating with its queue manager.

We take a look at how to implement the above flow to call the code implemented
in the Calculator example described earlier.

We first need to create a J2EE service in the WebSphere environment, and then
look at how to use the MQ Classes in order to call it.

Service provider (WebSphere service)
We assume that the business logic for the Calculator application is pre-existing
code accessible from the WebSphere service provider. This code is contained in
or Calculator.jar file included in the additional material.

We need the Calculator code to be activated upon receipt of a message in a
specified queue. This can be achieved using Message Driven Beans (MDBs).

Client

QM1 QM2 WebSphere
Application

Server v5.0.2

Listener
Port

InQ InQ

Reply
Queue

EJB

.NET

Client

QM1 QM2 WebSphere
Application

Server v5.0.2

Listener
Port

WebSphere
Application

Server v5.0.2

Listener
Port

InQ InQ

Reply
Queue

EJB

Client

QM1 QM2 WebSphere
Application

Server v5.0.2

Listener
Port

InQ InQ

Reply
Queue

EJB

.NET

Client

QM1 QM2 WebSphere
Application

Server v5.0.2

Listener
Port

WebSphere
Application

Server v5.0.2

Listener
Port

InQ InQ

Reply
Queue

EJB
 Chapter 5. Scenario: Asynchronous 243

Message driven beans are stateless, server-side, transaction-aware components
for processing asynchronous JMS messages.

Message driven beans listen on a queue for receipt of a message. Upon receipt,
the onMessage() method of the bean is automatically executed.

While the message driven bean is responsible for the actual processing of the
message, quality of service items such as transactions, security, resources,
concurrency and message acknowledgement are all handled automatically by
the bean’s container, meaning the developer can focus on implementing the
actual business logic of the server side application.

So, in order to enable our existing Calculator code as an asynchronous service,
we need to create a message driven bean front end to the application. We shall
assume for simplicity of discussion that the only method of the Calculator class
we are interested in will be the add(float,float) method, and the message
format being sent by a consumer will consist simply of a text message
“arg1,arg2”. So, for example, if the consumer wishes to add 4.0 and 3.7 using
the asynchronous service, it would create a text message “4.0,3.7” and place it
on the appropriate queue.

Creating a message driven bean can be achieved easily using wizards within
WebSphere Studio Application Developer. Message driven beans need to be
contained in an EJB module.

1. Create a new EJB project under an existing or a new enterprise application
(J2EE V1.3).

2. Right-click the EJB project, and from the context menu select New ->
Enterprise Bean. Ensure the correct EJB project is selected, and on the next
screen you should select Message-driven bean. Enter appropriate values for
the Bean name and Default package, for example:
redbook.coex.async.stateless.TestMDBBean and select Next. You should
enter the name of the ListenerPort which you will later define in WebSphere
Application Server, for example: TestLP. Click Finish.

You will see that a new message driven bean has been created, and within
the bean there is a method onMessage(javax.jms.Message msg). It is this
method which will be executed automatically when a message is detected on
the queue.

3. We want the business logic to call the add(float, float) method of the
CalculatorService class in the Calculator.jar file. The EJB project needs to
reference the Calculator.jar file, so open up the properties page for the
project, go to Java build path -> Add External JARs and add Calculator.jar
to the build path.
244 WebSphere and .NET Coexistence

4. Back in the onMessage() method, enter the following code.

Example 5-1 Implementation of the onMessage() method

public void onMessage(javax.jms.Message msg)
{

CalculatorService s = new CalculatorService();
try {

TextMessage m = (TextMessage)msg;
StringTokenizer t = new StringTokenizer(m.getText(),",");
float a1 = (new Float((String)t.nextElement())).floatValue();
float a2 = (new Float((String)t.nextElement())).floatValue();

System.out.println(s.add(a1, a2));
} catch (JMSException e) {

e.printStackTrace();
}

}

The javax.jms.Message received from the queue is cast into a
javax.jms.TextMessage as the data format being sent is a basic String
consisting of the two float values. The getText() method retrieves the actual
text of the message, and this is parsed to get the two float values separated
by the comma.

Once the float values have been read in from the message, the Calculator
back-end code can be invoked by calling the add(float, float) method on
the CalculatorService class.

The code example above simply prints out the result of the addition, but for a
full asynchronous solution, the result would need to be placed onto a reply
queue. The reply queue expected by the consumer will be specified in the
original message, and can be determined with the following line of code:

Queue replyTo = (Queue) msg.getJMSReplyTo();

This replyTo queue can now be used by the service, and the result can be put
(as a new TextMessage) onto this queue. The consumer can then retrieve the
message from the reply queue at a later time.

Code to put the result on a reply queue is shown below; insert the code after
the System.out.println() line in the onMessage() method.

Example 5-2 How to put the result onto the reply queue

//put the reply onto the reply queue
final InitialContext ctx = new InitialContext();
QueueConnectionFactory qcf =

(QueueConnectionFactory)ctx.lookup("jms/redbookQCF"); // use the correct QM
name

QueueConnection qConn = qcf.createQueueConnection();
 Chapter 5. Scenario: Asynchronous 245

QueueSession session = qConn.createQueueSession(false,
Session.AUTO_ACKNOWLEDGE);

Queue queue = (Queue)msg.getJMSReplyTo();
TextMessage mReply = session.createTextMessage();
//call the add method of the calculator service
mReply.setText((new Float(s.add(a1,a2))).toString());
QueueSender sender = session.createSender(queue);
//send the result
sender.send(mReply);

} catch (NamingException e) {
e.printStackTrace();

}

The reply message, mReply, will sit on the reply message until it is retrieved
by the consumer.

The consumer in this case is running in a .NET environment using the MQ
Classes for .NET. We shall now cover the implementation of the consumer
using these classes.

Make sure you have added the following import statements to the class:

import java.util.*;
import javax.jms.*;
import javax.naming.*;
import redbook.coex.sall.business.*;

Service consumer (.NET consumer)
Our .NET consumer will be implemented as a “fat client” .NET assembly created
in C# in a similar manner to that used in previous scenarios. This assembly will
use the MQ Classes for .NET to create a properly formatted request message
and put it to a queue. Code will also be provided to obtain the response from the
queue.

1. Create a new .NET solution. To do this, open Microsoft Visual Studio.NET
and create a New Project. Use the Windows Application template from the
New Project dialog so that we are creating a Windows application based on
Windows.Forms. You will need to select a name and location; we chose
FatClientConsumerAsynch. Once you click OK, your Windows.Forms project
will be created with a blank dialog.

2. As depicted in Figure 5-8 on page 247, we added a few text boxes to contain
input values (called tbArg1 and tbArg2) and the result (called tbResult) and
also added a button which we called OurButton, in which we will implement
our code.
246 WebSphere and .NET Coexistence

Figure 5-8 The Windows Form for our .NET fat client consumer

3. The first step in implementing the code is to create a reference to the MQ
Classes for .NET so we can use them. There are two steps to this process.
First, add a project reference within Solution Explorer by right-clicking
References under the project we just created and selecting Add
Reference....

4. In the resulting dialog under the .NET tab, choose to browse for a DLL and
select the amqmdnet.dll under <WebSphere_MQ_Root>\bin.

5. Once the button is placed on the form, double-clicking it will bring up the code
that will be executed when the button is pushed. For the sake of keeping our
example as simple as possible, we have chosen to implement all our code
here.

6. Add a using statement at the top of the C# code, beneath the existing using
statements, as shown in Figure 5-9 on page 248.
 Chapter 5. Scenario: Asynchronous 247

After executing these steps, your project should look something like
Figure 5-9. Note the using statement on the left and the amqmdnet reference
in the Solution Explorer.

Figure 5-9 References required for the use of MQ Classes for .NET

Putting messages via MQ Classes for .NET
Now we are ready to create code to put the request messages that will drive our
calculator service provider. In order to do this, complete the following steps:

1. Create an instance of MQQueueManager. This object abstracts the
WebSphere MQ Queue Manager with which we are interacting to obtain
access to queues. Creation of this object is slightly different depending on
whether you are using the default Queue Manager, or whether the application
is running on an MQSeries® Client or an MQSeries Server. See the
248 WebSphere and .NET Coexistence

documentation for more details. The code to create this object for us was as
follows:

// MQQueueManager instance
MQQueueManager mqQMgr;
// use default queue manager
mqQMgr = new MQQueueManager(“redbookQM”);

2. Once a new instance of the MQQueueManager object has been created, we
can open the queue of our choice. WebSphere MQ requires you to specify the
actions you intend to take upon a queue when opening it and defines the
constants used to do so. These constants are exposed via the MQ Classes
for .NET through the MQ.MQC public interface. For more information, see the
WebSphere MQ documentation and the service pack documentation. The
code we used to open our queue, called “inQ” for output (writing messages),
is as follows:

MQQueue mqQueue; // MQQueue instance
String queueName; // Name of queue to use
queueName = “redbookQ”;
mqQueue = mqQMgr.AccessQueue(queueName, // the name of the queue

MQC.MQOO_OUTPUT // open queue for output
+ MQC.MQOO_FAIL_IF_QUIESCING); // don’t if MQM stopping

3. Once we have opened the queue, we are ready to create our message. We
simply created a string from the text values of tbArg1.text and tbArg2. The
MQ Classes for .NET abstract the message into an object as well as the MQ
Put Message Options. For more information on the Put Message Options,
see the WebSphere MQ documentation. The steps involved here are to
create a string message, declare its length, create an instance of the
message object, load the string message into that object, create Put Message
Options and set them as desired. Once this is complete, we are ready to put
our message. The code to prepare our message looks like this:

// declare variables and objects required
MQMessage mqMsg; // MQMessage instance
MQPutMessageOptions mqPutMsgOpts; // MQPutMessageOptions instance
int msgLen; // Message length
String message; // Message buffer
// create message
message = tbArg1.Text + "," + tbArg2.Text;// create message
msgLen = message.Length;// set message length
mqMsg = new MQMessage();// new message instance
mqMsg.WriteString(message);// load message w/payload
mqMsg.Format = MQC.MQFMT_STRING;// declare format
mqMsg.ReplyToQueueManagerName = "QM1";// send replies to this QM
mqMsg.ReplyToQueueName = "replyQ";// send replies to this queue
mqPutMsgOpts = new MQPutMessageOptions();// declare options
 Chapter 5. Scenario: Asynchronous 249

4. Once the message is created, you simply call the Put method on our Queue
object, passing the Message object and the Put Options object into it.

// put message on queue
mqQueue.Put(mqMsg, mqPutMsgOpts);
tbResult.Text = "Message has been sent...";

5. Lastly, any of the previous calls could generate an error from WebSphere MQ.
The MQ Classes for .NET encapsulate errors and throw them to you as an
MQException object. We can utilize a try/catch block to handle these errors.
To do this, we wrap all of the above code in a try { ... } and create a catch
{ ... } block that looks like this:

catch (MQException mqe)
{

// stop if failed
tbResult.Text = "The following MQ error occurred: " + mqe.Message;

}

6. Now build the assembly by clicking Build -> Build Solution and you are
done with the side of the consumer that puts requests.

The individual bullets above show the lines of code required to implement each
logical step in our process of putting a message. Although we have implemented
everything under a single method for simplicity, it is obviously possible (not to
mention desirable) to separate these functions into places that make more sense
for the reuse of objects.

Getting messages via MQ Classes for .NET
We will now cover getting the response messages that will be generated by the
requests. The following steps are required:

1. Let’s create a new button on our form and name it GetResult. Once that is
completed, double-click it to automatically create a GetResult_Click method.

2. Create an instance of MQQueueManager. This is exactly the same as was
done under “Putting messages via MQ Classes for .NET” on page 248. Since
this object can be shared, a good alternative to doing this under both methods
would be to create this object under form construction rather than in each
method. In order to do this, simply make the object definition global in scope
and create the new instance after the InitializeComponent(); statement in
the Form1() constructor.

3. Invoke the AccessQueue() method on our MQQueueManager object to
create a new MQQueue object and open the queue for input. Our code looks
like this:

MQQueue mqQueue; // MQQueue instance
String queueName; // name of queue to use
queueName = “replyQ” // name of the queue to open
250 WebSphere and .NET Coexistence

mqQueue = mqQMgr.AccessQueue(queueName,
MQC.MQOO_INPUT_AS_Q_DEF // open queue for input

+ MQC.MQOO_FAIL_IF_QUIESCING); // but not if MQM stopping

4. Create a message object to hold the message we are about to get off of the
queue. The message object is of type MQMessage. We define an object of
this type and then create a new instance of it:

// create message
MQMessage mqMsg; // MQMessage instance
mqMsg = new MQMessage();

5. Create a MQGetMessageOptions object to define how we are going to get
these messages. The MQGetMessageOptions object abstracts the MQ Get
Message Options. For a full description of the capabilities, see the
WebSphere MQ documentation. Here, we use the Get Message Options to
set a WaitInterval for our Get. This tells WebSphere MQ how long we would
like to wait for a new message assuming one is not immediately available.

MQGetMessageOptions mqGetMsgOpts; // MQGetMessageOptions instance
mqGetMsgOpts = new MQGetMessageOptions();
mqGetMsgOpts.WaitInterval = 3000; // 3 second limit for waiting

6. Now we are ready to get our message. We do so, we invoke the Get()
method on the queue object we created, passing both the newly created
message object and the newly created Get Message Options.

mqQueue.Get(mqMsg, mqGetMsgOpts);

7. If a string message was returned, it is accessed via the ReadString()
method on the message object we created. We display it for the user:

tbResult.Text = mqMsg.ReadString(mqMsg.MessageLength);

8. As before, errors are thrown as an MQException and caught via a try/catch
block. Unlike before, errors can actually be normal. One “normal” error is No
Message Available, which simply means that no messages were on the
queue to be read. So, we surround the above code in a try { ... } and
implement a catch { ... } to evaluate what happened in the event of an
error. As before, the MQC:

catch (MQException mqe)
{

// report reason, if any
if (mqe.Reason == MQC.MQRC_NO_MSG_AVAILABLE)
{

// special report for normal end
tbResult.Text = "No message to read.";

}
else
{

// general report for other reasons
 Chapter 5. Scenario: Asynchronous 251

tbResult.Text = "MQ returned error: " + mqe.Message;
}

}

9. If you test your application at this point, you will see that the returned value
shown in the window is wrong; it shows RFH. What happened is that
WebSphere put a JMS message in the reply queue and the .NET Classes for
MQ do not recognize the JMS message format. The solution is to write your
own message formatter using the API and parse the message. Replace and
insert the following code after the // create message line in step 4 on
page 251.

// create message
mqMsg = new MQMessage();// create new message object
mqMsg.Format=MQC.MQFMT_RF_HEADER_2; //
mqMsg.Encoding = 273; //
mqMsg.CharacterSet = 819; //

// great Get Message Options & set them
mqGetMsgOpts = new MQGetMessageOptions();
mqGetMsgOpts.WaitInterval = 3000; // 3 second limit for waiting

// get the message
mqQueue.Get(mqMsg, mqGetMsgOpts);

tbResult.Text+=mqMsg.MessageLength+"\r\n";
String str=mqMsg.ReadString(4); // "RFH "
UInt32 ui32=uint_reverse(mqMsg.ReadUInt32()); // version
ui32=uint_reverse(mqMsg.ReadUInt32()); // length of header
ui32=mqMsg.ReadUInt32(); // encoding
ui32=mqMsg.ReadUInt32(); // coded char set
str=mqMsg.ReadString(8); // format "MQSTR "
ui32=mqMsg.ReadUInt32(); // flags
ui32=mqMsg.ReadUInt32(); // NameValueCCSID
ui32=uint_reverse(mqMsg.ReadUInt32()); // sNameValueCCSID length
str=mqMsg.ReadString((int)ui32);
ui32=uint_reverse(mqMsg.ReadUInt32()); // sJMSfolder length
str=mqMsg.ReadString((int)ui32);
// message content
str=mqMsg.ReadString(mqMsg.MessageLength);
tbResult.Text="Results: "+str+"\r\n";

Once you are done with the client, compile it and it is ready to run.
252 WebSphere and .NET Coexistence

10.The code in the previous step requires an additional function, insert it
somewhere at the top of the code.

private static uint uint_reverse(uint i) {
byte[] temp = BitConverter.GetBytes(i);
Array.Reverse(temp);
uint returnVal = BitConverter.ToUInt32(temp, 0);
return(returnVal);

}

Sending a JMS message from .NET
If you would like to send a JMS message from the .NET client using the MQ
classes for .NET, then you have to generate the message yourself using the MQ
classes, just as the sample did when receiving the message. The following
sample is a code excerpt for sending a JMS message from .NET.

Example 5-3 Sending JMS message

mqMsg = new MQMessage();
// message formating settings
mqMsg.Format=MQC.MQFMT_RF_HEADER_2; //
mqMsg.Encoding = 273; //
mqMsg.CharacterSet = 819; //
// message header strings
String sNameValueCCSID="<mcd><Msd>jms_text</Msd></mcd> "; // this has to be
nx4 bytes long
String sJMSfolder="<jms><Dst>queue:///default</Dst></jms> "; // this has to be
nx4 bytes long
uint iHeaderLength=(uint)(44+sNameValueCCSID.Length+sJMSfolder.Length);
// assembling the message
UTF8Encoding utf8e=new UTF8Encoding();
mqMsg.WriteBytes(utf8e.GetBytes("RFH ")); // RFH
mqMsg.WriteUInt32(uint_reverse(2)); // version
mqMsg.WriteUInt32(uint_reverse(iHeaderLength)); // length of header
mqMsg.WriteUInt32(uint_reverse(273)); // encoding
mqMsg.WriteUInt32(uint_reverse(1208)); // coded char set ID
mqMsg.WriteBytes(utf8e.GetBytes("MQSTR ")); //format
mqMsg.WriteUInt32(uint_reverse(0)); // flags
mqMsg.WriteUInt32(uint_reverse(1208)); // NameValueCCSID (UTF8)
mqMsg.WriteUInt32(uint_reverse(uint_reverse((uint)sNameValueCCSID.Length)));
mqMsg.WriteBytes(utf8e.GetBytes(sNameValueCCSID));
mqMsg.WriteUInt32(uint_reverse((uint)sJMSfolder.Length));
mqMsg.WriteBytes(utf8e.GetBytes(sJMSfolder));
// your message content
mqMsg.WriteBytes(utf8e.GetBytes("A simple text message from .NET."));
// sending the message
mqPutMsgOpts = new MQPutMessageOptions();
try {

mqQueue.Put(mqMsg, mqPutMsgOpts);
 Chapter 5. Scenario: Asynchronous 253

} catch (MQException mqe) {
// report the error
System.Console.WriteLine("MQQueue::Put ended with " + mqe.Message);

}

Configuring the runtime environment
This section describes the step-by-step instructions to run the sample.

Configuring the messaging middleware
1. Create the queue manager in WebSphere MQ: redbookQM.

2. Create two local queues under the queue manager:

jms/redbookQ
jms/replyQ

3. Start the queue manager.

Configuring the WebSphere server
In order to run or test the sample, the service provider needs some further
configuration.

1. Create a new Queue connection factory for WebSphere MQ provider, with the
name redbookQCF, JNDI name jms/redbookQCF, queue manager redbookQM,
host localhost (assuming that the queue manager is running on the local
machine), and port 1414 (the port number for the redbookQM queue
manager).

2. Create a new Queue destination for the message queue, with the name
redbookQ, JNDI name jms/redbookQ, and base queue name redbookQ.

3. Create a new Queue destination for the reply queue, with the name replyQ,
JNDI name jms/replyQ, and base queue name replyQ.

4. Create a new Listener Port, with the name TestLP, Connection factory JNDI
name jms/redbookQCF, and Destination JNDI name jms/redbookQ.

Testing the application
Testing the sample application is quite simple. Run the .NET Windows
application you have just developed. Enter a value into the two arguments
textbox, then click Add. Once you get the message stating the message has
been sent, click Get result; you should see the results in the textbox.

5.2.4 WebSphere consumer to .NET service provider
This section describes the reverse scenario: that of invoking a .NET service from
a WebSphere consumer using WebSphere MQ in asynchronous communication.
254 WebSphere and .NET Coexistence

We shall first look at the steps involved in creating the service in .NET using the
MQ Classes for .NET, and then describe how to call that service.

The code details for getting and putting messages have been covered in the
above section. This section does not attempt to repeat much of what was said
previously. As such, if WebSphere Consumer to .NET Service Provider
interoperability is a scenario of interest to you, it is highly recommended that you
read 5.2.3, “.NET consumer to WebSphere service provider” on page 242 in its
entirety in addition to this section.

Again, we limit ourselves to the implementation of Calculator we have previously
used. Our scenario is a Java consumer, which for our purposes will be a Java
program running in a client container, accessing a .NET assembly via
asynchronous messaging.

Service provider (.NET service)
Under WebSphere, messaging is implemented on behalf of the service provider
in the form of a listener wrapper around the Java code, implementing a Message
Driven Bean. As such, the service provider code does not have to implement the
code to open a queue and get the request messages to which it will respond, nor
consider how the process itself will be started.

Under .NET, however, there is no such paradigm with regard to asynchronous
messaging with non-.NET consumers. Therefore, the service provider under
.NET must implement the code to connect to the Queue Manager, open queues
and read from them.

In addition, decisions about how the service provider will be started must be
made. Options include:

� Triggering: WebSphere MQ will automatically start a program when a
message arrives on a queue.

� Long-Running process: the program is implemented as a Daemon or Service
that is intended to always be running.

Triggering
Triggering is an enormous subject in and of itself and is by far the most common
mechanism for starting a service provider. Many options exist for how it can be
implemented and each option has some effect on the processing logic. However,
there is a common structure we can use for a triggered application. In order to
use our calculator class in a triggered mode, we would implement a triggered
application that reused the existing .NET class locally.

The following outline shows the basic processing logic of our .NET service
provider as a triggered application.
 Chapter 5. Scenario: Asynchronous 255

1. Connect to the Queue Manager.

2. Open the input queue.

3. Loop until no message is available or some other error occurs.

a. Read a message with a short time-out (wait a few seconds if there is no
message there).

b. Parse the received message.

c. Use the Calculator class to add numbers together.

d. Build the response message.

e. Put the response message.

f. Loop until no message is available or some other error occurs.

4. Close the queue.

5. Close the connection to the Queue Manager.

6. End the execution.

Our service provider would be implemented as a .NET assembly and built as an
executable. WebSphere MQ would be administered to start (trigger) this
executable whenever a message arrives on the input queue. The executable
would be started in its own process space, run until the queue is empty and then
end.

More information on triggering is available within the WebSphere MQ product
documentation.

Long-running service providers
Long-running processes are usually implemented in situations where triggering
is impractical. Examples of this include very high volume processing, where the
time and resource overhead required to start up a new process is unacceptable.

A long-running service provider is essentially a listener that you write yourself.
This consists of creating a program that is intended to remain running and is
always (when it is not doing work) reading from the queue with an infinite
time-out. In this situation, the service provider’s process space is entirely up and
initialized. When a message comes in, it is immediately handed to the thread
reading on the given input queue and is processed with an absolute minimum of
delay.

Under .NET, a program that runs all the time is usually implemented as a
Windows Service. A Windows Service runs under the control of the Service
Control Manager and can be stopped and started administratively. Services are
described in more detail in “Windows Services” on page 67.
256 WebSphere and .NET Coexistence

Long-running service providers must be able to respond to administrative events.
Therefore, they are often more complex from a logic perspective. If we chose to
implement our calculator as a long-running service, we would create a Windows
Service within Visual Studio.NET that implements the executable under which
our Calculator service will be provided and handles administrative activity such
as startup and shut-down.

A typical pattern for our logic in this case would be:

� Start up:

a. Connect to the Queue Manager.

b. Spawn one or more threads to perform work.

c. On notification of failure, spawn new worker threads if possible.

d. On administrative shutdown:

i. Notify all threads to stop.

ii. Close the connection to the Queue Manager.

iii. End the execution.

� Each thread:

a. Open the input queue.

b. Loop until error or notification to shut down.

i. Get a message with an long time-out (possibly minutes).

ii. Parse the input message, use the local .NET Calculator class to add
the two numbers together.

iii. Create a response message and put it to the reply queue.

iv. Look for notification to shut down from main thread.

c. On error or notification to shut down, close the queue and notify the main
thread.

The administrator of the server would have the capability of starting and stopping
our service via the Service Control Manager. As long as the service is running,
requests would be satisfied immediately by any given thread.

Service consumer (WebSphere consumer)
A WebSphere consumer wants to asynchronously call the Calculator service
running in the .NET environment. The .NET Calculator application has now been
given the ability to listen on a WebSphere MQ queue for a request message, and
will then execute the back-end code and put the result onto a reply queue.
 Chapter 5. Scenario: Asynchronous 257

The message format expected by the .NET service provider is a simple string
consisting of two float values separated by a comma (for example: 2.45, 45.3).

So, using WebSphere Studio Application Developer, we need to create an
application which will create a simple TextMessage, access the WebSphere MQ
queue, and put the message on the queue.

As far as the service consumer is concerned, the queue it writes the message to
is local to the client. The message will be automatically put onto the remote
queue by WebSphere MQ.

In order to create your consumer, create a J2EE Application Client in WebSphere
Studio. Within this project, create a new Java class. The following code will
create a javax.jms.TextMessage, define a reply to queue, and put the message
onto the appropriate queue to call the .NET service.

The numbers being added are hard-coded in this application for simplicity, since
the purpose of the application is simply to show asynchronous interoperability.
258 WebSphere and .NET Coexistence

Example 5-4 Code to put a message on a queue

public class Consumer {
public static void main(String[] args) {

try {
final InitialContext ctx = new InitialContext();
QueueConnectionFactory qcf =

(QueueConnectionFactory)ctx.lookup("jms/QCF");
QueueConnection qConn = qcf.createQueueConnection();
QueueSession session = qConn.createQueueSession(false,

Session.AUTO_ACKNOWLEDGE);
//find the queue
Queue queue = (Queue)ctx.lookup("jms/redbookQ");
//create the message
TextMessage m = session.createTextMessage();
//set the values for the addition in the message
m.setText("3.0,5.7");
Queue reply = (Queue)ctx.lookup("jms/replyQ");
m.setJMSReplyTo(reply);
//send the message
QueueSender sender = session.createSender(queue);
sender.send(m);
System.out.println("Request Message Sent");

} catch (JMSException e) {
e.printStackTrace();

} catch (NamingException e) {
e.printStackTrace();

}
}

}

The .NET service will then detect this message on the queue, perform the
calculations, and put the result onto the reply queue jms/replyQ as defined in the
request message.

When the response is returned, the consumer needs to obtain it from the queue.
The above code does not include obtaining the response simply to underscore
the fact that the response does not need to be obtained right away nor even,
necessarily, by the same consumer, assuming that all information necessary to
make sense of the response is contained within the message.

Example 5-5 Code to obtain the response message from Calculator

...
//code to receive the reply message from the queue
//need to start the queue connection to receive messages
qConn.start();
QueueReceiver receiver = session.createReceiver(reply);
//get the message once it has been placed there by the
 Chapter 5. Scenario: Asynchronous 259

//service provider. the receive(0) command suspends this
//code until a message is received
TextMessage receivedMessage = (TextMessage) receiver.receive(0) ;
System.out.println("Result = " + receivedMessage.getText());

...

In order to add the code necessary to receive the message to our client as
defined above, simply insert the code in Figure 5-5 on page 259 after the
following line:

System.out.println("Request Message Sent");
260 WebSphere and .NET Coexistence

Chapter 6. Scenario: Synchronous
stateful

This chapter provides examples for the synchronous interaction scenarios
defined in 4.2.1, “Stateful synchronous interaction” on page 112 from the
perspective of a .NET application artifact consuming the services of a
WebSphere application artifact.

In this chapter, we will focus on scenario f: Coexistence via business tier logic to
business tier logic integration, and scenario c1: Coexistence via client tier logic to
business tier logic. Although the examples in this chapter focus on interactions
where .NET is the consumer of WebSphere stateful service providers, we also
discuss interactions the other way around and solutions for them.

6

© Copyright IBM Corp. 2004. All rights reserved. 261

6.1 Problem definition
This section provides a detailed description of a sample problem we are trying to
solve within this scenario.

You are reading this book because you are interested in interaction between
.NET and J2EE. Interactions can typically be viewed through a
consumer/provider relationship. While .NET makes it easy to develop a
sophisticated and rich user experience (presentation), it is seldom the case that
all enterprise systems run on Windows; remember also that .NET is about
exploiting Windows while J2EE is about exploiting language consistency across
platforms.

You will recall that we broke interaction types down as follows:

� Stateless synchronous

� Stateless asynchronous

� Stateful synchronous

� Stateful asynchronous

These categorizations are useful because they describe widely differing
interaction scenarios that solutions tend to follow.

Where integration is needed, it can often be accomplished via simple
asynchronous mechanisms and techniques, or via stateless mechanisms and
interactions such as Web Services. However, there are occasions where
maintaining state across invocations is required. Here we define those scenarios,
provide an example, then define and pursue solution options.

6.1.1 Description of the problem
In our scenario, we have a stateful service provider implemented in Java. A
Business layer .NET component wishes to consume the services of this service
provider, so we must provide a mechanism that allows stateful interaction
between two Business layer components where a .NET artifact is the consumer
and a WebSphere artifact is the provider.

The snippet in Example 6-1 on page 263 shows the code for our service
provider’s basic interface. Our service provider provides the interface
ICalculator1 which exposes one property and some functionality via three
methods. The method setCurrentTotal allows the consumer to set the starting
value at any time to whatever it wants. The corresponding getCurrentTotal
method allows the consumer to obtain the current total of the stateful adding
machine at any time. The add method allows the consumer to pass a new value
262 WebSphere and .NET Coexistence

as an argument to be added to the current total. The property containing the
current total is then updated and returned to the consumer as a return value as
well, for the sake of simplicity.

Example 6-1 Java implementation of our stateful calculator

public class Calculator implements ICalculator1, ICalculator2, ICalculator3 {
//args for ICalculator1 setArg methods
private float calc1CurrentTotal;
//setCurrentTotal method for ICalculator1
public void setCurrentTotal(float arg) {

calc1CurrentTotal = arg;
}
//getCurrentTotal method for ICalculator1
public float getCurrentTotal() {

return calc1CurrentTotal;
}
//add method for ICalculator1, using the pre-set
//argument calc1CurrentTotal
public float add(float arg1) {

calcCurrentTotal += arg1
return calc1CurrentTotal;

}
...
}

In order to consume this service, the consumer must first call the set methods for
each of these arguments and then call the method in order to obtain the sum.
The service provider maintains state between these three invocations. The
pseudo code snippet below shows proper use of this stateful service provider.

Example 6-2 Pseudo-code consumer implementation for ICalculator1

public class MyConsumer {
...
// create a calculator
Calculator objMyCalc = new Calculator;
// set the current total to the value from which we wish to start adding.
objMyCalc.setCurrentTotal(2);
// add some values to that total
Answer = objMyCalc.Add(2); // 2 + 2 is 4
Answer = objMyCalc.Add(2); // 4 + 2 is 6
Answer = objMyCalc.Add(2); // 6 + 2 is 8
// local variable Answer is now set to 8.
// but we can also get the current total from property
Answer = objMyCalc.getCurrentTotal();
...

}

 Chapter 6. Scenario: Synchronous stateful 263

Our consumer runs in the .NET environment and our service provider runs in
J2EE to create an interaction which looks something like this:

Figure 6-1 Multiple invocations operating on single state object CurrentTotal

From Figure 6-1, it is clear that several invocations are used to perform
operations upon and to view a state object. The state of this object must be
consistent between invocations. In addition, the order of the invocations is
significant. Getting the value of CurrentTotal before all the additions have been
performed would not be very useful.

Since the consumer is doing nothing but waiting (blocking) while allowing the
service provider to perform any given invocation, this interaction style is
synchronous.

Since the service provider is responsible for storing this state information, and
since it is not persisting this information anywhere but in a memory area, it is
clear that the execution of the service provider must surround all operations. That
is, a single instance of the service provider must satisfy all of the requests for a
particular consumer for the operations and state to be meaningful.

Stateful, synchronous interaction is quite common; we use it for nearly
everything, in fact. In both .NET and WebSphere or J2EE environments, this is
most often accomplished by creating an instance of the service provider object
within the consumer’s process space and performing invocations of methods on
that object. When the consumer is finished, the object is destroyed. This is
depicted in Figure 6-2 on page 265 and denoted as (A).

In both the .NET and WebSphere environments, it is also possible and common
for the service provider to live in another process, as depicted in Figure 6-2 on
page 265 (option (B)), or on another physical node from the consumer (as
depicted in option (C)). Both .NET and WebSphere have containers within which
service providers may run as server-side providers, allowing them to service the
requests of many consumers.

Consumer

Create new service provider

Set Current Total to something

add(something new)

Get the Current Total

Service Provider

Initialization

Set value

Method call

Get value

CurrentTotal
264 WebSphere and .NET Coexistence

Assuming that both our consumer and service provider were written in Java,
option A is analogous to the consumer and provider running inside a single Java
Virtual Machine (JVM) process. Options B and C are analogous to running our
service provider in an Enterprise Java Bean (EJB) container and invoking it via
Remote Method Invocation (RMI).

In the .NET world, the analogue for option A would be a .NET consumer
application running within the Common Language Runtime creating an instance
of the .NET class service provider locally within the same process space. The
analogue for option B would be accessing a .NET server class and, for option C,
using .NET Remoting to facilitate the stateful interaction across nodes in an RPC
fashion.

Figure 6-2 Process options for synchronous, stateful interaction

In our basic scenario, we will deal first with option A, a .NET consumer, which in
our case will be a simple C# Windows Forms application consuming a simple
Java class in process. Our extended scenario will then separate the service
provider and consumer onto physically separate nodes and perform the same
interaction.

Service Provider ProcessConsumer Process

Service Provider

CurrentTotal

Consumer

Remote
Invocation

Service Provider ProcessConsumer Process

Service Provider

CurrentTotal

Consumer

Remote
Invocation

Consumer Process

Consumer

Service Provider

CurrentTotal

Consumer Process

Consumer

Service Provider

CurrentTotal

A B

C Node TwoNode One

Service Provider ProcessConsumer Process

Service Provider

CurrentTotal

Consumer

Remote
Invocation

Node TwoNode One

Service Provider ProcessConsumer Process

Service Provider

CurrentTotal

Consumer

Remote
Invocation
 Chapter 6. Scenario: Synchronous stateful 265

We will discuss more than one way of accomplishing this and make
recommendations about how to choose between these methods. Our examples
will focus on one method of .NET consumption of WebSphere service providers.

6.1.2 Considerations
Before we can complete the picture of integration between these two
environments, we need to understand some basic components that make up the
solutions to the stateful, synchronous invocation problem within each of these
two environments.

Runtimes and native interfaces
.NET applications run within the Common Language Runtime (CLR). Java
applications run within the Java Virtual Machine (JVM). In order to run a Java
program within the process space of a .NET application, you must load both
runtimes into the same process space.

This might represent quite a bit of overhead. However, there are other options; to
understand them, let’s first understand the tools provided by each environment
for calling into and out of their respective runtime environments on a local basis.

.NET Interop

.NET applications run within the Common Language Runtime (CLR) and obtain
services from that runtime, such as language independence and garbage
collection. Code which is written to run under the Common Language Runtime is
known as managed code. The .NET languages C# and Visual Basic.NET are
intended to produce managed code which is not binary code executed natively
within the operating system, but instead is bytecode compiled at the last minute
within the runtime and executed within it in a managed way.

In order for a .NET assembly to call anything that is not managed by the CLR, for
instance a C-style function within a Dynamic Link Library (DLL), it is necessary to
leave the managed code environment during the call into the DLL. Microsoft
.NET provides a mechanism to do this, called Interop.

Interop allows you to call into native, unmanaged code from .NET managed
code, and vice-versa. Interop is analogous to the Java Native Interface.

HIJava Native Interface
Java applications run within the Java Virtual Machine (JVM) and obtain services
from that runtime, such as language independence and garbage collection.

In order for a Java program to call anything that is not managed by the JVM, for
instance a C-style function within a Dynamic Link Library (DLL) on Windows, it is
266 WebSphere and .NET Coexistence

necessary to leave the managed code environment during the call into the DLL.
The J2SE SDK provides a framework for doing this called the Java Native
Interface (JNI) framework.

The Java Native Interface allows you to call unmanaged, native code from within
the Java Virtual Machine and vice-versa. The Java Native Interface is analogous
to Interop.

As you can see, there are many similarities between J2EE and .NET.

Stateful remote invocation
The technologies for getting into and out of the respective runtime environments
of .NET and J2EE support local invocation. We are also concerned about
providing this interaction between processes and physical nodes.

Both J2EE and .NET provide mechanisms for remote consumption of services in
a stateful manner. While these mechanisms are intended to provide remote
invocation services within their environment (Java to Java and .NET to .NET),
the remoting technologies can be combined with the native interface
technologies on either side to create the possibility of inter-process and
inter-node stateful.

Remote Method Invocation (RMI)
The Java2 SDK provides a facility for implementing stateful synchronous calls to
a remote Java object. This is known as Remote Method Invocation (RMI). When
you implement RMI within your application artifacts, you may choose whether
you will use the Java Remote Method Protocol (JRMP) or the Internet Inter-ORB
Protocol (IIOP) as the underlying transport.

More information on Remote Method Invocation can be found at the following
locations:

http://java.sun.com/products/jdk/rmi/
http://java.sun.com/marketing/collateral/javarmi.html

More information on the Inter-ORB Protocol (IIOP) may be found at:

http://www.omg.org

.NET Remoting

.NET provides a facility for implementing stateful synchronous calls to a remote

.NET object. This is known as Remoting. In Java, Remote Method Invocation
(RMI) separates implementation from the underlying protocol, and .NET
Remoting does the same thing. In the case of Remoting, two channels are
provided for the developer: HttpChannel and TcpChannel.
 Chapter 6. Scenario: Synchronous stateful 267

http://java.sun.com/products/jdk/rmi/
http://java.sun.com/marketing/collateral/javarmi.html
http://www.omg.org
http://java.sun.com/products/jdk/rmi/
http://java.sun.com/marketing/collateral/javarmi.html

� HttpChannel uses SOAP formatted messages and transmits information
using the HTTP protocol.

� TcpChannel uses a binary formatter and transmits information using TCP.

It is also possible to create your own channel facility using classes provided
within .NET. More information on .NET Remoting may be found at the following
location:

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpguide/ht
ml/cpconnetremotingoverview.asp

Data model
Data representation types differ between .NET and Java. When a consumer
requires the services of a service provider that uses incompatible data types, it is
necessary to map between them in a consistent way. The same is true of
complex and user-defined data types. One of the issues in achieving
interoperability between different programming languages is how to provide a
language-independent abstraction for common language data types.

Solution options
Our scenario requires that we consume a Java service provider object from a
.NET object. The underlying technologies and issues we have just discussed
allow us to consider three possible fundamental solutions to our problem.

Figure 6-3 Consumer-side integration with Java RMI as the transport

The first option, represented in Figure 6-3, shows consumer-side integration of
the environments using Java Remote Method Invocation (RMI) as the transport
to cross the network layer. This option has several advantages, including the
following:

NodeNode

Java Virtual Environment

ProviderProxy

.NET Runtime

Consumer.NET

Java Virtual Environment

ProviderProxy

RMI RMI

Interop

JNI
268 WebSphere and .NET Coexistence

http:///cpconnetremotingoverview.asp

� Use of the Java Naming and Directory Interface to find remote classes.

� Isolation of .NET code and the Windows OS to nearer the Presentation layer.

� Particularly advantageous if your Service Provider does not run on Windows.

� Useful when CORBA-compliant systems also wish to use the services of this
service provider via IIOP.

A second option, represented in Figure 6-4, shows provider-side integration with
.NET Remoting as the mechanism, permitting inter-node synchronous, stateful
interaction between objects. Provider-side integration is useful when the
technology used by the service provider is a technology you wish to contain
within the environment.

Figure 6-4 Provider-side integration with .NET Remoting as the transport

The third scenario that presents itself from consideration of these underlying
technologies is a little bit more complicated and deals with the underlying
protocols and access available to .NET Remoting and Remote Method
Invocation under Java. This option, depicted in Figure 6-5 on page 270, utilizes
the design patterns implemented by the remote invocation technologies for J2EE
and .NET. The fact that the protocol used is abstracted from the remote
invocation APIs allows us to find and implement a common transport protocol
beneath them.

Node
.NET Runtime

Consumer.NET .NET
Remoting

Node
.NET Runtime

Consumer.NET

Interop

Java Virtual Environment

ProviderProxy

JNI

.NET
Remoting
 Chapter 6. Scenario: Synchronous stateful 269

Figure 6-5 Transport Integration via .NET Remoting over IIOP

Under .NET, this is done by implementing a remoting channel. A remoting
channel is an object that is implemented under the .NET Remoting framework in
order to transport messages between remoting targets. As we mentioned
previously, Java’s Remote Method Invocation includes the implementation of an
IIOP transport. Although .NET does not implement such a transport, it does
expose the transport hooks for the user to implement.

This is a particularly useful solution for a number of reasons. IIOP not only
supports the stateful interaction we require, but it also opens .NET up to
interaction with CORBA-based applications. Perhaps as importantly, the fact that
the transport is used as the integration point and extends into both runtime
environments (the .NET Common Language Runtime and the Java Virtual
Environment) means that you have native .NET talking directly to native Java
without the need for the overhead associated with Interop and JNI.

In the context of .NET to WebSphere integration, this solution provides some
advantages and disadvantages over the process integrations.

Some advantages:

� Native Runtime Use: avoid the use of (and overhead associated with) Interop
and JNI.

� Infrustructure flexibility: J2EE and .NET application artifacts may exist
wherever they are within the infrastructure and it is not necessary to place
both frameworks on the same system for integration purposes.

Some disadvantages:

� No lookup of remote resources via the lookup facilities associated with either
platform (unless implemented as part of the solution).

� Software to write or buy.

Node
.NET Runtime

Consumer.NET .NET
Remoting

Node
Java Virtual Environment

ProviderRMI
(IIOP)

IIOP

IIO
P

IIOP Channel
270 WebSphere and .NET Coexistence

Packaged solutions
There are packaged solutions on the market which utilize these underlying
technologies to create a synchronous, stateful invocation framework between
these environments. Here, we briefly review available options:

� IBM ActiveX Bridge

� IBM Interface Tool for Java, also known as Bridge2Java

� Third-party .NET Remoting to RMI bridging products

IBM ActiveX Bridge
The ActiveX Bridge is a technology developed by IBM for the purpose of
providing stateful, synchronous interaction between Microsoft ActiveX
component consumers and Java service providers. The ActiveX bridge uses the
Java Native Interface framework to expose Java classes and methods to ActiveX
applications. It also provides data type mapping facilities between ActiveX and
Java.

The ActiveX Bridge uses Reflection to discover and access the methods and
properties available within a Java class and then exposes these to ActiveX
clients at runtime as IDispatch interfaces.

The ActiveX Bridge supports free and apartment model threading for both client
code and ASP. The ActiveX Client may be an Active Server Page running under
Internet Information Services (IIS), VBScript or an ActiveX object written in Visual
Basic or C++.

Figure 6-6 IBM ActiveX Bridge

The ActiveX Bridge supports accessing of Enterprise Java Beans via a Client
Container object or a Proxy. A Client Container object is simply a Java object
created within a local client container that manages the access to an Enterprise
Java Bean.

ActiveX Client ActiveX Bridge
(C++ dll)

ActiveX Bridge
(Java)(JNI)

Java Client
Container
or Proxy

Implements runtime
ActiveX IDispatch

Interface

Method and data-type
discovery and

mapping.
 Chapter 6. Scenario: Synchronous stateful 271

The ActiveX Bridge provides a simple interface with which the user may initialize
a Java Virtual Machine, find classes, invoke methods and handle ActiveX to Java
data type conversions. A brief overview of these methods is useful for
subsequent discussion.

� The XJB.JClassFactory object is the ActiveX Bridge. Your application creates
an instance of this object in order to begin to use the Java environment and
access Java classes. This object contains the following methods:

� XJBInit() - After creating an instance of XJB.JClassFactory, the application
calls this method to create an instance of the Java Virtual Machine and
initialize it. Parameters passed into this method provide the same control over
the JVM initialization as you would have when using Java from the command
line. After this has successfully been invoked, the JVM is initialized and ready
for use.

� FindClass() - After initializing the JVM, an application uses this method to
find a Java Class within the classpath. This method returns a JClassProxy
object which can be used immediately to access static methods and fields of
the Java object as well as all the java.lang.Class methods.

� NewInstance() - If you need to create an instance of a Java object and access
non-static behavior, pass the JClassProxy object into this method and it will
create a new instance of the Java object, returning a JObjectProxy object.
This object can be used to access all features of the Java object.

� GetArgsContainer() - Java classes often require constructor arguments. This
method creates a container for those arguments that can be used to provide
constructure arguments by passing this object to the NewInstance() method,
or when calling a method on a Java class.

In addition, there are several primitive data-type conversion helpers.

For more information about developing using the the ActiveX Bridge and a
reference for the methods above, see the WebSphere documentation at:

http://publib.boulder.ibm.com/infocenter/wasinfo/index.jsp

At this site, the reference documentation for developing ActiveX Bridge programs
can be found under WebSphere Application Server -> All Topics By Activity
-> Developing -> Applications -> Client Modules -> Developing ActiveX
Application Client Code.

IBM Interface Tool for Java
IBM has a technology call Interface Tool for Java which was originally conceived
to deliver stateful integration between Java clients and COM components.
Interface Tool for Java can also be used to provide stateful integration between
Java clients and .NET assemblies.
272 WebSphere and .NET Coexistence

http://publib.boulder.ibm.com/infocenter/wasinfo/index.jsp

Before we describe how Interface Tool for Java can provide Java clients with
stateful integration to .NET assemblies, let’s briefly consider how Interface Tool
for Java provides integration to COM Components (this is important for an
understanding of the Java to .NET solution). Most COM Components implement
an interface call IDispatch (this is often referred to as an automation interface).
Interface Tool for Java works with this IDispatch interface in two ways:

� The Interface Tool for Java build-time generates Java proxies for COM
IDispatch interfaces.

� The Interface Tool for Java runtime provides the runtime binding, marshalling,
and type mapping, and maintains Java to COM object relationships; it also
performs object life cycle management between each Java proxy instance
and its associated COM class (CoClass) instance. It does this using the
IDispatch interface for the given COM component.

These Interface Tool for Java generated Java proxies to COM CoClasses enable
any Java-based technology (EJB, Java Bean, Servlet, JSP, etc.) to statefully
integrate with the proxied COM components.

This is illustrated in Figure 6-7.

Figure 6-7 the Interface Tool for Java solution model for COM integration

Third-party .NET Remoting to RMI bridging products
It is beyond the scope of this book to cover third-party solutions for .NET
Remoting/RMI bridging. However, several products have implemented such

COM
Component(s)Java Client(s) Bridge2Java

Runtime

This could be any Java code.
i.e. An EJB, a Java Bean, a
Servlet or JSP, or an AWT or
Swing client etc.

The Bridge2Java runtime
provides as statefull binding
between the Java proxies and
their associated COM
IDispatch interface.

Most COM components
implement the IDispatch
interface. Bridge2Java binds
to COM IDispatch interface.

IDispatch

Bridge2Java
Buildtime

Java proxy(s)
to COM

Components(s)

The Bridge2Java
buildtime generates Java
proxy classes for COM
IDispatch interfaces.

ge
ne

ra
te

s

Generated Java proxy classes
abstracts connection and
communication with the COM
component classes from the
Java client.

COM runtime
 Chapter 6. Scenario: Synchronous stateful 273

solutions. There is also an open-source .NET Remoting to RMI Bridge being
developed under Source Forge, called IIOP.NET, which can be explored at:

http://sourceforge.net/projects/iiop-net/

The advantages of such a solution are significant. Although it is not covered in
detail within this book, it is something we recommend you look into for such
requirements.

6.1.3 Constraints
Consider the following constraints in your solution.

ActiveX Bridge constraints within .NET
Although the ActiveX Bridge is not a .NET implementation, it is an
implementation built upon the Component Object Model (COM). As such, it
doesn’t get you all the way into (or out of) .NET.

However, as we covered in the introduction, .NET is built upon underlying
technologies such as COM and provides a facility (Interop) to utilize ActiveX from
within the .NET runtime. This provides us with options for implementing ActiveX
Bridge from within the .NET environment.

The first option to consider is to use the .NET Interop capability to get directly into
the ActiveX Bridge. Since the ActiveX Bridge is implemented as an ActiveX
object, it seems as though this should work. Initial testing was performed that
revealed that it is indeed possible to access static methods and fields using
ActiveX Bridge directly from VB.NET via Interop. However, C# behaved quite
differently when making these same invocations and neither environment
allowed us to access non-static fields and methods successfully directly from
.NET. We therefore decided not to pursue the direct approach.

The second option is to write a native ActiveX DLL that isolates all calls into the
ActiveX Bridge. We then use Interop to get to these DLLs from .NET. Although
this seems to create one more layer between the applications, our testing found
that it is much more reliable and predictable. There are also other limitations (see
“JNI limitations” on page 275) which prompted us to consider separating the
code that uses Java from the rest of our application processes. Since this book is
about solutions that do not rely upon products other than WebSphere and .NET,
and in the interest of establishing best practices for use of ActiveX Bridge from
.NET, this is the approach we have chosen.

Interface Tool for Java constraints with regard to .NET
As with ActiveX Bridge, Interface Tool for Java was not originally intended to get
Java programs into COM objects via IDispatch interfaces.
274 WebSphere and .NET Coexistence

http://sourceforge.net/projects/iiop-net/

.NET assemblies do not normally implement IDispatch interfaces, but their
interfaces can be represented by IDispatch interfaces. Fortunately, the .NET
SDK provides a utility called tlbexp.exe which, with the correct directives, can be
used to generate type information which can include an IDL definition of
IDispatch interfaces. When this type of information is correctly registered in the
Windows registry, the .NET runtime will automatically provide a façade to the
.NET assembly for IDispatch clients (in this case, the Interface Tool for Java
runtime is the IDispatch client). This is illustrated in Figure 6-8.

Figure 6-8 the Interface Tool for Java solution model for .NET integration

JNI limitations
A limitation in the Java Native Interface (JNI) prohibits us from loading a Java
Virtual Machine more than once in a given process. This means that once you
have loaded and initialized the JVM, you cannot unload it or reinitialize it without
taking the process in which it is running completely down and back up (stopping
and restarting your program). Since ActiveX Bridge uses JNI under the covers,
this limitation affects our solution.

This limitation is significant because, for instance, IIS manages the processes
under which Active Server Pages run. Once a JVM is loaded for that process, it

Type Library(s)

.Net
Assembly(s)Java Client(s) Bridge2Java

Runtime

This could be any Java code.
i.e. An EJB, a Java Bean, a
Servlet or JSP, or an AWT or
Swing client etc.

The Bridge2Java runtime
provides as statefull binding
between the Java proxies and
their associated COM
IDispatch interface.

A COM IDispatch interface
can be exported form .Net
Assemblies. Bridge2Java
binds to COM IDispatch
interface.

IDispatch

Bridge2Java
Buildtime

Java proxy(s)
to .Net

Assembly(s)

ge
ne

ra
te

s Generated Java proxy classes
abstracts connection and
communication with the .Net
Assembly classes from the Java
client.

.Net runtime

import

export

The .Net runtime can
automatically provide an
IDispatch facade for .Net
assemblies at runtime.

Type libraries (can be
made to) contain an IDL
definitions of the IDispatch
interfaces for its associated
.Net assembly.

The Bridge2Java
buildtime generates Java
proxy classes for COM
IDispatch interfaces.
 Chapter 6. Scenario: Synchronous stateful 275

cannot be reloaded or reconfigured without bouncing the IIS process under
which it is running.

While this limitation is less severe outside of IIS, for instance in a VB application,
it is still somewhat inconvenient to ask the user to close and restart the
application because we need to reconfigure the JVM. We will make
recommendations to address this issue appropriately below.

6.1.4 Recommendations
This section provides recommendations associated with selecting and
implementing solutions in this problem space.

Selecting a solution
The selection of a solution from the available options involves consideration of
many parameters and the environment. There is no technological silver bullet
implementation that will take away the complexity of a stateful, synchronous
invocation across platforms such as these. However, there are clear advantages
to each approach identified above. Although there is no way to completely cover
this topic here, we suggest that, when selecting an approach, you consider the
following key issues at a minimum:

� Keep it simple. Complexity is the enemy of success. The more complex
solution will always be more expensive and more troublesome than the
simpler one.

� Isolate environments. What is your company direction? Does your future
hold more of one environment than another or is it unclear? Do your
management processes and practices favor one enviornment or the other?
Our options allow you to choose the transport that flows over your network,
and therefore choose which environment you will administer remote
invocations with. If administrative management processes are mature for one
environment and not for the other, it may be wise to consider using that
environment at the transport level and relegate the other to discrete islands.

� Security. How are your users authenticated and what is your trust model for
computing? This is a complex subject, but each environment has its own
security mechanisms and capabilities. Considering how they work can play
heavily into the decision of which remote invocation method to use.

� Bridging the Virtual Machines versus the Transports. As discussed
above, an alternative to bridging the runtime environments of Java and .NET
via JNI and Interop is to bridge the stateful remote invocation mechanisms
these environments utilize internally. There are already several third-party
products which do just that and it is also possible to implement your own IIOP
Channel for .NET Remoting, which effectively implements this bridging
mechanism to any CORBA-compliant mechanism such as RMI. We suggest
276 WebSphere and .NET Coexistence

you consider this option if you have CORBA in your environment since it
provides the most flexibility in infrastructure management and placement of
artifacts.

ActiveX Bridge best practices under .NET
We have chosen to implement the ActiveX Bridge as our solution. The following
recommendations are made with regard to use of ActiveX Bridge under .NET.

Isolate ActiveX Bridge calls into a server-side COM DLL that will execute in its
own process space under the control of the Service Control Manager. This will
require that you implement the calls to ActiveX Bridge in C++. You will then use
Interop from .NET languages to access the DLL.

Although this may require some small extra code, this solution offers several
valuable advantages and addresses many of the constraints we have identified.
Advantages include the following:

� Access to Java classes can be isolated into discrete running processes which
can be stopped and started at will with a minimum of interruption.

� Access to Java service providers can be grouped. The designer can decide
whether to group by function, performance parameters, resource
requirements or any other sensible method.

� Data type issues between .NET and Java can be handled in one place so that
native data types are presented to consumers.

� Since ActiveX Bridge is thread-capable, multiple clients can be served
simultaneously by a given Java Class.

� Services can be controlled by administrators.

� Parameters required for the JVM can be externalized into Constructor Strings
or via other methods to allow easy fail-over or configuration of the
environment by administrators.

� Security can be implemented on the access to the initial COM objects if
desired.
 Chapter 6. Scenario: Synchronous stateful 277

Figure 6-9 Recommended solution with ActiveX Bridge for .NET

Figure 6-9 depicts the recommended implementation of ActiveX Bridge for a
.NET environment. A server-side COM object is created that is designed to run
under the control of the Service Control Manager. This object has the following
responsibilities:

� Contain all calls to ActiveX Bridge.

� Initialize the JVM on construction.

� Expose a thin wrapping interface representing the Java objects you wish to
make available to the .NET world. When these methods and properties are
used by client applications, the Java methods and fields are manipulated via
ActiveX Bridge.

� Use the ActiveX Bridge functions to handle data representation issues as
they come up.

In the interest of completeness, the figure depicts access all the way to an
Enterprise Java Bean, which is exactly what the ActiveX Bridge was designed to
do. The Java Client Container and Java Proxies depicted merely represent the

Server-Side COM Object
(DLLHOST.EXE)

Client process

myServiceInterface

ActiveX Bridge
(C++ dll)

ActiveX Bridge
(Java)

(JNI)

Java Client
Container

Java Proxies
(class,obj)

Java ORB

Server Side EJB

(or)

JVM

RMI

ASP.NET
(IIS)

VB.NET
(MyAss.exe)

CS.NET
(MyAss.exe)

COM
Interop

or DCOM
278 WebSphere and .NET Coexistence

options for accessing an EJB. Either or both may be implemented. The location
of the EJB in the environment is irrelevant.

6.2 Solution model using the ActiveX Bridge
Our solution model follows the pattern we have established, beginning with a
simple scenario to illustrate the processes and then describing the extended
scenario.

6.2.1 A solution to the problem
We begin with a stateful calculator written in Java which we have decided to
reuse in .NET. The creation of this calculator was covered earlier.

We will implement the ActiveX Bridge inside a separate COM component DLL,
written in C++, to handle all calls into the ActiveX Bridge.

In our simple scenario, the client will be a C# Windows Forms fat client, which
will reference our COM DLL, instantiate and utilize its methods. The DLL will
access the Calculator.jar file that implements our stateful calculator. To simplify
the discussion, no cross-process or cross-machine code will be implemented in
our simple scenario.

The Calculator.jar code will be entirely reused without change.

6.2.2 Simple scenario details
It is usually helpful to start at the service provider and work our way back to the
client when describing an implementation. We will use this convention here. This
section will describe in detail what we did to make the Calculator.jar
implementation accessible from .NET.

Environment
Construction and execution of the solution discussed here requires the following
components on the workstation:

� IBM WebSphere Studio Application Developer (WebSphere Studio) V5.1.
with ActiveX Bridge

� Microsoft Visual Studio .NET

� The Microsoft .NET Framework V1.1

� The Microsoft .NET Framework SDK
 Chapter 6. Scenario: Synchronous stateful 279

Notes on installing WebSphere Studio Application Developer
The default installation of WebSphere Studio Application Developer V5.1
(WebSphere Studio) does not include the ActiveX Bridge. In order to install the
bridge and the samples, you must select the ActiveX Bridge under “Optional
components” in the installation wizard.

In WebSphere Studio, it is not recommended that you take the default installation
path for WebSphere Studio because it uses “Program Files” as the default.
Spaces in directory names can cause problems when executing batch
commands under Windows. We recommend you choose a directory without
spaces or other unusual characters in the name. We refer to the directory in
which WebSphere Studio is installed as the WebSphere root.

Starting the IDEs and applications
In order to use ActiveX Bridge, the WebSphere environment variables must be
set before you start any IDE if you are developing or debugging, and before you
run any sample code if you are simply executing. These classpath variables
include information and many other things needed for the WebSphere Studio
environment.

The ActiveX Bridge provides batch files to set these variables under the following
path: <WebSphere_root>\AppClient\bin\.

The most critical of these is setupCmdLineXJB.bat, which is used to set
environment variables required by WebSphere Studio and WebSphere to run
Java programs. This is illustrated in Example 6-3. You have the option of using
these scripts to set up the environment and then starting the IDEs or programs
from the command line after executing them, or adding these variables to the
System Environment Variables.

Example 6-3 setupCmdLineXJB.bat

set NAMING_FACTORY=com.ibm.websphere.naming.WsnInitialContextFactory
set PATH=%JAVA_HOME%\bin;%JAVA_HOME%\bin\classic;%PATH%
set XJBJRE_CLASSPATH=-Djava.ext.dirs=%JAVA_HOME%\lib\ext;%WAS_HOME%\classes;
%WAS_HOME%\lib\ext;%WAS_HOME%\lib;%WAS_HOME%\properties;%JMS_PATH%
set XJBWAS_CLASSPATH=-Dws.ext.dirs=%JAVA_HOME%\lib\ext;%WAS_HOME%\classes;
%WAS_HOME%\lib\ext;%WAS_HOME%\lib;%WAS_HOME%\properties;%JMS_PATH%

The WebSphere documentation describes these files and their use in more
detail.
280 WebSphere and .NET Coexistence

Code development
This section describes in some detail the software we built. It start with a simple
description of the responsibilities of each bit of code and then provides details on
how the code interacts and how to set up and execute the samples themselves.

In our solution, we develop three modules: the service provider, a COM wrapper
and the Consumer. These are depicted in Figure 6-10 and described below.

Figure 6-10 Simple scenario code components

Service provider
The service provider we use is the same Calculator.jar file as in Chapter 7,
“Scenario: Synchronous stateless (WebSphere producer and .NET consumer)”
on page 297 and Chapter 8, “Scenario: Synchronous stateless (WebSphere
consumer and .NET producer)” on page 329.

The service provider’s responsibilities include:

� Providing business functionality

The business functionality described here is that of an old-style adding
machine. We may set the current total (for example, setting it to 0 is
analogous to pressing the Clear key on a calculator). We can then add any
value we want to the current total and get the result. At any time, we may
simply check the current total as well.

� Providing an interface

The calculator implementation assumes it is being invoked via normal Java
implementations by a Java object. In other words, it does not implement JNI
or consider non-Java data types.

� Maintaining state between invocations

The calculator maintains state in the form of a private float variable called
CurrentState. Because state is kept by the service provider, neither the
consumer nor the COM DLL need concern themselves with the current value
until they need it or wish to reset it.

ActiveX Bridge

Calculator.dll
(C++)

ActiveX Bridge
(C++ dll)

ActiveX Bridge
(Java)(JNI) Calculator.jar

(Java)
FatCalc.exe

(C#)

Consumer COM Container Service Provider
 Chapter 6. Scenario: Synchronous stateful 281

COM Wrapper DLL
A C++ COM DLL is written which handles the ActiveX Bridge invocation on
behalf of the .NET consumers. For simplicity, this COM DLL is written to function
as a library application, which means it will not run as a stand-alone server
process under the Service Control Manager, but instead will run the consumer’s
process. For more information on creating a server-side COM object, see the
Microsoft Developer Network (MSDN) documentation at:

http://www.microsoft.com

The responsibilities of the COM ActiveX Bridge Gateway DLL are as follows:

� Isolating interaction with the ActiveX Bridge and the service provider into a
COM component.

This includes creating an instance of the JClassFactory and invoking all
necessary methods to create the JVM, find the class required, create an
instance of it and utilize its functionality.

� Providing an COM approximation of the Java business interface for the
consumer to use.

Although it is possible to further abstract the Java interfaces within the COM
DLL, making it much more easily reusable for different Java objects, we do
not cover these techniques for the sake of simplicity and instead implement
an approximation of the business interface (but not the implementation) of the
service provider in the COM DLL.

� Handling any data type mapping required between COM and ActiveX.

This example does not contain data mapping issues.

Service consumer
Our consumer in this case will be a Microsoft .NET Windows Forms application,
or fat client, written in C#. It has a simple interface, allowing the user to interact,
and uses the COM ActiveX Bridge Gateway DLL to obtain the service from the
Service Provider.

The consumer’s responsibilities include:

� Referencing the COM representation of our Java object.

The COM DLL acts as the interface gateway between our .NET object and
the ActiveX Bridge.

� Using the business interface properly (setting and getting the current value
property, using the add method correctly).
282 WebSphere and .NET Coexistence

http://www.microsoft.com

Writing the code
Here we discuss the code implementation for the samples involved in our simple
scenario.

Service provider - COM Wrapper DLL
This object is created in Microsoft Visual Studio.NET. Follow these steps to
create the project:

1. Start Microsoft Visual Studio.NET.

2. Create a new solution by clicking File -> New -> Blank Solution.

3. Select a project type of Visual C++ Projects.

4. Give it the name CalcWrapper and decide on a location for your solution and
project file. Select an ATL Project as the template from which you wish to
create this project.

5. The ATL Project Wizard will appear. We don’t need anything special here, so
just click Finish.

The resulting solution now contains a set of source files you may edit to
provide your implementation.

6. Add a Class to the project:

a. Select Project -> Add Class.

b. From the Add Class wizard, select ATL Control as the type of object you
wish to create.

c. Within the ATL Wizard, give the new class a shortname of Calculator.

d. Click Finish and the new calculator class will be created. You will be
presented with new source files within your project, two of which are called
Calculator.cpp and Calculator.h. These files will contain your
impementation of the COM Calculator interface.

e. Right now, your project should look something like Figure 6-11 on
page 284.

Note: We use the Active Template Library (ATL) for simplicity of creation.
 Chapter 6. Scenario: Synchronous stateful 283

Figure 6-11 Visual Studio after creation of our blank Calculator ActiveX object

f. Implement the interface by copying in our Calculator.h and Calculator.cpp
files, or implement for yourself. Our approach was as follows:

i. Create public objects for the JClassFactory, JClassProxy and
JObjectProxy; we will need to access the service provider.

ii. Within the constructor, create a new JClassFactory object. Use that
object to create and initialize the Java Virtual Machine with the
XJBInit() method. Use the FindClass() method to find the Calculator
class in Java and then the NewInstance() method to create a new
instance of that class. At this point, all methods and fields within our
Java implementation of Calculator are available to us.

Tip: The constructor of our object is where you initialize the JVM.
That is the most difficult piece of our wrapper because of the
settings required. Take a look at our sample code. If you try this and
it doesn’t work, it is very likely that environment variables were not
set prior to execution, so check that first.
284 WebSphere and .NET Coexistence

iii. Once the constructor is set up to initialize and make available the
Calculator implementation, we need only create methods that wrap the
Java method as precisely as possible. It is possible to aggregate
services here if you so choose (change the interface to better suit the
consumer) or you can implement it exactly as it is in Java. For this, we
chose to create the following public methods whose purpose it is to
simply wrap calls into the Java calculator using the ActiveX Bridge
objects which were created and initialized during the constructor. Our
C++ code is shown in Example 6-4.

Example 6-4 Java method wrappers in our COM Wrapper DLL implementation

/***
* Method definitions for our Calculator COM Wrapper.
**/
// wrap the setCurrentTotal method
STDMETHODIMP CCalculator::setCurrentTotal(FLOAT arg) {

moCalcJObjectProxy.setCurrentTotal(arg);
return S_OK;

}
// wrap the getCurrentTotal method
STDMETHODIMP CCalculator::getCurrentTotal(FLOAT* fCurrentTotal) {

fCurrentTotal = moCalcJObjectProxy.getCurrentTotal();
return S_OK;

}
// wrap the add method
STDMETHODIMP CCalculator::add(FLOAT arg, FLOAT* fCurrentTotal) {

fCurrentTotal = moCalcJObjectProxy.getCurrentTotal(arg);
return S_OK;

}

iv. Now simply build the object and you are finished with the wrapper.

Service consumer
This object is created in Microsoft Visual Studio.NET. Create this project yourself
by performing the following steps:

1. Start Microsoft Visual Studio.NET.

Tip: If you are unfamiliar with the requirements for creating methods
under an ActiveX Control beyond simply adding the C++ code shown in
Example 6-4, an easy way to do this is to use Visual Studio’s Add
Method operation. This is done by opening the Class View,
right-clicking the ICalculator interface and choosing Add -> Add
Method.
 Chapter 6. Scenario: Synchronous stateful 285

2. Create a new Solution by clicking: File -> New -> Blank Solution.

3. Select a project type of Visual C# Projects and select Windows
Application.

4. Give it the name FatCalc and decide on a location for your solution and
project file.

5. At this point, the new project will be created and you will be presented with a
blank form. We added the following objects to that form:

a. A text Box called AddMe to provide the user the ability to enter a number to
add.

b. A text box called CurrentTotal to provide the user a way to see the result
and to edit the current total if desired.

c. A button called SetCurrentTotal to invoke the setCurrentTotal() method of
our Java calculator.

d. A button called Add to invoke the add() method.

6. There are three simple sections of code to write:

a. Create an instance of our COM Wrapper:

i. Create a reference to the COM Wrapper Object. This can be
accomplished under Solution Explorer by expanding the solution and
right-clicking References, then selecting Add Reference.

ii. In the ensuing dialog, click the COM tab and find our CalcWrapper
class. In this same tab, you may also browse to find the
CalcWrapper.dll.

iii. Once it is found, click OK to add the reference. Visual Studio will add
the reference, automatically create a proxy Interop assembly called
Interop.CALCWRAPPER.dll which provides access to the unmanaged
COM component from .NET. A reference to this assembly is what you
use from within .NET.
286 WebSphere and .NET Coexistence

Figure 6-12 Adding the CalcWrapper reference to our C# project

iv. Once the reference exists, we can add the code to create the instance
of our wrapper. We chose to implement that code under the
FatCalc_Load() method so that the object is created when the form is
loaded initially. The following code snippet will give you the idea.

Example 6-5 Creating an instance of our COM Wrapper Object within C#

// declare our object variable to hold the calculator wrapper
public CCalculatorClass oCalc;

...

...
private void FatCalc_Load(object sender, System.EventArgs e)
{

//create instance of our wrapper
oCalc = new CalcWrapper.CCalculatorClass();

}

v. Now we are ready to use the calculator.

b. Implement the SetCurrentTotal button.
 Chapter 6. Scenario: Synchronous stateful 287

Example 6-6 Setting the Current Total from the Consumer

private void SetTotal_Click(object sender, System.EventArgs e)
{

oCalc.setCurrentTotal(CurrentTotal.Text);
}

c. Implement the Add button.

Example 6-7 Implementation of the Add button within the Consumer

private void Add_Click(object sender, System.EventArgs e)
{

CurrentTotal.Text = oCalc.add(AddMe.Text);
}

Executing the programs
We can now execute our application and observe its operation within the IDE or
from the command line. The following two procedures show these two choices,
respectively.

Executing from within Visual Studio
The following steps illustrate operation of our fat calculator from within the
Microsoft Visual Studio Integrated Development Environment.

1. If you have not registered the environment variables contained in the
setupCmdLineXJB.bat file, perform the following steps.

a. Exit Visual Studio.NET.

b. Open a command prompt window by running cmd.exe.

c. Run the batch file setupCmdLineXJB.bat from
<WebSphere_root>\AppClient\bin.

d. Use the CD command to change directory to where your Visual Studio
Solution file for FatCalc is located. This file should be called FatCalc.sln.

e. Type FatCalc.sln on the command line. This will open a new instance of
Visual Studio.NET with the FatCalc solution already open.

f. Set any breakpoints as desired by selecting the line where you wish to
break and pressing the F9 key.

g. Press the F5 key to run the program in debug mode under the IDE.

Executing from the command line
In order to run the fat calculator from the command line, do the following:

1. Open a command prompt under Windows by running cmd.exe.
288 WebSphere and .NET Coexistence

2. Run the batch file setupCmdLineXJB.bat from
<WebSphere_root>\AppClient\bin. This will set up the environment variables
for execution. If you chose to add the environment variables contained within
that batch file to your system path and have already done so, you can skip
this step.

3. Execute fatcalc.exe from the command line.

6.3 Solution model using the Interface Tool for Java
Our example does not focus on the Interface Tool for Java solution; this section
will briefly explain an implementation in the interest of providing a better
understanding of its use.

Currently, most of the effort surrounding integration between Java clients and
.NET assemblies is focused on Web Services. Today, Web Services provide
stateless invocation of .NET assemblies from Java clients. But what if you need
stateful integration?

IBM has a technology called Interface Tool for Java which was originally
conceived to deliver stateful integration between Java clients and COM
components. Interface Tool for Java can also be used to provide stateful
integration between Java clients and .NET assemblies.

Before we describe how Interface Tool for Java can provide Java clients with
stateful integration to .NET assemblies, let’s briefly consider how Interface Tool
for Java provides integration to COM Components (this is important for an
understanding of the Java to .NET solution). Most COM Components implement
an interface called IDispatch (this is often referred to as an automation
interface). Interface Tool for Java works with this IDispatch interface in two
ways:

� The Interface Tool for Java build-time generates Java proxies for COM
IDispatch interfaces.

� The Interface Tool for Java runtime provides the runtime binding, marshalling,
and type mapping, maintains Java to COM object relationships, and performs
object life cycle management between each Java proxy instance and its

Note: The Interface Tool for Java is an IBM alphaWorks® technology; you can
find more information about the tool at the following URL:

http://www.alphaworks.ibm.com/tech/bridge2java

The tool was formerly called Bridge2Java, and in some documents you may
find it referred to it by its former name.
 Chapter 6. Scenario: Synchronous stateful 289

http://www.alphaworks.ibm.com/tech/bridge2java
http://www.alphaworks.ibm.com/tech/bridge2java

associated COM class (CoClass) instance. It does this using the IDispatch
interface for the given COM component.

These Interface Tool for Java generated Java proxies to COM CoClasses enable
any Java-based technology (for example: EJB, Java Bean, Servlet, JSP and so
on) to statefully integrate with the proxied COM components. This is illustrated in
Figure 6-7 on page 273.

Figure 6-13 The Interface Tool for Java solution model for COM integration

.NET assemblies do not normally implement IDispatch interfaces, but their
interfaces can be represented by IDispatch interfaces. The .NET SDK provides
a utility called tlbexp.exe which, with the correct directives, can be used to
generate type information that can include an IDL definition of IDispatch
interfaces. When this type information is correctly registered in the Windows
registry, the .NET runtime will automatically provide a façade to the .NET
assembly for IDispatch clients (in this case the Interface Tool for Java runtime is
the IDispatch client). This is illustrated in Figure 6-8 on page 275.

COM
Component(s)Java Client(s) Bridge2Java

Runtime

This could be any Java code.
i.e. An EJB, a Java Bean, a
Servlet or JSP, or an AWT or
Swing client etc.

The Bridge2Java runtime
provides as statefull binding
between the Java proxies and
their associated COM
IDispatch interface.

Most COM components
implement the IDispatch
interface. Bridge2Java binds
to COM IDispatch interface.

IDispatch

Bridge2Java
Buildtime

Java proxy(s)
to COM

Components(s)

The Bridge2Java
buildtime generates Java
proxy classes for COM
IDispatch interfaces.

ge
ne

ra
te

s

Generated Java proxy classes
abstracts connection and
communication with the COM
component classes from the
Java client.

COM runtime
290 WebSphere and .NET Coexistence

Figure 6-14 The Interface Tool for Java solution model for .NET integration

How to implement an elementary solution
We have contrived a very simple example that demonstrates how to use
Interface Tool for Java to provide stateful integration between Java clients and
.NET assemblies. We have deliberately used a narrow scope in this example so
that we can focus on the integration technologies (see 6.1.2, “Considerations” on
page 266 for a broader solution model).

Consider Figure 6-15 on page 292; it illustrates a simple class model with a
single .NET assembly Calculator that contains a single class Calculator.Class1,
Interface Tool for Java runtime binding via IDispatch, Java proxies
com.calculator.Class1 and com.calculator._Class1 generated by Interface Tool
for Java build-time, and a Java client com.clients.Client1. The .NET class has a
stateful interface. The client must first set arguments using set_arg1() and
set_arg2(), then invoke the add() method to add the arguments together. For this
to work correctly, a single instance of a .NET calculator object Calculator.Class1
must be associated with the Java client com.clients.Client1 for the life of the Java
proxy com.calculator.Class1. As we mentioned earlier, .NET assemblies do not
normally implement the IDispatch interface. In order to make the .NET assembly
accessible via IDispatch, we need to apply some compile attributes to the .NET

Type Library(s)

.Net
Assembly(s)Java Client(s) Bridge2Java

Runtime

This could be any Java code.
i.e. An EJB, a Java Bean, a
Servlet or JSP, or an AWT or
Swing client etc.

The Bridge2Java runtime
provides as statefull binding
between the Java proxies and
their associated COM
IDispatch interface.

A COM IDispatch interface
can be exported form .Net
Assemblies. Bridge2Java
binds to COM IDispatch
interface.

IDispatch

Bridge2Java
Buildtime

Java proxy(s)
to .Net

Assembly(s)

ge
ne

ra
te

s Generated Java proxy classes
abstracts connection and
communication with the .Net
Assembly classes from the Java
client.

.Net runtime

import

export

The .Net runtime can
automatically provide an
IDispatch facade for .Net
assemblies at runtime.

Type libraries (can be
made to) contain an IDL
definitions of the IDispatch
interfaces for its associated
.Net assembly.

The Bridge2Java
buildtime generates Java
proxy classes for COM
IDispatch interfaces.
 Chapter 6. Scenario: Synchronous stateful 291

classes or interfaces we want to access via IDispatch (read on for a technique
that does not modify the original source code). We will then be able to generate a
type library which describes the IDispatch interface for the target .NET classes.
We use the type library with the Interface Tool for Java build-time to generate the
Java proxies.

Figure 6-15 Simple class model for .NET integration

What if you do not have the original source code or you simple do not want to, or
cannot, modify the original source code? Actually, this is not a problem. Consider
the solution model illustrated in Figure 6-16 on page 293. This model is very
similar to Figure 6-15, except that we have added a new .NET assembly that has
a single class Calculator2.Class1 which extends our original .NET class
Calculator.Class1. Using this technique, our thin subclass (it is just a class
declaration without any implementation code; see the sample code) has the
IDispatch interface attribute declaration, but inherits all its methods from the
original superclass implementation. This inheritance association is made with the
binary implementation of the .NET superclass, not with the source code (for
example, you do not need source code for the superclass to use this technique).

Java Client(s)
package; com.clients

Bridge2Java Runtime

package; com.calculator

Java proxy(s) to .Net Assembly(s)

+... main(...)

...

Client1

+... set_arg1(...)
+... set_arg2(...)
+... add(...)

...

_Class1

...

...

Class1

...

...

Dispatch

namespace; Calculator

.Net Assembly(s)
IDispatch

.Net Runtime

+ void set_arg1(int arg1);
+ void set_arg2(int arg2);
+ int add();

- int m_arg1;
- int m_arg2;

Class1
292 WebSphere and .NET Coexistence

Figure 6-16 Class model for .NET integration using a .NET subclass

Implementation activity
Figure 6-17 on page 294 illustrates the activities involved in building this
elementary integration between a Java application and a .NET application.

Java Client(s)
package; com.clients

Bridge2Java Runtime

package; com.calculator

Java proxy(s) to .Net Assembly(s)

+... main(...)

...

Client1

...

_Class1

...

...

Class1

...

...

Dispatch

namespace; Calculator2

.Net Assembly(s)
IDispatch

.Net Runtime

namespace; Calculator

.Net Assembly(s)

+ void set_arg1(int arg1);
+ void set_arg2(int arg2);
+ int add();

- int m_arg1;
- int m_arg2;

Class1

Class1

+... set_arg1(...)
+... set_arg2(...)
+... add(...)
 Chapter 6. Scenario: Synchronous stateful 293

Figure 6-17 Integration activities between Java and .NET using Interface Tool for Java

Build the .Net assembly

Is the original .Net assembly
source editable?

Refine code with .Net
System.Runtime.InteropSer

vices attributes

yesno

Create new class(s) that
inherit form target class(s)

Generate type library using
the tlbexp.exe utility

Generate registry entries
using the regasm.exe utility
(this generates as *.reg file)

Deploy the .Net assembly
(drag to the

'c:\winnt\assembly'
folder)

register the type library
(double click on the

previously generated *.reg
file)

Generate the Java proxies
using Bridge2Java.exe and
the previously generated

type library

Build and test
the Java test client

Comment out any unwanted
.Net 'Object' methods from

the Java proxy(s)

Compile the Java
implementations
294 WebSphere and .NET Coexistence

Generating the type library
Use the .NET SDK command line utility tlbexp.exe to generate a type library
from a built .NET assembly.

For example: tlbexp.exe Calculator2.dll will generate Calculator2.tlb.

Registering the type library
Use the .NET SDK command line utility regasm.exe to generate the registry
entries for the IDispatch clients.

For example: regasm.exe Calculator2.dll /regfile:Calculator2.reg will
generate Calculator2.reg.

Applying the registry entries
Double-clicking a .reg file will apply it to the registry. For scripted deployment,
you can use regedit.exe.

For example: regedit /s Calculator2.reg will apply the Calculator2.reg file to
the Windows registry.

Other considerations
The example illustrated in this chapter uses the
System.Runtime.InteropServices.ClassInterfaceAttribute attribute to expose all
.NET class methods for interoperability. Finer-grained method exposure can be
defined using the System.Runtime.InteropServices.ComVisibleAttribute attribute.
Consider exposing interfaces, rather than classes, using interoperability
attributes on these interfaces to expose only the required methods to the
IDispatch interface.

While exploring the use of Interface Tool for Java with .NET, we encountered
some problems with registry entries not being correctly set. If your test client fails
to bind to the .NET object correctly, check the registry entries. The value of the
InProcServer32 key was sometimes set incorrectly by regasm.exe. It should be
set to mscoree.dll to enable the .NET runtime to provide an IDispatch callable
wrapper to the targeted .NET assembly.

For details, see:

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpguide/ht
ml/cpconregisteringassemblieswithcom.asp
 Chapter 6. Scenario: Synchronous stateful 295

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpguide/html/cpconregisteringassemblieswithcom.asp

296 WebSphere and .NET Coexistence

Chapter 7. Scenario: Synchronous
stateless (WebSphere
producer and .NET
consumer)

The purpose of this chapter is to provide an implementation of the stateless
synchronous interactions using both the remote procedure call (RPC) and
document-oriented call paradigms described in Chapter 4, “Technical
coexistence scenarios” on page 109.

The first section of this chapter elaborates the problem previously identified in
4.2.2, “Stateless synchronous interaction” on page 115.

In 7.1.2, “Considerations” on page 300 we examine the technical considerations
that were taken into account when designing the solution.

The solution itself is presented in two parts: a simplified solution model and an
extended solution model. In the simplified solution model, we provide a very
basic set of implementations that illustrate how to achieve integration between
WebSphere Application Server and Microsoft .NET using both RPC and
document-oriented call paradigms. The extended solution model illustrates how
the simplified solution model may be extended to incorporate the full interaction

7

© Copyright IBM Corp. 2004. All rights reserved. 297

scenarios identified in Chapter 4, “Technical coexistence scenarios” on
page 109.

The final section of this chapter presents recommendations on best practises for
implementing the integration solutions.
298 WebSphere and .NET Coexistence

7.1 Problem definition
This section describes some of the issues in integrating stateless synchronous
communication between application components residing in WebSphere
Application Server and Microsoft .NET.

7.1.1 Description of the problem
The problem addressed in this chapter is how application artifacts deployed in a
WebSphere Application Server environment can be made to interact with
application artifacts deployed in a Microsoft .NET environment. Figure 7-1
illustrates the nature of the interaction.

Figure 7-1 Stateless Synchronous Interaction

What this illustration shows is essentially a service-oriented architecture. When
we consider such an architecture, we often talk in terms of a service provider
which provides some service and a service consumer who calls or consumes the
service. In this chapter, the service is provided by a Microsoft .NET application
artifact and is consumed by a WebSphere Application Server application artifact.

In this particular scenario, we are only concerned with implementing synchronous
communications between the two entities. That is, the consumer sends a request
to the service provider and then blocks or waits for the response before
continuing processing.

The final piece of the puzzle in defining the problem is that we declare that the
communication occurs in a stateless manner. That is to say, each interaction
between service consumer and provider occurs without any knowledge of any
previous interactions between the two.

add(arg1, arg2)
Client Code

iC
al

cu
la

to
r2

Service
Implementation

Code

<<stateless>>

Client Process Service Process
 Chapter 7. Scenario: Synchronous stateless (WebSphere producer and .NET consumer) 299

7.1.2 Considerations
In designing and implementing a solution for the scenario, there are several
considerations that should be taken into account. This section presents a
discussion of these considerations.

Transport mechanism
For communication to occur between WebSphere Application Server application
components and Microsoft .NET components, we have to employ some
mechanism for making calls and exchanging data between the two. In selecting
an appropriate transport mechanism, there are some fundamental questions that
should be considered:

� Is the transport mechanism independent of the underlying platform,
programming languages and distributed component technologies?

� What transport protocols are supported by it, and are they suitable for
integrating the two technologies?

� Does the transport mechanism support the characteristics of the interaction
we are implementing? For instance, in this scenario, it must be capable of
supporting stateless synchronous interactions.

� Finally, and perhaps most importantly, is the transport mechanism supported
by both WebSphere Application Server and Microsoft .NET?

If no appropriate transport mechanism exists, then we must consider whether we
are willing to implement one. In practice, developing a transport mechanism from
scratch is seldom a desirable option. Fortunately, it is often more convenient to
leverage existing transport technologies by writing adapters that hide the
complexities of the underlying transport mechanism from the application.

In this particular scenario, selecting the most appropriate transport mechanism
was relatively straightforward. This is because both WebSphere Application
Server and Microsoft .NET technologies provide support for Web Services and
support a common technology for implementing service-oriented architectures in
a distributed stateless synchronous manner, which is SOAP.

SOAP is in fact a specification for the exchange of structured information in a
decentralized, distributed environment. It is particularly suitable for our solution in
a number of ways:

� It was designed to enable communication between the actors in a
service-oriented architecture. In SOAP, there are three actors: the service
consumer and service provider, which we have discussed already, and a
service broker. The service broker is responsible for making information about
how to access the Web Service available to the service consumer.
300 WebSphere and .NET Coexistence

� SOAP is also operating system independent and not tied to any programming
language or component technology.

� It is, in principle, transport protocol independent and can therefore
encapsulate a variety of protocols and applications, such as HTTP, the HTTP
extension framework, and message-oriented middleware.

For a more detailed discussion of Web Services and the SOAP protocol, refer to
the IBM Redbook WebSphere Version 5 Web Services Handbook, SG24-6891.

Data model
Applications developed using object-oriented programming languages, such as
Java and C#, are written using programming language specific objects and data
types. One of the issues in achieving interoperability between different
programming languages is how to provide a language-independent abstraction
for common language data types.

SOAP addresses this issue by promising interoperability between different
programming languages. It does this by providing a data model, which enables a
language-independent abstraction for common programming language types.
The SOAP data model supports the following data types:

� Simple XML Schema Definition (XSD) types

These are used to represent the primitive data types found in most
programming languages, for instance types such as, int, char, long etc.

� Compound types

There are two kinds of compound types: structs and arrays.

– Structs

A struct is essentally a grouping of primitive types accessed by a unique
name. Structs are conceptually similar to records in languages such as
Pascal or methodless classes with public data members in object-based
programming languages.

– Arrays

Elements in an array are identified by position, not by name. This is the
same concept found in languages such as Java and C#. SOAP also
supports partially transmitted and sparse arrays. Array values may be
structs or other compound values. Also, nested arrays (which means
arrays of arrays) are allowed.

As we can see, while transport mechanisms such as SOAP may address data
typing issues between programming languages, the mappings available are
generally limited. This is not by design, but really just a consequence of the
 Chapter 7. Scenario: Synchronous stateless (WebSphere producer and .NET consumer) 301

difficulties of abstracting from a specific programming language data model to a
common model.

Interface definitions
Applications are designed and written to leverage the full feature set of the
programming language in which they are developed. Thus, in providing a
solution to our interoperability scenario, it is necessary to consider how to
abstract Java and .NET objects into some common form such that they can be
marshalled for transmission across the wire and unmarshalled at the receiving
end. The manner in which this is implemented must, of course, take into
consideration any restrictions imposed by the chosen transport mechanism.

In the light of the discussions concerning transport mechanisms and data
modelling, we should consider how best to design the interfaces between our
application and the underlying integration technologies. These should be
designed such that the service provider and consumer implementations are
abstracted from the complexities of:

� Interoperability between different technologies.

� The underlying transport mechanism.

� Data modelling differences.

Security
If the security policy states that access to services should be restricted to only
authorized groups or users then consideration must be given as to how security
credentials can be passed between the technologies.

The solution presented in this chapter does not implement security; however, for
a fuller discussion of security-related interoperability issues, refer to 11.4,
“Security” on page 484.

The IBM Redbook IBM WebSphere V5.0 Security, SG24-6573, presents a full
discussion of security within WebSphere Application Server.

You may also refer to the IBM Redbook WebSphere Version 5 Web Services
Handbook, SG24-6891, which documents how security is implemented in Web
Services.

Transactions
Transactional models are implemented within both WebSphere Application
Server and Microsoft .NET. Where transactions are a business requirement,
consideration has to be given about how to maintain transactional integrity
across technologies.
302 WebSphere and .NET Coexistence

For purposes of clarity, the solution presented here does not address the issue of
implementing transactions. For a discussion of the issues in implementing
transactions between WebSphere Application Server and Microsoft .NET
components, refer to 11.5, “Transactionality” on page 489.

7.2 Solution model
This section describes the solution model for the stateless synchronous
interaction between WebSphere and .NET.

7.2.1 A solution to the problem
This scenario concerns the situation where some functional code exists in the
business layer of a WebSphere environment which we need to access and
interoperate with from a Microsoft .NET environment.

7.2.2 Service provider
Assume there exists some code in a WebSphere environment that we wish to
make available to a .NET application. In this scenario, we will achieve
interoperability with Web Services technology, so the first step is to Web Service
enable the code on the WebSphere system. This means enabling the back-end
functional code to be accessed and invoked using SOAP. This can be done most
easily using the WebSphere Studio Application Developer tool, and the process
for this is described in this chapter.

In our example solution, we will be using the Calculator example. We will use the
interfaces described as part of the Calculator (ICalculator1, ICalculator2 and
ICalculator3) to show different ways of achieving the interoperability.

The code (and classes) that we need to enable as a Web Service is contained in
a JAR file, Calculator.jar.

Calculator.jar contains a class called CalculatorService.java with these methods:

� public void setCurrentTotal(float arg)
� public float getCurrentTotal()
� public float add(float arg1)
� public float add(float arg1, float arg2)
� public float add(ICalculator3Args args)

The top three methods are for use with the ICalculator1 interface, which is
intended for stateful interation. This chapter focuses on stateless
 Chapter 7. Scenario: Synchronous stateless (WebSphere producer and .NET consumer) 303

communication, and hence we will not be considering ICalculator1 in this
chapter. At the time of writing, stateful Web Services are not yet possible.

The add(float arg1, float arg2) method is for use with the ICalculator2
interface, and add(ICalculator3Args args) is for the ICalculator3 interface.
Both of these imply stateless interaction, and we will focus on enabling these two
methods as the Web Service methods.

The ICalculator2 method will be used to implement a Remote Procedure Call
(RPC) style Web Service, and the ICalculator3 method will be used to implement
a document-style Web Service. This is intended to show the capabilities of Web
Service interoperability using the two communication models, as described in
4.2.5, “RPC interface style” on page 123 and 4.2.6, “Document interface style” on
page 124.

The class hierarchy of the service provider side of the Calculator implementation
is shown in Figure 7-2.

Figure 7-2 Calculator.jar

To view the actual implementation of the code within Calculator.jar, simply create
a new Java project in WebSphere Studio Application Developer, for example:
CalculatorCode, click File -> Import -> Zip file, and select Calculator.jar.

WebSphere Studio Application Developer has support for three types of Web
Services interaction:

Calculator.jar

<<interface>>

ICalculator3Args

void
Iterator
int

setArg (float)
getIterator()
getNumArgs()

Calculator3Args

private Vector arguments

Calculator3Args()

<<data>> <<business>>

Calculator Service

private float calc1CurrentTotal

void
float
float

setCurrentTotal (float)
getCurrentTotal()
add (float)

<<interface>>

ICalculator1 ICalculator2

<<interface>>

float add (float, float)

ICalculator3

<<interface>>

add (ICalculator3Args)float

<<uses>>
304 WebSphere and .NET Coexistence

� RPC/Literal
� RPC/Encoded
� Document/Literal

The style of interaction of a Web Service is specified in the WSDL belonging to
that Web Service.

Scenario implementation: getting started
To enable the existing Calculator code functionality as Web Services, we will be
using WebSphere Studio Application Developer. Start WebSphere Studio
Application Developer, and open up a new (blank) workspace.

Create an Enterprise Application Project (EAR) which is where we will create our
Web Services. Go to File -> New -> Project -> J2EE -> Enterprise Application
Project and name the project SimplisticWS2NETCalculator.

Scenario implementation with the RPC model
We will use the ICalculator2 add(float arg1, float arg2) method to
demonstrate Web Services interoperability using RPC style communication.

In order to create a Web Service from existing code in WebSphere Studio
Application Developer, the code (or the classes) need to be imported into the
WebSphere Studio Application Developer tooling so it can be used by the
generated Web Service. The tooling will generate Web Service classes which will
act as a proxy to the existing code, handling all transport issues and invoking the
existing methods. The actual source code (as opposed to compiled classes) is
not required by WebSphere Studio Application Developer, since Web Services
can be created from compiled Java code.

We assume in this scenario that you have the existing code available (as
opposed to the compiled classes), but it makes no difference to the processes
involved.

If the existing code is contained within a J2EE Enterprise Application (EAR)
project, the user could import the EAR file into WebSphere Studio Application
Developer for use in the Web Service creation. However, in our example, the
existing code is contained as part of a Java Archive (JAR) file.

We need to enable methods within the CalculatorService class to be accessible
as Web Services, in this case using WebSphere Studio Application Developer.
The CalculatorService class is contained in the Calculator.jar file. This could
either be imported into WebSphere Studio Application Developer as a JAR (or
ZIP) file, or added as a reference from the Java build path of a separate J2EE
project.
 Chapter 7. Scenario: Synchronous stateless (WebSphere producer and .NET consumer) 305

In our example, we will create a new Web project (analagous to a J2EE Web
Module WAR) to act as our front-end to the code within the JAR file. We will
reference the JAR file from our Web project by adding it to the Java build path
and making the JAR file available to the application at runtime. In our example,
we have no need to edit the existing back-end code contained within that JAR
file, so there is no benefit to importing it into the WebSphere Studio Application
Developer tooling; we simply want to enable certain methods within the class to
be available as a Web Services. The approach we use here would also be
applicable if we did not have the source code available, since we never actually
see or use the source code itself.

In order to Web Service enable the ICalculator2 add(float, float) method, the
code needs to be contained in a Web project. Create a new Dynamic Web
Project under the the SimplisticWS2NETCalculator enterprise application, called
Calculator2WebService which will act as a façade to the actual
CalculatorService class.

Add the existing code to the Java build path of this project. Right-click
Calculator2WebService, then select Properties -> Java Build Path, Projects
tab, and check the CalculatorCode project. Open the
SimplisticWS2NETCalculator enterprise application descriptor (application.xml);
switch to the Module tab and add the CalculatorCode project as a Project Utility
JAR. Select Java JAR Dependencies on the Properties panel and check the
CalculatorCode.jar file. This will make the compiled classes within the JAR file
accessible to any code being written in the Calculator2WebService project.

Within this Web project, write a method add(float, float), which in turn calls
the actual add(float, float) method in the CalculatorService class of the
Calculator.jar file, as shown below. It is this façade which we turn into a Web
Service. Create a new Java class under the Calculator2WebService/Java Source
folder, named Calculator2WebServiceMethod, package:
redbook.coex.sall.business.
306 WebSphere and .NET Coexistence

Example 7-1 The façade to the CalculatorService add(float, float) method

package redbook.coex.sall.business;

import redbook.coex.sall.business.*;

public class Calculator2WebServiceMethod {

//the webservice method for ICalculator2
public float add(float arg1, float arg2) {

float result = 0;

ICalculator2 calc = new CalculatorService();
result = calc.add(arg1, arg2);
return result;

}
}

The Calculator2WebServiceMethod creates an instance of the CalculatorService
class, and invokes its add(float, float) method, returning the float result. We
are now ready to turn this method into a Web Service.

There is a wizard in WebSphere Studio Application Developer which will guide
the user through the Web Service creation. This is started by first selecting the
class containing the methods you wish to turn into a Web Service
(Calculator2WebServiceMethod), and selecting File -> New -> Other -> Web
Services -> Web Service. Accept all defaults on the Web Service wizard until
you reach the window entitiled “Web Service Java Bean Identity”. On this page,
the user can select which methods within the chosen class they would like to
enable as Web Services. In this case, we only have one method - the add(float,
float) method which is the façade to the existing back-end code implementing
the ICalculator2 interface. Select this method if it is not selected automatically.

Also on this page of the Web Service wizard, there is an option to select the Style
and Use of the Web Service. Here, in order to create an RPC style Web Service,
select RPC/Encoded. RPC/Literal Web Service calls are not supported by
Microsoft .NET, so for the sake of interoperability, which is the purpose of this
scenario, RPC/Encoded was the only suitable option.

The wizard, once finished, will automatically generate all necessary files and
code for the selected class to be a complete Web Service, including the WSDL
file. A WSDL file describes everything a client needs to know about the Web
Service in order to call the service, including ports, transport style (RPC in this

Note: The wizard will warn you that the Web Service may not comply with
WS-I because the RPC/Encoded style was selected. Ignore the warning.
 Chapter 7. Scenario: Synchronous stateless (WebSphere producer and .NET consumer) 307

case), methods and their required arguments, and the location of the Web
Service. For more information about WSDL, see “WSDL” on page 430. The
WSDL describing our example Web Service is shown below.

Example 7-2 WSDL for the Calculator2 Web Service

<?xml version="1.0" encoding="UTF-8"?>
<wsdl:definitions targetNamespace="http://business.sall.coex.redbook"
xmlns="http://schemas.xmlsoap.org/wsdl/"
xmlns:apachesoap="http://xml.apache.org/xml-soap"
xmlns:impl="http://business.sall.coex.redbook"
xmlns:intf="http://business.sall.coex.redbook"
xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
xmlns:wsdlsoap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <wsdl:types/>
 <wsdl:message name="addResponse">
 <wsdl:part name="addReturn" type="xsd:float"/>
 </wsdl:message>
 <wsdl:message name="addRequest">
 <wsdl:part name="arg1" type="xsd:float"/>
 <wsdl:part name="arg2" type="xsd:float"/>
 </wsdl:message>
 <wsdl:portType name="Calculator2WebServiceMethod">
 <wsdl:operation name="add" parameterOrder="arg1 arg2">
 <wsdl:input message="intf:addRequest" name="addRequest"/>
 <wsdl:output message="intf:addResponse" name="addResponse"/>
 </wsdl:operation>
 </wsdl:portType>
 <wsdl:binding name="Calculator2WebServiceMethodSoapBinding"
type="intf:Calculator2WebServiceMethod">
 <wsdlsoap:binding style="rpc"
transport="http://schemas.xmlsoap.org/soap/http"/>
 <wsdl:operation name="add">
 <wsdlsoap:operation soapAction=""/>
 <wsdl:input name="addRequest">
 <wsdlsoap:body
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
namespace="http://business.sall.coex.redbook" use="encoded"/>
 </wsdl:input>
 <wsdl:output name="addResponse">
 <wsdlsoap:body
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
namespace="http://business.sall.coex.redbook" use="encoded"/>
 </wsdl:output>
 </wsdl:operation>
 </wsdl:binding>
 <wsdl:service name="Calculator2WebServiceMethodService">
308 WebSphere and .NET Coexistence

 <wsdl:port binding="intf:Calculator2WebServiceMethodSoapBinding"
name="Calculator2WebServiceMethod">
 <wsdlsoap:address
location="http://localhost:9080/Calculator2WebService/services/Calculator2WebSe
rviceMethod"/>
 </wsdl:port>
 </wsdl:service>
</wsdl:definitions>

You can see by the following line that this Web Service does indeed use the RPC
style of communication:

<wsdlsoap:binding style="rpc"
transport="http://schemas.xmlsoap.org/soap/http"/>

During Web Service creation, WebSphere Studio Application Developer also
creates a new deployment descriptor specifically for the Web Services
deployment information, called webservices.xml. With this file, as well as the
WAR Module deployment descriptor (web.xml), this Web project can now be
exported as a WAR file, or as part of a J2EE Application Project (EAR file) and
be ready for deployment to a runtime server such as WebSphere Application
Server.

Complex data type Web Services
Although the example used in this chapter is a very basic Web Service using
simple data types, complex data types are also supported in Web Services.
Complex data types are represented in both WSDL and SOAP messages as a
combination of simple data types, and hence can be handled in the same way as
the simple data types. The only real difference is the need for serializers and
deserializers to construct the complex object from the SOAP message and vice
versa, but this is all generated automatically by WebSphere Studio Application
Developer, and handled automatically at runtime by the application server, such
as WebSphere Application Server.

As such, the process for creating the server side Web Service for code which
involves complex data types is exactly the same as described above, and there
would be no benefit gained from implementing a complex data type solution in
this book.

Scenario implementation with the Document style model
We will use the ICalculator3 add(ICalculator3Args args) method to
demonstrate Web Services interoperability using the Document style model of
communication.

This is done in an almost identical way to the RPC style Web Service
implemented above. Create a new Dynamic Web Project in the
 Chapter 7. Scenario: Synchronous stateless (WebSphere producer and .NET consumer) 309

SimplisticWS2NETCalculator EAR file, called Calculator3WebService, which will
act as a façade to the actual CalculatorService class.

In order to create the Web Service, we again create a façade class which calls
the existing CalculatorService class in the Calculator.jar file. This time, we want
to create a Web Service front end to enable the add(ICalculator3Args) method
to be accessible from a Web Service. Follow the steps from the RPC model
sample in order to add the CalculatorCode.jar to the new Web project class path.

A way to do this would be to implement the front-end method
add(ICalculator3Args) to invoke the existing back-end code. However, Web
Services cannot pass interfaces as arguments, since this would assume a valid
implementation of ICalculator3Args on any service consumer wanting to use the
Web Service. This would be bad practice, since it restricts interoperability and
relies on consumers having knowledge of the service implementation, which is
against the principles of Web Services.

Instead, the Calculator3WebServiceMethod class (which is the façade to the
existing business-layer code) will take in an array of float data types as its
parameters, and within the method it will convert the array into an instance of
Calculator3Args (which implements the ICalculator3Args interface), which can
then be used to call the existing back-end method add(ICalculator3Args). This
helps to hide the specifics of the service implementation from any clients using
the service, but maintains its purpose of enabling the back-end ICalculator3
method as a Web Service. Create the Calculator3WebServiceMethod Java class
similar to the previous method implementation (Calculator2WebServiceMethod).

Example 7-3 The façade to the CalculatorService add(ICalculator3Args) method

package redbook.coex.sall.business;

import redbook.coex.sall.business.*;

public class Calculator3WebServiceMethod {
//the webservice method for ICalculator3
public float add(float[] floatArray) {

float result = 0;
ICalculator3Args c3Args = new Calculator3Args();
for (int i=0; i<floatArray.length; i++) {

c3Args.setArg(floatArray[i]);
}
ICalculator3 calc = new CalculatorService();
result = calc.add(c3Args);
return result;

}
}

310 WebSphere and .NET Coexistence

Example 7-3 on page 310 shows the code for the Calculator3WebServiceMethod
class. It takes in a float array, converts the array into an instance of
ICalculator3Args and passes it as an argument to the add(ICalculator3Args)
method of the existing back-end ICalculator3 implementation code. The result
from the back-end code is then returned by the method.

It is this class which we want to enable as a Web Service. This is done in the
same way as described previously for the RPC style communication, but you
must select Document/Literal as the Style and Use of the Web Service method
in the wizard (instead of RPC/Encoded).

The Web Service wizard will (as with the RPC Web Service) generate all
necessary files for the Web Service. The WSDL for the Document/Literal style
Web Service is very similar to the one shown above for the RPC Web Service,
but the main difference is shown below:

<wsdlsoap:binding style="document"
transport="http://schemas.xmlsoap.org/soap/http"/>

The Document style Web Service is now complete, and the WAR file
Calculator3WebService is now ready for deployment to a runtime server such as
WebSphere Application Server. Since we will ultimately be generating service
consumers to both Web Services (the RPC-style ICalculator2 and the
Document-style ICalculator3 services), it makes sense to deploy the EAR file
containing both Web Service WAR projects.

Deployment
In order to make the Web Services available to any service consumers (clients),
they will be deployed to WebSphere Application Server.

In order to do this, you must first export the EAR file from WebSphere Studio
Application Developer. Select the SimplisticWS2NETCalculator project, then
select File -> Export -> EAR file from the menu. Follow the wizard and save the
EAR file to a suitable location.

Install the EAR file into WebSphere Application Server using the method of your
choice, and start the application. If you need help with application deployment,
refer to the WebSphere InfoCenter.

You must also make the Calculator.jar file available to the server at runtime. One
way to do this is to copy the Calculator.jar file into the
<WebSphere_root>/AppServer/lib directory.
 Chapter 7. Scenario: Synchronous stateless (WebSphere producer and .NET consumer) 311

If installation is successful, the WSDL files associated with
Calculator2WebService and Calculator3WebService should be accessible at:

http://<machine_name>:9080/Calculator2WebService/wsdl/redbook/coex/sall/bus
iness/Calculator2WebServiceMethod.wsdl

and

http://<machine_name>:9080/Calculator3WebService/wsdl/redbook/coex/sall/bus
iness/Calculator3WebServiceMethod.wsdl

These WSDL files will be needed by any consumer wishing to develop code to
access the services. With access to the WSDL files, and with the services
running, we are now ready to develop clients for the service consumer to invoke
the Web Services, and ultimately invoke the back-end Calculator operations.

Service provider considerations
There are important considerations when designing the Web Service with regard
to best practice application design and increasing qualities of service.

In the WebSphere Application Server environment, there are two types of Web
Service endpoints which can be implemented. These are the standard Java
Bean Web Service (as implemented for the simple solution) and an EJB Web
Service. There are guidelines for deciding which one to use. If the business logic
of the service is completely contained in the Presentation layer, it is necessary to
use a standard Java Bean Web Service. If the business logic of the service is
completely contained in the Business layer, using an EJB Web Service will
provide the best practice solution.

If the service application has some processing in both layers of the application,
then the following should be considered.

� If in the existing application (which is being enabled as a Web Service), there
is some preprocessing of the request in the Presentation layer prior to calling
the business logic in the Business layer, then it is good practice to expose the
existing application interface as a Web Service in the Presentation layer. This
would require the implementation of the Web Service to be a standard Java
Bean Web Service. This ensures that the preprocessing of the request will
still take place, with no need to modify the business layer interface.

� If, however, there is no preprocessing of the request in the existing application
Presentation layer then the best practice will be to expose the interface as a
Web Service in the Business layer as an EJB Web Service.

Implementing an EJB Web Service is an easy way to add complex qualities of
service to a Web Service endpoint. EJB Web Services inherit their qualities from
the EJB container in which they reside. For example, an EJB Web Service will
have all concurrent client access issues handled automatically by its EJB
312 WebSphere and .NET Coexistence

container, whereas a standard Java bean Web Services would have to
specifically consider how to handle such events.

Transactions are another example. The EJB endpoint runs in the transaction
context of its EJB container, and thus the service’s business logic can also run
under the transaction context as defined by the EJB container. If transactions
were required using a standard Java bean Web Service, the transaction handling
logic would have to be implemented manually. Therefore, a heavily transactional
Web Service would be better designed using EJBs and exposing the Web
Service through an EJB Web Service endpoint.

Creating an EJB Web Service using WebSphere Studio Application Developer is
very straightforward, and a wizard is provided to help guide the user through the
process.

7.2.3 Service consumer
This section explains how to consume the WebSphere Web Service from a
Microsoft .NET client. Before creating the service consumer, it is assumed that
the WebSphere Web Service has been written and deployed on a server (as
described above) and the Web Service is accessible to the .NET application.

Various scenarios for consuming a WebSphere Web Service are discussed later
in this chapter. As the process for consuming Web Services in Microsoft .NET is
the same in all scenarios, we will demonstrate the code for only one scenario, as
illustrated in Figure 7-10.

Creating the service consumer
This section describes how to use a WebSphere-generated Web Service using
.NET middleware, and to describe this, a sample application is created which
returns the average of float numbers. The Windows client application (msClient)
is created to accept data from the user, and the middleware logic (bizAverager) is
created to perform the business logic of the application, including consuming the
Web Service created in the previous section (which adds numbers together),
using this result to calculate and return the average of the numbers.
 Chapter 7. Scenario: Synchronous stateless (WebSphere producer and .NET consumer) 313

Figure 7-3 Averager application

To develop the client, we will be using Microsoft Visual Studio .NET. Without a
development environment, such as Visual Studio, the necessary code can be
developed using the .NET Framework V1.1 SDK and a simple text editor.

Start Visual Studio and create the business logic code first, and then the
Windows client. To create business or middleware logic, create a new Visual C#
Projects/Class Library project bizAvgAssembly and rename the Class1.cs class
as bizAverager.cs class, make sure you rename the class and the constructor
method also.

Next, add the Web Services reference which the application needs to consume.
Right-click the Web References tag in the solution explorer then select Add
Web Reference. The Add Web Reference window appears as shown in
Example 7-4 on page 315.

Windows Client (msClient)

A, B

A + B
A, B A + B

2

Business Logic
(bizAvgAssembly)

Calculator2WebServiceMethod

Calculator3WebServiceMethod

Web Service
314 WebSphere and .NET Coexistence

Figure 7-4 Adding a Web reference

In our sample application, we are using two Web Services, the
Calculator2WebService for adding two float numbers using RPC style
communication and Calculator3WebService for adding an array of float numbers
in Document style communication. The WSDL URLs for Calculator2WebService
and Calculator3WebService are:

http://<machine_name>:9080/Calculator2WebService/wsdl/redbook/coex/sall/bus
iness/Calculator2WebServiceMethod.wsdl

http://<machine_name>:9080/Calculator3WebService/wsdl/redbook/coex/sall/bus
iness/Calculator3WebServiceMethod.wsdl

In .NET, the code for creating RPC style or Document style Web Service clients
is the same. When you add the Web reference, .NET automatically determines
the messaging style and accordingly creates a proxy for accessing the Web
Service.

Scenario implementation with the RPC model
To use the WebSphere Web Service from a .NET client consumer, first enter the
WSDL path of the Web Service from the Add Web Reference window shown
above and click Go. This will search and display any methods available for that
 Chapter 7. Scenario: Synchronous stateless (WebSphere producer and .NET consumer) 315

Web Service. By clicking the Add Reference button, add the service reference
to your project.

Add the following method (getAverage) into the bizAverager class, and build the
project to create the bizAverager.dll.

Example 7-4 bizAvgAssembly implementation (RPC)

public class bizAverager {
//...

public float getAverage(float arg1, float arg2) {
//Create Web Service object
Calculator2WebServiceMethod.Calculator2WebServiceMethodService

rpcSimpleWS= new Calculator2WebServiceMethod.Calculator2WebServiceMethodService
();

//Request service to add 2 numbers
float result = (rpcSimpleWS.add (arg1,arg2));
//Return Average
return result/2;

}
//...

Scenario implementation with the document model
Next, to implement the scenario using Document style messaging
communcation, add the following code. The code uses an array of floats for
passing the parameters to the Web Service.

Example 7-5 bizAvgAssembly implementation (Document style)

...
//This method uses complex data type-an array of float to invoke Web
//Service on WebSphere using Document
//This method takes float array as a parameter and requests Web Service
//on WebSphere to add it.
//The result returned is average of all float parameters.
public float getAverage(float[] args) {

//Create Web Service object
Calculator3WebServiceMethod.Calculator3WebServiceMethodService

docComplexWS=new Calculator3WebServiceMethod.Calculator3WebServiceMethodService
();

//Request service to add float numbers in an array
float result = (docComplexWS.add (args));
//Return Average
return result/args.Length;

}
...
316 WebSphere and .NET Coexistence

Once you are done with coding the library, click Build -> Build bizAvgAssembly
from the menu to see if the build was successful. If you encounter any error,
check the source again.

Creating a client application
To demonstrate the functionality of the Web Service, let’s create a Windows
client as shown in Figure 7-5; the Windows client is used to accept the data from
the user and to display the average of the numbers.

Figure 7-5 .NET client for consuming WebSphere Web Service

First, add the Windows Application project to an existing Class Library project, as
shown in Figure 7-6.
 Chapter 7. Scenario: Synchronous stateless (WebSphere producer and .NET consumer) 317

Figure 7-6 Add new Windows Application project

Open Windows Form and create GUI interfaces as shown in Figure 7-5. You can
also use the existing client code provided with the book.

The new client application does not know about the bizAvgAssembly yet; you
need to add a reference to the library.

The application is divided into two groups; one demonstrates how to call a Web
Service using RPC style communication, and the other how to call a Web Service
using Document style communication.

For the RPC style Web Service, the client passes two float arguments entered by
the user and calls Calculator2WebService to add the two numbers together. For
the Document style Web Service, the client passes a float array, a list of
arguments entered by the user and calls the Calculator3WebService method.

To add code into the client for consuming the business logic functionality, let’s
start with the RPC style client. Double-click the Average button (the upper
button) to open the code window containing the click button event declaration.
Add the code as shown below.

Example 7-6 Button click event implementation

private void button1_Click(object sender, System.EventArgs e) {
//Create business object
bizAvgAssembly.bizAverager bz= new bizAvgAssembly.bizAverager();
//invoke the method and display average
318 WebSphere and .NET Coexistence

textBox3.Text =bz.getAverage (Convert.ToSingle(textBox1.Text),
Convert.ToSingle(textBox2.Text)).ToString();

}

Follow the same steps for creating a Web Service which uses Document style
communication. The code is shown below.

Example 7-7 Button click event implementation

private void button3_Click(object sender, System.EventArgs e) {
//create float array
float[] floatArray = new float[listBox1.Items.Count];

//fill the array
for (int i=0; i<listBox1.Items.Count; i++)
floatArray.SetValue (Convert.ToSingle(listBox1.Items[i]),i);

//Create business object
bizAvgAssembly.bizAverager bz= new bizAvgAssembly.bizAverager();
//invoke the method and display average
textBox5.Text =bz.getAverage(floatArray).ToString ();

//cleanup
listBox1.Items.Clear();
textBox4.Clear ();
textBox4.Focus ();

}

The coding is now complete. You should now be able to build and run the .NET
consumer project to invoke and use WebSphere Web Services in a synchronous,
stateless manner as required.

Test
In order to test the sample, make sure that the WebSphere application is running
either in the WebSphere runtime environment or in the WebSphere Studio test
environment.

Run the .NET client application and provide some random data for both
calculators (two numbers, list of numbers). Clicking the Average button should
bring up the results on the client.

Note: There is some extra coding for the client, for example an Add to list
button, but we will not go into details about it here. You can find more details
about the supporting code for the client in the source code.
 Chapter 7. Scenario: Synchronous stateless (WebSphere producer and .NET consumer) 319

Design considerations for the service consumer
This section discusses various considerations while designing the .NET Web
Service consumer application.

� Error handling

Use proper structured exception handling while developing the service
consumer. There are some general situations where we have to take special
care while writing the code. These are:

– The deployed Web Service server is not available or is down.

– Timeouts caused by heavy traffic on server.

– The Web Service generated errors.

� Use of configuration files in Web Service clients

For better portability, a configuration file can be used to configure information
about the Web Service. For example, you can use a configuration file for
specifying the Web Service URL for the client proxy so that code will
automatically handle situations where the URL is not fixed. This situation
could occur when deploying a Web Service from a development to a
production environment. Note that while compiling the application, the
automatically generated proxy can overwrite the code written by you. You can
also generate a custom proxy by using the WSDL.EXE tool provided by .NET.
Note that regeneration of the proxy can overwrite the manual code.

When consuming a Web Service, make sure you have the correct URL in the
WSDL. For example, when you move the Web Service from a development
environment to a production environment, make sure the proper path for the
URL location is in the WSDL.

� Type handling

Take care while consuming Web Services on different platforms. The
requester and sender data types should match to avoid errors.

Table 7-1 hows Java and .Net type compatibility.

Table 7-1 Java and C# type compatibility

Java type C# type

boolean Boolean(boolean)

java.lang.Short Byte(byte)

java.lang.Integrer Char(char)

java.math.BigDecimal Decimal(decimal)

double Double(double)
320 WebSphere and .NET Coexistence

7.3 Extended solution
In this section, we will discuss various extended solutions and issues for
consuming a WebSphere Web Service in .NET.

Because Web Services are accessible using URLs, HTTP, and XML, they can be
consumed on any platform and any layer. The WebSphere Web Service can be
consumed from different tiers of the five-tier architecture model in .NET,
depending on the client. For example, a client can be an ASP.NET client (running
in the Client tier), Windows Application client (running in the Presentation tier),
Class Library for business logic in middleware or even a Web Service.

Consuming a Web Service in a Windows .NET client
Consuming a Web Service from a .NET Windows application is fairly
straightforward and easy. To consume a Web Service in a .NET Windows client,
simply add a Web reference to the client application and access the services by
creating an instance of the Web Service as discussed in “Creating the service
consumer” on page 313. The proxy is created for the client after adding the Web
reference, or you can generate your own proxy to communicate with the Web
Service.

float Single(float)

int Int32(int)

long Int64(long)

byte SByte(sbyte)

short Int16(short)

java.lang.Long UInt32(uint)

java.math.BigInteger UInt64(ulong)

java.lang.Integer UInt16(ushort)

Java type C# type
 Chapter 7. Scenario: Synchronous stateless (WebSphere producer and .NET consumer) 321

Figure 7-7 Accessing a Web Service in Windows application

The proxy on the client side communicates with the Web Service using the
SOAP/HTTP protocol and the WSDL is used for finding the service description.
Note that the client-side code and procedure is the same for both RPC and
Document style format.

Consuming a Web Service in ASP.NET
This scenario is illustrated in the following diagram. Although the architecture in
the diagram is different from the architecture implied in our example solution for
our simple average calculator described in “Creating the service consumer” on
page 313, the code and the procedure for consuming the Web Service in
ASP.NET is same. The only difference is that the code for consuming a Web
Service will have a Web Form instead of a Windows Form. The Web Proxy is
generated on the client side when you add the Web reference.

Pr
ox

y

.NET WebSphere

SOAP/HTTP

Windows Client

WAS

Internet

Calculator
Bean

ICalculator
IIS

Biz Logic for
(Assembly)

Pr
ox

y

322 WebSphere and .NET Coexistence

Figure 7-8 Accessing a Web Service in ASP.NET

Assuming the ASP.NET page on IIS consumes a Web Service, when the
browser sends a request to the ASP.NET page, the compiled Web page invokes
the Web Service through the proxy. The compiled Web page processes the
result, and the IIS then returns the HTML response to the browser.

Consuming a Web Service in the business logic tier
The code and procedure for consuming a Web Service in a middleware
component is the same as seen in previous samples. Figure 7-9 shows this
scenario with a Windows client and a Web client.

WAS

Calculator
Bean

ICalculator

.NET WebSphere

IIS

ASP .NET

Pr
ox

y

Web Browser

SOAP/HTTP

Internet

Internet
 Chapter 7. Scenario: Synchronous stateless (WebSphere producer and .NET consumer) 323

Figure 7-9 Consuming Web Service in the business logic tier using a .NET client

The Windows client uses methods of the business logic, where the business
logic invokes Web Services. This hides the actual implementation of the Web
Service from the client. This scenario can be used with COM+ applications which
reside on the server side of the .NET application. In such cases, the assembly in
the COM+ application will invoke the Web Service.

Assuming the business logic and client are distributed in different locations, the
business logic can be accessed using .NET remoting from the client side.

The same scenario with a Web application using a browser client is shown in
Figure 7-10.

Biz Logic for
(Assembly) WAS

Calculator
Bean

ICalculator

.NET WebSphere

Windows Client

IIS Pr
ox

y

SOAP/HTTP

Internet
324 WebSphere and .NET Coexistence

Figure 7-10 Consuming a Web Service in middleware using ASP.NET application

In this scenario, the compiled ASP.NET Web page uses a service from the
business logic, and the business logic invokes a Web Service. Here, we assume
that both the ASP.NET application and the business logic are the same location,
but for scalability this can be separated in different tiers, one for the ASP.NET/IIS
and another for the business logic. In such cases, the business logic can be
mounted onto a COM+ application. The COM+ provides necessary adaptors as
a component service. Note that the proxy is required at the business tier to
access the Web Service.

Users could also design a .NET console application, a Windows service or a
mobile application to access a Web Service.

Generating your own proxy on the client side
When you add a Web Service to your project, the Visual Studio IDE takes care of
generating a proxy for the client side, but you can also write and compile your
own proxy code. .NET provides a tool, WSDL.EXE, to generate the proxy from
the provided WSDL. You need to compile the proxy code when you write or
generate your own proxy. You can insert your own code into an existing proxy

Web Browser

ASP .NET

IIS

Biz Logic for
(Assembly)

Pr
ox

y

Internet

.NET

WAS

Calculator
Bean

ICalculator
Internet

WebSphere

SOAP/HTTP
 Chapter 7. Scenario: Synchronous stateless (WebSphere producer and .NET consumer) 325

code to make it more flexible. For example, the WSDL URL in the proxy class
can be accessed from a configuration file. This will avoid recompilation of the
Web Service client when the Web Service is moved from one server to another.

7.4 Recommendations
This section covers recommendations based on issues discovered in the
implementation of our interoperability solution.

Data types
When designing your Web Services, you should be careful not to pass
language-specific data types as arguments to your Web Service methods. When
writing the Web Services, one cannot be certain what consumers will use the
Web Service in future, and on what platform they will be implemented. For
example, if a Java Web Service took in a java.util.Vector as a parameter, a
Microsoft .NET service consumer written in C# would have no concept of what a
java.util.Vector is and would not be able to interoperate with the service.

It is also not possible to pass a Java interface as a parameter of a Web Service
method since the service consumer will not have an implementation of the
interface, and the interface definition will be meaningless to the consumer.

A way to get around this is to implement the Web Service with simple parameters
which can be mapped using an xsd schema (such as an array of simple data
types), and implement a wrapper class which converts the language-specific
type (or interface) into the simple data type and vice versa (see “Scenario
implementation with the Document style model” on page 351 for an
implementation of this approach).

Data types which can be used (on the WebSphere side) and still be interoperable
include:

� Java primitive types: boolean, byte, short, int, long, float, double
(along with their corresponding wrapper Java classes)

� Standard Java classes: String, Date, Calendar, BigInteger, BigDecimal,
QName and URI

� Java arrays (of supported types)

� User-defined Java classes (made up of supported types)

Note: This section is about recommendations regarding interoperability of the
Web Services. It does not cover recommendations about J2EE best practices
or application design strategies.
326 WebSphere and .NET Coexistence

RPC style versus Document style
There are occasions when RPC style Web Services are a better option than
Document style Web Services, and vice versa. Both RPC/Encoded and
Document/Literal Web are supported by WebSphere and .NET, so
interoperability between them is not a problem.

However, the Web Services Interoperability Organization (WS-I) specification
1.0, to which J2EE 1.4 conforms, recommends that encoded bindings not be
used, which suggests that for better interoperability, Literal data formatting
should be used in the SOAP messages. This then leads to the issue that
Microsoft .NET does not support RPC/Literal SOAP messages, which would
ultimately suggest that for ideal interoperability (ignoring performance issues),
Document/Literal SOAP formatting is the best choice in all occasions.

Note: When using such user-defined Java classes, use the get and set
methods to help ensure portability and interoperability of the Web Service.
 Chapter 7. Scenario: Synchronous stateless (WebSphere producer and .NET consumer) 327

328 WebSphere and .NET Coexistence

Chapter 8. Scenario: Synchronous
stateless (WebSphere
consumer and .NET
producer)

This chapter is the second part of the synchronous stateless discussion. As
opposed to Chapter 7, “Scenario: Synchronous stateless (WebSphere producer
and .NET consumer)” on page 297, here the roles are changed and WebSphere
is the service consumer and .NET is the service provider.

This chapter does not repeat the problem definition; for that, please refer to 7.1,
“Problem definition” on page 299.

8

© Copyright IBM Corp. 2004. All rights reserved. 329

8.1 Solution model
This section discusses the design and implementation of a solution for the
stateless synchronous interaction from application artifacts in a WebSphere
Application Server application to application artifacts in a Microsoft .NET
application.

The solution provided in this section restricts itself to providing a simplified
implementation that illustrates how interoperability can be achieved between
WebSphere Application Server and Microsoft .NET business layer components.

This section contains the following subsections:

� A solution to the problem

Here we illustrate our solution design, including the rationale for some of the
design decisions taken. We then continue by presenting the details of the
implementation.

� Scenario implementation for the service provider

In this section, we describe how to implement the service provider part of our
scenario, using both Procedure Call (RPC) and Document style paradigms.

� Scenario implementation for the service consumer

Here we describe an implementation for the service consumer side of our
example scenario.

Our solution to the problem is based upon a simple calculator application. The
application provides a very limited set of functionality. The Calculator service
provides only the ability to perform a simple addition of two numbers or addition
of a list of numbers, and return the results. The reason for this is to keep the
example as simple as possible, so that the objective of how to integrate
WebSphere Application Server and Microsoft .NET application artifacts is not
obscured by the complexities of our chosen scenario.

8.1.1 A solution to the problem
This scenario concerns the situation where there exists some code in the
Business layer of a Microsoft .NET environment which we need to access and
interoperate from a WebSphere Application Server environment.

In this section, we describe a basic implementation of a solution, which is
intended to highlight the process of acheiving the interoperability. We shall
consider other implementation options in the extended solution model section
later on. In describing our implemented solution to the problem, we shall detail
necessary steps for both the service provider side and the service consumer.
330 WebSphere and .NET Coexistence

8.1.2 Service provider
A Web Service provides the infrastructure to connect to other applications via
various Web protocols and messaging formats such as HTTP, XML, and SOAP.
In this section, we are going to discuss how to create a Web Service in .NET with
various messaging formats. We will demonstrate how to use Web Services for
both RPC-style and document-style communication. To demonstrate this, we will
create a sample Web Service application.

Creating the Web Service in .NET
To illustrate the steps involved in creating a Web Service in .NET, we created two
different Web Services.The first one shows:

� How to pass a simple data type (a float)

� How to use RPC style communication in Web Services

The second one demonstrates:

� Passing an array of floats as an argument to the Web Service

� How to create document-style Web Services

To create these Web Services, we used the following technology:

� Windows 2000 Server with IIS

� Visual Studio .NET

� C# language

The Web Services in our example provide a simple Calculator function for adding
the numbers. In designing our Web Services, we followed standard
object-oriented programming best practices in that the sample Web Services are
divided into two functional blocks, one of which performs the actual addition of
numbers and the other is responsible for invoking the business logic.

The code for performing the addition is implemented in a separate assembly,
Calculator.dll, which encapsulates and hides the actual implementation details
of a class. This also helps to simplify the code, and the assembly can be reused
in other scenarios.

The structure of Calculator.dll is illustrated in following figure.
 Chapter 8. Scenario: Synchronous stateless (WebSphere consumer and .NET producer) 331

Figure 8-1 The Calculator.dll class

We will first describe how to create the Calculator.dll, and then how to enable
this functionality to be accessed via Web Services.

Creating the Calculator.dll assembly
As shown in the above figure, Calculator.dll contains a Calculator class which
is the main class and contains the actual implementation of the business
functionality. This class implements the methods declared in three interfaces.
These interfaces are:

� ICalculator1 - the methods in this interface imply stateful interaction, and as
this chapter is intended to describe stateless, synchronous interoperability,
ICalculator1 is not discussed further in this chapter.

� ICalculator2 - declares the method add(float arg1, float arg2) which
implies stateless interaction, and is used in this chapter to demonstrate
stateless, synchronous Web Services using RPC-style communication.

� ICalculator3 - declares the method add(ICalculator3Args args), which
again implies stateless interaction and is used in this chapter to demonstrate
stateless, synchronous Web Services using document-style communication.

Interfaces ICalculator2 and ICalculator3 pass float arguments and a complex
type, ICalculator3Args, respectively.
332 WebSphere and .NET Coexistence

1. To create the assembly, open a new Class Library project in Visual Studio.
Rename Class1.cs as Calculator.cs and add the classes for the interfaces.
The following figure shows a snippet of the Solution Explorer with all
interfaces and a class used for Calculator assembly.

Figure 8-2 Files in Calculator Assembly

2. Open and write the code for each interface and main Calculator class as
described below.

3. The ICalculator2 interface is used for demonstrating RPC message style
Web Services which take two float arguments to be added together. The
implementation for ICalculator2 consists of the following code:

public interface ICalculator2 {
//declare method to add arguments
float add(float arg1, float arg2);

}

4. The ICalculator3 interface is used for demonstrating a document message
style Web Service which takes a complex data type (ICalculator3Args). The
code for ICalculator3Args is:

using System.Collections ;
public interface ICalculator3Args {

//declare method to set argument and to get iterator
void setArg(float arg);
IEnumerator getIterator();

}

5. The Calculator3Args class is used to represent a complex type to hold a list of
floats. This complex type is used in the add(ICalculator3Args) method of the
Calculator class where all floats in the object are added together. Methods are
available in the Calculator3Args class for adding new arguments to the
object, getting the object and its values, and for getting the number of floats
 Chapter 8. Scenario: Synchronous stateless (WebSphere consumer and .NET producer) 333

currently stored in the object. The Calculator3Args class is implemented
using an ArrayList data structure. The code for Calculator3Args is as follows.

Example 8-1 Calculator3Arg code

using System;
using System.Collections ;
public class Calculator3Args : ICalculator3Args {

//Code to create and populate array
ArrayList argArray;
public Calculator3Args() {

argArray = new ArrayList();
}
public void setArg(float arg) {

argArray.Add (arg);
}
public IEnumerator getIterator() {

return argArray.GetEnumerator();
}

}

6. The Calculator class implements the add() methods defined in the three
ICalculator interfaces, and performs the business code of adding the
numbers. The code for the Calculator class is as shown below.

Example 8-2 Calculator class

using System;
using System.Collections ;

public class Calculator : ICalculator1, ICalculator2, ICalculator3 {
float a1;
float a2;
public Calculator() {

//super();
}
//Stateful Synchronous
/* Code for Stateful Synchronous */
//Stateless Synchronous simple data type
public float add(float a1, float a2) {

return a1+a2;//Return some of parameters
}
//Stateless Synchronous complex data type
public float add(ICalculator3Args args) {

float total =0;
IEnumerator iterator = args.getIterator ();
while (iterator.MoveNext())
{
//add each array element
334 WebSphere and .NET Coexistence

total += ((float)iterator.Current);
}
return total;//Return sum of array elements

}
}

7. Build the project once the coding part is over to create Calculator.dll. The
following diagram shows the relation between Calculator.dll and the Web
Services we will now create.

Figure 8-3 Calculator.dll Assembly and Web Services

Developing the Web Services in Microsoft .NET
Microsoft .NET supports Web Services either using RPC/encoded message style
or Document/literal message style.

The Document style format indicates that the SOAP body simply contains an
XML document. The literal XML schema definitions are used between provider
and consumer and therefore this combination is referred to as Document/Literal.

The RPC (Remote Procedure Call) style format indicates that the SOAP body
contains an XML representation of a method call such as DCOM and CORBA.
The RPC style uses the names of the method and its parameters to generate
structures that represent a method.

In Microsoft .NET, you can create a Web Service either using a normal text editor
or using Visual Studio Integrated Development Environment (IDE). The Visual
Studio IDE is recommended for increased productivity and better debugging
facilities of Web Service projects.

To begin the Web Service development, open Visual Studio and select File ->
New Project to open the New Project window as shown. Select the Project Type
Visual C# Projects and then select ASP.NET Web Service.
 Chapter 8. Scenario: Synchronous stateless (WebSphere consumer and .NET producer) 335

Figure 8-4 Creating New Web Service

Note that the Web Service project is created in a Web directory as well as in the
Web Project Cache. The Web Project Cache is a location to store Web pages
while working offline. The Web Project Cache setting can be modified by
selecting Tools -> Option from the menu, and by selecting custom options.
336 WebSphere and .NET Coexistence

Figure 8-5 The Web Project Cache to work offline

When you create a new ASP.NET Web Service project, default files are
generated into your project such as Service1.asmx (or similar), Web.config and
Global.asax. The Service1.asmx file is used to define various services whereas
the Web.config file is used to define application specific settings. Global.asax is
an optional file that contains code for responding to application-level events.

Figure 8-6 Web Service default files in Solution Explorer

The namespace for the created Web Service is the name of the project by
default. Before starting the coding of the service, it is recommended that you give
 Chapter 8. Scenario: Synchronous stateless (WebSphere consumer and .NET producer) 337

a more meaningful name to Service1.asmx, such as
Calculator2WebServiceMethod.asmx.

As discussed earlier, the existing back-end Calculator code is implemented in a
separate assembly (or DLL). We wish to enable this back-end functionality as
Web Services. In order to use the Calculator assembly in your project, add a
reference to the Calculator.dll by right-clicking References in the Solution
Explorer and selecting Add Reference.... Browse to the path where
Calculator.dll is stored and then click OK to add the Calculator assembly to
the project.

Figure 8-7 Adding a reference to the assembly

Note: After the Calculator.dll is built, it sits under the Visual Studio project
directory. You can use the project directory, or you can copy the file to a
production directory.
338 WebSphere and .NET Coexistence

We will now describe how to implement the Web Services which will use the
existing back-end functionality stored in the Calculator.dll assembly. We will first
cover implementation of a Web Service using RPC message style
(netCalculator2WebService) and then the document message style
(netCalculator3WebService). Note that the steps are the same for creating both
Web Services except for the RPC message style where we have to add an extra
attribute.

Scenario implementation with the RPC model
Here we will describe how to write a Web Service which takes simple data types,
using RPC style communication. Our Web Service method will then in turn call
the back-end functionality contained in the Calculator.dll assembly and return the
result of the addition of the two float parameters. We will demonstrate this by
passing a simple float data type to the Web Service method.

We will describe how to specify that the Web Service is to use the RPC style
messaging format, by using the [SoapRpcService] attribute.

The RPC style specifies that all parameters are encapsulated within a single
element named after the Web Service method, and that each element within the
element represents a parameter named after its respective parameter name.

Microsoft .NET provides an attribute-based mechanism for controlling the format
of the XML in the SOAP message. The document message style is the default
messaging format in .NET and in order to change it, you need to use either the
[SoapRpcService] or the [SoapRpcMethod] attribute.

The [SoapRpcMethod] attribute is useful when you want to declare a specific
method to support RPC style messaging format within a class.

For example, in the following class, the method getName() (without the
[SoapRpcMethod] attribute) uses the default Document style messaging format,
whereas the method getID() (with the [SoapRpcMethod] attribute) supports the
RPC style messaging format.
 Chapter 8. Scenario: Synchronous stateless (WebSphere consumer and .NET producer) 339

Example 8-3 RPC style method declaration

class rpcDemo {
[WebMethod]
public string getName(int id) {

// code comes here...
}

[WebMethod]
[SoapRpcMethod]
public int getID(string name) {

// code comes here...
}

}

The [SoapRpcService] attribute is useful when you wish to declare all Web
methods within a class to support the RPC style messaging format as opposed
to Document style messaging. In our example, we use the [SoapRpcService]
attribute before the declaration of class.

In Visual Studio, open the Calculator2WebServiceMethod.asmx file; this opens
the Design view. Select Click here to switch to code view.... You will find the
empty Web Service skeleton; remove the sample code from the namespace
body, then insert the following method.

namespace netCalculator2WebService {
//...
[SoapRpcService]//Set message type as RPC

public class Calculator2WebServiceMethod :
System.Web.Services.WebService {

//...
}

//...
}

[SoapRpcService] requires an additional namespace to exist, so insert the
following declaration to the beginning of the file after the last using line:

using System.Web.Services.Protocols;

Declare the add() method which takes the float parameters. To declare add() as
a Web Service method, the [WebMethod] attribute is used. Attaching the
[WebMethod] attribute to a public method indicates that the method should be
exposed as part of the Web Service. The [WebMethod] attribute has several
properties to alter the Web Service method behavior. Some of the attribute
properties are:

� BufferResponse - Enables the buffering of responses for a Web Service
method.
340 WebSphere and .NET Coexistence

� CacheDuration - Enables the caching of the results for a Web Service
method.

� Description - Supplies a description for a Web Service method that will
appear on the Service help page.

� TransactionOption - Enables the Web Service method to participate as the
root object of a transaction.

� EnableSession - Is used to set or get session state.

The following example shows how to set properties for a Web method and
implement the method body. Insert the following method under the
Calculator2WebServiceMethod class.

[WebMethod(Description = "Calculator for adding numbers", BufferResponse =
true)]
public float add(float arg1, float arg2)
{
//Create Calculator object
ICalculator2 calc2 = new Calculator ();
//Add parameters
float result = calc2.add(arg1, arg2);
//return result
return result;
}

Once the coding of this method is complete, build the Web Service solution by
selecting Build -> Build Solution from the menu.

Testing the Web Service
In .NET, testing of the Web Service can be done in two ways:

1. By using the built-in test application

2. By developing or adding a project to test it

When you run a Web Service project in Visual Studio .NET, a browser is opened
to allow the developer to test the Web Service functionality. The test Web
application lists all services available for that Web Service. By selecting the
relevant service and entering values in the Web application, the Web Service can
be tested.

For the Web Service netCalculator2WebService, you will see the following page
with the add() method. You can review the description for the service by clicking
the Service Description link.
 Chapter 8. Scenario: Synchronous stateless (WebSphere consumer and .NET producer) 341

Figure 8-8 Testing Web Service -1

When you click the add service, the following page appears and you can test the
service by inserting values and then clicking the Invoke button.
342 WebSphere and .NET Coexistence

Figure 8-9 Testing Web Service methods - 2

When you invoke the method, the internal mechanism invokes the add() method
of the Web Service. The Web Service in turn calls the existing back-end business
logic stored in the Calculator.dll assembly which performs the actual add
functionality. The result is returned in XML format to the test application and
displayed in the browser as shown below:

Figure 8-10 XML result of Calculator2webServiceMethod

A Web Service can also be tested by creating another project to act as the client
to the Web Service. This can help when debugging the code. To add another
project, click File -> Add Project -> New Project from the main menu bar. Select
the type of project you want to add and then add a reference to the Web Service
in the project. This is the same process as consuming a Web Service in a .NET
application, described in Chapter 7, “Scenario: Synchronous stateless
(WebSphere producer and .NET consumer)” on page 297.
 Chapter 8. Scenario: Synchronous stateless (WebSphere consumer and .NET producer) 343

Scenario implementation with the Document style model
Here we will describe how to write a Web Service which takes an array of simple
data types, using Document style communication. Our Web Service method will
then in turn call the back-end functionality contained in the Calculator.dll
assembly and return the result of the addition of the array (or list) of float
parameters. We will then demonstrate this using the test application provided by
Visual Studio .NET.

To create a Document message style Web Service, no extra attributes are
required since Document style is the default messaging style in .NET. Steps for
creating the Web Service are very similar to those described in the RPC section
above. Create a new C# Web Service project with the name
netCalculator3WebService, add a reference to the Calculator.dll, implement
the code using the directions below and finally build the binary code.

namespace netCalculator3WebService {
//...

public class Calculator3WebServiceMethod :
System.Web.Services.WebService {

// ...
}

//...
}

The back-end code we are enabling as a Web Service is the
add(ICalculator3Args) method. However, Web Services cannot pass interfaces
as arguments, as this would assume a valid implementation of ICalculator3Args
on any service consumer which wants to use the Web Service. This would be
bad practice, since it restricts interoperability and relies on consumers having
knowledge of the service implementation, which is against the principles of Web
Services.

Instead, we have chosen to take in an array of floats as the argument for the
Web Service method. Within the code of the Web Service method, this array is
transformed into an object of type Calculator3Args, which can then be passed to
call the back-end business code for the list of numbers to be added together. The
result from the operation is returned as a float from the Web Service.

The Web Service method code is shown below:

[WebMethod]//Declares web method
public float add (float[] args) {
//Create object to pass parameter array
ICalculator3Args argsArray = new Calculator3Args();
for (int i=0;i<args.Length;i++)
argsArray.setArg(args[i]);
//Create Calculator object
ICalculator3 calc3 = new Calculator();
344 WebSphere and .NET Coexistence

//Send float array as parameter to get sum of array
float result = calc3.add(argsArray);
//return result
return result;
}

Note that for testing and developing the projects, we used localhost as our host
name, but when you publish your Web Service to the outside world, we
recommend that you use a more meaningful host name.

� The netCalculator2WebService URL:

http://<machine_name>/netCalculator2WebService/Calculator2WebServiceMethod.
asmx

� The netCalculator3WebService URL:

http://<machine_name>/netCalculator3WebService/Calculator3WebServiceMethod.
asmx

Deployment
To provide the Web Service to the consumer, it is necessary to deploy it on the
IIS server. The deployment of the Web Service involves copying the .asmx file
and assemblies used by the Web Service to a virtual Web directory. The
deployment can be done manually by creating folders copying the files into the
virtual directory, or by using a setup program.

The directory structure in IIS for the Web Service netCalculator3WebService is
as below:

\Inetpub
\Wwwroot

\netCalculator3WebService
Calculator3WebServiceMethod.asmx

\Bin
Calculator.dll
netCalculator3WebService.dll

Additionally, you can add a discovery (or .disco) file to make the Web Service
available using the discovery mechanism. The disco mechanism can be added
by enabling discovery for the Web Service.

Design considerations for the service provider
This section discusses some design consideration for designing a .NET Web
Service.

� Parameter validation and type handling

A Web Service available on the Internet is available to everyone who has
proper access, so make sure that the parameters passed to your Web
 Chapter 8. Scenario: Synchronous stateless (WebSphere consumer and .NET producer) 345

Service are valid. By passing invalid parameters, hackers can generate
errors. To avoid this, perform proper type validation for Web Service
parameters.

It is possible that your Web Service may be utilized in a language other than
the language used for the Web Service. In such cases, make sure you
received proper data with the correct type.

� Security

.NET has several security models for Web Services. In .NET, the security can
be applied at different levels. The basic security model for Web Service
consists of:

– Authentication and authorization

– Securing the connection

• Authentication

• Authorization

• Securing the connection

� Use of cache

The Web Service performance can be improved by enabling caching. When
caching is enabled, the output of the Web Service is cached on the server.
The cached output then can be shared with other requests without
re-executing the service.

8.1.3 Service consumer
It is assumed at this stage that the Microsoft .NET Web Services have been
written, and are currently running on a server accessible from the machine that
will be used as the service consumer (or at least used for code development for
the service consumer).

The scenario we use to demonstrate the interoperability between the
technologies is a simple Average Calculator, which includes two operations. One
operation is for calculating the average of two numbers, and the other is an
operation for calculating the average of a list of x numbers.

The Average Calculator, instead of implementing its own Add code, will instead
make use of the Web Service methods for adding, as developed in the Microsoft
.NET service provider section above.

The Average Calculator functionality for calculating the average of two numbers
will invoke the add(float, float) Web Service method associated with the
ICalculator2 interface. The average of a list of numbers will be performed with
the invocation of the add(float[]) Web Service method, which in turn calls the
346 WebSphere and .NET Coexistence

add(ICalculator3Args) method assocated with ICalculator3 on the Web
Service side. This is, however, unknown to the service consumer, and is
irrelevant since the only information they are interested in is the method
signature of the actual Web Service methods and how to call it, all of which is
contained within the WSDL files.

This section will describe how to implement our solution to this scenario. The
implementation is shown in Figure 8-11 on page 348.

Important: The Web Service consumer has been implemented using its own
implementation of an ICalculator interface. The methods and structure are, in
this implementation, the same as were used on the service provider side. This
is unlikely to be the case in a real-world scenario, but we have used the same
implementation pattern to simplify understanding of the code for the reader
and increase the speed of development.
 Chapter 8. Scenario: Synchronous stateless (WebSphere consumer and .NET producer) 347

Figure 8-11 Class diagram for simple solution model

The methods of the CalculatorConsumer and the classes of the Calculator.jar file
are shown next.

iCalculator3Args iCalculator1

Calculator3Args

iCalculator2 iCalculator3

CalculatorConsumer

Adapter

Proxy

.NET
Web Service
348 WebSphere and .NET Coexistence

Figure 8-12 Classes and methods in the solution

The CalculatorConsumer class is responsible for the business logic of the
application. It contains methods for calculating the average of two numbers and
for calculating the average of a list of numbers. It implements the add methods
defined in the interfaces ICalculator2 and ICalculator3.

When calculating the averages, the Average Calculator application calls the add
methods in the CalculatorConsumer class. These add methods in turn route the
request, via an adapter, to a Web Service proxy. The adapter is responsible for
converting any data types used on the service consumer side into the necessary
format (and back) for using the Web Service methods. For example, the
add(ICalculator3Args) method in CalculatorConsumer makes use of the
add(float[]) Web Service method, so the Adapter is needed to convert the
ICalculator3Args object into a float array.

Calculator.jar

<<interface>>

ICalculator3Args

void
Iterator
int

setArg (float)
getIterator()
getNumArgs()

Calculator3Args

private Vector arguments

Calculator3Args()

<<data>>

<<business>>

ICalculator2

<<interface>>

float add (float, float)

ICalculator3

<<interface>>

add (ICalculator3Args)float

<<uses>>

CalculatorConsumer

float CalculateAverage (float, float)
float CalculateAverage (ICalculator3Args)
 Chapter 8. Scenario: Synchronous stateless (WebSphere consumer and .NET producer) 349

The proxy then makes the Web Service call to the service in the Microsoft .NET
environment. The specifics of how the service is implemented is not known by
the proxy. The proxy class simply knows where the Web Service is located and
how to call it. The Web Service returns the result of the add() operation, which is
returned back up through the adapter into the CalculatorConsumer class. The
CalculatorConsumer uses the result, dividing it by the number of arguments
received, and outputs the average of the numbers.

The following sections describe how to implement this solution, first looking at
invoking the RPC style add(float, float) Web Service, and secondly invoking
the add(float[]) Web Service using Document style communication. Once the
Web Service proxies have been implemented, we will move on to discuss the
implementation of the complete scenario including the CalculatorConsumer class
and the Average Calculator application.

We will be using the WebSphere Studio Application Developer Integrated
Development Environment (IDE) for implementing our solution. Start WebSphere
Studio Application Developer in a new (empty) workspace ready for
development.

We are going to be implementing a completely deployable application, so first
you should create a new Enterprise Application Project which will contain our
other modules (to be implemented later). Call your new EAR project
SimplisticWS2NETCalculator, as this will be a simple implementation of the
Calculator code to demonstrate interoperability between WebSphere and
Microsoft .NET.

Scenario implementation with the RPC model
In order to create a proxy to a Web Service written in any language, on any
platform, you should only need access to the WSDL file for that Web Service. It
should contain all information needed to invoke the service.

WebSphere Studio Application Developer will automatically generate a Web
Service client from a WSDL file.

You will need to create a Web project for the client to go into. Call this
Calculator2ClientProxy. Now you can go to File -> New -> Other -> Web
Service -> Web Service Client. Choose to create a Java proxy, and on the next
window select the Web project you would like the client code to go into, in our
case: Calculator2ClientProxy.

The Web Service Selection Page is where you enter the URI to the WSDL
document previously generated in Microsoft Visual Studio .NET. You could
either save the WSDL to your workspace and browse to it there, or simply
enter the URL of the WSDL on the remote machine, in our case:
350 WebSphere and .NET Coexistence

http://localhost/netCalculator2WebService/Calculator2WebServiceMethod.asmx?
WSDL

You can accept all wizard defaults from there. Click Finish.

The wizard will automatically create several files, including four Java files under
the JavaSource directory. If it isn’t already, name the package of the files to be
redbook.coex.stateless.synchronous.ws2net.business. It is likely that the
tooling will automatically give the package a name based on information
contained in the WSDL file, but it is good practice to choose your own package
name based on your own naming conventions.

The four new Java files created by the wizard handle the generation of the SOAP
messages and invocation of the Web Service. All the complexities involved in
using the Web Service are handled for you automatically. All the user has to do is
call the relevant methods of these new Java classes. This will be described in
more detail later on.

Scenario implementation with the Document style model
Creation of the Document style Web Service proxy is exactly the same as for the
RPC style, since the communication method used by the Web Service is defined
by the service provider and specified in the WSDL file. WebSphere Studio
Application Developer determines the transport method from the WSDL file
automatically, and generates the necessary classes automatically, again hiding
all complexities from the user.

So in this case, create a new Dynamic Web project called
Calculator3ClientProxy. Go to File -> New -> Other -> Web Service -> Web
Service Client, create a Java proxy, and on the next window select the
Calculator3ClientProxy Web project.

On the Web Service Selection Page, enter the URI to the Calculator3 WSDL file,
in our case:

http://localhost/netCalculator3WebService/Calculator3WebServiceMethod.asmx?
WSDL

You can again accept all defaults from there. Again, rename the Java package
where the new Java files are placed to
redbook.coex.stateless.synchronous.ws2net.business.

On this occasion, more than four core Java files will be created because the
array of floats is handled as a complex data type. There are extra classes added
for the handling of the serialization and deserialization of the complex type, as
well as a Java bean to represent the object itself, in this case ArrayOfFloat.java.
 Chapter 8. Scenario: Synchronous stateless (WebSphere consumer and .NET producer) 351

Figure 8-13 Files created by Client wizard

These classes are of little concern to the user, since all serialization and
deserialization is handled behind the scenes, and is performed automatically by
the new generated classes.

Now that the code has been generated to call the Web Services, the rest of the
coding of the solution is standard Java development.

Implementing the Average Calculator
As shown in Figure 8-11 on page 348, the proxy classes are invoked from an
Adapter, the Adapter being responsible for conversion between the data format
used by the Web Service method and data format used by the
CalculatorConsumer class (which is developed later).

Since different functionality is required for the Calculator2 and Calculator3 Web
Services, two separate Adapter classes were implemented. In the
Calculator2ClientProxy, under the
redbook.coex.stateless.synchronous.ws2net.business package (the same
location as the four generated proxy classes), create a new Java class called
Calculator2Adapter.

This class implements the add(float, float) method associated with the
ICalculator2 interface. The implementation of the Calculator2Adapter class is
shown below.
352 WebSphere and .NET Coexistence

Example 8-4 Calculator2Adapter code

package redbook.coex.stateless.synchronous.ws2net.business;

import java.rmi.*;
import javax.xml.rpc.*;
import redbook.coex.sall.business.*;

public class Calculator2Adapter implements ICalculator2 {

public float add(float arg1, float arg2) {
float result = 0;
try {

//create an instance of the web service proxy
Calculator2WebServiceMethodLocator locator = new

Calculator2WebServiceMethodLocator();
Calculator2WebServiceMethodSoap proxy =

locator.getCalculator2WebServiceMethodSoap();
//call the web service method
result = proxy.add(arg1, arg2);

} catch (ServiceException e) {
e.printStackTrace();

} catch (RemoteException e) {
e.printStackTrace();

}
return result;

}
}

The above code shows just how easy it is to actually call the Web Service. The
only code required by the user is the creation of the
Calculator2WebServiceMethodSoap object, then the calling of the method
add(float, float).
 Chapter 8. Scenario: Synchronous stateless (WebSphere consumer and .NET producer) 353

The Calculator3Adapter class in the Calculator3ClientProxy project is very
similar. However, the purpose of the Adapter is to perform any necessary data
format changes between the Average Calculator code and the Web Service call.
As the Calculator3Adapter class implements ICalculator3, it implements the
add(ICalculator3Args) method, but the Web Service method requires a float
array, so this is where the conversion takes place.

Example 8-5 Calculator3Adapter code

package redbook.coex.stateless.synchronous.ws2net.business;

import java.rmi.*;
import java.util.*;
import javax.xml.rpc.*;
import redbook.coex.sall.business.*;

public class Calculator3Adapter implements ICalculator3 {
public float add(ICalculator3Args args) {

float result = 0;
Iterator iterator = args.getIterator();
float[] argsFloatArray = new float[args.getNumArgs()];
int i = 0;
while (iterator.hasNext()) {

argsFloatArray[i] = ((Float)iterator.next()).floatValue();
i++;

}
ArrayOfFloat arrayOfFloat = new ArrayOfFloat();
arrayOfFloat.set_float(argsFloatArray);
try {

//create an instance of the web service proxy

Important: The Calculator2Adapter (and Calculator3Adapter later)
implements the ICalculator2 interface. The interface is packaged in the
Calculator.jar file for convenience.

In order to make the application work, create a new Java project, for example:
CalculatorCode, and import the Calculator.jar file. Open the
SimplisticWS2NETCalculator application descriptor (application.xml) and add
the CalculatorCode Java project. Add the CalculatorCode Java project to the
Java Build Path of the Web project and to the Java JAR Dependencies list.

It is very important to understand that the interfaces packaged with the
Calculator.jar are only for your convenience; in real life, the client and the
implementation interfaces are not going to be the same and the client has to
be implemented purely based on the WSDL input.
354 WebSphere and .NET Coexistence

Calculator3WebServiceMethodLocator locator = new
Calculator3WebServiceMethodLocator();

Calculator3WebServiceMethodSoap proxy =
locator.getCalculator3WebServiceMethodSoap();

result = proxy.add(arrayOfFloat);
} catch (ServiceException e) {

e.printStackTrace();
} catch (RemoteException e) {

e.printStackTrace();
}
return result;

}
}

The Calculator3Adapter class takes an ICalculator3Args object into its add()
method, converts it into an instance of the pre-generated ArrayOfFloat object,
and calls the Web Service in the same way as the Calculator2Adapter does.

The business logic code of the Average Calculator is implemented in the class
CalculatorConsumer.java. Create a new Java Project called
CalculatorConsumer, and create a new Java Class called CalculatorConsumer in
the package redbook.coex.stateless.synchronous.ws2net.business.

This class implements the ICalculator interfaces, so add either CalculatorCode
project to the Java build path. The Average Calculator has no need for the
ICalculator1 interface, so just implement ICalculator2 and ICalculator3.
Furthermore, the class uses the Adapter classes from the Web projects, so add
the Calculator3ClientProxy and the Calculator2ClientProxy projects to the Java
build path also.

Example 8-6 CalculatorConsumer code

package redbook.coex.stateless.synchronous.ws2net.business;

import redbook.coex.sall.business.*;

public class CalculatorConsumer implements ICalculator2, ICalculator3 {
public float add(float arg0, float arg1) {

Calculator2Adapter adapter = new Calculator2Adapter();
float result = 0;
result = adapter.add(arg0, arg1);
return result;

}
public float add(ICalculator3Args args) {

float result = 0;
Calculator3Adapter adapter = new Calculator3Adapter();
result = adapter.add(args);
return result;
 Chapter 8. Scenario: Synchronous stateless (WebSphere consumer and .NET producer) 355

}
public float calculateAverage(float arg0, float arg1) {

float total = add(arg0, arg1);
return total/2;

}

public float calculateAverage(ICalculator3Args args) {
float total = add(args);
return total/args.getNumArgs();

}
}

CalculatorConsumer.java has implementations of the two add methods as
defined in ICalculator2 and ICalculator3. It also has the business logic for the
actual calculateAverage() methods, one method taking in two floats and the
other taking in the list of arguments ICalculator3Args. These methods make use
of the add methods, which in turn call the add methods of the Adapter classes,
which use the proxy classes to make the actual Web Service calls.

Add the CalculatorConsumer Java project to the SimplisticWS2NETCalculator
enterprise application as a utility project.

Now we will write the actual front end of the application. In this case, we have
chosen to implement a thin client, where JSPs call the CalculatorConsumer class
in order to get the results.

Create a new Dynamic Web Project called SimplisticCalculatorClient. Add
the CalculatorCode and the CalculatorConsumer projects to the Java build path
and to the Java JAR dependencies for this new project.

Create a new HTML file and name it AverageCalculator.html. This file should be
the front page for the Average Calculator, with the ability to enter two numbers
and calculate the average, or enter a list of numbers and calculate the average.
356 WebSphere and .NET Coexistence

Figure 8-14 The thin client HTML page

When the Calculate buttons are clicked, the form is redirected to a JSP file. The
average of two numbers button is redirected to the
CalculateAverageRPCStyle.jsp, and the average of a list is directed to
CalculateAverageDocStyle.jsp. Create the two JSP files also.

The code in the JSP looks as shown in Example 8-7 on page 358.
 Chapter 8. Scenario: Synchronous stateless (WebSphere consumer and .NET producer) 357

Example 8-7 A section of CalculateAverageRPCStyle.jsp

<jsp:useBean id="CalcConsumer"
class="redbook.coex.stateless.synchronous.ws2net.business.CalculatorConsumer"
scope="request"></jsp:useBean>
<%

float arg1 = new Float(request.getParameter("Arg1")).floatValue();
float arg2 = new Float(request.getParameter("Arg2")).floatValue();
float result = CalcConsumer.calculateAverage(arg1, arg2);

%>
<%=result%>

The JSP uses the CalculatorConsumer bean, reads in the arguments, converts
them into floats, and calls the calculateAverage method. The calculateAverage
method calls the appropriate add method in the CalculatorConsumer class (as
defined in the ICalculator interfaces). The add method in the
CalculatorConsumer class uses the appropriate add method in the Adapter
class, which converts the data into the necessary format, then uses the proxy to
invoke the .NET Web Service. The result from the .NET Web Service is returned
to the CalculatorConsumer class via the Adapter where it is used to calculate the
average of the list of numbers. The result is output to the JSP.

Once this is complete, the application is ready for deployment to WebSphere
Application Server. Select the SimplisticWS2NETCalculator EAR project and
export the EAR file. When this is deployed in WebSphere Application Server and
is running, the front page URL will be:

http://<machine_name>:9080/SimplisticCalculatorClient/AverageCalculator.html

The application can also be tested from within WebSphere Studio Application
Developer, using the WebSphere Test Environment. To do this, simply select the
AverageCalculator.html file and select Run on Server....

8.1.4 Test
In order to test, you will need to deploy the new enterprise application to a
WebSphere server or run it in the WebSphere Studio Test Environment.

To run the test environment, you can either create a new WebSphere V5.02 Test
server or just right-click the enterprise application and select Run on server; this

Important: In order for the application to function, a small change needs to be
made to the Server configuration. The WAR classloader policy for the
SimplisticWS2NETCalculator application needs to be set to Application (as
opposed to Module). See the WebSphere InfoCenter for instructions on how to
do this.
358 WebSphere and .NET Coexistence

http://<machine_name>:9080/SimplisticCalculatorClient/AverageCalculator.html

creates a new test server automatically after selecting the server type and the
HTTP port.

The Test server will automatically start, but the settings are not entirely correct for
the application. Stop the server and open the server configuration. Select the
Applications tab, then select the simplisticWS2NETCalculator application.
Since the Web application not only uses utility JARs, but also classes from other
Web modules, we need to set the WAR classloader policy to APPLICATION. Save
the configuration, close the file then start the server.

Once the application server is running, right-click AverageCalculator.html under
the SimplisticCalculatorClient project and select Run on server... Select the
Existing server and wait until the browser comes up with the HTML content.

Once the HTML content is available, provide some random data and click the
Calculate button. Perform the operation with both calculators (two numbers, list
of numbers).

8.2 Extended solution model
The solution described above is a simple solution to show how to quickly and
simply get WebSphere talking to Microsoft .NET business logic in a stateless,
synchronous way using Web Services. This section will look at different ways to
implement a full solution in order to gain quality of service over the simple model.

An extended solution to the problem
This section will discuss more advanced topics with regard to designing an
interoperable scenario for accessing a Microsoft .NET Web Service from a
WebSphere client. The advanced topics will be discussed based on an extended
implementation of the Average Calculator scenario.

The simple solution described earlier will be extended to provide better
separation between the tiers of the five-tier architecture model, and to provide
better quality of service. To understand what is meant by the term Quality of
Service in this context, please refer to Chapter 11, “Quality of service
considerations” on page 471.

Extended scenario considerations will be considered from the point of view of
both the service provider and the service consumer.

Service consumer
There are many possibile scenarios for stateless, synchronous interoperability
between WebSphere and .NET, as discussed in Chapter 4, “Technical
 Chapter 8. Scenario: Synchronous stateless (WebSphere consumer and .NET producer) 359

coexistence scenarios” on page 109. The diagram below shows the different
layer-to-layer communication scenarios.

Figure 8-15 Possible layer-to-layer Interop options

We will assume that there already exists some back-end code on the .NET side
which will be made available as a Web Service. How the service logic is
implemented on the .NET side is unknown and irrelevant to the service
consumer. As it is normally the case that Web Services would reside on the
Business layer of an application, we shall assume this is the case on the .NET
side, although it would make little difference if it were actually in the Presentation
layer.

As shown in Figure 8-15, the cases for a WebSphere solution to interoperate with
the Business layer of the .NET side are c1, e1 and f1.

We will therefore look at examples of how to implement those scenarios using
stateless, synchronous communication.
360 WebSphere and .NET Coexistence

Scenario c1
Scenario c1 concerns the Client layer on the WebSphere side interoperating with
the Business layer of the .NET side.

Figure 8-16 Scenario c1

So, with our assumption that there already exists some back-end code on the
.NET side, this would be made available as a Web Service in a similar way as
was described in the simple scenario chapter.

This will involve a WSDL file being generated to describe the Web Service, and
this would then be used in WebSphere Studio Application Developer to create a
proxy to the Web Service. As a simple case, this proxy could simply reside as a
Java Bean on the Client layer, being invoked directly from a thick client
application, such as a Swing GUI. This would demonstrate Client layer
WebSphere interoperating in a stateless, synchronous manner with Business
layer .NET code.

This is a very basic approach to this implementation, and offers very little in the
way of quality of service. A better approach to this method would be to implement
the solution as shown in the c1 (QoS alternative) diagram. This is still, in effect, a
way to interoperate between the Client layer and Business layer, but the actual
interaction phase is between Business layer and Business layer.
 Chapter 8. Scenario: Synchronous stateless (WebSphere consumer and .NET producer) 361

So ultimately, a better way to implement a Client layer to Business layer solution
is in fact to go via the Business layer on the WebSphere side, which boils down
to an implementation of Scenario f1, described later.

Scenario e1
Scenario e1 concerns the Presentation layer on the WebSphere side
interoperating with the Business layer of the .NET side.

Figure 8-17 Scenario e1

Once again, assume that the Business layer of the .NET application is a Web
Service access point to some back-end code. Again, the WSDL is used on the
WebSphere side to create a Java Bean service proxy.

This scenario differs from c1 in that instead of the Java proxy being directly used
by a thick client, it is instead being used from a controller servlet in the
Presentation layer. The user interacts with a thin application (such as an HTML
page), which calls the controller servlet to make the Web Service call. If the
application requires it, any state Java Beans would also be part of the
Presentation layer and used by the servlet. Finally, the result is passed back from
362 WebSphere and .NET Coexistence

the Web Service, via the controller servlet and any state Java beans, into a JSP
which is responsible for displaying the result to the user.

An example of such a state Java bean would be the Calculator3Args class
implemented as part of the simple solution to our Average Calculator. Although
the actual interoperability phase of the solution is stateless, the Calculator3Args
class maintains the state of the list of arguments that is ultimately used in the
add(ICalculator3Args) method of the CalculatorConsumer class.

However, the solution described again provides little quality of service, which can
be improved by instead implementing the e1 QoS alternative solution. This
solution moves the Java bean service proxy into the Business layer of the
WebSphere application and is accessed via an EJB “decorator” which adds
quality of service associated with EJBs.

This, like the c1 QoS alternative solution, ultimately boils down to an
implementation of Business layer to Business layer interoperability, which is
described in scenario f1.

Scenario f1
Scenario f1 concerns interoperability between the Business layer on the
WebSphere side interoperating with the Business layer of the .NET side.
 Chapter 8. Scenario: Synchronous stateless (WebSphere consumer and .NET producer) 363

Figure 8-18 Scenario f1

This solution is analagous to the quality of service implementations of scenarios
c1 and e1, and is considered to be a best practice approach to any
implementation of stateless, synchronous interoperability between WebSphere
and the .NET Business layer.

This type of approach encourages distinct separation between layers of the
solution, which follows best practice guidelines and enhances maintainability of
the code.

The actual interoperability phase of the solution is identical to that of the simple
solution. The .NET assembly, which contains the implementation of the Web
Service on the .NET service provider, has a WSDL file describing the service.
This WSDL file would be consumed on the WebSphere side (using a tool such as
WebSphere Studio Application Developer) and used to generate a Java Bean
364 WebSphere and .NET Coexistence

service proxy capable of invoking the Web Service, as was done in the simple
solution.

This Java proxy is accessed from the Presentation layer via an EJB, which
contains no actual implementation of logic for the solution, but merely acts as a
quality of service decorator to the proxy.

There is a Java bean in the Presentation layer which basically acts as a proxy to
the EJB from the controller servlet which drives the Web Service. This ultimately
means that all presentation logic is separated from the Business layer
implementation, and the business logic is only accessible via the EJB. The EJB
will automatically handle issues such as scalability, performance, security and
availability, therefore giving such qualities to the overall consumer-side solution.

There is not much that can be done to add quality of service to the actual
stateless synchronous interoperability of the Web Service. Additional qualities
such as guaranteed delivery can be achieved by using alternative transport
protocols, such as Web Services over JMS. However, JMS messaging is
asynchronous in nature and is not an appropriate solution for this scenario.

Ultimately, any extended solution implementation on the service consumer side
is basically just J2EE best practice, and has little to do with the actual
interoperability of the solution. Since this book is intended to demonstrate ways
of interoperability between .NET and WebSphere, the extended functionality has
not been implemented in this book.
 Chapter 8. Scenario: Synchronous stateless (WebSphere consumer and .NET producer) 365

366 WebSphere and .NET Coexistence

Chapter 9. Scenario: Web
interoperability

The purpose of this chapter is to discuss issues relating to interoperability
between Web applications residing in WebSphere Application Server and
Microsoft .NET.

The following scenarios are identified for Web interoperability:

� Shared presentation components

� Session state interoperability

� Data propagation

� Security

9

© Copyright IBM Corp. 2004. All rights reserved. 367

9.1 Introduction
You can find the related scenario in Chapter 4, “Technical coexistence scenarios”
on page 109. In this chapter, we discuss sub-scenarios that apply to Web
application interoperability between the two platforms, WebSphere and .NET.
The chapter includes the following sections:

� 9.2, “Shared presentation components” on page 368

In this section, we examine options for servicing Web content in a
heterogeneous environment using the Microsoft Internet Information Services
Web server. In addition to discussing various interoperability scenarios, this
section also documents how to configure Microsoft IIS for interoperability with
WebSphere Application Server.

� 9.3, “Session state interoperability” on page 376

Web applications nearly always require information about the user and their
interaction with the application to be maintained during the life cycle of that
user’s session. Therefore, one of the key considerations for making Web
applications in a mixed environment interoperable is how to implement
statefulness between the applications. This section describes various
strategies for implementing statefulness.

� 9.4, “Data propagation” on page 395

This section discusses scenarios and solutions for sharing data between Web
applications operating in a heterogeneous environment.

� 9.5, “Integrated security” on page 418

In this section, we examine a mechanism for sharing security credentials
across WebSphere Application Server and Microsoft IIS. The section
provides an implementation of a shared security model which leverages
existing technologies to provide single sign-on in an heterogeneous
environment.

9.2 Shared presentation components
This section documents how to configure the Microsoft Internet Information
Services (IIS) for operation in a heterogeneous environment. Figure 9-1 on
page 369 illustrates how Microsoft IIS can be used in such an environment.
368 WebSphere and .NET Coexistence

Figure 9-1 Microsoft IIS server in a heterogeneous environment

In the shared presentation components scenario, the IIS Web server handles
requests for both static and dynamic content in the following manner:

� J2EE application resources

In this scenario, the client makes a request for a dynamic Web component
hosted by the WebSphere Application Server. When the request is received
by IIS, the WebSphere Application Server HTTP plugin examines the URL of
the request and attempts to match it with the virtual host and URI mappings
contained in its configuration file. In this instance, since the resource that is
being requested is hosted in the WebSphere Application Server Web
application, the plugin matches the URL and forwards the request to
WebSphere. WebSphere Application Server processes the request and
returns the response via Microsoft IIS to the client.

� ASP.NET application resources

In this scenario, the client makes a request for a resource hosted in an
ASP.NET Web application. As before, the request URL is compared to its
configuration file mappings by the HTTP plugin. This time, however, since the
resource is not being hosted by WebSphere Application Server, no match

ASP .NET
Application

Client

WebSphere
Application

Server

Microsoft
Internet

Information
Services

IIS HTTP Plugin

J2EE
Application

plugin-cfg.xml

iisWASPlugin_http.dll

Shared Static
Content
 Chapter 9. Scenario: Web interoperability 369

occurs. The plugin now forwards the request to Microsoft IIS, which
processes it and sends the response back to the client.

� Static content

In this scenario, the client makes a request for some static content; this could
be an HTML page or an image. Whether the content relates to a WebSphere
Application Server or Microsoft .NET Web application is not relevant; it could
be either. The HTTP plugin again attempts to match the URL and fails. The
request is forwarded to Microsoft IIS, which services the requested resource
back to the client.

9.2.1 Configuring Microsoft IIS for shared presentation
This next section illustrates how to configure Microsoft Internet Information
Services for the scenario illustrated in Figure 9-1 on page 369. It is assumed that
Microsoft Internet Information Services has already been installed. However, if it
has not then an installation guide can be found at:

http://www.microsoft.com/windows2000/en/server/iis/default.asp

Installing the Microsoft IIS HTTP plugin
The Microsoft IIS HTTP plugin can be installed as part of the WebSphere
Application Server installation. The installation procedure for WebSphere
Application Server is documented in the IBM Redbook IBM Application Server
V5.0 System Management and Configuration, SG24-6195.

To install the plugin, perform a custom install as described in the aforementioned
redbook. When prompted for the features that you wish to install under the Web
Server Plugins category, select the Microsoft IIS plugin, as shown in Figure 9-2
on page 371.
370 WebSphere and .NET Coexistence

http://www.microsoft.com/windows2000/en/server/iis/default.asp

Figure 9-2 Installing the Microsoft IIS HTTP plugin

The WebSphere Application Server installation will install the HTTP plugin
iisWASPlugin_http.dll and, if the instance of Microsoft IIS is on the same
machine, will also configure Microsoft IIS for the plugin. In order for the changes
to take effect in Microsoft IIS, you will need to restart the IIS services as follows:

1. Log on to the Windows 2000 server as a user with Administrator privileges.

2. Open the Windows control panel by clicking Start -> Settings -> Control
Panel.

3. Select Administrative Tools.

4. Open the Internet Services Manager.

5. In the left-hand pane, right-click the machine icon and select Restart IIS ...
from the context menu.

6. In the Stop/Start/Reboot ... dialog box, ensure that Restart Internet Services
is selected from the pull-down menu and click OK.

Microsoft IIS will be restarted and the plugin will be loaded automatically.

Manually configuring Microsoft IIS for the HTTP plugin
If the instance of Microsoft IIS is on a remote machine then you will need to copy
the HTTP plugin library and HTTP plugin configuration file, plugin-cfg.xml, to the
 Chapter 9. Scenario: Web interoperability 371

remote server; perform a manual configuration of Microsoft IIS using the
following procedure:

1. Open the Internet Services Manager and, if not already started, start the IIS
application, using the procedure described above.

2. Create a new virtual directory for the Web site instance that you intend to
have work with WebSphere Application Server. To create this directory with a
default installation, expand the tree on the left until you see Default Web
Site. Right-click Default Web Site and select New -> Virtual Directory. In
the wizard for adding a virtual directory, do the following:

a. Type sePlugins in the Alias to be used to Access Virtual Directory field.

b. Browse to the directory in the Enter the physical path of the directory
containing the content you want to publish field.

c. Select the Allow Execute Access check box in the What access
permissions do you want to set for this directory field.

d. Click Finish to add the sePlugins virtual directory to your default Web site.

3. Add the Internet Services Application Programming Interface (ISAPI) filter
into the IIS configuration. Right-click the host name in the tree on the left pane
and click Properties. In the Properties dialog, do the following:

a. Go to the Internet Information Services tab.

b. Click WWW Service in the Master Properties window.

c. Click Edit to open the WWW Service Master Properties window, as shown
in Figure 9-3 on page 373.
372 WebSphere and .NET Coexistence

Figure 9-3 The Internet Services Properties dialog

d. Click ISAPI Filters -> Add to open the Filter Properties window.

e. Type iisWASPlugin in the Filter Name field.

f. Click Browse in the Executable field.

g. Browse to the directory where you copied the HTTP plugin library and click
the iisWASPlugin_http.dll file. When completed, the window should
appear as shown in Figure 9-4 on page 374.
 Chapter 9. Scenario: Web interoperability 373

Figure 9-4 The WWW Services Properties dialog

4. Click OK until all open windows close.

5. Add the variable Plugin Config to the registry under the path
HKEY_LOCAL_MACHINE -> SOFTWARE -> IBM -> WebSphere
Application Server -> 5.0.0.0.

6. Set the value to the location of the configuration file, plugin-cfg.xml, which you
copied across earlier.

Testing the configuration
Once you have completed the configuration, you can test that Microsoft IIS is
servicing WebSphere Application Server, Microsoft IIS and static resources as
follows:

1. Start the WebSphere Application Server and Microsoft IIS instances.

2. Open a browser and enter the following URL to test that IIS is able to service
WebSphere content:

http://<hostname>/snoop
374 WebSphere and .NET Coexistence

http://<hostname>/snoop

Where <hostname> is the hostname of the WebSphere Application Server
machine. If you have performed the configuration correctly, the following
window should appear.

Figure 9-5 Testing the IIS Configuration for WebSphere Application Server

3. Next, test that Microsoft IIS is able to serve ASP.NET and static content by
entering the following URL into the browser:

http://localhost:9307

If the configuration is correct, a window similar to the one shown in Figure 9-6
on page 376 should appear.
 Chapter 9. Scenario: Web interoperability 375

http://localhost:9307

Figure 9-6 Testing the configuration for Microsoft IIS

9.3 Session state interoperability
The purpose of this section is to discuss Web interoperability issues concerning
state management within Web applications. This section begins by defining the
problem of state management in heterogeneous environments. We then discuss
how state management is implemented in both WebSphere Application Server
and Microsoft .NET. This discussion acts as a precursor to the remainder of this
section, which deals with some of the particular difficulties in maintaining state
across Web applications executing in both environments.

9.3.1 Problem definition
The Hypertext Transfer Protocol (HTTP) is a stateless protocol. In other words,
the protocol as it is designed has no mechanism for maintaining user or
application state information between successive requests. To implement an
effective Web application, it is necessary to provide some sort of state
management mechanism that allows requests from a particular client to be
376 WebSphere and .NET Coexistence

associated with each other. Figure 9-7 illustrates how each technology
addresses this problem.

Figure 9-7 Session ID tracking within a heterogeneous environment

Both WebSphere Application Server and Microsoft .NET provide state
management APIs and runtime services to enable stateful client interactions with
Web applications. These implementations have many similarities, but what both
implementations lack is any support for sharing of application state in a
heterogeneous environment.

The problem that this section attempts to address is: how can Web applications
running in WebSphere Application Server and Microsoft .NET be made to
interoperate and share state information?

9.3.2 WebSphere Application Server session management
This section discusses how state management is implemented in J2EE;
specifically, the discussion focuses on how WebSphere Application Server
handles session management. The topics covered in this section include the
state management objects within J2EE, the session life cycle, how sessions are
identified and options for persisting session data within WebSphere Application
Server.

For a complete discussion of session management implementation and
configuration in WebSphere Application Server, refer to the IBM Redbook

Thin
Client

Session Session

J2EE

Web Application

Session Session

ASP .NET

Web Application

Presentation

Client

Request

Responseand JSESSIONID
and JSESSIONID

Request
with ASP_SESSIONID Response

with ASP_SESSIONID
 Chapter 9. Scenario: Web interoperability 377

IBM WebSphere Application Server V5.0 System Management and
Configuration, SG24-6195.

WebSphere Application Server state management objects
State management in J2EE application servers is implemented via a single
interface, HttpSession. This object is analogous to the ASP.NET
HttpSessionState object; see “ASP.NET state management objects” on
page 381.

In WebSphere Application Server, session state objects are managed by the
session manager. The session manager is a component or function of the J2EE
Web container, which executes within the application server process. The
session manager implements the following functionality on behalf of Web
applications executing within the container:

� Creating HttpSession objects.

� Generating the unique session identifier.

� Implementing the chosen session tracking mechanism.

� Storing and retrieving objects and session data within the session.

� Providing a mechanism for persisting sessions.

� Managing the session cache.

� Invalidating HttpSession objects.

Session state life cycle
On a logical level, the life cycle of a WebSphere Application Server HttpSession
object closely mirrors that of an ASP.NET HttpSessionState object. Where the
two technologies differ is in the implementation. See “Session state life cycle” on
page 383 for a description of the session state life cycle within ASP.NET
applications.

The life cycle of a session effectively begins when the first request is received
from any given client. When this event occurs, the session manager component
of the Web container will create an HttpSession object and generate a unique
session ID for tracking purposes. The session persists across a number of
requests from that user, during which time objects and data may be added to and
retrieved from the session object as a means of preserving some sort of
application state.

The session expires in one of two ways. In the first instance, a session can end
when the client explicitly terminates the session, for instance by logging out of
the application, in which case the session manager will invoke the session
object’s invalidate method to end the session. In the second instance, the
378 WebSphere and .NET Coexistence

session expires because the session timeout interval has been exceeded. In
WebSphere Application Server, each time a response is sent back to the client,
the session manager updates the last accessed time of the session object.
Periodically, the session manager will examine all the active session objects and
invalidate those where the current time minus the last accessed time exceeds
the session timeout value specified in the session manager configuration.

Session tracking mechanisms
The Servlet 2.3 specification that forms part of the J2EE 1.3 specification
implemented by WebSphere Application Server provides for three session
tracking mechanisms.

� Cookies

WebSphere Application Server provides support for tracking sessions using
cookies. When enabled, a cookie containing the unique session ID for the
client is generated. During the life cycle of the session, this cookie is passed
back and forth between the client and server. The actual session data is
stored on the server and is located using the session ID in the cookie.

Cookies in WebSphere Application Server can be configured to operate over
secure connections (HTTPS) and can be restricted to a particular domain and
virtual path. By default, the cookie is set to expire at the end of the browser
session, but it is also possible to specify a Time to Live value for the cookie in
accordance with the servlet specification.

� URL rewriting

It is also possible in WebSphere Application Server to track sessions by using
the URL rewriting mechanism. URL rewriting works by encoding the session
ID as a parameter to the URLs that are embedded within the returned HTML
page.

In order to implement URL rewriting, additional coding effort is required since
APIs for encoding the URL with the session identifier need to be used. Care
also needs to be taken when designing the flow of the Web application to
ensure that the encoded session ID is not lost. When using URL rewriting, it is
not possible to use static HTML pages, because the session ID cannot be
embedded within these.

� SSL sessions

SSL sessions are the final session tracking mechanism required by the
servlet specification. This session tracking mechanism simply leverages a
feature of the secure socket layer protocol to provide a session tracking
mechanism. In this scenario, the SSL session ID that is created as part of the
SSL handshake process that occurs when establishing a secure connection
between client and server is used to track sessions instead of the WebSphere
Application Server generated session ID.
 Chapter 9. Scenario: Web interoperability 379

Persisting a session
WebSphere Application Server offers three mechanisms for persisting session
data:

� None

If this configuration setting is selected then the session objects are simply
persisted in an in-memory session cache managed locally by the session
manager that created them. Sessions are not shared among application
servers in a cluster and are not persisted to any permanent storage medium,
so, with this option selected, they will not survive an application server restart.

� Memory-to-memory replication

This session persistence mechanism enables sharing of sessions across a
replication domain without the need for a remote database. This mechanism
uses WebSphere Application Server internal messaging to publish and
subscribe session state across the members of the replication domain.

Without going into specifics, a replication domain can be considered to be a
collection of clustered application servers that communicate with each other
in order to share data.

Sessions are shared between the replication domain members and stored in
memory on each application server. If an application server fails, other
servers in the replication domain are still able to service requests without loss
of session state.

The replication domain and persistence policy are configured via the
WebSphere Application Server administrative console and application or Web
module level deployment descriptors.

� Database

The third session persistence mechanism employs a database as a persistent
store for session data. When sessions are created and on each subsequent
occasion that they are updated, they are serialized and stored in a remote
database table. Thus, if an application server participating in a cluster fails,
requests can still be serviced by other cluster members with no loss of
session data.

As with memory-to-memory replication, database persistence can be
configured via the administrative console and/or the application or Web
module deployment descriptors. In addition to configuring the session
persistence, it is also necessary to configure a remote database server and
associated JDBC provider and data source.
380 WebSphere and .NET Coexistence

9.3.3 Microsoft .NET session management
In this section, we provide an overview of state management with Microsoft .NET
applications, or, more specifically, ASP.NET. The discussion focuses on the
various objects that participate in state management. In particular, we focus on
session state management by examining the life cycle of a session within
ASP.NET applications, how session objects are identified and options for
persisting session state.

ASP.NET state management objects
State management in ASP.NET is provided at four levels: application, session,
page and request. At each level, a container object is available to allow the
application developer access to state management facilities. Table 9-1
documents the various state management objects available in ASP.NET and their
characteristics.

Table 9-1 ASP.NET state management objects

� Application state

The HttpApplicationState object is created when the Web server receives the
first request for an application resource from a client. For every application
running in an application server, there will be a separate instance of an
HttpApplicationState object. The application state is only accessible within the
context of the application that created it. Application state cannot be shared

Level Object Life cycle Scope

Application HttpApplicationState Created when first
request is received
by Web server.
Destroyed when
application shuts
down.

Global to all
sessions.

Session HttpSessionState Created upon initial
user request.
Destroyed when
user ends session.

Global to all
requests issued by
the same user.

Page ViewState State maintained
across successive
calls for a page.

Limited to all
requests for a
specific page.

Request HttpContext State maintained
for the life cycle of
the request.

Visible to all objects
associated with a
request.
 Chapter 9. Scenario: Web interoperability 381

across applications, even when they are executing within the same
application server.

� Session state

The HttpSessionState object is created when the first request from a
particular user is received by the application server. There will be an instance
of the HttpSessionState object created for every user who submits a request
for an application resource. The session state remains valid until either the
user explicitly closes the session, or the session is invalidated either by
timeout or abandonment. Each instance of an HttpSessionState object is
associated with a particular client. Session state cannot be shared across
clients.

� Page state

The ViewState object is useful where applications need to maintain the state
of a page, or the controls that are embedded within it, across successive
requests for a page. The state of the page is typically stored on the client,
though it can be maintained on the server. The state is passed between the
client and server and travels with the page.

� Request state

The HttpContext object differs from other state objects in that it has a short life
cycle, existing only for the duration of a single request. It is also different in
that it is visible to all objects that participate in the processing of an HTTP
request.

ASP.NET session state
ASP.NET implements a simple and easy to use session state model which can
be used to store objects and other application data across user requests. The
store itself is implemented as a dictionary-based cache of object references. By
default, the session state cache resides in memory within the Microsoft IIS
process. This is known as in process session state mode.

In the Microsoft .NET Framework, there is a session state module that is
analogous to the session manager within WebSphere Application Server. The
session state module implements the following functions:

� Creating the HttpSessionState object.

� Generating unique session identifiers.

� Providing a session tracking mechanism.

� Storing and retrieving state information on behalf of Web applications.

� Implementing the chosen session persistence mechanism.

� Destroying the session.
382 WebSphere and .NET Coexistence

The session state module is part of the Microsoft IIS application server process.

Session state itself is implemented in the SessionState class. This class provides
for two collections of objects: the Contents and the StaticObjects collections. The
Contents collection acts as a store for all variables that have been added to the
session state as a result of executing the application code. The StaticObjects
collection exposes all variables that have been added to the session state
collection through the Global.asax file.

Session state life cycle
The session state life cycle in an ASP.NET application is very similar to that of a
J2EE Web application, though, of course, the underlying implementation is
different between the two technologies.

In ASP.NET, the life of a session state does not begin until the first item is added
to the in-memory dictionary. Note, however, that when the first request is
received for a user, the session state module will create a new session ID for that
user and fire a Session_OnStart event. The session state remains active for
subsequent requests for that user, with objects being stored and retrieved from
the session state as required by the ASP.NET application.

The session state life cycle ends when the Session_OnEnd event is fired. This
can occur in one of two ways, either by a user request to end the session, for
instance by logging out of the application, or by the session timing out.

A brief discussion here of how the timeout mechanism works in ASP.NET may be
of interest, since it differs from the J2EE model. When the first value is added to
the session dictionary, an entry is made in the ASP.NET cache. This entry
contains the ID for the session and is given a special expiration policy that is
essentially a sliding expiration with the timeout value set to that of the session
timeout. During the processing of each subsequent user request, the cache entry
is updated, effectively by performing a read on the cache, which resets the
sliding window. If the user does not make any further request within the session
timeout period then the cache entry will expire, which will result in its removal
from the cache. As a result, when the cache entry expires, it is implied that the
session has timed out.

Session tracking mechanisms
In ASP.NET, sessions are identified by means of a 120 bit session identifier. The
session ID is generated using the random number generator cryptographic
provider, which returns a sequence of 15 randomly generated numbers. These
numbers are then mapped to URL-encoded characters and returned as a string.
 Chapter 9. Scenario: Web interoperability 383

ASP.NET offers the following session tracking mechanisms:

� Cookies

This is the default session tracking mechanism within ASP.NET. In this
mechanism, a cookie is generated for each user containing the session ID.
This cookie is then passed back and forth between the client and server. In
ASP.NET, it is possible to configure cookies to operate on a particular virtual
path and over secure connections.

� URL rewriting

It is also possible to enable URL rewriting as a session tracking mechanism
with ASP.NET applications. In this mechanism, the URL is modified by
embedding the session ID within it. This mechanism provides an alternative
session tracking mechanism whereby the application is accessed by clients
who have disabled cookies in their browsers.

Persisting a session
Within ASP.NET, there are three modes available for session state persistence:

� In process mode

This is the default session state persistence mechanism within ASP.NET. This
mode provides for persisting session state in memory within the Microsoft IIS
process space. This mode, while it is the easiest to configure, provides no
resilience, that is, the session state is local to the Microsoft IIS server in which
it was created and does not survive an application server restart.

� State server mode

The state server mode enables a more resilient session state persistence
mechanism since the session state is now stored on a remote state server,
which enables the session state to survive an application server restart.

For an ASP.NET application to support this mode, it is necessary to write
extra code to perform the serialization and deserialization of the session state
to and from the remote server.

ASP.NET performs the serialization/deserialization of certain "basic" types
using an optimized internal method. "Basic" types include numeric types of all
sizes (for example Int, Byte, Decimal, etc.), String, DateTime, TimeSpan,
Guid, IntPtr and UIntPtr.

ASP.NET will serialize/deserialize a session variable that is not one of the
"basic" types using the BinaryFormatter, which is relatively slower.

Before you can use an out-of-process state method for managing and storing
the session state, you must ensure that the objects defined and used by your
ASP.NET application are serializable. Making an object serializable is usually
a matter of adding the object class with the <Serializable> attribute. Only in
384 WebSphere and .NET Coexistence

special cases can you build a custom serializer (in this case with additional
coding effort) implementing the ISerializable interface.

See also:

http://support.microsoft.com/default.aspx?scid=kb;EN-US;q325056

for a note about load balanced Web farm scenarios.

A remote state server must also be configured as the session store. For the
state server persistence mode to work in ASP.NET, state service must be
running on that machine. The final step is to configure the Microsoft IIS
instance, via the Web.config file, to use the state server mode.

� SQL server mode

This is the third and most resilient session state persistence mode. In this
mode, session state is persisted to an SQL server database. In SQL server
mode, session state can also be configured to work in a failover cluster. A
failover cluster is essentially two or more identical application servers that can
store their session data in a remote SQL server database. Should one
application server fail, requests can still be serviced by another machine in
the cluster without loss of session state.

As with the state server mode, there is additional coding effort required to
perform the serialization of session state, and additional configuration of the
Microsoft IIS application server. Also, it is necessary to create the tables
within the SQL server to hold the session state, but scripts are provided for
this task.

9.3.4 Considerations
In this section, we examine some of the key considerations that need to be
addressed in sharing state between Web applications executing in WebSphere
Application Server and Microsoft .NET. In particular, we examine the following:

� How do we establish a relationship between a user session in WebSphere
Application Server and a user session in Microsoft .NET?

� What mechanisms are available for sharing session data between the two
technologies?

� How can the session life cycle be extended across the technology boundary?

� Can forwarding and redirecting of requests be implemented across
technologies?

Session object mapping
This section discusses possible solutions for mapping a user session in
WebSphere Application Server to a corresponding user session in a Microsoft
.NET application.
 Chapter 9. Scenario: Web interoperability 385

http://support.microsoft.com/default.aspx?scid=kb;EN-US;q325056

When developing a Web application from the ground up, there are seldom good
business reasons why you would choose to host a Web application across both
WebSphere Application Server and Microsoft .NET technologies. In the scenario
where a new application is being developed, one would simply choose the best
technology stack for the application and focus development in that direction.
However, it is not inconceivable that certain situations may arise, such as in a
mergers and acquisitions scenario, where there may be an immediate business
need to provide Web interoperability in a heterogeneous environment. In the long
run, however, it is imperative that a sound migration strategy be designed and
implemented to eliminate having to provide these interoperability fixes.

Earlier in this chapter, we outlined what session tracking mechanisms are
available in WebSphere Application Server and Microsoft .NET and briefly
discussed some of the details of each implementation. This section extends
these models to discuss how one might provide for the tracking of sessions in a
heterogeneous environment. In particular, we discuss how session tracking
across technologies might be implemented by leveraging existing technologies,
such as cookies or URL rewriting, and also how we might implement our own
custom session tracking mechanisms.

Note that this discussion focuses purely on ways in which applications might
share session identifiers in a heterogeneous environment. Actual sharing of
session data is discussed in “Sharing session data” on page 390.

Cookies
As discussed earlier in this chapter, both technologies provide for session
tracking by using cookies. It therefore makes sense to leverage this ability and
the client side capabilities of the browser to use cookies as a mechanism to
exchange session IDs between Web applications running in WebSphere
Application Server and Microsoft .NET environments.

Figure 9-8 on page 387 illustrates how cookies can be used as a mechanism to
track sessions across applications in a heterogeneous environment.
386 WebSphere and .NET Coexistence

Figure 9-8 Session tracking with cookies in heterogeneous environment

In the above scenario, the client interacts with both a J2EE Web application
running in WebSphere Application Server and an ASP.NET application running in
a Microsoft .NET Framework. While it is assumed that the Presentation layers in
both technology stacks will interact with other application layers, the details of
those interactions are not shown here, for reasons of clarity.

The client initiates a session in the WebSphere Application Server environment
by sending a request for some Web resource. The WebSphere Application
Server creates a session for the client and delegates the request to other

Thin
App

Client Layer

Servlet ASP .NETCookie Cookie

Presentation Layer Presentation Layer

Business Layer Business Layer

Redirect

Integration Layer Integration Layer

Resource Layer Resource Layer

<<jsessionid>> <<jsessionid>>

<<asp_sessionid>>

WebSphere Application .NET Application

Cookie
 Chapter 9. Scenario: Web interoperability 387

application layers for processing of the request. In this scenario, it is assumed
that in order to completely satisfy the request, it is necessary to execute some
business logic residing on the Microsoft .NET technology stack. Therefore, the
servlet controlling the application flow sends a redirect to the client, passing the
WebSphere Application Server session identifier back to the client in the form of
a cookie. The client then redirects the request to the specified resource in the
Microsoft .NET application where an ASP.NET session is created on behalf of
the client and a session ID assigned.

Note that we use a redirect in the solution since it is not possible to forward to a
resource external to WebSphere Application Server. Care must also be taken
when the ASP.NET application resides in a different domain from the WebSphere
Application Server to ensure that the domain of the cookie is explicitly set.
Failure to set the domain will result in the cookies not being sent as part of the
redirect.

In this way, we have managed to establish a relationship between a session
residing in an WebSphere Application Server application and a session residing
in an ASP.NET application. Having done so, the cookies containing the session
identifiers for each application can be passed back and forth between the
environments.

URL rewriting
URL rewriting is the other existing session tracking mechanism common to both
technology stacks. However, it is not a suitable mechanism for exchanging the
session identifiers since the implementation of how the session identifiers are
embedded into the URL differs, resulting in HTTP errors when attempting to
redirect between the two technology stacks. For instance, when WebSphere
Application Server encodes the URL with the session identifier, the resulting URL
looks something like this:

http://myHost/myServlet;jsessionid=0000oqsZo6fsRbPue0yZYiGuwFl:-1

Whereas in ASP.NET the session identifier is encoded in the URL in the following
manner:

http://myHost/myApp/(5jddu0nkyjbqfv45ont2ad55)/myASP.aspx

Thus the two encoding mechanisms are totally incompatible and URL rewriting
should not be considered an option.

Custom session tracking mechanisms
A third, but less attractive option is to implement a custom mechanism for
tracking sessions in the heterogeneous environment. This has drawbacks in that
it requires writing additional code.
388 WebSphere and .NET Coexistence

http://myHost/myServlet;jsessionid=0000oqsZo6fsRbPue0yZYiGuwFl:-1
http://myHost/myApp/(5jddu0nkyjbqfv45ont2ad55)/myASP.aspx

Options for implementing custom session tracking mechanisms include:

� WebSphere Application Server as a façade to Microsoft .NET

Figure 9-9 illustrates the concept of the façade. In this scenario, the two
environments are fronted by a WebSphere façade that handles the
complexities of session tracking on behalf of the WebSphere Application
Server and Microsoft .NET applications.

Figure 9-9 WebSphere Application façade

We have not actually attempted an implementation of this scenario in this
book. However, there is a technology in J2EE that lends itself to this type of
scenario; this technology is called filter servlets and is part of the servlet 2.3
specification.

A filter is a reusable piece of code that can transform the content of HTTP
requests, responses, and header information. Generally, filters do not create
a response or process a request as an HttpServlet would. Instead, they
modify or adapt requests for a resource and modify or adapt responses from
a resource. The type of functionality supported by filter servlets includes:

T h in
A p p

C l ie n t L a y e r

P r e s e n ta t io n L a y e r P r e s e n ta t io n L a y e r

B u s in e s s L a y e r B u s in e s s L a y e r

I n te g r a t io n L a y e r I n te g r a t io n L a y e r

R e s o u r c e L a y e r R e s o u r c e L a y e r

W e b S p h e r e A p p l i c a t io n . N E T A p p l i c a t io n

W e b S p h e r e A p p l ic a t io n F a c a d e

R e q u e s t R e s p o n s e
 Chapter 9. Scenario: Web interoperability 389

– Accessing a resource before a request to it is invoked.

– The processing of a request for a resource before it is invoked.

– The modification of request headers and data.

– The modification of response headers and data.

Thus it can be seen that filters are well adapted to performing the kind of
tasks required to implement the façade illustrated above.

� Passing the session identifier as a parameter

In this scenario, whenever the redirect is issued to pass the user from one
Web application to another, the session identifier is added to the redirect URL
as a parameter. This implementation would require additional control logic in
both Web applications to extract the session identifier and store it. The most
obvious place to store it would of course be in the session object of the Web
application to which it was passed.

� Passing the session identifier as an HTTP header

The servlet filter would modify the HTTP request and add a new HTTP
header key-value pair with the session identifier. On the application server’s
side, the application has to extract the HTTP header value to get the session
identifier.

� Embedding the session identifier as a hidden field

In this solution, the session identifier is embedded in the HTML response
returned to the client as a hidden field in a form. When the client makes the
next request, the session identifier is returned to the server as a parameter.
While this at first may seem a relatively straightforward way to implement
interoperability, it is in fact highly undesirable. This is because, to implement
this option, you would have to add the form and hidden field in your pages in
both Web applications. Again, it would also be necessary to implement some
controlling logic in both WebSphere Application Server and Microsoft .NET to
handle the embedding and extraction of the session identifier, storage and
retrieval of the session identifiers.

Sharing session data
In this section, we explore the following mechanisms for sharing session data in
a heterogeneous environment:

� Database

� Messaging point-to-point

� Messaging publish/subscribe

� Push
390 WebSphere and .NET Coexistence

Once again, when reading this section, it is important to keep in mind that while
the solutions can be implemented, one has to consider whether it is desirable to
do so, since the alternative is often to eliminate interoperability issues altogether
by carrying out a migration from one technology stack to the other.

Database
In this scenario, illustrated in Figure 9-10, session data is stored in a relational
database and shared between a WebSphere Application Server and a Microsoft
.NET Web application.

Figure 9-10 Sharing session data using a relational database

To access the data, both Web applications need some common key that maps to
the data in the database table. This key could be exchanged between the two
Web applications using one of the mechanisms discussed in “Session object
mapping” on page 385.

When a request is received from a client who is not in session, the Web
application must create a session, create a unique key for the session and
persist the session data into the database. The key can then be sent back to the

T h in
A p p

C l ie n t L a y e r

P r e s e n ta t io n L a y e r P r e s e n ta t io n L a y e r

B u s in e s s L a y e r B u s in e s s L a y e r

In t e g r a t io n L a y e r In te g r a t io n L a y e r

R e s o u r c e L a y e r R e s o u r c e L a y e r

W e b S p h e r e A p p l i c a t io n .N E T A p p l ic a t io n

S e s s io n
D a ta

R e q u e s t R e q u e s t

R e s p o n s e

< < s e s s io n ID > > < < s e s s io n ID > >< < s e s s io n d a t a > > < < s e s s io n d a t a > >
 Chapter 9. Scenario: Web interoperability 391

client, probably in a cookie so that the session data can be retrieved and updated
on subsequent calls by whichever application is processing the request.

While this solution, at first, appears to be a relatively straightforward mechanism
for sharing session data, there are a number of problems that need to be
addressed in actually implementing the solution:

� Session tracking

In order for each Web application to be able to retrieve the session data, it will
be necessary to implement some common session tracking mechanism.

� Data serialization and deserialization

In order to write the session data to and retrieve it from the database, it is
necessary to serialize and deserialize the data. Both Java and the Microsoft
.NET languages provide APIs for doing this. However, the problem that needs
to be addressed is how to represent a Java object in a form that can be
understood by a .NET application and vice versa.

� Implementing session persistence

As we have seen earlier, both technologies support persisting session data to
a relational database. However, it may not be possible to leverage the
mechanisms built into WebSphere Application Server and Microsoft .NET. In
this case, it will be necessary to implement a bespoke persistence solution.

� Performance

When implementing a bespoke session persistence mechanism, great care
has to be taken to ensure that application response times are not adversely
affected. Both WebSphere Application Server and Microsoft .NET provide
database persistence mechanisms that have been heavily optimized for the
environment that they service, but even these can increase response times
by 20% to 30%. It is unlikely that any bespoke development that has to
operate across technology stacks will be able to better this.

Given the problems discussed above, this solution becomes less attractive when
compared to migrating your Web application to a single technology stack.

Messaging point-to-point
In this scenario, session data is shared between Web applications by using
message queueing middleware, such as IBM’s WebSphere MQ, to synchronize
session data; Figure 9-11 on page 393 illustrates this scenario.
392 WebSphere and .NET Coexistence

Figure 9-11 Sharing Session data using message queueing middleware

When the first request is received from a user, the receiving Web application
must create the session on behalf of the user and assign a session ID. Each time
any action is performed upon the session, such as creation, updating or deleting,
the session has to be synchronized between the Web applications using the
queueing mechanism.

While this solution may provide a mechanism for sharing session data in a
heterogeneous environment, it suffers from many of the problems that were
highlighted in the previous section on sharing session data using a database,
such as object serialization and session tracking issues. Also, there is most likely
going to be a considerable amount of development effort to implement the
synchronization and to install and configure the messaging middleware.

Messaging publish/subscribe
Point-to-point messaging fails in load balanced environments, where multiple
WebSphere and .NET application servers are listening for the user’s request. In
such a situation, the publish/subscribe messaging pattern can be a solution. One

T h in
A p p

C lie n t L a y e r

B u s in e s s L a ye r B u s in e s s L a ye r

In te g ra tio n L a y e r In te g ra tio n L a ye r

R e s o u rc e L a ye r R e s o u rc e L a ye r

W e b S p h e re A p p lic a tio n .N E T A p p lic a tio n

R e q u e s t R e q u e s t

R e s p o n s e

< < s e s s io n d a ta > >P re s e n ta t io n L a ye r

S e s s io n

P re s e n ta tio n L a y e r

S e s s io nM e s s a g e Q u e u e
 Chapter 9. Scenario: Web interoperability 393

application server distributes the session update information to a topic, instead of
a single queue. On the other end, all the other application servers that have
subscribed to the topic receive the session update information.

Session invalidation has to be solved by using publish/subscribe pattern also, to
make sure that all servers invalidate the session.

Push
This scenario is similar to the messaging scenario in that session data is pushed
between the Web applications to ensure that they both have a local, but
consistent view of the session data.

One way in which session data might be pushed between WebSphere
Application Server and Microsoft .NET is by using HTTP POSTs. For a full
discussion of how session data may be propagated between technology stacks,
see 9.4, “Data propagation” on page 395

Session life cycle
Sessions exist for a defined life cycle; they are created when a user makes an
initial request to a Web application. They are updated, stored and retrieved in
some storage mechanism, whether persistent or not over consecutive requests
from the user. Eventually, they are destroyed either by explicit user action or by
the runtime environment when some predetermined event, such as a timeout,
occurs. Earlier in this section, we examined how the session life cycle is
implemented in both WebSphere Application Server and in Microsoft .NET.

When implementing session state management in heterogeneous environments,
consideration must be given to how the session life cycle is properly enforced.
This is particularly important where a session is replicated across both
environments. The design of the solution must address, for instance, how
session creation and invalidation are enforced across the two technology stacks.
For instance, if a session is invalidated in a WebSphere Application Server Web
application then it must also be invalidated in the Microsoft .NET Web
application. Any solution must address such issues.

Forwarding and redirecting
Consideration also has to be given as to how requests and responses are
passed between heterogeneous Web applications. 9.4, “Data propagation” on
page 395 provides a discussion of the issues surrounding forwarding and
redirection.
394 WebSphere and .NET Coexistence

9.3.5 Recommendations
Typically in a section of this nature, one would expect to see some
recommendations as to when and how to best apply the solutions which were
discussed earlier. However, this time we are going to approach things from a
slightly different viewpoint.

This section has illustrated the problems in managing session data across a
heterogeneous environment. It has proposed solutions, some of which have
been implemented, others of which are untested theory. There can, however, be
only one recommendation arising from this chapter and that is that, when
presented with a scenario which requires Web interoperability, one should not
consider which of the solutions presented in the chapter is the best. Rather, one
should consider whether integrating the technologies in the first place is the best
option, or whether it is more appropriate to perform a structured migration of one
environment to the other.

9.4 Data propagation
Data propagation is the movement of data from one medium to another. It is
often a necessary component of Web-interoperability in an environment
containing Web applications running on WebSphere Application Server and
ASP.NET applications running on an IIS application server. This section
discusses data propagation, as well as some of the problems associated with
data propagation in a coexistence scenario, lists some items to consider, and
gives some examples of propagating data between a WebSphere and ASP.NET
application.

9.4.1 Problem definition
Under certain circumstances, it may be necessary to share data between
existing Web applications. This becomes an interesting problem in situations
where the applications reside on different application servers and employ
different Presentation layer technologies. Such is the case in an environment
where Web interoperability is required between Java-based applications running
on IBM WebSphere Application Server and ASP.NET applications running on
Microsoft IIS. An example of data propagation in an environment such as this is a
purchasing application which runs on WebSphere and needs to interact with an
catalog item selection application running on IIS. The WebSphere purchasing
application is a typical shopping cart style Web application. What makes this
application different is that it must interact with an item catalog system located on
an external IIS system. These systems must interact in a seamless manner.
When the purchaser requests to browse an item catalog located on the IIS
server, he is directed to that server. The WebSphere application needs to
 Chapter 9. Scenario: Web interoperability 395

propagate data such as the catalog name and item category to the IIS server so
that it can display the correct information to the user. The user selects an item or
possibly many items from the ASP.NET item catalog. These selections and all
related information must then be propagated back to the original application.

A simpler scenario would be to simply propagate data from one application to the
other, not returning to the original application. An example of this scenario, using
portions of the previous example, would be to start with the item catalog on the
ASP.NET system, select items, and then transfer to the WebSphere system to
carry out the purchase of those items. In this scenario, data propagation would
occur only once in the transfer of items from one application to the other.

These are only two examples of data propagation in an environment where
WebSphere and .NET must coexist and interact. Also, this interaction is to occur
at the Presentation layer. Keep in mind that these examples do not include
session/state management or security. These topics are covered in other
sections of this chapter.

9.4.2 Description of the problem
The problem surrounding Presentation layer data propagation can be made into
a simple abstraction. At an abstract level, data propagation is very
straightforward. Data needs to be copied by some Web application and
transported to another Web application, Figure 9-7 on page 377 shows a more
abstract view of the problem.

Figure 9-12 Data propagation from application servers with a thin client intermediary

In Figure 9-7 on page 377, we have two different application servers servicing a
single client.

WebSphere
Web

Application
ASP.NET

Application

Thin Client

1

2

3

Presentation Layer

4

396 WebSphere and .NET Coexistence

1. The client sends a request to the WebSphere Web application.

2. The Web application responds.

3. At this point, the thin client has the data it needs sent to the ASP.NET
application. It propagates this data to the application with a request.

4. The ASP.NET consumes this data and produces a response.

9.4.3 Considerations
In designing and implementing a solution for the scenario, there are several
considerations that should be taken into account. This section presents a
discussion of these considerations.

Data transport
The data transport mechanism is the method used in transporting data from one
Web application to another. There are only a few options available to transport
data from one Web application to another that do not require an direct connection
between the Web applications. These are:

� URL redirection

URL redirection is a method of notifying a thin client, typically a browser, that
it should invoke a different URL than the one it requested. Redirection
requests can be sent by a Web application with a single URL. The thin client,
if it chooses to perform the redirect, will invoke the URL.

� Form-based

Form-based transport is the use of standard HTML forms to transport data
from a Web application server to another. Using Figure 9-7 on page 377 to
demonstrate, the client makes a call to the WebSphere Application Server for
some content. The application server responds with an HTML form. The
action attribute on the form directs the form to be submitted to a URL hosted
by the ASP.NET application server. When the form is submitted, the data it
contains is sent to the ASP.NET server.

� JavaScript URL construction

In a JavaScript-enabled thin client such as Netscape Navigator or Microsoft
Internet Explorer, a URL can be constructed within the script at runtime and
the client can be directed to the URL.

� HTTP request forwarding

HTTP request forwarding is the forwarding of a HTTP request to a secondary
URL. Forwarding is currently only available in WebSphere Application Server.
In addition, the current implementation only allows URL forwarding within the
same Web application. Due to these restrictions, request forwarding is not
 Chapter 9. Scenario: Web interoperability 397

considered as a possible transport mechanism. For more information on
WebSphere/J2EE request forwarding, see the RequestDispatcher interface
at:
http://java.sun.com/j2ee/1.4/docs/api/javax/servlet/RequestDispatche
r.html

Table 9-2 Comparison of data transport mechanisms

Method Advantages Disadvantages

URL Redirection � Very simple to implement under
both .NET and WebSphere.

� Can be used to redirect a client to
any URL.

� Supported by most newer thin
clients/browsers.

� Involves no direct interaction
between application servers. The
thin client serves as an
intermediary.

� Data can be manipulated and
validated before it is mapped into a
redirection URL.

� May not be supported by the
thin client.

� Some clients can be
configured to not allow
redirection.

� All data must be included on
the URL string. The
maximum length of a URL
string varies for clients and
servers.

� Redirection uses the HTTP
GET command. Some
applications may be designed
to expect data from a HTTP
POST command.

� The application server
requesting the redirect must
generate the correct URL to
give to the client.

� Requires an additional
connection to the originating
application server.
398 WebSphere and .NET Coexistence

http://java.sun.com/j2ee/1.4/docs/api/javax/servlet/RequestDispatcher.html

Data types
There are several issues regarding the propagation of data between Web
applications using the methods discussed above. The most glaring issue is
generally that only character data may be propagated between Web
applications. All numeric values and binary data must be converted to a
character string representation before it can be propagated between Web
applications using the methods above. The HTTP protocol also allows direct
binary transmission to occur if a client accesses the source of the data. For
example, accessing a graphical image file is a direct binary transmission of data
over HTTP. However, this type of data propagation is not what this section
discusses. Instead, this section discusses data propagation in relation to
interfacing two separate Web applications.

In addition to the character data only restriction, URL redirection and JavaScript
URL construction must adhere to the additional restriction imposed by RFC
1738. This RFC specifies restrictions for URLs. In a nutshell, URLs should
contain only a subset of characters in the US-ASCII character set. Fortunately,

Form-based � The thin client handles passing data
to the secondary server. No extra
code is required on the primary
server.

� Can be used to send multi-part
data, including files.

� Does not require multiple trips to the
application server.

� Not limited by URL length.

� Supported by most thin
clients/browsers.

� Hidden elements may be used to
send data to the secondary server.

� Does not occur automatically.
The client must submit the
data to the secondary server.

� Originating application server
does not validate data before
it reaches the secondary
server.

JavaScript URL
Construction

� Server interaction is not required.

� Reduction in network traffic.

� Very dynamic.

� Supported by major browser
vendors.

� Not all thin clients support
JavaScript.

� More difficult to implement.

� JavaScript often does not
function the same way for all
thin clients. A script that runs
on one may not run on
another.

Method Advantages Disadvantages
 Chapter 9. Scenario: Web interoperability 399

this restriction can be thwarted by encoding the URL. Encoding takes those
characters outside of the acceptable range and encodes them with characters
that are acceptable to use in a URL. Encoding is a fairly simple process.
Characters that are outside the valid range for URLs are encoded by prefixing
them with a % symbol, followed by their hexadecimal code. For example, a
space character (ASCII value 32) is encoded as %20. Some encoders may also
use other special characters when encoding data. For example, the
java.io.URLEncoder uses the + (plus) symbol for encoding space characters.

Since encoding is often required when forming a URL, both WebSphere and the
Microsoft .NET Framework contain classes for encoding URLs. See Example 9-1
for an example of using URL encoding techniques from Java and the .NET
Framework.

Example 9-1 URL data encoding in Java (WebSphere) and C# (.NET Framework)

Java example:
import java.net.URLEncoder;
...
String myUrl = “http://myserver/myapp/myservlet?data=”;
myUrl = myUrl + URLEncoder.encode(“my data”);
// Encoded url is: http://myserver/myapp/myservlet?data=my+data
...

C# Example:
using System.Web; // Must also add a project reference to System.Web.dll
...
String myUrl = “http://myserver/myapp/myaspnet?data=”;
myUrl = myUrl + HttpUtility.UrlEncode(“my data”);
// Encoded url is: http://myserver/myapp/myaspnet?data=my+data
...

You may have noticed in Example 9-1 that the entire URL is not encoded. If the
entire URL were encoded, the thin client would not be able to process it correctly.
For example, http://myserver becomes http%3a%2f%2fmyserver. As you can
see, using this as a URL will not cause the correct page to be loaded by a
browser. Therefore, instead of encoding the entire URL, only the parameter data
should be encoded.

URL parameters follow the base URL and potential path info. Parameters follow
an initial question mark and are of the format parameter=value. Additional
parameters are separated by an ampersand. For example, this could be
http://myserver/myapp?parm1=value1&parm2=value2. The value portion of these
parameters should be encoded to ensure the data they represent is propagated
correctly. It is also good practice to only use parameter names that do not require
encoding.
400 WebSphere and .NET Coexistence

The WebSphere J2EE Java HttpServletResponse interface contains a method
named encodeRedirectURL(). So why not simply use this method to encode in
one step? The reason is that most J2EE implementations of this method,
WebSphere included, do not work quite as one may expect. They do not encode
the actual parameter data. Instead, this method is typically used in situations
where URL rewriting is used for session management. This method simply adds
an additional encoded parameter to allow URL rewrites to persist over a
redirection request. Usage has not shown it to perform actual encoding of URL
data. To ensure proper encoding of parameter data, use the method above.

Data format
Propagating data from one Web application to another is very similar to calling an
API from a normal program. The callee must construct a parameter list and
parameter data such that it is what the caller expects. Proper formatting of data is
very important. If a Web application is expecting a parameter containing a string
in numeric format, it may fail if it receives badly formatted data.

Proper formatting of data is both the responsibility of the calling Web application
and the application being called. The caller should make certain it has both
parameters and data in the correct format. The end point application should
make certain it can produce meaningful error messages if it does not get the data
it expects. At the heart of this issue is arguably the biggest shortcoming
regarding Web application interoperability: the lack of a defined, published
interface into Web applications built in this manner. The end point application can
change its URL, parameter lists, and data format and all clients coded to use that
format no longer produce the correct behavior.

Other propagation methods
This section is intended to discuss Web application to Web application data
propagation issues. Generally, the techniques discussed above are used in the
following situations:

� Situations where Web applications must be integrated very quickly.

� Applications that reside on the Internet and must function over firewalls.

� Situations where a secondary Web application is used, but there is no direct
agreement with the Web application provider. An example of a situation like
this would be a Web application that links to another Web application to

Note: Handling of encoded URLs varies for thin clients (Web browsers): in
some cases, a URL that works with one thin client may not work with another
thin client. The encoding practice used by this book is supported by most
current browsers.
 Chapter 9. Scenario: Web interoperability 401

provide a service such as driving directions or weather information. Web
applications using a provider like this typically have no control over the level,
quality, and availability of the service. They also have no control over changes
made to the interface of the service.

Other sections of this book discuss many other methods for providing data
propagation in a Web-interoperability scenario. Each of these methods has its
limitations and considerations. Most of these limitations center around one of the
three issues above. For example, Web Services function over Internet firewalls
and provide a standard interface and data types, but may not allow quick and
easy integration of applications. A shared database will allow information sharing
but will not work if the application servers are separated by an Internet firewall.
Other technologies and solutions share similar issues.

9.4.4 Solution model
This section discusses the design and implementation of an example solution for
data propagation over WebSphere and ASP.NET applications. Two approaches
will be covered: URL redirection and form-based integration. The JavaScript URL
construction approach is left to the reader for further investigation.

Solutions to the problem are based upon a simple average calculator application.
The application provides a very limited set of functionalities. The reason for this
is to keep the example as simple as possible, so that the objective of how to
integrate WebSphere Application Server and Microsoft .NET Web application
artifacts is not obscured by the complexities of our chosen scenario.

In our solution, the average calculator provides only the ability to calculate the
average of two arguments and display the results.

URL redirection solution
The URL redirection solution, as shown in Figure 9-13 on page 403, shows the
steps involved in using redirection to propagate data from an IBM WebSphere
Web application to a ASP.NET application running on IIS. The steps involved to
produce this interaction are as follows:

1. The thin client requests a static page from the IBM HTTP Server. The server
returns the page to the client.

2. The user enters data into the form and submits it back to the IBM HTTP
Server. The server examines the URL and determines the request must be
forwarded to WebSphere Application Server.

3. WebSphere Application Server gets the request, processes it, and generates
a redirect request. The Web application must repackage the data and build a
URL to direct the thin client to the application running on IIS. The URL is
402 WebSphere and .NET Coexistence

generated and a redirect request is handed to the IBM HTTP Server. The
HTTP Server sends a redirect request to the thin client.

4. The thin client performs the redirect. The Microsoft IIS server is contacted and
data is propagated within the URL it is given.

5. IIS examines the URL context and directs it to an ASP.NET application. The
ASP.NET application receives the parameter data that has been propagated
in the URL. It validates the data and generates a reply in the form of HTML
content. The reply is forwarded to IIS.

6. IIS receives the reply and it is returned to the thin client.

Figure 9-13 URL redirection: WebSphere to Microsoft ASP.NET

Tip: Steps 5 and 6 in Figure 9-13 could also be a redirection request back to
WebSphere Application Server. This is ideal in many situations since it may
help to keep all output logic within a single application server, thus making it
simpler for all pages within an application to maintain the same look and feel.

Thin Client

HTML
Form

WebSphere
Application

Server
Application

IBM HTTP Server

1 2

2 3

Redirect

3

ASP.NET Web
Application

Microsoft IIS

5 5

4

HTML
Results
Page

61
 Chapter 9. Scenario: Web interoperability 403

Form-based propagation solution
In the URL redirection approach, we chose to go from IBM HTTP
Server/WebSphere Application Server to Microsoft IIS/ASP.NET. To demonstrate
our form-based solution, we will start with the Microsoft server and propagate
data to the IBM server. This solution involves the following steps.

1. The thin client contacts an Web application through IIS. IIS examines the URL
and determines it is an ASP.NET Web application. The request is forwarded
to the ASP.NET application.

2. The ASP.NET Web application produces HTML content containing a form. It
sets the action attribute on the form to direct to an application running on IBM
WebSphere Application Server.

3. The user enters data into the form and submits it. The thin client sends the
request and form data to the IBM HTTP Server. The HTTP Server examines
the request URL and forwards the request and data to the WebSphere
Application Server.

4. The application server processes the data and generates a response. The
response is forwarded to the HTTP Server.

5. The HTTP Server returns the response to the thin client.

Tip: As with the URL redirection solution, steps 4 and 5 in this solution could
process the data, package the solution, and redirect it to the ASP.NET
application. This would ensure all content generation is performed by a single
application server.
404 WebSphere and .NET Coexistence

Figure 9-14 Form-based propagation from ASP.NET to WebSphere

9.4.5 URL redirection implementation
In keeping with the theme of the book, a simple calculator example was
implemented to show a URL redirection solution between WebSphere
Application Server and ASP.NET. The application is a simple calculator that takes
two numbers, calculates the average, and returns the request to the client. This
solution involves the following steps:

1. Create a WebSphere application to process form data and the redirection
request.

2. Generate a WebSphere static HTML page.

3. Publish the WebSphere HTML and servlet.

4. Create a ASP.NET application to process the WebSphere request.

5. Publish the ASP.NET application.

Thin Client

WebSphere
Application

Server
Application

IBM HTTP Server

4 3

ASP.NET Web
Application

Microsoft IIS

1 2

HTML
Form

1 23

HTML
Results
Page

5

 Chapter 9. Scenario: Web interoperability 405

Creating the servlet
Use IBM WebSphere Studio Application Developer to create a new Enterprise
Application Archive (EAR). Name the Enterprise Application Archive
WASWebInteropEAR. Create a Dynamic HTML project named WASWebInterop. It
should reside within the Enterprise Application you just created. Dynamic HTML
projects can contain servlets, JSPs, and static HTML pages. The next step is to
add a servlet to the project. We named our servlet WS2NETAvgCalcRedirector.
Naming is very important because, by default, the name of the servlet is used to
reference the servlet from the client.

Example 9-2 contains the code for implementing the redirection servlet. Note the
repackaging of URL parameter data and the call to sendRedirect() on the
HttpServletResponse object. The URL that is constructed directs the thin client to
an ASP.NET page running a server. In this example, both IIS and WebSphere
Application Server are running on localhost. However, the IBM HTTP Server is
using port 9080, while IIS uses the default port 80 for HTTP. In a normal
environment, these would be different servers entirely, so the URLs would need
to match.

Example 9-2 WS2NETAvgCalcRedirector.java

package redbook.coex.webinterop.ws2net.presentation;

import java.io.IOException;
import java.io.PrintWriter;
import java.net.URLEncoder;
import javax.servlet.Servlet;
import javax.servlet.ServletException;
import javax.servlet.http.HttpServlet;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;

public class WS2NETAvgCalcRedirector extends HttpServlet implements Servlet {

public void doGet(HttpServletRequest req, HttpServletResponse resp)
throws ServletException, IOException {

doGetPost(req,resp);
}

public void doPost(HttpServletRequest req, HttpServletResponse resp)
throws ServletException, IOException {

doGetPost(req,resp);
}

// doGetPost handles both GET and POST requests
public void doGetPost(HttpServletRequest req, HttpServletResponse resp)

throws ServletException, IOException {
try
406 WebSphere and .NET Coexistence

{
String arg1 = req.getParameter("WASArg1");
String arg2 = req.getParameter("WASArg2");
// Validate parameters (throws exeception if bad)
Double.parseDouble(arg1);
Double.parseDouble(arg2);
// Build the redirect to the ASP.NET page.
StringBuffer netURL = new

StringBuffer("http://localhost/NETWebInterop/AvgCalculator.aspx?");
// Parameters for the ASP.NET page are named ASPNETArg#
netURL.append("ASPNETArg1=");
netURL.append(URLEncoder.encode(arg1));
netURL.append("&ASPNETArg2=");
netURL.append(URLEncoder.encode(arg2));
resp.sendRedirect(netURL.toString());

}
catch (NumberFormatException nfe)
{

// Arguments were not numeric, display a message
PrintWriter pw = resp.getWriter();
pw.println("<HTML><BODY><H2> ERROR: Arguments are not numeric.

</H2></BODY></HTML>");
pw.close();
return;

}
catch (NullPointerException npe)
{

// Arguments were not specified, display a message
PrintWriter pw = resp.getWriter();
pw.println("<HTML><BODY><H2> ERROR: Arguments were not specified.

</H2></BODY></HTML>");
pw.close();
return;

}
}

}

Creating the static HTML page
A static HTML page may be easily generated in WebSphere Studio Application
Developer. The page must contain a form with the action attribute referencing the
the ASP.NET Web application and have the proper variables for propagating
data from one application to another.

WebSphere Studio will help generate and verify the HTML produced. It will also
verify links within the document. For example, if the WS2NETAvgCalcRedirector
application did not exist within the current context, it would be flagged as a
 Chapter 9. Scenario: Web interoperability 407

possible problem. See Example 9-3 below for the static HTML used to provide
the main interface into the simple application.

Example 9-3 AverageCalculator.html

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<HTML>

<HEAD>
<META http-equiv="Content-Type" content="text/html; charset=ISO-8859-1">
<META name="GENERATOR" content="IBM WebSphere Studio">
<META http-equiv="Content-Style-Type" content="text/css">
<LINK href="theme/Master.css"

rel="stylesheet" type="text/css">
<TITLE>WAS Average Calculator</TITLE>

</HEAD>
<BODY>

<P>WAS Average Calculator</P>
<P>Calculate Average of Two Numbers</P>
<FORM name="AvgCalc" action="WS2NETAvgCalcRedirector" method="post">

Argument 1: <INPUT type="text" name="WASArg1" size="10">

Argument 2: <INPUT type="text" name="WASArg2" size="10">

<INPUT type="submit" name="Submit" value="Calculate">

</FORM>
<P></P>

</BODY>
</HTML>

The HTML in Example 9-3 produces the simple page in Figure 9-15 on
page 409. The interface is very simple. The user enters two numbers and clicks
the calculate button. The action on the form instructs the browser to direct the
form input to the WS2NETAvgCalcRedirector servlet.
408 WebSphere and .NET Coexistence

Figure 9-15 AverageCalculator.html as Displayed by Browser

Creating the ASP.NET application
Use Microsoft Visual Studio .NET to create an ASP.NET Web application. Name
this new application NETWebInterop. The application can be created in one of
several languages. We chose C# as our language of choice. The C# language is
recommended for Java programmers since it has very similar constructs and
syntax. By default, Visual Studio .NET automatically connects to IIS and
publishes the new Web application on the local server. Publishing on a remote
server is also possible by simply changing localhost to the server name. See
Figure 9-16 on page 410 for the project screen used to create a new ASP.NET
Web Application using the C# language.

Create a new ASP.NET Web form within your project. This can be accomplished
by right-clicking the NETWebInterop project and selecting Add -> New Item...
from the context menu. Choose Web Form from the available templates. Name
this new Web form AvgCalculatorResult.aspx. Add two label Web controls to
the page. The top label is the page title. The second label control shows the
result of the average calculation. This control should have an ID of avgLabel. The
control ID is important in mapping the Web element to a server side label object.
Figure 9-17 on page 410 shows the ASP.NET form in the form designer.
 Chapter 9. Scenario: Web interoperability 409

Figure 9-16 Creating a new ASP.NET Web application

In addition to creating the Web form, some code must be added to do the actual
processing. In this simple example, the code was simply added directly into the
Page_Load method of the server side class behind the Web form. See
Example 9-4 on page 411 for the code used to process the external request.
Note the parameters ADONETArg1 and ADONETArg2 and how they are used to
propagate data from the WebSphere Web application to this application to be
processed.

Figure 9-17 Using the ASP.NET form generator to create the average results form
410 WebSphere and .NET Coexistence

Example 9-4 AvgCalculatorResult.aspx.cs

using System;
using System.Collections;
using System.ComponentModel;
using System.Data;
using System.Drawing;
using System.Web;
using System.Web.SessionState;
using System.Web.UI;
using System.Web.UI.WebControls;
using System.Web.UI.HtmlControls;

namespace redbook.coex.webinterop.ws2net.presentation
{

public class WS2NETAvgCalculator : System.Web.UI.Page
{

protected System.Web.UI.WebControls.Label pageLabel;
protected System.Web.UI.WebControls.Label avgLabel;
// Page_Load is called each time the ASP.NET page is accessed
private void Page_Load(object sender, System.EventArgs e)
{

try
{

// Verify the parameters
double arg1 = Double.Parse(Request.Params["ASPNETArg1"]);
double arg2 = Double.Parse(Request.Params["ASPNETArg2"]);
// Compute the average
double average = (arg1 + arg2) / 2;
// Set avgLabel’s Text property to the average
avgLabel.Text = "The average is: " + average;

}
catch (FormatException)
{

// Arguments were not numeric
avgLabel.Text = "ERROR: Arguments are not numeric";

}
catch (ArgumentNullException)
{

// Both arguments were not specified
avgLabel.Text = "ERROR: Arguments were not specified";

}
}

#region Web Form Designer generated code
override protected void OnInit(EventArgs e)
{

InitializeComponent();
base.OnInit(e);
 Chapter 9. Scenario: Web interoperability 411

}
private void InitializeComponent()
{

this.Load += new System.EventHandler(this.Page_Load);
}
#endregion

}
}

These are the major components for building a simple application using URL
redirection to propagate data from WebSphere Web application to a ASP.NET
application. The application is started by loading the static HTML page from the
WebSphere side. Data is entered into the form and posted to the WebSphere
servlet based Web application. This application repackages the data, generates
a URL redirection request and hands it to the client. The client accepts this
request and forwards it to the ASP.NET application. The ASP.NET application
receives the numeric data, calculates the average, and returns a HTML page
with the results to the client. In the next section, we implement a similar
application using form-based propagation.

9.4.6 Form-based propagation implementation
In the URL redirection solution, we propagated data from a WebSphere Web
application to a ASP.NET application. In this scenario, we build a similar
application, going from an ASP.NET Web application to a Web application
deployed on WebSphere. Another difference is that instead of using URL
redirection to propagate data, this implementation will use standard HTML forms
to post data from one Web application to another. The application is a simple
calculator which takes two numbers, calculates the average, and returns the
request to the client. This solution involves the following steps:

1. Create an ASP.NET application to generate a HTML form containing the
action to send data to the WebSphere Web application.

2. Publish the ASP.NET application so it may be used by thin clients.

3. Create a WebSphere Web application to process data propagated from the
ASP.NET application

4. Publish the WebSphere application.

Steps 1-2 and 3-4 may be done in reverse order. The important thing is planning
the names of the applications in advance so they can be referenced by one
another.
412 WebSphere and .NET Coexistence

Creating the ASP.NET application
In the scenario we have chosen, we could have simply created a static HTML
page and published it on the Microsoft IIS server. Instead, we chose to
implement the HTML form using raw HTML output with ASP.NET. This was
necessary because standard designer generated ASP.NET forms do not allow
you to post form data anywhere except to the same application.

If you completed the URL redirection based scenario, you should already have
an ASP.NET application named NETWebInterop. If not, Use Microsoft Visual
Studio .NET to create an ASP.NET Web application. Name this new application
NETWebInterop. The application can be created in one of several languages.
We chose C# as our language of choice. The C# language is recommended for
Java programmers since it has very similar constructs and syntax. By default,
Visual Studio .NET automatically connects to IIS and publishes the new Web
application on the local server. Publishing on a remote server is also possible by
simply changing localhost to the server name. See Figure 9-16 on page 410 for
the project screen used to create a new ASP.NET Web application using the C#
language.

The next step is to create a new Web form. This Web form will be used to
produce the initial HTML form for the simple average calculator. In the Visual
Studio .NET Solution Explorer, right-click the NETWebInterop project and select
Add -> New Item... from the context menu. Choose Web Form from the
available templates. Name this new Web form AvgCalculatorForm.aspx. Nothing
will be added to the form using the form design editor. Instead, bring up the
HTML view for AvgCalculatorForm.aspx and remove the tags such that the file
only contains the XML tag shown in Example 9-5. It should be the first line of the
.aspx file.

Example 9-5 AvgCalculatorForm.aspx

<%@ Page language="c#"
Codebehind="AvgCalculatorForm.aspx.cs"
AutoEventWireup="false"

Inherits="redbook.coex.webinterop.net2ws.presentation.AvgCalculatorForm" %>

The next step is to add the code to generate the HTML form. This code is added
to the Page_Load method in the implementation class behind the aspx page. See
Example 9-6 on page 414 for the code listing used to generate the HTML form.
 Chapter 9. Scenario: Web interoperability 413

Example 9-6 AvgCalculatorForm.aspx.cs

using System;
using System.Collections;
using System.ComponentModel;
using System.Data;
using System.Drawing;
using System.Web;
using System.Web.SessionState;
using System.Web.UI;
using System.Web.UI.WebControls;
using System.Web.UI.HtmlControls;

namespace redbook.coex.webinterop.net2ws.presentation
{

public class AvgCalculatorForm : System.Web.UI.Page
{

private void Page_Load(object sender, System.EventArgs e)
{

// Generate the raw HTML to display the form
Response.Output.WriteLine("<HTML>");
Response.Output.WriteLine("<HEAD><TITLE> ASP.NET Average Calculator

</TITLE></HEAD>");
Response.Output.WriteLine("<BODY>");
Response.Output.WriteLine("<H1> ASP.NET Average Calculator </H1>");
Response.Output.WriteLine("<H3> Calculate Average of Two Numbers: </H3>");
// The action on the form points to the WebSphere web application
Response.Output.WriteLine("<FORM

action=\"http://localhost:9080/WASWebInterop/NET2WSAvgCalcResult\" method=post>");
Response.Output.WriteLine("Argument 1: ");
// Add the arguments using names the WebSphere application is expecting
Response.Output.WriteLine("<INPUT type=text maxlength=10 size=10 name=\"WASArg1\">");
Response.Output.WriteLine("
");
Response.Output.WriteLine("Argument 2: ");
Response.Output.WriteLine("<INPUT type=text maxlength=10 size=10 name=\"WASArg2\">");
Response.Output.WriteLine("

");
// Add the calculate button
Response.Output.WriteLine("<INPUT type=submit name=CalculateAvg value=Calculate>");
Response.Output.WriteLine("</FORM>");
Response.Output.WriteLine("</BODY>");
Response.Output.WriteLine("</HTML>");
// Close the output stream
Response.Output.Close();

}
#region Web Form Designer generated code
override protected void OnInit(EventArgs e)
{

InitializeComponent();
base.OnInit(e);
414 WebSphere and .NET Coexistence

}
private void InitializeComponent()
{

this.Load += new System.EventHandler(this.Page_Load);

}
#endregion

}
}

The listing in Example 9-6 on page 414 produces an HTML form very similar to
the implementation of the previous example. Figure 9-18 shows the output
produced by the code in AvgCalculatorForm.aspx.cs.

Figure 9-18 The ASP.NET average calculator form

The ASP.NET application above automatically gets published to the IIS server
when it is created and compiled. No additional work needs to be done to start the
application from a standard thin client.

Creating the WebSphere Web application
In this scenario, data is propagated from the ASP.NET application to the
WebSphere application. After receiving the data, the WebSphere application
must process the numeric data, calculate an average, and return results to the
user.

If you have not done so in the previous example, use IBM WebSphere Studio
Application Developer to create a new Enterprise Application Archive (EAR).
Name the Enterprise Application Archive WASWebInteropEAR. Create a dynamic
 Chapter 9. Scenario: Web interoperability 415

HTML project named WASWebInterop. It should reside within the Enterprise
Application you just created. Dynamic HTML projects can contain servlets, JSPs,
and static HTML pages.

The next step is to add a servlet to the project. We named our servlet
NET2WSAvgCalcResults. Naming is very important because, by default, the name
of the servlet is used to reference the servlet from the ASP.NET form. This
servlet will get the request and numeric data, process it, and return results to the
user. See Example 9-7 for a code listing of the servlet.

Example 9-7 NET2WSAvgCalcResults.java

package redbook.coex.webinterop.net2ws.presentation;

import java.io.IOException;
import java.io.PrintWriter;
import javax.servlet.Servlet;
import javax.servlet.ServletException;
import javax.servlet.http.HttpServlet;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;

public class NET2WSAvgCalcForm extends HttpServlet implements Servlet {

public void doGet(HttpServletRequest req, HttpServletResponse resp)
throws ServletException, IOException

{
doGetPost(req, resp);

}

public void doPost(HttpServletRequest req, HttpServletResponse resp)
throws ServletException, IOException

{
doGetPost(req, resp);

}

public void doGetPost(HttpServletRequest req, HttpServletResponse resp)
throws ServletException, IOException

{
// Write the document heading
PrintWriter pw = resp.getWriter();
pw.println("<HTML>”);
pw.println(“<HEAD><TITLE>WAS Average Calculator Results</TITLE</HEAD>”);
pw.println(“<BODY><H2> WAS Average Calculator Result</H2>");
try
{

String arg1 = req.getParameter("WASArg1");
String arg2 = req.getParameter("WASArg2");
double dblArg1 = Double.parseDouble(arg1);
416 WebSphere and .NET Coexistence

double dblArg2 = Double.parseDouble(arg2);
// Compute the average
double average = (dblArg1 + dblArg2) / 2;
// Write the average
pw.println("The average is: " + average);

}
catch (NumberFormatException nfe)
{

pw.println("ERROR: Arguments are not numeric");
}
catch (NullPointerException npe)
{

pw.println("ERROR: Arguments were not specified");
}
// Write closing tags
pw.println("</BODY></HTML>");
pw.close();

}
}

The code for NET2WSAvgCalcResults in Example 9-7 on page 416 above
produces a results page very similar to the previous example. See Figure 9-19
for the resulting HTML page.

Figure 9-19 Results from ASP.NET to WebSphere using form-based propagation

These are the major components for building a simple application using
form-based redirection to propagate data from an ASP.NET Web application to a
WebSphere application. The application is started by loading the dynamic HTML
page from the ASP.NET server. Data is entered into the form and posted to the
WebSphere servlet-based Web application. The WebSphere application
receives the numeric data, calculates the average, and returns an HTML page
with the results to the client.
 Chapter 9. Scenario: Web interoperability 417

9.4.7 Recommendations
The implementations above give you an idea of how simple it is to create an
interoperable Web environment using WebSphere and ASP.NET. The number of
interaction types that could be produced using these simple methods is endless.
Nearly any two Web environments can be integrated using the techniques
discussed in this section. That said, this type of solution should not be used for
every Web interoperability situation. The key points on page 401 should be kept
in mind when deciding if you should build a solution of this nature. To
recapitulate, those points are:

� Situations where Web applications must be integrated very quickly.

� Applications which reside on the Internet and must function over firewalls.

� Situations where a secondary Web application is used, but there is no direct
agreement with the Web application provider.

Unless all these conditions are true, we recommend using another means such
as Web Services, a shared relational database, or message queue to perform
data propagation. There are also other things to consider, such as stateful versus
stateless interaction, security, and performance when creating a Web
interoperable solution. For example, you may not want to shuttle sensitive data
from one environment to another over the Web. Performance is also a major
issue. Form-based posting of data or URL redirection can be slow because of the
extra steps required to encode, package, unpackage, and decode the data.

An additional recommendation and good design practice for using the solutions
described is to use a layered approach. Keep business logic and data within
classes or beans. For the sake of simplicity, the provided implementations did not
do this. By separating logic and data from the presentation, when data
propagation is required, it is simply a process of gathering the necessary data
from the underlying logic and propagating it. Using this design practice will make
it simpler to change the Presentation layer while leaving the business layer
untouched.

Simply put, use the methods discussed in this section if and when it makes
sense. They are tactical solutions to providing Web interoperability between
WebSphere and .NET applications. This may work well if the applications are not
mission- or business-critical. For these types of applications, a more strategic
solution using technologies such as Web Services should be implemented.

9.5 Integrated security
The discussion of WebSphere and .NET coexistence security is a major topic;
this chapter only focuses on Web interoperability between the two platforms,
418 WebSphere and .NET Coexistence

therefore in this section we only discuss security in the context of Web
applications.

In the following sections, we clarify some of the terms used in this chapter.

Authentication
Authentication is the process of establishing whether a client is valid in a
particular context. A client can be either an end user, a machine, a service or an
application.

Impersonation, delegation, re-authentication
When the current subject of the security context needs to act as another subject,
this is called impersonation. In the process of impersonation, the current subject
has to authenticate in the name of another subject. The new credentials are
added to the current security context then the subject can switch personality
before performing the next process.

During delegation, the current subject has to switch to another subject according
to the delegation rules. For example, a server component has to call over to
another component on another server and it has to use a certain subject for the
call that the other server is expecting.

Re-authentication can be used to switch subjects for a client, while the original
subject goes away. It can be used for users to get further permissions, for
example, a normal user logs into the system, then re-authenticates as root (root
cannot log in to the system in the first place).

Authorization
Authorization is the process of checking whether the authenticated user has
access to the requested resource. There are two fundamental methods for
authorization.

� Access Control List

Each resource is associated with an Access Control List, which is a list of
subjects and attributes. The attributes define what the subjects can do with
the resource.

� Capability list

Each user has a capability list associated with him/her, that is, a list of
resources that the user can access and the corresponding privileges held by
the user.
 Chapter 9. Scenario: Web interoperability 419

Role-based security
Roles introduce another level of abstraction to security. In authorization, the
resource-subject association is made at a registry or directory level.

Secure communication
Secure communication involves authentication and authorization on the
communication layer.

9.5.1 WebSphere security
Without going into details about WebSphere Application Server security, this
section only focuses on Web application security. For more information about
WebSphere security, refer to Chapter 1, “J2EE introduction” on page 3 and
Chapter 11, “Quality of service considerations” on page 471, or check the
redbook IBM WebSphere V5.0 Security - WebSphere Handbook Series,
SG24-6573.

WebSphere has a virtualized security architecture. This security architecture can
be tied to several different implementations, including the local operating system,
external directory services, external security services.

Security for the Web is configured on the application server level, and also on the
application level. The server settings configure security for the application server,
including the User registry, SSL configuration, authentication mechanisms and
so on.

On the application level, the following security settings are available for the Web
module:

� One of the following authentication methods: basic authentication,
form-based, certificate-based.

� Security constraints to protect resources. Multiple constraints can be defined
for one module and one constraint can group multiple URLs and access
methods (GET, POST, etc.).

The configuration settings for the application are stored in the web.xml file as it is
defined in the J2EE specification.

9.5.2 .NET security
Without going into details about the .NET security, this section only focuses on
Web application security. For more information about .NET security, refer to
Chapter 2, “.NET introduction” on page 49 and Chapter 11, “Quality of service
considerations” on page 471.
420 WebSphere and .NET Coexistence

.NET security is very much tied to the operating system, Windows, and the
directory service provided by the operating system is the Active Directory.

Security for the Web applications can be set in the web.config files under IIS.
These files can exist under each directory in a hierarchy. The settings are
inherited from parent directories, while others are defined or redefined for the
directory. For further information about ASP.NET application security, refer to:

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnnetsec/
html/THCMCh19.asp

9.5.3 Integrating authentication
There are different options and levels to make security interoperable between the
two platforms. This chapter discusses the possibilities of integrating the
authentication process. Authentication is the very first step performed when a
subject is interacting with a secured application.

We discuss the following options for integrating authentication:

� Shared User registry
� Externalizing authentication

Shared User registry
Sharing the User registry between applications, or in our case, between the
platforms is the most obvious first step. Unfortunately it is not a simple task at all;
in most cases, the User registry exists in a system that requires customized code
for the application or for the application server to access user data.

There are two scenarios in this case:

� .NET application uses the WebSphere application’s User registry
� WebSphere application uses the .NET application’s User registry

Accessing the .NET User registry from WebSphere
There could be different implementations for a .NET User registry, but the most
common and most obvious is to use Active Directory.

Note: Subject in the previous paragraphs stands for the user, service,
application, or machine participating in the interaction with the secure
application.

Different authentication mechanisms and implementations use different
terminologies to identify the subject.
 Chapter 9. Scenario: Web interoperability 421

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnnetsec/html/THCMCh19.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnnetsec/html/THCMCh19.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnnetsec/html/THCMCh19.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnnetsec/html/THCMCh19.asp

WebSphere Application Server has a built-in LDAP User registry module that can
be configured to use Active Directory. For detailed information about how to
configure WebSphere, refer to the redbook IBM WebSphere V5.0 Security -
WebSphere Handbook Series, SG24-6573.

A problem with this current solution could be that the connection between
WebSphere Application Server and Active Directory cannot be secured using
SSL.

WebSphere also supports custom User registries; this means that developers
can use the User registry SPI to develop a specific module for WebSphere and
perform authentication checks with any User registry.

Custom User registry provides the opportunity to integrate WebSphere with any
other User registry, not only the one that is used for the .NET application. In other
cases where the .NET application is using user registries other than Active
Directory, WebSphere has the flexibility again to be able to connect to that User
registry if the customized module is available.

Accessing non-Active Directory User registry from .NET
The primary User registry for .NET applications is Active Directory. Because of
the fact that .NET is tightly integrated with the operating system Active Directory
is almost the only solution for .NET applications.

Of course, customized solutions can be developed for the .NET applications, but
.NET does not provide any API to attach the application to User registries other
than Active Directory.

There are third party solutions for MS Internet Information Services to use LDAP
for authentication.

Externalizing authentication
A quicker and easier solution for integrating authentication for both platforms on
the Web is to use a third party authentication server. This solution not only
provides authentication services for both platforms, but also provides a
centralized (shared) User registry.

Tivoli Access Manager WebSEAL is a security reverse proxy server that provides
authentication services for the Web. It works as a reverse proxy and captures the
requests from the users accessing Web applications. The common language
between the security reverse proxy and the Web application servers is HTTP.
The security reverse proxy does not care what type of application is sitting
behind it, as long as they understand HTTP and the authentication information
encoded in the HTTP request.
422 WebSphere and .NET Coexistence

The following simple diagram shows a scenario with WebSEAL and two
application servers, WebSphere Application Server and MS Internet Information
Services.

Figure 9-20 Externalized authentication

WebSphere Application Server and WebSEAL
There are several integration options between WebSphere and WebSEAL; these
include:

� Basic authentication, where WebSEAL performs the authentication with the
client using any of the following options: basic authentication, form-based
authentication, certificates. Then WebSEAL passes the authentication
information to the Web or application server in an HTTP request, using basic
authentication.

� WebSEAL junction over to WebSphere using LTPA. WebSEAL performs
authentication and sends the information to the application server in a form of
a LTPA token.

� WebSEAL junction over to WebSphere using TAI. WebSEAL performs
authentication and sends the information to the application server in special
HTTP header elements. These can be picked up by WebSphere using a Trust
Association Interceptor (TAI) module.

MS Internet Information Services and WebSEAL
There are multiple options to integrate MS IIS and WebSEAL.

� Basic authentication, as detailed in the previous section. IIS gets the
information from WebSEAL in the form of basic authentication.

browser
client WebSEAL

Tivoli Access Manager
Authentication

WebSphere
Application
Server

Internet
Information
Server

User registry

request/
response

junction

junction
 Chapter 9. Scenario: Web interoperability 423

� WebSEAL can use SPNEGO to authenticate the client, then passes the
SPNEGO token to IIS. For more information about SPNEGO, refer to:

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnsecure/h
tml/http-sso-1.asp

� In a manner similar to the WebSphere TAI junction, WebSEAL can send
authentication information in the HTTP header that IIS can capture and
understand. In this case, some development and customization is required on
the IIS side to extract the information from the HTTP header.

Integrated solution
In the integrated solution, both application server platforms use and share the
same WebSEAL security reverse proxy server. Since the authentication happens
on the WebSEAL node, it also means that the User registry used for
authentication is shared between the application servers. There are the following
options for the User registry:

� Tivoli Access Manager uses Active Directory for its registry; follow the product
documentation for more details.

� Tivoli Access Manager uses an LDAP directory and the .NET application has
to have a customized solution to use the LDAP directory as a User registry.

� Tivoli Access Manager uses an LDAP directory and the .NET application uses
Active Directory. The two directories have to synchronize with one another;
this can be done with either customization or with a third party product.

In some cases, credential mapping might be necessary between the two
directories to ensure that the right identity is presented from both sides.

Custom solution using SPNEGO
There is a custom solution to implement Single Sign-On for WebSphere in a
Windows 2000 domain using the SPNEGO protocol. In this solution, the user is
logged on to the Windows domain on the company’s intranet. Whenever the user
accesses a secured resource in WebSphere, the user is authenticated with
his/her domain user name.

MS Windows 2000 and MS Windows 2003 uses Kerberos under the hood for
authentication services. MS Internet Explorer is capable of performing
negotiation with the Web server using SPNEGO.

The solution is a development of a custom Trust Association Interceptor (TAI)
that intercepts the HTTP requests on behalf of WebSphere and follows the
SPNEGO negotiation protocol to acquire user credentials from the client.
424 WebSphere and .NET Coexistence

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnsecure/html/http-sso-1.asp

WebSphere Application Server V5.0.2 has all the necessary libraries to
implement such a TAI. It requires the following libraries:

� Java GSS API, including the Kerberos security mechanism
� IBM SPNEGO implementation

For further information about SPNEGO, refer to:

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnsecure/h
tml/http-sso-1.asp

You can also use a network monitor tool to see how Internet Explorer and MS
Internet Information Services perform a SPNEGO authentication process.

9.5.4 Integrating authorization
Integrating authorization for the two platforms can be quite challenging.
Authorization settings for applications on both platform are entirely different;
some of the differences are:

� Different application components require different authorization settings.

� Authorization attributes are assigned to different subjects. WebSphere is
based on roles, ASP.NET is based on users and groups.

� Configuration for authorization persists in different places, different files in
different formats.

Externalizing authorization
Externalized authorization makes system and security management much
easier, since it is a demanding task in its own right. This section only targets
authorization for Web applications, where the resources are identified as a URL
or as part of a URL.

Authorization requires some sort of mapping between subjects and resources.
Different Web and applications servers implement this mapping in different ways.
As you may already know or have figured out from this section, the two platforms
have different ways to configure authorization for applications.

Tivoli Access Manager WebSEAL can also handle authorization for Web sites.
Authentication is taken care of by WebSEAL as described in “Externalizing
authentication” on page 422. Once the user is authenticated, WebSEAL checks
with the TAM server for authorization. In the TAM registry, ACLs (Access Control
List) are defined for authorization purposes. ACLs define the subject(s) and the
method(s) of access for the resource(s).

In this case, as with authentication, the User registry is shared by the two
platforms; for further details, refer to “Integrated solution” on page 424.
 Chapter 9. Scenario: Web interoperability 425

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnsecure/html/http-sso-1.asp

The following diagram depicts the scenario where authorization for the Web is
externalized for both WebSphere and MS IIS.

Figure 9-21 Externalized authorization

browser
client WebSEAL

Tivoli Access Manager
Authorization

WebSphere
Application
Server

Internet
Information
Server

User registry
ACL

request/
response

junction

junction
426 WebSphere and .NET Coexistence

Part 3 Guidelines

Part 3
© Copyright IBM Corp. 2004. All rights reserved. 427

428 WebSphere and .NET Coexistence

Chapter 10. Supporting technologies

In this chapter, we explain the different components of the runtime technologies
covered in this book. Also, we describe the nature of Web Services and how they
fit in this environment as an integration technology.

10
© Copyright IBM Corp. 2004. All rights reserved. 429

10.1 Web Services
Web Services are becoming the platform for application integration by defining
common ways for applications to interact with one another across
heterogeneous programming languages and operating systems. This is possible
because the fundamental building blocks of Web Services are based on XML
(eXtensible Markup Language) technologies. The use of XML allows one to
describe and invoke Web Services in a way that is neutral in regards to platform
and programming language.

Both WebSphere and .NET solutions provide similar levels of support for the
open standards for Web Services technology. In Part 2, “Scenarios” on
page 107, we show how to use Web Services to invoke services and to
exchange data between WebSphere and .NET.

Web Services are software components capable of being accessed via standard
network protocols such as SOAP over HTTP; these services can be new
applications or just wrapped around existing legacy systems to make them
network-enabled.

10.1.1 Technologies for Web Services
This section describes the technologies related to Web Services.

WSDL
The Web Service Description Language (WSDL) is used to describe the
invocation interface of a Web Service and its location using a XML format. It can
be composed of one or more files; those files describe what the Web Service
does, its interface, where the Web Services reside and how to access them.
They also include the method that is called, the parameters that are passed and
the encoding that is used. If there is more than one file, an import element is
required; it creates the reference to locate the other WSDL documents used.

A WSDL file is composed of six major elements, as follows:

� Type, which is a container that provides data type definitions using some type
system, such as an XML schema.

� Message, which represents an abstract, typed definition of the data being
communicated.

� PortType, which specifies the name and operation (method name) and points
to the input and output message.
430 WebSphere and .NET Coexistence

� Binding, a concrete protocol used to invoke the service and data format
specification for a particular port type. It contains the protocol name, the
invocation style, a service ID, and the encoding for each operation.

� Port, which specifies the location of the service for binding.

� Service, a collection of related ports.

WSDL 1.1 distinguishes two different message styles: document and RPC, and
also two encoding styles: Literal or SOAP Encoded.

Table 10-1 Message styles

The style attribute within the SOAP protocol binding can contain one of two
values: RPC or Document. RPC stands for Remote Procedure Call and it may fit
well if your service implementation is indeed a procedure that can be invoked via
the Web Service interface.

The Document style would fit in environments with more of a messaging style.
You should use the Document style any time you are not interfacing to a
pre-existing remote procedure call. The interpretation of the message, the
mapping of the data types, etc. is done in the implementation so there is not
much information in the interface when you use the Document style.

When the attribute is set to Document style, the client understands that it should
make use of XML schemas rather than remote procedure calling conventions.

In the Document style, the message is placed directly into the body portion of the
SOAP envelope, either as is or encoded. If the style is declared to be RPC, the
message is enclosed within a wrapper element, with the name of the element
taken from the operation name attribute and the namespace taken from the
operation namespace attribute.

RPC implies that the Web Service <operation> is representing a procedure that
can be invoked remotely. For the RPC style, the following rules are defined:

� The procedure name is the operation name and is sent as the root element
within the SOAP body.

� The root element contains one child element for each parameter. The
parameters can contain additional children if they are complex types.

Encoding style Document RPC

Literal Standard choice for MS
tools

-

‘SOAP’ Encoded - Standard choice for Java
tools
 Chapter 10. Supporting technologies 431

� The response message is directly contained in the SOAP body.

In the Document style, the XML that is sent within the SOAP body is an instance
of the defined WSDL message. Therefore, it allows one or more child elements
(called parts) for the body.

This does not imply that there are parameters, procedure names, etc. The
interpretation of the message content is completely left to the receiver. Generally,
it is harder to manage by the service provider because the entire message must
be parsed to identify which service implementation should be invoked. Also,
there is a risk of ambiguous messages. For example: deleteOrder(Order) and
addOrder(Order) may result in the same SOAP message at runtime.

The encodings define how data values defined in the application can be
translated to and from a protocol format. These translation steps are referred to
as serialization and deserialization, or, synonymously, marshalling and
unmarshalling. SOAP encodings tell the SOAP runtime environment how to
translate from data structures constructed in a specific programming language
into SOAP XML, and vice versa.

We will focus on two types of encoding styles:

� Literal - the data is serialized according to the XML schema.

The Literal encoding style allows you to directly convert existing XML DOM
tree elements into SOAP message content and vice versa. This encoding
style is not defined by the SOAP standard, but by the Apache SOAP
implementation.

Example 10-1 WSDL encoding example: Literal

...
<binding name="CSharpTempConverterSoap" type="s0:CSharpTempConverterSoap">

<soap:binding transport="http://schemas.xmlsoap.org/soap/http"
style="document" />

<operation name="celsiusToFahrenheit">
<soap:operation

soapAction="http://wsbootcamp.com/webservices/celsiusToFahrenheit"
style="document" />

<input>
<soap:body use="literal" />

</input>
...
432 WebSphere and .NET Coexistence

� SOAP Encoded - this defines a set of rules that specify how objects, arrays,
structures and object graphs should be serialized.

The SOAP Encoded style allows you to serialize/deserialize values of data
types from the SOAP data model. This encoding style is defined in the SOAP
1.1 standard.

The encoding used by the SOAP runtime can be specified at deployment or
runtime.

Example 10-2 WSDL encoding example: SOAP Encoded

...
<binding name="TemperatureConverterBinding" type="tns:TemperatureConverter">

<soap:binding style="rpc"
transport="http://schemas.xmlsoap.org/soap/http"/>

<operation name="fahrenheitToCelsius">
<soap:operation soapAction="" style="rpc"/>

<input name="fahrenheitToCelsiusRequest">
<soap:body

encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
 namespace="urn:TemperatureConverter" use="encoded"/>

</input>
...

Generally speaking, we should use RPC/Literal or Document/Literal if we are
talking about RPC or messaging.

WebSphere supports RPC/Literal, Document/SOAP Encoded and RPC/SOAP
Encoded and WebSphere Studio Application V5.1 and WebSphere Application
Server 5.0.2 already support Document/Literal.

Microsoft .NET, by default, creates Web Services using Document style encoding
and does not provide support for creating a Web Service that accepts messages
described by an RPC/Literal binding services.

We will cover some considerations in the Quality of Service chapter regarding
performance of the encoding styles.

SOAP
Simple Object Access Protocol (SOAP), also known as service-oriented
architecture protocol, is a lightweight protocol for the exchange of information in
a decentralized, distributed environment using XML. SOAP is the protocol that is
between the service provider, the service requestor and the service broker,
enabling the publication and invocation of Web Services.
 Chapter 10. Supporting technologies 433

SOAP consists of three parts, as described below:

� The envelope, which provides control information, the address of a message
and the message itself. The envelope can contain one or more headers and it
must have one body. The header transports any control information such as
quality of service attributes. The body contains the actual message with the
parameters and result.

� Encoding rules define a serialization mechanism that can be used to
exchange instances of application-defined data types.

� RPC defines a convention that can be used to represent remote procedure
calls and responses.

Refer to WebSphere Version 5 Web Services Handbook, SG24-6891 and
http://www.w3.org/TR/SOAP/ for more details.

The W3C (World Wide Web Consortium) defines the SOAP specification and
there are several SOAP implementations available at the moment. For example,
the Apache SOAP V2.X implementation is an open-source Java-based
implementation based on the IBM SOAP4J implementation and is a part of
several IBM products including WebSphere Application Server V5 and
WebSphere Application Developer V5. The Apache Axis implementation is a
follow-on project of the Apache SOAP V2.X project and is often referred to as the
Apache SOAP 3.0 implementation. Microsoft has its own SOAP implementation
in the Microsoft SOAP Toolkit.

It is also important to mention that there is a Java API for XML-based RPC
(Remote Procedure Calls), called JAX-RPC; this API enables developers to
create interoperable and portable SOAP-based Web Services.

UDDI
UDDI stands for Universal Description, Discovery, and Integration; it is a registry
mechanism based on standards such as XML and SOAP which can be used to
publish and find Web Services descriptions. The Web Services can be
discovered in two different ways: manually, meaning that a human can explore
the UDDI registry, search for the service or the WSDL file and then use that
information when programming the client; or programmatically, by the client
application using the UDDI programming APIs, allowing dynamic binding and
changing service providers runtime.

We are not going to use the UDDI registry in this book but it is important to give
an overview of it since it is one of the technologies used for Web Services and for
both WebSphere and .NET Web Services.

WebSphere uses the UDDI4J, which is a Java class library that provides an API
which can be used to interact with a UDDI registry. This class library generates
434 WebSphere and .NET Coexistence

http://www.w3.org/TR/SOAP/

and parses messages sent to and received from a UDDI server. The Microsoft
.NET Framework uses the UDDI SDK, which is a collection of client development
components, sample code, and reference documentation to enable developers
to interact programmatically with UDDI-compliant servers. This is available for
Visual Studio .NET and separately for Visual Studio 6.0 or any other COM-based
development environment.

WebSphere Application Server V5 Network Deployment comes with a private
UDDI registry.

The UDDI data model includes six types of information:

� Business entity, which describes a company or organization. Those entities
provide general information about the Web Services such as business name,
contacts, descriptions, identifiers, and categorization.

� Business service, which provides a business level description of a group of
Web Services. A business service maps to a WSDL service.

� Binding template, which specifies the entry point at which you can access a
Web Service. In many cases, a binding template points to an implementation
address (for example, a URL) and maps to a WSDL port.

� tModel (technical model), which contains information about the technical
specification that defines how to access a service. Its attributes are key,
name, optional description, and URL.

� Taxonomy is a scheme for categorization. There is a set of standard
taxonomies, such as the North American Industry Classification System
(NAICS) or the Universal Standard Products and Services Classification
(UNSPSC).

� Publisher assertions, also called business relationships: these make it
possible to model complex businesses, such as subsidiaries, external
business partners, or internal divisions. There are different kinds of
relationships: parent-child, peer-peer, and identity.

The central source of information about UDDI is the Web site gven below; it is
operated by OASIS, which is a non-profit, global consortium that drives the
development, convergence, and adoption of e-business standards.

http://www.uddi.org

DISCO
This is a Microsoft technology for publishing and discovering Web Services. We
are not going to use DISCO in this book.

The users can browse to a specific discovery file (.disco) or to the root of the
Web server to locate the files. The .disco files contain links to other discovery
 Chapter 10. Supporting technologies 435

http://www.uddi.org

documents, XSD schemas, and service descriptions. The discovery process is
the preliminary step for accessing a Web Service. At design time, the Web
Services clients can find the Web Service, see its description and how to interact
with it.

WSIF
The Web Services Invocation Framework (WSIF) is a simple Java API for
invoking Web Services, no matter how or where the Services are provided. It
gives flexibility to the developers because it adds extensibility to WSDL, allowing
the description of service implementations other than SOAP. It separates the API
from the actual protocol, so they do not work directly with the Simple Object
Access Protocol (SOAP) APIs. For example, it is possible to switch protocols or
locations without having to recompile the client code. The API provides
binding-independent access to any Web Service. So, whether it is SOAP, an
EJB, JMS, or any other software framework, for example .NET, you have an API
centered around WSDL which can be used to access the functionality.

Using WSIF, Java clients have one simple programming model to invoke any
service described in the WSDL file; see Figure 10-1.

Figure 10-1 WSIF concept

The WSIF architecture has two distinct subsystems: build-time and runtime. This
is illustrated in Figure 10-2 on page 437.
436 WebSphere and .NET Coexistence

Figure 10-2 WSIF build-time, runtime and WSIF providers

The build-time subsystem provides tooling for creating Java service proxies to
WSDL-described target services. These target services can be implemented in
any supported WSIF technology, meaning any that supports a WSIF provider.

The runtime subsystem provides a client API and a service provider interface. A
service client can either use the client API directly, or via a generated service
proxy; these are implemented as Java classes.

Web Services Gateway (WSGW)
The Web Services Gateway is part of WebSphere Application Server V5 Network
Deployment. We will not go into details, since the Web Services Gateway is not
going to be used in the scenarios.

The Web Services Gateway component provides a framework for invoking Web
Services between Internet and intranet environments. Its main benefit is that it
allows interoperability between Web Services deployed on different vendor

Bu
ild

St
at

ic
Pr

ox
y

WSIF

<<Java>>
<<Java>>

<<Java>> <<Java>>

Service
Proxy

Static
Client

Service
WSDL(s)

WSIF
Build-Time

WSIF
Runtime

WSIF
Client
API

WSIF
SPI

EJB Provider

JCA Provider

Others...

<<Java>> <<Java>> <<Java>>

<<Java>>

Java Client(s)

Dynamic
Client

Publish WSDLFind

<<Java>>

<<Cobol>>

<<any...>>

EJB Service Implementation

CIC Service Implementation

Others...

Services

Note: A provider is a piece of code that supports a WSDL extension and
allows invocation of the service through that particular implementation. WSIF
providers use the J2SE JAR service provider specification, making them
discoverable at runtime.
 Chapter 10. Supporting technologies 437

platforms. The gateway will abstract the vendor details and publish and serve
Web Service requests based on the standard protocols and transports.

One of the features of the gateway is the protocol transformation; the requester
application might use one particular communication protocol to invoke Web
Services, while the provider application uses some other protocol. Using the Web
Services Gateway, it is possible to trap the request from the client and transform
it to another messaging protocol.

Figure 10-3 Web Services Gateway

Business Process Execution Language (BPEL)
Business Process Execution Language for Web Services (BPEL4WS) is another
technology for Web Services which we will not explore in this book. It allows
specifying business processes and how they relate to Web Services. This
includes specifying how a business process makes use of Web Services to
achieve its goal, as well as specifying Web Services provided by a business
process.

A business process specifies the potential execution order of operations from a
collection of Web Services, the data shared between these Web Services, which
partners are involved and how they are involved in the business process, joint
exception handling for collections of Web Services, and other issues involving
how multiple services and organizations participate. This allows specifying
long-running transactions between Web Services, increasing consistency and
reliability for Web Services applications.

Web Services security
Web Services security is a message-level standard, based on securing Simple
Object Access Protocol (SOAP) messages through an XML digital signature,
confidentiality through XML encryption and credential propagation through

R equester
A pplication

S OA P/HT T P

P rovider
A pplication

RM I/IIO P

W e b S e rv ic e
G ate w ay
438 WebSphere and .NET Coexistence

security tokens. It defines the core facilities for protecting the integrity and
confidentiality of a message and provides mechanisms for associating
security-related claims with the message.

The Web Service security specification is available at
http://www.ibm.com/developerworks/library/ws-secure/; it proposes a
standard set of Simple Object Access Protocol (SOAP) extensions that you can
use to build secure Web Services. These standards confirm integrity and
confidentiality, which are generally provided with digital signature and encryption
technologies. In addition, Web Services security provides a general purpose
mechanism for associating security tokens with messages. A typical example of
the security token is a user name and password token, in which a user name and
password are included as text. Web Services security defines how to encode
binary security tokens such as X.509 certificates and Kerberos tickets.

Web Services security for WebSphere Application Server, Version 5.0.2 and
above is based on standards included in the Web Services security
(WS-Security) specification.

JAX-RPC
JAX-RPC stands for Java API for XML-based RPC and is part of the J2EE1.4
specification but can also be developed and deployed in J2EE 1.3 as a
technology preview. It is a Java API for building Web Services and clients that
use remote procedure calls (RPC) and XML. The remote procedure calls are
represented by an XML-based protocol, for example SOAP.

This API defines how to map Java code to WSDL definitions and vice versa. On
the server side, developers specify the remote procedures by defining methods
in a Java interface. On the client side, developers provide the service endpoint
by specifying a URL and invoking the methods on a local object that represents
the remote object.

JAX-RPC uses technologies such as HTTP, SOAP, and WSDL; it is
platform-independent, allowing interoperability across heterogeneous platforms
and environments, including Microsoft .NET.

10.2 Client applications
The client applications are the first layer of the logical application layers diagram
shown in Figure 3-2 on page 95. They are typically defined by GUI (Graphical
User Interfaces) programs that execute on a user’s machine or applications that
execute in a Web browser. This means that the clients usually run on a client
machine separated from the application server.
 Chapter 10. Supporting technologies 439

http://www.ibm.com/developerworks/library/ws-secure/

An application combines Web clients (such as Web browsers), Web application
servers, and standard Internet protocols to access data and applications across
one or more enterprises. Many technologies can be used during the
development of the client side of a Web application (including Java, TCP/IP,
HTTP, HTTPS, HTML, DHTML, XML, MIME, SMTP, IIOP, and X.509, among
others). Often, project success and future adaptability depend upon the
technologies used. Therefore, we encourage you to make the client side of any
Web application rather lightweight, or to be more specific, “thin.”

10.2.1 Web browser
A Web browser is a client program which initiates requests to a Web server and
displays the information that the server returns.

The browser is used to locate and display Web pages. The two most popular
browsers are Netscape Navigator and Microsoft Internet Explorer, but there are
others such as Mozilla and Opera. All of these are graphical browsers, which
means that they can display graphics or text.

The Web pages can be written using markup languages such as HTML
(Hypertext Markup Language), DHTML (Dynamic Hypertext Markup Language),
or scripting languages which typically provide enhanced access to objects within
the browser interface and HTML document, as well as many generic language
features. An example of scripting languages would be JavaScript or VBScript.

A browser also supports a Java Virtual Machine (JVM) for execution of Java
applets and supports browser plugins which are proprietary software programs
that extend the capabilities of browsers in a certain way, giving them the ability to
play audio or view movies, for example.

JavaScript is a compact, object-based scripting language for developing client
and server Internet developed by Netscape to design interactive sites. It shares
many features and structures of Java but was developed independently.
JavaScript can interact with HTML source code, which makes it possible to add
dynamic content to the Web sites.

VBScript is based on the Visual Basic programming language but it is simpler. In
many ways, it is similar to JavaScript. It enables you to include interactive
controls, such as buttons and scrollbars, on Web pages.

Other types of applications should also be mentioned in this category, such as
the Java Applets and ActiveX programs.

Java Applet is an application program, written in Java, which can be retrieved
from a Web server and executed by a Web browser. It can also run in a variety of
other applications and devices. An applet must be loaded, initialized and run by a
440 WebSphere and .NET Coexistence

Web browser. It can be used to process presentation logic, because it provides a
powerful user interface for J2EE applications.

An ActiveX control is similar to a Java applet. It can be described as a set of rules
for how applications should share information. It can be downloaded and
executed by a Web browser. ActiveX controls can be developed in a variety of
languages, including C, C++, C#, Visual Basic and Java. The ActiveX controls
have full access to the Windows operating system, but the applets do not.
Another difference between Java applets and ActiveX controls is that Java
applets can be written to run on all platforms, but ActiveX controls are limited to
Windows environments.

Be aware that not every browser supports all languages, so there is a limitation
on running client applications. Even if the browser supports the language you are
using, the users may have the support disabled.

10.2.2 J2EE clients
This section describes the different types of J2EE clients.

Thin Java client (not J2EE)
The thin Java client is also known as a Web client. It refers to the Java
standalone program that is not running within the J2EE client container.

A thin Java client consists of two parts: dynamic Web pages containing various
types of markup languages (HTML, XML, etc.), which are generated by Web
components running in the Web layer, and a Web browser, which renders the
pages received from the server. Thin clients usually do not do things like query
databases, execute complex business rules, or connect to legacy applications.

If you need to execute one of these operations, it is better to use enterprise
beans executing on the J2EE server where they can leverage the security,
speed, services, and reliability of J2EE server-side technologies, instead of using
thin Java clients.

There are several thin client technologies, such as HTML, JavaScript, DHTML,
and Java applets. The design of the client side of a Web application depends
upon which technology is employed, but you cannot choose your client
technology without considering the server side of your application, too. If your
server depends on JavaScript and complex DHTML to get its message across,
your client should be able to handle these requirements. In other words, the
client and server choices must be made as part of an end-to-end design.
 Chapter 10. Supporting technologies 441

Java applets
An applet is a component that typically executes in a Web browser. It is a Java
class that can also run in a variety of other applications or devices.

An applet must be loaded, initialized and run by a Web browser; it can be used to
process presentation logic, and it provides a powerful user interface for J2EE
applications. However, simple HTML pages may also be used.

Applets embedded in an HTML page are deployed and managed on a J2EE
server although they run in a client machine. They are considered to belong to
the HTML page and an HTML page is managed by a J2EE server.

Refer to the Web site below for a better understanding of the technologies which
can be used for building both client and server side Web applications:

http://www-106.ibm.com/developerworks/java/library/j-framework2/
understanding.html

J2EE application clients
A J2EE application client is a standalone program launched from the command
line or desktop and runs on a client machine. For example, it can access EJBs
running on the J2EE application server. Although a J2EE application client is a
Java application, it differs from a standalone Java application client in that it is a
J2EE component that runs in the J2EE client container. This means that it has
access to all the facilities of J2EE. The container provides the runtime support for
the standalone application. Furthermore, it runs in its own JVM (Java Virtual
Machine).

Since the J2EE application client is part of a J2EE application, it is portable,
which means that it will run on an J2EE-compliant server. Also, it may access
J2EE services as security authentication and JNDI lookups.

J2EE applications are packaged in JAR files with a deployment descriptor. The
deployment descriptor for an application client describes the enterprise beans
and external resources referenced by the application.

A J2EE application client provides a way for users to handle tasks that require a
richer user interface than can be provided by a markup language. It typically has
a graphical user interface (GUI) created from Swing or Abstract Window Toolkit
(AWT) APIs, but a command line interface is certainly possible.
442 WebSphere and .NET Coexistence

http://www-106.ibm.com/developerworks/java/library/j-framework2/understanding.html

10.2.3 Windows .NET clients
This chapter describes the different types of .NET clients.

Console clients
.NET offers a console-based client which can run from any Windows command
line and take advantage of the full range of Windows APIs and .NET libraries.
Console clients can be either thick or thin depending on the use of technologies
such as Web References (to call Web Services), .NET Remoting (to call .NET
code on a remote server), classic COM, etc.

Graphic User Interface clients
.NET offers a new GUI technology library in Windows Forms (WinForms).
WinForms are very similar to the look, feel, and coding style of previous versions
of Visual Basic. GUI clients are able to take advantage of the same technology
choices as console applications.

10.3 Server pages
Server pages are components of a Web application that run on the server side.
They are part of the Presentation layer. In this section, we will explain both Java
and .NET supporting technologies for server pages.

10.3.1 Servlets and JSPs
Servlets are server-side software components written in Java, and because of
that, they inherit all the benefits of the Java language, including a strong typed
system, object-orientation, modularity, portability and platform independence.
They run inside a Java enabled server or application server, such as WebSphere
Application Server. Servlets are loaded and executed within the Java Virtual
Machine (JVM) of the Web server or application server, in the same way that
applets are loaded and executed within the JVM of the Web client. Since servlets
run inside the servers, they do not use graphical user interface (GUI).

The Java Servlet API is a set of Java classes which define a standard interface
between a Web client and a Web servlet. Client requests are made to the Web
server, which then invokes the servlet to service the request through this
interface. A client of a servlet-based application does not usually communicate
directly with a servlet, but requests the servlet’s services through a Web server or
application server which invokes the servlet through the Java Servlet API.

In the MVC (Model-View-Controller model), in servlet-only applications, the
servlet is used as both the controller and the view. Servlets process the requests
 Chapter 10. Supporting technologies 443

(control) and produce the HTML response (view). In some cases, such as using
JDBC to access back-end data, the servlet can also act as the model. HTML,
DHTML, JavaScript and XML are useful for the static components of the
programming model, servlets (controller) and JSP (view) are the most useful
components in generating dynamic content.

JavaServer Pages (JSP) technology allows you to easily create Web content that
has both static and dynamic components.

A JSP is mostly a XML or HTML document with special embedded tags. It runs in
a Web container, and at runtime, the JSP is parsed and compiled into a Java
servlet and may call JavaBeans or Enterprise JavaBeans to perform processing
on the server.

The JSP tags enable the developer to insert the properties of a JavaBean object
and script elements into a JSP file, providing the ability to display dynamic
content within Web pages.

In order for the JSP container to understand and execute a custom JSP tag, the
code implementing the tag and information on how to translate the tag and find
and invoke the code must be available to the container. Tags for a particular
function are normally aggregated into a tag library. Therefore, a tag library is a
collection of custom tags. Tag libraries, or taglibs, are normally packaged as JAR
files.

JSP technology supports the use of JSTL (Java Server Pages Standard Tag
Library) which defines a standard set of tags and is used to optimize
implementation.

Figure 10-4 on page 445 shows how the JSP fits in the MVC architecture.
444 WebSphere and .NET Coexistence

Figure 10-4 Typical JSP access model

1. The HTTP request comes in from the Web client and passes through the Web
server to the application server. The servlet’s service() method is invoked.

2. The servlet interacts with Java classes (in this case, a JavaBean) to process
the request. The dynamic content is placed into a Java class (a JavaBean)
that is to be shared with a JSP (in our example, we assume the request
scope).

3. The servlet forwards the request to the JSP:

If this is the first request for the JSP, it is compiled into a servlet, and that
servlet’s service() method is invoked.

4. The JSP gets the shared object from the appropriate scope (we assume the
request scope in this example).

5. Finally, the JSP generates the dynamic content and returns the generated
Web page to the Web client.

Some advantages of using JSPs are:

� Separation of dynamic and static content - this allows for the separation of
application logic and Web page design, reducing the complexity of Web site
development and making the site easier to maintain.

� Portability - JSP technology is based on Java; this meansthat it is
platform-independent. JSPs can be developed on any platform and viewed by
any browser because the output of a compiled JSP page is HTML. No
rewriting is necessary.

B
row

ser

Servlet
(Controller)

JSP
(View) JavaBean

(Model)

Web Container EIS

Request (1)

Response (5)

(2)
(3)

(4)

B
row

ser

Servlet
(Controller)

JSP
(View) JavaBean

(Model)

Web Container EIS

Request (1)

Response (5)

(2)
(3)

(4)
 Chapter 10. Supporting technologies 445

� Reusability - JSP technology emphasizes the use of reusable components
such as JavaBeans, Enterprise JavaBeans and tag libraries, taking
advantage of these technologies and improving the functionality.

� Scripting and tags - JSPs support both embedded JavaScript and tags.
JavaScript is typically used to add page-level functionality to the JSP. Tags
provide an easy way to embed and modify JavaBean properties and to
specify other directives and actions.

� High quality of tool support - JSPs can be built using JSP-enabled
development tools like WebSphere Studio Application Developer.

� XML - since the JSP 1.2 specification allows a JSP page to be an XML
document, every tool that is capable of manipulating XML can now be used
with JSPs. It is also easy to validate a JSP against a DTD or an XSD.

In this redbook, we are using the J2EE 1.3 specification; this means that we use
JSP 1.2. The major change for the JSP 1.2 specification is the ability to encode
the JSP in pure XML. There are also additional classes for the validation of tag
libraries and new tags that facilitate iteration and handling life cycle events.

More details are available at:

http://java.sun.com/products/jsp/

10.3.2 ASP.NET
ASP.NET is a feature of Microsoft's Internet Information Services (IIS) and is the
next generation of the Microsoft's Active Server Pages. Beyond a means of
dynamically building Web pages, ASP.NET is a programming framework for
building highly scalable Web applications.

A newer ASP
ASP.NET does not feel like the older versions of ASP. To list all of the new
features is a little beyond our scope, but we will mention a few. Refer to
www.asp.net for more information.

� CLR: Gone are the days of only being able to use Jscript and VBScript to give
your pages access to back-end data. With the addition of Microsoft's
Common Language Runtime (CLR) as a platform, ASP.NET now gives
developers the ability to write their code as C#, VB.NET, J#, Jscript.NET, and
in more than 30 other languages.

� Performance: ASP historically did not perform well. ASP.NET code is
executed by the CLR and with the help of a Just-In-Time compiler, native
code optimizations, and early bindings, performance is highly improved.
Some applications have recorded 30 - 40% increases in performance when
moving from ASP to ASP.NET.
446 WebSphere and .NET Coexistence

http://java.sun.com/products/jsp/

� Web Services: ASP.NET, along with the CLR, constitutes the Web Services
environment for IIS. Web Services operate as an object in ASP.NET, with
similar treatment to the code-behind functionality mentioned below.

� Code-behind: ASP.NET offers several models for separating code from
content; one mechanism is the code-behind feature. Using code-behind
allows UI forms to make use of compiled code objects on the server. The
code-behind feature involves creating a user interface in a .aspx file (Web
Form) made up of HTML (plus ASP declarations) and inheriting from a code
file living on the server. The separation is very clean between presentation
logic and code to drive the presentation.

Model-View-Controller design pattern using ASP.NET
To demonstrate the design of a simple ASP.NET application and to illustrate the
Model-View-Controller roles in the ASP.NET environment, let's talk about a
common example that involves creating an ASP.NET application to access a
database.

In our example, we use three files: SimpleForm.aspx, SimpleForm.aspx.cs, and
SimpleDataGateway.cs

SimpleForm.aspx contains the description of our user interface and is defined in
HTML with the following ASP.NET declaration:

Example 10-3 ASP.NET declaration

<%@ Page language="c#" Codebehind="SimpleForm.aspx.cs" AutoEventWireup="false"
Inherits="CodeBehindExample.SimpleForm" %>

The Inherits attribute tells the ASP.NET system which class the .aspx file
inherits from at runtime. The Codebehind attribute is used by Visual Studio .NET
but is not used at runtime. Note that using the same file name for the .aspx file
and the .cs file is a convention used the Visual Studio .NET Application wizard.
To make the UI SimpleForm.aspx use a different code-behind class, just change
the Inherits attribute (and the Codebehind attribute if you are using Visual
Studio). For a description of ASP.NET page directives, see:

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpgenref/h
tml/cpconpage.asp

SimpleForm.aspx.cs contains the event handling code for UI defined by
SimpleForm.aspx and ties it to SimpleDataGateway. Because SimpleForm is
named as the code-behind class for SimpleForm.aspx, the object must inherit
from the .NET class System.Web.UI.Page or a subclass of Page.
 Chapter 10. Supporting technologies 447

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpgenref/html/cpconpage.asp

Example 10-4 Inheritance for SimpleForm

/// <summary>
/// The description for SimpleForm
/// </summary>
public class SimpleForm : System.Web.UI.Page {

SimpleDataGateway contains all of the code needed to use the database.

Figure 10-5 Model-View-Controller roles in ASP.NET

When a browser requests SimpleForm.aspx, the ASP.NET runtime looks at the
@Page information and loads the precompiled assembly with the class specified
in the Inherits attribute. The UI is then displayed and the events denoted by the
code-behind object that the page inherits from are handled as they occur.

A common design flaw in ASP.NET applications is embedding the Model code in
the Code-behind object filling the role of MVC role of Controller. Combining the
Controller and Model makes it difficult to reuse the code filling the role of the
Model. In our example, combining the Controller and Model could force us to
refactor if we create another page that wants access to the database.

Example 10-5 Model implementation

private void InitializeComponent() {
this.TestButton.Click += new System.EventHandler(this.TestButton_Click);
this.Load += new System.EventHandler(this.Page_Load);

}
private void TestButton_Click(object sender, System.EventArgs e) {

// Don't put the database driving code in your codebehind object!!!
// This violates the MVC design pattern.
SqlConnection AConnection =
new SqlConnection("server=(local);database=adb;Trusted_Connection=yes");

}

SimpleForm.asp
x Web Form:

View

SimpleForm.aspx.
cs:

Controller

DB

SimpleDataGateway
.cs

Model

SimpleForm.asp
x Web Form:

View

SimpleForm.aspx.
cs:

Controller

DB

SimpleDataGateway
.cs

Model
448 WebSphere and .NET Coexistence

ASP.NET and Web Services
ASP.NET offers a framework to make, build and deploy Web Services simply.
The mechanism used for Web Services is very similar to that of the code-behind
feature from a developer's point of view. Internally with ASP.NET, much more
goes on under the covers.

The two primary elements are an .asmx file and a .cs file. For demonstration
purposes, we will call these MyService.asmx and MyService.asmx.cs (using the
Visual Studio .NET convention). MyService.asmx is very much like the file
SimpleForm.aspx without the HTML:

Example 10-6 MyService.asmx

<%@ WebService Language="c#" Codebehind="MyService.asmx.cs"
Class="SimpleWebService.CodeBehindTheService,SimpleWebService" %>

The important element here is the Class attribute which denotes the class used
to implement the Web Service.

If we were to put the class in the .asmx file itself, it would be compiled by
ASP.NET (via the specified language compiler) the first time the Web Service is
requested. If the Web Service implementation lives in a different file, the
assembly containing the source file should be compiled before the Web Service
is deployed and placed in the bin directory of the Web Service location on the
server (typically wwwroot\<Web_Service_Name>\bin).

For a complete list of Class attribute descriptions, see:

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpgenref/h
tml/gnconwebservicedirectivesyntax.asp

In this example, we are using a separate file and to get the best performance, we
are specifying the name of the assembly along with the class name:
Class="SimpleWebService.CodeBehindTheService,SimpleWebService".
Providing the name of the assembly ",SimpleWebService" is optional, but it helps
performance because ASP.NET does not have to look in all of the assemblies in
the bin directory, only the one noted.

The actual implementation of the Web Service resides in MyService.asmx.cs in
the class CodeBehindTheService. The class can inherit from
System.Web.Services.WebService to get access to ASP.NET specific
functionality provided by system objects such as Application, Session, User, etc.
The objects can be useful for life cycle information, security, and other highly
desirable bits.
 Chapter 10. Supporting technologies 449

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpgenref/html/gnconwebservicedirectivesyntax.asp

The public methods of the class are not exposed to Web Service clients as
callable methods by default. To expose a method to a client from a service, the
[Web Method] attribute is required.

Example 10-7 Web Service implementation

public class CodeBehindTheService : System.Web.Services.WebService {
[WebMethod]
public string HelloWorld() {

return "Hello World";
}

...

When a call to our service comes from a client, IIS and ASP.NET help the
message get from HTTP port 80 to our service. On our behalf, the ASMX
Handler portion of ASP.NET uses the declaration in MyServices.asmx to figure
out which class implements our service. It then determines the correct method to
call by inspecting the message. The message to call HelloWorld would look as
shown in Example 10-8.

Example 10-8 SOAP request

POST /SimpleWebService/MyService.asmx HTTP/1.1
Host: localhost
Content-Type: text/xml; charset=utf-8
Content-Length: length
SOAPAction: "http://tempuri.org/HelloWorld"

<?xml version="1.0" encoding="utf-8"?>
<soap:Envelope xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
 <soap:Body>
 <HelloWorld xmlns="http://tempuri.org/" />
 </soap:Body>
</soap:Envelope>

The ASMX Handler uses the SOAPAction header by default to find the method
being called. Notice that the SOAPAction header includes the Web Service's
namespace and the method. There are optional attributes that can change the
namespace and other calling aspects of the Web Service, but for this example
we will just keep the default basics.

Armed with the class name (from the .asmx file) and the method (from the
SOAPAction Header in the message calling the service) the .asmx file inspects
the class using .NET reflection to see if a Web Method is exposed from the
450 WebSphere and .NET Coexistence

service implementation class. If no matching method is found, an exception is
thrown.

Once the method is found, the ASMX Handler uses the .NET XMLSerializer to
deserialize the XML message into .NET objects. Because our method does not
have arguments, we can skip this step.

The ASMX Handler calls our HelloWorld method and can take our response and
once again use the XMLSerializer to package our response into an XML
message contained in a SOAP Response. The response message will look as
shown in Example 10-9.

Example 10-9 SOAP response

HTTP/1.1 200 OK
Content-Type: text/xml; charset=utf-8
Content-Length: length

<?xml version="1.0" encoding="utf-8"?>
<soap:Envelope xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
 <soap:Body>
 <HelloWorldResponse xmlns="http://tempuri.org/">
 <HelloWorldResult>Hello World</HelloWorldResult>
 </HelloWorldResponse>
 </soap:Body>
</soap:Envelope>

ASP.NET has grown head and shoulders above the features and functionality
traditionally offered by ASP. Any developer interested in using Web Services and
.NET should count ASP.NET as a central technology to the Microsoft Distributed
Computing effort.

10.4 Distributed components
Distributed technologies rely on reusable components that are distributed across
physical machines, providing different services across the network. This means
that the parts of your program can be deployed to as many different physical
machines and in as many separate operational systems processes as
appropriate to achieve the performance, scalability, and availability goals of your
system.
 Chapter 10. Supporting technologies 451

There are some related standard technologies, such as:

� Component Object Request Broker Architecture (CORBA) which is a vendor
independent architecture and infrastructure that applications use to work
together over networks.

� Sun Java Remote Method Invocation (RMI) protocol which is a mechanism
for invoking methods remotely on other machines.

� Microsoft Distributed Component Object Model (DCOM) which is a protocol
that enables software components to communicate directly over a network.

The distributed architecture is very efficient in the multi-tier design of applications
because it simplifies developing, deploying, and maintaining enterprise
applications. The developers can focus on the business logic and rely on various
back-end services to provide the infrastructure,and client-side applications (both
stand-alone and within Web browsers) to provide the user interaction.

10.4.1 EJBs
An Enterprise Java Bean is a server-side component that encapsulates the
business logic of an application. EJBs simplify the development of large,
distributed applications by providing automatic support for system-level services,
such as transactions, security, and database connectivity, allowing the
developers to concentrate on developing the business logic.

According to the EJB specification, “Enterprise JavaBeans is an architecture for
component-based distributed computing. Enterprise beans are components of
distributed transaction-oriented enterprise applications.” More details about the
specification can be found at:

http://java.sun.com/products/ejb/

Basically, the EJB environment can be described as follows: the EJB
components run inside the EJB container of an J2EE-compliant application
server, the container has the connection to the database or to other components.
An EJB client can access the EJBs from the same Java Virtual Machine (JVM) or
from another JVM over remote interfaces.

There are six main components of the EJB technology:

� EJB server - provides the primary services to all EJBs. An EJB server may
host one or more EJB containers. It provides services to the EJBs such as
naming, security, persistence, messaging, etc.

� EJB container - provides the runtime environment for the enterprise bean
instances; it is between the EJB component and the server.
452 WebSphere and .NET Coexistence

http://java.sun.com/products/ejb/
http://java.sun.com/products/ejb/

� EJB component - represents the EJBs themselves. There are three types of
enterprise beans: entity, session, and message-driven beans. We will go into
details later in this section.

� EJB interfaces and EJB bean - the interfaces for client access (EJB home
and EJB object) and the EJB bean class. The home interface is used by an
EJB client to gain access to the bean. The object interface is used by an EJB
client to gain access to the capabilities of the bean. This is where the
business methods are defined.

The EJB bean class contains all of the actual bean business logic. It is the
class that provides the business logic implementation and it contains the
bean life-cycle methods of create, find, or remove.

� EJB deployment descriptor - defines the runtime quality of service settings
for the bean when it is deployed. Settings such as transactional settings are
defined in the deployment descriptor. It also describes logical relationships
among entity beans.

� EJB client - a client that accesses EJBs. The client can invoke the EJB via a
local or remote interface. A local client is a client that is in the same JVM with
the session or entity bean. A remote client accesses a session bean or an
entity bean through the bean’s remote interface and remote home interface.
The local interface is supposed to be faster than the remote since there is no
network traffic involved.

More information can be found in the IBM Redbook EJB 2.0 Development with
WebSphere Studio Application Developer, SG24-6819.

There are three types of EJBs:

� Entity beans - Entity beans are modeled to represent business or domain
objects. They usually represent data (entities) stored in a database or in any
persistent data. Entity beans may employ either CMP (container managed
persistence) or BMP (bean managed persistence). BMP provides additional
flexibility by allowing the developer to fully manage the persistence of the
bean. Any additional complexity involves manually writing the necessary SQL
code. The persistence code is generated automatically in the case of CMP.
The advantage of using container managed persistence is that the entity
bean can be logically independent of the data source in which the data is
stored.

� Session beans - A session bean is the simplest form of EJB you can create.
Session beans are not persisted to a datastore, but rather, are transient
objects that may or may not hold state during a series of client invocations in
the context of a single user session. A session bean may, in fact, choose to
save or retrieve data directly from a database or some other persistence
mechanism (although the state of the bean itself is not saved). There are two
types of session beans: stateful and stateless. The first type is dedicated to a
 Chapter 10. Supporting technologies 453

single client and maintains conversational state across all the methods of the
bean. The latter type can be shared across multiple clients, so any
information kept in instance variables should not be visible to a client.

� Message-driven beans - These are similar to session beans;
message-driven beans (MDB) may also be modeled to represent tasks.
However, a message-driven bean is invoked by the container on the arrival of
a JMS message (asynchronous messages). They typically represent
integration points for other applications that need to work with the EJB. The
advantage of using the message-driven bean model is to make developing an
enterprise bean that is asynchronously invoked to handle the processing of
incoming JMS messages as simple as developing the same functionality in
any other JMS MessageListener.

10.4.2 .NET Remoting
In the .NET Framework, Microsoft chose not to use a standard a distributed
technology like CORBA to provide distributed component capabilities. Instead,
the company developed a new, .NET specific technology called Remoting.
Simply put, Remoting allows remote access to objects designed to run on the
.NET Framework.

Remoting is a simple technology to implement and is very flexible. Remote
objects may be hosted by Internet Information Services, a Windows .NET-based
service, or by a standalone application. Flexibility comes from the layered
component based approach of the Remoting architecture. Figure 10-6 on
page 455 shows a high-level overview of .NET remoting. Within the .NET
Remoting component of this diagram are several components. These
components are:

� Formatter - The formatter takes a remote request and formats it into
something that can be sent over the network. The .NET Framework contains
a binary formatter and a SOAP formatter. Custom formatters may be added.

� Channel - A remoting channel creates the physical channel between the
remoting client and server. The .NET Framework provides two channels, a
TCP channel and an HTTP channel. The TCP channel provides a straight
socket connection, while the HTTP channel uses the HTTP protocol to send
and receive messages. These channels build the appropriate headers and
package the data to be sent. The channel interface is extendable. Therefore,
custom channels may be created to allow remoting over protocols such as
IIOP or FTP.

� Transport - The transport performs the actual sending and receiving of data.
Transports are tied directly to channels and cannot currently be interchanged.
454 WebSphere and .NET Coexistence

Figure 10-6 High-level view of .NET Remoting

Remoting activation
Activation is making an object available for use by instantiating the object. There
are two distinct types of activation for .NET remote objects. The type of activation
scheme you choose will depend on the type of application you are building. The
two types of activation are:

� Client activation

In client activation, the remote object is instantiated immediately when the
proxy is created on the client. Client activation is used in situations where the
life of the object needs to be controlled by the client.

� Server activation

Server activation means that remote object instantiation is controlled by the
server. There are two types of server activation, singleton and single call.
When a remote object is created as a singleton, a single instance of the
object is created for all clients of the object. If the server object is created as a
single call object, each time the object is accessed remotely results in a new
server object servicing the call. A singleton object is effective in maintaining
state across multiple clients at the expense of requiring the object to be
thread safe. In contrast, a single call object need not be thread safe but
cannot maintain state.

Client
Object

.NET
Remoting

Client
Proxy

Remoting Client

HTTP or TCP Channel

Server
Object

.NET
Remoting

Remoting Server
 Chapter 10. Supporting technologies 455

Remote object life cycle
The life-cycle of an object includes creation, usage, and then finally destruction
of the object. In a garbage collected environment such as Java or .NET, much of
this is taken care of by the runtime environment. This is not the case in a
distributed environment. Distributed environments add an additional, potentially
problematic element to the object life-cycle. In a distributed environment, the real
object lives on the server, while the client only has a proxy to that object. An
additional mechanism must be added to ensure resources are managed
correctly in a distributed environment. The .NET Framework uses a Lifetime
lease to help manage resources.

Lifetime leases allow a measure of control over the remote object life-cycle,
mainly remote garbage collection. Leases for .NET remoting objects work
similarly to the DHCP protocol for IP address distribution and recovery. A client
maintains a lease to a remote resource. The client must keep the lease current or
the remote resource is freed. In .NET remoting, the client, a lease manager, and
a sponsor all participate in handling leases. Similar to DHCP, a client may
specifically request a lease to be renewed. This request is handled by the lease
manager. Another technique is to use a sponsor or multiple sponsors. Sponsors
may be registered for a remote object. When the lease manager determines it
may be time to release a remote object, each sponsor is queried to see if the
object is still required. If the sponsor or sponsors no longer need the object, it is
garbage collected.

10.5 Database access
Examine almost any diagram of a software system and somewhere in the
diagram you will find the ubiquitous line or arrow connected to a cylinder. The
cylinder typically has a label containing the word database. Database is a generic
term for a mechanism used for storage and retrieval of a collection of
information. In software systems, many different types of databases are
commonly used. When hearing the word database, many developers
immediately think of large database management systems, capable of complex
queries and storing millions of records. Although this is also correct, we tend to
forget the generality of the term database. In fact, there are many different types
of databases. In-memory databases are used for non-persistent, high-speed
access. A flat text file such as a standard UNIX® password file containing a list of
users, user information, and encrypted passwords is also a database. Web

Tip: Use caution when choosing the type of server activation to use. A
singleton object may use significantly fewer resources but could be a
bottleneck if it contains shared resources that must be synchronized.
456 WebSphere and .NET Coexistence

search engines are a massive database of URLs and content, indexed by
keywords.

Many applications require and access multiple databases. Frequently, these
databases are located on remote systems and must be available over a network.
Remote access invites issues such as security and concurrence. The list of
issues continues to grow as system complexity increases. There are several
points that may be taken from this discussion:

1. Databases are a common element of software systems.

2. Many different types of databases are commonly used in a software system.

3. Having different types of databases leads to different methods to access each
type of database.

4. As the types of services required of a database increase in complexity, so
must supporting technologies and interfaces to access the database.

These issues and others have prompted many changes in database access
methods over the past decade. Many of the legacy interfaces are still in use
today. However, as with most widely used technologies, standards have
emerged. One of the most monumental standards to emerge was the Structured
Query Language (SQL) for relational databases. The SQL standard helped to
bring about the dominance of relational database systems.

During the surge of relational database systems, the shift from centralized to
distributed client/server computing also began. In the client/server model, the
database is a remote entity. Clients access the database remotely over the
network. In order to connect to remote databases, database vendors began
providing custom libraries and tools. This made interoperability between
databases very difficult. Again, the wheels of standardization churned and Open
Database Connectivity (ODBC) was created.

Open Database Connectivity was developed for the Microsoft Windows
Operating System to provide a standard interface to access databases. The
ODBC interface was designed such that software vendors could provide drivers
to access a multitude of database types. ODBC drivers have been written to
access everything from ASCII text files to all the major relational database
systems. ODBC was one of the first major advances toward standardizing
database access. To date, there are ODBC implementations for the Microsoft
Windows, Unix, and Linux operating systems.

Following ODBC, Microsoft created a new interface for database access, Object
Linking and Embedding Database (OLE/DB). The goal of OLE/DB was to provide
a COM interface for data access. The move towards COM components was
underway and the ODBC interface was designed mainly for applications
 Chapter 10. Supporting technologies 457

developed in the C programming language. OLE/DB proved to be a difficult and
tedious technology for database access.

Simplification of the OLE/DB technologies was provided by a wrapper
technology, the ActiveX Data Objects (ADO). ActiveX Data Objects also made it
possible to use OLE/DB providers from COM based languages such as Visual
Basic. ADO was the last major addition to the Windows COM-based component
library. Microsoft .NET technology was soon to follow and with it came a new
database access method, ADO.NET. Section 10.5.3, “ADO.NET” on page 460
contains an overview of the ADO.NET technology.

During the same period that Microsoft database access technologies were
changing, the Java language became popular. One of the first extensions to Java
was Java Database Connectivity (JDBC). JDBC functions in a way similar to
ODBC except that it is object-oriented and built for Java. After a few releases,
JDBC was bundled as a standard part of the Java runtime library. JDBC is
currently the standard for Java database access.

We have provided a brief overview of the evolution of database access
technologies. The purpose of the overview was to help understand the history of
database access technologies in order to get insights into the technologies
currently in use. These technologies are discussed in the sections that follow.

10.5.1 EJBs
Database access in an enterprise application normally requires additional
features beyond using those services provided by JDBC. Additional services
such as distributed transaction support, named lookup, multi-layer security,
concurrency, and persistence are some of the most common required by
enterprise applications. These additional features can be obtained by using
Enterprise Java Beans (EJBs), more specifically, the enterprise entity bean.

Entity beans represent business or domain-specific concepts, and are typically
the nouns of your system, representing fine-grained concepts such as customers
and accounts. They usually represent data (entities) stored in a database. Since
they represent data that is persistent in that database, changes to the bean result
in changes to the database. See Figure 10-7 on page 459 for a high-level
diagram of an entity bean.
458 WebSphere and .NET Coexistence

Figure 10-7 High-level overview of an entity bean

Entity beans allow us to objectify our data, and there are many good reasons for
working with objects representing the data, versus implementing data access
directly. For example, it is a lot easier to work with objects since they become
reusable components in a system. Converting an employee record in a database
into a reusable employee object is an example.

While the developer concentrates on the database to entity mapping, the EJB
Entity container provides functionality such as concurrency, transactions, and
security. In addition, by leveraging the persistence services of the container, the
developer is freed from the burden of writing SQL.

This discussion has only given a very high-level overview of data access with
Enterprise Java Beans. For additional information pertaining to entity beans,
consult EJB 2.0 Development with WebSphere Studio Application Developer,
SG24-6819.

10.5.2 JDBC
Java Database Connectivity (JDBC) is the standard for Java database access.
JDBC provides standard interfaces for accessing data whether it be local or on a
remote server. Java applications simply need to use the standard JDBC
interfaces to perform database operations. By using JDBC, the underlying data
source can be changed with minimal or no changes to the source code. Another
major advantage of JDBC is that developers only need to learn one interface,
instead of different interfaces for each database they wish to access.

You may be asking yourself how JDBC accomplishes such a feature. How can it
possibly support all the many types of databases available? The answer is
simple. Like ODBC, JDBC is mainly an interface. Database providers must

EJB Server

EJB Container

EJB
Entity
Bean Data

Source

Client
EJB

Interface
 Chapter 10. Supporting technologies 459

provide drivers, conforming to the JDBC specification, to provide access to their
database. The JDBC component makes this interface nearly transparent by
providing a driver manager. The driver manager manages drivers available to the
Java Virtual Machine. Extensions to version 2 of JDBC also include a data
source component. This component makes it simpler to use pre-configured
JDBC connections and connection pools.

In addition to a standard interface, one goal of JDBC was to provide a simpler
interface than its predecessor, ODBC. JDBC simplifies database access by
providing a small number of classes and interfaces. The main JDBC interfaces
are:

� DriverManager - The DriverManager class is a static class. Drivers register
themselves with the driver manager and clients get connections from it.

� Connection - The Connection interface is returned by the driver manager
when a connection is made.

� Statement - This interface represents a static SQL statement. A statement is
executed by the database system and a ResultSet may be returned.

� PreparedStatement - This is similar to Statement with the addition of
parameters.

� CallableStatement - This is similar to Statement with the addition of a
standard call syntax and input and output parameters which may be required
to call stored procedures.

� ResultSetMetaData - This provides MetaData access for a Statement (or one
of its derivatives) ResultSet.

� DatabaseMetaData - This is used to gather information about a database.
Catalog, schema, table, and data type information can be obtained using this
interface.

In addition, several enterprise features were added in JDBC V2.0 and later which
should be mentioned. Some of these features are:

� Connection pooling - Added as a JDBC 2.0 extension to allow the pooling of
JDBC connections.

� Statement pooling - Added in JDBC 3.0 to allow connections to be pooled.

� DataSource interface - This interface was introduced in the V2.0 extensions
package. Data sources allow connections to be managed externally through
the Java Naming and Directory Interface (JNDI).

10.5.3 ADO.NET
ADO.NET is the standard database access mechanism for applications using the
.NET Framework. Like database access technologies preceding ADO.NET, the
460 WebSphere and .NET Coexistence

ADO.NET architecture is based on a set of interfaces. These interfaces are
implemented by database vendors to provide native managed ADO.NET
providers.

One striking difference between ADO.NET and other database access
technologies is the lack of a driver manager component. Another difference is the
thinness of the interfaces. Thinness in this case means the lack of standard
requirements for implementors. On the positive side, this allows a near infinite
amount of flexibility. A negative consequence is that code written directly to a
particular provider database cannot be easily used with another provider.

ADO.NET provides eight interfaces for a standard data provider. These
interfaces can be seen in Figure 10-8 on page 462. A list of high-level interfaces
and a brief description of each follows:

� IDbConnection - The IDbConnection interface provides for basic connectivity
services. In ADO.NET, connections are typically specified via a connection
string. Most data providers include some form of connection pooling facility.

� IDbCommand - Database commands are created and executed through the
use of the IDbCommand interface. Commands are specified as one of three
types: Text, TableDirect, or StoredProcedure. Text commands are SQL
statements run as-is. Table direct mode provides SQL access (select, insert,
update, delete) to a single table. Stored procedure mode allows you to run
stored procedures. The command interface also provides access to the
parameter collection. The parameter collection stores statement and stored
procedure parameters used during command execution.

� IDataReader - The data reader is provided as a forward-only interface for
processing result set data. Data is processed row-by-row by calling a Read
method on the interface. The data reader can also be used to return table
metadata as a schema table. This schema table can then be written out as
XML.

� IDataAdapter - The IDataAdapter interface operates directly on the .NET
Framework provided DataSet class. The DataSet is a very robust class that
allows in-memory storage, access, and updates of data. The main purpose of
the data adapter is to allow the synchronization of the DataSet and data in the
database. Microsoft provides a default implementation of a DataAdapter
which database providers can inherit.

� IDbTransaction - Connection level transaction support is generally provided
through the IDbTransaction interface. In addition, some providers, such as the
SQL Server provider, provide distributed transaction capabilities. This support
is normally provided by a custom attribute on the connection and not related
to IDbTransaction.
 Chapter 10. Supporting technologies 461

Figure 10-8 The ADO.NET standard interfaces

Command builders
The ADO.NET database access model does not use cursors. Cursors are the
common way to do updates. Instead, ADO.NET relies on the data adapter and
SQL INSERT, UPDATE, and DELETE statements to keep DataSets and remote tables
synchronized. This means that someone has to specify these statements to get
updates to occur. Fortunately, most database providers implement a command
builder to help generate these statements. For example, the SQL Server provider
has a SqlCommandBuilder class to help build these commands. Further, a
command builder can be associated with a data adapter so the correct
commands get generated at runtime, as needed.

Legacy support with ADO.NET
Since the .NET Framework is relatively new, a native driver may not be available
nor ever be written to access some database systems. There are two solutions to
this problem. The first solution is the OLE/DB bridge. The OLE/DB bridge allows
.NET applications to use legacy OLE/DB providers as an ADO.NET provider.
The OLE/DB provider performs a bridge between OLE/DB COM components
and the ADO.NET runtime environment. Applications using the OLE/DB bridge
will function, but performance will suffer due to the constant switch between
COM and .NET.

The second option for not having a native ADO.NET provider is the ODBC
Bridge. The ODBC bridge works very similarly to the OLE/DB bridge. The ODBC
bridge could potentially perform better than the OLE/DB bridge due to the
elimination of the COM Interoperability layer. Instead of using COM, the ODBC

IDbCommand

IDbConnection

IDataParameterCollection

IDataParameter

IDataParameter

IDataReader

IDataAdapter

IDbTransaction

ADO .NET Interfaces

Database
462 WebSphere and .NET Coexistence

bridge uses the more direct Platform Invoke (P/Invoke) interface to call C-style
APIs on the ODBC Manager (odbc32.dll).

10.6 Messaging middleware
The programming components that comprise an IT system must exchange
information when they collaborate in a complex business application. When they
run on different operating systems and must communicate across the network,
this presents a considerable integration challenge. A message-based approach
provides the solution. Programmed components can exchange information in the
form of messages, so the developers can focus on business logic instead of the
complexities of different operating systems and network protocols. In short, a
messaging middleware mechanism enables business applications, information
and processes to exchange information with each other, regardless of where
they are running.

JMS
The J2EE specification provides a Java API called Java Messaging Service that
allows applications to create, send, receive, and read messages. It enables Java
programs to communicate with other messaging implementations. Messaging
enables distributed communication that is loosely coupled, asynchronous and
reliable.

The JMS architecture is composed of a JMS client which can be a Java applet,
application, servlet, JavaBean or EJB that produces and consumes messages; a
JMS provider which has the responsibility of implementing the JMS API on top of
an underlying messaging system; messages which are the objects that
communicate information between JMS clients, and administered objects which
are JMS objects created by the administrator; these objects enable the client to
interact with a JMS provider and also to identify a destination for a message.

The JMS API has the following features:

� Client applications, EJBs, JavaBeans and Web components can send or
synchronously receive a JMS message. Client applications can also receive
asynchronous JMS messages.

� Message-driven beans which enable the asynchronous consumption of
messages. The JMS provider can also implement concurrent processing of
messages by message-driven beans.

� Message sends and receives can participate in distributed transactions.

More details about the J2EE specification can be found at:

http://java.sun.com/j2ee/
 Chapter 10. Supporting technologies 463

http://java.sun.com/j2ee/

WebSphere MQ
IBM implements JMS as its messaging middleware software, which is called
WebSphere MQ. It provides application programming services that enable
application programs to communicate with each other using messages and
queues. This kind of communication is referred to as asynchronous messaging. It
provides assured, once-only delivery of messages. WebSphere MQ means that
you can separate application programs, so that the program sending a message
can continue processing without having to wait for a reply from the receiver. If the
receiver, or the communication channel to it, is temporarily unavailable, the
message can be forwarded at a later time. WebSphere MQ also provides
mechanisms for generating acknowledgements of messages received and
triggering that allows MQ to “wake up” an application when the message arrives.

The programs that comprise an WebSphere MQ application can be running on
different computers, on different operating systems, and at different locations.
The applications are written using a common programming interface known as
the Message Queue Interface (MQI), so that applications developed on one
platform can be transferred to another.

The applications communicate using messages and queues. One application
puts a message on a queue and the other application gets that message from the
queue.

WebSphere MQ messaging products make it straightforward for applications to
exchange information among more than 35 IBM and non-IBM platforms,
including Linux and Windows 2000, even if the target program is not running.
They take care of network interfaces, assure delivery of messages, deal with
communications protocols, and handle recovery after system problems. I Secure
Sockets Layer (SSL) can be used for secure communications. These products
also perform message transformation and routing, and systems management.

Another product of this family is the WebSphere Business Integration Message
Broker; it distributes, transforms and enriches real time information to simplify
end-to-end communications using different message structures and formats. It
can take the message and manipulate it and then distribute it to many different
applications running on different platforms. The two main functions of the product
are message transformation and routing. WebSphere Business Integration
Message Broker gets the message from the queue, understands it (the format of
the message), transforms (manipulates) the message to the format that the
applications can read, and finally, distributes the message to the other
applications.
464 WebSphere and .NET Coexistence

Figure 10-9 Messaging middleware architecture

MQ Classes for .NET
The MQ classes for Microsoft .NET allows WebSphere MQ to be invoked from
Microsoft .NET applications.

The classes were available as a freeware SupportPac, but from WebSphere MQ
V5.3 CSD05, the WebSphere MQ Classes for Microsoft .NET are fully
incorporated in the WebSphere MQ product.

For more details, please refer to the redbook WebSphere MQ Solutions in a
Microsoft .NET Environment, SG24-7012.

WebSphere MQ Transport for SOAP
At the time of the writing of this book, WebSphere MQ Transport for SOAP is
provided as a category 2 (freeware) SupportPac. This SupportPac provides the
ability to flow a SOAP message over a WebSphere MQ transport. The package
reuses existing SOAP infrastructure and will operate with Axis SOAP (for Java)
and the SOAP stack, embedded in the Microsoft.NET Framework.

It permits interoperation between Web Services clients and servers written to run
in either of these environments.

It also enables the benefits of a WebSphere MQ infrastructure to be harnessed in
popular Web Services environments. Benefits include:

� Reliability, queueing and simple clustering
� A controlled environment
� Access to services where it is not convenient to deploy HTTP servers.

Consumer Service Provider

Execution

Reliable
Message Queue

Request
Service

…
Continue
Processing
…
...

Get
Response

Get
Request

…
Process
…

Put
ResponseReliable

Message Queue

Consumer Service Provider

Execution

Reliable
Message Queue

Request
Service

…
Continue
Processing
…
...

Get
Response

Get
Request

…
Process
…

Put
ResponseReliable

Message Queue
 Chapter 10. Supporting technologies 465

The popular SOAP infrastructures provide convenient, high-level, well-tooled
programming interfaces that provide a standard, interoperable message format
(SOAP). This can make for easier programming of WebSphere MQ applications.

For more details, please refer to the redbook: WebSphere MQ Solutions in a
Microsoft .NET Environment, SG24-7012.

10.7 Back-end integration
In this section, we are going to describe both WebSphere and Microsoft
mechanisms to connect existing or new applications with legacy applications
such as Enterprise Information Systems (EIS). The EIS can be: enterprise
resource planning (ERP), mainframe transaction processing, and non-relational
databases, among others.

10.7.1 J2C
J2EE Connector Architecture is a standard that provides integration between
J2EE applications and existing Enterprise Information Systems (EIS). Each EIS
requires just one implementation of the J2EE Connector architecture because an
implementation adheres to the J2EE Connector Specification, so it is portable
across all compliant J2EE servers. It is designed to facilitate sharing of data and
to integrate new J2EE applications with legacy or other heterogeneous systems.

The J2EE application and the EIS communicate via a resource adapter. A
resource adapter is a J2EE component that implements the J2EE Connector
architecture for a specific EIS. It is stored in a Resource Adapter Archive (RAR)
file and may be deployed on any J2EE server, much like the EAR file of a J2EE
application. A RAR file may be contained in an EAR file or it may exist as a
separate file.

A resource adapter is analogous to a JDBC driver. Both provide a standard API
through which an application can access a resource that is outside the J2EE
server. For a resource adapter, the outside resource is an EIS; for a JDBC driver,
it is a DBMS. Resource adapters and JDBC drivers are rarely created by
application developers. In most cases, both types of software are built by
vendors who sell products such as tools, servers, or integration software.

10.7.2 .NET
.NET is a product strategy where J2EE is a specification standard. There is no
.NET specification that competes with the Java Connector Architecture. Instead,
466 WebSphere and .NET Coexistence

there are two products in the .NET family which make connecting to other
applications viable: BizTalk Server and the Host Integration Server.

Host Integration Server is the name of the Microsoft's new version of SNA
product and is billed as having 'unbeaten' support for clients, network protocols,
and mainframe systems. With Host Integration Server, a single installation can
support up to 30 000 host sessions with features such as single sign-on,
transaction support, object-oriented programming model, and more.

BizTalk is Microsoft's Enterprise Application Integration product and is
specifically tailored to help organizations automate and orchestrate applications
and interactions with business partners. Beyond a server and a set of tools,
BizTalk is also about accelerators and adaptors. BizTalk adaptors enable BizTalk
to integrate with 'no code' to WebSphere MQ, SAP, Microsoft's SQL Server, with
Web Services. BizTalk Accelerators are add-ons to BizTalk that target specific
industries including Health Care, Financial Services, and many others.

While .NET is still in its infancy, the Back-end Integration story for .NET includes
products and technologies that are both compelling and diverse. While JCA
offers an open specification that many in the industry are using to build adaptors,
Microsoft .NET products offer a competing view from existing products.

10.8 Other integration technologies
You can find information about other integration technologies if you read
Chapter 6, “Scenario: Synchronous stateful” on page 261. There are two
scenarios covered in this book for stateful synchronous communication between
WebSphere J2EE and Microsoft .NET.

� Wrapping Java components in .NET.
� Wrapping .NET components in Java.

In both cases, we used a technology to bridge the two platforms on the process
level. The solution assumes that both platforms, WebSphere and .NET, exist on
the same machine.

In the first case, the Windows component starts up a Java Virtual Machine (JVM)
inside the process and accesses Java objects, using the ActiveX bridge.

Note: The .NET platform is not entirely “correct” in these scenarios, because
the technologies are developed for the pre-.NET world: COM objects and
ActiveX controls.
 Chapter 10. Supporting technologies 467

In the second case, WebSphere has direct access from Java to Windows
components using the IBM Interface Tool for Java.

For more information about these technologies, refer to Chapter 6, “Scenario:
Synchronous stateful” on page 261.

10.8.1 ActiveX Bridge
WebSphere Application Server provides an ActiveX to EJB bridge that enables
ActiveX programs to access WebSphere Enterprise JavaBeans through a set of
ActiveX automation objects.

The bridge accomplishes this by loading the Java Virtual Machine (JVM) into any
ActiveX automation container such as Visual Basic, VBScript, and Active Server
Pages (ASP). There are two main environments in which the ActiveX to EJB
bridge runs:

� Client applications, such as Visual Basic and VBScript, are programs that a
user starts from the command line, desktop icon, or Start menu shortcut.

� Client services, such as Active Server Pages, are programs which are
started by some automated means like the Services control panel applet.

The ActiveX to EJB bridge uses the Java Native Interface (JNI) architecture to
programmatically access the JVM code. Therefore, the JVM code exists in the
same process space as the ActiveX application (Visual Basic, VBScript, or ASP)
and remains attached to the process until that process terminates.

For more information, refer to the WebSphere Application Server InfoCenter at
the IBM Software Web site; under the application server, navigate to
Applications -> Client modules -> Using application clients -> Application
clients -> ActiveX application clients, or search for WebSphere ActiveX
application clients in the InfoCenter.

10.8.2 IBM Interface Tool for Java
This is a technology, formerly known as Bridge2Java, available on the IBM
Alphaworks Web site at http://www.alphaworks.ibm.com/tech/bridge2java.

Interface Tool for Java is a tool which allows Java programs to communicate with
ActiveX objects. It allows easy integration of ActiveX objects into a Java
environment. Using the Java Native Interface and COM technology, Interface
Tool for Java allows an ActiveX object to be treated just like a Java object.
468 WebSphere and .NET Coexistence

http://www.alphaworks.ibm.com/tech/bridge2java

Using Interface Tool for Java requires simply running a proxy generating tool that
creates Java proxies from the ActiveX controls's typelib. These proxies can then
be used to allow a Java program to communicate with the ActiveX object.

For more information about this technology, refer to the Alphaworks Web site:

http://www.alphaworks.ibm.com/
 Chapter 10. Supporting technologies 469

http://www.alphaworks.ibm.com/

470 WebSphere and .NET Coexistence

Chapter 11. Quality of service
considerations

Quality of service (QoS) refers to the capability of a platform to provide better
service to a selected application.

It is a challenge to build systems that deliver extremely high levels of service
because many variables should be considered. The success of an application
depends on scalability, performance, availability, security, manageability, among
other things, and all these are critical to avoid failure.

In terms of Web Services, QoS covers a whole range of techniques that match
the needs of service requestors with those of the service provider's based on the
network resources available.

In this chapter, we will describe some considerations about the quality of service
for both WebSphere and .NET applications. It is not our intention to compare the
platforms, but to show what each one can provide in terms of QoS.

11
© Copyright IBM Corp. 2004. All rights reserved. 471

11.1 Scalability
Scalability refers to the capability of a system to adapt readily to a greater or
lesser intensity of use, volume, or demand while still meeting business
objectives. It is related to other QoS since applying appropriate scaling
techniques can greatly improve availability and performance. For example,
scalability should be considered carefully, otherwise some performance
bottlenecks may develop. Scaling techniques are especially useful in multi-tier
architectures when you evaluate components associated with the edge servers,
the Web presentation servers, the Web application servers, and the data and
transaction servers.

On demand computing requires the ability to scale up or scale down an
application, depending on the current requirements. Thus, scalability is important
to improve efficiency and reduce cost.

This section will introduce some scaling techniques used by WebSphere and
.NET to help you understand best practices in optimizing the application’s
environment.

11.1.1 WebSphere
IBM WebSphere Application Server V5.0 implements Web containers and EJB
containers on its application servers. The application servers each run in their
own JVM (Java Virtual Machine). There are some strategies for scalability as
follows:

� Physically separating some components such as the HTTP server, Web
container, EJB container, and database, to prevent them from competing for
resources (CPU, memory, I/O, network, and so on) or to restrict the access to
a resource from another machine (for example, inserting a firewall in order to
protect confidential information).

� Distributing the load among the most appropriate resources, and using
workload management techniques such as vertical and horizontal scaling.

WebSphere Application Server cluster support
Clusters are sets of servers that are managed together and participate in
workload management. The servers that are members of a cluster can be
located on the same machine (vertical scaling) and/or across multiple machines
(horizontal scaling). See details in 11.3.1, “WebSphere” on page 483.

The servers that belong to a cluster are members of that cluster set and must all
have identical application components deployed on them. Other than the
applications configured to run on them, cluster members do not have to share
472 WebSphere and .NET Coexistence

any other configuration data. One cluster member might be running on a huge
multi-processor enterprise server system while another member of that same
cluster might be running on a small laptop. The server configuration settings for
each of these two cluster members are very different, except in the area of
application components assigned to them. In that area of configuration, they are
identical.

Starting or stopping the cluster will automatically start or stop all the cluster
members, and changes to the application will be propagated to all application
servers in the cluster.

A cluster contains only application servers, and the weighted workload capacity
associated with those servers.

WebSphere workload management (WLM)
WebSphere WLM enables the applications running under WebSphere to be
scaled to any number of machines at any time, increasing the amount of
requests the applications can serve.

The incoming processing requests from clients are transparently distributed
among the clustered application servers. WLM enables both load balancing and
failover when servers are not available, improving the reliability and scalability of
WebSphere applications.
 Chapter 11. Quality of service considerations 473

Figure 11-1 Types of requests that can be workload managed in WebSphere V5.0

� HTTP requests can be shared across multiple HTTP servers.

This requires a TCP/IP sprayer to take the incoming requests and distribute
them. So, the HTTP requests are workload managed externally to
WebSphere Application servers. There are both hardware and software
products available to spray TCP/IP requests. The Network Dispatcher is a
software solution that is part of the WebSphere Edge Server; it applies
intelligent load balancing to HTTP requests. The WebSphere Edge
Components are part of IBM WebSphere Application Server Network
Deployment V5.0, and also provide caching proxy functions.

� Servlet requests can be shared across multiple Web containers.

The WebSphere Plugin to the HTTP server distributes servlet requests to the
Web container in clustered application servers.

Clustering application servers that host Web containers automatically enables
plugin workload management for the application servers and the servlets they
host. The Web containers can be configured on the same machine or multiple
machines.

E JB
R equests

S ervlet
R equests

App S erver

App S erver

W eb
C ontainer

W eb
C ontainer

Ap p S erver

E JB
C ontainer

Ap p S erver

E JB
C ontainer

App S erver

W eb
C on tainer

Java
C lient

H TTP
R equests

H TTP
S erver

P lug in

E dge
S erver H TTP

S erver
P lu gin

H TTP
S erver

P lu ginH TTP (s)

H TTP(s)

IIO P
474 WebSphere and .NET Coexistence

� EJB requests can be shared across multiple EJB containers.

In IBM WebSphere Application Server Network Deployment V5.0, workload
management for EJBs is enabled automatically when a cluster is created
within a cell. There is no need for a special configuration to enable it. The
workload management uses a plugin in the Object Request Broker (ORB) to
distribute EJB requests among the application servers (cluster members).

EJB requests can come from servlets, Java client applications, or other EJBs.
In the figure above, the Web container is in a separate machine from the EJB
container.

11.1.2 .NET
Microsoft clustering technologies are key to improving scalability and availability
in Windows environments. Both Windows 2000 and Windows 2003 use a Stering
strategy that includes:

� Server Cluster

� Network Load Balancing

� Component Load Balancing

Windows Server 2003 Clustering
Clustering allows the users/administrators to access and manage the nodes as a
single system. It provides availability to the the servers since it guarantees that
the applications will be available even if one server crashes. It provides failover
support for applications and services and also maintenance of data integrity.

Server cluster is included with Windows Server 2003, Enterprise Edition, and
Windows Server 2003, Datacenter Edition. Clustering is installed automatically
with Windows Server 2003 and some configuration is necessary in the Cluster
Administrator.

Windows Server 2003 supports up to eight cluster nodes for each server cluster.
(a node is a member of a server cluster) and the nodes may be configured in one
of three ways:

� Single node server cluster

This is a cluster configuration which has only one node and can be configured
with or without external cluster storage devices.

Note: Component Load Balancing is not available on Windows Server 2003.
 Chapter 11. Quality of service considerations 475

� Single quorum device server cluster

This is a cluster configuration which has two or more nodes and is configured
in such a way that every node is attached to one or more cluster storage
devices.

� Majority node set server cluster

This is a cluster configuration which has two or more nodes and is configured
in such a way that the nodes may or may not be attached to one or more
cluster storage devices.

Usually, server clustering is used for databases, e-mail services, line of business
applications, and custom applications. Windows Server 2003 provides vertical
scalability for clusters based on Server Cluster.

If Server Cluster detects a failure of the primary node for a clustered application,
the clustered application is started on a back-up cluster node and all requests to
the application are redirected to the back-up node. Each node is attached to one
or more cluster storage devices which allow different servers to share the same
data, and by reading this data, provide failover for resources.

The failover capability is achieved through redundancy across the multiple
connected machines in the cluster. Redundancy requires that applications be
installed on multiple servers within the cluster.

The cluster nodes can be active or passive:

� Active: when a node is actively handling requests

� Passive: when a node is on standby waiting for another node to fail

The Cluster Service is software that controls all aspects of a server cluster
operation and manages the cluster database. Each node in a server cluster runs
one instance of the cluster service. The cluster service can also be integrated
with Active Directory; for example, if you publish a cluster virtual server as a
computer object in the Active Directory, users can access the virtual server just
like any other Windows 2000 server.

The management of a server cluster can be performed via the command line and
the user can create, configure and administrate the server clusters. It can also be
done using cluster.exe, which is a program, available in any Windows Server
2003, which is called by a command prompt and can be used to automate many
administration tasks such as creating, configuring and administrating the server
clusters.
476 WebSphere and .NET Coexistence

Network Load Balancing
This is another technology included with Windows Server 2003 which is used for
Web Services, Web servers, proxy servers, firewalls, and VPN. It is included in
all versions of Windows Server 2003.

It distributes IP traffic to multiple copies (or instances) of a TCP/IP service, such
as a Web server, each running on a host within the cluster. It load balances
multiple server requests, from either the same client, or from several clients,
across multiple hosts in the cluster. It is also designed to address bottlenecks
caused by Web Services.

It scales up to 32 nodes and if a node in the cluster fails, Network Load Balancing
automatically redirects incoming TCP traffic, User Datagram Protocol (UDP), or
Generic Routing Encapsulation (GRE) requests to the remaining nodes.

Network Load Balancing distributes the incoming network traffic among one or
more virtual IP addresses (the cluster IP addresses) assigned to the Network
Load Balancing cluster. The hosts in the cluster concurrently respond to different
client requests, even multiple requests that come from the same client. For
instance, a Web browser can get various images, each from a different host and
load them into the Web page within a Network Load Balancing cluster. In terms
of performance, it improves the response time of the requests to the clients.

The Network Load Balancing Manager allows you to create, configure and
manage Network Load Balancing clusters and all the cluster's hosts from a
single remote or local computer.

References for Server Cluster and Network Load Balancing can be found at:

http://www.microsoft.com/windows2000/technologies/clustering/

Component Load Balancing
This is a clustering mechanism supported in Windows 2000 and used to provide
load balancing of COM+ components. In Component Load Balancing, the calls to
activate COM+ components are load balanced to different servers within the
COM+ cluster.

Note: GRE traffic is not supported in Windows 2000, only in Windows Server
2003.
 Chapter 11. Quality of service considerations 477

http://www.microsoft.com/windows2000/technologies/clustering/
http://www.microsoft.com/windows2000/technologies/clustering/

11.2 Performance
Performance involves minimizing the response time for a given transaction load.
The performance of an application can be measured in terms of latency and
throughput. Latency is the round-trip time between sending a request and
receiving a response while throughput, when related to performance, defines the
number of concurrent transactions that can be accommodated.

A good performance of an application is represented by a higher throughput and
lower latency values. It is important to say that a number of factors relating to
application design can effect performance. Also other factors such as network
environment, messaging and transport protocols, memory, among others.

11.2.1 WebSphere
The vertical/horizontal techniques are useful to achieve a good performance of
an application that runs on WebSphere.

� Vertical scaling involves creating additional application server processes on a
single physical machine, each instance of application server running in its
own JVM (Java Virtual Machine). Vertical scaling allows an administrator to
profile an existing application server for bottlenecks in performance, and
potentially use additional application servers, on the same machine, to get
around these performance issues.

� Horizontal scaling involves creating additional application server processes
on multiple physical machines to take advantage of the additional processing
power available on each machine, increasing the performance of the
application.

IBM WebSphere Application Server V5 provides tooling that enables intelligent
end-to-end application optimization which means that administrators can handle
volume and performance tuning dynamically.

A key factor in the performance of any Java application and hence any
WebSphere Application Server application is the use of memory. Java does not
require programmers to explicitly allocate and reclaim memory. The Java Virtual
Machine (JVM) runtime environment is responsible for allocating memory when a
new object is created, and reclaiming the memory once there are no more
references to the object. This reduces the amount of coding required, as well as
minimizing the potential for memory “leaks” caused by the programmer forgetting
to deallocate memory once it is no longer required. Additionally, Java does not
allow pointer arithmetic. Memory deallocation is performed by a thread executing
in the JVM called the garbage collector (GC). The key to minimizing the
performance impact of memory management is to minimize memory usage,
particularly object creation and destruction. More details can be found in the IBM
478 WebSphere and .NET Coexistence

Redbook IBM WebSphere V5.0 Performance, Scalability, and High Availability
WebSphere Handbook Series, SG24-6198.

Java Management Extensions (JMX)
WebSphere’s support for JMX provides Java components that will log and record
statistics on usage and resources.

These objects are then exposed to third-party, JMX-compliant applications used
for monitoring. Administrators can use best-of-breed tooling that is tightly
integrated into their enterprise for managing performance data and the
monitoring process.

Performance Monitoring Infrastructure
Performance Monitoring Infrastructure (PMI) is an API used by components of
WebSphere to capture performance-related metrics in real time.

The PMI uses a client/server architecture. The server collects performance data
on runtime and applications from various WebSphere Application Server
components through Performance Monitoring Infrastructure (PMI). The
performance data from one or more servers consists of counters such as servlet
response time, data connection pool usage, among others, which are retrieved
and processed by the client. The data can be monitored and analyzed with
various tools.

The client application can be any of the following:

� A Graphical User Interface

� An application which monitors performance data and triggers different events
according to the current values of the data.

� Any other application that needs to receive and process performance data.

For more details, please refer to the IBM Redbook IBM WebSphere V5.0
Performance, Scalability, and High Availability WebSphere Handbook Series,
SG24-6198.

Tivoli Performance Viewer
Tivoli Performance Viewer is a Graphical User Interface (GUI) which retrieves
the Performance Monitoring Infrastructure (PMI) data from an application server
(in this case, WebSphere Application Server) and displays it in a variety of
formats.
 Chapter 11. Quality of service considerations 479

The Tivoli Performance Viewer provides access to a wide range of performance
data for two kinds of resources:

� Application resources (for example, enterprise beans and servlets).

� WebSphere runtime resources (for example, Java Virtual Machine (JVM)
memory, application server thread pools, and database connection pools).

This tool provides the ability to configure smart auto-tuning parameters which will
automatically make recommendations to tune critical WebSphere parameters for
maximized performance.

In order to monitor a resource with Tivoli Performance Viewer or any PMI or JMX
client, you must enable the PMI service of the application server associated with
the resource through the Administrative Console or by using the WebSphere
Studio command interface.

There are some best practices considerations in the white paper WebSphere
Application Server Development Best Practices for Performance and Scalability
at:

http://www.ibm.com/software/webservers/appserv/ws_bestpractices.pdf

11.2.2 .NET
The Windows platform also implements mechanisms that can improve
performance of the applications and services.

� Vertical scaling refers to running a single application on a single server, with
the ability to incrementally add system hardware resources such as
processors and memory to increase overall system performance. The
performance of an application depends on resources of the machine such as
memory, CPU, processor, among others.

� Horizontal scaling means distributing the computing workload among multiple
servers by clustering or load balancing. It improves the performance and
availability of the overall service. The Microsoft platform supports horizontal
scaling via server clustering and Network Load Balancing (NLB), described in
“Network Load Balancing” on page 477.

Performance can also be increased with other mechnisms such as caching of the
Web server, as we will see below.

Internet Information Services (IIS) caching
IIS 6.0 HTTP service (http.sys) gets all incoming HTTP requests providing high
performance connectivity for Web applications. It introduces a kernel-mode
driver which is responsible for connection management, bandwidth throttling,
and Web server logging as well.
480 WebSphere and .NET Coexistence

http://www.ibm.com/software/webservers/appserv/ws_bestpractices.pdf

The http.sys implements a cache for HTTP responses which improves the
performance. Both static and dynamic content can be cached, improving the
performance of the applications. In previous versions of IIS (prior to V6.0),
requests had to go from kernel mode to user mode for every dynamic request,
and the responses had to be regenerated. By implementing a cache, the HTTP
service handles caches HTTP responses in kernel mode with no transition to
user mode, improving the performance.

IIS 6.0 has one feature called Application Pool which can be configured to
optimize the performance of an application pool, allowing you to optimize the
performance of your Web applications. An application pool can contain one or
more applications and allows the isolation between different Web applications
(the level of isolation can be configured). You can, for example, create an
application pool for each ASP.NET application. Each application pool runs in its
own worker process, so errors in one application pool will not affect the
applications running in other application pools. Isolation of applications increases
the reliability of the applications.

Web garden is an application pool which has multiple processes serving the
requests routed to that pool. With Web garden, you can also increase scalability
since a software block in one process does not block all the requests that go to
an application.

Performance Monitor
Performance Monitor is a tool available in Windows which can be used for
application tuning and by developers to customize Performance Monitor
counters to diagnose problems. It allows sophisticated performance metrics
across systems. Some counters that can be monitored using the Perfomance
Monitor tool are:

� CPU utilization

� Current anonymous users

� Connections per second

� Requests

The System.Diagnostics namespace provides classes that allow you to interact
with system processes, event logs, and performance counters, makingit possible
to instrument your .NET application, getting a detailed view of its performance
regardless of where it is running.

The user is able to identify bottlenecks using tools such as Windows Task
Manager, Windows Performance Monitor, and the Component Services
administrative tool.
 Chapter 11. Quality of service considerations 481

Figure 11-2 Performance Monitor screen

11.3 Availability
Availability is the measurement of the time the element is out of use, that is,
experiencing an outage. Availability is usually expressed as a percentage of time
the element is not out of service. A system, application, or component that can
be used is considered to be available.

Another important definition is high availability which is the term usually
associated with the ability to run for extended periods of time with minimal or no
unplanned outage. In measurement terms, high availability is frequently
considered to be 99.99% or greater. High availability typically involves horizontal
scaling across multiple machines to avoid a single point of failure of a physical
machine.

Continuous availability is the ability to provide high levels of availability all day,
every day (24/7/365) with minimal planned or unplanned interruptions due to
maintenance, upgrades, or failures.

Maintaining availability during system maintenance tasks, such as upgrades to
hardware and applications, is a challenge. With the proper techniques, it is
possible to achieve continuous availability and address the other requirements.
482 WebSphere and .NET Coexistence

11.3.1 WebSphere
As we have mentioned before, WebSphere Application Server is designed to
provide clustering. Clustering is a fundamental approach for accomplishing high
availability. WebSphere Application Server Network Deployment V5.0 has a
built-in server clustering technique (WLM).

WebSphere high availability should be considered as end-to-end system
availability; this system includes a database, LDAP, firewall, Load Balancer,
HTTP server, and WebSphere application server. This system is integrated with
platform-specific clustering software to achieve maximum availability.

To avoid a single point of failure and maximize system availability, it is necessary
to have some redundancy in the environment. Vertical scaling can improve
availability by creating multiple processes, but the machine itself becomes a
point of failure. High availability typically involves horizontal scaling across
multiple machines; using a WebSphere Application Server multiple machine
configuration eliminates a given application server process as a single point of
failure.

� Horizontal scaling: provides the increased throughput of vertical scaling
topologies but also provides failover support. This topology allows handling of
application server process failures and hardware failures without significant
interruption to client service.

� Vertical scaling: a vertical scaling topology provides process isolation and
failover support within an application server cluster. If one application server
instance goes offline, the requests to be processed will be redirected to other
instances on the machine.

Single machine vertical scaling topologies have the drawback of introducing
the host machine as a single point of failure in the system. However, this can
be avoided by using vertical scaling on multiple machines.

Another important topic to mention is failover. Failover refers to the single
process that moves from the primary system to the backup system in the cluster.

WebSphere Application Server Network Deployment V5.0 failover and recovery
is also realized through the WebSphere Workload Management (WLM)
mechanism. Other clustering software such as HACMP™, VERITAS Cluster
Server, MC/ServiceGuard, Sun Cluster Server, and Microsoft Cluster Service
can also be used to enhance application server failover and recovery.

11.3.2 .NET
Availability and high availability of .NET applications are related to the scalability
mechanisms that we have mentioned previously.
 Chapter 11. Quality of service considerations 483

Availability in .NET is mainly handled by Windows Server Clustering which we
covered in “Windows Server 2003 Clustering” on page 475 and also “Network
Load Balancing” on page 477.

Clustering is important because if one server goes down, the application is able
to failover from one server to another. To avoid a single point of failure, a cluster
should be considered for front-end (such as Web servers) and back-end servers
(such as database servers). Besides clustering, Network Load Balancing is also
important for high availability since it redirects the incoming network traffic to
working cluster hosts if a host fails or is offline.

To guarantee availabilty of a .NET application, it is necessary to have redundant
software, hardware and network connectivity for failover.

Monitoring the system is one of the factors that contribute to maintaining the
environment free of failure; it can alert you when you need to increase the
system’s capacity, find system bottlenecks, etc. There are some things that you
can monitor, such as disk space, memory usage, CPU utilization, network load,
application queues, errors, etc.

11.4 Security
In order to guarantee the system security, the components below should be
considered:

� Hardware security, related to physically securing important systems.

� Network security, which refers to both physical and logical security. It involves
tasks such as protecting an internal LAN or network from unauthorized
access, making sure that no application is transmitting sensitive information
across the network at any time, making sure each running service is
accessible to only valid users, etc.

� Operating system security, protecting installed applications and their data files
from illegal access.

� Application security, securing the resources on an application level and
exercising the security features of the runtime platform (authentication and
authorization).

� User/group management, monitoring permissions to ensure that applications
are running as the correct user, adding system users as required, creating
groups, etc.

� Resource permissions, making sure that the users are accessing only the
resources they have access to.
484 WebSphere and .NET Coexistence

We can group these components into physical and logical security. In this
section, we are going to describe some features of both WebSphere and .NET
regarding logical security.

11.4.1 WebSphere
WebSphere Application Server V5 provides the security infrastructure and
mechanisms to protect J2EE resources and administrative resources and to
address enterprise end-to-end security requirements for authentication, resource
access control, data integrity, confidentiality, privacy, and secure interoperability.

WebSphere Application Server V5.0 is based on industry standards and provides
a security model according to the J2EE 1.3 specification. It has an open
architecture that allows secure connectivity and interoperability between
Enterprise Information Systems (EIS) and other products from other vendors.

This topic is fully covered in the redbook IBM WebSphere V5.0 Security
WebSphere Handbook Series, SG24-6573.

Security can be managed in terms of the application server environment or in
terms of the application that is running in the server.

� Global security specifies the global security configuration for a managed
domain and applies to all applications running on WebSphere Application
Server. It determines whether security will be applied and sets up the User
registry used to authenticate the users.

� Application security determines application-specific requirements. In some
cases, these values may override global security settings, but in most cases
they complement them. Application security includes such elements as a
method for authenticating the users, a mechanism for authorizing the users
into application-specific resources, roles-based access control to these
resources, roles to user/user groups mapping, and so on. Application security
is administered during the assembly phase using the Application Assembly
Tool (AAT) and during the deployment phase using the Administrative
Console and the WebSphere Studiomin client program.

This section discusses two fundamental security services also supported by
WebSphere Application Server:

Authentication
WebSphere Application Server V5.0 supports two different types of
authentication mechanisms:
 Chapter 11. Quality of service considerations 485

� LTPA (Lightweight Third Party Authentication)

LTPA is supported in distributed environments where there are multiple
application servers and machine environments. It supports forwardable
credentials and Single Sign-On. It also supports cryptography which allows
LTPA to encrypt and digitally sign, then securely transmit authentication
related data and later decrypt and verify the signature.

Single Sign-On is the process with which the users provide their credentials,
user identity, password and/or token, to connect to an application; then, these
credentials are available to all enterprise applications that have Single
Sign-On enabled without prompting the user for a user name and password
again.

LTPA requires that the configured User registry be a central shared repository
such as LDAP, a Windows domain type registry, or a custom registry.

The following LDAPs are supported by WebSphere Application Server
V5.0.2:

– IBM Directory Server 5.1

– IBM OS/390® Security Server 2.10

– IBM SecureWay® Directory 3.2.2

– IBM z/OS Security Server 11, 1.2, 13 or 1.4

– Lotus Domino Enterprise Server 5.0.9a or 5.0.12

– Lotus Domino Enterprise Server 6.0.2 (on AIX, Linux/Intel, NT, W2K or
Sun)

– Novell eDirectory 8.7

– Sun ONE Directory Server 5.0

– Windows 2000 Active Directory 2000

More information about supported hardware, software and APIs of
WebSphere can be found at:

http://www-3.ibm.com/software/webservers/appserv/doc/latest/prereq.html

� SWAM (Simple WebSphere Authentication Mechanism)

This is useful for a single application server configuration and non-distributed
environments. It does not support forwardable credentials or Single Sign-On.
It relies on the session ID and supports SSL.

Authorization
WebSphere authorization is the J2EE authorization. The WebSphere resources
are protected by the WebSphere authorization engine and the definitions are
stored in XML files for each application.
486 WebSphere and .NET Coexistence

http://www-3.ibm.com/software/webservers/appserv/doc/latest/prereq.html

WebSphere can also run with Java 2 security enabled, where the JVM itself
takes care of authentication and authorization on the code level in the runtime
environment.

WebSphere supports Java Authentication and Authorization Services API
(JAAS), which provides the pluggable authentication mechanism for WebSphere;
this makes the application independent of the authentication mechanism. It also
supports user-based authorization. For more information, refer to the following
URL:

http://java.sun.com/products/jaas

11.4.2 .NET
.NET Framework applications can use two different forms of security:

� Role-based security, also known as user security.

It allows the control of user access based on the user identity or its role in the
application resources (for instance Web pages) and operations (for example
business logic).

� Code-based security, also known as code access.

It controls which code can access the resources and perform the operations.
It involves authorizing the applications to access the system-level resources,
such as databases, directory services, the file system, etc.

In code-based security, the authentication is based on the evidence about the
code, such as its strong name. The authorization is based on the code access
permissions granted to the code by the security policy.

The following security namespaces are used to develop secure Web
applications:

� System.Security
� System.Web.Security
� System.Security.Cryptography
� System.Security.Permissions
� System.Security.Policy
� System.Security.Principal

More details are on the Microsoft Web site:

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnnetsec/
html/THCMCh06.asp
 Chapter 11. Quality of service considerations 487

http://java.sun.com/products/jaas
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnnetsec/html/THCMCh06.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnnetsec/html/THCMCh06.asp
http://java.sun.com/products/jaas
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnnetsec/html/THCMCh06.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnnetsec/html/THCMCh06.asp

Authentication
ASP.NET supports several authentication schemes, including Microsoft Passport
and forms-based, to control access to Web pages.

� Forms-based authentication

ASP.NET redirects unauthenticated users to an HTML form which is a custom
login page. The user provides credentials such as username and password
and if these are valid, the system issues an authentication cookie which
allows the user to access the site. The cookie redirection and management is
handled by ASP.NET. It is necessary to add code to verify the credentials and
also to retrieve role membership from a user store.

� Passport authentication

It relies on the Microsoft Passport SDK and offers a single logon and core
profile services for member sites.

� Client Certificate authentication

IIS supports the use of digital certificates and the Secure Sockets Layer
(SSL). Either the server or the client has a certificate which is passed to the
application with requests. Each request or response is validated by the
authority of the certificate.

� Windows authentication

ASP.NET uses Windows authentication in conjunction with Microsoft Internet
Information Services (IIS) authentication. IIS can perform the authentication
in three different ways: basic, digest, or Integrated Windows Authentication
(NTLM or Kerberos). Once the IIS authentication is done, ASP.NET uses the
authenticated identity to authorize access.

– Basic authentication

The users are prompted to supply a user name and password which are
returned to IIS and then can be used by the application. The password
passed by the user to IIS is clear text, so it is not very secure.

– Digest authentication

It is similar to basic authentication, but uses encryption to send user
information to the server. This one requires a Windows domain controller.

– Integrated Windows security

If the user is already authenticated in a Windows-based network, IIS can
pass the encrypted token, indicating the user’s security status when
access to a specific resource is required.

External authentication through integration with Active Directory can also be
used. Active Directory is a data store that contains information about objects
such as users, groups, organizational units (OUs), computers, domains and
488 WebSphere and .NET Coexistence

security policies. Active Directory is integrated with security through logon
authentication and access control to objects in the directory.

Authorization
Once a user has been authenticated, the next step is to determine what he/she is
allowed to do.

ASP.NET and IIS provide authorization points, also known as gatekeepers, within
an ASP.NET application which can be used to control access to restricted
resources:

� File Authorization

It is automatically active when Windows authentication is used. It runs an
Access Control List (ACL) check of the .aspx or .asmx handler file to
determine if a user should have access. File Authorization is performed by the
FileAuthorizationModule.

� URL Authorization

The role-based security can be configured by using the <authorization>
element in Machine.config or Web.config. This element controls which users
and groups of users should have access to the application. Any application
can use this authorization point. URL Authorization is performed by the
UrlAuthorizationModule.

11.5 Transactionality
A transaction refers to the sequence of activities to be treated in a single unit of
work. This means that all the activities have to be completed to make the
transaction successful. When a transaction does not complete for any reason,
the transaction has to be recovered back to a consistent state, so that all the
changes made are rolled back.

The ACID properties of transactions are briefly described below:

� Atomicity - a transaction is an atomic unit of processing; this means that it is
either performed entirely or not at all.

� Consistency - a correct execution of the transaction must take the system
from one consistent state to another.

Note: Another security feature is the ability to control the identity under which
code is executed. Impersonation is when ASP.NET executes code in the
context of an authenticated and authorized client.
 Chapter 11. Quality of service considerations 489

� Isolation - a transaction should not make its updates visible to other
transactions until it is committed.

� Durability - once a transaction commits, the committed changes must never
be lost in the event of any failure.

Transactional quality of service refers to the level of reliability and consistency at
which the transactions are executed. Transactionality is essential for maintaining
the integrity for the enterprise.

There are various approaches to providing transactional quality of service ,such
as two-phase commit and compensation. Two-phase commit provides a
transaction coordinator, which controls the transaction based on the idea that no
constituent transaction is allowed to commit unless they are all able to commit.
The problem is that the transaction coordinator does not have control over all
resources.

Compensation is the other approach; it is based on the idea that a transaction is
always allowed to commit, but its effect and actions can be cancelled after it has
committed.

Compensation can be used in business processes to enable updates to be
committed in several related transactions before the process has completed. If
the process does not complete successfully, compensation is used to
automatically perform actions that compensate for updates that have been
committed. The compensation actions can roll back committed updates or can
take alternative actions.

These approaches are important to guarantee that a complex request is
executed either in its entirety or not at all.

11.5.1 WebSphere
This section discusses the transaction services on both platforms.

Transaction support
The way that applications use transactions depends on the type of application
component involved.

� A session bean can either use container-managed transactions (where the
bean delegates management of transactions to the container) or
bean-managed transactions (where the bean manages transactions itself).

� Entity beans use container-managed transactions.

� Web components (servlets) use bean-managed transactions.
490 WebSphere and .NET Coexistence

WebSphere applications can be configured to interact with databases, JMS
queues, and JCA connectors through their local transaction support when
distributed transaction coordination is not required. The coordination of resource
managers is also supported.

Resource managers that offer transaction support can be categorized into those
that support two-phase coordination (by offering an XAResource interface) and
those that support only one-phase coordination (for example, through a
LocalTransaction interface). The WebSphere Application Server transaction
support provides coordination, within a transaction, for any number of two-phase
capable resource managers. It also enables a single one-phase capable
resource manager to be used within a transaction in the absence of any other
resource managers, although a WebSphere transaction is not necessary in this
case.

With the Last Participant Support of WebSphere Application Server Enterprise,
you can coordinate the use of a single one-phase commit (1PC) capable
resource with any number of two-phase commit (2PC) capable resources in the
same global transaction. At transaction commit, the two-phase commit resources
are prepared, first using the two-phase commit protocol; if this is successful, the
one-phase commit-resource is then called to commit (one-phase). The
two-phase commit resources are then committed or rolled back, depending on
the response of the one-phase commit resource.

The ActivitySession service of WebSphere Application Server Enterprise
provides an alternative unit-of-work (UOW) scope to that provided by global
transaction contexts. It is a distributed context which can be used to coordinate
multiple one-phase resource managers. The WebSphere EJB container and
deployment tooling support ActivitySessions as an extension to the J2EE
programming model. EJBs can be deployed with life cycles that are influenced by
the ActivitySession context as an alternative to the transaction context. An
application can then interact with a resource manager through its
LocalTransaction interface for the period of a client-scoped ActivitySession
rather than just the duration of an EJB method.

WebSphere Application Server also provides support for compensation through
the process choreographer, which we can define as a tool for executing complex
business processes. It can be used for the choreography of all kinds of business
processes or flows.

11.5.2 .NET
As J2EE, .NET also provides libraries for supporting transaction management.
Microsoft offers transaction management support in MTS, COM+ and Common
Language runtime technologies.
 Chapter 11. Quality of service considerations 491

Microsoft Windows 2000 includes COM+ V1.0 with services such as
transactions, and role-based security, among others. COM+ was upgraded from
V1.0 to V1.5 and has been rebranded as Enterprise Services under .NET and
Windows 2003 Server provides Enterprise Services. In this section, we will be
talking about Enterprise Services, which are designed to support transactions
and distributed processing in heterogeneous environments.

The Microsoft .NET Framework supports two transaction models for objects
registered with Enterprise Services:

� Manual transactions

The developer is responsible for handling the transaction tasks such as
begin, commit or abort, end and so on. The manual transaction model
enables total control over the behavior of a transaction, which is a useful
feature in cases such as managing nested transaction and linked
transactions.

� Automatic transactions

The developer defines an object’s transactional behavior by setting a
transaction attribute value on an ASP.NET page, a Web Service method, or a
class. Once an object is selected to participate in a transaction, it will
automatically execute within the transaction’s scope. An automatic
transaction model is not suitable for handling nested transactions.

Transaction management
Microsoft Component Services provide an infrastructure for transaction
management. In Windows 2000, the Component Services are comprised of two
services:

� COM+ (Enterprise Services)

These allow you to configure and administer COM components and COM+
applications. Enterprise Services deals with transactions. As we already
discussed, with transactions, the developer can ask for a transaction without
worrying about how many resource managers will be involved, or how the
components involved in the transaction interact. The transactions ensure the
integrity of the application data by locking particular data records for a certain
amount of time. This locking is based on the isolation level. At a higher
isolation level, with more locking, there are minor chances of getting incorrect
data.

In Windows 2000, COM+ services defaults to the highest isolation level that
guarantees all work is completely isolated during a transaction. You can
change the isolation level after the transaction begins with an SQL command.

In Windows 2003, Enterprise Services allow the specification of the isolation
level that you want to use with the transaction by specifying the Isolation
492 WebSphere and .NET Coexistence

property when you declare the transaction attribute. This allows you to define
the isolation level that works best with the application.

� Microsoft Distributed Transaction Coordinator (DTC)

This allows you to administrate the distributed transactions and provides
transaction services to ensure successful and complete transactions, even
with system failures, process failures, and communication failures.

It coordinates transactions that update two or more transaction-protected
resources such as databases, message queues, file systems, and so on.
These transaction-protected resources may be contained on a single system
or distributed across a network of systems.

The transaction manager is a component of the DTC and it is the process
responsible for coordinating the MS DTC transactions.

A two-phase commit is also supported; in the algorithm for MS DTC, phase
one involves the transaction manager requesting each enlisted component to
prepare to commit and in phase two, if all components have successfully
prepared, the transaction manager broadcasts the commit decision.

The performance of MS DTC transactions can be monitored using either the
System Performance Monitor or the Component Services administrative tool.

11.6 Manageability
The use of either WebSphere or .NET has an impact on the way that the
infrastructure is managed. There are operational concerns such as initial
deployment of an application, maintenance, tuning, etc. Factors related to quality
of service such as availability, security, performance can also be identified,
reported and corrected using tecniques and features provided with application
servers to manage the infrastructure as well as the applications. They provide
tools to monitor the applications in a preventive and corrective way.

Manageability is also related to administrative tasks for local and remote
installation, configuration changes, applying fixes, application updates, etc.

In this section, we will focus on JMX used by WebSphere to provide
management of the J2EE applications and WMI (Windows Management
Instrumentation) for the .NET side.

11.6.1 WebSphere
Java Management Extensions (JMX) is a framework which provides a standard
way of exposing Java resources (application servers, for example) to a system
management infrastructure. The JMX framework allows a provider to implement
 Chapter 11. Quality of service considerations 493

functions, such as listing the configuration settings, and allows users to edit the
settings. It also includes a notification layer which can be used by management
applications to monitor events such as the startup of an application server.

JMX allows the WebSphere users to use third-party management tools. JMX is a
Java specification (JSR-003) that is part of J2SE 1.4.

The JMX architecture is divided into three levels:

� Instrumentation level

Dictates how resources can be wrapped within special Java beans, called
Managed Beans (MBeans). The instrumentation of a resource allows it to be
manageable through the agent level, which we will explain below.

� Agent level

Provides a specification for implementing agents. Management agents
directly control the resources and make them available to remote
management applications.

� Distributed services level

Provides the interfaces for implementing JMX managers. The distributed
services level defines management interfaces and components that can
operate on agents or hierarchies of agents.

Below are some key features of the implementation of JMX on WebSphere
Application Server V5:

� All processes run the JMX agent.

� All runtime administration is performed through JMX operations.

� Connectors are used to connect a JMX agent to a remote JMX-enabled
management application. The following connectors are currently supported:

– SOAP JMX Connector

– RMI/IIOP JMX Connector

� Protocol adapters provide a management view of the JMX agent through a
given protocol. Management applications that connect to a protocol adapter
are usually specific to a given protocol.

� A runtime object’s configuration settings can be queried and updated.

� Application components and resources can be loaded, initialized, changed
and monitored in the runtime.
494 WebSphere and .NET Coexistence

Some of the more common JMX usage scenarios you will encounter are as
follows:

� Internal product usage:

All the WebSphere V5.0 administration clients use JMX:

– WebSphere administrative console

– wsadmin scripting client

– Admin client Java AP

� External programmatic administration

In general, most external users will not be exposed to the use of JMX.
Instead, they will access administration functions through the standard
WebSphere admin clients.

However, external users will need to access JMX in the following scenarios:

– External programs written to control the Network Deployment runtime and
its WebSphere resources by programmatically accessing the JMX API.

– Third-party applications that include custom JMX MBeans as part of their
deployed code, allowing the applications components and resources to be
managed via the JMX API.

Find more details in the redbook IBM WebSphere Application Server V5.0
System Management and Configuration, SG24-6195.

System management tools
The IBM WebSphere Application Server administration tools are used for system
management for the entire distributed topology:

� WebSphere Administrative Console.

� Command-line operational tools.

� WebSphere scripting: IBM WebSphere Application Server includes a new
scripting tool called wsadmin.

� Java APIs: the Java-based JMX APIs can be accessed directly by custom
Java applications.

Although any of these interfaces can be used to configure system management
functions, the use of the administrative console is preferred because it validates
any changes made to the configuration.

Please refer to the IBM Redbook IBM WebSphere Application Server V5.0
System Management and Configuration, SG24-6195 for more information on this
subject.
 Chapter 11. Quality of service considerations 495

11.6.2 .NET
Microsoft provides a set of features built into the Microsoft Windows 2000 or
2003 operating system for building management information into the applications
and for performing ongoing management activities.

Windows Management Instrumentation (WMI)
WMI is a key component of Microsoft Windows 2000 management services. It is
also available for Windows 95, Windows 98, Windows NT 4.0, and Windows
2003. It is an object-oriented technology for programs to store information in a
central repository, so it is a management infrastructure, a part of the operating
system that provides application information and common management process
for both local and remote application and operating system components. One
example of its usage: WMI collects application failures, making it possible to
determine the availability percentage of the applications.

Other programs or scripts can access the information in the central repository
and call class methods to interact with the program and control its operation.

The management agent is a feature which is required by application
instrumentation and used to monitor the local resources and publish data about
the resource’s current state and performance. Management agents also provide
local configuration services as a way to make remote management possible.

There are many WMI management agents that help to collect application
information, including agents for the following sources:

� Event Log
� Active Directory
� Registry
� Operating services
� Performance counters
� Application services
� HTTP requests, among others sources.

With WMI, it is possible to create these agents, collect and store information,
view configuration, status, and operational data about the application and all of
its supporting resources. New applications can also be developed using
instrumentation. For more information on WMI, see Managing Windows with
WMI at:

http://msdn.microsoft.com/library/techart/mngwmi.htm

Microsoft Operations Manager (MOM)
Manager provides event-driven management for the Windows platform and
applications that implement Windows Management Instrumentation (WMI).
496 WebSphere and .NET Coexistence

http://msdn.microsoft.com/library/techart/mngwmi.htm

MOM data can be accessed by using any scripting or programming language
supported by Windows Management Instrumentation (WMI) or Microsoft SQL
Server. MOM exposes internal information about events, alerts, and computers
through its WMI providers.

The MOM architecture includes various components and also includes user
interfaces (consoles). These components are deployed in configuration groups
which basically contain the following :

� MOM Database - a Microsoft SQL Server database that stores configuration
and monitoring data.

� MOM DCAM - this is the central MOM server on which the MOM
Administrator console is installed. The DCAM includes three components:

– Data Access Server (DAS): controls the flow of data between the
database, the Consolidator, the MOM Administrator console, and the Web
console.

– Consolidator: collects monitoring data from agents on managed
computers and forwards this data to the DAS. The Consolidator also
sends configuration changes to agent-managed computers.

– Agent Manager: discovers, installs, and uninstalls agents on managed
computers. The Agent Manager also passes configuration information to
managed computers based on the processing rules for the configuration
group.

� Agents - an agent is installed on each computer that is monitored by MOM.
Agents collect monitoring data on a remote computer, apply processing rules
to the collected data, and then send the resulting data to the Consolidator.

� MOM Administrator console - a MOM user interface that is used to monitor,
configure, and deploy in the enterprise environment.

� MOM Reporting - an optional component used to generate reports based on
the monitoring data that MOM collects. It generates reports with information
on capacity planning, performance analysis, and application-specific reports
that you can use to monitor resources, traffic, and availability.

Another tool which is available is the Systems Management Server, which is a
Windows-based product designed to manage, support, and maintain a
distributed network of computer resources and to help automate change and
configuration management.

For more information, see the Systems Management Server Web page at:

http://www.microsoft.com/smsmgmt/default.asp
 Chapter 11. Quality of service considerations 497

http://www.microsoft.com/smsmgmt/default.asp

11.7 Maintainability
This term refers to the maintenance of the environment that the application is
running in both hardware and software perspectives. How easy is it to repair a
machine that runs a critical application ? How do you modify a software system
or a component to correct faults, improve performance or adapt to a changed
environment without stopping the running application ? These are the common
questions that come up when we talk about maintainability.

Maintainability is related to some other topics that we covered in this chapter,
such as availability. Application maintainability refers to deployment of new
applications and updates of the existing ones.

11.7.1 WebSphere
WebSphere Workload Management provides features such as clustering, which
allows servers to be maintained and upgraded in a way that is transparent to the
users without having to stop the application.

In a distributed environment, where we physically separate some components,
due to the components’ independence, the server components can be
reconfigured, or even replaced, without affecting the installation of other
components on separate machines.

Some considerations about vertical and horizontal scaling come into play:

� It is easier to administer the member application servers in a vertically scaled
topology because all the code is running on the same machine, which is
therefore a single point of administration. This topology can also easily be
combined with other topologies. We can implement vertical scaling on more
than one machine in the configuration; this requires IBM WebSphere
Application Server Network Deployment to be installed.

� Horizontal scaling requires code migration to multiples nodes; there is more
installation and maintenance associated with the additional machines.

One of the advantages of horizontal scaling is that if you have to upgrade the
hardware, the application will still run on the other machine.

For application maintainability, WebSphere Application Server provides support
for dynamic deployment and hot deployment.

� Dynamic deployment is the ability to deploy new code and/or change an
existing component without restarting the server or stopping the application in
order for the change to take effect.
498 WebSphere and .NET Coexistence

� Hot deployment is the process of adding new components (such as WAR
files, EJB jar files, enterprise Java beans, servlets, and JSP files) to a running
server without having to stop the application server process and start it again.

A best practice for maintenance is to keep the EAR files in sync. It is likely that
you will use a tool such as Rational ClearCase to manage the code. Basically,
you should always be able to retrieve from your configuration management tool
the exact configuration which runs in production or testing.

11.7.2 .NET
Within the .NET Framework, you can use some tools to deploy applications and
manage the code. In this section, we will briefly describe the available tools that
can be used to manage .NET code.

Source code management
Source code management in the .NET Framework is possible by using Microsoft
Visual Source Safe (VSS), which is a repository used to manage project files.
Visual Source Safe is integrated with Visual Studio .NET.

The user can see the latest version of any file, make changes, and save a new
version in the repository. By performing a check-in or check-out, the user can get
or save the files, respectively.

XCopy deployment
.NET Framework applications do not need registry entries and the assemblies
(*.dll, *.exe) are self-describing via their meta-data; they can be simply deployed
using an XCopy command or FTP.

11.8 Portability
There are two flavors of portability: platform-neutral and application portability.

Platform-neutral refers to the ability to move a code base from one operating
system to another without having to change the code itself. This is a possibility
with most implementations of J2EE. A key difference between J2EE and .NET is
that J2EE is platform-neutral, running on a variety of hardware and operating
systems, such as Win32, UNIX, and mainframe systems. This is possible
because the Java Runtime Environment (JRE) is available on any platform.

Application portability is a key feature of the J2EE platform; it means that a J2EE
application can run on any J2EE-compatible application server.
 Chapter 11. Quality of service considerations 499

Many J2EE implementations such as IBM WebSphere Application Server
provide and support vendor-specific extensions to the J2EE. These extensions
are intended to provide functionality that is not part of the J2EE specification to
the applications. Many extensions delivered with WebSphere Application Server
become part of the J2EE specification in its further releases.

11.8.1 WebSphere
WebSphere Application Server runs under several platforms, as listed below; this
means that you can deploy the same Java application in any WebSphere
Application Server running on these platforms without having to make any
change in the code.

� AIX 4.3.3 4330-10 Maintenance level
� AIX 5.1 5100-02 or 5100-03 Maintenance level
� AIX 5.2
� Windows 2000 Advanced Server Service Pack 3
� Windows 2000 Server Service Pack 3
� Windows 2003 Server, Enterprise
� Windows 2003 Server, Standard
� Windows NT 4.0 Service Pack 6.0a
� Red Hat Linux 8
� Red Hat Enterprise Linux WS/ES/AS for Intel 2
� SuSE Linux 7.3 for Intel
� SuSE SLES 7 2.4
� UnitedLinux 1.0
� OS/400 5.1
� OS/400 5.2
� Red Hat Linux 7.2 for s/390
� SuSE SLES 7 for zSeries
� HP-UX 11iv1
� Solaris 8
� Solaris 9

For the most current information on the supported software releases, operating
systems, and maintenance levels, see:

http://www.ibm.com/software/webservers/appserv/doc/latest/prereq.html

11.8.2 .NET
The J2EE specification supports only Java as a programming language and runs
on any platform. .NET supports multiple programming languages and .NET
applications only run on the Microsoft platform.
500 WebSphere and .NET Coexistence

http://www.ibm.com/software/webservers/appserv/doc/latest/prereq.html
http://www.ibm.com/software/webservers/appserv/doc/latest/prereq.html

For server-side applications, the following versions of Windows are supported:

� Microsoft Windows 2000 Professional with Service Pack 2.0
� Microsoft Windows 2000 Server family with Service Pack 2.0
� Microsoft Windows XP Professional
� Microsoft Windows Server 2003 family

11.9 Web Services
A typical Web Services application will execute in a runtime environment which,
in turn, executes on an operating system. Hence, this Web Services application
would inherit quality of service already provided by its underlying environments.
If the Web Services application is running in WebSphere Application Server, this
Web Services application can take advantage of scalability, availability, reliability
and other quality of service provided by WebSphere Application Server.

Since both WebSphere and .NET solutions provide similar support for the open
standards for the Web Services technology, such as SOAP, WSDL, and UDDI,
quality of service will become an important selling and differentiating point of
these services.

In this section, we will look at some Web Service QoS requirements, such as
performance, security, transactionality, and reliability.

Performance considerations
We can consider some aspects to measure the performance of a Web Service,
such as latency and throughput, which were covered previously, as well as
execution time (which is the time that a Web Service takes to process a
sequence of activities) and transaction time (which is the period of time that the
Web Service takes to complete a transaction).

There are many factors that can influence the performance of a Web Service,
such as network, application logic, encoding styles and also the underlying
messaging and transport protocols used. Of course, there are some factors that
are outside the control of the Web Service, such as Web server response time
and availability, original application execution time in the Web application server,
and back-end database or legacy system performance. The perfomance of these
can be improved using techniques such as caching, load balancing on both the
Web server and Web application server sides.

The encoding style determines the scalability and performance of a Web Service.
Some performance tests between SOAP RPC and Document style encodings
were performed using an open-source utility called TestMaker; they provided
some information regarding scalability and performance, as we will see.
 Chapter 11. Quality of service considerations 501

Figure 11-3 shows that as the payload size increases, the number of transactions
per second decreases when using SOAP RPC encoding. The payload size is
measured in bytes.

Figure 11-3 Performance when using SOAP RPC encoding

The next test that was performed used SOAP Document style encoding. The
performance stays relatively stable when the payload size is increased.

Figure 11-4 Performance when using Document style encoding

The test using RPC literal encoding shows that it provides the performance
benefits of SOAP Document style encoding with a little more work due to the
parsing of the XML data.

In terms of underlying messaging and transport protocols, let’s talk about SOAP.
SOAP uses XML to encode messages; it is easy to process messages at every
step of the invocation process. At a glance, it seems that an XML-based scheme
would be intrinsically slower than that of a binary based model, but it is not as
straightforward as that. First, when SOAP is used for sending messages across
the Internet, the time to encode/decode the messages at each endpoint is very
short compared to the time to transfer the bytes between endpoints, so using
XML in this case is not significant.
502 WebSphere and .NET Coexistence

Secondly, in an intranet environment, it is very likely that the endpoints of a
SOAP message are running the same implementation of SOAP parsers.

The SOAP protocol uses various steps to process a complete communication
style and the whole process requires various levels of XML parsing. The parser
is also important in SOAP performance. The SAX-based SOAP implementations
can be used to increase throughput, reduce memory overhead and improve
scalability.

References
Learn about SOAP encoding's impact on Web Service performance at:

http://www-106.ibm.com/developerworks/webservices/library/ws-soapenc/

Understanding quality of service for Web Services by referencing:

http://www-106.ibm.com/developerworks/java/library/ws-quality.html

Security
Quality of service is required to provide security, reliable messaging, and
management for each layer of the Web Services stack. To secure Web Services,
you must consider a broad set of security requirements, such as:

� Authentication
� Authorization
� Privacy
� Trust
� Integrity
� Confidentiality
� Secure communications channels
� Federation
� Delegation
� Auditing across a spectrum of application and business topologies

One of the key requirements for the security model in today's business
environment is the ability to interoperate between formerly incompatible security
technologies (such as public key infrastructure, Kerberos, etc.) in heterogeneous
environments (such as .NET and J2EE). The complete Web Services security
protocol stack and technology roadmap is described in Security in a Web
Services World: A Proposed Architecture and Roadmap, which is available at the
following address:

http://www.ibm.com/developerworks/webservices/library/ws-secmap/

Web Services security is a SOAP message-level security specification used to
support security token propagation, message integrity, and message
 Chapter 11. Quality of service considerations 503

http://www-106.ibm.com/developerworks/webservices/library/ws-soapenc/
http://www-106.ibm.com/developerworks/java/library/ws-quality.html
http://www.ibm.com/developerworks/webservices/library/ws-secmap/
http://www-106.ibm.com/developerworks/webservices/library/ws-soapenc/
http://www-106.ibm.com/developerworks/java/library/ws-quality.html

confidentiality. One intent of the specification is to address interoperability
between different implementations of Web Services security.

WS-Security provides a general purpose mechanism for associating security
tokens with messages; it is designed to be extensible (for example, to support
multiple security tokens).

You can find the WS-Security specification and also some security
considerations at:

http://www.ibm.com/developerworks/library/ws-secure/

Other mechanisms can be used to provide security to the Web Service
application, such as:

� Leveraging transport layer security:

– HTTPS - ensuring integrity and privacy

– HTTP - basic authentication headers

The features of your reverse proxy, Web server and WebSphere application
server can be fully leveraged because the SOAP server (rpcrouter) is just
another servlet.

� Enhancing the SOAP message layer with security features:

– XML signatures, addressing the integrity requirement

– XML encryption, addressing the privacy requirement

To realize the benefits of Web Services security, it is recommended that an
implementation of the specification be integrated with underlying security
mechanisms.

This implementation is fully integrated with the WebSphere Application Server
V5.0.2 security infrastructure. Authorization, for example, is based on the J2EE
security model. When a user ID and password are embedded in a request
message, authentication is performed with the user ID and password. If
successful, a user identity is established in the context of execution and further
resource access is authorized based on that identity. Once the user ID and
password are authenticated by the Web Services security runtime, a J2EE
container performs the authorization.

WebSphere Application Server V5.0.2 provides the following capabilities for Web
Services security:

� Integrity of the message
� Authenticity of the message
� Confidentiality of the message
� Privacy of the message
504 WebSphere and .NET Coexistence

http://www.ibm.com/developerworks/library/ws-secure/

� Transport level security: provided by Secure Sockets Layer (SSL)
� Security token propagation (pluggable)
� Identity assertion

Transactionality
This refers to the level of reliability and consistency at which the transactions are
executed. It is crucial for maintaining the integrity of a Web Service.

The Web Services Coordination and Web Services Transaction specifications
complement BPEL in that they provide a Web Services based approach to
improving the dependability of automated, long-running business transactions in
an extensible, interoperable way.

The WS-Coordination specification defines a framework through which those
services can work from a shared "coordination context.” WS-Transaction, on the
other hand, provides a framework that allows the monitoring of the success or
failure of each individual, coordinated activity.

WS-Transaction defines two transaction coordination types:

� Atomic transactions (AT), where the results of operations are not made visible
until the completion of the unit of work. They have the following
characteristics:

– Short duration

– Typically executed within limited trust domains

The atomic transactions are called atomic because they have an “all or
nothing” property. Figure 11-5 on page 506 shows that the Web Service WSa
calls Web Service WSb in the same atomic transaction. The persistent
updates made by WSa and WSb must be committed or aborted together,
regardless of system or network failure.
 Chapter 11. Quality of service considerations 505

Figure 11-5 Atomic transaction

A two-phase commit atomic transaction (AT) protocol is used to coordinate
the persistent updates. It is important to remember that database locks may
be held for the duration of the transaction.

Figure 11-6 Two-phase commit in atomic transactions

� Business activities (BA), where the results of operations are made visible
before the completion of the unit of work and where business logic is needed
to handle unsuccessful completion, for example as part of a compensation.

RDBMS RDBMS

Web service WSa Web service WSb

App Server 1 App Server 2

RDBMS RDBMS

Web service WSa Web service WSb

App Server 1 App Server 2

Transaction
manager

Transaction
manager2PC

2PC2PC
506 WebSphere and .NET Coexistence

These have the following characteristics:

– May have a long duration

– More appropriate for business transactions that span trust boundaries

Figure 11-7 Business activities

The figure above shows the Web Service WSa calling Web Service WSb in
the same long-running business transaction. They both are loosely coupled
and their business activities may independently fail. Recovery tasks, such as
compensation, are part of the overall business application.

Figure 11-8 Complete business activities

Web service WSa Web service WSb

App Server 1 App Server 2

Activity 1 Activity 2

Web service WSa Web service WSb

App Server 1 App Server 2

Activity 1 Activity 2
Activity

manager
Activity

managerBA

BA BA
 Chapter 11. Quality of service considerations 507

Following are some considerations about the figure above:

– A business activity (BA) protocol is used to coordinate the business
activities.

– Database locks may be held for short periods during transactional periods
of the longer-running business activities.

– Middleware provides the infrastructure to drive compensation as required.

– Compensation logic is provided by the application.

The Atomic Transaction specification defines protocols which enable existing
transaction processing systems to wrap their proprietary protocols and
interoperate across different hardware and software vendors.

The specifications were published jointly by IBM, Microsoft and BEA:

http://www.ibm.com/developerworks/webservices/library/ws-coor/
http://www.ibm.com/developerworks/webservices/library/ws-transpec/

Please refer to the IBM Redbook WebSphere MQ Solutions in a Microsoft .NET
Environment, SG24-7012 for details about Web Services transactions.

Reliability
Reliability is the quality aspect of a Web Service that represents the degree to
which it is capable of maintaining the service and service quality. The number of
failures per month or year represents a measure of reliability of a Web Service. In
another sense, reliability refers to the assured and ordered delivery of messages
being sent and received by service requestors and service providers.

To improve reliability, the applications which rely on remote Web Services can
use message queuing. Applications and Web Services within an enterprise can
use message queuing such as Java Messaging Service (JMS) or WebSphere
MQ for Web Service invocations. Enterprise messaging provides a reliable,
flexible service for the asynchronous exchange of critical data throughout an
enterprise. Message queues provide two major advantages:

� They are asynchronous.

� They are reliable, since the messaging service ensures that the message is
delivered only once.

WS-I
WS-Interoperability is an open industry organization chartered to promote Web
Services interoperability across platforms, operating systems, and programming
languages. The organization works across the industry and standards
organizations to respond to customer needs by providing guidance, best
practices, and resources for developing Web Services solutions.
508 WebSphere and .NET Coexistence

http://www.ibm.com/developerworks/webservices/library/ws-coor/
http://www.ibm.com/developerworks/webservices/library/ws-transpec/

It defines a Basic Profile specification which consists of a set of non-proprietary
Web Services specifications to promote interoperability.

You can find more details at:

http://www.ws-i.org/
 Chapter 11. Quality of service considerations 509

http://www.ws-i.org/

510 WebSphere and .NET Coexistence

Part 4 Appendixes

Part 4
© Copyright IBM Corp. 2004. All rights reserved. 511

512 WebSphere and .NET Coexistence

Appendix A. Lotus Domino and .NET
coexistence

Lotus Domino and Microsoft .NET technologies can be integrated using Web
Services. Web Services are self-contained, self-describing, modular applications
that can be published to and invoked from the Web. Unlike traditional Web-based
applications, Web Services contain no user interface, which means that these
applications could be remotely invoked by other applications known as clients.
Web Services use technology standards such as XML, SOAP, WSDL, and UDDI.
In addition to this, Web Services applications communicate with each other by
using the HTTP protocol and SOAP messages.

Lotus Domino is ideal software for using Web Services to extend the
collaborative features of Notes/Domino across the enterprise. Domino
Application Server can either host or use Web Services. As we have also
discussed in this redbook, Microsoft .NET platform is a collection of tools from
Microsoft that let you both use and host Web Services. This appendix describes
how to integrate both technologies.

A

© Copyright IBM Corp. 2004. All rights reserved. 513

A.1 Web Services integration
It is not the purpose of this redbook to introduce Web Services concepts and
their architecture (you can find detailed information about these topics in the
redbook WebSphere Version 5 Web Services Handbook, SG24-689), but to
show how Web Services, developed on different languages and different tools,
can interact with each other.

The principal elements involved on the interoperability of Web Services are the
following:

� A service provider
� A service requester
� A way to code the data - XML language
� A way to define and describe the service - WSDL document
� A way to format remote calls -SOAP Protocol
� A network protocol - HTTP

Also in a runtime environment, we need:

� A Service Broker known also as a Service Registry.
� A way to publish and find services - UDDI

The Web Services model includes three roles: the service provider, the service
broker, and the service requester and the methods and properties are associated
with the service. The Web Service is published in an external or internal registry
using UDDI. Once the Web Service is publicly or privately available in the
appropriate UDDI registry, the service requester uses UDDI to find the Web
Service and consume it. SOAP is used to invoke a Web Service, therefore
binding the service requester to the service provider.

As mentioned before, Lotus Domino Application Server and Microsoft .NET
platform can host or provide Web Services. This means that it is possible to use
Lotus Domino Server to host Web Services as a service provider, because
Domino Applications can be modified to provide SOAP Interfaces and WSDL
Descriptions using XML, and use .NET clients to invoke the Lotus Domino
Service as a consumer or the other way around, using Lotus Domino as a
consumer (Service Requester), which involves calling or invoking the .NET
service and getting the response back.

Therefore, the purpose of this section is to explain the following scenarios:

� Lotus Domino as a provider and .NET as a consumer.
� .NET as a provider and Lotus Domino as a consumer.
514 WebSphere and .NET Coexistence

A.1.1 Domino provider, .NET consumer
As explained above, Lotus Domino applications can have a Web Service
interface that allows it to be accessed as a Web Service by remote users or by
Web server clients. The design elements needed to provide a Domino Web
Service are the following:

� A Lotus Script Web Agent: this agent is written to accept a SOAP request,
parse it, call the requested method (function), and return the result as a
SOAP response to the requester.

� Any standard LotusScript function stored in a Lotus Script library.

� A page containing a WSDL definition of the service. This is required only
because the database is going to be accessible by the .NET consumer.

The application components are represented in the following diagram.

Figure A-1 Domino - .NET client interaction

To explain how to use Domino as a Web Service Provider, we have created a
Notes Sample Web Services .NET Database Application (WebServiceNet.nsf).
This database shows how you can easily write a 100% Lotus Script Web Service
that allows .NET clients to access the details of a particular upcoming ITSO
Residency by giving a Residency Code.
 Appendix A. Lotus Domino and .NET coexistence 515

For the development, we used the following product versions:

� Microsoft .NET Framework Software Development kit V1.1
� Microsoft Windows 2000 Server with Service Pack 4
� Lotus Domino Server V6.0.2 CF2
� Microsoft IE V5.5 or newer
� Lotus Domino Administration Client V6.0.2.
� Lotus Domino Designer Client V6.0.2.

For more details on how to install the software products, refer to the installation
manuals. Lotus Domino Administrator client and Lotus Domino Designer was
installed in another machine in order to administrate the Domino Server and to
design the Sample application.

Before starting, make sure that you have TCP/IP network configured (it is
recommended to have a fixed IP address), that it is possible to resolve the
machine host name (via Host file or DNS) and also that you have Domino Server
configured. For our example, the following Domino nomenclature was selected
within the configuration process, but of course it is possible to use another one.

Table A-1 Domino nomenclature

Note: The example of this redbook is created based on the Building Web
Services using Lotus Domino 6 Tutorial which was developed by
IBMdeveloperWorks and can be located in the following URL:
https://www6.software.ibm.com/reg/devworks/dw-lsdom6ws-i?S_TACT=103A
MW13&S_CMP=LDD. More information regarding developing Web Services in
Domino can be found in Lotus Domino Designer® 6 Help database.

Concepts Selected Name

Domino Domain Name TEST

Organization Name TEST

Server Name Domin6/TEST

Server Title Test Server

Notes Network Name TCPIP Network

Notes Administrator Name Notes Admin/TEST

Note: For more details about configuring a Domino Server, refer to the Lotus
Domino Administrator 6 help database.
516 WebSphere and .NET Coexistence

https:///dw-lsdom6ws-i?S_TACT=103AMW13&S_CMP=LDD
https:///dw-lsdom6ws-i?S_TACT=103AMW13&S_CMP=LDD

Once you have installed and configured the products to begin with the example,
follow these steps:

1. Create a new database.

2. Create the Forms and Views for the database.

3. Create a Lotus Script Web Agent (ResidencyWS).

4. Create a Lotus Script Library (Domino).

5. Create a WSDL page to describe the Domino Web Services.

6. Create a .NET client.

7. Test the application.

A.1.1.1 Creating a new database
Although included in this redbook is the sample database inside the additional
material, we are going to start from scratch by creating a new database in our
server.

Open Lotus Domino Designer 6 and select File -> Database -> New from the
menu. This opens the New Database dialog box as shown below.

Figure A-2 Create database
 Appendix A. Lotus Domino and .NET coexistence 517

In the Server field, select: <The name of the Domino Server> (in our case
Domino6/TEST), as Database Title type: Web Service .NET and for File name:
WebServiceNET.nsf. Select -Blank- as the template. Click the OK button.

A.1.1.2 Creating the Forms and Views for the database
When a new database is created from scratch, it does not contain design
elements except one default view, so it is necessary to create all of the elements
needed for the application. Because the sample database is going to contain all
the details for the upcoming ITSO residencies, the minimum design elements to
create are:

1. A new Form to provide the structure for creating and displaying ITSO
Residency documents details.

Open Lotus Domino Designer 6 and select Forms in the Design pane, then
click New Form; an untitled blank form is displayed. Add the necessary fields
for display the residency information details such as: Residency Name,
Residency Code, Start date, End Date, Residency Contact, e-mail and
Location. Save the form with the Residencies name. The New Form could
look like the figure below.

Note: To use the sample database included in the additional material of this
redbook, is necessary to sign the database using an ID with administrative
privileges; follow the instructions provided in 1.2.1, “Writing a Java application
using a text editor” on page 22 using Domino as a COM server, and .NET as a
client in the “Create a Domino Sample Database” part. Be aware also that by
default, Web agents run under the identity of the agent author (the person who
saved the agent) or the agent signer so this user must have access to run
Agents on the Domino Server.
518 WebSphere and .NET Coexistence

Figure A-3 Create Residencies Form

2. A new View for access to the list of Residency documents is created in the
database.

Open Lotus Domino Designer 6 and select Views in the Design pane, and
then click New View or modify the default view initially created. Add the
following columns: Name, Residency Code, Start Date, Contact, email and
Location. Save the View with the name Residencies. The new view could look
like the figure below.
 Appendix A. Lotus Domino and .NET coexistence 519

Figure A-4 Residencies View

3. Also, create a hidden View called (By Code) with the first column ordered by
Residency Code. This hidden view is where the Domino Web Service is going
to access for locating the residency.

A.1.1.3 Creating a Lotus Script Web Agent
After the database is created, to route the SOAP Messages Request to the
appropriate function inside the Lotus Script Library, a Lotus Script Web Agent is
needed. Open the Lotus Domino Designer.

1. In the left pane, select Shared Code -> Agents. Click the New Agent action
button. The Agent properties dialog box is displayed.
520 WebSphere and .NET Coexistence

Figure A-5 Web agent

Give ResidencyWS as the Domino Web Agent Name and select Shared as the
Agent Option. Set the agent trigger to the On event and also set Action menu
selection. The last thing to do is to set the Agent target to None which means
that the agent is going to work on fields of the current document such as
those launched from WebQueryOpen or WebQueryClose, or like a form
action or hotspot that also works on fields in the current document.

First of all, declare the incoming and response SOAP Messages variables as
string.

'Declare the response as String
Dim response As String
'Declare the incoming SOAP Message as String
Dim SOAPin As String

2. The next step is to create a NotesSession object by declaring the variable
session and setting it as New to create a new instance for that object. Then,
initialize the object variable doc using the DocumentContext property of the
NotesSession class. The agent can use this property to access the
in-memory document. The next line of code sets the SOAPin variable equal to
the content of the "Request_content" field using the GetItemValue method of
the NotesDocument class. This is where the SOAP message resides as a
result of a "Post," in the DocumentContext object.

Dim session As New NotesSession
Set doc = session.DocumentContext
SOAPin = doc.GetItemValue("Request_content")(0)
 Appendix A. Lotus Domino and .NET coexistence 521

3. For debugging purposes, a Log Message Function was created, with the
objective of writing a new document in the database with the incoming SOAP
Message. For that purpose, a new Form and a new View were added to the
database:

Messages View: the view that displays all the SOAP incoming Message
documents created.

Message Form: used for creating a document with the SOAP incoming
Message every time the Domino Web Services is accessed.

After the message is logged, a RemoveWhitespace function is used to remove
all spaces, tabs, and new line characters as shown below:

LogMessage(SOAPin)
SOAPin = RemoveWhitespace(Fulltrim(SOAPin))

4. A SOAP Message consists of the following parts: a SOAP Envelope which
marks the beginning and end of a message and a SOAP Body inside the
SOAP Envelope which includes the method signature to be executed and the
method arguments. The next piece of the code manually parses the SOAP
message using the Lotus Script Language string handle functions (Instr and
Mid) to extract the following items.

Table A-2 SOAP Message table

Later, for parsing the SOAP content more efficiently, we will use the new
NotesDOMParser object. Note also the first line (On Error Goto ErrHandle),
which determines how an error will be handled in this case.

On Error Goto Errhandle
bodyPos= Instr(1,SOAPin,|<soap:Body
soap:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">|)+74
'parse out method signature
methodSigPos= Instr(bodyPos,SOAPin,|<|)+1
methodSigEnd=Instr(bodyPos,SOAPin,| |)
methodSignature = Mid(SOAPin,methodSigPos,(methodSigEnd-methodSigPos))

Note: For more details about the Log Message and RemoveWhitespace
functions created only for debugging purposes, refer to the sample
database included in the additional material.

Item Variable Stored In Definition

namespace NameSpace Script Library to load.

method MethodName Function to execute in the script library.

argument argValue Parameter to pass to function as the aString
variable.
522 WebSphere and .NET Coexistence

'parse out method name
methodPos= Instr(bodyPos,SOAPin,|:|)+1
methodEnd=Instr(methodPos,SOAPin,| |)
methodName = Mid(SOAPin,methodPos,(methodEnd-methodPos))
'parse out namespace
nameSpacePos= Instr(methodEnd,SOAPin,|uri:|)+4
nameSpaceEnd=Instr(nameSpacePos,SOAPin,|"|)
nameSpace=Mid(SOAPin,nameSpacePos,(nameSpaceEnd-nameSpacePos))

5. The next code slice maps the namespace, method, and argument from the
SOAP request to the script library, function, and parameter (respectively)
called by the Web agent, and captures the return value in the response
variable.

callString = |Use | & |"| & nameSpace & |"| & |
response = | & methodName & |(SOAPin)|

Execute the callString variable that makes the specified script library run.

Execute callString

6. The next step is to build the SOAP response which includes the response and
MethodName variables and store it in the strTmp variable.

strTmp = |<?xml version="1.0" encoding="UTF-8" standalone="no"?>| &_
|<SOAP-ENV:Envelope
xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">| & _
|<SOAP-ENV:Body>| & _
|<m:| & methodName & "Response" & | xmlns:m="uri:| & nameSpace & |"
SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">| &
response & _
|</m:| & methodName & |Response>| & _
|</SOAP-ENV:Body>| & _
|</SOAP-ENV:Envelope>|

By default, Domino translates Web agent content to HTML and, because the
response is going to be populated in XML, data is necessary to specify that
the content type of the agent is XML. Use the Print statement for that:

Print "Content-Type: text/xml"

7. To send the SOAP response to the requester, use the following code:

Print strTmp

To terminate execution of the current block statement, use:

Exit Sub

The last step is to include the error-handling routine that begins at the label
Errhandle defined previously:
 Appendix A. Lotus Domino and .NET coexistence 523

Errhandle:
Exit Sub

In our case, we include Exit Sub to terminate the execution and do nothing
but it is possible to include other Lotus Script code to handle the errors.

A.1.1.4 Creating a Lotus Script Library
As we defined in the SOAP incoming message skeleton, the method to be
executed has to be inside a Lotus Script Library. To create a Lotus Script Library,
open the database in Domino Designer 6 and select Script Libraries. Then click
New LotusScript Library. This opens a new Script Library as shown in the
figure.

Figure A-6 New Script library

1. Before sending the details regarding a new ITSO residency to the client, it is
necessary to parse the content of the SOAP incoming Message using the
NotesDOMParser class. So first of all, create a NotesDOMParser object by
declaring the variable domParser in the Script Library (Declaration) section.
524 WebSphere and .NET Coexistence

This class is new in Lotus Domino 6 and is used to process input XML into a
standard DOM (Document Object Model) tree structure.

Dim domParser As NotesDOMParser

2. Create a new function with the ResCodeSearch name. This function will be
the method specified in the SOAP request.

Function ResCodeSearch(msg As String) As String

3. The next step is to create a NotesSession object by declaring the variable
session and setting it as New to create a new instance for that object. Initialize
the object variables.

Dim session As New NotesSession
Dim rootElement As NotesDOMDocumentNode
Dim nodeList As NotesDOMNodeList
Dim node As NotesDOMNode

4. Initialize the object variable domParser using the CreateDOMParser method of
the NotesSession class and use the process method to generate the DOM
tree. Set the object variable rootElement using the Document property of the
NotesDOMParser class to access the document node. Set the object variable
nodeList using the GetElementsByTagName method of the
NotesDOMDocumentNode class specifying * as the tag name. This will return
a NotesDOMNodeList of all the NotesDOMElementNode objects with this
given tag name. The list returned is arranged in the order in which they are
encountered. The last step is to locate the value of the Residency Code
inside the <code> tag of the in the node list and set it to the variable Code.

Set domParser = session.createDOMParser(msg)
domParser.process
Set rootElement = domParser.Document
Set nodeList = rootElement.GetElementsByTagName("*")
'locate Residency Code
For i=1 To nodeList.NumberOfEntries
Set node = nodeList.GetItem(i)

If(node.NodeName="code")Then
Code = node.FirstChild.NodeValue
Exit For

End If
Next

5. When the Code variable is retrieved, it is necessary to locate this code inside
the database. For that, set the variable db with the property CurrentDatabase

Note: For more information about the new NotesDOM classes in Domino
6, refer to the Lotus Domino Designer 6 Help. Also, more information about
DOM Document Object Model Core is found at:

http://www.w3.org/TR/DOM-Level-3-Core/core.html#ID-1590626202
 Appendix A. Lotus Domino and .NET coexistence 525

http://www.w3.org/TR/DOM-Level-3-Core/core.html#ID-1590626202

of the NotesSession class. Then, set the object variable view using the
GetView method, giving it the name of a view. After that, initialize the object
variable doc using the GetDocumentByKey method, giving it the Residency
Code located before and the true parameter because we want to find an
exact match.

Dim db As NotesDatabase
Dim view As NotesView
Dim doc As NotesDocument
Set db = session.CurrentDatabase
Set view = db.getView("(By Code)")
'locate Residency Code in database
Set doc = view.GetDocumentByKey(Code,True)

6. The last step is to create a response containing XML data for the SOAP
client, and return the result to the "ResidencyWS" agent which calls our
function ResCodeSearch.

tmp =|<Code xsi:type="xsd:string">| & doc.Code(0) &|</Code>|&_
|<Name xsi:type="xsd:string">| & doc.Name(0) &|</Name>|&_
|<StartDate xsi:type="xsd:string">| & doc.SDate(0) &|</StartDate>|&_
|<EndDate xsi:type="xsd:string">| & doc.EDate(0) &|</EndDate>|&_
|<Contact xsi:type="xsd:string">| & doc.Contact(0) &|</Contact>|&_
|<email xsi:type="xsd:string">| & doc.email(0) &|</email>|&_
|<Location xsi:type="xsd:string">| & doc.Location(0) &|</Location>|

ResCodeSearch = tmp

7. Save the new Lotus Script Library as Domino.

A.1.1.5 Creating a WSDL page to describe the Domino Web
Services

WSDL allows a service provider to specify the following characteristics of a Web
Service:

� Name of the Web Service and addressing information.

� Protocol and encoding style to be used when accessing the public operation
of the Web Service.

� Type information: operations, parameters, and data types comprising the
interface of the Web Service, plus a name for this interface.

The anatomy of a WSDL document is as follows:

� Types: A container for data type definitions using some type system, such as
XML schema.

� Message: An abstract, typed definition of the data being communicated. A
message can have one or more typed parts.
526 WebSphere and .NET Coexistence

� Port type: An abstract set of one or more operations supported by one or
more ports. Each operation defines an input and an output message as well
as an optional fault message.

� Operation: An abstract description of an action supported by the service.

� Binding: A concrete protocol and data format specification for a particular
port type. The binding information contains the protocol name, the invocation
style, a service ID, and the encoding for each operation.

� Port: A single endpoint, which is defined as an aggregation of a binding and a
network address.

� Service: A collection of related ports.

WSDL specification uses XML syntax; therefore, there is an XML schema for it.

Because the Domino Web Service created before is going to be consumed by a
.NET client, a WSDL file is required. This WSDL file will be included in a Lotus
Domino Page. Create a new page in Domino; follow the steps below.

1. Open the database in Lotus Domino Designer and select Pages on the left
pane and click New Page; an untitled, blank page is displayed as shown in
the following figure.

Note: For more information about WSDL, refer to WebSphere Version 5 Web
Services Handbook, SG24-6891.
 Appendix A. Lotus Domino and .NET coexistence 527

Figure A-7 Create a new Page

2. Give GetResidencyDetailsWSDL as the Page Name and select Other in the
Web Access - Content type section of the Page Info tab. Enter text/xml in the
text box as depicted in the following figure.
528 WebSphere and .NET Coexistence

Figure A-8 Set the page content to XML

Leave the Character set to Unicode(UTF-8) and close the Properties box.

3. Create the WSDL file from scratch taking the following things into account:

a. The root element of the WSDL file is the <definitions> element, which
defines the namespaces used in the file. The targetNamespace should be
the name of the Domino Lotus Script Library.

b. The WSDL will contain two <message> type of interaction between the
service requestor and the service provider: the first type for the request
and the other for the response. The message request will contain the
Residency Code as the string type and the message response will contain
the data retrieved also as the string type.

c. The <portType> will be a request-response operation type which means
that there will be an input message (defined in the message part of the
WSDL file as the message request) followed by an output message
(defined in the message part of the WSDL file as the message Response).

d. In the <binding> part, you will have to specify the following:

• A name for the binding.

• The connection should be SOAP HTTP; the style must be RPC.

• The operation name must be the method name to be executed. In our
case, this will be the function (ResCodeSearch) inside the Domino
Script library.

• A SOAP Action.
 Appendix A. Lotus Domino and .NET coexistence 529

• A reference for the SOAP operation defining an input message and an
output message, both to be SOAP encoded because RPC/Literal Web
Service calls are not supported by Microsoft .NET. Notice that both
input and output messages must contain the name of the Lotus Script
Library as the namespace (namespace="uri:Domino").

e. In the <service> part, you will define the port that use the SOAP binding
specified before and the URL for the Web Service.

Example 11-1 Web Service WSDL

<?xml version='1.0' encoding='UTF-8'?>
<definitions name="ResCodeSearch" targetNamespace="Domino"
xmlns:http="http://schemas.xmlsoap.org/wsdl/http/"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:s="http://www.w3.org/2001/XMLSchema"
xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:tns="Domino"
xmlns:tm="http://microsoft.com/wsdl/mime/textMatching/"
xmlns:mime="http://schemas.xmlsoap.org/wsdl/mime/"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">
 <message name="ResCodeSearchRequest">
 <part name="code" type="s:string"/>
 </message>
 <message name="ResCodeSearchResponse">
 <part name="Code" type="s:string"/>
 <part name="Name" type="s:string"/>
 <part name="StartDate" type="s:string"/>
 <part name="EndDate" type="s:string"/>
 <part name="Contact" type="s:string"/>
 <part name="email" type="s:string"/>
 <part name="Location" type="s:string"/>
 </message>
 <portType name="ResCodeSearchPortType">
 <operation name="ResCodeSearch">
 <input message="tns:ResCodeSearchRequest" />
 <output message="tns:ResCodeSearchResponse" />
 </operation>
 </portType>
 <binding name="ResCodeSearchBinding" type="tns:ResCodeSearchPortType">
 <soap:binding transport="http://schemas.xmlsoap.org/soap/http" style="rpc"
/>
 <operation name="ResCodeSearch">
 <soap:operation
soapAction="capeconnect:ResCodeSearch:ResCodeSearchPortType#ResCodeSearch" />
 <input>
 <soap:body use="encoded" namespace="uri:Domino"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" />
 </input>
530 WebSphere and .NET Coexistence

 <output>
 <soap:body use="encoded" namespace="uri:Domino"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" />
 </output>
 </operation>
 </binding>
 <service name="FindResCode">
 <port name="ResCodeSearchPort" binding="tns:ResCodeSearchBinding">
 <soap:address location="http://127.0.0.1/WebServiceNET.nsf/ResidencyWS"
/>
 </port>
 </service>
</definitions>

4. Save the GetResidencyDetailsWSDL page. It is possible to access this
WSDL file from another development platform using the following URL:

http://<someserver>/WebServiceNet.nsf/GetResidencyDetailsWSDL?OpenPage

A.1.1.6 Creating a .NET client
For consuming the Domino Web Service, we are going to create a simple
console based Microsoft .NET application using C# as the programming
language and Microsoft .NET Framework Software Development Kit V1.1.

Before creating this, it is necessary to understand the way by which the clients
communicate with Web Services. Web Services use HTTP and SOAP to make
the business data available on the Web. A Web Service Consumer will use
SOAP over HTTP to execute Remote Procedure Calls (RPC) to Web Services
methods components.

For security reasons, client applications will not execute the Web Services
methods on the location where Web Services reside, but will use a 'proxy object'
to act on behalf of the original Web Service. The proxy object at the client side
communicates with the Web Service using HTTP/SOAP protocols. The WSDL
file which describes the Web Service is used to generate the proxy object. The
scenario is illustrated in the following figure.
 Appendix A. Lotus Domino and .NET coexistence 531

http://<someserver>/WebServiceNet.nsf/GetResidencyDetailsWSDL?OpenPage

Figure A-9 Console .NET application as Web Services consumer

Therefore, the necessary steps for building a .NET client will be:

1. Create a proxy object to allow communication between the console client and
the Domino Web Service.

2. Create a simple C# console based application which will invoke methods of
the proxy class.

Creating a proxy object to act on behalf the Web Service
For creating a proxy object, use the Microsoft Web Services Description
Language Utility (wsdl.exe) included in Microsoft .NET Framework Software
Development Kit V1.1. This utility will generate code for Web Service clients from
WSDL files.

Before using the utility, make sure that the Domino server is running. After that,
type this simple command to generate the proxy class:

wsdl /nologo /language:CS /namespace:Domino http://<Domino server
name>/WebServiceNET.nsf/GetResidencyDetailsWSDL?OpenPage

Where <Domino server name> is the host name for the Domino server or the IP
address, http://<Domino_server_name>/WebServiceNET.nsf/GetResidencyDeta

Note: A full description of the utility is out of the scope of this document but
more information is found at the following URL:

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cptools/
html/cpgrfwebservicesdescriptionlanguagetoolwsdlexe.asp

Help information is also available in a command window: wsdl /?
532 WebSphere and .NET Coexistence

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cptools/html/cpgrfwebservicesdescriptionlanguagetoolwsdlexe.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cptools/html/cpgrfwebservicesdescriptionlanguagetoolwsdlexe.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cptools/html/cpgrfwebservicesdescriptionlanguagetoolwsdlexe.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cptools/html/cpgrfwebservicesdescriptionlanguagetoolwsdlexe.asp

ilsWSDL?OpenPage is the URL where the WSDL is located and 'language:CS' is
the programming language used to generate the proxy class (C#).

The result of the command will be a file called FindResCode.cs as shown in the
following figure.

Figure A-10 Command line wsdl utility

Note that the name of the Proxy class is the same name given to the Service part
in the WSDL file.

<service name="FindResCode">
<port name="ResCodeSearchPort" binding="tns:ResCodeSearchBinding">

<soap:address
location="http://127.0.0.1/WebServiceNET.nsf/ResidencyWS" />

</port>
<service>

The next step is to compile the file FindResCode.cs with the C# .NET compiler
(csc.exe) included in the Microsoft .NET Framework SDK, by issuing the
following command from the directory where the proxy class was generated:

csc /nologo /out:FindResCode.dll /target:library FindResCode.cs

The result of this command will be a Dynamic Link Library called
FindResCode.dll (the proxy object).

Creating a simple C# console based application
For creating a simple console-style client application, add the following lines in
any text editor, this will generate a new C# source file called
NotesConsoleClient.cs.

Example 11-2 .NET client code

using System;
using Domino;
using System.Web.Services;
 Appendix A. Lotus Domino and .NET coexistence 533

amespace NotesConsoleClient
{
 /// <summary>
 /// Summary description for Class1.
 /// </summary>
 class Client
 {
 /// <summary>
 /// The main entry point for the application.
 /// </summary>
 [STAThread]
 static void Main(string[] args)
 {
 FindResCode WSResCodeSearchService=new FindResCode();
 String
rName="",rStartDate="",rEndDate="",rContact="",rEmail="",rLocation="";
 String result=WSResCodeSearchService.ResCodeSearch(args[0], out
rName, out rStartDate, out rEndDate, out rContact, out rEmail, out rLocation);

 System.Console.Out.Write(
 "Name: "+rName+"\r\n"+
 "Start date: "+rStartDate+"\r\n"+
 "End date: "+rEndDate+"\r\n"+
 "Contact: "+rContact+"\r\n"+
 "e-mail: "+rEmail+"\r\n"+
 "Location: "+rLocation+"\r\n"+
 "---------------------------\r\n");
 }
 }
}

The purpose of this client is to show the details of a particular ITSO residency
located in the Web Services .NET Database Application for a given Residency
Code. These details will be: Name, Start date, End Date, Contact, e-mail and
Location.

After saving the file, build an executable by compiling this code using the C#
library (FindResCode.dll) created before and by issuing the following command:

csc /r:FindResCode.dll NotesConsoleClient.cs

The result of this command will be an executable called NotesConsoleClient.exe.

A.1.1.7 Test the example
After building the NotesConsoleClient.exe executable (using C# library
FindResCode.dll), run it from the command line window in the directory where
the library is placed and after ensuring that the Domino Server is running.
534 WebSphere and .NET Coexistence

The NotesConsoleClient executable needs to have a Residency Code as an
input; as an example, test the Domino Web Service retrieving the information of
the Residency Code SA-W324; the result of running the client is shown in the
following figure.

Figure A-11 Client application results

When the execution of the client had finished, it is possible to check the SOAP
incoming message generated by the .NET client message that was consumed
and processed by our Domino agent. Open the WebServiceNet.nsf database in a
Domino Client and select the Message view. A new Document will appear in the
view as shown below.

Figure A-12 Message View

Open the document and look at the format of the SOAP incoming message.
Included within the SOAP Body is the method signature ResCodeSearch that will
be executed on the Domino server. Additionally, the method signature contains
the namespace where the method is located (Domino is our LotusScriptLibrary).
Notice also that the Residency Code to search for is wrapped within the code
argument. An example of the message is shown below with the method name,
namespace (Domino Script Library), and method argument highlighted in bold:

<?xml version="1.0" encoding="utf-8"?><soap:Envelope
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:tns="Domino" xmlns:types="Domino/encodedTypes"
 Appendix A. Lotus Domino and .NET coexistence 535

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"><soap:Body
soap:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
<q1:ResCodeSearch xmlns:q1="uri:Domino"><code
xsi:type="xsd:string">SA-W324</code></q1:ResCodeSearch>
</soap:Body></soap:Envelope>

Note: Be aware that the format of the incoming SOAP message for Domino is
very important and must include all the arguments highlighted in bold.

Because we cannot control the format of the SOAP incoming message form of
the .NET client and because the Lotus Script Debugger in Domino is running
from the Notes client, when experiencing problems with the format of the SOAP
incoming message and Domino, a way to perform problem determination would
be:

1. Create a new Lotus Script agent for using from a Lotus Notes Client (use the
Lotus Script debugger). This agent will be the same as the ResidencyWS but
with the SOAPin variable previously initialized in the way that Domino treats
the SOAP incoming message as a string. For example, for the previous
SOAP message, the SOAPin variable will be:

SOAPin=|<?xml version="1.0" encoding="utf-8"?>| &_
 |<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:tns="Domino" xmlns:types="Domino/encodedTypes"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">|&_
 |<soap:Body
soap:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">|&_
 |<q1:ResCodeSearch xmlns:q1="uri:Domino">|&_
 |<code xsi:type="xsd:string">|&"SA-W324"&|</code>|&_
 |</q1:ResCodeSearch>|&_
 |</soap:Body>|&_
 |</soap:Envelope>|

2. Save the agent and launch the Lotus Script Debugger by selecting Menu ->
Tools -> Debug Lotus Script.

3. Run your agent form the Actions Menu and cover all the steps to isolate the
problem.
536 WebSphere and .NET Coexistence

A.1.2 .NET service provider, Domino service consumer
Lotus Domino can also act as a service requester and consume a .NET service,
which means that you can invoke this service programmatically. Programming
languages inside Domino (Lotus Script and Java) and external tools such as the
Microsoft SOAP Toolkit can be used for accessing to a external .NET Web
Service. The objective of this section is briefly to explain how Domino can use
this tool for accessing .NET.

There are three ways to call a Web Service: HTTP GET, HTTP POST and SOAP.

1. HTTP Get

– Create a Lotus Script Agent for accessing a Web Service using the
Microsoft XML parser included in the Internet Explorer 5.0.1 or later by
setting the source using CreateObject ("Microsoft.XMLDOM"), using the
load method to access the URL for the .NET Web Service, selecting the
document with the documentElement method and then accessing the
fields of the document with the selectSingleNode method.

– Create a Java Agent using the following classes:

• URL Class to access the .NET Web Service URL (for example:
http://localhost/webservices/sample.asmx/GetResidencyDetails?
Code=SA-W324) and the URLConnection openConnection method that
returns a connection to the remote object referred to by the URL:

URL url = new url
(http://localhost/webservices/sample.asmx/GetResidencyDetails?Code=SA
-W324);
URLConnection connect = url.openConnection();

Comment: On the additional material enclosed with this redbook there is a
batch file called build.bat. The purpose of this file is to generate automatically
the proxy DLL, compile the NotesConsoleClient code with that DLL, and test
the application with a Residency Code example. It is possible to use this file
for testing the redbook example by placing it in a directory with the
NotesConsoleClient.cs. Edit the file and change the paths specified for the
DOTNETSDK and DOTNETFW variables using the existing ones on your machine.

Note: In Section A.2, “Using the COM interface” on page 538 we created a
.NET service that can access Domino databases through COM. Running the
example in a Web browser will show that the NET Framework SDK will render
all the information needed for accessing a .NET Web Service
programmatically.
 Appendix A. Lotus Domino and .NET coexistence 537

• BufferedReader and InputStreamReader classes for reading the
response from the Web Service.

2. HTTP Post

Create a Domino Form placing HTML in it by using the Form
method=postaction tag. HTTP Post will post data to the Web Service.

3. SOAP

– Create a Java Agent that send a SOAP request to the Web Service and
read the response with BufferedReader and InputStreamReader classes.

– Create a Lotus Script Agent for accessing the Web Services using the
Microsoft SOAP Toolkit. Download it from http://msdn.microsoft.com.
Set the SOAP Client with CreateObject ("MSSOAP.SoapClient) and then
initialize it with the mssoapinit method using the WSDL file.

A.2 Using the COM interface
COM (Component Object Model) is an open software component specification
developed by Microsoft. It defines a specification for developing reusable binary
components across multiple software languages and platforms. COM
components can be written and called by any language that can call functions
through pointers, including C, C++, Delphi, Basic etc.

The COM specification provides:

� Rules for component-to-component interaction.

� A mechanism for publishing available functions to other components.

� Automatic use tracking to allow components to unload themselves when they
are no longer needed.

� Efficient memory usage.

� Transparent versioning.

Since Domino Release 5.0.2b, the back-end Domino objects have a COM
interface with the following benefits:

� COM requires the presence of Domino or Notes; the software can be Domino
server, Domino Designer, or Notes client.

� COM provides both early-binding (custom) and late-binding (dispatch)
interfaces. Early binding makes the Domino classes available as typed
variables with compile-time checking. Late binding can be used where the
language (for example, VBScript) precludes early binding.
538 WebSphere and .NET Coexistence

http://msdn.microsoft.com

� The COM interface is the same as the Lotus Script interface, with some
exceptions.

� Domino can act as a COM server or a COM Client.

Microsoft .NET can access Domino Objects through COM. To accomplish this,
.NET client or .NET Web Services can call Domino objects via a special wrapper.
This wrapper; known as Runtime-Callable Wrapper (RCW), is a piece of software
that can accept commands from a component, modify them and forward them to
another component. Microsoft .NET Common Language Runtime (CLR) uses
the RCW to operate with the unmanaged code by making COM calls to the
Domino objects as depicted in the following figure.

Figure A-13 .NET call through RCW

In the same way, Lotus Domino can act as COM client and provide .NET objects
via a special wrapper known as a COM Callable Wrapper (CCW). The Domino
COM Client uses the CCW to operate with Microsoft .NET Common Language
Runtime (CLR) by making .NET calls to .NET servers, as depicted in the
following figure.

Note: For information on COM properties and methods and general
exceptions to Lotus Script specifications, refer to the Lotus Domino Designer 6
Help database. For information about the Domino Object Model, refer to
Domino Designer 6: A Developer's HandBook, SG24-6854.
 Appendix A. Lotus Domino and .NET coexistence 539

Figure A-14 Domino call through CCW

The purpose of this section is to explain how .NET clients can access Domino
databases through COM. The example shows how to create a .NET Web
Service that returns the details of a particular ITSO Residency located in a Notes
database.

For more information on the sample database, refer to A.2.1, “Domino as a COM
server, .NET as a client” on page 540, and A.2.1.2, “Creating a Domino sample
database” on page 554.

A.2.1 Domino as a COM server, .NET as a client
For running this example, we used the following product versions:

� .NET Framework Software Development kit V1.1

� Microsoft Windows 2000 Server with Service Pack 4

� Lotus Domino Server V6.0.2 CF2

� Microsoft Internet Information Services V5.0

� Microsoft IE V5.5 or newer

� Lotus Domino Administration Client V6.0.2

� Lotus Domino Designer Client V6.0.2

For more details on how to install the software products, refer to the installation
manuals. Internet Information Services is included with Microsoft Windows 2000
and it is possible to install it under the Add/Remove Windows Components
option inside Add/Remove Programs within the Control Panel.

Lotus Domino Administrator client and Lotus Domino Designer were installed in
another machine in order to administrate the Domino Server and to design the
sample application.
540 WebSphere and .NET Coexistence

Before starting, make sure that you have TCP/IP network configured (it is
recommended that you have a fixed IP address), that it is possible to resolve the
machine host name (via Host file or DNS) and that you also have Domino Server
configured. For our example, the following Domino nomenclature was selected
within the configuration process, but of course it is possible to use other settings.

Table A-3 Domino nomenclature

Once you have installed and configured the products to begin with the example,
follow these steps:

1. Set up Domino to work with IIS Server.

2. Make the Domino objects accessible to .NET and IIS.

3. Create a Domino sample database.

4. Create a .NET Web Service to access the Domino database.

5. Test the example.

A.2.1.1 Setting up Domino to work with the Internet
Information Services server

For using a Microsoft IIS Server as a front-end machine with Domino, it is
necessary to install the WebSphere Application Server 4.0.3 plugin for IIS on the
IIS server. The plugin files are packaged with the Domino 6 server and must be
copied from the Domino Server to the IIS server. After copying the plugin files,
configure the plugin. The last step is configuring the Domino server to work with
the plugin IIS. Note that is not necessary to install any other WebSphere
components on the IIS machine.

Concepts Selected Name

Domino Domain Name TEST

Organization Name TEST

Server Name Domin6/TEST

Server Title Test Server

Notes Network Name TCPIP Network

Notes Administrator Name Notes Admin/TEST

Note: For more details on configuring a Domino Server, refer to the Lotus
Domino Administrator 6 Help database.
 Appendix A. Lotus Domino and .NET coexistence 541

Install ing the WebSphere plugin on an IIS Server
1. First of all, create the following directory structure on the IIS machine (it is

possible to use another drive):

� C:\WebSphere\AppServer\bin
� C:\WebSphere\AppServer\config
� C:\WebSphere\AppServer\etc
� C:\WebSphere\AppServer\logs

2. Then, copy the following files located in the Domino data directory to the IIS
server:

– <Domino data directory>/domino/plug-ins/plugin-cfg.xml to
c:\WebSphere\AppServer\config.

– <Domino data directory>/domino/plug-ins/w32/iisWASPlugin_http.dll to
c:\WebSphere\AppServer\bin.

– <Domino data directory>/domino/plug-ins/w32/plug-in_common.dll to
c:\WebSphere\AppServer\bin.

The directory structure is shown in the following figure.

Figure A-15 Directory structure
542 WebSphere and .NET Coexistence

3. Start the Internet Service Manager application by selecting Start -> Settings
-> Control Panel -> Administrative Tools -> Internet Service Manager.
Expand the Local Machine objects on the left pane to see all the services
configured on it, as shown in the following figure.

Figure A-16 IIS Services manager

4. Create a New Virtual Directory under the Default Web Site. IIS uses the
virtual directories to access directories on other machines or directories
outside a service's home directory. In this case, IIS uses the Virtual Directory
for access to the WebSphere plugin. Right-click the Default Web Site and
select New -> Virtual Directory. When the new Virtual Directory Creation
Wizard is displayed, click Next.

5. Enter sePlugins in the alias field as illustrated below (always use this name)
and click Next.
 Appendix A. Lotus Domino and .NET coexistence 543

Figure A-17 Virtual Directory Alias

6. In the Directory field, browse to the WebSphere bin directory
(C:\WebSphere\AppServer\bin). Click Next.

7. Select Run Scripts and Execute for the access permission as depicted in the
following figure.
544 WebSphere and .NET Coexistence

Figure A-18 Access Permissions

8. Click Next and then click Finish; the new Virtual Directory is shown on the
default Web site.
 Appendix A. Lotus Domino and .NET coexistence 545

Figure A-19 Virtual Directory in IIS Manager

9. Right-click the machine name and select Properties. On the Internet
Information Services tab, select WWW Service as Master Properties and edit
it. The WWW Service properties dialog window will be displayed as shown in
the next figure.
546 WebSphere and .NET Coexistence

Figure A-20 WWW Service Master Properties - Web Site

10.Select the ISAPI Filters tab and click Add; the Filter Properties Dialog
window will be displayed. In the Filter Name Field type iisWASPlugin and for
the Executable field, click Browse and open the WebSphere bin directory.
Select iisWASPlugin_http.dll and click OK. The parameters are illustrated in
the following figure.

Figure A-21 Filter properties

The new ISAPI filter is displayed as depicted in the following figure.
 Appendix A. Lotus Domino and .NET coexistence 547

Figure A-22 WWW Service Master Properties - ISAPI Filters

11.Close all open windows.

12.Open the Windows Registry file and go to HKEY_LOCAL_MACHINE ->
Software -> IBM. Create the key WebSphere Application Server. Then
select WebSphere Application Server and create a new key, 4.0. Then
select 4.0 and create a new string value, Plugin Config and set the value for
this variable to the location of the plugin-cfg.xml file, for example:
C:\WebSphere\AppServer\config\plugin-cfg.xml.

13.Restart your system.

Configuring the WebSphere plugin
The WebSphere configuration file plugin-cfg.xml controls the operation of the
plugin. In order for the plugin to relay requests to the target Domino server, it is
necessary to add directives to the file for defining a transport route to the server,
and pattern rules for the URL namespaces that identify requests which are to be
relayed to Domino. The plugin will only relay requests that match a namespace
rule. All other requests will be handled by the front-end Web server. To configure
the plugin-cfg.xml file, follow these steps.
548 WebSphere and .NET Coexistence

1. Open the file, plugin-cfg.xml, with WordPad.

2. Define a group identifying the Domino Server that handles NSF requests
forwarded from IIS. Server groups contain servers, and servers contain
transport definitions that give the plugin the information it needs to forward
requests to Domino.

...
<ServerGroup Name="domino_web_servers">

<Server Name="Domino Server">
<!-- The transport defines the hostname and port value that the web

server plugin will use to communicate with the application server. -->
<Transport Hostname="hansolo" Port="81" Protocol="http"/>

</Server>
</ServerGroup>

3. Define a URI group which specifies the strings within a URL that indicate to
IIS and the plugin that the request should be forwarded to Domino.

...
<UriGroup Name="domino_host_URIs">
<Uri Name="/*.nsf*"/>
<Uri Name="*/domjava*"/>
<Uri Name="*/icons*"/>
</UriGroup>

4. Define a virtual host group. Specify a Host Name and Port for the incoming
requests or specify an asterisk (*) for the Host Name, Port, or both.

...
<VirtualHostGroup Name="domino_host">

<VirtualHost Name="*:80"/>
<VirtualHost Name="*:81"/>

</VirtualHostGroup>

5. Define a route to tie the sections together, so any request that matches the
patterns listed in the domino_host_URIs group gets forwarded to the
server(s) listed in the domino_web_servers group.

...
<Route ServerGroup="domino_web_servers" UriGroup="domino_host_URIs"
VirtualHostGroup="domino_host"/>

6. Stop and restart the World Wide Web Publishing Service from the Windows
Services Control Panel.

Note: The Transport host name and Port number are the specified Host
name and Port for our example machine. Substitute the values with the
Host Name and Port number needed in every case.
 Appendix A. Lotus Domino and .NET coexistence 549

Configuring Domino Server to work with Microsoft IIS
1. In the Domino Server, edit the Notes.ini file located in the Domino directory, in

our case c:\Domino, and add the following line:

HTTPEnableConnectorHeaders=1

The setting enables the Domino HTTP task to process the special headers
added by the plugin to requests. These headers include information about the
front-end server's configuration and user authentication status. As a security
measure, the HTTP task ignores these headers if the setting is not enabled.
This prevents an attacker from mimicking a plugin.

2. Because the Domino Server is installed in the same machine as the IIS
Server, it is necessary to change the default HTTP port for Domino (80) to an
alternative number. We used the 81 port (this is why, in the plugin-cfg.xml file
inside <VirtualHostGroup Name="domino_host">, both ports are specified).
To change this, open the Domino Server Document from the Domino
Administrator by selecting Configuration Tab -> Server -> Current Server
Document and edit the field.

3. Select Ports -> Internet ports -> Web and specify the TCP/IP Port number
that the Domino HTTP stack should use, as shown in the following figure.

Figure A-23 Domino - Web Internet Ports administration
550 WebSphere and .NET Coexistence

4. Select the Internet Protocols -> Domino Web Engine tab and configure the
Generating References section by selecting the appropriate protocol, Host
Name, and Port specified during the configuration of the WebSphere plugin,
as depicted below.

Figure A-24 Domino Web Engine administration

Save the Domino Server Document with all the changes.

5. Make sure you have the HTTP Task running on the Domino Server. If not, add
HTTP to the ServerTasks line of the Notes.ini file. This guarantees that every
time the server starts, the HTTP Task is going to be loaded.

ServerTasks=Update,Replica,Router,AMgr,AdminP,CalConn,Sched,http

6. Restart the server.

Note: If Domino and IIS are on separate, dedicated machines, Domino can
use port 80 on its own system and no change in the Server document is
needed.

Note: For Domino 6, the setting "Does this server use IIS?" is not used.
 Appendix A. Lotus Domino and .NET coexistence 551

Verifying the configuration
To verify the configuration, do the following:

1. Enter the URL for the Web server in your Web browser.

2. Verify that the IIS server's home page loads as shown below.

Figure A-25 Verify the plugin configuration

3. Append homepage.nsf to the URL in the address bar. If the Domino home
page loads, the configuration is successful, as shown in the following figure.
552 WebSphere and .NET Coexistence

Figure A-26 Domino HTTP Server - homepage.nsf

Making the Domino Objects accessible to .NET and IIS
Because the Domino Objects are not included as standard within the .NET
Framework Software Developer Kit (SDK), there is a tool included in the software
called Tlbimp (type library imported) that reads the Domino COM Type Library
(domobj.tlb) and creates a matching CLR assembly (domobj.dll) which will be in
charge of calling the COM Components.

The Tlbimp tool is a command-line tool which will make the job of RCW easier
because it is capable of converting COM metadata to .NET metadata.

To create the domobj.dll, from the command prompt, go to the Domino Directory
and type tlbimp domobj.tlb /out:domobj.dll as shown in the following figure.

Note: More information about Tlbimp tool can be found at the following URL:

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cptools/
html/cpgrfTypeLibraryImporterTlbimpexe.asp
 Appendix A. Lotus Domino and .NET coexistence 553

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cptools/html/cpgrfTypeLibraryImporterTlbimpexe.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cptools/html/cpgrfTypeLibraryImporterTlbimpexe.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cptools/html/cpgrfTypeLibraryImporterTlbimpexe.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cptools/html/cpgrfTypeLibraryImporterTlbimpexe.asp

Figure A-27 Creating the Domino Object

Once you have created the domobj.dll, to make it accessible to Microsoft IIS,
copy the DLL inside the bin directory included in c:\inetpub\wwwroot\.

A.2.1.2 Creating a Domino sample database
To show how Microsoft .NET can be integrated with Domino, we have created a
Notes sample Web Services .NET database application (WebServiceNet.nsf)
using Lotus Domino Designer 6.0.2, to serve as the repository for the upcoming
ITSO residencies details.

The application includes the following design elements:

� Residencies Form: this is the form used to create the information details for a
new upcoming residency, such as Residency Name, Residency Code, Start
Date, End Date, Residency Contact, e-mail and Location.

� Residencies View: the is the view that shows all the residencies to the user.

� (By Code) View: this hidden view is ordered by the Residency Code and is
where the .NET and the Domino Web Service will find access to locate the
residency.

� Message Form: this form is used for creating a document with the SOAP
incoming message every time Domino Web Services is accessed.

� Messages View: this is the view that displays all the SOAP Incoming
Messages documents created.

� ResidencyWS: this is the Domino Web Agent for our Domino Web Services
and is the one in charge of routing the SOAP request, parsing it, calling the
requested method (function), and returning the result as a SOAP response to
the requester.
554 WebSphere and .NET Coexistence

� Domino Script Library: this contains the method (function) for the Domino
Web Service.

� GetResidencyDetailsWSDL Page: this contains the WSDL definition of the
Domino Services.

To test the integration between both technologies, download the additional
material that comes with this redbook, extract the database and then follow the
next steps:

1. Copy the database to the Domino server Data Directory and open Lotus
Domino Administrator 6.0.2.

2. Log in as a user with administrative privileges, then open the Domino Server
from the left server bookmark pane; then click the Files tab as shown in the
following figure.

Figure A-28 Domino Administrator

3. Select the WebService .NET database application and open the Database
toolbar located on the right side of the tools pane; select Sign.
 Appendix A. Lotus Domino and .NET coexistence 555

4. A new dialog box appears. Leave the default parameters selected and click
the OK button (see below).

Figure A-29 Domino - Sign Database

5. A new dialog box will appear stating Your Name and Address Book does not
contain a cross certificate for this organization (for example: TEST).
Click Yes to create a new cross-certificate.

6. All the design elements of the database will be signed with the actual ID.
When the process is completed, a dialog box shows the number of databases
processed and the number of errors that occurred (if any).

A.2.1.3 Creating a .NET Web Service to access the Domino
database

To show how you achieve can .NET access to Domino using the COM interface,
we have created a Web Service file (Sample.asmx) using a standard text editor
(Notepad) and C# as the developing language.

The Web Service returns the details of a particular ITSO residency located in the
Web Services .NET Database Application. When the Web Service is called,
perform the following operations:
556 WebSphere and .NET Coexistence

1. Open the Local Web Services .NET Database (WebServiceNet.nsf).

2. Open the hidden view (By Code) which contains all the residencies ordered
by Residency Code.

3. For a given Residency Code, locate the corresponding document.

4. Access the fields inside the document.

5. Return the values for this particular residency.

Let's analyze the Web Service code:

1. The first line tells the compiler to run the code in Web Service mode and the
name of the C# Class:

<%@ WebService Language="C#" class="ResidencyDetailsWebService" %>

2. The next lines make references to the classes that the compiler needs to use
during the compilation process. These classes are System and
System.WebServices and of course, it will be necessary to use the Domino
Objects (domobj.dll) classes for accessing the database.

using System;
using System.Web.Services;
using domobj;

3. A C# program file can contain one or more namespaces; a namespace can
also contain classes, structs, interfaces, etc. The following line makes a
reference to a Web Service namespace which contains our
ResidencyDetailsWebService Class, which inherits the functionality of the
Web Service class:

[WebService(Namespace="http://127.0.0.1/")]
public class ResidencyDetailsWebService : WebService

4. The Web Service requires the user to enter a Residency Code and will return
the details for this particular residency, such as Residency Name, Residency
Code, Start Date, End Date, Residency Contact, e-mail and Location. To
handle these data values, we used the C# "structs".

// The object to return residency details
public struct DocumentResult {
 public string ResCode;
 public string ResName;
 public string ResStartDate;
 public string ResEndDate;
 public string ResContact;
 public string ResLocation;
 public string Resemail;
 }

5. This Web Service is going to be accessed through HTTP. The data that we
are going to access is not sensitive and is available to the public, so we used
 Appendix A. Lotus Domino and .NET coexistence 557

the [Web method] keyword. The description tag inside the keyword is used to
describe the Web Service functionality.

[WebMethod(Description="This method will get the Residency details for the
specified code.")]
public DocumentResult GetResidencyDetails(string Code) .

6. At this time, we are going to access the Notes database using the Domino
classes. First, we need to create a NotesSession object by declaring the
variable session and setting it as New to create a new instance for that object.
Next, we initialize (explicitly) this COM session; there are two ways to achieve
this:

– Using the Initialize Method: this method can be used on a computer with
a Notes client or Domino server and bases the session on the current user
ID. If a password is specified, it must match the user ID’s password.

– InitializeUsingNotesUserName: this method can be used only on a
computer with a Domino server. If a name is specified, the
InitializeUsingNotesUserName method looks it up in the local Domino
Directory and permits access to the local server depending on the "Server
Access" and "COM Restrictions" settings. The password must match the
Internet password associated with the name. If no name is specified,
access is granted if the server permits Anonymous access.

In our case, we used the second method because we used a computer with a
Domino Server, specifying the user name and password.

// Connect to Notes and find the details for the residency.
NotesSession session = new NotesSession();
session.InitializeUsingNotesUserName("Notes Admin/TEST","lotusnotes");

7. The next step is to declare the variables db, view, doc, Name, StartDate,
EndDate, Contact, email and Location. To get the values of the residencies’
form fields, we need to follow the hierarchical path from the top to the lower
one. In this example, we go from a NotesSession object to a NotesItem
object:

NotesSession -> NotesDatabase -> NotesView -> NotesDocument ->
NotesItem

We initialize the variable db with the property GetDatabase, indicating the
server name (in our case "" because it is a local machine), database name
(in our case WebServiceNET.nsf) and false for the [createonfail]
parameter, of the higher level object (NotesSession). We set the object
variable view using the GetView method, giving it the name of a view. We
initialize the object variable doc using the GetDocumentByKey method, giving it
the Residency Code and the true parameter because we want to find an

Note: Use the user name and password corresponding to your server.
558 WebSphere and .NET Coexistence

exact match. The last step is to set the rest of the variables using the
GetFirstItem method which for a given a name, returns the first item of the
specified name belonging to the document.

NotesDatabase db = session.GetDatabase("", "WebServiceNET.nsf",false);
NotesView view = db.GetView("(By code)");
NotesDocument doc = view.GetDocumentByKey(Code,true);
NotesItem Name = doc.GetFirstItem ("Name");
NotesItem StartDate = doc.GetFirstItem ("SDate");
NotesItem EndDate = doc.GetFirstItem ("EDate");
NotesItem Contact = doc.GetFirstItem ("Contact");
NotesItem email = doc.GetFirstItem ("email");
NotesItem Location = doc.GetFirstItem ("Location");

8. Create a new DocumentResult object and assign the returning values
recovered from the database to the initial parameters, defined in the
DocumentResult struct, using the NotesItem Text property class.

// Create a new DocumentResult object and return the values.
DocumentResult dr = new DocumentResult();
dr.ResCode = Code;
dr.ResName = Name.Text;
dr.ResStartDate = StartDate.Text;
dr.ResEndDate = EndDate.Text;
dr.ResContact = Contact.Text;
dr.Resemail = email.Text;
dr.ResLocation = Location.Text;
return dr;

9. Save the file with the .asmx extension.

Now, we are ready to test our Web Service; before proceeding, place the file
(sample.asmx) inside the IIS Web directory path, for example
c:\inetpub\wwwroot\webservices. If you do not have a Web Services directory,
create one.

A.2.1.4 Testing the example
Open Microsoft IE Web Browser and type the URL:
http://<hostmachine>/webservices/sample.asmx. It will bring up a page that is
created automatically by the .NET Framework, as shown in the following figure.

Note: For more information about these Lotus Script Classes and
Methods, refer to Lotus Domino Designer 6 Help.
 Appendix A. Lotus Domino and .NET coexistence 559

Figure A-30 Web Service test client in IIS 1.

This page has two links: one for the GetResidencyDetails method defined in the
ResidencyDetailsWebService class and a link for the WSDL file which describes
the Web Service also created by .NET Framework SDK.

Click the GetResidencyDetails link and you will see the next page, also
rendered by .NET Framework.
560 WebSphere and .NET Coexistence

Figure A-31 Web Service test client in IIS 2.

This second page gives you the opportunity to test the Web Service and presents
a good deal of useful information because the output (returned in the form of
HTTP GET, HTTP POST and SOAP) provides all the hints you need for calling
this Web Service programmatically, as shown in the following figures.
 Appendix A. Lotus Domino and .NET coexistence 561

� HTTP GET:

Figure A-32 Web Service request/response format - HTTP GET
562 WebSphere and .NET Coexistence

� HTTP POST:

Figure A-33 Web Service request/response format - HTTP POST
 Appendix A. Lotus Domino and .NET coexistence 563

� SOAP Request:

Figure A-34 Web Service request format - SOAP
564 WebSphere and .NET Coexistence

� SOAP Response:

Figure A-35 Web Service response format - SOAP

Introduce a Residency Code and click the Invoke button. The XML result page is
depicted in the next figure.
 Appendix A. Lotus Domino and .NET coexistence 565

Figure A-36 Sample XML response
566 WebSphere and .NET Coexistence

Appendix B. Additional material

This redbook refers to additional material that can be downloaded from the
Internet as described below.

Locating the Web material
The Web material associated with this redbook is available in softcopy on the
Internet from the IBM Redbooks Web server. Point your Web browser to:

ftp://www.redbooks.ibm.com/redbooks/SG247027

Alternatively, you can go to the IBM Redbooks Web site at:

ibm.com/redbooks

Select Additional materials and open the directory that corresponds with the
redbook form number, SG24-7027.

B

© Copyright IBM Corp. 2004. All rights reserved. 567

ftp://www.redbooks.ibm.com/redbooks/
http://www.redbooks.ibm.com/
http://www.ibm.com/redbooks/
http://www.ibm.com/redbooks/

Using the Web material
The additional Web material that accompanies this redbook includes the
following files:

File name Description
SG247027.zip Sample application in a zipped archive

System requirements for downloading the Web material
The following system configuration is recommended:

Hard disk space: 20 MB
Operating System: Windows 2000 Server or Professional
Processor: 1GHz or higher
Memory: 768 MB

How to use the Web material
Create a subdirectory (folder) on your workstation, for example: C:\SG247027,
and unzip the contents of the Web material zip file into this folder.

Asynchronous, stateless scenario sample
The Asynchronous, stateless scenario sample is under the AsyncStateless
subdirectory.

The details for the scenario can be found in Chapter 5, “Scenario: Asynchronous”
on page 229.

Synchronous, stateless scenario samples
The Synchronous, stateless scenario is split into two parts; one is WebSphere
producer, .NET consumer; the other is WebShere consumer, .NET producer.

The first part can be found under the SyncStateless-N2W subdirectory, the latter
can be found under the SyncStateless-W2N directory.

Both samples have WebSphere Studio (.WSAD) and Visual Studio project (.VS)
projects.

The Visual Studio project can be opened in Visual Studio; build the project and it
should be ready to run.

The WebSphere Studio project needs a bit of work. Once the project is opened, it
will look empty. Click File -> Import -> Existing Project into Workspace to
import all the project directories. Once the projects are imported, click Project ->
568 WebSphere and .NET Coexistence

Rebuild all from the menu. If you want to test the application in WebSphere
Studio, then create a WebSphere V5.02 Test Environment and add the
enterprise application.

The details for the scenario can be found in Chapter 7, “Scenario: Synchronous
stateless (WebSphere producer and .NET consumer)” on page 297 and
Chapter 8, “Scenario: Synchronous stateless (WebSphere consumer and .NET
producer)” on page 329.
 Appendix B. Additional material 569

570 WebSphere and .NET Coexistence

acronyms
1PC One Phase Commit

2PC Two Phase Commit

AAT Application Assembly Tool

ACL Access Control List

ADO Active Data Objects

ASP Active Server Page

BPEL Business Process Execution
Language

BPEL4WS BPEL for Web Services

BSF Bean Scripting Framework

CCW COM Callable Wrapper

CLR Common Language Runtime

CLS Common Language
Specification

COM Component Object Model

CORBA Common ORB Architecture

CTS Common Type System

DCOM Distributed COM

DD Deployment Descriptor

DHTML Dynamic HTML

DLL Dynamic Link Library

DNA Distributed interNet
Applications

DTC Distributed Transaction
Coordinator

EAR Enterprise Archive

EIS Enterprise Information
System

EJB Enterprise Java Bean

GAC Global Assembly Cache

GRE Generic Routing
Encapsulation

GUI Graphical User Interface

Abbreviations and
© Copyright IBM Corp. 2004. All rights reserved.
HIS

HTML Hypertext Markup Language

IBM International Business
Machines Corporation

IDE Integrated Development
Environment

IIOP Internet Inter-OBR Protocol

IIS Internet Information Services

IL Intermediate Language

ITSO International Technical
Support Organization

J2EE Java 2 Enterprise Edition

J2SE Java 2 Standard Edition

JAR Java Archive

JCA Java Connector Architecture

JCP Java Community Process

JIT Just-In-Time (compiler)

JMS Java Message Service

JMX Java Management
Extensions

JNDI Java Naming and Directory
Interface

JNI Java Native Interface

JRE Java Runtime Environment

JSP JavaServer Page

JSP JavaServer Pages

JVM Java Virtual Machine

LTPA Lightweight Third Party
Authentication

MOM Message-oriented
Middleware

MOM Microsoft Operations
Manager
 571

MSIL Microsoft Intermediate
Language

MTS Microsoft Transaction
Services

NIO New Input/Output (Java)

ORB Object Request Broker

OS Operating System

PMI Performance Monitoring
Infrastructure

RAR Resource Adapter Archive

RCW Runtime-Callable Wrapper

RMI Remote Method Invocation

RPC Remote Procedure Call

SCM Service Control Manager

SOAP Simple Object Access
Protocol

SQL

SSL Secure Sockets Layer

SWAM Simple WebSphere
Authentication Mechanism

UDDI Universal Description.
Discovery and Integration

UDP User Datagram Protocol

VBScript Visual Basic Script

WAR Web Archive

WLM WebSphere Workload
Management

WMI Windows Management
Instrumentation

WSDL Web Services Description
Language

WSIF Web Services Invocation
Framework

XML
572 WebSphere and .NET Coexistence

Related publications

The publications listed in this section are considered particularly suitable for a
more detailed discussion of the topics covered in this redbook.

IBM Redbooks
For information on ordering these publications, see “How to get IBM Redbooks”
on page 578. Note that some of the documents referenced here may be available
in softcopy only.

� WebSphere Version 5 Web Services Handbook, SG24-6891

� IBM WebSphere V5.0 Security, SG24-6573

� IBM WebSphere V5.0 Performance, Scalability and High Availability,
SG24-6198

� WebSphere Studio Application Developer Version 5 Programming Guide,
SG24-6957

� IBM WebSphere Application Server V5.0 System Management and
Configuration, SG24-6195

� WebSphere MQ Solutions in a Microsoft .NET Environment, SG24-7012

� WebSphere MQ Security in and Enterprise Environment, SG24-6814

� EJB 2.0 Development with WebSphere Studio Application Developer,
SG24-6819

� Domino Designer 6: A Developer's HandBook, SG24-6854

Other publications
These publications are also relevant as further information sources:

� Applied Microsoft .NET Framework Programming, Jeffrey Richter, ISBN
0-7356-1422-9

� WebSphere MQ Using Java, SC34-6066-01
© Copyright IBM Corp. 2004. All rights reserved. 573

Online resources
These Web sites and URLs are also relevant as further information sources:

� Apache Jakarta project

http://jakarta.apache.org/log4j

� Apache Ant project

http://ant.apache.org/

� WebSphere InfoCenter

http://www-3.ibm.com/software/webservers/appserv/infocenter.html

� IBM WebSphere Application Server Web site

http://www-3.ibm.com/software/webservers/appserv/

� WebSphere prerequisites Web site

http://www-3.ibm.com/software/webservers/appserv/doc/v50/prereqs/prereq502.
html

� Java Community Process

http://jcp.org/aboutJava/communityprocess/final/jsr003/index.html

� Microsoft Patterns

http://www.microsoft.com/resources/practices/default.asp

� Microsoft .NET information

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpguide/ht
ml/cpconcontrolexecutionlifecycle.asp

� Microsoft .NET information

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/vbcon/html
/vbconintroductiontontserviceapplications.asp

� Microsoft Server clustering

http://www.microsoft.com/windows2000/technologies/clustering/default.asp

� Microsoft load balancing

http://www.microsoft.com/technet/treeview/default.asp?url=/TechNet/prodtech
nol/windows2000serv/deploy/confeat/nlbovw.asp

� .NET runtime

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dv_vstecha
rt/html/vstchdeployingvsusingactivedirectory.asp

� Microsoft Operations Manager

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/momsdk/htm
/momabout_7lgl.asp
574 WebSphere and .NET Coexistence

http://jakarta.apache.org/log4j
http://ant.apache.org/
http://www-3.ibm.com/software/webservers/appserv/infocenter.html
http://www-3.ibm.com/software/webservers/appserv/
http://www-3.ibm.com/software/webservers/appserv/doc/v50/prereqs/prereq502.html
http://jcp.org/aboutJava/communityprocess/final/jsr003/index.html
http://www.microsoft.com/resources/practices/default.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpguide/html/cpconcontrolexecutionlifecycle.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/vbcon/html/vbconintroductiontontserviceapplications.asp
http://www.microsoft.com/windows2000/technologies/clustering/default.asp
http://www.microsoft.com/technet/treeview/default.asp?url=/TechNet/prodtechnol/windows2000serv/deploy/confeat/nlbovw.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dv_vstechart/html/vstchdeployingvsusingactivedirectory.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/momsdk/htm/momabout_7lgl.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/momsdk/htm/momabout_7lgl.asp

� Microsoft Systems Management Server

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/momsdk/htm
/momabout_9fvx.asp

� Microsoft Active Directory

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dv_vstecha
rt/html/vstchdeployingvsusingactivedirectory.asp

� Patterns for e-business

http://www.ibm.com/developerworks/patterns/

� Enterprise Patterns

http://www.enterpriseintegrationpatterns.com/

� Interface Tool for Java (formerly known as IBM Bridge2Java) Web site

http://www.alphaworks.ibm.com/tech/bridge2java

� WS-Addressing

http://www.ibm.com/developerworks/webservices/library/ws-add/

� WS-I

http://www.ws-i.org/

� IBM WebSphere Integrator Web site

http://www-306.ibm.com/software/integration/wmq/

� IBM Redbooks Web site

http://www.redbooks.ibm.com

� Asynchronous Web Services Web site

http://www-106.ibm.com/developerworks/webservices/library/ws-asynch1.html

� Apache WSIF project

http://ws.apache.org/wsif/

� IIOP.NET Web site

http://iiop-net.sourceforge.net/

� GNU Licence information

http://www.gnu.org/copyleft/lesser.html

� Ja.NET Web site

http://ja.net.intrinsyc.com/ja.net/info/

� JNBridge Web site

http://www.jnbridge.com
 Related publications 575

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/momsdk/htm/momabout_9fvx.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dv_vstechart/html/vstchdeployingvsusingactivedirectory.asp
http://www.ibm.com/developerworks/patterns/
http://www.enterpriseintegrationpatterns.com/
http://www.alphaworks.ibm.com/tech/bridge2java
http://www.ibm.com/developerworks/webservices/library/ws-add/
http://www.ws-i.org/
http://www-306.ibm.com/software/integration/wmq/
http://www.redbooks.ibm.com
http://www-106.ibm.com/developerworks/webservices/library/ws-asynch1.html
http://ws.apache.org/wsif/
http://iiop-net.sourceforge.net/
http://www.gnu.org/copyleft/lesser.html
http://ja.net.intrinsyc.com/ja.net/info/
http://www.jnbridge.com

� Janeva Web site

http://www.borland.com/janeva/

� SpiritWave Web site

http://www.spirit-soft.com/products/wave/introducing.shtml

� WebSphere MQ MA7P Spupport pack

http://www-3.ibm.com/software/integration/support/supportpacs/individual/
ma7p.html

� Java RMI Web site

http://java.sun.com/products/jdk/rmi/
http://java.sun.com/marketing/collateral/javarmi.html

� OMG Web site

http://www.omg.org

� .NET remoting information

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpguide/
html/cpconnetremotingoverview.asp

� Microsoft Web site

http://www.microsoft.com

� .NET information

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpguide/
html/cpconregisteringassemblieswithcom.asp

� Microsoft IIS information

http://www.microsoft.com/windows2000/en/server/iis/default.asp

� J2EE RequestDispatcher information

http://java.sun.com/j2ee/1.4/docs/api/javax/servlet/RequestDispatcher.html

� .NET security

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnnetsec/
html/THCMCh19.asp

� Microsoft SPNEGO details

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnsecure/
html/http-sso-1.asp

� W3C SOAP specification

http://www.w3.org/TR/SOAP/

� UDDI Web site

http://www.uddi.org
576 WebSphere and .NET Coexistence

http://www.borland.com/janeva/
http://www.spirit-soft.com/products/wave/introducing.shtml
http://www-3.ibm.com/software/integration/support/supportpacs/individual/ma7p.html
http://java.sun.com/products/jdk/rmi/
http://java.sun.com/marketing/collateral/javarmi.html
http://www.omg.org
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpguide/html/cpconnetremotingoverview.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpguide/html/cpconregisteringassemblieswithcom.asp
http://www.microsoft.com/windows2000/en/server/iis/default.asp
http://java.sun.com/j2ee/1.4/docs/api/javax/servlet/RequestDispatcher.html
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnnetsec/html/THCMCh19.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnsecure/html/http-sso-1.asp
http://www.w3.org/TR/SOAP/
http://www.uddi.org

� WS-Security

http://www.ibm.com/developerworks/library/ws-secure/

� Web applications information

http://www-106.ibm.com/developerworks/java/library/j-framework2/
understanding.html

� Sun JSP information

http://java.sun.com/products/jsp/

� Microsoft ASP.NET information

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpgenref/
html/cpconpage.asp

� .NET information

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpgenref/
html/gnconwebservicedirectivesyntax.asp

� Sun EJB information

http://java.sun.com/products/ejb/

� Sun J2EE information

http://java.sun.com/j2ee/

� Microsoft clustering

http://www.microsoft.com/windows2000/technologies/clustering/

� IBM WebSphere Performance and Scalability best practices

http://www.ibm.com/software/webservers/appserv/ws_bestpractices.pdf

� WebSphere Application Server prerequisites

http://www-3.ibm.com/software/webservers/appserv/doc/latest/prereq.html

� Sun JAAS information

http://java.sun.com/products/jaas

� .NET security information

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnnetsec/
html/THCMCh06.asp

� Microsoft WMI information

http://msdn.microsoft.com/library/techart/mngwmi.htm

� Microsoft Systems Management Server

http://www.microsoft.com/smsmgmt/default.asp

� SOAP encoding performance

http://www-106.ibm.com/developerworks/webservices/library/ws-soapenc/
 Related publications 577

http://www.ibm.com/developerworks/library/ws-secure/
http://www-106.ibm.com/developerworks/java/library/j-framework2/understanding.html
http://java.sun.com/products/jsp/
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpgenref/html/cpconpage.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpgenref/html/gnconwebservicedirectivesyntax.asp
http://java.sun.com/products/ejb/
http://java.sun.com/j2ee/
http://www.microsoft.com/windows2000/technologies/clustering/
http://www.ibm.com/software/webservers/appserv/ws_bestpractices.pdf
http://www-3.ibm.com/software/webservers/appserv/doc/latest/prereq.html
http://java.sun.com/products/jaas
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnnetsec/html/THCMCh06.asp
http://msdn.microsoft.com/library/techart/mngwmi.htm
http://www.microsoft.com/smsmgmt/default.asp
http://www-106.ibm.com/developerworks/webservices/library/ws-soapenc/

� Web Services Quality of Service

http://www-106.ibm.com/developerworks/webservices/library/ws-soapenc/

� Web Services security roadmap

http://www.ibm.com/developerworks/webservices/library/ws-secmap/

� WS-Coordination

http://www.ibm.com/developerworks/webservices/library/ws-coor/

� WS-Transaction

http://www.ibm.com/developerworks/webservices/library/ws-transpec/

� W3C DOM specification

http://www.w3.org/TR/DOM-Level-3-Core/core.html#ID-1590626202

� .NET information

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cptools/
html/cpgrfwebservicesdescriptionlanguagetoolwsdlexe.asp

� Microsoft Tlbimp tool information

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cptools/
html/cpgrfTypeLibraryImporterTlbimpexe.asp

� ASP.NET Web applications

http://support.microsoft.com/default.aspx?scid=kb;EN-US;q325056

How to get IBM Redbooks
You can search for, view, or download Redbooks, Redpapers, Hints and Tips,
draft publications and Additional materials, as well as order hardcopy Redbooks
or CD-ROMs, at this Web site:

ibm.com/redbooks

Help from IBM
IBM Support and downloads

ibm.com/support

IBM Global Services

ibm.com/services
578 WebSphere and .NET Coexistence

http://www.redbooks.ibm.com/
http://www.ibm.com/redbooks/
http://www.ibm.com/redbooks/
http://www.ibm.com/support/
http://www.ibm.com/support/
http://www.ibm.com/services/
http://www.ibm.com/services/
http://www-106.ibm.com/developerworks/webservices/library/ws-soapenc/
http://www.ibm.com/developerworks/webservices/library/ws-secmap/
http://www.ibm.com/developerworks/webservices/library/ws-coor/
http://www.ibm.com/developerworks/webservices/library/ws-transpec/
http://www.w3.org/TR/DOM-Level-3-Core/core.html#ID-1590626202
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cptools/html/cpgrfwebservicesdescriptionlanguagetoolwsdlexe.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cptools/html/cpgrfTypeLibraryImporterTlbimpexe.asp
http://support.microsoft.com/default.aspx?scid=kb;EN-US;q325056

Index

Symbols
.aspx file 447
.NET 466

Application State 381
Automatic transactions 492
creating a Web Service 331
Manual transactions 492
Page State 382
Request State 382
Session State 382
Web Service client 321

.NET application 167, 174, 182

.NET architecture 50, 54

.NET client 216

.NET client application
developing 317

.NET COM interop 212

.NET configuration 92

.NET consumer application 265

.NET Debug configuration 83

.NET Enterprise Services 53

.NET environment 52

.NET Interop 266

.NET key values 52

.NET languages 60

.NET Presentation layer 148

.NET redistributable 59

.NET Remoting 57, 265, 267, 454

.NET security 420

.NET Service Consumer 313

.NET service provider 331, 537

.NET service proxy 147

.NET service stub 141

.NET Software Development Kit 69

.NET superclass 292

.NET Web Service test 341

A
AAT 34
Abstract Window Toolkit 442
Abstraction 18
Access control 17
Access Control list 419
© Copyright IBM Corp. 2004. All rights reserved.
ACT 87
Active Data Objects 51
Active Directory 92, 422
Active Server Pages 51
Active Template Library 283
ActiveX

Client 271
Control 441

ActiveX Bridge 210, 271, 468
best practices 277
constraints 274
solution 279

ActiveX Data Objects 458
ActivitySession 491
Admin service 41
Administration 44, 90
Administrative Console 45
Administrative Tools 91
ADO 458
ADO.NET 67, 458, 460

authentication 72
Command Builders 462
IDataAdapter 461
IDataReader 461
IDbCommand 461
IDbConnection 461
IDbTransaction 461
Legacy Support 462

amqmdnet.dll 247
Ant 33
Apache WSIF 223
Applets 6
Application Assembler 22
Application Assembly Tool 34
Application Center Test 87
Application Client Module 11
Application clients 5
Application Component Provider 22
Application components

J2EE 10
Application configuration file 62
Application Deployer 22
Application life cycle management 44
Application Logging 20, 73
 579

Application security 484
Application Server 39
application server services 40
Application testing 82
architecture 5
argument by value 126
argument paradigms 111
Arrays 301
ASMX Handler 450
ASP.NET 55, 446

Application Resources 369
authentication 72
component trace 74
consuming a Web Service 322
Web Service client 322

Assembly 60
create 332
life cycle 65
Metadata 60
versioning 74

assembly resources 61
asynchronous communication 234
Asynchronous Interaction 117
asynchronous interaction

security 235
transactions 236

asynchronous interaction scenario 229
asynchronous interoperability 237
asynchronous message queuing 230
asynchronous messaging

transport 238
asynchronous processing 122
asynchronous programming 230
asynchronous service 244
ATL 283
Atomic transactions 505
Atomicity 489
attribute properties 340
Auditing 17
Authentication 17, 419, 485, 488

Externalizing 422
integration 421
mechanisms 20
services 72

Authorization 17, 419, 486, 489
externalize 425
integration 425

Availability 482
AWT 442

client 138
AWT client application 145, 152

B
bean managed persistence 453
Bean Scripting Framework 45
BizTalk 467
BMP 453
bottom interface 102
bottom up scenario 103
boxing 128
BPEL 438
BPEL4WS 438
Bridge2Java 272, 289
BSF 45
Business activities 506
business functionality 281
business interface 155
Business Layer 7, 56, 95
business layer artifact 179
business logic 452
business logic to business logic scenario 174
business logic to resource scenario 182
business objects 58
Business Process Execution Language 438
business tier artifact 177
bytecode 266

C
C# 75
C# console application 533
Calculator example 303

implementation 304
Calculator implementation 352
Calculator.dll assembly 332
Calculator.jar 281, 303, 348
callback functions 231
Capability list 419
CCW 539
Cell 39
chatty interface 113
child elements 432
Client activation 455
Client Certificate authentication 488
Client container 13
Client Layer 7, 96
client logic to business logic scenario 152
client logic to client logic scenario 138
580 WebSphere and .NET Coexistence

client logic to presentation logic scenario 145
Clients

.NET 443
CLR 52, 63, 265
CLR as COM 213
CLS 60, 63
cluster nodes 476
CMP 453
Code Animation 83
Code-based security 487
COM 50, 272, 274
COM ActiveX Bridge Gateway DLL 282
COM Callable Wrapper 539
COM components 272, 289
COM service proxy 212
COM Wrapper DLL 282
Command Line

deployment 35
packaging 33

Common Language Runtime 52, 63, 265
Common Language Runtime features 64
Common Language Specification 60, 63
Common Type System 63
Communication Protocol 136
Compatibility testing 18
compensation 490
compiler 23
Complex Data Type

Web services 309
Component Load Balancing 477
Component Object Model 50, 274
Component Object Request Broker Architecture
452
compound types 301
Concentric Layered Application Model 98
Confidentiality 17
Configuration

WebSphere 11
Configuration files 62
Configure

messaging 254
conjoined 186
conjoined model 94
Consistency 489
Console Client 443
Constructor Strings 277
container managed persistence 453
Containers 12
Continuous availability 482

Cookies 379, 384, 386
CORBA 452
CosNaming 14
Create

message driven bean 244
cross-layer interaction 132
cross-network 123
cross-process 123
cross-technology interaction 132
CTS 63
Custom User registry 422
CVS 29

D
Daemon process 255
Data encryption 71
Data integrity 17
Data layer 57
Data Model 268
Data Privacy 17
Data propagation 395

Data Format 401
Data Transport 397
Data Types 399
Form-based 397
HTTP Request Forwarding 397
JavaScript URL Construction 397
URL Redirection 397
URL Redirection Solution 402

Database 456
Database access 456
database connection pooling 67
DCOM 50, 207, 452
Deadlocks 32
Debug Builds 82
Debugging 82
Decoration 157
decorator 170, 177
delegation 419
delegation model 94
delegation threads 231
Deployment 33, 35, 345

By copying files 88
Setup 88

deployment 88
deployment descriptor 28
Deployment Manager 39, 43
Deployment project types 89
 Index 581

Deployment Units 60
Develop

assembly 332
DHTML 440
directory services 195
DISCO 435
disco tool 69
distributed application 112
Distributed COM 50
Distributed Component Object Model 452
Distributed components 451
Distributed interNet Applications 51
Distributed Object Architecture 129
Distributed technologies 451
Distributed Transaction Coordinator 70
DLL 60, 266
Document call paradigm 124, 130
Document interface style 124, 130
Document Model implementation 316
Document Style Model implementation 309, 344,
351
Document style SOAP 124
Document Style vs RPC Style 327
Domino Nomenclature 516
DTC 70, 493
Durability 490
Dynamic deployment 498
Dynamic Hypertext Markup Language 440
Dynamic Link Library 266
dynamic link library 60
Dynamic Reloading 36
dynamic Web pages 441
Dynamic Web Project 309

E
EAR 27, 305
Edge Components 44
editors 27
EIS 11, 466
EJB 6, 265, 452
EJB bean 453
EJB client 453
EJB component 453
EJB container 12, 452
EJB deployment descriptor 453
EJB interfaces 453
EJB JAR 28
EJB module 10

EJB quality of service decorator 156
EJB server 452
EJB Web Service 312
elementary integration 293
embedded messaging server 42
embedded Web server 40
encoding styles 501

Literal 431
SOAP Encoded 431

Enterprise Applications 183
Enterprise Archive 27
Enterprise Information Systems 11, 466
Enterprise Java Bean 6, 265, 452, 458
Enterprise Java Bean Module 10
Entity beans 453
Environment

J2EE 5
Error Handling 320
Export application 34
Extended Solution 359
Extensibility 18
eXtensible Markup Language 430
Externalizing authorization 425

F
façade 114
Failover 20, 72, 483
Fat .NET Client 139
fat client 139
Fat Java Client 139
Fat Java Client application 138
File Authorization 489
FindClass() method 272
Flexibility 18
Form-based authentication 488
Form-based Propagation

implementation 412
Solution 404

Form-based Propagation Solution 404
Forward 164
Forwarding 394
Fundamental Interaction Classifications 110

G
GAC 75
garbage collection 13, 266
Generic Routing Encapsulation 477
GetArgsContainer() method 272
582 WebSphere and .NET Coexistence

Global Assembly Cache 61, 75, 241
Global.asax 337
graphical user interface 442
GRE 477
GUI 161

H
Hardware security 484
Head Protocol 136
high availability 482
Horizontal Scaling 478, 480
Host Integration Server 467
Hot Deployment 36, 499
HTML 440
HTTP 376
HTTP Get 537
HTTP Plugin 369

IIS 370
manual configuration 371

HTTP Post 538
HTTP transport 234
HttpChannel 267
HttpSession interface 378
HttpSessionState object 378
Hypertext Markup Language 440

I
IBM ActiveX Bridge 271
IBM Bridge2Java 272
IBM Interface Tool for Java 203, 272, 468
ICalculator interfaces 332
IDE 24, 75
IDispatch interface 271
IIOP 15, 267
IIOP Remoting Channels 209
IIOP.NET 226
IIS 50, 64, 368
IIS HTTP Plugin 370
impersonation 419
in/out arguments 127
Independence 18
in-only arguments 125
in-process 123
instrumenting 85
Integrated Debugger 29
Integrated Development Environment 24, 75
Integrated Security 418
Integrating authentication 421

Integrating Authorization 425
integration classifications 143
Integration Layer 8, 96
interaction classifications 132
interaction dynamics 111
interface styles 111
Interface Tool for Java 272

constraints 274
solution 289

Intermediate Language 63
Internet boundaries 200
Internet Information Services 50, 64, 368

Caching 480
configuration 370
life cycle 66

Internet Inter-ORB Protocol 15, 267
Internet Services Manager 64, 92
inter-node call 267
inter-node synchronous stateful interaction 269
interoperation integration layer 101, 133
Interoperation Layer Abstraction 101
interpreter 23
inter-process 123
inter-process call 267
inter-process communication 127
inter-process communication mechanism 206
ISAPI Web Debug Tool 85
Isolation 18, 185, 490

J
J2C 466
J2EE application client 442
J2EE Application Resources 369
J2EE architecture 5
J2EE clients 441
J2EE Connector Architecture 466
J2EE Enterprise Application 305
J2EE environment 5
J2EE Product Provider 21
J2EE, Java 2 Enterprise Edition 5
Ja.NET 226
JACL 45
Janeva 226
Java Applets 440
Java applets 442
Java Bean Web Service 312
Java client

thin 441
 Index 583

Java Client JAR 28
Java Community Process 8
Java Database Connectivity 459
Java Developer’s Kit 23
Java language 9
Java Management Extensions 46, 479, 493
Java Messaging Service 235, 239, 463
Java Naming and Directory Interface 14, 269
Java Native Interface 9, 266

limitations 275
Java Presentation layer 148
Java proxy 178, 289
Java proxy presents 155
Java Remote Method Protocol 267
Java Runtime Environment 9
Java runtime environment 11
Java runtime platforms 9
Java Server Pages

JSP 444
Java Server Pages Standard Tag Library 444
Java service proxy 141
Java Servlet API 443
Java stub represents 156
Java Virtual Machine 9, 11, 440
JavaScript 440
JAX-RPC 439
JCA connector 188
JCA container 13
JDBC 459

CallableStatement 460
Connection 460
Connection pooling 460
DatabaseMetaData 460
DataSource interface 460
DriverManager 460
ResultSetMetaData 460
Statement 460
Statement pooling 460

JDK 23
JMS 235, 239, 463

.NET messaging 253
Header 239
Server 39
TextMessage 245

JMX 46, 479, 493
Agent level 494
Distributed services level 494
Instrumentation level 494

JMX architecture 494

JNBridge 226
JNDI 14, 269
JNI 9, 266
JRE 9
JRMP 267
JSP Tags 444
JSR 101 41
JSR 109 41
JSTL 444
Just-In-Time Debugging 84
JVM 9, 11

logs 20

K
Kerberos ticket 439

L
language independence 55, 266
Last Participant Support 491
Layer Interaction Classifications 110
Layered Application Model 95
layers integration 99
LDAP User registry 422
Life cycle management 13, 65
Lifetime lease 456
Lightweight Third Party Authentication 20, 486
listener 85
Literal 432
Load Balancing 20, 72
Load Testing 85
Logical layers

J2EE 6
Long-Running Service Providers 256
loosely coupled implementations 94
Lotus Domino 513

.NET client 531

.NET Web Service 556
COM server 540
IIS integration 541
New database 517
new Forms and Views 518
new Lotus Script Library 524
new Lotus Script Web Agent 520
sample Database 554
Service provider 515
Test 534
Using COM interface 538
Web Service 526
584 WebSphere and .NET Coexistence

WSDL Page 526
Lotus Script library 515
Lotus Script Web Agent 515, 520
Low throughput 32
LTPA 20, 486

M
MA7P 235
Machine configuration file 62
Maintainability 498
Maintaining state 281
Manageability 493
managed code 56, 266
Managed Heap 65
Managed Process 39
manifest 61
master repository 47
MBeans 46
MDB 234, 243
meet in the middle

interface 102
scenario 103

Memory leaks 32
message

request 238
response 238

Message Format 238
Message Headers 239
message payload 239
Message Queue Interface 464
Message Queueing Systems 195
message routing 122
message styles

document 431
RPC 431

Message Transformation 240
message transformation 122
Message-Driven Bean 234, 238, 243, 454

create 244
Message-oriented Architecture 130
Message-oriented middleware 230
message-oriented solution 190
messaging

configure 254
get in .NET 250
JMS in .NET 253
put in .NET 248

Messaging authentication 72

messaging middleware 118, 219, 463
META-INF 28
Microsoft Clustering 475
Microsoft Distributed Transaction Coordinator 493
Microsoft DNA 51
Microsoft Intermediate Language 63
Microsoft Internet Information Services 368
Microsoft Message Queuing 70
Microsoft MSMQ 124
Microsoft Operations Manager 91, 496
Microsoft patterns 55
Microsoft technology 59
Microsoft Transaction Services 50
Microsoft Visual Source Safe 499
middle interface 102
middleware logic 313
Model-View-Controller 56, 161, 443, 447
model-view-controller

pattern 169
MOM 496
MQ Classes for .NET 235, 238, 247, 465

install 241
MQ message 240
MQ Transport for SOAP 234
MQI 464
MSIL 63
MSMQ 70
MTS 50
multiple coexisting applications 98
MVC 161, 169, 443

N
Native log 20
Network Deployment 38, 42
Network Load Balancing 73, 477
Network security 484
NewInstance() method 272
n-layer model 55
Node 39
Node Agent 39, 43
Non-distributed transactions 70
Non-repudiation 17
notification 234
NT services 67

O
Object Linking and Embedding Database 457
Object pooling 14, 67
 Index 585

ODBC 457
ODBC Bridge 462
OLE/DB 457
one to one interaction 133
one-way messaging 234
onMessage() method 244
Open Database Connectivity 457
open messaging standard 240
Operating System level security 71
Operating system security 484
Operating System Services 183

P
page directives 447
parallel coexistence 96
Parameter Validation 345
Pass by Reference 127
Pass by Value 125
Passport authentication 488
Performance 67, 85, 478
performance counter 86
Performance counters 73
Performance Monitor 86

Windows 481
Performance Monitoring Infrastructure 479
Performance profiling 32
Perspectives 27
phased migration 149
platform independence 55
Platform Support 59
PMI 479
Portability 17, 499
presentation 262
Presentation layer 7, 55, 96
presentation logic to business logic scenario 167
presentation logic to presentation logic 160
Private assembly 61
Project types 80
Propagation Methods 401
proxy-stub pattern 137, 155–156, 169, 177
pseudo Resource layer 101
publish/subscribe pattern 130

Q
QoS 471
QoS Decoration 157
Quality of Services 471
queue manager 243

R
RAD 77
Rapid Action Development 77
rapid development 24
RAR 466
Rational ClearCase 29
RCW 539
Re-authentication 419
Redbooks Web site 578

Contact us xv
Redirecting 394
redirection 162
redistributable runtime 90
Reflection 271
registry entries 295
Relation Database Management Systems 195
Relational Database 183
relational database resource 185
remote deployment 31
Remote invocation 68
Remote Method Invocation 14, 265, 267, 452
Remote Object Discovery 14
Remote Procedure Call 123
remote queue 243
remote WebSphere server 31
Remoting 68, 267, 454

Activation 455
Channel 454
Formatter 454
Object Life-Cycle 456
Transport 454

Remoting authentication 72
remoting channel 270
Remoting transport 269
replyTo queue 245
resource 195
Resource Adapter Archive 466
Resource Adapter Module 11
Resource interfaces 201
Resource Layer 95
Resource layer 8, 57
Resource permissions 484
resource to resource scenario 195
RMI 14, 265, 267, 452
RMI transport 268
Role-based security 71, 420, 487
root element 431
Routing SOAP request 520
RPC 123, 265
586 WebSphere and .NET Coexistence

RPC interface style 123
RPC Model implementation 315, 339, 350
RPC Style vs Document Style 327
Runtime 37, 90
Runtime code level security 71
Runtime-Callable Wrapper 539

S
Sample application 303

implementation 304, 347, 352
Scalability 472
SCM 29, 66
scripting client 42
SDK 69
Secure interoperability 18
Secure Sockets Layer 71, 464
Security 17, 70, 235, 302, 346, 484

Web application 418
Security configuration file 62
Security integration 418
Server activation 455
Server Clustering 72
Server pages 443
Server resource management 44
server-side COM object 278
server-side components 66
Service Binding/Hosting 136
Service Consumer 240, 282
Service Consumer implementation 346
Service Control Manager 66
Service Discovery Mechanism 136
service façade 118–119
Service log 21
Service Provider 240, 255, 281
service proxy 118–119
Serviced components 70
Service-oriented Architecture 131, 299
Servlets 443
Session 376
Session beans 453
session expiration 378
Session life cycle 394
Session Object Mapping 385
Session persistence 380, 384

Database 380
In process mode 384
Memory-to-memory replication 380
SQL server mode 385

State server mode 384
Session State 382
Session State Interoperability 376
Session State Life Cycle 378, 383
Session tracking 392
Session Tracking Mechanisms 379, 383
Shared assembly 61
Shared Presentation Components 368
shared resource 183
Shared User registry 421
Sharing Session Data 390

Data serialization and deserialization 392
Database 391
Messaging point-to-point 392
Messaging publish/subscribe 393
Push 394

Simple Object Access Protocol 433
Simple WebSphere Authentication Mechanism 20
SimpleDataGateway 447
single point of failure 483
skeleton 15
SMS 92
SOA Services 183
SOAP 300, 433, 538

encoding 433
Encoding rules 434
Envelope 434
RPC 434

SOAPAction header 450
SoapRpcMethod attribute 339
SoapRpcService attribute 339
soapsuds tool 69
solution candidates 202
Source code management 29
SpiritWave 226
SPNEGO 424
Spy++ 85
SQL 457
SSL 71, 464

Sessions 379
Standard Support 59
state limitations 120
state maintenance 376
state management 120
State Management Objects 381
state management objects 378
state object 116
state-dependent operations 121
Stateful asynchronous 232
 Index 587

Stateful Asynchronous Interaction 120
Stateful Asynchronous solution 219
Stateful interaction 112
stateful interaction 232, 264
stateful messages 121
Stateful Remote Invocation 267
stateful scenario

Java implementation 263
stateful service provider 262
Stateful synchronous interaction 112, 264
Stateful Synchronous solution 203
Stateless Asynchronous Interaction 117
stateless communication 299
Stateless Interaction 115
Stateless interaction 231
stateless services 234
Stateless Synchronous Interaction 115
Stateless Synchronous solution 214
Static Content 370
Structs 301
Structured Query Language 457
stub 15
SupportPac 235
SWAM 20
Swing 442
Swing client 138
Swing client application 145, 152
synchronization 183
synchronous communication 299
Synchronous Interaction 112
Synchronous, Stateful scenario 261
Synchronous, Stateless scenario 297, 329
System Administrator 22
System resource constraints 32
Systems Management Server 92

T
TAI 423
Tail Protocol 136
Tamper-proof assemblies 71
TcpChannel 267
Technical Solution Mapping 110, 202
Test 82
Thin .NET client 139
thin client 139
Thin Java Client 139
Thin Java client 441
Tivoli Access Manager WebSEAL 422, 425

Tivoli Performance Viewer 479
Tlbimp 553
Tool Provider 21
Tools

disco 69
ISAPI Web Debug 85
soapsuds 69
wsdl 69

top down scenario 103
Trace class 73
Trace log 21
Tracing 85
Transaction Coordinator 236
Transaction Management 16, 69
Transactionality 489
Transactions 236, 302
Transparency 17
Transport mechanism 136, 300
transports 234
trigger 197
Triggering 255
Trust Association Interceptor 423
two-phase commit 490
Type handling 320
Type Library 295
Type Metadata 60

U
UDDI 43, 434

Binding template 435
Business entity 435
Business service 435
Publisher assertions 435
Taxonomy 435
tModel 435

UDDI data model 435
UDDI registry 434
UDDI server 435
UDDI4J 434
UDP 477
unified cross-technology architectural model 105
Unit Of Work 236
Unit of Work 189
Unit Test Environment 30
Unit Testing 82
Universal Description, Discovery, and Integration
434
Universal Test Client 31
588 WebSphere and .NET Coexistence

unmanaged code 56
untyped binary arguments 124
URL Authorization 489
URL encoding 399
URL Redirection

implementation 405
URL Redirection Solution 402, 404
URL Rewriting 379, 384, 388
Use of cache 346
User Datagram Protocol 477
user experience 262
user interface 161
User registry 19
User/group management 484

V
VBScript 440
verbose interface 113
Versioning 74
Vertical scaling 478, 480
views 27
virtualized security architecture 420
Visual Source Safe 77, 81
Visual Studio .NET 75, 77

debugger 82

W
WAR 28
Web application 28, 440

layer 161
Web browser client 440
Web Client 441
Web components

J2EE 6
Web container 12, 64, 147, 160, 167
Web deployment descriptor 309
Web forward 164
Web Interoperability scenario 367
Web Module 11
Web project 306
Web redirection 162
Web References 443
Web server plugin 40
Web Service

.NET 331
Web service

.NET client 531

.NET proxy 532

Deployment 345
Generating proxy 325

Web Service client
Configuration files 320

Web service client
Generate 350

Web service creation 307
Web Service Description Language 430
Web service proxy 351
Web service wizard 307
Web Services 215, 233, 430, 501

ASP.NET 449
Asynchronous Façade 223

Web services 15, 41, 69
Complex Data Type 309
Data types 326
Deployment 311
Performance 501
Reliability 508
Security 503
Transactionality 505
type compatibility 320

Web services authentication 72
Web Services enabled resource 191
Web Services Gateway 43, 437
Web Services Invocation Framework 436
Web Services security 438
Web Services WS-Addressing 209
Web.config 62, 337
WEB-INF 28
WebMethod attribute 340
WebSEAL 422, 425

junction 423
LTPA 423
SPNEGO 424
TAI 423

WebSphere
Application Security 485
cluster support 472
configure IIS 370
Global Security 485
runtime platforms 500
Scalability 472
Session Management 377
Transaction support 490

WebSphere Administrative Console 36
WebSphere application 174, 182
WebSphere Application Server 38–39
WebSphere Application Server Network Deploy-
 Index 589

ment 38, 42
WebSphere Client Container 138
WebSphere configuration 11
WebSphere Integrator 122, 240
WebSphere MQ 219, 221, 230, 234, 464
WebSphere MQ messaging 124
WebSphere MQ Transport for SOAP 465
WebSphere security 420
WebSphere Service Provider 303
WebSphere Studio

Web service 307
Web service client 350

WebSphere Studio Application Developer 24–25
WebSphere Studio Application Developer - Integra-
tion Edition 25
WebSphere Studio Enterprise Developer 25
WebSphere Studio Site Developer 25
WebSphere Studiomin 35
WebSphere workload management 473
Windows

Clustering 484
Performance Monitor 481

Windows .NET clients 443
Windows applications 80
Windows Applicaton 246
Windows authentication 488
Windows client application 313
Windows event log 74
Windows Form application 139, 146, 152
Windows Forms 53
Windows Management Instrumentation 91, 496
Windows Management Interface 74
Windows Server 2003 Clustering 475
Windows Service 67, 256
WLM 473
WMI 74, 91, 496
workbench 27
workspace 27
Writing C# 75
WS-Coordination 505
WSDL 430

Binding 431
Message 430
Port 431
PortType 430
Service 431
Types 430

wsdl tool 69
WSGW 437

WS-I Basic Profile 41
WSIF 436
WS-Interoperability 508
WS-Security 192, 504
WS-Transaction 192, 505

X
X.509 certificates 439
XCopy Deployment 499
XJBInit() method 272
XML 430
XML configuration 11
XML digital signature 438
XML document 124
XML DOM 432
XML encryption 438
XML Schema 124, 432
XML Schema Definition 301
590 WebSphere and .NET Coexistence

(1.0” spine)
0.875”<->

1.498”
460 <->

 788 pages

W
ebSphere and .NET

Coexistence

®

SG24-7027-00 ISBN 0738498246

INTERNATIONAL
TECHNICAL
SUPPORT
ORGANIZATION

BUILDING TECHNICAL
INFORMATION BASED ON
PRACTICAL EXPERIENCE

IBM Redbooks are developed by
the IBM International Technical
Support Organization. Experts
from IBM, Customers and
Partners from around the world
create timely technical
information based on realistic
scenarios. Specific
recommendations are provided
to help you implement IT
solutions more effectively in
your environment.

For more information:
ibm.com/redbooks

WebSphere and .NET
Coexistence

In-depth view of the
supporting
technologies

Interoperability
scenarios and their
implementation

Working sample
code

This IBM Redbook explores the different coexistence
scenarios for the WebSphere and .NET platforms. This book is
a good source of information for solution designers and
developers, application integrators and developers who wish
to integrate solutions on the WebSphere and .NET platforms.

Part 1, “Introduction” is a quick introduction to the J2EE
(WebSphere) and .NET technologies. It also depicts a basic
architectural model that can be used to represent both
WebSphere applications and .NET applications.

Part 2, “Scenarios” identifies several potential technical
scenarios for coexistence via point-to-point integration
between applications deployed in the IBM WebSphere
Application Server and applications deployed in the Microsoft
.NET Framework. This part provides in-depth technical details
on how to implement certain scenarios using today’s existing
technologies.

Part 3, “Guidelines” provides general guidelines for solution
developers. A list of supporting technologies can help with the
solution implementation. The Quality of Service chapter is a
collection of services available on both platforms.

The Appendixes go further by using other IBM technologies
and describing two integration solutions between Lotus
Domino and .NET applications.

Back cover

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

	Front cover
	Contents
	Notices
	Trademarks

	Preface
	The team that wrote this redbook
	Become a published author
	Comments welcome

	Part 1 Introduction
	Chapter 1. J2EE introduction
	1.1 Architecture
	1.1.1 Overall architecture
	1.1.2 Layer technologies (application architecture)
	1.1.3 Standard support
	1.1.4 Platform support
	1.1.5 Programming languages
	1.1.6 Deployment units
	1.1.7 Runtime execution environment
	1.1.8 Life cycle management
	1.1.9 Remote object discovery
	1.1.10 Remote Method Invocation
	1.1.11 Web Services
	1.1.12 Transaction management
	1.1.13 Security
	1.1.14 Load balancing and failover
	1.1.15 Application logging

	1.2 Development
	1.2.1 Writing a Java application using a text editor
	1.2.2 WebSphere Studio Application Developer (IDE)

	1.3 Testing
	1.3.1 WebSphere Studio Application Developer

	1.4 Deployment
	1.4.1 Packaging J2EE applications
	1.4.2 Deploying the packaged applications

	1.5 Runtime
	1.5.1 WebSphere Application Server

	1.6 Administration

	Chapter 2. .NET introduction
	2.1 Architecture
	2.1.1 Overall architecture
	2.1.2 Layered services (application architecture)
	2.1.3 Standard support
	2.1.4 Platform support
	2.1.5 Programming languages
	2.1.6 Deployment units
	2.1.7 Runtime execution environment
	2.1.8 Life cycle management
	2.1.9 Remote object discovery
	2.1.10 Remote invocation
	2.1.11 Web Services
	2.1.12 Transaction management
	2.1.13 Security
	2.1.14 Load balancing and failover
	2.1.15 Application logging
	2.1.16 Versioning

	2.2 Development
	2.2.1 Writing a C# application using text editor
	2.2.2 Microsoft Visual Studio .NET (IDE)
	2.2.3 Source code management

	2.3 Testing
	2.3.1 Debugging and unit testing
	2.3.2 Performance and load testing

	2.4 Deployment
	2.5 Runtime
	2.6 Administration

	Chapter 3. An architectural model for coexistent applications
	3.1 Coexisting heterogeneous technologies
	3.1.1 Layered application model
	3.1.2 Concentric layered application model
	3.1.3 Bridging layers and address spaces
	3.1.4 Interoperation layer abstraction
	3.1.5 Summary

	Part 2 Scenarios
	Chapter 4. Technical coexistence scenarios
	4.1 Introduction
	4.2 Fundamental interaction classifications
	4.2.1 Stateful synchronous interaction
	4.2.2 Stateless synchronous interaction
	4.2.3 Stateless asynchronous interaction
	4.2.4 Stateful asynchronous interaction
	4.2.5 RPC interface style
	4.2.6 Document interface style
	4.2.7 Argument by value paradigm
	4.2.8 Argument by reference paradigm
	4.2.9 Distributed object architecture
	4.2.10 Message Oriented Architecture
	4.2.11 Service-oriented architecture
	4.2.12 Conclusions and recommendations

	4.3 Layer interaction classifications
	4.3.1 Interaction case a: client logic to client logic
	4.3.2 Interaction case b: client logic to presentation logic
	4.3.3 Interaction case c: client logic to business logic
	4.3.4 Interaction case d: presentation logic to presentation logic
	4.3.5 Interaction case e: presentation logic to business logic
	4.3.6 Interaction case f: business logic to business logic
	4.3.7 Interaction case g: business logic to resource
	4.3.8 Interaction case h: resource to resource
	4.3.9 Conclusion and recommendations

	4.4 Technical solution mapping
	4.4.1 Stateful synchronous integration solution candidates
	4.4.2 Stateless synchronous integration solution candidates
	4.4.3 Stateful asynchronous integration solution candidates
	4.4.4 Other potential candidate technical solutions (to be proven)
	4.4.5 Some last resource integration technologies

	Chapter 5. Scenario: Asynchronous
	5.1 Problem definition
	5.1.1 Description of the problem
	5.1.2 Considerations

	5.2 Solution model
	5.2.1 A solution to the problem
	5.2.2 Simple scenario details
	5.2.3 .NET consumer to WebSphere service provider
	5.2.4 WebSphere consumer to .NET service provider

	Chapter 6. Scenario: Synchronous stateful
	6.1 Problem definition
	6.1.1 Description of the problem
	6.1.2 Considerations
	6.1.3 Constraints
	6.1.4 Recommendations

	6.2 Solution model using the ActiveX Bridge
	6.2.1 A solution to the problem
	6.2.2 Simple scenario details

	6.3 Solution model using the Interface Tool for Java

	Chapter 7. Scenario: Synchronous stateless (WebSphere producer and .NET consumer)
	7.1 Problem definition
	7.1.1 Description of the problem
	7.1.2 Considerations

	7.2 Solution model
	7.2.1 A solution to the problem
	7.2.2 Service provider
	7.2.3 Service consumer

	7.3 Extended solution
	7.4 Recommendations

	Chapter 8. Scenario: Synchronous stateless (WebSphere consumer and .NET producer)
	8.1 Solution model
	8.1.1 A solution to the problem
	8.1.2 Service provider
	8.1.3 Service consumer
	8.1.4 Test

	8.2 Extended solution model

	Chapter 9. Scenario: Web interoperability
	9.1 Introduction
	9.2 Shared presentation components
	9.2.1 Configuring Microsoft IIS for shared presentation

	9.3 Session state interoperability
	9.3.1 Problem definition
	9.3.2 WebSphere Application Server session management
	9.3.3 Microsoft .NET session management
	9.3.4 Considerations
	9.3.5 Recommendations

	9.4 Data propagation
	9.4.1 Problem definition
	9.4.2 Description of the problem
	9.4.3 Considerations
	9.4.4 Solution model
	9.4.5 URL redirection implementation
	9.4.6 Form-based propagation implementation
	9.4.7 Recommendations

	9.5 Integrated security
	9.5.1 WebSphere security
	9.5.2 .NET security
	9.5.3 Integrating authentication
	9.5.4 Integrating authorization

	Part 3 Guidelines
	Chapter 10. Supporting technologies
	10.1 Web Services
	10.1.1 Technologies for Web Services

	10.2 Client applications
	10.2.1 Web browser
	10.2.2 J2EE clients
	10.2.3 Windows .NET clients

	10.3 Server pages
	10.3.1 Servlets and JSPs
	10.3.2 ASP.NET

	10.4 Distributed components
	10.4.1 EJBs
	10.4.2 .NET Remoting

	10.5 Database access
	10.5.1 EJBs
	10.5.2 JDBC
	10.5.3 ADO.NET

	10.6 Messaging middleware
	10.7 Back-end integration
	10.7.1 J2C
	10.7.2 .NET

	10.8 Other integration technologies
	10.8.1 ActiveX Bridge
	10.8.2 IBM Interface Tool for Java

	Chapter 11. Quality of service considerations
	11.1 Scalability
	11.1.1 WebSphere
	11.1.2 .NET

	11.2 Performance
	11.2.1 WebSphere
	11.2.2 .NET

	11.3 Availability
	11.3.1 WebSphere
	11.3.2 .NET

	11.4 Security
	11.4.1 WebSphere
	11.4.2 .NET

	11.5 Transactionality
	11.5.1 WebSphere
	11.5.2 .NET

	11.6 Manageability
	11.6.1 WebSphere
	11.6.2 .NET

	11.7 Maintainability
	11.7.1 WebSphere
	11.7.2 .NET

	11.8 Portability
	11.8.1 WebSphere
	11.8.2 .NET

	11.9 Web Services

	Part 4 Appendixes
	Appendix A. Lotus Domino and .NET coexistence
	A.1 Web Services integration
	A.1.1 Domino provider, .NET consumer
	A.1.2 .NET service provider, Domino service consumer

	A.2 Using the COM interface
	A.2.1 Domino as a COM server, .NET as a client

	Appendix B. Additional material
	Locating the Web material
	Using the Web material
	System requirements for downloading the Web material
	How to use the Web material

	Abbreviations and acronyms
	Related publications
	IBM Redbooks
	Other publications
	Online resources
	How to get IBM Redbooks
	Help from IBM

	Index
	Back cover

