

ibm.com/redbooks Redpaper

WebSphere
Security Fundamentalsamentals

Peter Kovari

IT security fundamentals

Supporting security
components for WebSphere

Security basics for
J2SE, J2EE, and
WebSphere

Front cover

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

WebSphere Security Fundamentals

April 2005

International Technical Support Organization

© Copyright International Business Machines Corporation 2005. All rights reserved.
Note to U.S. Government Users Restricted Rights -- Use, duplication or disclosure restricted by GSA ADP
Schedule Contract with IBM Corp.

First Edition (April 2005)

This edition applies to WebSphere Application Server V4, V5, V6

Note: Before using this information and the product it supports, read the information in
“Notices” on page v.

Contents

Notices . v
Trademarks . vi

Preface . vii
The team that wrote this Redpaper . vii
Become a published author . vii
Comments welcome. viii

Chapter 1. Security fundamentals . 1
1.1 Security . 2

1.1.1 Physical security . 2
1.1.2 Logical security . 3
1.1.3 Security policy . 3

1.2 Security fundamentals. 3
1.2.1 Authentication . 4
1.2.2 Authorization . 6
1.2.3 Secure communication . 8

1.3 Security in use. 9

Chapter 2. Supporting security components for WebSphere 11
2.1 User registry (or directory). 12
2.2 Authorization and authentication server . 12
2.3 Security reverse proxy server . 13
2.4 Public Key Infrastructure (PKI) . 13
2.5 Kerberos . 19
2.6 Firewall . 19

Chapter 3. Security fundamentals for J2SE, J2EE, and WebSphere 21
3.1 Introduction . 22
3.2 Java 2 security . 23
3.3 Basic cryptography . 30
3.4 Authentication . 31
3.5 Authorization . 31
3.6 Secure connection. 32
3.7 Security context. 32
3.8 Web security . 33

3.8.1 Web authentication mechanisms . 33
3.9 Security tools. 35

3.9.1 ikeyman. 35
© Copyright IBM Corp. 2005. All rights reserved. iii

3.9.2 J2SE 1.4 security tools . 43

Abbreviations and acronyms . 47

Related publications . 49
IBM Redbooks . 49
Online resources . 52
How to get IBM Redbooks . 53
Help from IBM . 53
iv WebSphere Security Fundamentals

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult
your local IBM representative for information on the products and services currently available in your area.
Any reference to an IBM product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product, program, or service that
does not infringe any IBM intellectual property right may be used instead. However, it is the user's
responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document.
The furnishing of this document does not give you any license to these patents. You can send license
inquiries, in writing, to:
IBM Director of Licensing, IBM Corporation, North Castle Drive Armonk, NY 10504-1785 U.S.A.

The following paragraph does not apply to the United Kingdom or any other country where such provisions
are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES
THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer
of express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made
to the information herein; these changes will be incorporated in new editions of the publication. IBM may
make improvements and/or changes in the product(s) and/or the program(s) described in this publication at
any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in any
manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of the
materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Information concerning non-IBM products was obtained from the suppliers of those products, their published
announcements or other publicly available sources. IBM has not tested those products and cannot confirm
the accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on
the capabilities of non-IBM products should be addressed to the suppliers of those products.

This information contains examples of data and reports used in daily business operations. To illustrate them
as completely as possible, the examples include the names of individuals, companies, brands, and products.
All of these names are fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:
This information contains sample application programs in source language, which illustrates programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs in
any form without payment to IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating platform for which the
sample programs are written. These examples have not been thoroughly tested under all conditions. IBM,
therefore, cannot guarantee or imply reliability, serviceability, or function of these programs. You may copy,
modify, and distribute these sample programs in any form without payment to IBM for the purposes of
developing, using, marketing, or distributing application programs conforming to IBM's application
programming interfaces.
© Copyright IBM Corp. 2005. All rights reserved. v

Trademarks
The following terms are trademarks of the International Business Machines Corporation in the United States,
other countries, or both:

Domino®
IBM®

Redbooks™
Redbooks (logo) ™

WebSphere®

The following terms are trademarks of other companies:

Java and all Java-based trademarks and logos are trademarks or registered trademarks of Sun
Microsystems, Inc. in the United States, other countries, or both.

Microsoft, Windows, and the Windows logo are trademarks of Microsoft Corporation in the United States,
other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Linux is a trademark of Linus Torvalds in the United States, other countries, or both.

Other company, product, and service names may be trademarks or service marks of others.
vi WebSphere Security Fundamentals

Preface

This IBM® Redpaper is an overview of IT security for WebSphere® products. Its
purpose is to provide basic general information about IT security and specific
details about WebSphere security. This can be used as a standalone paper
about basic security, or as an unofficial introduction to WebSphere V6 security
and future security-related Redbooks™.

Chapter 1, “Security fundamentals” discusses basic IT security without reference
to any product.

Chapter 2, “Supporting security components for WebSphere” starts introducing
IT components related to security without specifying product names.

Chapter 3, “Security fundamentals for J2SE, J2EE and WebSphere” goes into
detail about J2EE and IBM WebSphere security. It provides an overview of
security-related technologies and functions.

If you are not familiar with IT security in the Java™ 2 and WebSphere
environments, this paper should be a good start.

The team that wrote this Redpaper
This Redpaper was produced at the International Technical Support
Organization, Raleigh Center.

Peter Kovari is a WebSphere Specialist at the International Technical Support
Organization, Raleigh Center. He writes extensively about all areas of
WebSphere. His areas of expertise include e-business, e-commerce, security,
Internet technologies, and mobile computing. Before joining the ITSO, he worked
as an IT Specialist for IBM in Hungary.

Become a published author
Join us for a two- to six-week residency program! Help write an IBM Redbook
dealing with specific products or solutions, while getting hands-on experience
with leading-edge technologies. You'll team with IBM technical professionals,
Business Partners, and/or customers.
© Copyright IBM Corp. 2005. All rights reserved. vii

Your efforts will help increase product acceptance and customer satisfaction. As
a bonus, you'll develop a network of contacts in IBM development labs, and
increase your productivity and marketability.

Find out more about the residency program, browse the residency index, and
apply online at:

ibm.com/redbooks/residencies.html

Comments welcome
Your comments are important to us because we want our papers to be as helpful
as possible. Send us your comments about this Redpaper or other Redbooks in
one of the following ways:

� Use the online Contact us review redbook form found at:

ibm.com/redbooks

� Send your comments in an e-mail to:

redbook@us.ibm.com

� Mail your comments to:

IBM Corporation, International Technical Support Organization
Dept. HZ8 Building 662
P.O. Box 12195
Research Triangle Park, NC 27709-2195
viii WebSphere Security Fundamentals

http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/contacts.html

Chapter 1. Security fundamentals

This chapter introduces some of the security fundamentals that are related to
e-business applications in the e-business world.

This document is not intended to cover every aspect of security, or even every
aspect of e-business security. Rather, it is a short overview of security topics
related to WebSphere Application Server.

1

© Copyright IBM Corp. 2005. All rights reserved. 1

1.1 Security
As new business practices emerge, most enterprises are finding that their
existing security infrastructure is not capable of meeting the rapidly changing and
more rigorous demands of business over the Internet. The demands of network
security have now gone far beyond simply managing user accounts and
restricting access between internal and external networks. These demands now
require a sophisticated system with fine-grained access control to resources, yet
that is manageable enough to be tailored to protect systems from many types of
security threats.

Security is a vast topic; everything involves security to some extent, in a certain
format. There are two main areas that have to be discussed separately:

� Physical security
� Logical security

Systems must be protected both from outsiders and insiders. Not every intrusion
or attack is intentional; misuse of a system or improper administration can also
cause damage.

1.1.1 Physical security
Physical security means protection against physical actions. It involves every
physical element around:

� Any machine where the application is running
� The room where the machines are operating
� The building where the machines are installed
� The site where the company is located

The listed elements must be secured against intrusion and damage, whether it
be intentional or not.

Physical security also includes the protection of communication channels:

� Ground lines
� Wireless connections

The communication network must be protected against eavesdropping and
damage to the connection (such as cutting the line).

The subject of physical security extends far beyond the objective of this paper.
This short section is intended only as a reminder of the concept of physical
security.
2 WebSphere Security Fundamentals

1.1.2 Logical security
Logical security is related to particular IT solutions: the IT architecture and
applications, including the business processes.

Communication
Network communication must be protected not only on a physical level but on a
logical level as well. Most companies’ networks are connected to public
networks, making applications accessible from the outside world. Network-level
security must prevent unauthorized access.

Application
An application is secured on different levels. Security is involved from the very
beginning of the implementation, when the processes and flows are designed.

� Securing the resources

This implies protecting the resources on an application level and exercising
the security features of the runtime platform (authentication and
authorization).

� Implementing the business processes securely

The processes must be designed in a way that no weakness in logic can be
found.

1.1.3 Security policy
Security policies are guidelines for an organization; they can be part of a widely
accepted standard (ISO) or implemented by a certain organization or company.

Policies can define processes for different areas in an organization. Security
policies focus on security-related processes (for example, how to request a new
password, how to renew a password, and so on).

These guidelines are very important in implementing a robust security policy for
the whole system organization-wide.

1.2 Security fundamentals
This section discusses two fundamental security services that are also
supported by WebSphere Application Server:

� Authentication
� Authorization
 Chapter 1. Security fundamentals 3

1.2.1 Authentication
Authentication is the process of establishing whether a client is valid in a
particular context. A client can be an end user, a machine, or an application.

The authentication process involves gathering some unique information from the
client. Three major groups of secure authentication are used to gather this
unique information:

� Knowledge-based: user name and password, for example
� Key-based: physical keys, encryption keys, and key cards
� Biometric: fingerprints, voice patterns, and DNA

Other authentication mechanisms can combine these; an example is digital
certificates, in which key-based and knowledge-based authentication are
exercised.

Figure 1-1 Base authentication mechanisms

The following paragraphs discuss some of the authentication mechanisms that
are used in IT systems.

User name and password
User name and password are the most common method for authentication. The
user who wants to access the system logs on with a user name and a password,
which are compared to the values stored in the system.

Definition: A realm is a collection of users that are controlled by the same
authentication policy.

key-based

knowledge-based

biometric

digital certificates

hardware key

user name/password

retinal image

voice password

fingerprint

symmetric encryption

base
authentication
mechanisms
4 WebSphere Security Fundamentals

Physical keys
Physical keys are objects that can be used to prove the identity of the object
holder: the metal key that is used to unlock your computer, a hardware device
that is plugged into the computer to execute certain programs, or a smart card
with an embedded memory or microprocessor.

Biometric authentication
Biometric authentication is the use of physiological or behavioral characteristics
to verify the identity of an individual. Biometric authentication consists of
comparing the physical characteristics of an individual against the values of
those characteristics stored in a system.

Re-authentication
Re-authentication occurs when the user is required to authenticate again some
time after a successful authentication. Re-authentication might be used in any of
these cases:

� The user is trying to access a new application that does not belong to the
security domain where the user is already logged in, and there is no single
sign-on solution in place to avoid re-authentication.

� The time period for the user session expires after a certain time, so the user
has to re-authenticate to continue the existing session or to start a new one.

� The user needs to change identity or add a new identity (subject) to the
existing session.

Impersonation
Impersonation is when a subject (user or system) acts in behalf of another
subject. An existing identity can pick up an additional, new identity or switch to
another identity and use the new identity to present itself.

Delegation
Delegation is the ability to leave an intermediary to do the work initiated by a
client according to a delegation policy.

For example, in a distributed object environment, a client can request the method
of an object on server A. The method request results in invoking another method
of an object in server B. Server A performs the authentication of the identity of
the client and passes the request to server B. Server B assumes that the client
identity has been verified by server A and responds to that request as shown in
Figure 1-2 on page 6.
 Chapter 1. Security fundamentals 5

Figure 1-2 Delegation mechanism

Depending on the application environment, the intermediary can have one of the
following identities when making a request to another server:

Client identity The identity under which the client is making the request
to the intermediary

System identity The identity of the intermediary server

Specified identity The identity specified through configuration

Single Sign-On
Single Sign-On is a convenient function for environments with multiple secured
applications. Most of these applications usually require authentication, but they:

� May have different authentication mechanisms

� May have different user registries

� May require a different identity from the same user

To avoid another authentication during the same session, Single Sign-On takes
care of the further authentication steps on behalf of the user.

Single Sign-On can be a function supported on the application level or
application server level, or it can be an additional component in the security
infrastructure that takes care of authentication.

1.2.2 Authorization
Authorization is the process of checking whether the authenticated user has
access to the requested resource. There are two fundamental methods:

� Access control list
� Capability list
6 WebSphere Security Fundamentals

Access control list
Each resource has associated with it a list of users and what each can do with
the resource (for example: use, read, write, execute, delete, or create).

Usually, an access control list specifies a set of roles that are allowed to use a
particular resource. It also designates the people allowed to act in these roles.

For example, in a bank account object, we can have different methods (transfer,
deposit, getBalance, setInterest). The access right can be granted on the basis
of the roles of the users within the organization. A bank teller can have access to
the getBalance method but not to setBalance, while a manager can have access
to both methods.

Table 1-1 Example of a Role Access Control List

Capability list
Associated with each user is a list of resources and the corresponding privileges
held for the user.

In this case, the holder is given the right to perform the operation on a particular
resource.

In the previous example of the bank account object, the access right is granted to
the user if the resource is listed in the user’s capability list.

Table 1-2 Example of a capability list

Table 1-1 and Table 1-2 are very similar, but the rows and columns are switched.
Actually, this is the difference between the two approaches. We have two sets:
roles and resources. In the first case, roles are mapped to resources, and in the
second case resources are mapped to roles.

The access control list is exercised generally, because managing security for
certain resources is easier and more flexible than mapping resources to roles.

Resources Bank teller role Manager role

getBalance method yes yes

setBalance method no yes

Roles getBalance method setBalance method

Bank teller role yes no

Manager role yes yes
 Chapter 1. Security fundamentals 7

Role-based security
Roles are different levels of security that relate to a specific application. Different
employees have different roles, so the security access that each employee
requires to complete the tasks in a Web application are also different. In a
role-based authorization model, the roles for a given application are developed
as the application is developed. As a user base for the application is established,
one of three things happens:

� Users are mapped directly to specific security roles.

� Groups are formed, users are defined as members of a group, and the groups
are defined to specific security roles.

� A combination of user/group mapping to security roles is used to handle any
exceptions.

1.2.3 Secure communication
Secure communication protects transmitted data against eavesdropping. In a
secured communication, the data is encrypted during the transport.

The secured communication always starts with a “handshake” or contract. During
the handshake, the parties can agree on the nature and the details of the secure
communication, for example: authenticate each other and agree on a method to
use for encrypting the messages.

Note: There is a significant difference between encoding and encrypting.

Encoding is the process of transforming data into another form of
representation based on rules. These rules define the mapping between the
original character and their representation. The transformation is easily
reversible.

Encrypting is the process of transforming data into an entirely new set of data.
The transformation is based on complex algorithms to ensure that there is no
(or very little) correlation between the original data and the transformed data.
In an ideal situation, transformation is non-reversible; in reality it is very hard to
reverse.
8 WebSphere Security Fundamentals

1.3 Security in use
Security is a complex and diversified topic, so it is important to keep it simple.
Basic security areas include:

� Authentication / identification

Measures designed to protect against fraudulent transmission and imitative
communications by establishing the validity of transmission, message,
station, or individual.

� Access control

The prevention of improper use of a resource, including the use of a resource
in an unauthorized manner.

� Privacy / confidentiality

Assurance that information is not made available or disclosed to unauthorized
individuals, entities, or processes.

� Data integrity

The correctness of information, of the origin of the information, and of the
functioning of the system that processes it.

� Accountability / non-repudiation

Assurance that the actions of an entity may be traced uniquely to the entity.
This ensures that there is information to prove ownership of the transaction.

� Administration / configuration

Methods by which security policies are incorporated into the architecture and
the functionality that the system architecture needs to support.

� Assurance / monitoring

Confidence that an entity meets its security objectives; this is usually provided
through an intrusion detection system.

� Security management

Assurance that an entity meets its security management objectives,
processes, and procedures.

If you keep this list in mind during design and development, security will be well
implemented.
 Chapter 1. Security fundamentals 9

10 WebSphere Security Fundamentals

Chapter 2. Supporting security
components for WebSphere

This chapter is an introduction to the external (to the application server)
components that support WebSphere to improve security for the whole
environment. End-to-end security always includes more than the application
server with the applications. Various other components work with the application
server to provide security services for applications.

Some of the supporting, external components are discussed in this chapter.

2

© Copyright IBM Corp. 2005. All rights reserved. 11

2.1 User registry (or directory)
User registry is a key component for applications. It is responsible for holding
information about users, identities, and groups for security domains. There are
many different type of user registries available, including:

� LDAP (Lightweight Directory Access Protocol) server
� Database-based user registry
� Operating system’s user registry
� File-based user registry

The most common user registry today is the LDAP directory, or other user
registries supporting LDAP to query users (for example: Domino® directory).

User registries have different methods for organizing users in the registry.
Generally users and groups are mapped to some type of hierarchy in the user
registry, possibly following the company’s organizational structure.

2.2 Authorization and authentication server
The authorization and authentication server (security server) is a key component
in centralizing security in the company. The server can evaluate authentication
and authorization requests on behalf of the application servers. Application
servers have to externalize these security functions. In a proper environment the
application servers trust the security server and they do not even do user registry
lookups any more, leaving that to the security server.

Authentication is a relatively simple function to externalize. Most of the
authentication mechanisms are well defined for the different application servers.
Authentication is performed only a few times during a session, so externalizing
such a function should not have a significant impact on performance.

Authorization is a more complex function in the sense that different application
servers define authorization entries in different ways, and authorization can be
applied to many different components and actions defined on the components.
Centralizing such a function requires flexibility from the security server. An
authorization check is performed several times during a session, every time a
secured resource is accessed, so externalizing the function may make a
significant performance impact.
12 WebSphere Security Fundamentals

2.3 Security reverse proxy server
The security reverse proxy server resides between the Web clients and the Web
application server. This server’s responsibility is to intercept incoming calls from
the clients and perform authentication and authorization on behalf of the
application server running the Web application.

By acting as a single point of entry for the clients, this server increases security in
the environment. However, it can also be considered a bottleneck in the network
infrastructure. Security reverse proxy servers are usually high-performance
servers; or you can load-balance between a few of them for better performance.

2.4 Public Key Infrastructure (PKI)
PKI is closely related to cryptography. Although it seems complicated, it is not.
We do not explain the details or go into low-level mathematical algorithms here,
but you should understand the background involved.

Secret key cryptography
Secret key algorithms, which use one key to encrypt and decrypt the data, were
invented before public key algorithms.

Figure 2-1 Symmetric key encryption

Figure 2-1 illustrates the concept of symmetric key cryptography. The algorithms
that are used provide a great advantage: They are faster than public key
cryptography. They have a considerable disadvantage as well: The same key is
needed for encryption and decryption, and both parties must have the same
keys. In today’s cryptography, the secret keys do not belong to persons but to
communication sessions. At the beginning of a session, one of the parties
creates a session key and delivers it to the other party; they can then
communicate securely. At the end of the session, both parties delete the key and,
if they want to communicate again, must create another key.

The following section discusses how to secure the delivery of the session key.

Plain text Encryption Cipher text Decryption Plain text
 Chapter 2. Supporting security components for WebSphere 13

Public key cryptography
The first imperative of public key cryptography is the ability to deliver session
keys securely. It has many more benefits than secret key cryptography, as we
show in the following section.

Public key cryptography involves the use of different keys for encrypting and
decrypting functions. If you encrypt something with key 1, you can only decrypt it
with key 2, as shown in Figure 2-2.

Figure 2-2 Public key concept

This architecture allows the use of one of the keys as a private key. This means
that nobody can have access to this key except the owner. The other key can be
used as a public key. If a user wants to send an encrypted message to another
person, he or she will get the other person‘s public certificate, encrypt the
message and send it. The message can be decrypted only by the owner of the
private key.

Figure 2-3 Using private key cryptography

Plaintext Encryption Ciphertext Decryption Plaintext

Key 1 Key 2

Encrypted text
Plain text Plain text

Alice BobB B

Plain text
Plain text

Alice
Bob

AA
Encrypted text

1 3

public private

private public

2

14 WebSphere Security Fundamentals

Figure 2-3 on page 14 shows a sample communication between two persons:
Alice and Bob.

1. Alice wants to communicate with Bob but she does not want anybody to read
the messages. She will use Bob’s public key to encrypt the message.

2. Alice sends the message to Bob.

3. Bob uses his private key to decrypt the message.

If Bob wants to answer, he should use Alice’s public key for encryption.

This example is not suitable for the encryption of large amounts of data, because
public key algorithms are very slow. We use the secure key algorithms to transmit
large amounts of data. The session keys must be delivered with the public key
algorithm and will be used during the communication.

This is the concept that SSL follows to establish a secure communication.

Certificates
A certificate is a document from a trusted party that proves a person’s identity.
PKI certificates work in a similar way: If someone has a certificate from a trusted
party, we can make sure of his or her identity.

Signatures
Signatures also work as in everyday life. For signatures used in the PKI
environment, the information encrypted with a person’s (the sender) private key
is unique to this person. Anybody can decode the message, and the source will
be identified, because only one public key can open the message: the sender’s
public key. This message is almost good enough to be used for a digital
signature; the only problem is that we would like to sign documents, and an
encrypted document is too long to be a signature.

Signatures are not enough for identification. For example, when someone wants
to travel by air, a passport has to be shown as proof of identification. The
certificate, similar to a passport, is issued by a trusted authority. It should contain
information about the owner and should be signed by the authority.

The standard that defines the form of a certificate is called X.509. This standard
also defines the attributes of a certificate, for example: X.500 name, issuer’s
name, distinguished name, serial number, and so on.
 Chapter 2. Supporting security components for WebSphere 15

Elements of a certification authority system
A PKI system completes the tasks related to public key cryptography. These
tasks should be separate, meaning that a PKI system should have some
well-defined units to execute the different tasks. In some cases, the PKI
implementation must separate the different functions physically (for example, in a
commercial CA system). In this case, the elements listed next are located on
different servers.

The logical elements of a PKI system are:

� Certificate Authority (CA)
� Registration Authority (RA)
� Certificate Repository (CR)

Certificate Authority (CA)
The CA component is the heart of a PKI system; it provides the “stamp” to the
certificate. In some implementations, the CA component is issued with the
Registration Authority component. It stores its private key and can sign the
certificate requests with it. This private key should be kept in a very secure place.
If this key is corrupted, the whole certification tree will be unusable. This key can
be stored on separate hardware.

Registration Authority (RA)
This component is responsible for the registration process. It is an optional
component of a PKI system but, in most cases, it is implemented. The main RA
task is the verification of client requests.

Certificate Repository (CR)
This component is often called a certificate directory. The users of a PKI system
use the issued certificates to authenticate themselves. When someone receives
a signed message, the receiver checks the signature. If the signature was issued
by a trusted party, the message is considered a trusted message. Otherwise,
there is a problem. The certificate could have been revoked (for example, the
owner left the company), so it should not be considered trusted. This problem is
solved by publishing certificates in the certificate repository. When a user
receives a message with a certificate, the validity of the certificate can be
verified.

The list of revoked certificates is called Certificate Revocation List (CRL) and is
usually stored in the CR. The most common way to implement a CR is to use the
Lightweight Directory Access Protocol (LDAP) standard (RFC2587).
16 WebSphere Security Fundamentals

Certification process
Usually, there are two methods to issue certificates. The difference between the
processes is the location where the client’s private key will be generated.

� In the first case, the client key pair is generated on the client side (on the
client machine). The client creates a certificate request, which contains some
information about the client (public key, name, e-mail address, key usage,
some optional extensions, and so on). The request is signed with the private
key of the client and sent to the server. The server identifies the client before
issuing the certificate. The first step is to verify whether the signature at the
end of the request is valid. (The public key in the request can be used for
validation.) If no error is encountered, then either the certificate can be issued
or another client validation process can be started. The most secure method
of client validation is for the client to appear personally and certify themselves
at the authority location. If the client certification is successful, the certificate
for the public key is created with the desired key usage. The client can
download the certificate into his or her browser registry or onto a smart card.

� The other way to issue certificates is to execute the key generation process
on the server side. This means that private keys are created on the server
side. This solution presents some problems:

– Key generation requires a lot of computing power. There should be very
powerful computers applied as Certificate Authority (CA) machines or key
generation will be very slow (in case of multiple requests).

– The private key must be issued and sent to the client, creating a weak
point in the security.

In some situations, this method is better for issuing certificates. For example,
a research institute with a few hundred employees wants to make the
entrance of the building more secure and wants the computers to be used by
appropriate people. The company decides to use smart cards for solving both
problems. A PKI system can be implemented and every employee can get a
smart card with a certificate and a private key. Obviously, the company will not
establish a Web registration module for the employees (because of the fixed
and small number of certificates to issue), but it will create the keys and
certificates, install them on the cards, and issue the cards to the employees.
This process does not have any weak points, because the cards are given
personally to each person. Smart cards usually do not allow the exporting of
private keys, so they cannot be corrupted (unless the card is stolen).

Self-signed certificates
Self-signed certificates can be used in a trusted environment in which the two
parties do not need a third party to certify them. To ensure the trust between the
two parties, the certificates are exchanged between the two in a secure manner,
prior to any contact.
 Chapter 2. Supporting security components for WebSphere 17

Self-signed certificates are convenient in internal applications and intranet
environments. They are not sufficient when the parties cannot exchange
certificates in a secured, trusted manner, or when the communication happens
ad hoc between two parties who do not know about each other.

Infrastructure
A Public Key Infrastructure (PKI) system acts as a trusted third-party
authentication system, issuing digital certificates for the communication parties
(users and applications). Some of its tasks are:

� Issuing certificates
� Revoking certificates
� Renewal of certificates
� Suspension and resumption of certificates
� Management of issued certificates
� Issuing a list of revoked certificates
� Protection of the private key

Figure 2-4 shows three certification scenarios.

Figure 2-4 Simple certification scenarios

The depicted certification scenarios are:

� When User A wants to talk to User B, both of their certificates are issued and
signed by the same Certificate Authority (Organization A); they can trust each
other, and the secure communication is built based on the trust.

Secured communication

User A User B

Organization A
Certificate
Authority

Organization B
Certificate
Authority

Root A
Certificate
Authority

User CUser D

Organization C
Certificate
Authority

Root B
Certificate
Authority

cross-certification
18 WebSphere Security Fundamentals

� When User A or User B wants to talk to User C, their certificates come from
the same Root Certificate Authority (Root A); they can trust each other again.
This scenario shows the hierarchy of the certificates, where the certificate has
been signed by a chain of CAs. As long as the two parties have mutual
Certificate Authorities along the line, they can trust each other.

� When User D wants to talk to User A or User B or User C, their certification
paths are different. To resolve the problem, the two root Certificate Authorities
(Root A and Root B) can create a trust between themselves by setting up a
cross-certification. When the two parties have cross-certified CAs along the
path, they can trust each other.

2.5 Kerberos
Kerberos is a network authentication protocol. It is designed to provide strong
authentication for client/server applications by using secret-key cryptography.

“The Kerberos protocol uses strong cryptography so that a client can prove its
identity to a server (and vice versa) across an insecure network connection.
After a client and server have used Kerberos to prove their identity, they can
also encrypt all of their communications to assure privacy and data integrity
as they go about their business.” (from the MIT Kerberos Web site)

You can find more information about Kerberos at:

http://web.mit.edu/kerberos/www/

2.6 Firewall
Firewalls are key network infrastructure components in security. They have many
functions that help to separate network segments and provide services to
connect them.

By separating network segments, the communication can be controlled on the
protocol level between clients and servers.

A few security functions that firewalls can provide:

� Hide actual server names and addresses from outside connections.
� Filter communication based on originating addresses.
� Filter communication based on protocols.
� Authenticate connecting clients.

You can find numerous documents about firewalls on the Web.
 Chapter 2. Supporting security components for WebSphere 19

http://web.mit.edu/kerberos/www/

20 WebSphere Security Fundamentals

Chapter 3. Security fundamentals for
J2SE, J2EE, and WebSphere

This chapter is about security fundamentals in Java 2 Platform, Standard Edition
(J2SE), Java 2 Platform, Enterprise Edition (J2EE), and particularly IBM
WebSphere Application Server.

The purpose of this chapter is to give you a high-level overview about almost
everything that is related to security in the scope we defined in the title. We do
not cover everything in depth, but at least mention everything and give you a
reference for further research.

3

© Copyright IBM Corp. 2005. All rights reserved. 21

3.1 Introduction
This may have a strong influence on the WebSphere security configuration (that
is stored in the file system) and the overall application runtime security
environment.

Figure 3-1 WebSphere environment security layers

WebSphere Application Server security sits on top of operating system security
and the security features provided by other components, including the Java
language, as shown in Figure 3-1.

� Operating system security should be considered in order to protect sensitive
WebSphere configuration files and to authenticate users when the operating
system user registry is used for authentication. This is extremely important in
a distributed WebSphere environment when potentially different operating
systems and different user registries might be involved. Keeping users (and
22 WebSphere Security Fundamentals

their passwords) and groups in sync across many different machines might be
a problematic administration task.

� Standard Java security is provided through the Java Virtual Machine (JVM)
used by WebSphere and the Java security classes.

� Java 2 security enhances standard JVM security by introducing fine-grained
access, easily configurable security policy, extensible access control
structure, and security checks for all Java programs (including applets).

� Common Secure Interoperability (CSIv2) protocol adds additional security
features that enable interoperable authentication, delegation and privileges in
CORBA environment. It supports interoperability with EJB 2.0 specification
and can be used with SSL.

� J2EE security uses the security collaborator to enforce J2EE-based security
policies and support J2EE security APIs. APIs are accessed from WebSphere
applications to access security mechanisms and implement security policies.

WebSphere Application Server V5 security relies on and enhances all of these
layers. It implements security policy in a unified manner for both Web and EJB
resources.

You can find more information about Java-related security at:

http://www.ibm.com/developerworks/java/jdk/security/142/

3.2 Java 2 security
Earlier Java implementations, prior to Java V1.2, only had the sandbox model,
which provided a very restricted environment. With Java V1.2, a new security
model has been introduced. Figure 3-2 on page 24 shows the new security
model for Java V1.2.
 Chapter 3. Security fundamentals for J2SE, J2EE, and WebSphere 23

http://www.ibm.com/developerworks/java/jdk/security/142/

Figure 3-2 Java 2 platform security model

The new model is meant to provide the following security features for the JVM:

� Fine-grained access control: This was available in the earlier version using
programmatic access control security.

� Easy configuration of security policy: It also was available in previous
versions, and also used programmatic security.

� Easy extension for the access control structure: The new architecture allows
typed security permissions and provides automatic handling for them.

� Extension of security checks to all Java programs (both applications and
applets): Every Java code is under security control, which means that local
code is no longer trusted by default.

The fundamental concept and an important building block in system security is
the protection domain.

Definition: A domain can be scoped by the set of objects that are directly
accessible by a principal (an entity in the computer system to which
permissions are granted). Classes that have the same permissions but are
from different code sources belong to different domains.

A principal is an entity in the computer system to which permissions (and as a
result, accountability) are granted.

(From the Java 2 Platform Security Architecture V1.0 paper by Sun
Microsystems)

resources

JVM
sandbox

class loadersecurity policy

local or remote code (signed or not)

application

application

application
24 WebSphere Security Fundamentals

There are two distinct categories of protection domains:

� System domain
� Application domain

Figure 3-3 Protection domains

Protection domains are determined by the policy currently in effect. The Java
application environment maintains the mapping between code, their protection
domains, and their permissions.

Figure 3-4 Class-domain-permission mapping

Generally, a less-“powerful” domain cannot gain additional permissions as a
result of calling or being called by a more-powerful domain.

The doPrivileged method can be used to call a piece of trusted code to
temporarily enable access to more resources than are available directly to the
application. This method is capable of making a call to trusted code in a
programmatic way.

System Domain

application
1

application
2

application
n

Net I/O file I/O AWT

. . .

. . .

security policy

domain A permissionsa.class
b.class
c.class
d.class

domain B permissions

runtime
classes
 Chapter 3. Security fundamentals for J2SE, J2EE, and WebSphere 25

Security management
The security manager defines the outer boundaries of the Java sandbox. The
customizable security manager establishes custom security policies for an
application. The concrete SecurityManager provided with Java V1.2 enables you
to define your custom policy, not in Java code but in an ASCII file called the
policy file.

The security manager is not loaded automatically when an application runs. To
activate the manager, the user must specify this command-line argument for the
Java runtime:

-Djava.security.manager

A custom security manager class can be also specified in the command line:

-Djava.security.manager=com.mycompany.MySecurityManager

If nothing is specified, then the default security manager will be initialized for the
application.

Access control
The java.security.ProtectionDomain class represents a unit of protection within a
Java application environment and is typically associated with a concept of
principal.

The java.security.AccessController class is used for the following purposes:

� To decide whether access to a critical resource is allowed or denied, based on
the security policy currently in effect

� To mark code as being privileged

� To obtain a snapshot of the current calling context to support access-control
decisions from a different context

Any code that controls access to system resources should invoke
AccessControler methods if it wishes to use the specific security model and
access control algorithm utilized by these methods.

Security permissions
The permission classes represent access to system resources. The
java.security.Permission class is an abstract class and is subclassed to represent
specific accesses.

Permissions in Java V1.2 are:

� java.security.Permission

This abstract class is the ancestor of all permissions.
26 WebSphere Security Fundamentals

� java.security.PermissionCollection

This holds a collection of the same type of permissions (homogeneous).

� java.security.Permissions

This holds a collection of any type of permissions (heterogeneous).

� java.security.UnresolvedPermission

When the policy is initialized and the code that implements a particular
permission has not been loaded or defined in the Java application
environment, in this case the UnresolvedPermission holds the unresolved
permissions.

� java.security.UnresolvedPermissionCollection

This holds a collection of UnresolvedPermissions.

� java.io.FilePermission

This holds permission definitions for file resources. Actions on a file can be
read, write, delete, execute.

� java.security.SocketPermission

This permission represents access to network sockets; actions on a socket
can be: accept, connect, listen, resolve.

� java.security.BasicPermission

This extends the Permission class and can be used as the base class for
other permissions.

� java.util.PropertyPermission

This class targets the Java properties as set in various property files; actions
can be read and write.

� java.lang.RuntimePermission

The target for this permission can be represented by any string and there is
no action associated with the targets.

� java.awt.AWTPermission

Similar to the previous permission, but it is related to targets in the Abstract
Window Toolkit (AWT).

� java.net.NetPermission

This controls the Net-related targets; no actions associated.

� java.lang.reflect.ReflectPermission

This is a Permission class for reflective operations. It has no actions; it works
like the RuntimePermission.
 Chapter 3. Security fundamentals for J2SE, J2EE, and WebSphere 27

� java.io.SerlializablePermission

This controls the serialization related targets; no actions associated.

� java.security.SecurityPermission

This controls access to security-related objects; no actions associated.

� java.security.AllPermission

This permission implies all permissions.

Policy files
The policy can be specified within one or more policy configuration files that
indicate what permissions are allowed for codes from specified code sources.

The key store can be defined according to the following grammar:

keystore “keystore_URL”, “keystore_type”;

A grant entry can be defined according to the following grammar:

grant [SignedBy “signer_names”] [, CodeBase “URL”] {
permission permission_class_name [“target_name”] [, “action”]

[,SignedBy “signer names”];
...

};

Each grant entry consists of a CodeSource and its permissions, where a
CodeSource consists of a URL and a set of certificates and the grant entry
includes a URL and a list of signer names.

Property expansion is possible in the policy files and in the security properties
file.

Example 3-1 Sample policy file

keystore “c:\keystores\mykey.jks”, “jks”

grant codeBase “http://java.sun.com/*“, signedBy “WebDeveloper” {
permission java.io.FilePermission “/files/*”, “read”;
permission java.io.FilePermission “${user.home}”, “read,write”;

}

Definition: A policy configuration file essentially contains a list of entries. It
may contain a key store entry, and contains zero or more grant entries.
28 WebSphere Security Fundamentals

When the JVM loads a new class, the following algorithm is used to check the
policy settings for that particular class:

1. Match the public keys, if code is signed.

2. If a key is not recognized in the policy, ignore the key. If every key is ignored,
treat the code as unsigned.

3. If the keys are matched or no signer was specified, try to match all URLs in
the policy for the keys.

4. If either key or URL is not matched, use the built-in default permission, which
is the original sandbox permission.

Policy files in runtime
The following list shows how the policy files can be specified for a Java runtime
and where those policy files are located:

� System policy file:

{java.home}/lib/security/java.policy

� User policy file:

{user.home}/.java.policy

� Policy file locations are also specified in the security properties file:

{java.home}/lib/security/java.security

� You can specify an additional or different policy file when invoking execution of
an application using the appropriate command line arguments; for example:

java -Djava.security.manager -Djava.security.policy=MyPolicyURL
MyApplication

When the policy file is specified using double equals, the specified policy file
will be used exclusively; for example:

-Djava.security.policy==MyOnlyPolicyURL

Security exceptions
The following exceptions ship with the Java V1.2 SDK:

� java.security.SecurityException

This exception and its subclasses should be runtime exceptions (unchecked,
not declared) that are likely to cause the execution of a program to stop. Such
an exception is thrown when a security violation is detected (for example,
when trying to access an unauthorized resource).
 Chapter 3. Security fundamentals for J2SE, J2EE, and WebSphere 29

� java.security.GeneralSecurityException

This is a subclass of java.lang.Exception (must be declared or caught) that is
thrown in other cases. Such an exception is thrown when a security-related
(but not vital) problem is detected, such as passing an invalid key.

Secure class loading
Dynamic class loading is one of the strengths of the Java platform because it
provides the ability to install components at runtime. It is also critical in providing
security because the class loader is responsible for locating and fetching the
class file, consulting the security policy, and defining the class object with the
appropriate permissions.

The java.security.SecureClassLoader is a subclass and an implementation of the
abstract java.lang.ClassLoader class. Other classloaders subclass the
SecureClassLoader to provide different class-loading facilities for various
applications.

Debugging security
Use the -Djava.security.debug=access,failure argument in the virtual machine.
This flag dumps the names of failing permission checks.

For example: Start with minimal security permissions, then run a test and check
which permissions are failing. Add the necessary permissions to the policy file,
then run your test again for re-checking. Repeat these steps until you have set all
of the necessary permissions. This only helps you to identify the permissions you
have to set; it does not help to find the right settings for the permissions.

For more about Java 2 security, refer to the official Java Sun Web site at:

http://java.sun.com/security/index.jsp

3.3 Basic cryptography
J2SE V1.4 provides basic cryptography functions and API for developers. With
the cryptography API, developers can encrypt and decrypt information
programmatically in their applications.

Java Cryptography Extension (JCE)
The JCE offers a framework and implementations for encryption, key generation
and key agreement, and algorithms for Message Authentication Code (MAC). It
supports encryption through symmetric, asymmetric, block, and stream ciphers,
and supports secure streams and sealed objects. JCE is a supplement to the
30 WebSphere Security Fundamentals

http://java.sun.com/security/index.jsp

Java 2 platform, which already has interfaces and implementations of message
digests and digital signatures.

You can find more information about JCE at:

http://java.sun.com/products/jce/

3.4 Authentication
J2SE V1.4 provides authentication services. Programmers can use the service to
implement authentication for their applications, or use the SPI to extend the
existing service with new modules and functions.

Java Authentication and Authorization Service (JAAS)
JAAS provides the ability to enforce access controls based on who runs an
application. Traditionally, Java 2 provided codesource-based access controls
(access controls based on where the code originated and who signed it), but
lacked the ability to enforce access controls based on who ran the code.

You can find more information about JAAS at:

http://java.sun.com/products/jaas/

3.5 Authorization
JAAS also provides authorization services on the J2SE level for programmers
and for applications. The Java Authorization Contract for Containers (Java ACC)
is a specification for externalizing authorization decisions and delegating them
from the container to an external application.

Java ACC
The Java ACC specification defines a contract between J2EE containers and
authorization policy modules such that container authorization functionality can
be provided as appropriate to suit the operational environment. It defines how
external authorization providers are to be interfaced with J2EE containers.

You can find more information about JACC at the following URL:

http://java.sun.com/j2ee/javaacc/index.html
 Chapter 3. Security fundamentals for J2SE, J2EE, and WebSphere 31

http://java.sun.com/products/jce/
http://java.sun.com/products/jaas/
http://java.sun.com/j2ee/javaacc/index.html

3.6 Secure connection
JSSE (Java Secure Socket Extension) is part of J2SE. It provides an API that
developers can use to set up secure connection for the network transport to
secure communication protocols.

JSSE
The JSSE, a Java package, enables secure Internet communications by
implementing a Java version of SSL (Secure Sockets Layer) and TLS (Transport
Layer Security) protocols. It also is involved with data encryption, server
authentication, message integrity, and optional client authentication.

You can find information about JSSE at:

http://java.sun.com/products/jsse/

3.7 Security context
The APIs supporting authentication, authorization, and secure communication
require additional APIs to handle and maintain security-related objects and
contexts.

Certification Path API
The Java Certification Path defines a set of classes and interfaces for creating,
building, and validating digital certification paths. A digital certificate is a data
structure of the binding between a subject and a public key signed by a
Certification Authority (CA).

You can find more information about Certificate Path API at:

http://java.sun.com/j2se/1.4.2/docs/guide/security/certpath/CertPathProgGuide.h
tml

Java GSS-API
With JGSS (Generic Security Services) messages can be exchanged securely
between applications. The Java GSS-API holds Java bindings for the Generic
Security Services Application Program Interface (GSS-API), which is defined in
RFC 2853. Application programmers use GSS-API for uniform access to security
services on a variety of underlying security mechanisms, including Kerberos.

You can find more about Java GSS-API at:

http://java.sun.com/j2se/1.4.2/docs/guide/security/jgss/tutorials/index.html
32 WebSphere Security Fundamentals

http://java.sun.com/products/jsse/
http://java.sun.com/j2se/1.4.2/docs/guide/security/certpath/CertPathProgGuide.html
http://java.sun.com/j2se/1.4.2/docs/guide/security/jgss/tutorials/index.html

You can find information about the Generic Security Services Application
Program Interface (GSS-API) in the RFC 2853 at:

http://www.ietf.org/rfc/rfc2853.txt

3.8 Web security
We discuss a few aspects of Web security in this section. Some Web-related
security functions and mechanisms are so common that they deserve to be
discussed here.

3.8.1 Web authentication mechanisms
Web servers and application servers support numerous different authentication
methods of retrieving the user’s identity. Web clients, including numerous
browser and Web service clients, also support different authentication
mechanisms to provide the user’s identity to the server. This section discusses
the most common authentication mechanisms available today in Web servers
and clients.

Basic authentication
Basic authentication is the fundamental authentication method. When the server
requests user authentication, the client sends a user name and password
encoded in the HTTP header (no encryption). After initial authentication, the Web
client keeps sending the user name and password until the end of the session.

Digest
Basic authentication is a vulnerable mechanism and is not safe. With the digest
mechanism, the client only provides a digest value (an MD5 checksum by
default) of the user name, password, requested URI, and HTTP method to the
server. For more information, read RFC 2069 at:

http://www.ietf.org/rfc/rfc2069.txt

Form
Form-based logon is a popular method for the logon process. This mechanism
uses the standard HTTP POST method to send logon information to the
application server. Every application server has its own implementation and
naming constraints for the fields and for the URI to submit to. It is a fairly secure
method if the logon information is sent over a secured HTTPS connection.
 Chapter 3. Security fundamentals for J2SE, J2EE, and WebSphere 33

http://www.ietf.org/rfc/rfc2853.txt
http://www.ietf.org/rfc/rfc2069.txt

Certificate-based authentication
User certificates can be stored on the client side. Most browsers have the
capability to store and present certificates when required. Besides the encryption
keys, certificates also store user information that can uniquely identify a subject.
Application servers can extract the user information from certificates and use it to
authenticate the user.

NTLM
NTLM is an authentication protocol used in various Microsoft® network
protocols. It follows a challenge-response mechanism for authentication. A few
Web browsers support this mechanism. Explaining the protocol and how it is
used for authentication is beyond the scope of this paper, but you can find
numerous documents on the Web to find out the details.

SPNEGO
Simple and Protected GSS-API Negotiation Mechanism (SPNEGO) is a
negotiation protocol used for authentication, defined in RFC 2478. SPNEGO
enables Web clients to use the Kerberos authentication mechanism over HTTP
by wrapping the Kerberos token inside an SPNEGO token. Because the
Kerberos authentication mechanism is a multi-phase interaction, SPNEGO also
defines a negotiation protocol for authentication. Only a few Web browsers and
Web servers support SPNEGO.

You can find the first of a series of three articles about SPNEGO at:

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnsecure/html/
http-sso-1.asp

Single Sign-On
Although Single Sign-On is not an authentication mechanism, it is an integral
part of the logon process on the Web. Web clients might access many different
Web applications during a session in a single security domain (such as one
company or one business). Every time the user accesses a new application, the
system must identify the user. If there is no mechanism in place to address this
process, the user has to authenticate every single time. Single Sign-On is a
mechanism that makes logon convenient and prevents users from having to
authenticate more than once in the same security domain.

Some of the many Single Sign-On mechanisms for Web applications include:

� LTPA token (IBM proprietary security token)
� SPNEGO, which uses Kerberos tokens in HTTP
� Security reverse proxy server, such as WebSEAL
34 WebSphere Security Fundamentals

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnsecure/html/http-sso-1.asp

3.9 Security tools
SSL relies on the existence of digital certificates. A digital certificate reveals
information about its owner, such as identity. During the initialization of an SSL
connection, the server must present its certificate to the client in order for the
client to determine the server’s identity. The client may also present the server
with its own certificate for the server to determine the client’s identity. Therefore,
SSL is a means for propagating identity between components.

3.9.1 ikeyman
ikeyman is the primary tool from IBM for managing key stores.

Changing the supported key store formats
The ikeyman that is installed on your system does not have all of the necessary
key store formats enabled by default. The reason is that the supported key store
types are defined in the Java runtime. By default these key stores are available:

� JKS
� JCEKS
� PKCS12

Use the KDB (CMS) type with IBM HTTP Server. You can easily enable this type
of key store by simply editing the java.security file under the
<IHS_home>/_jvm/jre/lib/security directory. Find the part of the file where the
security.provider items are listed, and add this line at the end of the list:

security.provider.6=com.ibm.spi.IBMCMSProvider

Note that the number has to be the next available number in the list.

Note: The ikeyman used in this section, ikeyman version 7.0.3.7, is shipped
with WebSphere Application Server V6.
 Chapter 3. Security fundamentals for J2SE, J2EE, and WebSphere 35

Start ikeyman
Use a command line to start ikeyman from either WebSphere’s bin directory or
IBM HTTP Server’s bin directory. Look for the ikeyman executable file. After
starting the utility, you should find a GUI application on your desktop.

Figure 3-5 ikeyman started on Red Hat Linux®

Create a new key store
The first step is to create a new key store:

1. Select Key Database File → New from the menu to open a new dialog.

2. Define the key database type and the file name.

You should have a directory where you store the key store files for your
applications. WebSphere Application Server stores the keys under the
<WebSphere_root>/etc directory. IBM HTTP Server does not have a specific
directory.
36 WebSphere Security Fundamentals

3. Click OK.

The key store has a set of public certificates already inserted for your
convenience. You can find them under the Signer Certificates section. The
certificates are from a few major commercial Certificate Authorities, including
VeriSign, Entrust, and Thawte.

Managing a self-signed certificate
ikeyman is capable of managing self-signed certificates. You can easily generate
the private and public key pairs yourself and export the public certificate so you
can use it with other peers:

1. Make sure you have followed the steps from the previous section, “Create a
new key store” on page 36, to create a new key store.

2. Select Create → New Self-Signed Certificate to open a new dialog.

3. Fill out the information to create your certificate.

Figure 3-6 Creating a new Self-signed certificate

4. Click OK.

You will see the new item in ikeyman under the Personal Certificates section.
 Chapter 3. Security fundamentals for J2SE, J2EE, and WebSphere 37

To use self-signed certificates between parties, you have to exchange the public
certificates. (See “Exchanging public certificates” on page 39.)

Managing a real (non-Self-Signed) certificate
ikeyman can also manage real (non-self-signed) certificates. You can import and
export real certificates, and use the tool to generate a certificate request to send
to a Certificate Authority.

1. Make sure you have followed the steps in “Create a new key store” on
page 36, to create a new key store.

2. Select Create → New Certificate Request to open a new dialog.

3. Enter the appropriate information. Note that you have to provide a file location
where the certification request will be stored. Later you will have to send this
file or the content to the Certificate Authority.

Figure 3-7 Creating a new certificate request

4. Click OK.

The new item is shown in ikeyman under the Personal Certificate Requests
section. Meanwhile, a new certificate request file has been generated at the
specified location.

5. Use the certificate request file to apply for a certificate at a Certificate
Authority. This is a short and easy process that you can do it over the Internet.
38 WebSphere Security Fundamentals

The result is either a file or a piece of encoded text that you copy into a file (for
example: response.arm).

6. When the file is available, switch to the Personal Certificates section in
ikeyman, then click Receive, and a new dialog opens.

7. Enter the location of the file that holds the response from the Certificate
Authority and click OK.

8. ikeyman matches up the request entry and the response, removing the
request and inserting a new personal certificate. Select the item and click
View/Edit to see the details of the signer Certificate Authority under the
Issued by section.

Close the key store file
To start using the key, you have to close the key store or close ikeyman.

Best practice for key stores
Key stores can hold multiple key and certificate entries in one file. WebSphere
distinguishes two different key stores when configuring security:

� Key store

You keep your private keys in the key store. These keys are either self-signed
or issued by a Certificate Authority.

� Trust store

The trust store keeps the public key of your own key pair and the public
certificates of the parties you trust.

It is wise to keep the two different key stores and keys and certificates separate.
After you have issued or received your own key pair, store the private key locked
with a password and never open it again. The trust store might be changed
occasionally to add a new certificate you trust.

Exchanging public certificates
This section provides details and step-by-step instructions for exchanging public
certificates between two key stores or trust (certificate) stores. You must perform
the certificate exchange when you want to set up trust between two parties
based on certificates. Usually you use this process with self-signed certificates
because real certificates issued by well-known Certificate Authorities are already
included in the key and trust stores.
 Chapter 3. Security fundamentals for J2SE, J2EE, and WebSphere 39

WebSphere Application Server demo key stores
WebSphere Application Server provides a set of certificates that may be used for
testing purposes. The identities in the certificates are generic and the expiration
dates are set artificially low. This section describes the process for creating
digital certificates tailored for use in a production system.

WebSphere supports the concept of two types of key store: a key file and a trust
file. A key file contains a collection of certificates and the associated private key
for each certificate. A server manages at least one key file, although a client may
also manage one. A trust file contains a collection of certificates that are
considered trustworthy and against which the presented certificate will be
matched during an SSL connection initiation in order to assure identity. A client
typically manages at least one trust file, although a server may also manage one
(see Figure 3-8).

Figure 3-8 Correlation between server and client key stores

This demonstrates how the two types of key store may be used, but remember
that it is also possible to combine the key and trust files. WebSphere provides the
following key stores in the <WebSphere_root>/profiles/<server_profile>/etc
directory.

You can see that the public certificates are shared between the two parties’ key
stores. The server’s public certificate from the key store is imported into the
client’s trust store. The client’s public certificate from the key store is imported
into the server’s trust store. This last one is required for scenarios where mutual
authentication is required.

WebSphere V5.0 Client

Signing CA

Private
Key

Private
Key

Key File

Signing CA

Private
Key

Public
Key

Signing CASigning CA

Trust File

Signing CA

Private
Key

Public
Key

WebSphere V5.0 Server

Signing CA

Key File

Signing CA

Private
Key

Private
Key

Signing CA

Trust File

Public
Key

Public
Key
40 WebSphere Security Fundamentals

Table 3-1 WebSphere default key stores

The key store type in this case is Java Key Store (JKS), a format that is
supported by both WebSphere and the supplied key generation utility, ikeyman.
This utility is used in the next section to generate a new certificate.

You can open the demo key store files and investigate the contents or export the
certificates yourself. The password for the demo key stores is WebAS (case
sensitive).

Exchanging certificates in ikeyman
This section provides details about exchanging public certificates between two
parties, for example, between EJB client and EJB container, Web server plug-in
and WebSphere Web container, or Web browser client and Web server.

We assume that there are four key store files, similar to the demo key files
presented in the previous section. We follow the practice of using two key stores.

� ServerKey.jsk for storing the private keys for the server.
� ServerTrust.jsk for storing the public certificate for the server keys.
� ClientKey.jks for storing the private keys for the client.
� ClientTrust.jsk for storing the public certificate for the client keys.

Whether the certificates are real or self-signed does not matter in this case. We
also use .jks key stores here, but the same method can be applied to other type
of key stores too, such as CMS (.kdb) key database.

1. Export the public certificate from the server trust store:

a. Start ikeyman, and open the ServerTrust.jks file.

b. Switch to the Signer Certificates section, then select the XYZ server
public certificate alias.

c. Click Extract to export the certificate. Provide the details for saving the
certificate, for example: /tmp/exchange/xyzserverpublic.arm and use the
data type Base64 encoded ASCII data.

File Description

DummyServerKeyFile.jks Server-based key file

DummyServerTrustFile.jks Server-based trust file

DummyClientKeyFile.jks Client-based key file

DummyServerTrustFile.jks Client-based trust file
 Chapter 3. Security fundamentals for J2SE, J2EE, and WebSphere 41

2. Import the server’s public certificate into the client’s trust store:

a. Open the ClientTrust.jks file in ikeyman. You may have to start ikeyman
on the client machine if the trust store is not distributed from the server.

b. Switch to the Signer Certificates section, then click Add to import the
certificate.

c. Browse for the xyzserverpublic.arm file that you exported previously.
After clicking OK, provide a label for the new entry (alias), for example: xyz
server public. The new certificate should appear in ikeyman.

You may have to move the exported certificate file if the key and trust
stores are not on the same machines.

d. Close ikeyman.

3. At this point, we have set up the certificates for one-way authentication
(server authentication). We need to import the client’s public certificate to the
server’s trust store for mutual authentication scenarios, where the client also
has to authenticate itself. First, export the client’s public certificate:

a. Start ikeyman, and open the ClientTrust.jks file.

b. Switch to the Signer Certificates section, then select the ABC client
public certificate alias.

c. Click Extract to export the certificate. Provide the details for saving the
certificate, for example: /tmp/exchange/abcclientpublic.arm and use the
data type Base64 encoded ASCII data.

4. After exporting the client’s certificate, we can import it to the server’s trust
store:

a. Open the ServerTrust.jks file in ikeyman. You may have to start ikeyman
on the server machine if the trust store is not distributed from the server.

b. Switch to the Signer Certificates section, then click Add to import the
certificate.

c. Browse for the abcclientpublic.arm file that you exported previously. After
clicking OK, provide a label for the new entry (alias), for example: abc
client public. The new certificate should appear in ikeyman.

You may have to move the exported certificate file if the key and trust
stores are not on the same machines.

d. Close ikeyman.

5. Make sure you delete the files you used during the exchange.

The certificates in the key and trust store should look similar to Figure 3-8 on
page 40 with different names.
42 WebSphere Security Fundamentals

At this point, both server and client know about each other’s public certificates,
they can authenticate each other, and they can start exchanging information
securely.

Exchanging certificates between non-identical key stores
The previous section described how to exchange public certificates between two
identical JKS key stores. You can also exchange certificates between two
non-identical key stores, such as JKS and KDB. The steps have minor
differences from those we just described, but the concept is exactly the same.

3.9.2 J2SE 1.4 security tools
The Java 2 Standard Edition package also provides basic security tools. These
tools are explained in this section.

keytool
keytool is a command line tool to manage key stores and associated certificate
chains. The main user of the tool is the end user. keytool is the J2SE equivalent
of the ikeyman IBM utility, but keytool is a command line utility and has no GUI.

Figure 3-9 is a representation of a key store file with all of the components.

Figure 3-9 Key store for use with private entries
 Chapter 3. Security fundamentals for J2SE, J2EE, and WebSphere 43

Figure 3-10 shows a key store that holds public certificates (a trust store).

Figure 3-10 Key store for use with public entries

For more information about the keytool application for UNIX® systems, refer to:

http://java.sun.com/j2se/1.4.2/docs/tooldocs/solaris/keytool.html

For information about the keytool application for Windows® systems, visit:

http://java.sun.com/j2se/1.4.2/docs/tooldocs/windows/keytool.html
44 WebSphere Security Fundamentals

http://java.sun.com/j2se/1.4.2/docs/tooldocs/solaris/keytool.html
http://java.sun.com/j2se/1.4.2/docs/tooldocs/windows/keytool.html

jarsigner
The jarsigner tool can generate and verify signatures for Java archives (JAR).
Developers can sign their packages and distribute them in a trusted environment.
Figure 3-10 on page 44 shows the equation of creating a signed .jar.

Figure 3-11 The components you will need to sign a .jar

You must have a key store with private keys and certificates to sign a .jar file. The
resulting .jar holds the original content and a few extra elements, including:

� A fingerprint of the content to avoid changing it
� A certificate chain that identifies the original signer

For more information about the jarsigner application for UNIX systems, refer to:

http://java.sun.com/j2se/1.4.2/docs/tooldocs/solaris/jarsigner.html

For more information about the jarsigner application for Windows systems, see:

http://java.sun.com/j2se/1.4.2/docs/tooldocs/windows/jarsigner.html

policytool
The policytool application is a GUI for editing policy files for the Java runtime.

For more information about the policytool application for UNIX systems, refer to:

http://java.sun.com/j2se/1.4.2/docs/tooldocs/solaris/policytool.html

For more information about the policytool application for Windows systems, visit:

http://java.sun.com/j2se/1.4.2/docs/tooldocs/windows/policytool.html
 Chapter 3. Security fundamentals for J2SE, J2EE, and WebSphere 45

http://java.sun.com/j2se/1.4.2/docs/tooldocs/solaris/jarsigner.html
http://java.sun.com/j2se/1.4.2/docs/tooldocs/windows/jarsigner.html
http://java.sun.com/j2se/1.4.2/docs/tooldocs/solaris/policytool.html
http://java.sun.com/j2se/1.4.2/docs/tooldocs/windows/policytool.html

Kerberos tools
Kerberos requires a few tools to manage the infrastructure on end-user systems.
Three utility tools are provided:

� kinit helps to obtain Kerberos ticket-granting tickets (TGT) and cache them
on the system.

For more information for UNIX systems, refer to:

http://java.sun.com/j2se/1.4.2/docs/tooldocs/linux/kinit.html

For more information for Windows systems, see:

http://java.sun.com/j2se/1.4.2/docs/tooldocs/windows/kinit.html

� klist is a utility that can list the Kerberos entries in the cache or in the key
table on the local system.

For more information for UNIX systems, refer to:

http://java.sun.com/j2se/1.4.2/docs/tooldocs/linux/klist.html

For more information for Windows systems, see:

http://java.sun.com/j2se/1.4.2/docs/tooldocs/windows/klist.html

� ktab manages the Kerberos entries in the key table.

For more information for UNIX systems, refer to:

http://java.sun.com/j2se/1.4.2/docs/tooldocs/linux/ktab.html

For more information for Windows systems, see:

http://java.sun.com/j2se/1.4.2/docs/tooldocs/windows/ktab.html
46 WebSphere Security Fundamentals

http://java.sun.com/j2se/1.4.2/docs/tooldocs/linux/kinit.html
http://java.sun.com/j2se/1.4.2/docs/tooldocs/windows/kinit.html
http://java.sun.com/j2se/1.4.2/docs/tooldocs/linux/klist.html
http://java.sun.com/j2se/1.4.2/docs/tooldocs/windows/klist.html
http://java.sun.com/j2se/1.4.2/docs/tooldocs/linux/ktab.html
http://java.sun.com/j2se/1.4.2/docs/tooldocs/windows/ktab.html

acronyms
ACL Access Control List

CA Certificate Authority

CR Certificate Repository

CRL Certificate Revocation List

CSIv2 Common Secure
Interoperability, Version 2

GSS-API Generic Security Services
Application Program Interface

GUI Graphical User Interface

HTTP Hypertext Transport Protocol

IBM International Business
Machines Corporation

IHS IBM HTTP Server

IIOP Internet Inter-ORB Protocol

ITSO International Technical
Support Organization

J2EE Java 2 Platform, Enterprise
Edition

J2SE Java 2 Platform, Standard
Edition

JAAS Java Authentication and
Authorization Service

JACC Java Authorization Contract
for Containers

JAR Java archives

JCE Java Cryptography Extension

JKS Java Key Store

JSSE Java Secure Socket
Extension

LDAP Lightweight Directory Access
Protocol

LTPA Lightweight Third-Party
Authentication

ORB Object Request Broker

PKI Public Key Infrastructure

Abbreviations and
© Copyright IBM Corp. 2005. All rights reserved.
RA Registration Authority

RFC Request For Comments

SDK Software Development Kit

SPNEGO Simple and Protected
GSS-API Negotiation
Mechanism

SRPS Security Reverse Proxy
Server

URL Unified Resource Locator

VM Virtual Machine
 47

48 WebSphere Security Fundamentals

Related publications

The publications listed in this section are considered particularly suitable for a
more detailed discussion of the topics covered in this Redpaper.

IBM Redbooks
For information about ordering these publications, see “How to get IBM
Redbooks” on page 53. Note that some of the documents referenced here may
be available in softcopy only.

� A Secure Portal Using WebSphere Portal V5 and Tivoli Access Manager
V4.1, SG24-6077

http://www.redbooks.ibm.com/abstracts/sg246077.html

� AIX 5L Version 5.2 Security Supplement, SG24-6066

http://www.redbooks.ibm.com/abstracts/sg246066.html

� Deploying a Secure Portal Solution on Linux Using WebSphere Portal V5.0.2
and Tivoli Access Manager V5.1, REDP-9121

http://www.redbooks.ibm.com/abstracts/redp9121.html

� Develop and Deploy a Secure Portal Solution Using WebSphere Portal V5
and Tivoli Access Manager V5.1, SG24-6325

http://www.redbooks.ibm.com/abstracts/sg246325.html

� Enterprise Security Architecture Using IBM Tivoli Security Solutions,
SG24-6014

http://www.redbooks.ibm.com/abstracts/sg246014.html

� Federated Identity Management with IBM Tivoli Security Solutions,
SG24-6394

http://www.redbooks.ibm.com/abstracts/sg246394.html

� IBM WebSphere Everyplace Connection Manager Version 5 Handbook,
SG24-7049

http://www.redbooks.ibm.com/abstracts/sg247049.html

� IBM WebSphere V5.0 Security WebSphere Handbook Series, SG24-6573

http://www.redbooks.ibm.com/abstracts/sg246573.html
© Copyright IBM Corp. 2005. All rights reserved. 49

http://www.redbooks.ibm.com/abstracts/redp9121.html
http://www.redbooks.ibm.com/abstracts/sg246077.html
http://www.redbooks.ibm.com/abstracts/sg246394.html
http://www.redbooks.ibm.com/abstracts/sg246325.html
http://www.redbooks.ibm.com/abstracts/sg246014.html
http://www.redbooks.ibm.com/abstracts/sg247049.html
http://www.redbooks.ibm.com/abstracts/sg246573.html
http://www.redbooks.ibm.com/abstracts/sg246066.html

� Integrated Identity Management using IBM Tivoli Security Solutions,
SG24-6054

http://www.redbooks.ibm.com/abstracts/sg246054.html

� Lotus Security Handbook, SG24-7017

http://www.redbooks.ibm.com/abstracts/sg247017.html

� On Demand Operating Environment: Security Considerations in an Extended
Enterprise, REDP-3928

http://www.redbooks.ibm.com/abstracts/redp3928.html

� Using LDAP for Directory Integration, SG24-6163

http://www.redbooks.ibm.com/abstracts/sg246163.html

� WebSphere MQ Security in an Enterprise Environment, SG24-6814

http://www.redbooks.ibm.com/abstracts/sg246814.html

� WebSphere Portal Collaboration Security Handbook, SG24-6438

http://www.redbooks.ibm.com/abstracts/sg246438.html
50 WebSphere Security Fundamentals

http://www.redbooks.ibm.com/abstracts/sg246054.html
http://www.redbooks.ibm.com/abstracts/sg246163.html
http://www.redbooks.ibm.com/abstracts/sg246438.html
http://www.redbooks.ibm.com/abstracts/sg247017.html
http://www.redbooks.ibm.com/abstracts/sg246814.html
http://www.redbooks.ibm.com/abstracts/redp3928.html

Figure 3-12 Security-related redbooks
 Related publications 51

Online resources
These Web sites are also relevant as further information sources:

� MIT’s Kerberos Web site

http://web.mit.edu/kerberos/www

� Sun’s JACC Web site

http://java.sun.com/j2ee/javaacc/index.html

� Sun’s kinit description

http://java.sun.com/j2se/1.4.2/docs/tooldocs/linux/kinit.html
http://java.sun.com/j2se/1.4.2/docs/tooldocs/windows/kinit.html

� Sun’s JCE Web site

http://java.sun.com/products/jce

� Sun’s ktab description

http://java.sun.com/j2se/1.4.2/docs/tooldocs/linux/ktab.html
http://java.sun.com/j2se/1.4.2/docs/tooldocs/windows/ktab.html

� Sun’s jarsigner description

http://java.sun.com/j2se/1.4.2/docs/tooldocs/solaris/jarsigner.html
http://java.sun.com/j2se/1.4.2/docs/tooldocs/windows/jarsigner.html

� Sun’s policytool description

http://java.sun.com/j2se/1.4.2/docs/tooldocs/solaris/policytool.html
http://java.sun.com/j2se/1.4.2/docs/tooldocs/windows/policytool.html

� Sun’s keytool description

http://java.sun.com/j2se/1.4.2/docs/tooldocs/solaris/keytool.html
http://java.sun.com/j2se/1.4.2/docs/tooldocs/windows/keytool.html

� Sun’s klist description

http://java.sun.com/j2se/1.4.2/docs/tooldocs/linux/klist.html
http://java.sun.com/j2se/1.4.2/docs/tooldocs/windows/klist.html

� Sun’s security Web site

http://java.sun.com/security/index.jsp

� Sun’s Cetificate Path API Web site

http://java.sun.com/j2se/1.4.2/docs/guide/security/certpath/CertPathPro

� IBM Java 2 security

http://www-106.ibm.com/developerworks/java/jdk/security/142

� Sun’s JSSE Web site

http://java.sun.com/products/jsse
52 WebSphere Security Fundamentals

http://web.mit.edu/kerberos/www
http://java.sun.com/j2ee/javaacc/index.html
http://java.sun.com/j2se/1.4.2/docs/tooldocs/linux/kinit.html
http://java.sun.com/j2se/1.4.2/docs/tooldocs/windows/kinit.html
http://java.sun.com/products/jce
http://java.sun.com/j2se/1.4.2/docs/tooldocs/linux/ktab.html
http://java.sun.com/j2se/1.4.2/docs/tooldocs/windows/ktab.html
http://java.sun.com/j2se/1.4.2/docs/tooldocs/solaris/jarsigner.html
http://java.sun.com/j2se/1.4.2/docs/tooldocs/windows/jarsigner.html
http://java.sun.com/j2se/1.4.2/docs/tooldocs/solaris/policytool.html
http://java.sun.com/j2se/1.4.2/docs/tooldocs/windows/policytool.html
http://java.sun.com/j2se/1.4.2/docs/tooldocs/solaris/keytool.html
http://java.sun.com/j2se/1.4.2/docs/tooldocs/windows/keytool.html
http://java.sun.com/j2se/1.4.2/docs/tooldocs/linux/klist.html
http://java.sun.com/j2se/1.4.2/docs/tooldocs/windows/klist.html
http://java.sun.com/security/index.jsp
http://java.sun.com/j2se/1.4.2/docs/guide/security/certpath/CertPathPro
http://www-106.ibm.com/developerworks/java/jdk/security/142
http://java.sun.com/products/jsse

� Sun’s JAAS Web site

http://java.sun.com/products/jaas

� Sun’s JGSS Web site

http://java.sun.com/j2se/1.4.2/docs/guide/security/jgss/tutorials/index

� IETF RFC 2853 Web site

http://www.ietf.org/rfc/rfc2853.txt

� Microsoft SPNEGO Web site

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnsecu

How to get IBM Redbooks
You can search for, view, or download Redbooks, Redpapers, Hints and Tips,
draft publications, and Additional materials, as well as order hardcopy Redbooks
or CD-ROMs, at this Web site:

ibm.com/redbooks

Help from IBM
IBM Support and downloads

ibm.com/support

IBM Global Services

ibm.com/services
 Related publications 53

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.ibm.com/support/
http://www.ibm.com/support/
http://www.ibm.com/services/
http://www.ibm.com/services/
http://java.sun.com/products/jaas
http://java.sun.com/j2se/1.4.2/docs/guide/security/jgss/tutorials/index
http://www.ietf.org/rfc/rfc2853.txt
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnsecu

54 WebSphere Security Fundamentals

®

INTERNATIONAL
TECHNICAL
SUPPORT
ORGANIZATION

BUILDING TECHNICAL
INFORMATION BASED ON
PRACTICAL EXPERIENCE

IBM Redbooks are developed by
the IBM International Technical
Support Organization. Experts
from IBM, Customers and
Partners from around the world
create timely technical
information based on realistic
scenarios. Specific
recommendations are provided
to help you implement IT
solutions more effectively in
your environment.

For more information:
ibm.com/redbooks

Redpaper

WebSphere
Security Fundamentals

IT security
fundamentals

Supporting security
components for
WebSphere

Security basics for
J2SE, J2EE, and
WebSphere

This IBM Redpaper is an overview of IT security for
WebSphere products. Its purpose is to provide basic
information about IT security and specific details about
WebSphere security. This can be used as a standalone paper
with information for basic security, or considered the
introduction for WebSphere V6 Security and future
security-related Redbooks.

Chapter 1, “Security fundamentals” discusses basic IT
security without reference to any product.

Chapter 2, “Supporting security components for WebSphere”
starts introducing IT components related to security without
specifying product names.

Chapter 3, “Security fundamentals for J2SE, J2EE and
WebSphere” goes into detail about J2EE and IBM WebSphere
security. It provides an overview of security-related
technologies and functions.

If you are not familiar with IT security in the Java 2 and
WebSphere environments, this paper should be a good start.

Back cover

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

	Front cover
	Contents
	Notices
	Trademarks

	Preface
	The team that wrote this Redpaper
	Become a published author
	Comments welcome

	Chapter 1. Security fundamentals
	1.1 Security
	1.1.1 Physical security
	1.1.2 Logical security
	1.1.3 Security policy

	1.2 Security fundamentals
	1.2.1 Authentication
	1.2.2 Authorization
	1.2.3 Secure communication

	1.3 Security in use

	Chapter 2. Supporting security components for WebSphere
	2.1 User registry (or directory)
	2.2 Authorization and authentication server
	2.3 Security reverse proxy server
	2.4 Public Key Infrastructure (PKI)
	2.5 Kerberos
	2.6 Firewall

	Chapter 3. Security fundamentals for J2SE, J2EE, and WebSphere
	3.1 Introduction
	3.2 Java 2 security
	3.3 Basic cryptography
	3.4 Authentication
	3.5 Authorization
	3.6 Secure connection
	3.7 Security context
	3.8 Web security
	3.8.1 Web authentication mechanisms

	3.9 Security tools
	3.9.1 ikeyman
	3.9.2 J2SE 1.4 security tools

	Abbreviations and acronyms
	Related publications
	IBM Redbooks
	Online resources
	How to get IBM Redbooks
	Help from IBM

	Back cover

