

ibm.com/redbooks

WebSphere Business Integration
Server Foundation V5.1V5.1
Handbook

Peter Kovari
Lisa Boardman

Giles Dring
Richard Johnson

Hirotake Kitabayashi
Salman Moghal

Raphael Mueller
Sudhakar Nagarajan

Yu Zeng

Process Choreography with WebSphere
Studio Integration Edition V5.1

Runtime and development of
BPEL4WS with sample code

J2EE Programming Model
Extensions

Front cover

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

WebSphere Business Integrator Server Foundation
V5.1 Handbook

November 2004

International Technical Support Organization

SG24-6318-00

© Copyright International Business Machines Corporation 2004. All rights reserved.
Note to U.S. Government Users Restricted Rights -- Use, duplication or disclosure restricted by GSA ADP
Schedule Contract with IBM Corp.

First Edition (November 2004)

This edition applies to WebSphere Business Integration Server Foundation V5.1 on Microsoft
Windows 2000 Server, IBM AIX 5.2, Red Hat Linux; WebSphere Studio Application Developer
Integration Edition V5.1 on Microsoft Windows 2000 Professional, Microsoft Windows XP Pro.

Note: Before using this information and the product it supports, read the information in
“Notices” on page xiii.

Contents

Notices . xiii
Trademarks . xiv

Preface . xv
The team that wrote this redbook. xvi
Become a published author . xix
Comments welcome. xix

Part 1. Architecting a WebSphere Enterprise solution . 1

Chapter 1. Positioning WebSphere Enterprise . 3
1.1 Business challenges . 4

1.1.1 IT systems and processes must enable change 5
1.1.2 New applications must exploit existing assets 6
1.1.3 IT products must generate an increasing return on investment 9

Chapter 2. Product overview . 11
2.1 Products . 12

2.1.1 WebSphere Business Integration Server Foundation V5.1. 12
2.1.2 IBM WebSphere Studio Application Developer Integration

Edition V5.1 . 13
2.2 Key technologies . 15

2.2.1 Web services. 15
2.2.2 J2EE concepts . 16
2.2.3 PMEs. 16
2.2.4 BPEL4WS . 18
2.2.5 WebSphere Process Choreographer . 19

Chapter 3. Scenarios. 21
3.1 Scenario 1: Service composition . 22
3.2 Scenario 2: Process state management . 24
3.3 Scenario 3: Human interaction . 26

Part 2. Setting up the environment . 29

Chapter 4. Runtime environment . 31
4.1 Architecture . 32

4.1.1 WebSphere Application Server base components 33
4.1.2 Business Process Execution container . 35
4.1.3 Programming Model Extensions . 35
© Copyright IBM Corp. 2004. All rights reserved. iii

4.2 Basic configuration . 36
4.2.1 Planning . 36
4.2.2 Software requirements . 36
4.2.3 Installation . 36
4.2.4 Configuration. 40

4.3 Distributed configuration . 45
4.3.1 Planning . 45
4.3.2 Software requirements . 46
4.3.3 Installation . 48
4.3.4 Configuration. 54

4.4 Configuring for scalability . 69
4.4.1 Planning . 69
4.4.2 Software requirements . 74
4.4.3 Installation . 74
4.4.4 Configuration. 77

4.5 Configuring for high availability . 83

Chapter 5. Development environment . 85
5.1 Introduction . 86
5.2 WebSphere Studio Application Developer Integration Edition V5.1 89

5.2.1 WebSphere Studio Application Developer Integration Edition V5.1 at a
glance . 89

5.2.2 WebSphere Studio Application Developer Integration Edition
Workbench . 91

5.2.3 Integration Edition tooling . 94
5.2.4 Development with WebSphere Studio Application Developer Integration

Edition. 96
5.3 WebSphere Test Environment . 102

5.3.1 WebSphere Test Environment benefits . 103
5.3.2 WebSphere Test Environment overview. 104
5.3.3 Supported software components . 108

5.4 Remote test server . 111
5.4.1 Agent Controller . 111
5.4.2 Supported remote server testing scenarios 113
5.4.3 Configuring the IBM WebSphere Test Environment for the remote test

server . 116

Part 3. Implementing WebSphere Enterprise solutions . 119

Chapter 6. Process choreographer: introduction 121
6.1 Concepts . 122

6.1.1 Process languages . 122
6.1.2 Non-interruptible and interruptible processes 123
6.1.3 Transactional behavior . 124
iv WebSphere Business Integrator Server Foundation V5.1 Handbook

6.1.4 Sequences and flows . 125
6.1.5 Parts of a business process . 125

6.2 Development tooling support. 129
6.2.1 BPEL Editor. 129
6.2.2 The Web client . 130

6.3 Runtime environment . 130
6.3.1 Business Process Execution container architecture 131

Chapter 7. Process choreographer: developing a simple process 135
7.1 Sample scenario . 136

7.1.1 Interactions between involved partners. 137
7.1.2 Input messages and output messages . 137

7.2 Activities in the sample . 139
7.2.1 Receive activity . 139
7.2.2 Reply activity . 141
7.2.3 Invoke activity . 143
7.2.4 Assign activity . 148
7.2.5 Java snippet . 151
7.2.6 Preparing to develop the process . 153
7.2.7 Developing a new process . 156
7.2.8 Deploying and testing a process in the IBM WebSphere Test

Environment . 177
7.2.9 Debugging a process in WebSphere Test Environment 183
7.2.10 Deploying a process to WebSphere Business Integration Server

Foundation . 192
7.2.11 Debugging a process on WebSphere Business Integration Server

Foundation . 194
7.2.12 Process versioning . 197
7.2.13 Uninstalling deployed processes. 198

Chapter 8. Process choreographer: developing a complex process . . . 203
8.1 Introduction . 204
8.2 Preparation . 205

8.2.1 Importing the prepared NiceJourney. 206
8.2.2 Creating the prepared NiceJourney step-by-step 206

8.3 Validation implementation . 212
8.3.1 Preparation . 214
8.3.2 Sequence activity . 214
8.3.3 Invoke - Java Class synchronous invocation 215
8.3.4 Assign . 216
8.3.5 Fault Handler. 217
8.3.6 Java snippet . 220
8.3.7 Terminate . 221
 Contents v

8.4 Reserve Flight implementation . 222
8.4.1 Preparation . 223
8.4.2 Sequence activity . 223
8.4.3 Invoke - Java class synchronous invocation 224
8.4.4 Assign . 225

8.5 Reserve Car implementation. 226
8.5.1 Preparation . 228
8.5.2 BPEL process partner . 229
8.5.3 Sequence activity . 233
8.5.4 Invoke - BPEL Asynchronous invocation . 233
8.5.5 Assign . 234
8.5.6 Pick activity . 235
8.5.7 Correlation sets . 239
8.5.8 Reply - BPEL Asynchronous invocation . 244
8.5.9 Assign . 245
8.5.10 Conditional link . 246

8.6 Reserve Hotel implementation . 249
8.6.1 Preparation . 250
8.6.2 Sequence activity . 251
8.6.3 Staff activity. 251
8.6.4 Transformer Service activity . 254

8.7 Bill Customer implementation . 259
8.7.1 Preparation . 261
8.7.2 Switch . 261
8.7.3 Import the Payment Processing Services . 263
8.7.4 Creating the partner links . 264
8.7.5 Credit Card case . 264
8.7.6 Debit Card case . 265
8.7.7 Unknown Card Otherwise case. 266
8.7.8 Fault handling . 269
8.7.9 Compensation . 281

8.8 Testing. 282
8.9 Problem determination and tips. 283

8.9.1 How to delete generated deployment code. 283
8.9.2 Forgetting to create tables and datasources. 284
8.9.3 Type mapping - primitive and complex types 284

Chapter 9. Process choreographer: clients . 287
9.1 Standalone client. 288

9.1.1 Invoking a business process using the Process
Choreographer API . 288

9.1.2 Invoking a business process using the generated façade EJBs . . . 289
9.1.3 Invoking a business process as a Web service using the generated
vi WebSphere Business Integrator Server Foundation V5.1 Handbook

proxy . 294
9.2 Web client . 298

9.2.1 Customizing process pages . 298
9.2.2 Staff activity. 300
9.2.3 More information about Web Client customization 307

Chapter 10. Common Event Infrastructure . 309
10.1 Introduction . 310
10.2 Sample scenario . 312
10.3 Development . 313

10.3.1 Setting up the development environment 314
10.3.2 Configuring a process to report events . 315
10.3.3 Creating custom events using the Java API 317

10.4 Configuration . 321
10.4.1 Configuring CEI in WebSphere Business Integration Server

Foundation . 321
10.5 Testing. 325
10.6 More information . 329

Chapter 11. Business Rule Beans . 331
11.1 Prerequisites . 332
11.2 Sample scenario . 332
11.3 Development . 333

11.3.1 Development environment setup . 333
11.3.2 Developing the rule implementor . 336
11.3.3 Creating and configuring the rule using the Rule Management

Application . 337
11.3.4 Creating the rule client . 342
11.3.5 Using Business Rule Beans in Process Choreographer. 344

11.4 Unit test . 347
11.5 Deployment . 349

Chapter 12. Extended messaging . 353
12.1 Prerequisites . 354
12.2 Sample scenario . 354
12.3 Development . 356

12.3.1 Creating an Extended Messaging bean . 356
12.3.2 Using Extended Messaging with Process Choreographer 361

12.4 Unit test . 363
12.4.1 Creating and configuring a server . 363
12.4.2 Testing the LogSender in isolation . 367
12.4.3 Testing the Sender bean in the simple process 369

12.5 Assembly. 370
12.6 Deployment . 371
 Contents vii

Chapter 13. Startup beans . 375
13.1 Prerequisites . 377
13.2 Sample scenario . 377
13.3 Development . 378

13.3.1 Additional development considerations. 382
13.4 Unit test . 383
13.5 Assembly. 385

13.5.1 Priorities when using multiple Startup beans 386
13.6 Runtime environment . 387

13.6.1 Scalability . 389
13.7 Problem determination . 390

Chapter 14. Scheduler service . 391
14.1 Prerequisites . 393
14.2 Sample scenario . 393
14.3 Development . 395

14.3.1 Steps for using the Scheduler API . 396
14.3.2 Using Scheduler with Process Choreographer 398
14.3.3 Notification bean . 401

14.4 Unit test . 407
14.5 Assembly. 410
14.6 Configuration . 411
14.7 More information . 411

14.7.1 Problem determination . 411
14.7.2 Security considerations . 411
14.7.3 Clustering . 412
14.7.4 Performance considerations . 412
14.7.5 Future direction . 413

Chapter 15. Asynchronous beans . 415
15.1 Prerequisites . 417
15.2 Design . 417
15.3 Sample scenario . 419

15.3.1 Understanding the sample application . 420
15.4 Development . 421
15.5 Test environment. 425
15.6 Assembly. 430
15.7 Configuration . 431
15.8 Deployment . 433

Chapter 16. Container Managed Persistence over Anything 435
16.1 Container Managed Persistence over Anything architecture 436
16.2 Sample scenario . 437

16.2.1 CMP over a database stored procedure . 438
viii WebSphere Business Integrator Server Foundation V5.1 Handbook

Chapter 17. Application profiling . 449
17.1 Prerequisites . 450
17.2 Overview . 450
17.3 Planning . 456

17.3.1 Access Intent Policies . 457
17.3.2 Predefined Access Intent Policies. 463
17.3.3 Isolation Levels and Access Intents . 464
17.3.4 Access Intent Decision . 465
17.3.5 Switching Access Intents within a Single Transaction 467

17.4 Assembly. 469

Chapter 18. Shared Work Area service . 479
18.1 Prerequisites . 480

18.1.1 Work area partition service . 480
18.1.2 Distributed Work Areas . 482

18.2 Managing Work Area partitions . 483
18.3 Sample scenario . 485
18.4 Development . 486
18.5 Testing. 491

Chapter 19. Dynamic Query . 495
19.1 Prerequisites . 496
19.2 Sample scenario . 497
19.3 Development . 499

19.3.1 Dynamic Query service . 500
19.3.2 Design concerns and recommendations. 501
19.3.3 Dynamic Query Bean API . 502
19.3.4 Development environment setup . 504
19.3.5 Development of Dynamic Query sample. 506

19.4 Unit test . 514
19.4.1 Configuring the application server. 514
19.4.2 Running the sample application . 515

19.5 Configuration . 516
19.5.1 Installing query.ear . 516
19.5.2 Application class loader policy configuration. 516

19.6 More information . 517
19.6.1 Performance considerations . 517
19.6.2 Security considerations . 520

Chapter 20. Object pools . 523
20.1 Prerequisites . 524
20.2 Sample scenario . 525
20.3 Development . 526

20.3.1 Object Pools API . 526
 Contents ix

20.3.2 Coding with Object pools . 527
20.4 Unit test . 532
20.5 Runtime environment . 535

20.5.1 Configuration in runtime . 536
20.6 Problem determination and troubleshooting . 538

Chapter 21. Internationalization (i18n) . 539
21.1 Prerequisites . 541
21.2 Sample scenario . 541
21.3 Development . 542
21.4 Unit test . 554
21.5 Assembly. 556
21.6 Runtime environment . 556

Part 4. Appendixes . 559

Appendix A. Additional sample application configurations 561
Project Interchange archive import/export . 562
HelloWorld process application . 562
Integration Server V5.1 test environment setup . 563

Adding the process to the test server . 564
External service for the simple process . 565
Building a stored procedure in DB2 for the CMP over Anything sample 568

Appendix B. Additional configuration help. 577
WebSphere MQ setup instructions. 578
DB2 Enterprise Server Edition V8.1 installation . 579
Tivoli Directory Server V5.2 installation . 580
IBM HTTP Server, IBM HTTP Web server plug-in, and Tivoli Performance Viewer

installation. 582
Creating a WebSphere cluster . 583

Appendix C. Additional material . 591
Locating the Web material . 591
Using the Web material . 592

System requirements for downloading the Web material 592
How to use the Web material . 592

Abbreviations and acronyms . 593

Related publications . 595
IBM Redbooks . 595
Online resources . 595
How to get IBM Redbooks . 598
x WebSphere Business Integrator Server Foundation V5.1 Handbook

Help from IBM . 598

Index . 599
 Contents xi

xii WebSphere Business Integrator Server Foundation V5.1 Handbook

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult
your local IBM representative for information on the products and services currently available in your area.
Any reference to an IBM product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product, program, or service that
does not infringe any IBM intellectual property right may be used instead. However, it is the user's
responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document.
The furnishing of this document does not give you any license to these patents. You can send license
inquiries, in writing, to:
IBM Director of Licensing, IBM Corporation, North Castle Drive Armonk, NY 10504-1785 U.S.A.

The following paragraph does not apply to the United Kingdom or any other country where such provisions
are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES
THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer
of express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made
to the information herein; these changes will be incorporated in new editions of the publication. IBM may
make improvements and/or changes in the product(s) and/or the program(s) described in this publication at
any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in any
manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of the
materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Information concerning non-IBM products was obtained from the suppliers of those products, their published
announcements or other publicly available sources. IBM has not tested those products and cannot confirm
the accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on
the capabilities of non-IBM products should be addressed to the suppliers of those products.

This information contains examples of data and reports used in daily business operations. To illustrate them
as completely as possible, the examples include the names of individuals, companies, brands, and products.
All of these names are fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:
This information contains sample application programs in source language, which illustrates programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs in
any form without payment to IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating platform for which the
sample programs are written. These examples have not been thoroughly tested under all conditions. IBM,
therefore, cannot guarantee or imply reliability, serviceability, or function of these programs. You may copy,
modify, and distribute these sample programs in any form without payment to IBM for the purposes of
developing, using, marketing, or distributing application programs conforming to IBM's application
programming interfaces.
© Copyright IBM Corp. 2004. All rights reserved. xiii

Trademarks
The following terms are trademarks of the International Business Machines Corporation in the United States,
other countries, or both:

Eserver®
Eserver®
Redbooks (logo) ™
developerWorks®
e-business on demand™
ibm.com®
pSeries®
xSeries®
AIX®

Cloudscape™
CICS®
DB2®
Extended Services®
ETE™
HACMP™
Informix®
IBM®
Lotus®

Notes®
PartnerLink®
Redbooks™
Tivoli®
TME®
VisualAge®
WebSphere®

The following terms are trademarks of other companies:

Java and all Java-based trademarks and logos are trademarks or registered trademarks of Sun
Microsystems, Inc. in the United States, other countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the
United States, other countries, or both.

Intel, Intel Inside (logos), MMX, and Pentium are trademarks of Intel Corporation in the United States, other
countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Linux is a trademark of Linus Torvalds in the United States, other countries, or both.

Other company, product, and service names may be trademarks or service marks of others.
xiv WebSphere Business Integrator Server Foundation V5.1 Handbook

Preface

This IBM® Redbook describes the technical details of WebSphere Business
Integration Server Foundation and discusses using WebSphere Studio
Application Developer Integration Edition for application development. It provides
valuable information for system administrators, developers and architects about
the products covered. The book specifically focuses on WebSphere® Process
Choreographer and on solutions implementing it.

Part 1, “Architecting a WebSphere Enterprise solution” on page 1 contains
high-level details about WebSphere solutions using WebSphere Business
Integration Server Foundation.

Part 2, “Setting up the environment” on page 29 provides step-by-step details for
installing the runtime and development environments.

Part 3, “Implementing WebSphere Enterprise solutions” on page 119 provides
details about the J2EE Programming Model Extensions and functions in
WebSphere Business Integration Server Foundation. You can learn how to
design, develop, assemble, deploy and administer applications in the
WebSphere Business Integration Server Foundation environment.

The “Appendixes” on page 559 provide additional information about the sample
application.
© Copyright IBM Corp. 2004. All rights reserved. xv

The team that wrote this redbook
This redbook was produced by a team of specialists from around the world
working at the International Technical Support Organization, Raleigh Center.

The Team (left to right): Salman Moghal, Raphael Mueller, Lisa Boardman, Richard Johnson,
Hirotake Kitabayashi, Giles Dring, Peter Kovari

Peter Kovari is a WebSphere Specialist at the International Technical Support
Organization, Raleigh Center. He writes extensively about all areas of
WebSphere. His areas of expertise include e-business, e-commerce, security,
Internet technologies and mobile computing. Before joining the ITSO, he worked
as an IT Specialist for IBM in Hungary.

Lisa Boardman is an IT Specialist at IBM Global Services Australia. Her areas
of expertise include Web application development, Web Services and Internet
technologies. She has two years of experience at IBM and holds a Bachelor of
Computer and Information Science and a Bachelor of Arts(Multimedia Studies)
from the University of South Australia.

Giles Dring is an IT Architect in IBM Global Services based in the UK. He works
with large UK-based companies to create solutions to their business problems.
Lately, he has been spending much of his time helping a UK government
department realize its vision of an integration infrastructure. He is also a teacher
within the IBM Architectural Methods curriculum and has a keen interest in
solution performance. He earned a Masters degree in Electronic and Computer
Engineering from the University of Leeds.
xvi WebSphere Business Integrator Server Foundation V5.1 Handbook

Richard Johnson is an Advisory IT Specialist for the IBM Software Services for
WebSphere consultancy, based at IBM Hursley Park, UK. In this role, he works
as an expert on WebSphere and J2EE, designing and implementing solutions
for IBM clients and business partners across EMEA and worldwide. Richard's
areas of specialization include Process Choreographer, Web Services and
WebSphere to CICS® integration. He has three years of consulting experience
and two previous years within CICS Transaction Server development. He holds a
Masters degree in Chemistry from the University of Oxford.

Hirotake Kitabayashi is a System Engineer for Hitachi Software Engineering in
Tokyo, Japan. Currently, he is working at the IBM WebSphere Performance Lab
in Rochester as a trainee. He has four years of experience in Web and J2EE
technologies. His areas of expertise include Java™ programming, J2EE
performance, Web Services and e-commerce solutions.

Salman Moghal is a Senior IT Specialist for the IBM Software Services for
WebSphere group based in IBM Toronto Lab, Canada. He is a technical lead
and application architect for WebSphere products, with over eleven years of
combined software development experience in Web technologies since 1993.
His areas of expertise include WebSphere and J2EE design, WebSphere
performance and migration, and e-business technologies. Salman's key focus is
on WebSphere Process Choreographer, Web Services, Business Integration,
and emerging open-source technologies. He holds a Bachelor of Engineering
degree in Computer Science from Mississippi State University.

Raphael Mueller works as an IT Specialist within the WebSphere Lab-based
Services department in the development laboratory of Boeblingen, Germany. He
has been working with IBM for more than four years as a Software Engineer in
the development team for DB2® Performance Expert. His areas of expertise
include DB2, WebSphere Application Server, WebSphere Process
Choreographer, J2EE technologies, and computer graphics. He holds a
Diplom-Ingenieur degree in Computer Science from the University of Applied
Sciences Bingen, Germany.

Sudhakar Nagarajan is an IBM WebSphere Certified Specialist, presently team
leader for the WebSphere Globalization testing team under the Software group at
RTP. Prior to joining the Software group, he was an IT specialist under Global
Services, working with various clients. His background includes over ten years of
application design, development and project management on both
mainframe-based and distributed systems across a wide variety of industries and
platforms. He holds a Master's degree in Manufacturing Engineering from REC
Tiruchy, India.

Yu Zeng is a Senior I/T Specialist and certified administrator of WebSphere
Application Server in the AP South Product Introduction Center. Yu Zeng has
over six years of J2EE experience in the IT industry. In addition, he has in-depth
 Preface xvii

industry experience in Utility involving architecture design and J2EE
implementation. He has worked in many WebSphere-related (WebSphere
Application Server/WebSphere Portal Server/WebSphere Everyplace Access)
beta projects in the Product Introduction Center and gained the know-how of
sophisticated technology implementation, especially in J2EE and Java
programming. He has coached many ISV/BPs in China to enable the
development of many solutions based on IBM platforms.

Thanks to the following people for their contributions to this project:

Margaret Ticknor
Jeanne Tucker
Carla Sadtler
Martin Keen
Linda Robinson
Cecilia Bardy

International Technical Support Organization, Raleigh Center

Kent Below
Thomas Bernhardt
Jürgen Bönsch
Bernd Breier
Russell Butek
Mandy Chessell
Logan Colby
Alexander Dietzsch
Eric Herness
Joshy Joseph
Thomas Kasemir
Matthias Kloppmann
Alexander Koutsoumbos
Wolfgang Kulhanek
Kurt Lind
Fintan McElroy
Frank Neumann
Dr. Hans-Joachim Novak
Gerhard Pfau
Laurent Rieu
Stefan Ruettinger
Ruth Schilling
Joseph Sharpe
Jeff Stratford
Gerd Watmann
Gunnar Wilmsmann
xviii WebSphere Business Integrator Server Foundation V5.1 Handbook

Special thanks for their invaluable contribution to the redbook go to:

Hermann Akermann
Gunnar Wilmsmann

Become a published author
Join us for a two- to six-week residency program! Help write an IBM Redbook
dealing with specific products or solutions, while getting hands-on experience
with leading-edge technologies. You'll team with IBM technical professionals,
Business Partners and/or customers.

Your efforts will help increase product acceptance and customer satisfaction. As
a bonus, you'll develop a network of contacts in IBM development labs, and
increase your productivity and marketability.

Find out more about the residency program, browse the residency index, and
apply online at:

ibm.com/redbooks/residencies.html

Comments welcome
Your comments are important to us!

We want our Redbooks™ to be as helpful as possible. Send us your comments
about this or other Redbooks in one of the following ways:

� Use the online Contact us review redbook form found at:

ibm.com/redbooks

� Send your comments in an Internet note to:

redbook@us.ibm.com

� Mail your comments to:

IBM Corporation, International Technical Support Organization
Dept. HZ8 Building 662
P.O. Box 12195
Research Triangle Park, NC 27709-2195
 Preface xix

http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/contacts.html

xx WebSphere Business Integrator Server Foundation V5.1 Handbook

Part 1 Architecting a
WebSphere
Enterprise se
solution

Part 1
© Copyright IBM Corp. 2004. All rights reserved. 1

2 WebSphere Business Integrator Server Foundation V5.1 Handbook

Chapter 1. Positioning WebSphere
Enterprise

This chapter is a high-level overview of the WebSphere Business Integration
Server Foundation V5.1 product. It also positions the product in the IBM software
palette.

1

© Copyright IBM Corp. 2004. All rights reserved. 3

1.1 Business challenges
Computer systems made their business debut in a supporting role, running
administrative systems such as payroll. Over time, IT moved center-stage to
underpin auxiliary processes such as stock control or production planning. This
gradual movement experienced a big shift upon the emergence of the
e-business boom of the mid-nineties, when many organizations went to market
with a business model which placed IT systems firmly in the spotlight. Some of
these pure-play businesses are still with us today, and many traditional
businesses have transformed themselves in part or in whole into e-businesses.

Today, businesses of all sizes continue to increase their reliance on complex IT
systems for their mainstream business functions. This trend is set to continue as
the on demand world places more emphasis on rapid reconfiguration of the
business processes to meet the changing demands of customers and increasing
interdependencies between partner organizations.

In this business environment, those responsible for planning, developing and
managing IT systems face a number of challenges.

� IT systems and processes must enable change

The rapid pace of change is required by the changes in customer
expectations and the business environment. IT systems should be responsive
to these changes, not form a bottleneck in the process.

� New applications must exploit existing assets

Organizations have invested significant amounts in their existing applications.
This leaves a legacy of heterogeneous systems providing islands of function
and data. The challenge is to integrate these islands to provide high-value
business processes greater than the sum of their parts.

� IT projects must generate an increasing return on investment

IT can influence the bottom line by providing significant benefits to core
business processes. Coupling this value with a reduction in development and
support costs dramatically increases the return on any IT investment. The
challenge is to increase the efficiency of development projects without
compromising quality.

WebSphere Business Integration Server Foundation V5.1 and WebSphere
Studio Application Developer Integration Edition V5.1 provide an enterprise
strength build and runtime environment. These products build on the industry
leading WebSphere Application Server and WebSphere Studio Application
Developer products, respectively, adding a number of features which enhance
the capability of IT support organizations to meet the challenges.
4 WebSphere Business Integrator Server Foundation V5.1 Handbook

In the following section, each of the challenges is discussed in turn, outlining the
ways in which the WebSphere Business Integration Server Foundation and
WebSphere Studio Application Developer Integration Edition products can
enhance IT system delivery.

1.1.1 IT systems and processes must enable change
The on demand world requires that businesses react rapidly to a changing
environment. This change may mean re-engineering business processes to take
advantage of increased capabilities provided by partners or to improve the
service provided to customers. The key theme is that IT organizations need to
understand and mirror the requirements of the business.

This cannot be achieved in environments where dependencies between IT
systems are so tightly coupled and business logic exists in so many places that
changes in a component supporting one part of the enterprise cause knock-on
effects in other components. In this situation, developing and testing a seemingly
trivial change snowballs into a considerable effort, and IT processes frustrate the
necessary business change.

Service oriented architecture
Service oriented architectures (SOA) enable flexible, modular applications to be
constructed from heterogeneous systems. The key to this flexibility is the
creation of coarse-grained building blocks known as services. These
self-describing groupings of data and/or function can be combined and
recombined in multiple configurations as business requirements change. The
standard abstractions used within an SOA mean that the underlying
programming language, operating system, geographical location and
organizational ownership are not important. Web services are an example of an
SOA.

The key interaction in a SOA is the binding of a service requester to a service
provider. This may be supported by publication of the service description to a
directory by the service provider, and a discovery of the service by the service
requester.

WebSphere Application Server provides excellent support for Web services.
WebSphere Business Integration Server Foundation adds to this capability by
providing the powerful service composition and dynamic invocation capabilities
of WebSphere Process Choreographer. This can be used as a service integrator
to combine a series of diverse existing services as a single service which is of
use in the modernized systems.

WebSphere Studio Application Developer Integration Edition provides visual
tools to create business processes. This allows business users and developers
 Chapter 1. Positioning WebSphere Enterprise 5

to collaborate when creating business processes, enabling rapid prototyping,
development and deployment of code that fits the needs of the business.

More details can be found in:

� Chapter 6, “Process choreographer: introduction” on page 121

� Chapter 7, “Process choreographer: developing a simple process” on
page 135

� Chapter 8, “Process choreographer: developing a complex process” on
page 203

Simplifying code maintenance
One of the most common reasons for changing code is to update the business
logic that it encapsulates, rather than the supporting business flow. Poorly
structured code which does not distinguish between logic and control can
significantly increase the time required to develop and test application changes.
This can also lead to inconsistent application of business logic, where updates
are made to only one part of the codebase.

WebSphere Enterprise provides a number of features which support
management of business logic in a single place within the infrastructure. These
not only impose a structure on the application but mean that maintenance
becomes a configuration rather than a coding activity. Further, this configuration
can be dynamically imported into a live application, reducing the need for
extended outages to implement the code.

More details can be found in:

� Chapter 11, “Business Rule Beans” on page 331
� Chapter 19, “Dynamic Query” on page 495

1.1.2 New applications must exploit existing assets
A key trend in the last few years has been the continuing integration of systems
within organizations. There is also a move to increase integration between
partner organizations. In an ideal world, all of these platforms would be planned
and designed with interoperability in mind. Unfortunately, systems have grown by
adding functionality organically. The environment to be integrated may include
functions provided by mainframe transaction handlers, packaged EPR systems,
Web servers and even text-based consoles. To further complicate matters, each
of these platforms may be owned and managed by different groups within
organization or its partners.
6 WebSphere Business Integrator Server Foundation V5.1 Handbook

An integration platform is required which handles the complexity of this task,
offering a standard mechanism for connecting to and integrating the
heterogeneous environment.

WebSphere Business Integration
WebSphere Business Integration is IBM’s software platform for delivering
integration solutions. The product suite currently includes the following process
engines:

� WebSphere MQ Workflow

Provides development, runtime and monitoring capabilities to manage
long-running workflows which interact with systems and people.

� WebSphere InterChange Server

Provides capabilities to construct business processes which combine existing
function and data from other applications, including common ERP, CRM and
financial packages.

� WebSphere Business Integration Message Broker

Provides transformation and enrichment for in-flight messages, acting as an
intermediary between applications which use different message structures
and formats.

Each of these engines has its own particular strength. The engines can be
combined with one another to cover the full range of business integration
functionality.

WebSphere Business Integration Server Foundation V5.1 is the first release of
the WebSphere Application Server which is named as part of the WebSphere
Business Integration product suite. This reflects the advanced integration
capabilities provided by such capabilities as WebSphere Process
Choreographer.

WebSphere Process Choreographer adds a fourth engine to the product suite. At
first glance, it appears to share capabilities with each of the three other engines:

� It supports long-running processes with staff interaction.

� It enables composite processes to be created and executed.

� It can operate on the content of messages.

� It can interoperate with the other three engines through the Web services
interface.

Why then would it be selected as part of an architecture? A few arguments for
using WebSphere Process Choreographer are given next.
 Chapter 1. Positioning WebSphere Enterprise 7

� Built-in support for service orientation

As discussed previously, the WebSphere Application Server base of
WebSphere Process Choreographer provides native support for Web
services. Any processes created in the tool can be exposed as services for
consumption by service requesters. In addition, the dynamic invocation
capabilities of the product mean that services can be invoked after locating
the service during runtime.

� Fits naturally with J2EE environment

Given that the process engine is based on a J2EE platform, it is an excellent
fit for organizations that have invested in creating J2EE applications and now
wish to deploy visually modeled business processes. WebSphere Process
Choreographer adds a series of workflow capabilities which can dramatically
improve developer productivity and application quality. The visual process
editor means that business users can easily see the processes that are being
created.

� Aligns to WebSphere Business Integration strategy

WebSphere Process Choreographer is developed by the same team that
creates the WebSphere MQ Workflow product. As such, it capitalizes on the
strengths of both this product and WebSphere Application Server. It will also
form a key element of the suite when the WebSphere Business Integration
products move to a common architecture in the near future.

For more details, see also:

� Chapter 6, “Process choreographer: introduction” on page 121

� Chapter 7, “Process choreographer: developing a simple process” on
page 135

� Chapter 8, “Process choreographer: developing a complex process” on
page 203

You can also refer to the following Web site for more information:

http://www.ibm.com/websphere/integration

Application connectivity
As mentioned earlier, the heterogeneous nature of the environments means that
significant time and effort could be required to connect them to a single
integration server. Integration products use the concept of adapters to interface
to applications and technologies. WebSphere Business Integration Adapters
support a wide range of ERP, HR, CRM and supply chain systems, as well as
technology adapters to many popular RDBMS, transaction handlers and
operating systems.
8 WebSphere Business Integrator Server Foundation V5.1 Handbook

http://www.ibm.com/websphere/integration

WebSphere Business Integration Server Foundation provides support for these
adapters. It also includes advances transactional capabilities to overcome
shortcomings in the interfaces exposed by these services.

For more details, see also:

http://www.ibm.com/websphere/integration/wbiadapters/

1.1.3 IT products must generate an increasing return on investment
The challenge of providing higher-value applications is compounded by the drive
to deliver them more cheaply and faster without compromising quality. To
achieve this, the skills of highly trained developers should be applied to real
business problems, rather than to creating common reusable components.

WebSphere Business Integration Server Foundation and WebSphere Studio
Application Developer Integration Edition provide a number of advanced
capabilities to enable IT organizations to be more efficient while continuing to
deliver benefits.

Increasing development productivity
Delivery time is a prime concern for many IT organizations. One way to improve
developer productivity is to capitalize on the advanced capabilities of modern
middleware platforms. This is a double gain, as not only does the development
team spend more time on the business problem but the costly and
time-consuming ongoing maintenance of handcrafted solutions is also
eliminated.

WebSphere Business Integration Server Foundation and WebSphere Studio
Application Developer Integration Edition were designed to enhance the
capabilities of development teams. These extensions to the underlying
technology provide powerful yet simple capabilities to add value to applications.

Refer to the following chapters for further details of these capabilities:

� Chapter 10, “Common Event Infrastructure” on page 309
� Chapter 12, “Extended messaging” on page 353
� Chapter 18, “Shared Work Area service” on page 479
� Chapter 21, “Internationalization (i18n)” on page 539

Advanced middleware
While most applications can be delivered within the constraints of
standards-based development frameworks, there are always situations that call
for an extra degree of control over the runtime behavior of the system. The
developer of such systems is faced with the decision of compromising the design
 Chapter 1. Positioning WebSphere Enterprise 9

http://www.ibm.com/websphere/integration/wbiadapters/

by adhering to the standard or diverging from the standard to create bespoke
solutions which are not guaranteed to work under future versions.

The products provide support for advanced capabilities that build on concepts
within the current version of the framework and are actively being promoted
within the standards community. These provide an exceptional degree of
flexibility to the developer, with the knowledge that they will be supported for
future versions of the platform.

For further details, please refer to:

� Chapter 13, “Startup beans” on page 375
� Chapter 14, “Scheduler service” on page 391
� Chapter 15, “Asynchronous beans” on page 415
� Chapter 16, “Container Managed Persistence over Anything” on page 435

Performance optimization
Application efficiency can have a real impact on the cost of the runtime
environment. While there is no replacement for good design and coding
practices, WebSphere Business Integration Server Foundation does provide a
number of capabilities to enhance the performance of the runtime environment.

For further details, refer to:

� Chapter 17, “Application profiling” on page 449
� Chapter 20, “Object pools” on page 523
10 WebSphere Business Integrator Server Foundation V5.1 Handbook

Chapter 2. Product overview

WebSphere Business Integration Server Foundation V5.1 and WebSphere
Studio Application Developer Integration Edition V5.1 help companies to reduce
IT complexity, reuse existing resources, and automate business processes
through a powerful but simplified build-to-integrate framework.

This chapter will focus on these two products and provide definitions of the key
technologies these products support. This chapter will discuss:

� Web services
� J2EE concepts
� Programming Model Extensions (PMEs)
� Business Process Execution Language for Web Services (BPEL4WS)
� Process Choreographer

2

© Copyright IBM Corp. 2004. All rights reserved. 11

2.1 Products
When IBM WebSphere Business Integration Server Foundation V5.1 is used in
conjunction with WebSphere Studio Application Developer Integration Edition
V5.1 for development, it can deliver a next-generation integration platform
optimized for building and deploying composite applications that extend and
integrate your existing IT assets.

This section will discuss the features of WebSphere Business Integration
Foundation Server V5.1and WebSphere Studio Application Developer
Integration Edition V5.1.

2.1.1 WebSphere Business Integration Server Foundation V5.1
WebSphere Business Integration Server Foundation V5.1 builds on the
WebSphere Application Server to provide a premier Java 2 Enterprise Edition
(J2EE) and Web Services technology-based application platform for deploying
enterprise Web Services solutions for dynamic e-business on demand™.

It represents IBM’s approach to building and deploying SOA-based applications
that can adapt quickly and easily to change. It is designed to support the creation
of reusable services (either new ones or those based on existing services,
back-end systems, Java assets, and packaged applications). Services can then
be combined to form both composite applications and business processes, which
can further leverage business rules to make these applications and business
processes adaptable.

WebSphere Business Integration Server Foundation V5.1 includes all of the
features available in WebSphere Application Server Network Deployment V5.1,
including:

� J2EE 1.3 support (support for some features planned for J2EE 1.4)
� Full XML support
� Full Web services support
� Support for private UDDI registries
� Web Services Gateway
� Database Connectivity
� Embedded HTTP server
� Web server plug-ins
� Authentication and authorization for secure access to Web resources
� Single sign-on and support for LDAP
� Java Message Service (JMS) support
� Dynamic caching
� IBM Tivoli® Performance Viewer
� Integration with third-party performance management tools
12 WebSphere Business Integrator Server Foundation V5.1 Handbook

� Browser-based administration and workload management
� Intelligent workload distribution across a cluster
� Failure bypass
� Clustering support
� Migration support

Platforms
� Windows® 2000, 2003
� Solaris
� Linux® (Red Hat, Suse, United, etc.)
� HP-UX
� AIX®

For complete information on system requirements, see:

http://www-306.ibm.com/software/integration/wbisf/requirements/

2.1.2 IBM WebSphere Studio Application Developer Integration
Edition V5.1

WebSphere Studio Application Developer Integration Edition V5.1 provides the
tools you need to create, develop, test, and manage all of the resources involved
in building Web and enterprise-scale J2EE and Web services applications.
WebSphere Studio Application Developer offers creation tools, editors, wizards,
templates, and code generators that help you rapidly develop J2EE resources
such as HTML files, JSP pages, Java classes and servlets, EJB beans, and XML
deployment descriptors. You can organize these resources into projects that
correspond to modules defined in the J2EE specification. Once the resources
have been created, you can easily test and debug them within the development
environment, or export and test them on a remote server.

A major focus of this product is improving developer efficiency, as reflected in its
existing functionality as well as new features introduced as part of V5.1. The
product allows users to visually develop business processes and V5.1 updates
this capability with a new business process designer and debugger that support
the creation of process flows to conform to the BPEL 1.1 standard. V5.1 also
includes a new editor for the Web Services Description Language (WSDL) that
simplifies user interaction with the product and adds visual clarity to how the
various components interact.
 Chapter 2. Product overview 13

http://www-306.ibm.com/software/integration/wbisf/requirements/

In summary, the major new features in WebSphere Studio Application Developer
Integration Edition V5.1 are as follows:

� Business process designer for creating Business Process Execution
Language for Web Services 1.1 (BPEL4WS) process flows

� Integrated visual BPEL debugger

� Enhanced performance for installing and debugging, including support for J9
Hot Swap

� New visual condition builder to direct the execution of BPEL processes

� Automated migration of process flows from Flow Definition Markup Language
(FDML) to BPEL4WS

WebSphere Studio Application Developer Integration Edition also includes the
following Programming Model Extensions (PMEs) that build on Java™ 2
Enterprise Edition (J2EE) standards to accelerate large-scale application
development:

� Asynchronous beans
� Startup beans
� Last participant support
� Internationalization service
� Work areas
� Scheduler service
� Activity session services
� Dynamic query service
� WSGW Filters
� Object pools
� Container Managed Messaging
� Distributed Map
� Container Managed Persistence over anything
� Application profiling
� Back-up Cluster Support

Platforms
� Windows XP
� Windows 2000
� Windows NT®
� Linux (RedHat, Suse, etc.)

For complete information on system requirements, see:

http://www-306.ibm.com/software/integration/wsadie/requirements/
14 WebSphere Business Integrator Server Foundation V5.1 Handbook

http://www-306.ibm.com/software/integration/wsadie/requirements/

2.2 Key technologies
The following technologies are supported by WebSphere Business Integration
Server Foundation and WebSphere Studio Application Developer Integration
Edition V5.1 and are related to service oriented architectures.

2.2.1 Web services
Web services are a relatively new technology that has received wide acceptance
as an important implementation of service oriented architecture. This is because
Web services provide a distributed computing approach for integrating extremely
heterogeneous applications over the Internet. The Web service specifications are
completely independent of programming language, operating system, and
hardware to promote loose coupling between the service consumer and provider.
The technology is based on open technologies such as:

� eXtensible Markup Language (XML)
� Simple Object Access Protocol (SOAP)
� Universal Description, Discovery and Integration (UDDI)
� Web Services Description Language (WSDL)

Web services are described by WSDL files which contain:

� Interface information: the interface is described by a combination of port
type, operations supported by the port type and input, output and error
message structures.

� Binding information: the interface may be mapped to one or more concrete
implementations in technologies such as EJB, Java, SOAP or JMS. The
binding information describes the instantiation of the interface.

� Service information: each binding must be associated with a physical
location where the implementation described in the binding executes.
Examples include the location of an EJB, a Java class, an RPC router or JMS
destination.

Note that there are more bindings possible than the combination of SOAP over
HTTP that is usually associated with Web services. The flexibility of WSDL can
be fully exploited in an SOA.

However, the different combinations of bindings and implementations could
prove a significant challenge if the desired result is a flexible application. The
Java API for XML-based Remote Procedure Call (JAX-RPC) and Web Services
Invocation Framework (WSIF) standards were created to address this
challenge. Each of these provides a standard API for invoking Web services from
Java, although JAX-RPC does not specify how services can be invoked over
 Chapter 2. Product overview 15

anything other than SOAP over HTTP. Multiprotocol JAX-RPC adds this support
from WebSphere Application Server V5.1.1.

Both Multiprotocol JAX-RPC and WSIF are supported by the WebSphere
Application Server base. WSIF is deprecated from V5.1.1, so Multiprotocol
JAX-RPC should be used for new applications.

A detailed discussion of service oriented architectures and Web services
standards is outside the scope of this book.

2.2.2 J2EE concepts
J2EE defines the standard for developing multi-tier enterprise applications in
Java. J2EE simplifies enterprise applications by basing them on standardized
modular components, by providing a complete set of services to those
components, and by handling many details of application behavior automatically
without complex programming.

WebSphere implements the J2EE platform and provides additional
functionalities. WebSphere also adds new APIs and implements additional
services for the J2EE platform in order to provide broader functionality or to bring
future extensions into the product earlier.

The base WebSphere architecture gives flexibility to the system architecture
level, not addressed in the J2EE specification, by separating the managed
processes and implementing an overall administration system.

The J2EE application model divides enterprise applications into three
fundamental parts: components, containers and connectors.

Components are the key functional elements developed for certain applications,
containers are provided by system vendors, while connectors conceal complexity
and promote portability.

2.2.3 PMEs
WebSphere Enterprise brings several Programming Model Extensions (PMEs) to
the application server. The extensions are delivered in different forms, including
services, APIs, wizards for development, and deployment extensions.

This book discusses how Programming Model Extensions can be used and
provides sample scenarios to demonstrate how PMEs can be designed,
implemented and maintained in an application. A brief description of each PME is
shown in Table 2-1 on page 17.
16 WebSphere Business Integrator Server Foundation V5.1 Handbook

Table 2-1 WebSphere Programming Model Extensions

Enterprise enablements Description

Activity Session Offers long-running transactions semantics without requiring
XA support for all the resources involved in the unit of work, but
without data integrity. You can keep EJBs active through
multiple transactions and have them passivated at the end of
the activity session.

Application Profiling, Access Intent Allows you to define different Access Intents depending on the
EJB client that is accessing a certain Entity EJB,
allowing much more flexibility in the way you can tune data
access. See Chapter 17, “Application profiling” on page 449 for
more information.

Asynchronous beans Allows J2EE applications (EJBs) to start other threads and
transfer their J2EE context to those threads. See Chapter 15,
“Asynchronous beans” on page 415 for more information.

Business Rule Beans (BRB) Extends the scope of the WebSphere Application Server to
support business applications that externalize their business
rules. See Chapter 11, “Business Rule Beans” on page 331 for
more information.

Common Event Infrastructure (CEI) The Common Event Infrastructure provides the runtime
environment to persistently store and retrieve events from
many different programming environments. See Chapter 10,
“Common Event Infrastructure” on page 309 for more
information.

Container Managed Persistence over
Anything (CMP/A)

Expands container-managed persistence to include the
capability of persisting data to any back-end. CMP allows
mapping CMP EJBs to back-ends beyond the traditional
relational database. See Chapter 16, “Container Managed
Persistence over Anything” on page 435 for more information.

Dynamic query Extends J2EE EJB QL. You can formulate queries at runtime,
select multiple EJB attributes out of a CMP EJB in a single
SELECT clause, support for GROUP BY. See Chapter 19,
“Dynamic Query” on page 495 for more information.

Extended Messaging (EMS) Enhances standard J2EE Messaging by providing support for
all types of messaging patterns, container support for these
patterns, and code simplification. See Chapter 12, “Extended
messaging” on page 353 for more information.
 Chapter 2. Product overview 17

2.2.4 BPEL4WS
Business Process Execution Language for Web Services (BPEL4WS) is used to
implement all business processes in WebSphere Business Integration Server
Foundation V5.1. BPEL was originally proposed by IBM (in conjunction with BEA
and Microsoft®) in July 2002 and combined ideas from IBM’s Web Services Flow
Language (WSFL) and Microsoft’s XLANG. A technical committee within OASIS
was formed in April 2003, giving BPEL a stronger standards “backbone.” The
language (which may be more accurately described as a “meta language”) is
used to define business process models by enabling the description of Web
services operations, their relationships, and order of execution. It is intended to
support the activities of system architects and software developers who are
increasingly concentrating on taking the Web services created during an earlier
phase of their SOA adoption and linking them together to construct workflows.

Internationalization (I18N) Allows you to automatically recognize the calling client's time
zone and location information so your application can act
appropriately. This technology allows you to deliver to each
user, around the world, the right date and time information, the
appropriate currencies and languages, and the correct date and
decimal formats. See Chapter 21, “Internationalization (i18n)”
on page 539 for more information.

Last Participant Support Allows J2EE application to have a single-phase resource (only
one per transaction) in a transaction.

Object pools Enables an application to avoid creating new Java objects
repeatedly. See Chapter 20, “Object pools” on page 523 for
more information.

Scheduler service Allows a J2EE application to schedule the execution of tasks in
the future. See Chapter 14, “Scheduler service” on page 391 for
more information.

Shared work area (SWA) Shared Work Areas provide a solution to pass and propagate
contextual information between application components. For
detailed information, refer to Chapter 18, “Shared Work Area
service” on page 479.

Startup beans A special kind of EJBs that are executed automatically when an
application starts up or shuts down. See Chapter 13, “Startup
beans” on page 375 for more information.

Enterprise enablements Description
18 WebSphere Business Integrator Server Foundation V5.1 Handbook

2.2.5 WebSphere Process Choreographer
WebSphere Process Choreographer provides support for business-process
applications within the WebSphere Application Server. Process Choreographer
supports service composition as specified by Business Process Execution
Language for Web Services (BPEL4WS or abbreviated to BPEL) and enables
developers to define the structure and behavior of a set of Web Services that
jointly implement a business process.

Process Choreographer, also known as the business process container, is the
process engine of WebSphere Application Server Enterprise. It allows
developers to create processes using a visual tool which in turn helps to speed
up application development.

The business processes that are implemented in an enterprise typically require a
mixture of human and IT resources and these processes are supported by
Process Choreographer. A process is a directed graph that starts with an Input
node and ends with an Output node. A process itself is described in WSDL. Its
input and output are described as WSDL messages.

A process can contain many activities. An activity can be the invocation of an
EJB, a Java class, a service or another process. A process can also be
event-driven. For example, it can be paused, waiting for an event, and then
resumed when a message arrives.
 Chapter 2. Product overview 19

20 WebSphere Business Integrator Server Foundation V5.1 Handbook

Chapter 3. Scenarios

This section outlines a number of ways that WebSphere Business Integration
Server Foundation can be used within an IT solution. In each case, problems,
solutions and benefits are outlined. Of course, the fictitious scenarios used here
are far simpler than the potential reqirements seen in the real world.

For further detailed information of potential patterns of usage, please refer to the
redbook Patterns: Serial and Parallel Processes for Process Choreography and
Workflow, SG24-6306.

3

© Copyright IBM Corp. 2004. All rights reserved. 21

3.1 Scenario 1: Service composition
An insurance company has a significant legacy estate comprising stovepipe
applications, each of which supports a different insurance product. This IT
environment presents a number of issues.

� Highly skilled staff is required

Company staff uses separate applications to work with each product and
requires training in each of them. Some of the applications have highly
specialized interfaces which require experienced staff to be allocated solely to
their support.

The company wishes to begin to consolidate these into a single application
offering a simple user interface. This will free up the experienced staff for
business development.

� Product development is a slow process

Development of new insurance products composed from elements of existing
products takes a long time. This affects the company’s responsiveness to
changes in the market. The company’s market share position is threatened
because its competitors are able to release products much faster.

The company wishes to improve the ability of its business development team
to create innovative products and release them to the market more quickly.

� Customers have limited choices to purchase the products

At present, the only way of accessing the full range of the company’s products
is through the call center or insurance resellers. The reseller staff needs to
attend a series of courses and install specific software to access the
company’s systems. A limited range of products are available on the Web.

The company wishes to improve the customer experience by offering a full
range of products through the Web and simplified integration options services
to partners.

Solution
To achieve these aims, the company has invested in a service oriented
architecture, which is shown in Figure 3-1 on page 23. The key points of the
architecture are as follows.

� Back-end applications are wrapped as Web services

These product-related services use WebSphere Business Integration
Adapters and the CICS transaction gateway to expose functions and data
from the existing systems.
22 WebSphere Business Integrator Server Foundation V5.1 Handbook

� Business services are constructed using these services

These business services are short-lived, supporting simple processes such
as getting quotes, viewing customer insurance products and submitting
insurance claims. The processes defined in WebSphere Business Integration
Server Foundation contain the logic to route the data to the relevant systems.

� New applications and channels use the business services

The company invests in its call center and Web infrastructures to capitalize on
the new services. It also offers these services to insurance resellers for
inclusion in their systems.

Figure 3-1 Service composition

Benefits
This approach offers a number of benefits:

� Common interface to multiple back-end services

The technical complexities of the back-end implementations are hidden from
the front-end applications.

Functions and data are offered as services based on Web standards, and so
should be supported by a wide range of packaged solutions.

Call Center
Application Web Channel Insurance

Reseller

Life
Assurance

System

Home
Insurance
System

Motor
Insurance
System

Process A Process B Process C

WebSphere Business Integration
Server Foundation
 Chapter 3. Scenarios 23

� Isolation of layers in the architecture

The insurance applications can be replaced with new applications which offer
similar functionality without affecting the applications which consume the
services.

Similarly, new channels can be added to the front end without reworking the
services.

� Rapid prototyping of new services

New products can be offered by using the back-end services in different
combinations.

Visual editing of processes means that business users can assist with
development of the services.

3.2 Scenario 2: Process state management
A telecommunications company is implementing a new order process for
customers taking out a cellular phone contract. The company’s requirements are
outlined below.

� The process must be flexible

The business process takes place using three distinct steps:

a. The customer requests a quote and is provided with a quote reference
number.

b. The customer decides to proceed with the order on the basis of the quote.
Contract documentation is printed and sent to customer.

c. The customer returns a signed contract and payment details.

The customer must be able to pause the process at any of these stages.
There are, however, time limits beyond which the order is invalidated and the
customer must request a new quote.

� The process must be accessible from multiple channels

Part of the company’s desire to implement the new process is to give the
customer more ordering options. The company’s channels include stores, a
Web site and call centers. Customers should be able to start the order
process from any of these channels and continue with the same order on
another channel with little delay.

� The system must enforce statutory requirements

The company is required to have a signed copy of the contract and payment
details before proceeding to the setup of the customer’s account. The
24 WebSphere Business Integrator Server Foundation V5.1 Handbook

process must wait for this information to be received before completing the
order.

Solution
The company has implemented a process engine as shown in Figure 3-2. The
key points of the architecture are as follows.

� The process is defined in BPEL4WS

A WebSphere Process Choreographer interruptible process is used to
manage the state of the order. This allows the order state to be stored and
retreived at a later date.

� Front-end applications all access the same process

Once an order process has been started by a customer, the process instance
can be accessed by the different channels. The process offers
message-based interfaces to retrieve the process status and continue the
process.

Figure 3-2 Process state management

Call Center
Package

Back
Office App

Contract
System

Customer
Letter System

Billing
System

End

Quote Proceed? Complete

Phone Ordering Process

First Contact Proceed with
Contract

Return Signed
Contract

WebSphere Business Integration
Server Foundation

Web Site

n

y

 Chapter 3. Scenarios 25

Benefits
A number of additional benefits are provided with this solution.

� The process is defined once

The channel applications do not contain any details of the implementation of
the process, only the interfaces through which they need to pass data. This
separation of process and user interface greatly aids future flexibility by
allowing the process to change and new channels to be added.

� Multiple channels can access the same process instance

The active process instances all reside in the same component. This means
that any channel can retrieve and update the state of the process. In addition,
it becomes possible to monitor the progress of the processes and, potentially,
to produce statistics of interest to business users, such as percentage of
quotes converted to orders.

� Business-defined time-outs are enforced

Certain stages in the process have an associated time-out. As an example, a
quote is valid for 30 days form the point that it is raised. WebSphere Business
Integration Server Foundation provides capabilities to implement this time-out
at the points in the process where an incoming message is awaited.

3.3 Scenario 3: Human interaction
A company operates a requisiton process to enable its staff to obtain a range of
office supplies from pens and paper up to printers and photocopiers. This
presents a number of challenges.

� High-value items require management approval

Orders over a certain limit require approval from management. Delays in this
process can reduce the productivity of the staff.

� Received goods are often misplaced in the busy postroom

The company wishes to improve the quality of its post-receipt processes.
Each received item should be associated with an order and dispatched to the
correct department immediately. This process should also trigger the
payment process.

Solution
The overal flow of the process is similar to that of the scenario outlined in 3.2,
“Scenario 2: Process state management” on page 24. In this instance, however,
the work is allocated to humans at two points in the process. This contrasts with
the previous case, where the process waited for incoming messages.
26 WebSphere Business Integrator Server Foundation V5.1 Handbook

� Order approval

Management approval is required at this stage in the process. A WebSphere
Process Choreographer Staff activity is used to assign this approval to
appropriate members of the staff. Interaction is through a portal which links
directly to the WebSphere Business Integration Server Foundation
application.

� Order receipt

The postroom staff is required to mark orders as received within the process.
This is done through another portal, in which all outstanding orders are listed,
allowing postroom staff to select the order and update the status.

Figure 3-3 Human interaction

Benefits
The benefits in this instance are similar to those of the previous scenario outlined
in 3.2, “Scenario 2: Process state management” on page 24, namely, tracking of
orders, with potential management information extraction.

� Humans can contribute to the process

The inclusion of staff activities in the process allows more complex decisions
to be handled while still keeping overall state under the control of the process
engine. The decisions that the humans handle in the process would be
extremely difficult to codify, because they rely on management discretion.

Catalog
Application

Office Supply
System

Financial
System

Staff

Staff

Approval? Complete

Office Supply Requisition Process

WebSphere Business Integration
Server Foundation

Approver
Portal

y

n

Postroom
Portal
 Chapter 3. Scenarios 27

28 WebSphere Business Integrator Server Foundation V5.1 Handbook

Part 2 Setting up the
environment

Part 2
© Copyright IBM Corp. 2004. All rights reserved. 29

30 WebSphere Business Integrator Server Foundation V5.1 Handbook

Chapter 4. Runtime environment

This chapter provides an overview of the runtime architecture of WebSphere
Business Integration Server Foundation. The features of the product are
described.

This chapter also provides an explanation of the procedures for installing,
configuring, and verifying WebSphere Business Integration Server Foundation
V5.1.

Additionally, the chapter concentrates on the decisions and tasks associated with
WebSphere Business Integration Server Foundation V5.1 from the operational
and administration points of view.

4

© Copyright IBM Corp. 2004. All rights reserved. 31

4.1 Architecture
Figure 4-1 shows the basic architecture of WebSphere Business Integration
Server Foundation.

Figure 4-1 WebSphere Business Integration Server Foundation V5.1 architecture

WebSphere Business Integration Server Foundation is based on the capabilities
provided by WebSphere Application Server base and Network Deployment
editions. These capabilities are summarized in the next section, with subsequent
sections covering the specific components provided by WebSphere Business
Integration Server Foundation.

Config
Repository

(File)

Config
Repository

(File)

Node
Application Server

Web Container

EJB Container

J2C Container

Name Server (JNDI)

Security Server

Application Server Services

Embedded
HTTP Server

Web
Services
Engine

A
dm

in

A
pp

lic
at

io
n BPE Container

Business
Process

Application

Node
Agent

JMS Provider

PME Modules

Supporting
Database

Supporting
Database

HTTP Server

WebSphere
Plug-in

Web
Browser
Client

Admin
UI

Client Container

Java Client

Scripting
Client Ad

m
in

 S
er

vi
ce

Config
Repository

(File)

Messaging
Server

(Optional)
32 WebSphere Business Integrator Server Foundation V5.1 Handbook

4.1.1 WebSphere Application Server base components
This section summarizes the components provided by the WebSphere
Application Server base and Network Deployment editions. For a detailed
discussion of these topics, please refer to the redbook IBM WebSphere
Application Server V5.1 System Management and Configuration WebSphere
Handbook Series, SG24-6195.

Node and node agent
A node is a logical grouping of WebSphere-managed server processes that
share common configuration and operational control. A node is generally
associated with one physical installation of WebSphere Application Server.

Under the more advanced configurations of WebSphere Application Server,
multiple nodes can be managed from a single administration server and the
nodes can collaborate to share the workload amongst themselves. In these
centralized management configurations, each node has a node agent that works
with a Deployment Manager to manage administration processes.

Servers
Servers perform the actual code execution. There are several types of servers,
depending on the configuration. Each server runs in its own JVM.

� Application servers

The application server is the primary runtime component in all configurations.
This is where the application actually executes. All WebSphere Application
Server configurations can have one or more application servers. In the
Network Deployment configuration which WebSphere Business Integration
Server Foundation can build on, multiple application servers are maintained
from a central administration point. In addition, application servers can be
clustered for workload distribution.

� JMS servers

WebSphere Application Server provides an embedded JMS server for
messaging support. In the Base configuration, the JMS server functions are
integrated into the application server. In the Network Deployment and
WebSphere Business Integration Server Foundation configurations, the JMS
server runs in a separate JVM. There is one JMS server per node.

The JMS server can be replaced by another JMS provider, such as
WebSphere MQ.
 Chapter 4. Runtime environment 33

Containers
The J2EE 1.3 specification defines the concept of containers to provide runtime
support for applications. There are two containers in the application server
implementation:

� Web container

The Web container processes servlets, JSP files and other types of
server-side includes. Each application server runtime has one logical Web
container, which can be modified, but not created or removed.

The Web container provides an embedded HTTP server, although it is
unlikely that this would be used to handle incoming requests in a real
implementation.

� EJB container

The EJB container provides all the runtime services needed to deploy and
manage enterprise beans. It is a server process that handles requests for
both session and entity beans.

EJBs do not communicate directly with the server, instead using the
interfaces provided by the EJB container. The container provides capabilities
such as threading, transaction support and data management.

In addition, there is an application client container which can run on the client
machine.

� J2C container

This container provides services enabling the use of J2EE Connector
Architecture. This allows applications executing in WebSphere Application
Server to communicate with existing systems such as CICS and popular ERP
systems via a simplified API.

HTTP server with WebSphere plug-in
Although the Web container has an embedded HTTP server, a more likely
scenario is that an external Web server will be used to receive client requests.
The Web server can serve requests that do not require any dynamic content, for
example, HTML pages. However, when a request requires dynamic content
(JSP/servlet processing), it must be forwarded to WebSphere Application Server
for handling.

This is achieved using the Web server plug-in. The plug-in is included with the
WebSphere Application Server package for installation on a Web server. The
plug-in can use HTTP or HTTPs to transmit the request from the HTTP server to
the WebSphere Application Server Web container.
34 WebSphere Business Integrator Server Foundation V5.1 Handbook

Application server services
WebSphere Business Integration Server Foundation provides a number of
application services to assist with creating enterprise-strength applications.

Transaction service
WebSphere applications can use transactions to coordinate multiple updates to
resources as one unit of work such that all or none of the updates are made
permanent. Transactions are started and ended by applications or the container
in which the applications are deployed.

WebSphere Application Server is a transaction manager that supports
coordination of resource managers through their XAResource interface and
participates in distributed global transactions with other OTS 1.2 compliant
transaction managers (for example, J2EE 1.3 application servers).

JNDI
Each application server hosts a name service that provides a Java Naming and
Directory Interface (JNDI) name space. The service is used to register resources
hosted by the application server.

Security service
Each application server JVM hosts a security service that uses the security
settings held in the configuration repository to provide authentication and
authorization functionality.

4.1.2 Business Process Execution container
The Business Process Execution container is a specialized J2EE application
which executes business processes and flows. It handles the lifecycle of a
process, from instantiation of a process template to final deletion of the
completed process.

It relies on a database to manage state and on a JMS provider for transitions
between activities. This means that to make a fully scalable, available installation
of WebSphere Process Choreographer, the characteristics of the underlying
infrastructure must also be considered.

4.1.3 Programming Model Extensions
WebSphere Business Integration Server Foundation provides a number of
valuable extensions to the J2EE specification. These are delivered in many
different forms, including services, APIs and tooling extensions. The remainder
of the book is dedicated in a large part to these Programming Model Extensions
(PMEs).
 Chapter 4. Runtime environment 35

4.2 Basic configuration
The following section outlines the method for configuring WebSphere Business
Integration Server Foundation on a single Microsoft Windows server.

4.2.1 Planning
The products that will be installed on the single-server implementation are:

� IBM HTTP Server V1.3
� WebSphere Business Integration Server Foundation V5.1
� DB2 Enterprise Server Edition V8.1
� WebSphere MQ V5.3, in a central configuration
� Tivoli Directory Server V5.2

To enable support for WebSphere Process Choreographer, the following
WebSphere Business Integration Server Foundation components must be
configured:

� WebSphere MQ Adapter for BPE
� DB2 Enterprise Server Edition
� (Optional) Staff plug-in. Required if staff interaction is to be employed.

The WebSphere Application Server Network Deployment components will not be
configured in the basic configuration. This component is not required because
the node is not part of a distributed configuration.

4.2.2 Software requirements
Review the operating system requirements for further details:

http://www.ibm.com/software/integration/wbisf/reqirements/

Our operating system installation was Microsoft Windows 2000 Server with SP4.

4.2.3 Installation
The order of installation of the WebSphere components is as follows:

1. WebSphere MQ V5.3
2. DB2 Enterprise Server Edition V8.1
3. Tivoli Directory Server V5.2
36 WebSphere Business Integrator Server Foundation V5.1 Handbook

http://www.ibm.com/software/integration/wbisf/reqirements/

Supporting components
Installation details are given in Appendix B, “Additional configuration help” on
page 577. Refer to the following topics for instructions.

� “WebSphere MQ setup instructions” on page 578

� “DB2 Enterprise Server Edition V8.1 installation” on page 579

� “Tivoli Directory Server V5.2 installation” on page 580

WebSphere Business Integration Server Foundation
Once the prerequisites have been installed, continue with the installation of
WebSphere Business Integration Server Foundation. The WebSphere Business
Integration Server Foundation Installer performs the following tasks.

1. Check prerequisites.

2. Search for WebSphere Application Server family products, V4.x and V5.0.x.

3. Install WebSphere Application Server V5.1 base if not already installed, or
add required features to an existing WebSphere Application Server base
V5.1.0.

4. Install cumulative fix 5.1.0.2 to a base or Network Deployment node.

5. Install 5.1.0 cumulative fix 1 for the Java SDK that V5.1.0.x WebSphere
Application Server products use.

6. Install WebSphere Business Integration Server Foundation product
extensions.

The steps to install WebSphere Business Integration Server Foundation are
given below:

1. Use launchpad.bat to start the installer.

Note: When installing Tivoli Directory Server on the same machine as
WebSphere Business Integration Server Foundation V5.1, do not install
the Embedded WebSphere Application Server V5.0 Express server.

In the new version of Tivoli Directory Server, the administration is done via
a thin client application that must be run from WebSphere Application
Server. Since we already have WebSphere Business Integration Server
Foundation installed on the single-server machine, we don’t need an extra
Express V5.0 installation.

The J2EE application called IDSWebApp.war, which is located in Tivoli
Directory Server install_home, must be installed in WebSphere Business
Integration Server Foundation.
 Chapter 4. Runtime environment 37

2. Click Install the product to start the WebSphere Business Integration Server
Foundation V5.1 installation.

3. Accept the license agreement.

4. The tool starts the prerequisite checker. This tool is built into the installer
program. Verify that all prerequisites are met.

5. Once the prerequisite checker has completed, continue by selecting a
Custom installation.

6. Select all components, including CEI. Deselect Samples for all components.
Also uncheck CORBA C++ SDK support, Javadocs, and Embedded
messaging.

7. Install the product in the directory C:\WebSphere\AppServer.

8. Accept the default node name and the hostname.

9. Run the application server as a service. For this, you will be required to
provide an administrator’s user ID and password.

10.Review the summary and start the installation.

Although the Web container provides an embedded HTTP server, robust Web
applications generally require a separate Web server component. The default
installation of WebSphere Business Integration Server Foundation does not
include IBM HTTP Server or the Web server plug-in. Additionally, Tivoli
Performance and Analysis tools are useful tools to install. Follow the instructions
in “IBM HTTP Server, IBM HTTP Web server plug-in, and Tivoli Performance
Viewer installation” on page 582 to install these components.

Verifying the installation
We will run the Installation Verification tool and some other tests to ensure that
the application server has been installed successfully.

1. Run the FirstStep.bat utility

2. Click Verify Installation. This step should automatically launch the server
process. Check that there are no errors in the output, that the message
Installation Verification Complete is shown and that all status are
marked as PASSED.

3. Click Start the Server and check to see if there are any errors in the log.

4. Click Stop the Server and check to see if there are any errors in the log.

Note: The prerequisite checker creates log files in the C:\Document and
Settings\Administrator\Local Settings\Temp\1 folder, which can be used to
troubleshoot installation prerequisite failures.
38 WebSphere Business Integrator Server Foundation V5.1 Handbook

5. Click Administrative Console to connect to the admin console and log in as
admin to verify admin console functionality.

Installing Cumulative Fix 3 and interim fixes
At the time of writing, Cumulative Fix 3 was the latest available for WebSphere
Business Integration Server Foundation V5.1. It is recommended that this fix and
any other interim fixes be applied, since they address several key issues.

Fixes are available from the WebSphere Business Integration Server Foundation
support site:

http://www.ibm.com/software/integration/wbisf/support/

1. Open the WebSphere Business Integration Server Foundation support site
above; navigate to Recommended Updates and open WAS Base/ND 5.1.0.3
Cumulative Fix.

2. Download the Windows - base package. The file is called
was510_cf3_win.zip.

3. On the command prompt, set the JAVA_HOME variable to point to the
<WBISF_root>/java folder.

4. Extract this file into a separate folder. It will create the was510_cf3_win folder.

5. Run updateWizard.bat from the was510_cf3_win folder.

6. Follow the on-screen instructions to install the FixPack.

7. Select install fixpack. Accept the default location for the FixPack folder.

8. Follow the remaining instructions to finish installing Cumulative Fix 3.

A number of interim fixes are also available from the WebSphere Business
Integration Server Foundation support site. These are named PQnnnn.

1. Open the WebSphere Business Integration Server Foundation support site
and navigate to Recommended Updates.

2. Download all interim fixes.

3. Extract the interim fixes into the was510_cf3_win folder. This will create the
efixes directory.

4. On the command prompt, set the JAVA_HOME variable to point to the
<WBISF_root>\java folder.

5. Run updateWizard.bat.

Note: Cumulative Fix 3 also includes the updateInstaller listed on the Web
site, so this does not need to be downloaded separately.
 Chapter 4. Runtime environment 39

http://www.ibm.com/software/integration/wbisf/support/

6. Accept the default language (English).

7. Follow the on-screen instructions, making sure that IBM WebSphere
Application Server V5.1.0.3 is selected and that the correct application
server installation directory is selected.

8. Select Install Fixes in the next window. This is an efix install, rather than a
FixPack install.

9. Select the directory where efixes were copied above.

10.The wizard will scan for the efixes in the given folder. Select all all listed fixes,
checking that the wizard lists all the fixes that were downloaded.

11.Review the summary and click Finish to install the fixes.

4.2.4 Configuration
The tasks included in this section entail having different components of
WebSphere Business Integration Server Foundation V5.1 configured and
working properly. This section focuses on the product configuration and
integration. These WebSphere Business Integration Server Foundation
components include:

1. IBM HTTP Server

2. BPE components:

a. WebSphere MQ configuration

b. DB2 configuration

c. Tivoli Directory Server Server for Staff plug-in and Global Security

3. BPE container configuration

IBM HTTP Server
In order to configure IBM HTTP Server, verify that the following WebSphere
Business Integration Server Foundation plug-in information is available in the
IBM HTTP Server configuration file.

1. Edit <IHS_root>/conf/httpd.conf.

2. Search for for the ServerName directive and verify that it is set properly.

3. Go to the end of the file and verify that it contains the following lines.

Example 4-1 httpd configuration

LoadModule ibm_app_server_http_module
"C:\WebSphere\AppServer\bin/mod_ibm_app_server_http.dll"
WebSpherePluginConfig "C:\WebSphere\AppServer/config/cells/plugin-cfg.xml"
40 WebSphere Business Integrator Server Foundation V5.1 Handbook

BPE supporting components
Configuring BPE container involves several steps:

1. Set up WebSphere MQ Queue Managers and appropriate queues.
2. Set up the DB2 database for BPE container.
3. (Optional) Configure the Staff plug-in to utilize Tivoli Directory Server.

The high-level task plan for configuring the BPE container is given in the
following InfoCenter topic; click WebSphere Business Integration Server
Foundation → Administering → Applications → Process
choreographer → Configuring the business process container.

WebSphere MQ
Refer to the InfoCenter for configuration of WebSphere MQ. Navigate to
WebSphere Business Integration Server Foundation → Administering →
Applications → Process choreographer → Configuring the business
process container → Creating the queue manager and queues for the
business process container. At a high level, the following steps must be
completed as documented in the InfoCenter:

1. Create Queue Manager.

2. Create WebSphere MQ Cluster as needed (optional).

3. Create the queues.

4. Add the listener for the Queue Manager (optional).

IBM DB2 setup
The database must be configured prior to using the Business Process container.
In the InfoCenter, navigate to WebSphere Business Integration Server
Foundation → Administering → Applications → Process
choreographer → Configuring the business process container → Creating
the database for the business process container. A summary of the tasks that
must be performed to configure DB2 is as follows:

1. Ensure that DB2 is set up and installed properly as per DB2 Installation
Guidelines in the DB2 product documentation

2. In order to avoid deadlocks, make sure db2set DB2_RR_TO_RS=YES is set.

Important: During tests, we used WBISFQM1 and ran into the following
MQJMS exception:

MQJMS2005: failed to create MQQueueManager for ‘<queue manager>’

Make sure you have a TCP Listener and a Server Connection Channel; if
either of these is missing, create it.
 Chapter 4. Runtime environment 41

3. Verify that a default DB2 instance is created, db2inst1.

4. Create a new database called BPEDB for Business Process Container, and
the schema for the database. This can be done using the
createDatabaseDb2.ddl script.

5. Verify there are no errors from the script, then bind certain CLI packages to
the database as follows.

Example 4-2 Bindings for the database

db2 connect to BPEDB
db2 bind %DB2PATH%\bnd\@db2cli.lst blocking all grant public

Tivoli Directory Server setup for Staff plug-in
Tivoli Directory Server must be configured before the WebSphere Process
Choreographer Staff plug-in can be used. Review the contents of the Tivoli
Directory Server installation guide prior to proceeding with the Staff plug-in
configuration.

The Tivoli Directory Server must be installed and configured properly with an
appropriate base DN. In our tests, we used ou=itso, o=ibm, c=us.

Detailed configuration steps can be found in “Tivoli Directory Server V5.2
installation” on page 580.

Note: Note that createDatabaseDb2.ddl creates a database and sample
tables as needed. This script should be used only for creating test and
development databases. For production BPE setup, it is recommended that
you relocate the tables into different table spaces using the
createSchemaDb2.ddl script. Also, adjusting DB2 tuning parameters always
helps from the performance standpoint.

Important: By default, Tivoli Directory Server installs an instance of
Embedded WebSphere Application Server Express V5.0.2 to provide
administrative support. The Tivoli Directory Server administration application
will not run on the WebSphere Business Integration Server Foundation V5.1
application server.

If the Embedded WebSphere Application Server V5.0.2 and WebSphere
Business Integration Server Foundation V5.1 must coexist on the same
machine, conflicts between TCP/IP ports must be resolved.
42 WebSphere Business Integrator Server Foundation V5.1 Handbook

BPE container
The next task is to install and configure the BPE container in WebSphere
Business Integration Server Foundation V5.1.

Installing Business Process Container
The BPE container will be set up to communicate with the WebSphere MQ and
DB2 Enterprise Server Edition components. Tivoli Directory Server is optionally
configured for Staff plug-in support in the BPE container.

Review the instructions in the appropriate InfoCenter topic by clicking
WebSphere Business Integration Server Foundation → Administering →
Applications → Process Choreographer → Configuring the business
process container → Using the Install Wizard to configure the business
process container.

A high-level overview of the guidelines is given below.

1. Log in as Administrator and start WebSphere Business Integration Server
Foundation V5.1 application server.

2. Open the Administrative Console.

3. Define environment variables under Environment → Manage WebSphere
Variables.

Table 4-1 Environment variables

4. For WebSphere MQ JMS Provider, use the following settings as documented
in Table 4-2.

Table 4-2 JMS Provider settings

Variable name Variable value

MQ_INSTALL_ROOT C:\WebSphere\WMQ

DB2_JDBC_DRIVER_PATH C:\WebSphere\SQLLIB\java

DB2UNIVERSAL_JDBC_DRIVER_PATH C:\WebSphere\SQLLIB\java

Setting Value

JMS Providers WebSphere MQ JMS Provider

Queue Manager QM1

JMS Security Role Administrators

JMS API User ID Administrator

JMS API Password password
 Chapter 4. Runtime environment 43

5. JMS Resoruces should be created from scratch as per documented
instructions.

6. Select the check box Check this box to install the Web client.

7. Review summary information and click Finish to install the Business Process
container.

Configuring Staff service for Process Choreographer
Process choreographer uses Staff plug-ins to determine who can start a process
or claim an activity. Your business processes can also use the Staff plug-in
services to resolve staff queries. Each type of directory service requires a
different staff plug-in. You can register multiple staff plug-ins. The user registry
and system plug-ins are already installed and can be used without any
configuration. To configure a Staff Plugin Provider, consult the following
InfoCenter topic; click WebSphere Business Integration Server
Foundation → Administering → Applications → Process
choreographer → Configuring the staff service for process choreographer.

A J2C Authentication alias must be defined first in WebSphere Business
Integration Server Foundation V5.1 Security section. Navigate to Security →
JAAS Configuration → J2C Authentication Data. and click New to define a
new authentication alias, as follows. If this alias is not set, an anonymous logon
to the LDAP server is used.

Table 4-3 J2C authentication alias

Define a new Staff plug-in configuration as in the InfoCenter item mentioned
above.

Configure the Staff plug-in at the node level. Configure the customer properties
for the Staff Plugin Provider as given in Table 4-4 on page 45.

Setting Value

Alias <hostname>/tds

User ID cn=root

Password tdsadmin

Description TDS Authentication Alias
44 WebSphere Business Integrator Server Foundation V5.1 Handbook

Table 4-4 Staff plug-in configuration parameters

4.3 Distributed configuration
The purpose of this section is to show how to configure WebSphere Business
Integration Server Foundation components in a multi-tier environment. All
components will be installed on separate machines. However, this section will
not address any WLM and HA issues. Procedures for testing the configurations
using sample applications are also not covered in this chapter. However, in a
production environment, it is imperative to test the distributed, high availability
workload management architecture with a sample application.

4.3.1 Planning
It is assumed that the following components are already installed on separate
physical nodes

� IBM DB2 UDB V8.1 Enterprise Server Edition
� WebSphere MQ V5.3 Server
� Tivoli Directory Server V5.2

The highlighted components will be installed and configured in this section.

Setting Value

AuthenticationAlias <hostname>/tds

AuthenticationType <optional>

BaseDN cu=itso,o=ibm,c=us

ContextFactory com.sun.jndi.ldap.LdapCtxFactory

ProviderURL ldap://<hostname>:389

SearchScope subtreeScope
 Chapter 4. Runtime environment 45

Figure 4-2 The distributed configuration infrastructure

Components installed in the distributed configuration will include:

� WebSphere Business Integration Server Foundation
� IBM HTTP Server
� IBM DB2 Client
� WebSphere MQ Client

4.3.2 Software requirements
The installation depends on the software listed below.

Operating system software requirements
This section outlines the requirements for the operating system.

1. Ensure that the Operating system is at the correct level.

Table 4-5 outlines the hardware and operating system configuration used in
setting up the distributed environment.

Table 4-5 Product - machine mapping

DB2
Database

F
i
r
e
w
a
l
l

Tivoli
Directory
Server

WebSphere
MQ Server

IBM
HTTP
Server

WAS
Plug-in

DB2
Client

MQ
Client

Node Agent

App Server

WBI SF v5.1

Internet

WebSphere Business
Integration Server Foundation
Components

Machine Type OS Level

WebSphere Business Integration
Server Foundation Node 1

pSeries® 44P 170 AIX 5.2 PTF ML5200-02

WebSphere Business Integration
Server Foundation Network
Deployment

pSeries 43P 150 AIX 5.2 PTF ML5200-02
46 WebSphere Business Integrator Server Foundation V5.1 Handbook

In addition to the PTF ML5200-02, the following critical AIX fixes were
applied: U488962, U488959, U488958, U488923, U488917. Table 4-6 lists all
the updates that must be installed on all physical nodes of the distributed
enviornment.

Table 4-6 AIX package updates

2. Check that sufficient disk space is available in various file systems:

– /usr: 4 GB
– /var: 1 GB
– /tmp: 2 GB

You may also like to create logical volumes mounted under these locations to
contain the WebSphere Business Integration Server Foundation installation.

3. You must install the xlC.rte 6.0 run-time code, which is a prerequisite of
GSKit7. This is a prerequisite for WebSphere Business Integration Server
Foundation installation.

4. Download the latest AIX fixes for AIX 5.2 from the Fix Central Web site:

https://techsupport.services.ibm.com/server/aix.fdc

IBM DB2 V8.1 ESE pSeries 44P 170 AIX 5.2 PTF ML5200-02

WebSphere MQ pSeries 43P 150 AIX 5.2 PTF ML5200-02

Tivoli Directory Server xSeries® NF5100 Windows 2k Server SP4

AIX Package Package Level

bos.mp 5.2.0.15

bos.mp64 5.2.0.15

bos.up 5.2.0.15

devices.chrp.base.rte 5.2.0.14

devices.common.IBM.ethernet.rte 5.2.0.14

X11.fnt.ucs.ttf_KR 5.2.0.0

X11.fnt.ucs.ttf_TW 5.2.0.0

X11.fnt.ucs.ttf_CN 5.2.0.0

X11.fnt.ucs.ttf 5.2.0.0

WebSphere Business
Integration Server Foundation
Components

Machine Type OS Level
 Chapter 4. Runtime environment 47

https://techsupport.services.ibm.com/server/aix.fdc

5. Verify that there is DNS name resolution configured on the operating system.
All nodes should be reachable from each other using both short and fully
qualified hostnames. A good test to perform is to ping both short and FQHN
for all nodes.

WebSphere MQ
A WebSphere MQ server installation is required to support the BPE container.

For more information about software requirements for WebSphere MQ V5.3 on
AIX, refer to:

http://www.ibm.com/software/integration/mqfamily/platforms/supported/
wsmq_for_aix_5_3.html

For other platforms and products, refer to:

http://www.ibm.com/software/integration/websphere/mqplatforms/
supported.html

IBM DB2 ESE Server
A database server is required to support the BPE container.

For more information about software requirements for IBM DB2 UDB ESE, refer
to:

http://www-306.ibm.com/software/data/db2/udb/sysreqs.html

Tivoli Directory Server
For more information about software requirements for Tivoli Directory Server,
refer to:

http://www.ibm.com/software/tivoli/products/directory-server/platforms.html

4.3.3 Installation
This section details the installation instructions for WebSphere Business
Integration Server Foundation V5.1 on the AIX platform.

WebSphere MQ Client
Installation instructions for WebSphere MQ are provided in the platform-specific
manual at the following Web site:

http://www.ibm.com/software/ts/mqseries/library/manualsa/index.htm
48 WebSphere Business Integrator Server Foundation V5.1 Handbook

http://www.ibm.com/software/integration/mqfamily/platforms/supported/wsmq_for_aix_5_3.html
http://www.ibm.com/software/integration/websphere/mqplatforms/supported.html
http://www.ibm.com/software/tivoli/products/directory-server/platforms.html
http://www-306.ibm.com/software/data/db2/udb/sysreqs.html
http://www.ibm.com/software/ts/mqseries/library/manualsa/index.htm

A summary of the instructions for installing the WebSphere MQ Client on AIX is
given below:

1. Log in as an administrator user (root).

2. Insert the WebSphere MQ Client software CD.

3. Run the smitty install_latest command to install the software.

4. Specify the CD mount point where WebSphere MQ Client software is located
and follow the on-screen instructions.

5. Select the components mqm.base, mqm.client, and mqm.java.

6. Verify that Accept new license agreements is set to yes and Preview new
license agreement is set to no.

CSD05
The CSD05 FixPack must be installed for the WebSphere MQ client.

1. Download WebSphere MQ CSD5 from the WebSphere MQ Support site and
extract it to a temporary folder.

2. Use smitty to install CSD05: smitty update_all. Specify the temporary
directory where CD05 was extracted in the previous step.

3. Verify that Accept new license agreements is set to yes and Preview new
Licensen agreement is set to no.

IBM DB2 UDB Client
For more information about IBM DB2 UDB, refer to:

http://publib.boulder.ibm.com/infocenter/db2help/index.jsp

The instructions below are provided as a guideline. You must refer to the DB2
InfoCenter above for detailed instructions.

1. Log in using an administrator user ID (root).

2. Insert the DB2 Software CD.

3. Locate the db2setup script and execute ./db2setup.

4. Select Install Products.

5. In the next window, select DB2 Administration Client.

6. The DB2 setup wizard will start. Accept the license, then select Custom
installation method.

7. Verify that Install DB2 Administration Client on this computer is selected.

8. In the Features window, accept the detaults.
 Chapter 4. Runtime environment 49

http://publib.boulder.ibm.com/infocenter/db2help/index.jsp

9. In the Languages window, accept the defaults (if there is a need, install any
additional languages).

10.In the DB2 setup instance window, be sure to select Create a DB2 instance.

11.Be sure to select New user, and set the DB2 instance owner to the same
value as the DB2 server. For our tests, the DB2 server instance owner was
set to db2admin.

12.Review the summary information and click Finish to install the DB2 client.

13.At the end of the setup, verify that the report contains all SUCCESS status.

14.If there is a problem with the installation, uninstall DB2 client using
db2_deinstall and re-install.

FixPack 5
FixPack 5 must also be installed on this node.

1. Log in as an administrator user (root).

2. Download the FixPack from the DB2 support site, and extract to a temporary
folder.

3. Change to the temporary folder where DB2 FixPack was extracted.

4. Set the execute permission on the installFixPack script using the following
command:

chmod a+x installFixPackexecute

5. Verify that the script displays a SUCCESS status for all installed DB2 client
components.

WebSphere Business Integration Server Foundation
This topic describes how to install WebSphere Business Integration Server
Foundation as the root user on an AIX operating system platform. Detailed
instructions on how to set up WebSphere Business Integration Server
Foundation V5.1 are given in the following InfoCenter topic. Click WebSphere
Business Integration Server Foundation → Installing → Getting started →
Installing the product → Installing the Integration Server on AIX platforms.

The following guidelines should be used in addition to the above instructions:

1. Mount CD1, which contains the WebSphere Business Integration Server
Foundation installation image.

2. Change to the mounted CD-ROM directory.

3. Issue launchpad.sh to bring up the installation wizard.

4. Click the Install the product to start the WebSphere Business Integration
Server Foundation V5.1 installation.
50 WebSphere Business Integrator Server Foundation V5.1 Handbook

5. Accept the license agreement.

6. The tool starts the prerequisite checker. This tool is built in to the installer
program. Verify that all prerequisites are met.

7. Choose a Custom installation.

8. Select all components, including CEI. Deselect Samples for all compoenents.
Also uncheck CORBA C++ SDK support, Javadocs, and Embedded
messaging.

9. Install under /usr/WebSphere/AppServer.

10.Accept the default node name and the hostname.

11.Review the summary and start the installation.

12.If the Install Verification utility starts automatically after the WebSphere
Business Integration Server Foundation installation finishes, close the
window and exit the Product Installation window as well. We will be
addressing the IVT and configuration in 4.3.4, “Configuration” on page 54.

Installing Cumulative Fix 3 and interim fixes
At the time of writing, Cumulative Fix 3 was the latest available for WebSphere
Business Integration Server Foundation V5.1. It is recommended that this fix and
any other interim fixes be applied since they address several key issues.

Fixes are available from the WebSphere Business Integration Server Foundation
support site:

http://www.ibm.com/software/integration/wbisf/support/

1. Open the WebSphere Business Integration Server Foundation support site,
then navigate to Recommended Updates and click WAS Base/ND 5.1.0.3
Cumulative Fix.

2. Download the AIX - base package. The file is called was510_cf3_aix.zip.

3. On the command prompt, set the JAVA_HOME variable to point to the
<WBISF_root>/java folder.

4. Extract the fix file into the was510_cf3_aix folder.

5. Run updateWizard.sh from the was512_cf3_aix folder.

Note: The InfoCenter lists four installation methods. Method 1 is
recommended; Method 4 proved problematic during tests.

Note: Extracting this file also creates files necessary to run the
updateInstaller wizard.
 Chapter 4. Runtime environment 51

http://www.ibm.com/software/integration/wbisf/support/

6. Accept the default language (English).

7. Follow the on-screen instructions, making sure that IBM WebSphere
Application Server V5.1.0.2 is selected and that the correct application
server installation directory is also selected.

8. Select Install FixPack in the next window. Accept the default location for the
FixPack folder.

9. Follow the remaining on-screen instructions to finish installing Cumulative Fix
3.

A number of interim fixes are also available from the WebSphere Business
Integration Server Foundation support site. These are named PQnnnn.

1. Open the WebSphere Business Integration Server Foundation support site
and click Recommended Updates.

2. Download all interim fixes.

3. Copy these interim fixes in the efixes directory of the was512_cf3_aix folder.

4. On the command prompt, set the JAVA_HOME variable to point to the
<WBISF_root>/java folder.

5. From the same command prompt, change the updateInstaller directory, and
run updateWizard.sh.

6. Accept the default language (English).

7. Follow the on-screen instructions, making sure that IBM WebSphere
Application Server V5.1.0.2 is selected and that the correct application
server installation directory is also selected.

8. Select Install Fixes in the next window. We are not doing a FixPack install,
but efixes instead.

9. Select the directory where efixes were copied above.

10.The wizard will scan for the efixes in the given folder. Select all listed fixes,
checking that the wizard lists all the fixes that were downloaded.

11.Review the summary and click Finish to install the fixes.

IBM HTTP Server
There are two versions of IBM HTTP Server that can be used for this setup. In
our test scenarios, we used IBM HTTP Server V2.0.

Important: IBM HTTP Server V2.0 should be installed on a separate machine
as shown in Figure 4-2 on page 46. Please refer to this figure for the location
of the WebSphere Business Integration Server Foundation V5.1 components.
52 WebSphere Business Integrator Server Foundation V5.1 Handbook

IBM HTTP Server V1.3.x
IBM HTTP Server V1.3.x ships with the WebSphere Business Integration Server
Foundation V5.1 CDs.

In order to install IBM HTTP Server V1.3, follow these instructions:

1. Change to the following directory on Disk 1: /cdrom/aix/WAS/ihs.

2. Run installIHS.sh and follow the on-screen instructions.

IBM HTTP Server V2.0
IBM HTTP Server V2.0 is packaged together with WebSphere Business
Integration Server Foundation V5.1 and is available for download from the IBM
external Web site.

The following guidelines can be used to install IBM HTTP Server V2.0:

1. Extract the downloaded IBM HTTP Server V2.0 archive into a temporary
directory.

2. Locate and run installIHS.sh script to start the installation.

3. Follow on-screen instructions to finish installing IBM HTTP Server V2.0.

WebSphere Application Server Plug-in
WebSphere Application Server V5.1 Plug-in must be installed on the same
machine as IBM HTTP Server. The IBM HTTP Server V2.0 installation described
above does not include WebSphere Application Server V5.1 Plug-in. The plug-in
must be installed separately from WebSphere Business Integration Server
Foundation V5.1 installation disks.

The following guidelines illustrate how to install WebSphere Application Server
V5.1 Plug-in:

1. Mount WebSphere Business Integration Server Foundation V5.1 Disk 1.

2. Change to the aix/WAS folder. This represents the WebSphere Application
Server V5.1 base folder.

3. Run the install script to bring up the Installation Wizard.

4. Accept the license.

5. Wait for the prerequisite checks to finish. Verify that no AIX system packages
or patches are missing. If there is a missing package warning, refer to 4.3.2,
“Software requirements” on page 46 where the required AIX system
packages are listed.

6. Choose a Custom installation.
 Chapter 4. Runtime environment 53

7. Click Web Server Plug-in and select the Plug-in for IBM HTTP Server V2.0
plug-in. Make sure the remaining options are unchecked.

8. Accept the default installation folder.

9. Follow on-screen instructions to complete the WebSphere Application Server
V5.1 Plug-in installation.

Installing Cumulative Fix 3
Cumulative Fix 3 should also be applied to the machine hosting IBM HTTP
Server and the WebSphere Application Server V5.1 plug-in. To do this, follow the
instructions given in “Installing Cumulative Fix 3 and interim fixes” on page 51.
Interim fixes do not need to be installed.

4.3.4 Configuration
This section focuses on integrating various software components of WebSphere
Business Integration Server Foundation V5.1. These components include:

� WebSphere Business Integration Server Foundation installation verification
� IBM HTTP Server
� WebSphere MQ
� IBM DB2 UDB
� Tivoli Directory Server (for Staff plug-in and Global Security)
� BPE container configuration

Configuration tasks for the distributed environment are not significantly different
from those of the single-server environment above. There are, however, a few
subtle differences which are outlined in the following sections.

Installation verification
Before proceeding with the configuration of the above components, WebSphere
Business Integration Server Foundation V5.1 installation verification should be
performed. This process will ensure that there are no problems starting the
server. Sometimes there are port conflicts with existing AIX V5.2 ports. These
are highlighted and workarounds are documented as follows.

Disabling AIX port 9090
AIX V5.2 ships with a Web based system manager utility called wsmserver. The
wsmserver command is used to control the server processes used by the Web

Note: The level of WebSphere Application Server that is selected will differ,
since Cumulative Fix 2 will not have been installed on the WebSphere
Application Server V5.1 Plug-in. The version will be V5.1.0.
54 WebSphere Business Integrator Server Foundation V5.1 Handbook

based System Manager. The servers are used to enable applet and client-server
modes of execution. This server utility runs on port 9090 by default.

In order to successfully run WebSphere Business Integration Server Foundation
V5.1, wsmserver port 9090 must be disabled. The following instructions illustrate
how to disable the port.

1. Log in as root.

2. Edit the /etc/services file and locate and comment out the following line (by
putting a # in front of it):

#wsmserver 9090/tcp

3. Edit the /etc/inetd.conf file. Locate and comment out the following line:

#wsmserver stream tcp nowait root /usr/websm/bin/wsmserver wsmserver -start

4. Restart the inetd process. This will make the inetd process re-read inetd and
services configuration files. Issue the following command to restart inetd.

kill -HUP `ps -ef | grep inetd | awk '{print $2}`

Install verification
1. Start the install verification utility using the ivt.sh command.

This starts up the command line install verification test utility. There is no
interactive interface.

2. Note that all the statuses are marked Passed or Succeeded.

3. Start the Administrative Console and log in as admin to verify admin console
functionality. The URL for the Administrative Console is
http://<hostname>:9090/admin.

IBM HTTP Server
In order to configure IBM HTTP Server, do the following.

1. Verify the location of plug-in files. Change to the
/usr/WebSphere/AppServer/bin directory and verify that following files exist:

– mod_app_server_http.so
– mod_app_server_http_eapi.so
– mod_ibm_app_server_http.so
– mod_was_ap20_http.so

2. Edit <IHS_root>/conf/httpd.conf.

3. Search for the ServerName directive and verify that it is set properly.

4. Go to the end of the file and verify that it contains the following lines:
 Chapter 4. Runtime environment 55

Example 4-3 httpd configuration

LoadModule ibm_app_server_http_module "/usr/WebSphere/AppServer/bin/mod_was_ap20_http.so
WebSpherePluginConfig "/usr/WebSphere/AppServer/config/cells/plugin-cfg.xml"

BPE supporting components
Configuring the BPE container in a distributed environment is similar to
configuring in a single-server environment. The key difference is that the
products are installed on separate machines.

As in the single-server environment, setting up the BPE container consists of
configuring:

� WebSphere MQ Queue Managers and appropriate queues
� The DB2 database for the BPE container
� The Staff plug-in that utilizes Tivoli Directory Server

The high-evel task plan for configuring the BPE container is given in the
InfoCenter in the topic brought up by clicking WebSphere Business Integration
Server Foundation → Administering → Applications → Process
Choreographer → Configuring the business process container.

WebSphere MQ
Refer to the InfoCenter topic Creating the queue manager and queues for the
business process container under the page listed above. In summary, the
following steps must be completed:

1. Log in as root.

2. Switch user to mqm.

3. Run the /usr/mqm/bin/setmqcap 1 command to set the number of processor
to 1.

4. Run the createQueues.sh script and provide it with a Queue Manager name.
In our tests, we used: QM1

5. Start the queue manager:

/usr/mqm/bin/strmqm QM1

6. Run the listener for the queue manager:

/usr/mqm/bin/runmqlsr -t tcp -p 1414 -m QM1 &
56 WebSphere Business Integrator Server Foundation V5.1 Handbook

DB2 Enterprise Server Edition setup
The database must be configured prior to using the Business Process container.
Review the material in the InfoCenter topic Creating the database for the
business process container for configuration steps.

This configuration differs from the procedure followed in the single-server
environment since the database is located on a remote server. The remote
database server must be cataloged locally on the WebSphere Business
Integration Server Foundation V5.1 box, then the BPE database should be
created.

The following high-level tasks should be followed to finish DB2 configurations.

Perform the following steps on DB2 Server machine:

1. Ensure that DB2 is installed properly on the DB2 server machine as per the
guidelines in DB2 InfoCenter and WebSphere Business Integration Server
Foundation V5.1 InfoCenter.

2. In order to avoid deadlocks, issue the following command as the db2admin
user on the server machine:

db2set DB2_RR_TO_RS=YES

The WebSphere Business Integration Server Foundation machine does not have
the full database installed, only the client. All data sources defined in WebSphere
Business Integration Server Foundation access databases through this client.

Perform the following configuration as the root user on the WebSphere Business
Integration Server Foundation V5.1 server machine.

1. Add the following lines in the .profile file of the WebSphere Business
Integration Server Foundation instance owner.

./home/db2admin/sqllib/db2profile

Tip: During tests, we used WBISFQM1 and ran into the following MQJMS
exception:

MQJMS2005: failed to create MQQueueManager for ‘<queue manager>’

Creating a new Queue manager called QM1 later on and re-configuring
WebSphere MQ queue connection factories to communicate with
WebSphere MQ solved the problem.
 Chapter 4. Runtime environment 57

Perform the following steps on the WebSphere Business Integration Server
Foundation V5.1 server machine as the db2admin user.

1. Log in as db2admin.

2. Catalog the remote DB2 node as follows:

db2 catalog tcpip node <remote node> remote <FQHN> server 50000

3. Attach to the remote node and verify that the catalog operation was
successful.

db2 attach to <remote node> user db2admin using db2admin

4. Create a new database called BPEDB for Business Process Container, and
the schema for the database.

db2 create database BPEDB using codeset UTF-8 territory en-us

5. Change to the /usr/WebSphere/AppServer/ProcessChoreographer/ directory
and edit the createTablespaceDb2.ddl script.

Change the @location@ tag as per your Database environment. For our test,
we used the following script.

Example 4-4 createTablespaceDb2.ddl

CREATE TABLESPACE STAFFQRY MANAGED BY SYSTEM USING('STAFFQRY');
CREATE TABLESPACE INSTANCE MANAGED BY SYSTEM USING('INSTANCE');
CREATE TABLESPACE AUDITLOG MANAGED BY SYSTEM USING('AUDITLOG');
CREATE TABLESPACE WORKITEM MANAGED BY SYSTEM USING('WORKITEM');
CREATE TABLESPACE COMP MANAGED BY SYSTEM USING('COMP');
CREATE TABLESPACE TEMPLATE MANAGED BY SYSTEM USING('TEMPLATE');
-- start import scheduler DDL: createTablespaceDB2.ddl
CREATE TABLESPACE SCHEDTS MANAGED BY SYSTEM USING('SCHEDTS');
-- end import scheduler DDL: createTablespaceDB2.ddl

6. Connect to the BPEDB database created above.

db2 connect to BPEDB user db2admin using db2admin

7. Run the createTablespaceDb2.ddl script :

db2 -tf createTablespaceDb2.ddl

8. Populate the BPEDB schema by running the createSchemaDb2.ddl script:

db2 -tf createSchemaDb2.ddl

Note: For distributed environments which will be used for production or
system tests, BPE tables should be separated into different tablespaces.
BPE tables are grouped as indicated in the createSchemaDB2.sh script.
Create the tablespaces first using createTablespaceDb2.ddl and then
populate the schema using createSchemaDB2.sh.
58 WebSphere Business Integrator Server Foundation V5.1 Handbook

Perform the following step on the DB2 Server machine:

� Bind the required CLI packages to the database:

db2 connect to BPEDB user db2admin using db2admin
db2 bind /home/db2admin/sqllib/bnd/@db2cli.lst blocking all grant public

Tivoli Directory Server setup for Staff plug-in
Refer to “Tivoli Directory Server setup for Staff plug-in” on page 42 for
instructions.

BPE container
The next task is to configure the BPE container in WebSphere Business
Integration Server Foundation V5.1.

Installing Business Process Container
The BPE container will be set up to communicate with the WebSphere MQ and
DB2 Enterprise Server Edition components. Tivoli Directory Server is optionally
configured for Staff plug-in support in the BPE container.

Review the instructions in the InfoCenter topic found by clicking WebSphere
Business Integration Server Foundation → Administering →
Applications → Process Choreographer → Configuring the business
process container → Using the Install Wizard to configure the business
process container.

A high-level overview of the guidelines is given below.

1. Log in as root and start WebSphere Business Integration Server Foundation
V5.1 application server.

2. Connect to the Administrative Console.

3. Define environment variables under Environment → Manage WebSphere
Variables at the node level, as shown in Figure 4-3 on page 60.
 Chapter 4. Runtime environment 59

Figure 4-3 Environment Variable Definition at Node level

4. Define the following variables. Figure 4-4 on page 61 shows the output.

Table 4-7 Environment Variables

WebSphere Environment Variable Variable Value

MQ_INSTALL_ROOT /usr/mqm

MQJMS_LIB_ROOT ${MQ_INSTALL_ROOT}/java/lib

DB2_JDBC_DRIVER_PATH /home/db2admin/sqllib/java

DB2UNIVERSAL_JDBC_DRIVER_PATH /home/db2admin/sqllib/java
60 WebSphere Business Integrator Server Foundation V5.1 Handbook

Figure 4-4 WebSphere Business Integration Server Foundation V5.1 Environment
Variables

5. Run Process Choreographer Install Wizard by navigating to Serve →
Applications Servers → <server_name> → Business Process
Container → Business Process Container Install Wizard.

6. Select DB2 UDB 8.1 Universal JDBC Driver Provider XA. All the
appropriate variable settings are selected automatically. Set the datasource
user name to db2admin and the password to db2admin (or as appropriate to
your environment). Click Next. Figure 4-5 on page 62 indicates this setting.
 Chapter 4. Runtime environment 61

Figure 4-5 Business Process Container Install Wizard : Step 1

7. In the Step 2 window, enter the JMS Provider settings as shown in Table 4-8.

Table 4-8 JMS settings

Figure 4-6 on page 63 shows the settings used in Step 2.

JMS Settings Values

Queue Manager QM1

Security Role Mapping mqm

JMS API User ID mqm

JMS API Password mqmadmin [this must be set prior to
configuring MQ]

Note: The JMS API User ID is the operating system user ID under which
WebSphere MQ Client/Server is installed. It can be any operating system
user ID that has administrative authority to perform operations against
WebSphere MQ Server/Client. The user ID should be part of the
WebSphere MQ group.
62 WebSphere Business Integrator Server Foundation V5.1 Handbook

Figure 4-6 Business Process Container Install Wizard : Step 2

8. In Step 3, select the Create new JMS resources using default values. Also
set Check this box to install Web client checkbox. Figure 4-7 on page 64
shows these settings.
 Chapter 4. Runtime environment 63

Figure 4-7 Business Process Container Install Wizard: Step 3

9. Review the summary information and click Finish to install the Business
Process container. The summary is shown in Figure 4-8.

Figure 4-8 Business Process Container Install Wizard: Step 4, Summary
64 WebSphere Business Integrator Server Foundation V5.1 Handbook

10.Upon successful completion, you will be prompted to Save to Master
Configuration. Save the configuration for WebSphere.

Configuring WebSphere MQ JMS Provider
The next task is to configure the WebSphere MQ JMS Provider.

1. Navigate to Resources → WebSphere MQ JMS Provider.

2. Set the scope to Server.

3. Click WebSphere MQ Queue Connection Factories.

4. Select a Queue Connection factory and use the values in Table 4-9 to set up
the properties. Accept the default values for unlisted properties. Repeat this
task for both BPECF and BPECFC connection factories.

Table 4-9 WebSphere MQ JMS Provider Settings

Figure 4-9 on page 66 indicates the settings used in the WebSphere MQ JMS
Provider settings.

Property Value

Queue Manager QM1

Host <mq server hostname>

Port 1414

Transport Type CLIENT
 Chapter 4. Runtime environment 65

Figure 4-9 WebSphere MQ JMS Provider settings

5. Save the master configuration.

6. In order for the changes to take effect, stop and start the server.

7. Review the contents of SystemOut.log to see if any errors or exceptions are
thrown by the BPE container.

Configuring Staff service for Process Choreographer
Process choreographer uses Staff plug-ins to determine who can start a process
or claim an activity. Your business processes can also use the Staff plug-in
services to resolve staff queries. Each type of directory service requires a
different Staff plug-in. You can register multiple Staff plug-ins. The user registry
and system plug-ins are already installed and can be used without any
configuration. To configure a Staff Plugin Provider, consult the following
InfoCenter topic. Click WebSphere Business Integration Server
Foundation → Administering → Applications → Process
choreographer → Configuring the staff service for process choreographer.

A J2C Authentication alias must be defined first in the WebSphere Business
Integration Server Foundation V5.1 Security section. Navigate to Security →
JAAS Configuration → J2C Authentication Data. Click New to define a new
authentication alias as follows. If this alias is not set, an anonymous logon to the
LDAP server is used.
66 WebSphere Business Integrator Server Foundation V5.1 Handbook

Table 4-10 J2C Authentication Alias

Now configure the Staff plug-in using the following high-level guidelines.

1. Configure the Staff plug-in at the node level. Navigate to Resources → Staff
Plugin Provider. Make sure the scope is set to Node Level.

2. Select LDAP Staff Plugin Provider.

3. Select Staff Plugin Configuration. Define a new Staff plug-in configuration.
Import the /usr/WebSphere/AppServer/ProcessChoreographer/Staff/
LDAPTransformation.xsl file and click Next. This is shown in the figure below.

Figure 4-10 Staff plug-in path

4. The next section defines the general properties for the new Staff Plugin
Provider. Use the settings as indicated in the table below. Figure 4-11 on
page 68 shows the settings in effect.

Make sure to click Apply because in the next step, we define the Custom
Properties for the new Staff plug-in. Clicking the OK button will take you back
to the Administrative Console main screen.

Property Value

Alias <hostname>/tds

User ID cn=root

Password tdsadmin

Description TDS Authentication Alias
 Chapter 4. Runtime environment 67

Table 4-11 New Staff Plugin Provider properties

Figure 4-11 New Staff Plugin Provider properties

5. Configure the custom properties for the Staff Plugin Provider, created in the
previous step, as given in the table below.

Table 4-12 Staff plug-in configuration parameters

The figure below shows these settings in effect.

Property Value

Name tds

Description <optional>

JNDI Name bpe/staff/ldapserver1

Property Value

AuthenticationAlias <hostname>/tds

AuthenticationType <optional>

BaseDN cu=itso,o=ibm,c=us

ContextFactory com.sun.jndi.ldap.LdapCtxFactory

ProviderURL ldap://<hostname>:389

SearchScope subtreeScope
68 WebSphere Business Integrator Server Foundation V5.1 Handbook

Figure 4-12 Staff Plugin Provider settings

6. Make sure to save the master configuration after making the above changes.

7. To activate the plug-in, stop and start the server.

4.4 Configuring for scalability
This section builds on the distributed configuration to add scalability.

4.4.1 Planning
A scalable WebSphere Business Integration Server Foundation installation
requires multiple application server instances to be configured and work together
to process the workload. There are two ways in which applications can be
scaled:
 Chapter 4. Runtime environment 69

� Vertical scalability

An application is said to scale vertically if it can take full advantage of a larger
server. To make use of this additional power, it is often neccesary to configure
additional instances of an application. The eventual scale is limited by the
maximum configuration of the machine and its ability to run additional copies
of the software.

� Horizontal scalability

An application is said to scale horizontally if more servers can be added to the
group hosting the application. There may be multiple application server
instances running on each of the nodes in the cluster to make the best use of
the size of the machine. The eventual scale is limited only by the ability of the
infrastructure to manage additional machines.

In either of the scenarios listed above, the capabilities of WebSphere Application
Server Network Deployment are required to provide clustering and workload
balancing. The steps required to configure a cluster are given later in this
chapter.

Refer to IBM WebSphere V5.1 Performance, Scalability, and High Availability
WebSphere Handbook Series, SG24-6198 for further details of scalable
configurations of WebSphere Application Server.

Horizontal scalability
When horizontal scalability is employed, multiple copies of an application run on
multiple servers. Using a WebSphere Application Server cluster allows the
servers to be managed as a single entity. This allows a higher throughput to be
handled by adding more physical capacity to the insfrastructure.

Figure 4-13 on page 71 shows an example of a horizontally scaled environment.
70 WebSphere Business Integrator Server Foundation V5.1 Handbook

Figure 4-13 Horizontally scalable environment

The diagram shows:

� Two WebSphere Business Integration Server Foundation nodes, each of
which has an application server and a node agent. These nodes are
configured as a cluster. Additionally, the DB2 client and WebSphere MQ client
are installed on these nodes.

� One node which hosts the IBM HTTP Server with the WebSphere plug-in and
WebSphere Application Server Network Deployment. This is responsible for
managing the servers in the cluster.

� Three additional servers which host Tivoli Directory Server, DB2 Enterprise
Server Edition and WebSphere MQ required to support the BPE container.

The configuration is horizontally scaled since the Application Servers could be
configured to host the same applications.

The additional nodes in this configuration are highlighted in the diagram. The
remainder of this chapter will outline the steps required to install the additional
servers.

This configuration adds a second WebSphere Business Integration Server
Foundation node and a WebSphere Application Server Network Deployment
server. The second WebSphere Business Integration Server Foundation node
will be installed on a separate computer and the WebSphere Application Server

F
i
r
e
w
a
l
l

WAS
v5.1 ND

IBM
HTTP
Server

DB2
Client

MQ
Client

WBISF Node 1

WBISF Node 2

Node Agent

App Server

WBI SF v5.1

DB2
Client

MQ
Client

Node Agent

App Server

WBI SF v5.1

WAS
Plugin DB2

Database

Tivoli
Directory
Server

WebSphere
MQ Server

WAS Cluster

DB2
Client

MQ
Client

Internet
 Chapter 4. Runtime environment 71

Network Deployment server will be installed on the same node as the IBM HTTP
Server.

Vertical scalability
Running multiple copies of an application on a single computer allows the full
capacity of a large machine to be realized. The same principle of creating copies
of applications is used as in the horizontal scaling scenario. The difference in
configuration is that new application servers are created on nodes which already
host application servers.

A vertically scaled environment is shown in Figure 4-14.

Figure 4-14 Vertically scalable environment

The diagram shows multiple copies of an application server on each node in the
cluster. Each of these application servers could host an instance of the BPE
container.

Planning for a scalable BPE container
As we have seen in previous sections, using scalable WebSphere Business
Integration Server Foundation topologies can allow the BPE container to support
higher workloads.

WAS
v5.1 ND

IBM HTTP
Server

WAS
Plugin

DB2
Client

MQ
Client

F
I
r
e
w
a
l
l

WBISF Node 1

WBISF Node 2
DB2

Database

Tivoli
Directory
Server

WebSphere
MQ Server

WBI SF v5.1 A
pp Server N

App Server 2

App Server 1

Node Agent

DB2
Client

MQ
Client

WBI SF v5.1

App S
erver N

App Server 2

App Server 1

Node Agent

DB2
Client

MQ
Client

WAS ClusterInternet
72 WebSphere Business Integrator Server Foundation V5.1 Handbook

However, it is important to remember that the BPE container relies on the JMS
provider, database and LDAP server. This means that scaling the core
WebSphere Business Integration Server Foundation installation on its own is not
sufficient. Each of these components could also become a bottleneck, limiting
the ability of the application to handle the required throughput. For this reason,
the sizing of the other components must also be taken into account. The
eventual scale of the application may also mean that the configuration of the
other components needs to be altered, for instance by introducing WebSphere
MQ clustering. This is shown in Figure 4-15.

Figure 4-15 Topology using an MQ cluster

The topology is similar to the WebSphere Application Server environments set
out in the previous sections. In this instance, however, the WebSphere MQ JMS
provider is a clustered toplogy.

Refer to the following links for further information about WebSphere MQ
clustering in WebSphere Application Server environments.

� InfoCenter topic found by clicking WebSphere Business Integration Server
Foundation → Administering → Task overviews → Using process
choreographer → Process choreographer scenarios for clustering.

� The IBM Redbook WebSphere Application Server and WebSphere MQ
Family Integration, SG24-6878

WAS
v5.1 ND

IBM HTTP
Server

WAS
Plugin

DB2
Client

MQ
Client

DB2
Client

MQ
Client

WBISF Node 1

WBISF Node 2

Node Agent

App Server

WBI SF v5.1

DB2
Client

MQ
Client

Node Agent

App Server

WBI SF v5.1

DB2
Database

Tivoli
Directory
Server

WebSphere
MQ Server

WebSphere
MQ Server

MQ Cluster

WAS Cluster

F
I
r
e
w
a
l
l

Internet
 Chapter 4. Runtime environment 73

� Queue Manager Clusters, WebSphere MQ documentation:

http://publibfp.boulder.ibm.com/epubs/html/csqzah06/csqzah06tfrm.htm

� WebSphere Application Server V5: Using WebSphere and WebSphere MQ
clustering, Redbook TechNote:

http://publib-b.boulder.ibm.com/Redbooks.nsf/RedbookAbstracts/tips0224.html
?Open

4.4.2 Software requirements
Refer to 4.3.2, “Software requirements” on page 46 for details on this topic.

4.4.3 Installation
This section details the installation instructions for the second WebSphere
Business Integration Server Foundation V5.1 on the AIX platform.

WebSphere MQ Client
Refer to “WebSphere MQ Client” on page 48 for installation instructions.

IBM DB2 Client
Refer to “IBM DB2 UDB Client” on page 49 for installation instructions.

WebSphere Business Integration Server Foundation
Refer to “WebSphere Business Integration Server Foundation” on page 50 for
installation instructions.

WebSphere Application Server V5.1 Network Deployment
This topic describes how to install WebSphere Application Server V5.1 Network
Deployment as the root user on a AIX platform.

Note that Network Deployment component will be installed on the same machine
as the Web server, as described in the topology and planning section above.

Refer to the InfoCenter for details on installing WebSphere Application Server
V5.1 Network Deployment:

http://publib.boulder.ibm.com/infocenter/ws51help/topic/com.ibm.websphere.
nd.doc/info/ae/ae/tins_install.html

The following which contains the WebSphere Application Server V5. Network
Deployment image.

1. Change to the mounted CDROM directory.
74 WebSphere Business Integrator Server Foundation V5.1 Handbook

http://publib.boulder.ibm.com/infocenter/ws51help/topic/com.ibm.websphere.nd.doc/info/ae/ae/tins_install.html
http://publib-b.boulder.ibm.com/Redbooks.nsf/RedbookAbstracts/tips0224.html?Open
http://publibfp.boulder.ibm.com/epubs/html/csqzah06/csqzah06tfrm.htm

2. Issue the launchpad.sh command to bring up the installation wizard.

3. Click Install the product to start WebSphere Application Server V5.1
Network Deployment installation.

4. Accept the license agreement.

5. The tool starts the prerequisite checker. This tool is built into the installer
program. Verify that all prerequisites are met.

6. Select all components except Embedded messaging client and click Next.

7. Install under /usr/WebSphere/DeploymentManager and click Next.

8. Accept the default node name, hostname and cell name. Click Next.

9. Review the summary and start the installation.

If the Install Verification utility starts automatically after the WebSphere
Application Server V5.1 Network Deployment installation finishes, close the
window and exit from the Product Installation window as well. We will be doing
the IVT and configuration in 4.4.4, “Configuration” on page 77.

Installing Integration Server Administrative Extensions
Before WebSphere Application Server Network Deployment can be used to
administer WebSphere Business Integration Server Foundation V5.1 servers,
the WebSphere Business Integration Server Foundation administrative
extensions must be installed. Refer to the InfoCenter below for further
information. Open the InfoCenter and navigate to WebSphere Business
Integration Server Foundation → Installing → Installing the product. Read
the section entitled Why and when to perform this task in this topic.

Note: If you are prompted to reconfigure the WebSphere product to
coexists with othe version on the Network Deployment, skip this step. Keep
in mind that Network Deployment Machine has an installation of the
WebSphere Application Server 5.1 Plugin component. The prerequisite
checker utility detects that and assumes that it is a full version of a
WebSphere V5.1 installation.

Note: The InfoCenter lists four installation methods at WebSphere Business
Integration Server Foundation → Installing → Getting Started →
Installing the product → Installing the Integration Server on AIX
platforms. We recommend Method 1, because Method 4 proved problematic
during tests.
 Chapter 4. Runtime environment 75

The following guidelines provide an overview of the process of installing the
administrative extentions on the WebSphere Application Server Network
Deployment node.

1. Mount CD1 which contains the WebSphere Business Integration Server
Foundation V5.1 image.

2. Change to the mounted CD-ROM directory aix.

3. Issue the install utility to bring up the installation wizard.

4. Accept the license agreement.

5. The tool starts the prerequisite checker. Verify that all prerequisites are met.

6. The following window is displayed. Choose Add to the existing copy of
WebSphere Application Server Network Deployment V5.1. The directory
should be set to /usr/WebSphere/DeploymentManager. Click Next.

Figure 4-16 Installing Integration Server Administrative Extensions

7. In the next window, when prompted to enter WebSphere Business Integration
Server Foundation Disk 2, insert and mount Disk 2. Click Next.

8. Insert and mount WebSphere Business Integration Server Foundation Disk 1
when prompted.

9. Review the summary. Click Next.

10.Install under /usr/WebSphere/DeploymentManager and click Next

11.Accpet the default node name, hostname and cell name. Click Next.

12.Review the summary and start the installation.
76 WebSphere Business Integrator Server Foundation V5.1 Handbook

Installing Cumulative Fix 3 and interim fixes
At the time of writing, Cumulative Fix 3 was the latest available for WebSphere
Application Server Network Deployment V5.1. It is recommended that this fix and
any other interim fixes be applied since they address several key issues.

Fixes are available from the WebSphere Application Server support site:

http://www.ibm.com/software/webservers/appserv/was/support/

1. Open the WebSphere Application Server support site and navigate to
WebSphere Application Server 5.1 Cumulative Fix 3 (5.1.0.3).

2. Download the AIX - ND package. The file is called was510_nd_cf3_aix.zip.

3. At the command prompt, set the JAVA_HOME variable to point to the
<WBISF_root>/java folder.

4. Extract the fix file into the was510_nd_cf3_aix folder.

5. Run updateWizard.sh from the was512_nd_cf3_aix folder.

6. Accept the default language (English).

7. Follow the on-screen instructions, making sure that IBM WebSphere
Network Deployment V5.1.0 is selected and that the correct application
server installation directory is also selected.

8. Select install FixPack in the next window. Accept the default location for the
FixPack folder.

9. Follow the remaining on-screen instructions to finish installing Cumulative Fix
3.

There are currently no interim fixes specifically aimed at WebSphere Application
Server Network Deployment.

4.4.4 Configuration

This section describes how to set up WebSphere Business Integration Server
Foundation V5.1 on the second node. The procedure differs from the simple
distributed environment configuration, because the clustering enabled by the
Network Deployment server requires some additional activities to be carried out.
The differences in scalable configuration are outlined in the following sections.

Note: Extracting this file also creates files necessary to run the
updateInstaller wizard.
 Chapter 4. Runtime environment 77

http://www.ibm.com/software/webservers/appserv/was/support/

This section focuses on how to integrate various software components of
WebSphere Business Integration Server Foundation V5.1. These components
include:

� WebSphere Application Server Network Deployment V5.1
� WebSphere Business Integration Server Foundation Installation Verification
� IBM HTTP Server
� WebSphere MQ
� IBM DB2 UDB
� Tivoli Directory Server (for Staff plug-in and Global Security)
� BPE container configuration

Installation verification
Please refer to “Installation verification” on page 54 for instructions.

BPE supporting components
The WebSphere Business Integration Server Foundation specific elements from
“BPE supporting components” on page 56 need to be configured. The
instructions are outlined below.

IBM DB2 UDB Client setup
Perform the following steps on the WebSphere Business Integration Server
Foundation V5.1 server machine.

1. WebSphere Application Server machine only has a V8.1 client installed, and
all DB2 data sources defined in WebSphere Application Server access DB2
databases through this client, the source being the db2profile file in the login
profile of your V5.x instance owner.

2. Log in as root, and add the following line to the .profile file.

. /home/db2admin/sqllib/db2profile

Perform the following steps on the WebSphere Business Integration Server
Foundation V5.1 server machine as the db2admin user.

1. Log in as db2admin.

2. Catalog remote DB2 node as follows:

db2 catalog tcpip node <remote node> remote FQHN server 50000

3. Attach to the remote node and verify that catalog operation was successful.

db2 attach to <remote node> user db2admin using db2admin

4. Catalog the remote database in WebSphere Business Integration Server
Foundation V5.1 node 2 as follows.

db2 catalog database <database name> as <alias> at node <node name>
78 WebSphere Business Integrator Server Foundation V5.1 Handbook

5. Test the connection to the cataloged database using the following command:

db2 connect to <database name> user db2admin using db2admin

Tivoli Directory Server setup for Staff plug-in
Refer to “Tivoli Directory Server setup for Staff plug-in” on page 42 for
instructions.

Creating a WebSphere cluster
This additional configuration step results in the installed WebSphere Business
Integration Server Foundation nodes becoming members of a cluster.

The first step in configuring Business Process Container in a clustered
environment is to set up the WebSphere Application Server cluster and cluster
members. A cluster member is an instance of WebSphere Application Server or
WebSphere Business Integration Server Foundation.

Refer to “Creating a WebSphere cluster” on page 583 for further details.

Scalable BPE container configuration
An overview of the process of configuring the BPE container in a WebSphere
Application Server cluster is given in the InfoCenter topic found by clicking
WebSphere Business Integration Server Foundation. → Administering →
Applications → Process Choreographer → Configuring the business
process container → Configuring the business process container on a
cluster.

It is assumed that the steps mentioned in “Creating a WebSphere cluster” on
page 79 have been followed to federate the WebSphere Business Integration
Server Foundation V5.1 nodes into a cell and to create the cluster and cluster
members by using the administrative console.

The tasks for configuring the Business Process Container are as follows:

1. Install Business Process Container using the wizard.
2. Configure WebSphere MQ JMS settings for Queue Connection Factories.
3. Configure Staff plug-in for Business Process Container.

Each task is discussed in detail below.

Note: If you are creating a vertical scalability environment, then all servers in
the cluster will be on the same node.
 Chapter 4. Runtime environment 79

Configuring the BPE container in the cluster
In order to configure the Business Process Container in a clustered configuraton,
follow the instructions given in the InfoCenter topic Configuring the business
process container on a cluster.

There is essentially no difference between configuring Business Process
Container in a distributed and scalable configuration. The high-level tasks are
given below.

The first step is to configure the environment variables.

1. Log on to the Administrative Console running on the Deployment Manager
machine as admin.

2. Define environment variables listed in Step 4 in “BPE container” on page 59.
Navigate to Environment → Manage WebSphere Variables to define the
listed variables. It is important to note that these variables must be defined at
the Deployment Manager node level, and for all nodes that are part of the
cluster.

Figure 4-17 indicates the list of variables that must be updated at each node.

Figure 4-17 Environment Variable Changes

3. Once variables are defined at all nodes, save the changes and make sure to
set synchronization with the nodes.

The next step is to configure the BPE container.
80 WebSphere Business Integrator Server Foundation V5.1 Handbook

Install BPE container as per the instructions listed above in the Distributed
environment section. Refer to “BPE container” on page 59. Repeat Steps 5 to 10
from this section. Log in to the Administrative Console running on the
Deployment Manager machine.

Once installed, Business Process Container can be activated by starting the
cluster. Look for any exceptions in the SystemOut.log on individual application
servers running on each node.

Configuring WebSphere MQ Resources
The WebSphere MQ JMS configuration to support the BPE container requires
that Queue Connection Factories to be set up on individual application servers.

Refer to “Configuring WebSphere MQ JMS Provider” on page 65 for instructions
on how to set up WebSphere MQ JMS parameters at the server level. Use the
values provided in Table 4-9 on page 65 for WebSphere MQ JMS settings.

These guidelines are also available in the WebSphere Business Integration
Server Foundation InfoCenter.

Important: Use the Business Process Container Install Wizard on the
Deployment Manager machine to install and configure the business process
containers in the cluster. This action causes the Business Process Container
to be installed and configured on all the other application servers in the cluster.

To achieve this, select any server that is part of a cluster and use the Business
Process Container Install Wizard for the installation. Once the installation is
done and you are asked to save the master configuration, make sure that
changes are sychronized with the nodes. Synchronizing changes will federate
the business process container application among all cluster members.

Important: In the basic configuration scenario outlined in 4.2, “Basic
configuration” on page 36, a BINDING transport type could be used to
establish a IPC-based connection to the WebSphere MQ Server process. In a
distributed and scalable environment, the WebSphere MQ Server process
runs on a separate machine, hence a CLIENT-based TCP/IP connection must
be established. As a result, when configuring the Queue Connection
Factories, BPECF and BPECFC under WebSphere MQ JMS Provider, both
the TCP/IP host and port must be specified. In addition, the Transport Type
should be set to CLIENT.
 Chapter 4. Runtime environment 81

Configuring Staff Plug-in
In order to configure the staff plug-in, follow the steps in “Configuring Staff
service for Process Choreographer” on page 66.

There are, however, two differences when configuring the Staff plug-in in a
scalable environment. Review the following important points before proceeding
with configuring a Staff plug-in in a scalable environment.

1. J2C Authentication aliases are used by the Staff Plugin Provider. In a scalable
environment, J2C authentication aliases are defined at the individual node
level, similiar to the Staff Plugin Provider. The Staff Plugin Provider uses
these node-level authentication aliases to authenticate against the Tivoli
Directory Server server.

– Make sure there are no authentication aliases defined from the previous
distributed configuration. The key is to configure the authentication alias
that is defined at the node level. The format of this alias looks like
<dmgrhostManager>/<node>/tds.

– Two J2C aliases must be defined for each node. This is shown in the
figure below.

Figure 4-18 J2C Authentication Alias in a Scalable Environment

2. In order to browse to the appropriate node, use the Scope property sheet as
shown in Figure 4-18.

Important: Staff Plugin Provider for Business Process Container is only
defined at the node level. In order to make the Staff plug-in functional in a
clustered Business Process Container, each node must be configured
individually for the Staff Plugin Provider.
82 WebSphere Business Integrator Server Foundation V5.1 Handbook

Figure 4-19 Staff Plugin Provider scope at the node level

4.5 Configuring for high availability
A high availability configuration builds on the scalable topologies discussed in
the previous section, adding protection from outages. In some cases, this could
be as simple as adding a number of nodes to the WebSphere Business
Integration Server Foundation cluster to allow the application to continue
executing if one of the nodes fails.

It is also important to consider the supporting components such as the JMS
provider, database server and LDAP server. These will need to be protected from
availability. If WebSphere MQ is the JMS provider, it will probably require a
clustered environment using persistent queues, with some form of takeover of
transitional data. An RDBMS is likely to be either hot standby or a parallel server
environment. LDAP will also need to be configured in a highly available mode.

Important: While configuring the Staff plug-in at the node level, make sure to
use the appropriate J2C authentication aliases that are specific to the node
the Staff plug-in is being configured for.
 Chapter 4. Runtime environment 83

A possible high availability topology is shown in Figure 4-20.

Figure 4-20 High availability environment

Some of the features of this environment are listed below:

� High availability for the WebSphere Business Integration Server Foundation
is provided by the WebSphere Application Server cluster mechanism. This,
however, depends on the other components in the infrastructure.

� The WebSphere Application Server Network Deployment server has a hot
standby, since there can be only one active Network Deployment server in the
environment.

� The WebSphere MQ JMS provider is configured in a clustered environment.

� The Data stores, DB2 Enterprise Server Edition and Tivoli Directory Server
have a redundant node topology, configured with data replication so that
operation can transfer to the hot standby in the event of an outage.

DB2
Database

F
i
r
e
w
a
l
l

Tivoli
Directory
Server

WebSphere
MQ Server

IBM HTTP
Server

DB2
Client

MQ
Client

WBISF Node 1

WBISF Node 2

Node Agent

App Server

WBI SF v5.1

DB2
Client

MQ
Client

Node Agent

App Server

WBI SF v5.1

WAS
Plugin

IBM HTTP
Server

WAS
Plugin

WAS
v5.1 ND

WebSphere
MQ Server

DB2
Database

Tivoli
Directory
Server

MQ Cluster

DB2 HACMP

OS or Hardware Cluster: Hot Standby

OS or Hardware Cluster: Hot Standby

Edge
Server

Edge
Server

Edge Cluster

WAS Cluster

DB2
Client

MQ
Client

WAS
v5.1 ND

DB2
Client

MQ
Client

Internet
84 WebSphere Business Integrator Server Foundation V5.1 Handbook

Chapter 5. Development environment

This chapter introduces the WebSphere Business Integration Server Foundation
development environment. We also include a brief discussion of what makes up
an ideal WebSphere environment.

This chapter also describes features available in WebSphere Studio Application
Developer Integration Edition that aid in the development of Business Processes,
along with features that are part of the new version, V5.1

Finally, the WebSphere Test Environment is described, where Business
Processes can be debugged and tested. To support development and testing of
Business Processes, a remote test server is described. The discussion covers
the options included and the pros and cons associated with each remote test
server configuration.

5

© Copyright IBM Corp. 2004. All rights reserved. 85

5.1 Introduction
System architects, application architects, system administrators and developers
are often faced with the challenge of creating a coherent development, system
testing, and production environment. The challenge is to have identical system
testing and production environments, and, more importantly, to be able to test
applications in a similar system and integration test environment to the
production environment.

When architecting an environment for application development and system
testing, much consideration and planning is required. A successful development
environment may involve rigorous software engineering, strong architecture,
detailed design, quality staffing, careful planning, risk management, and other
aspects.

WebSphere Studio Application Developer Integration Edition V5.1 is the
application development environment for WebSphere Business Integration
Server Foundation V5.1. It can be used to create everything from personal Web
pages to Web sites that serve as front ends for e-business applications.
WebSphere Studio can be integrated with other content development tools, and
with complex applications that interact with enterprise information systems (EIS).

WebSphere Studio Application Developer Integration Edition allows for
developing, testing, deploying, and managing applications. It is designed to be
used in a wide variety of development roles such as Web developer, Java
developer, enterprise programmer, business analyst, and system architect. A
rich set of utilities and wizards helps simplify common tasks so that developers
can concentrate on providing true business value and on rapidly getting robust
applications into production.

In addition to a full Java 2 Platform, Enterprise Edition (J2EE) development
environment, WebSphere Studio Application Developer Integration Edition V5.1
provides easy-to-use tools for creating reusable services out of a variety of
back-end systems and for choreographing the interactions between those
services using Business Process Execution Language for Web Services
(BPEL4WS).

The WebSphere environment
Figure 5-1 on page 87 shows an "ideal" WebSphere environment. It takes into
account all the necessary steps in a software development process and can be
considered a first-class rigorous environment. Every individual sub-environment
is a complete environment in itself to achieve a necessary task in a software
development, testing, and deployment process.
86 WebSphere Business Integrator Server Foundation V5.1 Handbook

Figure 5-1 WebSphere Business Integration Server Foundation development environment

The illustrated environment requires considerable investment in terms of both
time and money by an organization. It also depends on the organization as to the
amount of risk it is willing to accept when development, testing, and deploying
the application. At a minimum, any major software development project has a
development, system test, and production environment. Organizations
developing simpler applications or that are willing to assume increased risk may
scale down some aspects of this ideal environment.

Development
WSADIE

Development
WSADIE

Development
WSADIE

Integration Workstation
WSADIE

latigid

latigid latigid

latigid latigid

latigid latigidlatigid latigid

Data General

latigid

Data General

latigid

Data General Data General

Com3

latigid latigidlatigid latigid

Data General Data General

C om3

Development Integration
Test EnvironmentDevelopment Environment

Performance and Stress
Test Environment

System Test Environment

Pre-Production EnvironmentProduction Environment

HTTP
WBISF

WBISF WBISF

HTTP+
WBISF
HTTP+

WBISF

HTTP

WBISF WBISF

WBISF WBISF WBISF WBISF

HTTP HTTP

WES
Router

+WES
Router

+

SCM

WBISF WBISF WBISF WBISF

Legends:

• WSADIE: WebSphere

Studio Application
Developer Integration
Edition

• SCM: Source Control
Management

• HTTP: HTTP Server
• WBISF: WebSphere

Integration Server
Foundation

• WES:
 Chapter 5. Development environment 87

This redbook advocates the use of separate environments for software
development, development integration, system testing, stress testing,
pre-production and production.

Development environment
The development environment typically serves as the testing ground for new
code, applications, and alterations of the WebSphere environment. This is where
developers live and work every day. Thus, they need the best tools and the
fewest barriers to progress.

There is generally a code integration environment in the development
environment, which is dedicated to code integration and testing. The team or
development lead should load the code onto the integration workstation and run
the entire suite of unit tests.

Development integration test environment
The development integration test environment is the environment that most
closely resembles the production environment, though still at the smallest
possible scale. When new code is developed in the development environment
and deemed ready for testing, it is moved into the test environment, where it
undergoes a rigorous test plan. Testing in this environment involves uncovering
issues related to subtle differences between the development and production
systems as well as testing the deployment procedures. This may include such
things as use of various operating system services, WebSphere Application
Server security, back-end systems, and others. Developers use this environment
to perform integration tests among all system components. This environment is
also used to test installation and operational procedures which are often
operating system specific.

system test environment
The system test environment is a carefully controlled formal test environment. A
system test environment mirrors the production environment more closely than
does a development integration environment, at the smallest possible scale. A
key aspect of the system test environment is formality. The purpose of this
environment is to ensure that the application will truly deploy and run as required
in production. Thus, the system test team is responsible for testing all aspects of
the application, including both functional and non-functional requirements.

Performance and stress test environment
Performance and load testing is performed to find load-related problems in
applications. This testing requires highly specialized skills and equipment in
order to be optimally performed. Hence, this is a dedicated environment and
team. Like the system test environment, the performance test environment is a
88 WebSphere Business Integrator Server Foundation V5.1 Handbook

carefully controlled formal test environment. Development teams run their
applications on this environment on an even less frequent basis. A performance
test environment mirrors the production environment in complexity, but it does so
on the smallest possible scale.

Pre-production environment
This environment serves three purposes:

1. It gives the operations team a final place to familiarize itself with the
application and its procedures.

2. It provides the opportunity to test unrelated applications running together.
This is crucial when dealing with shared deployment environments. Prior to
this point, the applications have been tested and built independently.

3. It provides the operations team with a chance to test their operational
procedures (back-up, failover, problem resolution, etc.).

Production environment
This is where the application actually runs. The key point is that if you have
carefully followed procedures up to this point, the actual roll into production will
be comfortably predictable, since everything will already have been tested.

The following sections discuss WebSphere Studio Application Developer
Integration Edition as the IBM preferred development environment for developing
business processes and applications.

5.2 WebSphere Studio Application Developer
Integration Edition V5.1

WebSphere Studio Application Developer Integration Edition V5.1, optimized for
developing applications that deploy to WebSphere Business Integration Server
Foundation V5.1, delivers an application development environment for building
service oriented applications that extend and integrate your existing IT assets.

5.2.1 WebSphere Studio Application Developer Integration Edition
V5.1 at a glance

WebSphere Studio Application Developer Integration Edition, at its core,
provides easy-to-use tools for creating reusable services out of a variety of
back-end systems and for choreographing the interactions between those
 Chapter 5. Development environment 89

services using Business Process Execution Language for Web Services
(BPEL4WS).

The following are the core differences between WebSphere Studio Application
Developer and WebSphere Studio Application Developer Integration Edition.

Services
At the heart of the Integration Edition programming model are business services,
which are used to model different kinds of service providers consistently.
Services are the business functions of your enterprise, or of your business
partners. Use the integration tools to develop various types of services, including
Web services, processes, EIS (J2EE Connector) services, JMS services, and so
on. Web Services Descriptor Language (WSDL) is used as the model for
describing any kind of service.

Business process
A business process is a service implementation that represents a part of your
business operations. It can be completely automated or may require human
interaction at certain points. WebSphere Studio Application Developer
Integration Edition provides a model that allows you to implement these
processes in a very efficient, graphical way.

Human workflow support
Human workflow support expands the reach of BPEL to include activities
requiring human interaction as steps in an automated business process.
Business processes involving human interaction are interruptible and persistent
(a person may take a long time to complete the task) and resume when the
person completes the task.

Business rule beans
Business rule beans offer a powerful real-time framework for defining, executing,
and managing business rules that encapsulate business policies that vary based
on changes in the business environment. For example, a simple business rule
might be, "If a customer’s shopping cart is greater than $X, then offer a Y%
discount."

Programming Model Extensions
WebSphere Business Integration Server Foundation V5.1 and WebSphere
Studio Application Developer Integration Edition V5.1 help accelerate large-scale
application development by allowing the user leverage the latest innovations that
build on today's J2EE standards including extended messaging, Dynamic Query
service, internationalization service, application profiling, asynchronous beans,
90 WebSphere Business Integrator Server Foundation V5.1 Handbook

Object pools, Startup beans, scheduler service, work area service, activity
session service, and last participant support.

Additional new features in V5.1
WebSphere Studio Application Developer Integration Edition V5.1, as compared
to V5.0, includes the following new features:

� Business process designer for creating Business Process Execution
Language for Web Services 1.1 (BPEL4WS) process flows.

� Integrated visual BPEL4WS debugger.

� Enhanced performance for installing and debugging, including support for J9
Hot Swap.

� New visual condition builder to direct the execution of BPEL processes.

� Automated migration of process flows from Flow Definition Markup Language
(FDML) to BPEL4WS.

� Unit test environment for WebSphere Business Integration Server Foundation
5.1

� Full support for all the features included in WebSphere Studio Application
Developer Integration Edition V5.1.1 including support for Workbench V2.1.2,
support for building Web Services Interoperability (WS-I) compliant Web
services, and support for Java development kit (JDK) 1.4.1

� Programming Model Extensions for a distributed map. This PME offers an
interface to enable J2EE applications and system components to cache and
share Java objects by storing a reference to the object in the cache in order to
improve performance

� Another Programming Model Extension is Container Manager Persistence
over Anything. It extends the Container Managed Persistence (CMP)
framework to support any back-end system or service that supports create,
retrieve, update, and delete (CRUD) methods.

5.2.2 WebSphere Studio Application Developer Integration Edition
Workbench

WebSphere Studio configurations are all built on the WebSphere Studio
Workbench that extends the open-source Eclipse platform and provides an open,
extensible plug-in architecture. Numerous plug-ins are available from partners
and the open source community, or, using the included plug-in development
environment, you can create your own plug-ins for specific needs.

Figure 5-2 on page 93 highlights some of the features in WebSphere Studio
Application Developer Integration Edition workbench. Studio Integration Edition
 Chapter 5. Development environment 91

workbench includes Business Integration perspective. This is the default
perspective for development enterprise services. Business Integration
perspective is highlighted in Figure 5-2 on page 93.

Business Integration perspective includes a process editor for composing and
editing BPEL-based processes. This view is complemented by a set of tools that
aids in the development of BPEL-based processes. Studio Integration Edition
workbench include Business Process based views, that is, the Outline view
shows components that are necessary for Business Process creation.

The Business Integration perspective BPEL Editor and the tooling are further
discussed in Chapter 6, “Process choreographer: introduction” on page 121.
92 WebSphere Business Integrator Server Foundation V5.1 Handbook

Figure 5-2 WebSphere Studio Application Developer Integration Edition V5.1 Business Integration
perspective

The context-menu in the Services view of Business Integration perspective is
shown below. Items in this menu are discussed further in next section.

Business Integration perspective

Views

Process Editor (BPEL)Task Bar
 Chapter 5. Development environment 93

Figure 5-3 Business Integration perspective Services context menu

5.2.3 Integration Edition tooling
WebSphere Studio Application Developer Integration Edition V5.1 has
complementary tools for aiding in the development of Services and Business
Processes.

Getting Started
Users can start working with WebSphere Studio Application Developer
Integration Edition immediately. A welcome page provides links to key concepts.
Cheat sheets are a useful way of quickly building a service. Topology diagrams
provide a map of the kind of service being developed.

Business Integration perspective
This is the default perspective for the Integration Edition. It puts together all the
tools, services, and processes used to develop enterprise services.

Service Project
This is the center of Integration Edition as it manages the development of
services and processes. This also manages the files associated with the project.
The files are WSDL files, Java, and process files.

Integration Application
An integration application is an application created from a set of services.
94 WebSphere Business Integrator Server Foundation V5.1 Handbook

Service Definition
A service definition is a WSDL document. Effectively, this is a set of three files
that collectively conform to the WSDL specification of a service definition.

Integration Edition provides a wizard to help build the WSDL document. There is
an Empty Service wizard that generates a WSDL interface with only a definition
name and target namespace. Once a service definition is created, Integration
Edition provides an editor for modifying it from several viewpoints.

Services Based on existing assets
Services are usually based on existing applications that have been tested and
represent considerable investment. Basing a service on an application is
considered a bottom-up approach. Integration Edition provides a Service built
from wizard, to base a service on a Java application, a stateless session bean, or
on one of the resource adapters. It is possible to use a custom resource adapter
using the JCA plug-in tool.

There are importer wizards for using existing applications. You can import C files,
COBOL copybook files, HOD 3270 terminal files, Java files, or MFS files. In
addition, the JCA plug-in can also be used to import RAR files to the Integration
Edition development environment.

Processes
A process is a form of service implementation. In the implementation, you can
use existing services arranged in a sequence to create another service.
Integration Edition provides a Process editor that arranges and links services into
a process; a Process debugger that visually debugs errors in a process; and a
Process Web client to test a process.

Transformer Editor
Messages define the input and output data for an operation in a WSDL file. They
also define the content of a variable in a process. The transformer editor
transforms a message by mapping it to another message. Transforming
messages with this editor is often done when building a process.

Services Based on implementing Service interfaces
A service based on implementing a service interface is a top-down approach to
development, unlike a service based on an existing asset. To achieve this,
Integration Edition provides the Build from service wizard. Generally, this editor is
used when a service interface file exists but there is no implementation of it. It
allows you to develop an implementation for the WSDL file.
 Chapter 5. Development environment 95

Generate Deploy Code wizard
The Generate Deploy Code wizard generates the deploy code for the services
you want to offer. The deploy code gets generated into modules in the Enterprise
Archive (EAR) file to become your integration application on deployment to a
production server.

Service Proxy wizard
The Service Proxy wizard creates a file to represent your service on a client. An
application can interact with it as if it were just another Java module in the
application. The application simply invokes the proxy's methods, and the proxy
transparently handles getting the data from service at the server.

5.2.4 Development with WebSphere Studio Application Developer
Integration Edition

This section provides details about development-related topics in WebSphere
Studio Application Developer Integration Edition.

Server targeting support
WebSphere Studio Application Developer Integration Edition V5.1 is the primary
development environment for WebSphere Business Integration Server
Foundation V5.1. It not only supports the Integration Server test environment, but
also supports the extensions to develop J2EE applications.

In order to enable the support for the J2EE extensions, you have to enable the
server targeting support in WebSphere Studio Application Developer Integration
Edition.

To enable, select Window → Preferences from the menu, then select J2EE
from the list on the left side. On the panel, shown in Figure 5-4 on page 97, check
the Enable server targeting support, then click OK.

Important: The server targeting support is not enabled by default. If you
develop for WebSphere Business Integration Server Foundation, you may
want to enable this feature as the very first step.

Server targeting support is stored in the workspace preferences (workspace
scope), as every other Eclipse preference.
96 WebSphere Business Integrator Server Foundation V5.1 Handbook

Figure 5-4 Preferences

Once you have server targeting support enabled, you can create J2EE
applications and import J2EE applications with the support for extensions.

When you create a new Enterprise Application Project, you can select the target
server on the wizard panel.
 Chapter 5. Development environment 97

Figure 5-5 New Enterprise Application project

When importing an EAR file, you get a window similar to Figure 5-5, where you
can select the targeting server.

If you already have a J2EE project on your workspace that has no server
targeting support, you can change the project to enable it in the project
properties panel. Right-click the EAR project folder, then select Properties,
select J2EE on the panel, then change the Target Server to Integration Server
V5.1, as show below.

Figure 5-6 J2EE application properties
98 WebSphere Business Integrator Server Foundation V5.1 Handbook

The differences that enabling server targeting makes can be seen in the
deployment descriptors, for example in the application descriptor.

Figure 5-7 Extended services in the application.xml

Another difference is in the EJB deployment description.

Important: You have to have server targeting support enabled in WebSphere
Studio Application Developer Integration Edition in order to select or change
the server target to Integration Server v5.1. Otherwise, the option is not
enabled.
 Chapter 5. Development environment 99

Figure 5-8 Extensions in the ejb-jar.xml

Note the Extended Messaging, Internationalization, ActivitySession, Extended
Access and Pushdown tabs on the editor.

BPEL Editor
The BPEL Editor is a visual graphical user interface (GUI) for developing
BPEL4WS processes. Since the editor is a brand new component in WebSphere
Studio Application Developer Integration Edition and it is quite a complex one,
you may encounter some unexpected behavior. The following list is a series of
recommendations to avoid problems in the future using the BPEL Editor.

� Make sure you save your work regularly in the BPEL Editor. On the other
hand, do not make it an automatic process, because you may overwrite your
work after an unexpected change in the editor.

� When the diagram does not refresh in the editor, the only option might be to
save the work, close the file, then open the file again in the editor.

� Some of the components can be moved around, opened/closed or
expanded/collapsed. The hot areas, where the pointer becomes active when
you click, might be very small and can be at unexpected locations. Be patient
and try to find the right spot for your actions (click).

� When you are working with large processes, build your processes using
embedded flows and sequences. With this method, you can collapse and
expand parts of your process so you can see it and handle it better.
100 WebSphere Business Integrator Server Foundation V5.1 Handbook

Unfortunately, some functions of the visual design need further advancement,
including the zoom, the automatic arrangement and component positioning. Be
patient and accept the fact that you may have to do some extra work just to
arrange your components and move them where you can see or edit them.

Enterprise services
Enterprise services offer access over the Internet to applications in a
platform-neutral and language-neutral fashion. They offer access to enterprise
information systems (EIS) and message queues and can be used in a
client/server configuration without the Internet. Enterprise services can access
applications and data on a variety of platforms and in a variety of formats.

An enterprise service wraps a software component in a common services
interface. The software component is typically a Java class, EJB, or J2C
resource adapter for an EIS. In services terminology, this software component is
known as the implementation.

WebSphere Studio Application Developer Integration Edition offers two
approaches for building enterprise services:

� Bottom-up approach
� Top-down approach

Bottom-up approach
Use the bottom-up approach when building an enterprise service from existing
assets. In the bottom-up approach, you start with an existing implementation and
then add the description for implementation in WSDL. The WSDL is generated
by the tools in the Integration Edition.

You can generate enterprise services for Java classes and EJBs. Integration
Edition can also generate enterprise services that support J2C resource
adapters to access EISs.

The main steps to create and install an enterprise service are as follows.

1. Create a service project.
2. Develop or import the implementation into the service project.
3. Generate the service.
4. Generate the deployed code.
5. Deploy the enterprise service as an EAR file to an application server.

Top-down approach
Use the top-down approach to create an implementation from an interface WSDL
file. In the top-down approach, you create the service definitions first and then
generate the implementation for the service from the service definition.
 Chapter 5. Development environment 101

If you already have a WSDL file that contains the service interface definitions
(port types, messages and operations), you can then follow these steps to add
bindings and port definitions for the service and generate either a Java or EJB
skeleton for the implementation of the service:

1. Create a service project.

2. Import the interface files (WSDL).

3. Create an EJB project if an EJB skeleton should be generated (this step is not
necessary when creating a Java skeleton).

4. Generate the service skeleton using the New Service Skeleton wizard.

5. Implement the business logic in the skeleton.

6. Deploy the enterprise service as an EAR file to an application server.

More information
Developing enterprise services is beyond the scope of this redbook. For detailed
information about development, refer the IBM Redbook: Exploring WebSphere
Studio Application Developer Integration Edition V5, SG24-6200.

You can also find details about enterprise services in the WebSphere Studio
Application Developer Integration Edition help at WebSphere Studio →
Developing → Enterprise services.

5.3 WebSphere Test Environment
WebSphere Studio Application Developer Integration Edition V5.1 provides
runtime environments that allows for testing JSP files, servlets, HTML files,
enterprise beans, Java classes, and enterprise services including BPEL and
FDML based processes. A universal test client (UTC) is provided to test EJB
modules, Web services and BPEL4WS processes. WebSphere Test
Environment also provides the capability to configure other local or remote
servers for integrated testing and debugging J2EE applications.

The server tools allow you to test applications in different local or remote runtime
environments. You can also use the tools to publish to these environments. The
following two options are provided by the server tooling for publishing J2EE
applications:

� WebSphere Studio Application Developer Integration Edition V5.1 includes
WebSphere Business Integration Server Foundation V5.1 runtime
environment, which can be used to test applications directly from the
development environment. Each test environment provides all the function of
the full runtime environment, but eliminates dependencies on network
connections.
102 WebSphere Business Integrator Server Foundation V5.1 Handbook

� It is also possible to publish to one or more separately installed versions of
WebSphere Business Integration Server Foundation V5.1 application servers
that reside either locally or on a remote machine. If the test server is remote,
Agent Controller must be installed on the remote machine.

In WebSphere Studio Application Developer Integration Edition, the server tools
contain the complete runtime environment of the WebSphere Application Server
including WebSphere Business Integration Server Foundation V5.1. This
environment is called the WebSphere Test Environment. The test environment
includes a local copy of the full WebSphere Business Integration Server
Foundation V5.1 and various WebSphere Application Server V5 runtime
envirnments. Optionally, during installation of WebSphere Studio Application
Developer Integration Edition V5.1, you can install WebSphere Application
Server V4 test environments.

5.3.1 WebSphere Test Environment benefits
WebSphere Test Environment provides the following benefits:

� Standalone all-in-one testing

� No dependency on WebSphere Application Server installation or availability

� No dependency on an external database even when entity bean support is
required

� Supports hot-code replace

� Provides the ability to debug live server-side code at full speed

� Supports configuring multiple Web applications

� Supports multiple servers that can be configured and run at the same time

� Provides access to the profiling feature

� Provides the ability to version server configurations

� Provides a Universal Test Client where you can test your enterprise beans
and Java classes

� Provides access to the WebSphere Application Server Administration
Console

� Provides the ability to automatically create tables and data sources for testing
CMP beans

� Supports sharing servers with multiple development clients

The following table summarizes the supported runtime environments in
WebSphere Studio Application Developer Integration Edition V5.1.
 Chapter 5. Development environment 103

Table 5-1 WebSphere Application Server types

The WebSphere Application Server V4 test environment is based on WebSphere
WebSphere Application Server V4.0.7. The WebSphere Application Server V5
test environment is based on WebSphere WebSphere Application Server V5.0.2.
The WebSphere Application Server V5.1 test environment is based on
WebSphere Application Server V5.1. When you migrate from a previous version
of WebSphere Studio, any e-fixes to the WebSphere Test Environment will be
removed and you must reinstall them manually.

5.3.2 WebSphere Test Environment overview
Components that make up the WebSphere Test Environment are illustrated in
Figure 5-9 on page 105. These components are dicussed briefly in the following
sections.

Version Types

WebSphere Application Server V5.1 - WebSphere Business Integration Server
Foundation
- WebSphere Business Integration Server
Foundation [remote]
- Express Server [remote]
- V5.1 Server [remote]

WebSphere Application Server V5.0 - Express [remote]
- EE Remote Server [remote]
- V5.0 Server [remote]

WebSphere Application Server V4.0 - V4.0.7 Server [remote]

Apache Tomcat V4.1 Local Server
Test Environment

Apache Tomcat V4.0 Local Server
Test Environment

Apache Tomcat V3.2 Local Server
Test Environment

Other - Application Server Attach
- J2EE Publishing Server
- Static Web Publishing Server
- TCP/IP Monitoring Server
104 WebSphere Business Integrator Server Foundation V5.1 Handbook

Figure 5-9 WebSphere Test Environment

Server perspective
WebSphere Studio provides a server perspective that allows you to manage
servers and server configurations. A Server Configuration view allows you to
create or delete servers and server configurations. The Servers view gives you
the ability to stop, start, and restart servers; launch a server in debug or profiling
mode; and publish. The Console view allows you to monitor runtime messages.

Server definition
The server tools use servers and configurations to test and publish projects.
Servers are definitions that identify where you want to test projects. Server
configurations contain setup information. You can either have the development

Server Perspective Server Configuration

Server View

Server Project
 Chapter 5. Development environment 105

environment create the servers and configurations automatically for you, or you
can create them using a wizard.

Types of servers
Theserver tools support the following types of servers. This lists summaries
different types of servers that are supported by WebSphere Studio Application
Developer Integration Edition V5.1:

� WebSphere test environment
� WebSphere local server
� WebSphere remote server
� Tomcat test environment
� Tomcat local server
� J2EE publishing server
� Static Web publishing server
� Remote server attach
� TCP/IP monitoring server
� Application server attach

Integration Server View tools
In addition to the tooling provided in WebSphere Studio Application Developer
Integration Edition V5.1 Server View context menu, WebSphere Business
Integration Server Foundation V5.1 Server View context menu provides
addtional tooling for Editing Business Container Deployment Descriptor, listing
the deployed processes and for launching the Web client. This is indicated in
Figure 5-10 on page 107.
106 WebSphere Business Integrator Server Foundation V5.1 Handbook

Figure 5-10 Server context-sensitive menu

Relationship between server resources
For each server, you can specify the server configuration that should be used for
that server. A server can only point to one server configuration. However, a
server configuration can be pointed to from one or more servers.

A relationship between a server configuration and a project, for example an EAR
project, is created when a project is added to the server configuration. A server
can point to one or more projects. A project can be pointed to from one or more
server configurations.

The following figure illustrates the possible relationship between the server tools
resources resources
 Chapter 5. Development environment 107

Figure 5-11 Relationship between Server Resources

5.3.3 Supported software components
WebSphere Studio ships two JMS providers for testing Business Processes.

� WebSphere MQ Simulator for Java Developers
� WebSphere MQ Embedded Messaging

The following figure shows the supported JMS Providers in WebSphere Test
Environment.

Server 1

Project 3

Project 2

Project 1

Server 3

Server 2

Server
Configuration

1

Server
Configuration

2

Each box represents a resource that
contains setup information or pointer.
108 WebSphere Business Integrator Server Foundation V5.1 Handbook

Figure 5-12 Supported JMS Providers

In addition, the following databases are supported by the WebSphere Test
Environment:

� IBM DB2
� Cloudescape
� Informix®
� Sybase
� Oracle
� MS SQL Server

Figure 5-13 on page 110 indicates the supported databases in WebSphere Test
Environment. However, it is important to note that only Cloudescape is supported
for testing in both local and remote WebSphere Test Environments. This point is
further discussed in the following sections and in 5.4, “Remote test server” on
page 111.
 Chapter 5. Development environment 109

Figure 5-13 Supported Databases in WebSphere Test Environment

Embedded MQ
WebSphere MQ Embedded Messaging allows you to fully test and publish your
applications within a JMS runtime environment. When you install the product,
you can choose to install MQ Embedded Messaging and once installed, it is set
up as the default messaging support for the WebSphere Test Environment.

MQ Simulator for Java Developer
WebSphere MQ Simulator for Java Developers implements Sun's Java Message
Service specifications. The JMS provider works with the WebSphere Integration
Test Environment so that you can test JMS services that you create with the
WebSphere Studio business integration tools.

WebSphere MQ Simulator for Java Developers is an in-process JMS server. It
can be used to easily unit test JMS applications within the development
environment. It does not support persistence or communication between
processes. No configuration is required; it is ready to run in the WebSphere
Studio's Test Environment.

WebSphere MQ Simulator for Java Developers is installed with the WebSphere
Studio product. WebSphere MQ Embedded Messaging requires separate
installation from the WebSphere Studio CD. When MQ Embedded Messaging is
installed, it becomes the default JMS provider that will be used by the
110 WebSphere Business Integrator Server Foundation V5.1 Handbook

WebSphere Test Environment. However, you can switch between these two
JMS providers for the Test Environment.

Cloudscape™
Process choreographer only supports the embedded Cloudscape, which does
not allow remote access. Cloudscape Network Server is not supported because
it has no XA support.

IBM DB2 UDB
Using IBM DB2 UDB in the WebSphere Test Environment together with the
Integration server V5.1 is not supported. You can still use DB2 for application
data together with other applications.

5.4 Remote test server
For more information about how to set up a single server for remote testing refer
to 4.2, “Basic configuration” on page 36.

5.4.1 Agent Controller
The Agent Controller is a daemon process that enables client applications to
launch host processes and interact with agents that coexist within host
processes. A single configuration file is used to manage the extent of its
behavior.

The Agent Controller provides a means for extending application behavior so
that information regarding the application's execution can be externalized and
then collected either locally or remotely. The Agent Controller interacts with the
following components:

Restriction: At the time of writing this book, WebSphere MQ was not tested
with Business Process container as a JMS provider in WebSphere Test
Environment.

Restriction: Currently, you must use a Cloudscape database if you want to
test FDML or BPEL business processes using either a WebSphere remote
server or test environment server in the WebSphere test environment of
WebSphere Studio.
 Chapter 5. Development environment 111

Host process
This is the process that contains the application under test.

Agent
A reusable binary file that provides services to the host process, and more
importantly, provides a portal by which application data can be forwarded to
attached clients. A host process can have one or more agents currently running
within it. Even if the host process does not contain an agent initially, some
processing condition can result in the creation of an agent at some point during
the life cycle of the process.

Client
A local or remote application that is the terminal destination of host process data
that is externalized by an agent. A single client can be attached to many agents
at once. However, a client does not always have to be attached to an agent.

Agent Controller
A daemon process that resides on each deployment host and provides the
mechanism by which client applications can either launch new host processes,
or attach to agents that coexist within existing host processes. The client can
reside on the same host as the Agent Controller, or it can be remote. The Agent
Controller can only interact with host processes on the same node.

The Agent Controller's deployment model consists of multiple development hosts
that use the test client to interact with multiple applications that reside on many
different hosts on the network. A simple deployment diagram is illustrated in
Figure 5-14 on page 113.
112 WebSphere Business Integrator Server Foundation V5.1 Handbook

Figure 5-14 Agent Controller deployment model

Each application process can have zero or more agents running within it. Each
host also has services that are provided by the Agent Controller. The Agent
Controller handles all communication meaning that the test client does not
interact with either the services or the agents directly. Instead, the client sends all
of its requests to the Agent Controller on the host that contains the application. It
is on the deployment hosts that these requests are authenticated and routed to
the target agent or service. Commands and data that are generated by the
agents and services must also be routed to the Agent Controller, from where they
are then transmitted to the test client.

5.4.2 Supported remote server testing scenarios
There are several options available for deploying and debugging a process on a
remote server. The following scenarios were tested for the both Process
deployment and debugging

WebSphere Studio Application Developer Integration Edition development
machine configured with Remote Integration Server (WebSphere Business

WSADIE Plug-ins

Test Client

JDK
Services

IBM Agent Controller

Agent

Application
Process

Deployment Hosts
Development Hosts

Agent

Application
Process

Note: WebSphere workbench plug-ins can leverage the test client and
provide an interface for the developer to interact with the Agent Controller on
the deployment machines. An example of this is the Profiling perspective
 Chapter 5. Development environment 113

Integration Server Foundation) that communicates with Agent Controller running
on WebSphere Business Integration Server Foundation machine

WebSphere Studio Application Developer Integration Edition development
machine directly communicating with the Business Process Engine for process
debugging.

Scenario 1
Advantages:

� Gives the benefit of allowing Profiling, Administration, Configuration through
WebSphere Test Environment.

� Debugging is also performed through Debug perspective. Debugging
command line can be customized to pass in BPE specific performance
enhancements like -Xj9.

� Allows for installation, deployment of processes through WebSphere Test
Environment.

Disadvantages:

� Only Cloudscape and Embedded MQ supported on remote machine.

� It is not a true representation of the System Test or Production environment.

� Software components may not exactly match the production and system test
environment, (WebSphere MQ and DB2).
114 WebSphere Business Integrator Server Foundation V5.1 Handbook

Figure 5-15 Scenario 1

Scenario 2
Advantages:

� Full support of DB2, WebSphere MQ and Tivoli Directory Server

� Development environment much closely resembles the system test and
production environment.

� Full debugging support through the debug perspective.

Disadvantages:

� The connectivity is established through WebSphere Studio Application
Developer Integration Edition debug perspective by directly attaching to a
remote WebSphere Business Integration Server Foundation running process.

� No administration, configuration features are available in WebSphere Test
Environment.

� Must have the Java code available in the local workspace for the specified
Process being debugged.

� Debugging may not work if deployed process is not exactly the same as the
one available in the workspace.

Services

IBM Agent Controller

Remote Integration & System Test Host

Agent

WBISF

Development
WSADIE

Development
WSADIE

Development
WSADIE

Development
WSADIE

Cloudscape

Embedded
MQ

PE
 Chapter 5. Development environment 115

� Remote Application server must be restarted in debug mode and for adding
customized debug parameters, that is, -Xj9, Administrative Console has to be
used via a Web browser prior to debugging the process.

� No support is available for installation and deployment of processes through
WebSphere Test Environment.

Figure 5-16 Scenario 2

5.4.3 Configuring the IBM WebSphere Test Environment for the
remote test server

Before you can deploy a process to a remote test server from WebSphere
Studio, you need to ensure that you have met the following requirements

� WebSphere Business Integration Server Foundation V5.1 (Integration Server)
is installed with the Embedded Messaging feature.

Key:

� WSADIE: WebSphere Studio Application Developer Integration Edition
� TDS: Tivoli Directory Server
� WBISF: WebSphere Business Integration Server Foundation
� PE: Process Engine

Process 1

WBISF

Development
WSADIE

Development
WSADIE

Development
WSADIE

Development
WSADIE

Process 2

Process N

DB2 ESE

WebSphere
MQ

TDS

PE

Remote Integration & System Test Host
116 WebSphere Business Integrator Server Foundation V5.1 Handbook

� Ensure that the Cloudscape database BPEDB exists in
%WAS_HOME%\ProcessChoreographer.

� IBM Agent Controller is installed and running. Agent Controller is available as
a separate install option on the WebSphere Studio CD.
 Chapter 5. Development environment 117

118 WebSphere Business Integrator Server Foundation V5.1 Handbook

Part 3 Implementing
WebSphere
Enterprise
solutions

Part 3
© Copyright IBM Corp. 2004. All rights reserved. 119

120 WebSphere Business Integrator Server Foundation V5.1 Handbook

Chapter 6. Process choreographer:
introduction

This chapter introduces WebSphere Process Choreographer, the Business
Process Engine and the process description language BPEL4WS. It also
provides an overview of the business process related terms, the different process
types and some considerations. It provides a list of the different activities and the
process editor where you can use these activities to build a process.

6

© Copyright IBM Corp. 2004. All rights reserved. 121

6.1 Concepts
It is important to have an understanding of the concepts and terminology used
within WebSphere Process Choreographer before going into the details of
creating business processes. This chapter introduces the key concepts used
when talking about business processes.

The latest versions of WebSphere Business Integration Server Foundation and
WebSphere Studio Application Developer Integration Edition include several
significant features not provided in previous versions, so even if you are familiar
with the V5.0 products, you should read this chapter to familiarize yourself with
these changes.

The InfoCenter contains a more detailed overview of these and other concepts.
To access this, select Help → Help Contents from the WebSphere Studio
Application Developer Integration Edition menus, then navigate to WebSphere
Studio → Developing → Processes → The Process editor (BPEL) in the
help file.

6.1.1 Process languages
WebSphere Business Integration Server Foundation V5.1 introduces Business
Process Execution Language for Web Services (BPEL4WS, which is often
abbreviated as BPEL) as a replacement process language to the FDML-based
flows. BPEL4WS provides a more flexible standards-based approach to defining
and executing business processes.

FDML flows can still be developed and executed although their use is
deprecated. WebSphere Studio Application Developer Integration Edition
provides a wizard to migrate FDML flows to BPEL4WS. Although BPEL4WS
processes and FDML flows can both be used in a single application, it is not
possible to develop and store both types of process in the same WebSphere
Studio Application Developer Integration Edition Service project.

The implementation of the business process engine includes some added
capabilities which extend the basic BPEL4WS specification. These add support
for staff-related activities and embedding of Java code as Java snippets which
increase the power and productivity of the tool.

BPEL4WS processes will be used exclusively throughout the rest of this book.
For details about FDML, refer to the InfoCenter or to the IBM Redbook Exploring
WebSphere Studio Application Developer Integration Edition V5, SG24-6200.
122 WebSphere Business Integrator Server Foundation V5.1 Handbook

6.1.2 Non-interruptible and interruptible processes
Processes may be interruptible or non-interruptible. As the names suggest,
interruptible processes can be suspended and resumed, whereas
non-interruptible processes stay active from the time they start to the time they
complete.

The key differences between the two modes of operation are:

� State and status persistence

Interruptible processes persist their state and status to disk between
activities. This contrasts with non-interruptible processes which manage state
and status in memory.

� Transactionality

Interruptible processes may contain multiple transactions. In contrast,
non-interruptible processes execute within a single transaction.

If a process is likely to execute for an extended period of time, it is recommended
that the process be interruptible, therefore persisting state and status. This
enables system resources to be released for other processes active in the
process container. It also allows the BPE container to be shut down and
restarted without losing the state and status of the process.

However, the overhead associated with storing the state to disk means that
interruptible processes are not so well suited to high throughput applications. In
this case, non-interruptible processes should be used.

Note: In the product documentation:

� Interruptible processes are sometimes called long-running processes or
macroflows. The macroflow name is no longer used to describe
interruptible processes.

� Non-interruptible processes are sometimes called short-running processes
or microflows. The microflow name is no longer used to describe
non-interruptible processes.
 Chapter 6. Process choreographer: introduction 123

6.1.3 Transactional behavior
Transactional behavior depends on the interruptibility of the process.
Non-interruptible processes execute within a single transaction. In contrast, each
activity within an interruptible process can have its transactional behavior set to
one of four states:

� Commit before

Pending transactions are committed before the activity starts.

� Commit after

The activity continues the existing transaction, committing the transaction
once it has completed.

� Participates

The activity continues the transaction.

Tip: Here are a few other general comments about interruptible and
non-interruptible processes:

� Asynchronous activity

A process must be interruptible if it contains an asynchronous activity such
as pick or staff. Otherwise, it will result in an error being raised.

� Configuring a process to be interruptible

Processes can be configured to be interruptible by selecting the Process
is long-running checkbox on the Server tab of the process details area.

� Binding of interruptible processes

Interruptible processes cannot bind to a synchronous port type such as
EJB, but must be bound to asynchronous port types such as JMS.

� Threading behavior

The activities of an interruptible process are queued internally before they
are executed by the process container. Hence, they may be executed in
different threads. In contrast, non-interruptible processes are always
executed in a single thread within the process container. This means that
even if a non-interruptible process contains parallel activities, these will be
executed sequentially.

There are potentially more serious implications for processes which invoke
other processes directly via a BPEL Partner Link. If the invoked process is
also non-interruptible, it will run in the same thread as the parent process
and any time-out set on the parent process Invoke activity will not trigger
even though it takes longer than the time-out setting.
124 WebSphere Business Integrator Server Foundation V5.1 Handbook

� Requires own

The activity commits pending transactions before it starts and commits its
own transaction once it completes.

In either case, if a failure is detected, the current uncommitted transaction is
rolled back and any pending compensation activities are applied. The result of
this is that the system is returned to a balanced state.

Compensation is a separate, WDSL-described service which balances the action
if an Invoke activity is used. A compensation service is applied to an Invoke
activity on the compensation tab on the process details area.

6.1.4 Sequences and flows
BPEL4WS provides flow and sequence structures which allow nesting.
Processes can include combinations of sequences and flows contained within
one another. The features of each structure are outlined below.

� Flow

Activities within a flow execute concurrently. The addition of links and their
associated conditions provides additional control over order of execution. The
end of a Flow activity is a synchronization point: all activities must complete
before the process continues.

� Sequence

Activities in a sequence execute sequentially. The order of execution is
defined by the positioning within the block.

Either a sequence or a flow can be used as a starting point for development. The
process has exactly the same characteristics and capabilities. The decision is
thus largely a matter of personal preference.

6.1.5 Parts of a business process
This section introduces the major building blocks of a process. Further details on
these concepts can be found in the BPEL4WS specification.

Partner links
The parties that will interact with the business process are defined as partner
links. Partners may be one of a number of types: WSDL service, BPEL, EJB
Java Class or Transform Service. Transform services are defined in WSDL.

For WSDL-based partner links a partner link type enables the role of the partner
and/or the process to be defined. There may be one or two roles defined within a
 Chapter 6. Process choreographer: introduction 125

partner link type, depending on the requirements of the process. Roles are
assigned to participants in the partner link definition. Each role is associated with
a port type derived from a WSDL file. This defines the operations that the role
supports.

� One role is used for synchronous style interfaces.

Some examples of use of partner link types with one role are given below:

– If a process invokes a synchronous WSDL service, a partner link type with
one role is used. In this case, the partner role is defined and the process
role is blank.

– A synchronous interface offered by a process also uses a partner link type
with one role. In this case, the process role is defined and the partner role
is blank.

� Two roles are used for asynchronous style interfaces.

The overall flow of the interaction is outlined below:

a. A process invokes a service asynchronously and continues with
processing.

b. At some later time, the invoked service responds via an interface that the
process provides.

Both request and response are attached to a single partner link, the request
using the partner role and the response using the process role.

Variables
WebSphere Process Choreographer uses the concept of variables to pass data
between steps in the process. The type of each variable is described by a

Note: In the following discussion, the terms synchronous and asynchronous
refer to the style of interface in the context of the process, and whether or not
a response is expected to a request before the process continues. A
synchronous interface could be provided by an asynchronous transport such
as JMS.

Tip: This is a rule of thumb for working out which roles need to be defined
within a partner link. If the process

� provides a service, the partner link must contain a process role

� consumes a service, the partner link must contain a partner role

These rules are not mutually exclusive: a process may both provide and
consume a service via a single partner link.
126 WebSphere Business Integrator Server Foundation V5.1 Handbook

message comprising one or more message parts. The message is defined in
WDSL.

Activities
An overview of the available BPEL4WS process activities is given in Table 6-1.
For more detailed descriptions and examples, refer to the InfoCenter.

Table 6-1 WebSphere Process Choreographer activities

Activity Description

The Invoke activity performs an operation. The operation is defined by
a partner link and may be synchronous or asynchronous.

The Receive activity waits for an external input to the process before
continuing. The operation supported by the Receive activity is defined
by a partner link.

The Reply activity sends a message to the partner defined by a partner
link. This is typically used in processes which need to return a message
to the partner which instigated the process.

The Pick activity waits for an incoming message and selects a path
appropriate to the first message received. A time-based path can be
configured to manage situations where no message is received. A
partner link is associated with each message path.

The Staff activity delegates a task within the process to a human. The
user interface in this case is either a custom application based on the
process choreographer API or the Web client provided that comes with
WebSphere Business Integration Server Foundation.

The Transformer activity maps the contents of one or more message
types to the contents of another.

The Assign activity copies information from one part of the process to
another.

The Switch activity evaluates the conditions on a series of control paths
and follows the first one which matches.

The While activity repeats the activities which it contains as long as a
condition is met.
 Chapter 6. Process choreographer: introduction 127

Correlation sets
Correlation sets identify the participants in a process by reference to some
unique information contained in the messages that are passed. This allows the
business process container to decide whether an incoming message should
launch a new process or use an existing instance. Correlation sets can be
associated with service activities such as receive, reply and invoke as well as
with pick activities.

The wait activity stops the process until a point in time has occurred or
a time interval has elapsed.

The sequence activity defines a serial control path within a process.
See 6.1.4, “Sequences and flows” on page 125 for further details.

The flow activity defines a potentially parallel control path within a
process. See 6.1.4, “Sequences and flows” on page 125 for further
details.

The terminate activity stops the process immediately without
performing any compensation or fault handling. The behavior of this
activity depends on the location within the process.

The throw activity signals that an error has occurred. This is typically
handled by a Fault Handler element associated with a higher level of
process structure.

The empty element does nothing. It can be used as a placeholder
during process design, and then changed to the appropriate activity
when the process is implemented.

Java code can be embedded into the process using the JavaSnippet
activity. While it is possible to embed business logic into this type of
activity it is not advisable, as it removes the clarity of the process
modeling. Snippets are designed to perform lightweight utility activities
such as data mapping.

Tip: The activity type can be changed by right-clicking the activity in the
process editor and selecting the Change Type menu item. Use this facility
with caution; changing the type of a structured activity such as sequence or
flow will delete the contents of that block.

Activity Description
128 WebSphere Business Integrator Server Foundation V5.1 Handbook

6.2 Development tooling support
WebSphere Studio Application Developer Integration Edition provides support
for creating processes based on BPEL4WS. This section describes the editor
that is provided.

6.2.1 BPEL Editor
The BPEL Editor (also referred to as the BPEL process editor) is a graphical
programming environment that is used to visually create and manipulate
business processes. Figure 6-1shows the BPEL Editor.

Figure 6-1 The BPEL Editor

Processes are constructed in the process area (3) of the canvas (6) by dragging
activities from the palette (1). Definitions of variables, partner links and
correlation sets are held in separate areas (2, 5, 8) on the canvas.

Selecting any activity brings up the action bar (4) which contains a series of
icons related to the activity, including adding Fault Handlers. The details area (7)
below the canvas provides the means for configuring the currently selected
activity.

1
2 3

4
5

6

7

8

 Chapter 6. Process choreographer: introduction 129

Figure 6-2 A Fault Handler

A small exclamation point in the top right corner of any activity means that a
Fault Handler is defined for that activity. Figure 6-2 shows a Fault Handler block
in the BPEL Editor. The Fault Handler can be opened and closed either by
double-clicking the exclamation point or by right-clicking the activity and selecting
the Show Fault Handler menu item. Catch elements can then be added to the
Fault Handler.

6.2.2 The Web client
The Web client provides access to a running process. Although it can be used as
a general purpose user client, it is quite likely that a specialized application will
be created for end users of the system. The Web client is useful during process
development and testing to instantiate a process with a certain set of input
parameters.

The Web client is described in more detail in a number of articles available at:

http://www.ibm.com/developerworks/websphere/zones/was/wpc.html

6.3 Runtime environment
This section contains an overview of the BPE container. Further details can be
found either in the WebSphere Business Integration Server Foundation
InfoCenter or in the white paper WebSphere Application Server Enterprise
Process Choreographer: Concepts and Architecture, which is available from:

http://www.ibm.com/developerworks/websphere/zones/was/wpc.html

Tip: Always close the Fault Handler block when you have finished editing it.
There appears to be an intermittent bug in the BPEL Editor which causes the
process canvas to be cleared if a Fault Handler block is left open while
navigating around the canvas.
130 WebSphere Business Integrator Server Foundation V5.1 Handbook

http://www.ibm.com/developerworks/websphere/zones/was/wpc.html
http://www.ibm.com/developerworks/websphere/zones/was/wpc.html

6.3.1 Business Process Execution container architecture
WebSphere Business Integration Server Foundation provides the runtime
environment for WebSphere Process Choreographer. This is the Business
Process Execution (BPE) container. Figure 6-3 shows the components of the
container. It is implemented as a J2EE application that uses the underlying
WebSphere Application Server runtime services and resources.

Figure 6-3 Business process execution container architecture

The key components of the BPE container are:

� Process navigation
� Factory
� People interaction
� Internal interface
� External interface

Each of these will be discussed briefly in the remainder of this section.

Process navigation
The process navigation component consists of the navigator and some plug-in
components.

Navigator
The navigator is the heart of the BPE container. It manages the state of all
process instances and the activities that they contain.

External Queue

External I/F

Session
EJB-

Based
API

Message-
Driven
Bean-
Based

API

Internal Queue

Internal I/F

Request
Dispatch

Internal
Queue
Handler

MDB

Process Navigation

Navigator

Process,
Activity

Data
Handling

Variables,
Conditions

Invocation

Java,
WSIF

Compensation

People Interaction

Work
Item

Manager

Staff
Queries

User Reg,
LDAP

Authorization

Work Item-
Based Transient

Storage Handler

Factory

Business
Process

DB

Observer

Audit
Trail

Persistent
Storage Handler

Business Process Engine
 Chapter 6. Process choreographer: introduction 131

The life of a process instance begins with a start request. This creates the
instance based on a process template and puts it into a running state. When all
its contained activities have reached an end state, the process instance is
marked finished. The instance remains in this state until it is deleted, either
implicitly or via an explicit API call.

The process instance might encounter a fault that was not processed as part of
the process logic. In this case, it waits for the completion of the active activities
before putting the process into its failed state. Compensation is then invoked if it
was defined for the process.

A process instance can also be terminated by a process administrator. In this
case, after completion of the active activities, the process instance is put into its
terminated state.

Plug-ins for process navigation
The core capabilities of the navigator are extended using plug-ins. These provide
future flexibility and extensibility for the product.

Plug-ins are provided for:

� Invocation of activity implementations

There are currently two plug-ins that support invocation: the invocation of
external processes via WSIF and the invocation of Java snippets.

� The handling of data in the process, such as evaluating conditions

The process engine has a plug-in that understands conditions written in Java
against WSDL messages.

� The logging of events in an audit trail

The process engine has a plug-in that writes data to the audit trail table of the
process engine's database.

Factory
The factory component is responsible for state data that the process engine
deals with. It allows data to be stored in one of the following forms:

� Transiently in memory

This is used to support the efficient execution of non-interruptible processes

� Persistently in a database

This is used to provide durability to interruptible processes. Many popular
databases are supported, including DB2 Enterprise Server Edition.
132 WebSphere Business Integrator Server Foundation V5.1 Handbook

Human interaction

The main components involved in interaction with people are:

� Web client or other client

It is possible to interact with the process instances via the Web client
described in 6.2.2, “The Web client” on page 130. This can be tailored to the
requirements of the business application.

Alternatively, the WebSphere Process Choreographer API can be used to
create a custom client.

� Work item manager

Work items are created when the BPE container encounters a Staff activity.
The work item manager component is responsible for handling work items.
This entails:

– Creating and deleting work items

– Resolving queries from process participants

– Coordinating staff queries

– Authorizing activity on process instances

This ensures that participants only gain access to process instances for
which they have a valid work item.

The work item manager has a number of performance-related features,
notably an internal cache for resolved staff queries.

� Staff support service, staff resolution plug-ins and staff repositories

The staff support service manages staff resolution requests on behalf of the
work item manager. It actually delegates execution to the staff resolution
plug-ins. These plug-ins work with the staff repositories to fulfil requests.
There are operating system repositories, user registries or LDAP registries.

For more details about staff resolution, see the document WebSphere
Application Server Enterprise Process Choreographer: Staff Resolution
Architecture available at:

http://www.ibm.com/developerworks/websphere/zones/was/wpc.html

Note: WebSphere Process Choreographer supports business processes with
people interaction only when WebSphere Application Server security is
enabled. This is because the user needs to be authenticated to determine the
appropriate work items.
 Chapter 6. Process choreographer: introduction 133

http://www.ibm.com/developerworks/websphere/zones/was/wpc.html

Internal interface
Interruptible processes use a JMS queue between activities to provide durability.
In most production environments, this should be based on a robust external JMS
provider, such as WebSphere MQ.

External interface
The interface to the container is via a façade. This is provided both
asynchronously as a Message-Driven bean and synchronously as a session
EJB.
134 WebSphere Business Integrator Server Foundation V5.1 Handbook

Chapter 7. Process choreographer:
developing a simple process

This chapter shows how to implement a simple business process using the BPEL
Editor of WebSphere Studio Application Developer Integration Edition.

From a technical point of view, implementing a business process consists of the
steps to develop and deploy (and perhaps debug) this business process. These
steps will be shown in this chapter.

7

© Copyright IBM Corp. 2004. All rights reserved. 135

7.1 Sample scenario
A fictional travel agency called NiceJourney will provide its travel arrangement
service over the Internet as a Web Service to its customers. To do this, the
NiceJourney travel agency has to communicate with an external partner, in order
to reserve flights for its customers. Therefore, the external partner is a Flight
Booking System which is also exposed as a Web Service. The customers
communicate with the NiceJourney Web Service via a Web Service client.

Hence, this scenario uses both the Business to Customer (B2C) and Business to
Business (B2B) model.

Currently, when a customer requests a travel arrangement, the NiceJourney
Web service requires the following information:

� Customer details
� Travel details
� Booking options

– Flight
– Car
– Hotel

� Price limit
– Complete journey

� Payment details

To simplify the example in this chapter, not all of the information shown above
will be used by the NiceJourney Web Service and the Flight Booking System
Web Service. However, in the complex scenario in Chapter 8, “Process
choreographer: developing a complex process” on page 203, all the provided
information will be utilized and the business logic will be more meaningful and
realistic.

The outline of the NiceJourney Web Service is as follows:

1. Receive customer information
2. Send travel information to the Flight Booking System
3. Receive a reservation ID from the Flight Booking System
4. Reply to the customer with the reservation ID

For the purpose of illustrating the basic functionality of WebSphere Process
Choreographer, no erroneous paths have been included in this scenario. For a
more complex business scenario, refer to Chapter 8, “Process choreographer:
developing a complex process” on page 203.
136 WebSphere Business Integrator Server Foundation V5.1 Handbook

7.1.1 Interactions between involved partners
� The customer might be any Web Service client that can communicate via

WSDL. Refer to Chapter 9, “Process choreographer: clients” on page 287 to
learn how to implement such a client. In this chapter, we will use the Business
Process Web Client, which comes with WebSphere Studio Application
Developer Integration Edition.

� The NiceJourney Web Service will be implemented as a BPEL process; for
further information on the BPEL process, refer to 6.1.1, “Process languages”
on page 122.

This Web Service is offered by the operation travelArrangement on a WSDL
port Type called travelArrangementType. The operation is of type
request/response, hence it is used to receive customer details and travel
details and in response to this, it will reply with the reservation ID.

� The Flight Booking System will be a Java class exposed as a Web Service.

To make a flight reservation, the operation getReservation is offered on
WSDL port type FlightBookingSystem. This operation is of type
request/response so it is used to receive travel details and in response to this,
it will reply with a reservation ID.

The following figure shows the scenario for the simple process. The customer
interacts with the NiceJourney Web Service and the NiceJourney Web
Service itself interacts with a third party, the Flight Booking System, to make
an appropriate flight reservation. The reservation ID generated by the Flight
Booking System is returned to the NiceJourney Web Service. To simplify the
scenario, this reservation ID is also returned to the customer by the
NiceJourney Web Service without any changes.

Figure 7-1 The simple process scenario

7.1.2 Input messages and output messages
This section will discuss the input and output messages required for the
NiceJourney and Flight Booking System Web Services.

NiceJourney
Web Service

travelArrangement
(operation on WSDL port type)

Web Services
Client

Customer Flight Booking System
Web Service

getReservation
(operation on WSDL port type)

request

response

request

response
 Chapter 7. Process choreographer: developing a simple process 137

Interface to NiceJourney Web Service
The input and output messages required for the NiceJourney Web Service are
defined in NiceJourneyPublicInterface.wsdl. The WSDL files containing the
binding and service information for the NiceJourney Web Service will be
generated by WebSphere Studio Application Developer Integration Edition.

� Operation: travelArrangement

Receives the message travelAgencyIn from the customer, which consists of:

– [complextype: customer]

• firstName xsd:string
• lastName xsd:string
• address xsd:string
• city xsd:string
• zipcode xsd:nonNegativeInteger
• state xsd:string

– [complexType:travel]

• cityFrom xsd:string
• cityTo xsd:string
• dateDeparture xsd:dateTime
• dateReturn xsd:dateTime

Replies with the message travelAgencyOut to the customer:

• reservationID xsd:long

Interface to the Flight Booking System
The input and output messages required for the Flight Booking System are
defined in FlightBookingSystem.wsdl.

� Operation: getReservation

This needs to receive the message getReservationRequest that contains
these simple types:

• cityFrom xsd:string
• cityTo xsd:string
• dateDeparture xsd:dateTime
• dateReturn xsd:dateTime

It replies with the message getReservationResponse:

• result xsd:long

Note: The partial result of the message getReservationResponse shown
above is the reservation ID generated by the Flight Booking System. Since the
WSDL files were generated from a Java class, this name was generated.
138 WebSphere Business Integrator Server Foundation V5.1 Handbook

7.2 Activities in the sample
The activities defined in BPEL4WS are divided into basic activities and
structured activities.

The basic activities within a business process are used to define tasks; the
structured activities are used to manage the complexity of the business process.
Hence, a basic activity can be compared to be a step while a structured activity
is a programming construct in the business process.

In addition to the BPEL4WS activities, there are additional activities defined in
the BPEL Extensions to enhance WebSphere Process Choreographer.

7.2.1 Receive activity
The Receive activity is a basic activity in the definition of BPEL4WS.

It has a blocking runtime behavior, waiting for an external input message to the
process. This input message is covered by an operation of a WSDL port type that
is associated with a certain role of a partner link.

The following figure shows the implementation view for the Receive activity. This
view is located in the details area of the BPEL Editor.

Figure 7-2 Implementation view of the Receive activity

Once the message has arrived, the process will continue or a new process
instance will be created, depending on the setting of the check box (see
Figure 7-2). The arrived message is mapped to a variable to make it accessible
within the complete process.

Select the Receive activity to see the related partner link and the highlighted
variable to which the input message is mapped (there will be a bold border
around the variable name).
 Chapter 7. Process choreographer: developing a simple process 139

Figure 7-3 Receive activity associated with Partner link and mapped to variable

If the input message is sent to a certain process instance, a correlation has to be
defined on the Receive activity, identifying this process instance uniquely. Refer
to 6.1.5, “Parts of a business process” on page 125 to learn more about the
correlation set.

The Receive activity can be used to implement a Synchronous Interface (see
also “Synchronous interface” on page 145). For this, a matching Reply activity
(see also 7.2.2, “Reply activity” on page 141) has to be placed in the process,
associated with the same partner link as the Receive activity.

The following figure shows how this can be implemented in the BPEL Editor; the
definition of the WSDL port type is shown below.

Figure 7-4 implementation of a synchronous interface in the BPEL Editor
140 WebSphere Business Integrator Server Foundation V5.1 Handbook

The WSDL port type that is associated with this shared partner link,
travelArrangementPL, has to define the synchronous request/response
operation, as shown in Example 7-1.

Example 7-1 WSDL port type to implement a synchronous interface, defined in
NiceJourneyPublicInterface.wsdl

<portType name="travelArrangementType">
<operation name="travelArrangement">

<input message="tns:travelAgencyIn" name="travelArrangementIn"/>
<output message="tns:travelAgencyOut" name="travelArrangementOut"/>

</operation>
</portType>

An Asynchronous Interface can be implemented using the Receive activity
without a matching Reply activity (refer to “Asynchronous interface” on
page 146). For this, the operation of the WSDL port type has to consist of a
one-way operation only.

7.2.2 Reply activity
The Reply activity is a basic activity in the definition of BPEL4WS.

It is always used in response to an input message that previously arrived in the
process. The output message to be sent is covered by an operation of a WSDL
port type that is associated with a certain partner link role.

Figure 7-5 on page 142 shows the implementation view for the Reply activity for
a normal reply type. This view is located in the details area of the BPEL Editor.

Note: The arrows in Figure 7-4 show the relation between the components.
The input message of the Receive activity is related to the travelRequest
variable. The output message of the Reply activity is related to the
travelResponse variable. Both variables are related and defined to map to the
travelAgencyIn and travelAgencyOut messages from the
NiceJourneyPublicInterface.wsdl interface definition.

The red arrows are not part of the BPEL Editor.
 Chapter 7. Process choreographer: developing a simple process 141

Figure 7-5 Implementation view of the Reply activity for a normal reply type

The output message of the Reply activity is gained from a variable of the
process.

Figure 7-6 Reply activity associated with Partner link and mapped to variable

The output variable has to cover an output message that is defined in the same
WSDL port type as the input message for which this is the response; it is shown
in the following example.
142 WebSphere Business Integrator Server Foundation V5.1 Handbook

Example 7-2 WSDL port type with output message and with two fault messages f

<portType name="travelArrangementType">
<operation name="travelArrangement">

<input message="tns:travelAgencyIn" name="travelArrangementIn"/>
<output message="tns:travelAgencyOut" name="travelArrangementOut"/>
<fault message="tns:travelAgencyError"

name="travelArrangementErrorFlight"/>
<fault message="tns:travelAgencyError"

name="travelArrangementErrorCar"/>
</operation>

</portType>

The example above also shows the definition of two fault messages which can
be used for a fault reply type. The Reply activity can return either an output
message, as shown in Figure 7-5 on page 142, or a fault message to its
associated WSDL port type. Since an operation of a WSDL port type might have
several fault messages defined (see above), one of these has to be selected as
the fault target of the Reply activity.

The following figure shows the implementation view for the Reply activity for a
fault reply type.

Figure 7-7 implementation view of the Reply activity for a fault reply type

In contrast to the Receive activity, the Reply activity cannot be used to implement
an Asynchronous Interface. It is only available as the response to a synchronous
request, as shown in Figure 7-4 on page 140. Therefore, each Reply activity
must have a corresponding Receive or Pick activity.

7.2.3 Invoke activity
The Invoke activity is a basic activity in the definition of BPEL4WS.

The general purpose of this activity is to invoke an operation offered by a partner,
by exchanging messages. Technically, this is done by invoking an operation on a
WSDL port type that is associated with a certain role of a partner link. Depending
 Chapter 7. Process choreographer: developing a simple process 143

on the definition of this WSDL port type, the Invoke activity can by used to
implement a request/response or a one-way operation.

The following figure shows the implementation view for the Invoke activity for a
request/response operation. This view is located in the details area of the BPEL
Editor.

Figure 7-8 Implementation view of the Invoke activity for a request/response operation

The messages, sent to or received from the referenced WSDL port type, must be
defined in the same namespace as the WSDL port type itself. It is important to
emphasize that it will not be enough for the data type(s) of the part(s) of
exchanged messages to be the same.

The following figure shows the Invoke activity and its associated partner link; the
variables associated with the Invoke activity are also shown. The output
message to be sent to the partner is gained from the variable named
flightRequest; the input message received from the referenced partner will be
mapped to the variable named flightResponse.

Figure 7-9 Invoke activity associated with Partner link and mapped to variables
144 WebSphere Business Integrator Server Foundation V5.1 Handbook

By changing the type of the partner link (right-click the partner link then select
Change Type) that is wired with the Invoke activity, it is possible to invoke:

� WSDL service
� BPEL process
� EJB
� Java class
� Transform service

According to the chosen type, the generation of appropriate WSDL files is more
or less implicitly done by WebSphere Studio Application Developer Integration
Edition. Finally, a partner will always be called over an operation on a WSDL port
type, regardless of the previous chosen type.

Synchronous interface
The Invoke activity can be used to implement a synchronous interface. The
activity has to be associated with a WSDL port type containing a
request/response operation; see Port Type B-PT in the following figure.

Figure 7-10 Synchronous Interface

Invoke

Process BProcess A

Receive

Reply

Partner Link Type

Port Type B-PT

Role bRole a

Request-Response
Operation

. . .

. . .

. . .

Partner Link B-L
partnerRole=“b”

Partner Link A-L
myRole=“b”

Invoke

. . .

Process B

ReceiveReceive

.

Reply. . .

Invoke

Reply

Process B

1

2

Service Requester Service Provider
 Chapter 7. Process choreographer: developing a simple process 145

The use case to invoke a partner (service provider) in a synchronous manner the
service requester can not go on with the process execution without the result
delivered from the service provider.

#1 inFigure 7-10: Process A invokes process B and waits for the result. Once the
result from process B has arrived, process A can go on with its execution in #2.

In the implementation, the partner link type has to consist of one role only. This
role is associated with a WSDL port type that covers a request/response
operation in the namespace of the service provider.

The service requester implements the partner link type in its partner link to refer
to the service provider. Since the service requester expects a service from its
referenced partner, its partner link defines only a role for the partner; see Partner
Link B-L in Figure 7-10.

The service provider has to implement the same partner link type as the service
requester. The fact that the service provider is the invoker in this scenario is
reflected in the implementation of the partner link type; the partner link defines
that process B owns the role “b”, see Partner Link A-L in Figure 7-10.

Asynchronous interface
A common way to invoke a partner without waiting for the response is to use a
Invoke activity associated with a WSDL port type that consists of an one
way-operation only.

In an asynchronous interface, there are two partners and each of them are
performing an one way-operation to its partner where both partners implement
the same partner link type. See Figure 7-11 on page 147 for more details.
146 WebSphere Business Integrator Server Foundation V5.1 Handbook

Figure 7-11 Asynchronous interface

The use case for an asynchronous interface is if a service requester invokes a
partner (service provider) to get a result for later usage and the service requester
can go on with the process execution (do several other steps), before the result
requested from the partner becomes necessary.

#1 in Figure 7-11: Process A invokes Process B and goes on with the process
execution, going through further steps for which the requested result is not
necessary. Process B gets this request and processes it. At this point in time,
both processes may be running in parallel; see #2 and #3. In a certain execution
state of Process A, the previous requested result of the service provider will be
necessary. To get this result, Process A will do a blocking wait using a Receive
activity, (#4). If this result is determined by Process B, it will be delivered to
Process A, using an Invoke activity (#5). Once the result has arrived to Process
A, it can go on with the process execution, using the result delivered from
Process B.

Process BProcess A

ReceiveInvoke

Partner Link Type

Port Type B-PT

Role bRole a

One-Way
Operation

.

Partner Link B-L
myRole=“a”

partnerRole=“b”

Partner Link A-L
myRole=“b”

partnerRole=“a”Port Type A-PT

One-Way
Operation

InvokeReceive

. . .

Process B

ReceiveInvoke

.

InvokeReceive

Process B

ReceiveInvoke

.

InvokeReceive

. . .

. . .

1

2

4

6

3

5

Service Requester Service Provider
 Chapter 7. Process choreographer: developing a simple process 147

To implement an asynchronous interface, the partner link type has to define two
roles. Each of it associated with a WSDL port type which consists of an one-way
operation in the namespace of that partner to which the message should be
delivered. See figure above, WSDL port type B-PT has to be defined in the
namespace of the service provider, WSDL port type A-PT has to be defined in
the namespace of the service requester.

The service requester implements the partner link type in its partner link to refer
to the service provider, see partnerRole=”b” in Partner Link B-L. Due to the
definition of myRole=”a” in the same partner link, the service requester knows
the port type to which the service provider will respond.

The service provider has to implement the partner link type in its partner link in
the same manner as the service requester, but with swapped roles. See Partner
Link A-L; the service provider has the definition of myRole=”b” which means the
service requester will communicate with it over the WSDL port type associated
with role “b”. Due to the definition of the partnerRole=”a”, the service provider
knows the WSDL port type to send the response to the service requester.

7.2.4 Assign activity
The Assign activity is a basic activity in the definition of BPEL4WS.

A common task in business processes is to copy the content of variables. Using
the Assign activity, the content of type-compatible variables (see Figure 7-12)
can be copied from a source to a destination. Source and destination are named
as From and To in the following figure. It shows the implementation view of the
Assign activity. This view is located in the details area of the BPEL Editor.

Figure 7-12 Implementation view of Assign activity
148 WebSphere Business Integrator Server Foundation V5.1 Handbook

For the From and To, shown in the figure above, the following kinds of
assignments are available in the drop-down list:

� Variable or Part

– Copy the complete content of the From-variable to the To-variable.

Both variables must cover the same message in the same namespace.

– Copy a part of the message covered by the From-variable to a part of the
message covered by the To-variable.

The parts must be type-compatible according to their XML Schema
definition, also known as xsd.

� Property of a Variable

Copy the message type of the From-variable to the To-variable, not the
content.

This is not completely supported by WebSphere Studio Application Developer
Integration Edition V5.1.

� Partner Link Reference

Copy an endpoint references to and from partner links.

The query field, as shown in Figure 7-12, can be used to specify how to find the
data in a selected part with the usage of an XPath query. If an element of a
complex type is selected in the From pane, the query field suggests an XPath
query to use.

For the From, shown in Figure 7-12, the following additional kind of assignment is
available in the drop-down list:

� Fixed Value

Define a fix value, valid xsd type, in the pane below From and assign it to a
type-compatible part of a message shown in the pane below To.

The following figure shows an example of how to assign a fixed value to a
variable part.
 Chapter 7. Process choreographer: developing a simple process 149

Figure 7-13 Assign a fixed value to a part

Within one Assign activity, several assigns can be implemented; by clicking the
New button, as shown in Figure 7-13, an additional assign can be added. When
you have multiple assign definitions, use the < and > buttons to navigate between
them. Hence, the implementation of a multiple assign can be visualized as
follows.

Figure 7-14 Visualization of a multiple assigns within one Assign activity

Assigning values to variables can also be done within Java snippets, but this is
not recommended in general. To assign values to complex types, Java snippets
might be necessary if those values have to be converted beforehand. Refer to
section 7.2.7, “Developing a new process” on page 156 for more details.

variable_1
part_1
part_2
part_3

variable_2
part_1
part_2

variable_3
part_1
part_2

variable_4
part_1
part_2
part_3
150 WebSphere Business Integrator Server Foundation V5.1 Handbook

7.2.5 Java snippet
The Java snippet is not a part of the BPEL4WS definition; it is a basic activity in
the definition of BPEL Extensions to enhance WebSphere Process
Choreographer.

To invoke an inline snippet of Java code, this activity can be added to a business
process. It may contain any valid Java code as of Java V1.4.

The following figure shows the implementation view of a Java snippet. It is
basically an in-line Java code in the process.

Figure 7-15 Implementation view a Java snippet

Every Java snippet is added as a method to a Java class which is generated for
the BPEL business process. This class also provides access to the variables
defined in the BPEL business process. For each variable, several getter and
setter methods are available, each of which is a wrapper for the message of this
variable. For each message, a Java class is generated by WebSphere Studio
Application Developer Integration Edition. This will be explained in detail next.

Example 7-3 shows the definition of two messages:

� travelAgenyIn

A complex element of type tns:travel is defined in the types section of the
WSDL definition.

� travelAgencyOut

A simple type of xsd:long is primitive; no further definition is necessary.

Example 7-3 WSDL messages, one with a simple part, one with a complex part

<types>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"

elementFormDefault="qualified"
argetNamespace="http://nicejourney.com/NiceJourneyPublicInterface">
<xsd:element name="travel">

<xsd:complexType>
<xsd:sequence>
 Chapter 7. Process choreographer: developing a simple process 151

<xsd:element name="cityFrom" type="xsd:string"/>
<xsd:element name="cityTo" type="xsd:string"/>

</xsd:sequence>
</xsd:complexType>

</xsd:element>
</xsd:schema>

</types>
<message name="travelAgencyIn">

<part name="travelData" element="tns:travel" />
</message>
<message name="travelAgencyOut">

<part name="reservationID" type="xsd:long"/>
</message>

In the BPEL Editor, two variables are defined; each covers a message, as shown
in Figure 7-16.

� travelRequest - covers message travelAgencyIn

� travelResponse - covers message travelAgencyOut

Figure 7-16 Variables defined in BPEL Editor

For each variable, getter and setter methods are generated by WebSphere
Studio Application Developer Integration Edition.

� travelRequest

– getTravelRequest()
– getTravelRequest(boolean forUpdate)
– setTravelRequest(TravelAgencyInMessage message)
152 WebSphere Business Integrator Server Foundation V5.1 Handbook

� travelResponse

– getTravelResponse()
– getTravelResponse(boolean forUpdate)
– setTravelResponse(TravelAgencyOutMessage message)

Now that we have everything together, how can we access the data of the parts
of the messages? This is shown in Example 7-4; the comment line shows what
we want to do and the code line(s) below shows how to do it. Look at Figure 7-3
on page 151 to compare it with the parts.

Example 7-4 Usage of variables in a Java snippet to access the data of message parts

//get variable travelResponse for update of part reservationID
getTravelResponse(true).setReservationID(1234);
//get variable travelRequest, get travelData (complex type) get part cityFrom
String cityFrom = getTravelRequest().getTravelData().getCityFrom();
//create a new instance of message travelAgencyOut
TravelAgencyOutMessage myMessage = new TravelAgencyOutMessage();
//set a value to this new created instance of message travelAgencyOut
myMessage.setReservationID(5678);
//set the new instance of message travelAgencyOut to variable travelResponse
setTravelResponse(myMessage);

Java snippets can be used to:

� Add custom logic to a business process

� Update variables which cannot be updated using the Assign activity, for
example, because of complex types.

These may be done in preparation for the activity following the Java snippet or to
reflect the result(s) of the activity prior to the Java snippet.

7.2.6 Preparing to develop the process
Before we start developing the process, there are some additional tasks we need
to perform. In a real-life situation, when developing a process, a collection of
services and code is already available for use in the process. In our case, we do
not have any code or service we can use, so we need to create a simple code, a
Java class, that we can use as an external service.

Important: To get a variable for update purposes, it is necessary to use the
getter with a parameter boolean of value true, as shown in Figure 7-15 on
page 151.Otherwise, the value set to a part of the message may be lost.
 Chapter 7. Process choreographer: developing a simple process 153

There are two options in this book to implement the external service:

� The simplest one is to create an application with the service, consume the
service locally and run it on the same test server where the process is
running. It is easier to develop this solution but less realistic. This chapter is
going to follow this path.

� The other option is to have a more realistic scenario and make the external
service really external. In this case, the service is running on a separate test
server in the same test environment (this requires two test servers). This
scenario is a bit more complex and requires more memory and a better
processor to run the development, but it is more realistic. If you want to follow
this path, skip this section and refer to “External service for the simple
process” on page 565, then continue with 7.2.7, “Developing a new process”
on page 156 from this chapter.

The following steps describe how to develop the external service for the same
test environment where the process is running.

We will create an Java class called FlightBookingSystem that will be called by
the NiceJourney Web Service to reserve a flight.

1. Start WebSphere Studio Application Developer Integration Edition with a new
workspace, make sure you enable the server targeting for the workspace
under Preferences → J2EE.

2. Switch to the Business Integration perspective and open the Services view.

3. Create a new service project in the Business Integration perspective by
selecting File → New → Service Project. Name the service project
Referenced_Partner and click the Finish button.

4. Go to File → New → Class and fill out the details as per Figure 7-17.
154 WebSphere Business Integrator Server Foundation V5.1 Handbook

Figure 7-17 New Java class

Click Finish.

5. Double-click FlightBookingSystem.java in the Package Explorer view of the
Business Integration perspective to open the file. Select all (Ctrl-A) and press
the Delete key.

6. Copy the code below into the FlightBookingSystem.java file.

Example 7-5 External service implementation

package com.bookyourflight;

import java.util.Calendar;
public class FlightBookingSystem {

public FlightBookingSystem() {
super();

}

public long getReservation(String cityFrom, String cityTo,
 Calendar dateDeparture, Calendar dateReturn) {

long reservationID;
 Chapter 7. Process choreographer: developing a simple process 155

System.out.println("---");
System.out.println(getClass().getName()+" reservation done for: ");
System.out.println(" cityFrom= "+cityFrom);
System.out.println(" cityTo= "+cityTo);
System.out.println(" dateDeparture= "+dateDeparture.getTime().toString());
System.out.println(" dateReturn= "+dateReturn.getTime().toString());
reservationID = System.currentTimeMillis();
System.out.println(" reservation ID= "+reservationID);
System.out.println("---");

return reservationID;
}

}

7. Save and close the file.

8. Right-click FlightBookingSystem.java and select New → Service built
from. Select Java and click the Next button. Select the check box next to
FlightBookingSystem and click the Finish button.

The “external” service, FlightBookingSystem, is ready for use. We will use this
service from the simple process introduced in this chapter.

7.2.7 Developing a new process
This section describes how to use the BPEL Editor in WebSphere Studio
Application Developer Integration Edition V5.1 to implement a solution for the
NiceJourney business scenario.

To design the process for NiceJourney Travel, you will perform the following
tasks:

� Create service projects
� Create the WSDL file for the business process
� Create the business process
� Add variables to the business process
� Define PartnerLinks for the business process
� Add the activities

Creating projects for NiceJourney and Flight Booking Service

Important: When developing a process, you should always start with defining
the interfaces for the process before you start implementing it.

Generating the interface from the process (bottom-up) is not the
recommended method.
156 WebSphere Business Integrator Server Foundation V5.1 Handbook

1. Switch to the Business Integration perspective and open the Services view.

2. Business processes are stored in service projects. Create a new service
project in the Business Integration perspective by selecting File → New →
Service Project. Name the service project WPC_Simple_Process and click the
Finish button. This project will contain all of your code for the NiceJourney
Web service.

3. Right-click the service project WPC_Simple_Process and select New →
Package and enter com.nicejourney in the Name field.

Creating the NiceJourneyPublicInterface WSDL file
In this example, we will create the NiceJourneyPublicInterface.wsdl file to
demonstrate how to use the visual process editor to create a WSDL file and
define a WSDL port type.

1. In the Package Explorer view, right-click the com.nicejourney package (in
the WPC_Simple_Process project) and select New → Empty Service.

2. Type NiceJourneyPublicInterface in the File name field and click the Finish
button.

3. Double-click NiceJourneyPublicInterface.wsdl so that it is active. Select the
Graph tab in the WSDL Editor.

4. In the next few steps, we are going to show how to use the visual editor to
define an interface. Because it is a lengthy process, we are not going to
provide all the steps to create the whole interface. We are only going to
perform one sample step.

Right-click the Types box. Select Add Child → schema and click OK.

5. Right-click the Port Types box. Select Add Child → portType and type
travelArrangementType for the Name, then click OK.

Figure 7-18 Port Types box

Save your file (Crtl-S or File → Save).

6. Click the Source tab in the WSDL Editor to view the generated WSDL code.
 Chapter 7. Process choreographer: developing a simple process 157

7. Before you insert the actual XML code for the interface, you have to delete
the code you have just created as a sample.

Delete the existing code. Select All (Ctrl-A) and press the Delete key.

8. Copy the code below and paste it into the NiceJourneyPublicInterface.wsdl.

<?xml version="1.0" encoding="UTF-8"?>
<definitions name="NiceJourneyPublicInterface"
 targetNamespace="http://nicejourney.com/NiceJourneyPublicInterface"
 xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:tns="http://nicejourney.com/NiceJourneyPublicInterface"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <types>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema" elementFormDefault="qualified"
targetNamespace="http://nicejourney.com/NiceJourneyPublicInterface">
<xsd:element name="customer">

<xsd:complexType>
 <xsd:sequence>

<xsd:element minOccurs="0" name="firstName" type="xsd:string"/>
<xsd:element name="lastName" type="xsd:string"/>
<xsd:element name="address" type="xsd:string"/>
<xsd:element name="city" type="xsd:string"/>
<xsd:element name="zipcode" type="xsd:nonNegativeInteger"/>
<xsd:element minOccurs="0" name="state" type="xsd:string"/>

 </xsd:sequence>
</xsd:complexType>

</xsd:element>
<xsd:element name="travel">

<xsd:complexType>
 <xsd:sequence>

<xsd:element name="cityFrom" type="xsd:string"/>
<xsd:element name="cityTo" type="xsd:string"/>
<xsd:element name="dateDeparture" type="xsd:dateTime"/>
<xsd:element name="dateReturn" type="xsd:dateTime"/>

 </xsd:sequence>
</xsd:complexType>

</xsd:element>
</xsd:schema>

</types>
<message name="travelAgencyIn">

 <part element="tns:customer" name="customerData"/>
 <part element="tns:travel" name="travelData"/>
 </message>
 <message name="travelAgencyOut">
 <part name="reservationID" type="xsd:long"/>
 </message>

<portType name="travelArrangementType">
 <operation name="travelArrangement">
158 WebSphere Business Integrator Server Foundation V5.1 Handbook

 <input message="tns:travelAgencyIn" name="travelArrangementIn"/>
 <output message="tns:travelAgencyOut" name="travelArrangementOut"/>
 </operation>

</portType>
</definitions>

9. Save and close the NiceJourneyPublicInterface.wsdl file.

Creating the business process for NiceJourney
Now we have defined the WSDL file for the NiceJourney Web service, we will
create the business process for NiceJourney Travel using the BPEL Editor. This
file will be named NiceJourney.bpel.

1. Right-click the com.nicejourney package and select New → Business
Process; type NiceJourney in the File name field and click the Next button.

Figure 7-19 New business process - naming details

2. Verify that the Flow-based BPEL flow radio button is selected and click the
Finish button. For further information on Flow- versus Sequence-based
processes, see 6.1.4, “Sequences and flows” on page 125.
 Chapter 7. Process choreographer: developing a simple process 159

Figure 7-20 New business process - flow type

Adding variables to the NiceJourney process
Now we will add two variables called travelRequest and travelResponse to the
BPEL process.

These variables are used as the input and output, respectively, to the
travelArrangement operation as defined in NiceJourneyPublicInterface.wsdl.
Also, any redundant variables or PartnerLinks will be deleted in this section.

1. Double-click NiceJourney.bpel in the Package Explorer window to make it
active.

2. Click the + graphic on the Variables table to add a variable and name it
travelRequest.
160 WebSphere Business Integrator Server Foundation V5.1 Handbook

Figure 7-21 Current process design

3. While the travelRequest variable is selected, click the Message tab in the
Detail Area and click the Browse button.

4. Navigate to com.nicejourney.NiceJourneyPublicInterface.wsdl and select
travelAgencyIn from the drop-down list. Then click the OK button.

Figure 7-22 Selecting the WSDL for the message

5. Add the variable travelResponse and select travelAgencyOut from the
drop-down list (using the same process used in Steps 2 on page 160, 3 on
page 161 and 4 on page 161).

6. Right-click InputVariable and select Delete since this variable is not used.

7. Right-click PartnerLink® and select Delete.
 Chapter 7. Process choreographer: developing a simple process 161

8. Save the NiceJourney.bpel file.

Defining a PartnerLink for NiceJourney
Now we will define the PartnerLink for the NiceJourney BPEL process. Here we
will drag and drop the NiceJourneyPublicInterface.wsdl file onto the canvas and
then define the roles and operations for the NiceJourney Web service.

Then we will define the messages for the Receive and Reply activities for the
travelArrangement operation.

1. Select the NiceJourneyPublicInterface.wsdl file from the Package Explorer
window and drag it onto the canvas.

2. In the pop-up box, you can see that travelArrangementType has been
selected. Click OK.

Figure 7-23 Drag and drop the service description WSDL

3. While the travelArrangementType partner link is selected, Inspect the Detail
Area under the Implementation tab and click the arrows (<-->) button to
switch the roles to those shown in Figure 7-24.

Note: Ignore any errors (red crosses); they will be fixed later.
162 WebSphere Business Integrator Server Foundation V5.1 Handbook

Figure 7-24 Switching the roles for the process

4. Right-click the Receive activity and select Set Partner Link from the menu.
Click the partner link travelArrangementType to associate it with the
Receive activity. This enables the Receive activity to receive a request via the
travelArrangement operation.

5. Click the Receive activity and click the Implementation tab in the Detail
Area. From the Operation drop-down list, select travelArrangement and
from the Request drop-down, ensure travelRequest is selected (this variable
covers the right message which is required as input for the travelArrangement
operation). Also, verify that the Create a new Process Instance if one does
not already exist check box is selected.

Note: Switching the roles is necessary, because when we drop a WSDL file
on the canvas, WebSphere Studio Application Developer Integration Edition
assumes that a partner link should be generated to invoke a partner to this
NiceJourney Web service. Hence, it defines a partner’s Role Name and no
Process Role Name, as shown in Figure 7-24.

In our example, we want to define a partner link with a role that can be used to
invoke the NiceJourney Web service. For this, one role is enough and has to
be the role of the process, because the NiceJourney Web service does not
expect any Web service from the partner which invokes it. For more details
about partner links, refer also to 6.1.5, “Parts of a business process” on
page 125.

Note: In the simple process, we have only one Receive activity. If a
message arrives to it, a new instance of our simple process should be
created, therefore the check box has to be selected (see Figure 7-25).
 Chapter 7. Process choreographer: developing a simple process 163

Figure 7-25 Setting the receive partner link

6. Right-click the Reply activity and select Set Partner Link. Click the partner
link travelArrangementType to associate it with the Reply activity to send a
response using the travelArrangement operation.

7. Click the Reply activity and click the Implementation tab in the Detail Area.
From the Operation drop-down list, select the travelArrangement operation.
From the Request drop-down menu, ensure travelResponse is selected.

Figure 7-26 Setting the reply partner link

8. Save your file. The errors (red crosses on the Receive and Reply activities)
should disappear from the Task view.

Note: Assuming that we have two Receive activities in a process, each is
able to create a new instance for this process, if both have the check box
ticked and both are allowed to create an instance according to the
definition on the Correlation tab, as shown in Figure 7-25. The Receive
activity which receives the message first will create the instance. The
process instances are identified by a Correlation which is mandatory if we
have more than one Receive activity in a process. So, the Correlation is
also used to check whether or not an instance already exists, to avoid the
unnecessary creation of another one. For more details about Correlation,
see also 6.1.5, “Parts of a business process” on page 125 and 8.5.7,
“Correlation sets” on page 239.
164 WebSphere Business Integrator Server Foundation V5.1 Handbook

Cleaning up the namespace of the process (optional)
This section addresses clean-up of the namespace of our recently created
process. If you wish, you can skip this section and go on to the next section
“Creating the variables for the Flight Booking Service” on page 166.

1. Open the NiceJourney.bpel editor if it is not already open and find the top
point of the process, labeled NiceJourney. Click this and then open the Server
tab at the bottom of the BPEL Editor.

This is where you set properties related to the process itself as opposed to
individual activities.

2. Change the target namespace to http://nicejourney.com/NiceJourney.

3. Save and close the .bpel file.

4. Switch to the Package Explorer view and open NiceJourney.wsdl from the
WPC_Simple_Process/com/nicejourney folder. This will open the file in the
WSDL editor. Switch to the Graph view, rather than the Source code view, if it
did not open automatically.

5. In the bottom left of the editor is the Definitions section. Click the Edit
Namespaces... button.

6. Change the Target Namespace value to
http://nicejourney.com/NiceJourney and click OK.

7. In the top half of the editor, right-click the import for
NiceJourneyInterface.wsdl and click Delete. This removes the import for the
default namespace. This import will be correctly regenerated later with the
updated namespace when we update the process partner link.

8. Save and close the file. Ignore the errors that may appear in the Tasks view at
this point.

Note: If you cannot find the files described in this section, open the Resources
perspective to find them.

Because of certain issues related to the workspace, you may see this error in
WebSphere Studio Application Developer Integration Edition.

Tip: If you do not see the Edit Namespaces... button then you may have
selected one of the import types, services, bindings, port types or
messages. You may have to click an area of white space in the top section
to deselect all of these, at which point the Edit Namespaces... button
should appear.
 Chapter 7. Process choreographer: developing a simple process 165

9. Now open the NiceJourneyPublicInterface.wsdl file and click the Edit
Namespaces... button in the same way. Change the Target Namespace
value, this time using http://nicejourney.com/NiceJourney/interface to
indicate that this is the namespace for the process interface.

10.Select the item under Types, then change the URI under the Schemes to
http://nicejourney.com/NiceJourney/interface. Click Apply on this view.

11.Save and close all files.

12.Optionally, delete the WPC_Simple_Process/com/example folder and its
contents from the Navigator view in the Resource perspective (this view
allows you to work with the underlying file system directly). This will remove
the remaining unwanted entries, produced by default from the old namespace
values that were set by creating a new business process.

Creating the variables for the Flight Booking Service
We are going to define the variables required for the Flight Booking Service.

1. Open the NiceJourney.bp el if it is not already open.

2. Create two new variables called flightRequest and flightResponse (see
“Adding variables to the NiceJourney process” on page 160 for how to do
this).

Figure 7-27 List of variables

3. Select the flightRequest variable and in the Message tab under the Detail
Area, click the Browse button. Navigate to FlightBookingSystem.wsdl, select
the getreservationRequest at the bottom and click the OK button.

Note: The messages covered by these variables are described in
FlightBookingSystem.wsdl, where flightRequest covers
getReservationRequest and flightResponse covers getReservationResponse.
166 WebSphere Business Integrator Server Foundation V5.1 Handbook

Figure 7-28 Selecting the message from the WSDL

4. You will see that the getReservationRequest message is now displayed in the
Message tab in the Detail Area.

Figure 7-29 flightRequest message

Repeat Steps 3 on page 166 and 4 on page 167 and select
getReservationReponse from the drop-down list. The Parts box now
contains a result, which is the Reservation ID returned from the Flight
Booking System to NiceJourney Travel.

Figure 7-30 flightResponse message
 Chapter 7. Process choreographer: developing a simple process 167

5. Save the file.

Creating a PartnerLink for the Flight Booking Service
At this point, you have to use the external service to define your partner link. If
you chose to use a separate server for a more realistic scenario, then this is the
time to get the service description from the external server. If you chose to use
the external service locally, running on the same test server, then skip the next
six steps and start with the first step under “Using the external service in the
partner link” on page 168.

1. Create a new simple project called Referenced_Partner, and create a new
folder structure: com/bookyourflight.

Open a Web browser (outside WebSphere Studio Application Developer
Integration Edition) and access the URL:

http://localhost:9087/bookyourflight.comWeb/wsdl/com/bookyourflight/
FlightBookingSystem.wsdl

2. Save the file to a temporary directory, for example: C:\temp.

3. Right-click the com/bookyourflight folder, then select Import. Select File
System, then click Next.

4. Browse for the directory: C:\temp, select the file:
FlightBookingSystem.wsdl.

5. Click Finish.

Using the external service in the partner link
1. Create a new Partner Link named flightBooking by clicking the + graphic.

Figure 7-31 List of Partner Links

2. In the Detail Area, on the Implementation tab, click the Browse button,
navigate to NiceJourney.wsdl and click the OK button.

3. In the Detail Area, on the Implementation tab, click the New button next to the
PartnerLinkType box.

4. Fill out the dialog box as shown below.

a. For File, select Browse and navigate to
WPC_Simple_Process/com/bookyourflight/NiceJourney.wsdl.

b. Verify that the One Role radio button is selected.
168 WebSphere Business Integrator Server Foundation V5.1 Handbook

c. Name the First role: flightBooker.

d. For Port Type File, select Browse and navigate to
Referenced_Partner/com/bookyourflight/FlightBookingSystem.wsdl.

e. For Port Type, select FlightBookingSystem from the drop-down list.

f. The dialog box should look like the screen capture below (now we have
only the role of a service requester). Click OK.

Figure 7-32 New partner link type

5. Select the link between the Receive and Reply activities and press the Delete
key.

Note: Since it is not possible to reassign a link to another activity, we have
to delete it and set a new link between involved activities. Deatils regarding
setting the new link will follow later on.
 Chapter 7. Process choreographer: developing a simple process 169

Adding the Invoke activity
In this section, we will add an Invoke activity to the NiceJourney BPEL process
that will invoke the getReservation operation on the Flight Booking Web Service.

1. Click the Invoke activity on the Palette (graphic with the two arrows) and click
the flow again to drop it onto the canvas.

Figure 7-33 Current process design

Note: Links indicate the flow of the process at runtime, from the source to
the target of the link. A link is evaluated if the previous activity has finished.
For a link, a condition on which the link evaluates to true, can be defined.
On a selected link, the Condition tab can be used to define this. In the
combo box of the Condition tab, one of the following conditions can be
selected:

� Visual Expression - for visual building of branches on existing variables
and fixed values, to define the true condition.

� Expression - Java Code can be defined, as of Java snippets, to define
the true condition.

� True - fixed value of true, this is the default value for a new link.

� False - fixed value of false.

� Otherwise - relevant for an activity with several outgoing links, to ensure
that this link evaluates to true if all others have evaluated to false.

The result of a link is used in the target activity of it, on the Join Behavior
tab in the Detail area.
170 WebSphere Business Integrator Server Foundation V5.1 Handbook

2. Now we will create a link between the Invoke and Reply activities.

Right-click the Invoke activity on the canvas and select Set link between
flow activities. Then click the Reply activity to link the activities together.

3. Next, we will create a link between the Invoke activity and the Flight Booking
System PartnerLink so NiceJourney Travel can organize flight reservations.
Select the Invoke activity on the flow. On the Implementation tab in the Detail
Area, fill out the fields as shown in the next figure.

Figure 7-34 Setting up the PartnerLink

4. Save the .bpel file.

Tip: To align the activities and links, right-click the flow activity and select
Arrange Flow Contents.
 Chapter 7. Process choreographer: developing a simple process 171

Adding an Assign activity
In this section, we need to assign the values of the parts in travelRequest and
travelResponse to the same (and currently empty) parts in the flightRequest and
flightResponse variables.

1. From the Palette, select the Assign activity and click the flow activity again to
drop it onto the canvas.

2. Create a link between the Assign and Receive activities. Right-click the
Receive activity and select Set link between flow activities. Then click the
Assign activity.

3. Click the Assign activity and then the Implementation tab in the Detail Area.
Select the values from the drop-down list and box to match the figure shown
below.

Figure 7-35 Variable mapping in the Assign activity

4. Click New in the Detail Area to assign the value travelData → cityTo to
flightRequest → cityTo.

Note: The Assign activity is required because the travelRequest variable
contains more parts than are needed for the getReservation operation. Hence,
we will assign the values from the original Request to a new variable
flightRequest that we can send successfully to the getReservation operation
for the Flight Booking Service.

Even if the travelRequest contained only those parts which are required by the
flightRequest, it would not be possible to use them directly, because the
messages are defined in different namespaces.
172 WebSphere Business Integrator Server Foundation V5.1 Handbook

5. You should have a figure similar to the one below in your BPEL Editor.

Figure 7-36 BPEL Editor

6. Save the .bpel file.

Adding a Java snippet activity
Due to a complication whereby complex xsd types are not always converted to
appropriate Java classes, we need to define a Java snippet where we will add
some code to perform this conversion manually.

From the variable travelRequest, we will assign the parts dateDepature and
dateReturn, both of type xsd:dateTime, to the variable flightRequest parts
dateDeparture and dateReturn, both of type java.util.Calendar.
 Chapter 7. Process choreographer: developing a simple process 173

This cannot be done using the Assign activity, because the xsd:dateTime is
converted to a java.util.Date by WebSphere Studio Application Developer
Integration Edition, which cannot be directly assigned to java.util.Calendar. The
following example shows how to perform this conversion within a Java snippet
for the dateDeparture parts of travelRequest and flightRequest.

Example 7-6 Conversion java.util.Date (results from xsd:dateTime) to java.util.Calendar

//assign travelRequest part to filghtRequest part
//to do this a conversion is necessary
Calendar calDeparture = Calendar.getInstance();
calDeparture.setTime(getTravelRequest().getTravelData().getDateDeparture());
getFlightRequest(true).setDateDeparture(calDeparture);

Note: The variable flightRequest contains the parts dateDeparture and
dateReturn. Both are defined in the file FlightBookingSystem.wsdl of type
xsd1:Calendar, as follows:

...
<types>
 <schema ... targetNamespace="http://util.java/" ...
 <complexType name="Calendar">
 <all>
 <element name="firstDayOfWeek" type="int"/>
 <element name="time" nillable="true" type="dateTime"/>
 <element name="lenient" type="boolean"/>
 <element name="minimalDaysInFirstWeek" type="int"/>
 <element name="timeZone" nillable="true" type="xsd2:TimeZone"/>
 </all>
 </complexType>
 </schema>
</types>
<message name="getReservationRequest">
 <part name="dateDeparture" type="xsd1:Calendar"/>
 <part name="dateReturn" type="xsd1:Calendar"/>
</message>
...

The final mapping to java.util.Calendar is defined in the file
FlightBookingSystemJavaBinding.wsdl, as follows:

<format:typeMap formatType="java.util.Calendar"
typeName="xsd1:Calendar"/>
174 WebSphere Business Integrator Server Foundation V5.1 Handbook

Here are the steps to add the Java snippet to the NiceJourney process.

1. Select a Java snippet activity from the Palette and drop it onto the flow
activity.

2. Create a link from the Assign activity to the Java snippet activity (right-click
and select Set flow between activities).

3. Create a link from the Java snippet activity to the Invoke activity (right-click
and select Set flow between activities).

4. Since this is now the final flow structure, right-click the flow activity and select
Arrange Flow Contents to order the activities as shown below.

Figure 7-37 Current process design

5. Select the Java snippet activity and select the Implementation tab in the
Detail Area. Remove all the code from the implementation, if there is any.

6. Copy and paste the following code into the Java snippet.

Example 7-7 Implementation of the Java snippet of simple process

//assign travelRequest parts to filghtRequest parts
//to do this a conversion is necessary
Calendar calDeparture = Calendar.getInstance();

Note: It would make more sense if the xsd:dateTime were converted to a
java.util.Calendar by WebSphere Studio Application Developer Integration
Edition, because of the support of java.util.TimeZone and java.util.Locale.
 Chapter 7. Process choreographer: developing a simple process 175

calDeparture.setTime(getTravelRequest().getTravelData().getDateDeparture());
getFlightRequest(true).setDateDeparture(calDeparture);

Calendar calReturn = Calendar.getInstance();
calReturn.setTime(getTravelRequest().getTravelData().getDateReturn());
getFlightRequest(true).setDateReturn(calReturn);

//only for controlling purpose
System.out.println("travelRequest.customer.firstname:
"+getTravelRequest().getCustomerData().getFirstName());
System.out.println("travelRequest.customer.lastname:
"+getTravelRequest().getCustomerData().getLastName());
System.out.println("travelRequest.customer.adress:
"+getTravelRequest().getCustomerData().getAddress());
System.out.println("travelRequest.customer.city:
"+getTravelRequest().getCustomerData().getCity());
System.out.println("travelRequest.customer.state:
"+getTravelRequest().getCustomerData().getState());
System.out.println("travelRequest.travel.cityFrom:
"+getTravelRequest().getTravelData().getCityFrom());
System.out.println("travelRequest.travel.cityTo:
"+getTravelRequest().getTravelData().getCityTo());
System.out.println("travelRequest.travel.dateDeparture:
"+getTravelRequest().getTravelData().getDateDeparture().toString());
System.out.println("travelRequest.travel.dateReturn:
"+getTravelRequest().getTravelData().getDateReturn().toString());

7. If you save your file and look at this code, the Calendar object will have a red
line beneath it indicating an error in the Java snippet. To fix this error, we need
to import the Calendar class.

Select the NiceJourney heading on the canvas, then select the Imports tab
and type:

import java.util.Calendar;

If you refer to the Java snippet now, the error will have disappeared.

Changing the condition of a link
The last step is to assign the response from the FlightBookingSystem to be the
response of the NiceJourney Web service. For this, the travelResponse will be
taken from the flightResponse.

Note: The response of the FlightBookingSystem cannot be directly passed to
be the response of the NiceJourney Web Service, because of different
namespaces; see NiceJourneyPublicInterface.wsdl and
FlightBookingSystem.wsdl.
176 WebSphere Business Integrator Server Foundation V5.1 Handbook

To do this, there are a number of options, including using an assign or Java
snippet activity. To demonstrate another way to perform this task, we will add
Java code on the condition of a link.

1. Click the link between the Invoke and Reply activities.

Figure 7-38 Selecting the link

2. Click the Condition tab in the Detail Area and select Expression from the
drop-down list.

3. Type the following line above return true; in the text box:

getTravelResponse(true).setReservationID(getFlightResponse().getResult());

This will set the ReservationId in the travelResponse variable to the value of
the result from the FlightReponse variable and is the final step in the design
process.

4. Save and close the file. Make sure there are no errors in the process.

7.2.8 Deploying and testing a process in the IBM WebSphere Test
Environment

A process can run in WebSphere Test Environment within the WebSphere Studio
Application Developer Integration Edition V5.1 environment if these tasks are
peformed:

1. Generate deploy code for the process to create an enterprise application.

2. Create a test server, configure it and add the process to the server.

3. Start the server and use the process Web client to start and stop instances of
the process.

Generating deploy code
You must generate deploy code for a process so that it can be run on an
application server. The Generate Deploy Code wizard creates an enterprise
application that can be deployed to WebSphere Business Integration Server
Foundation V5.1. With enterprise services, you can generate deploy code with
one of three inbound bindings:
 Chapter 7. Process choreographer: developing a simple process 177

� EJB binding
� SOAP binding
� JMS binding

To generate deploy code for NiceJourney process, perform the following steps:

1. In the Services view of the Business Integration perspective, expand
WPC_Simple_Process → com.nicejourney → NiceJourney.bpel.

2. Right-click NiceJourney.bpel and select Enterprise Services → Generate
Deploy Code.

3. Select the flightBooking Partner Link in this dialog and click the Browse
button. Select Referenced_Partner → com → bookyourflight →
FlightBookingJavaService.wsdl. Your screen should look like Figure 7-39.
Click the OK button to generate the deploy code.

Figure 7-39 Generating the BPEL deployed code

The following projects are generated, containing the deploy code.

� WPC_Simple_ProcessEAR
� WPC_Simple_ProcessEJB
� WPC_Simple_ProcessWeb

Regenerating deploy code
If you have made changes in the BPEL Editor on your process, it is necessary to
regenerate the deploy code.

Before you generate the deploy code again, it is recommended that you
completely delete the previously generated deploy code. In this way, you can
make sure that everything is generated anew and that no artifacts from the
previous generated code are left, causing problems when the code is
regenerated.
178 WebSphere Business Integrator Server Foundation V5.1 Handbook

To delete the previously generated deploy code of the NiceJourney Web Service,
perform the follow steps:

1. Select the generated projects WPC_Simple_ProcessEAR,
WPC_Simple_ProcessEJB and WPC_Simple_ProcessWeb.

This can be done by holding down the Ctrl key and left-clicking each of the
above mentioned projects.

2. Press the Delete key.

3. In the upcoming confirmation dialog, select Also delete contents in the file
system and click Yes.

Now you can perform the steps described in “Generating deploy code” on
page 177 to built the deploy code again.

Deploying a process to the WebSphere Test Environment
To run a process, you need to:

� Create a server and service instance of the WebSphere Application Server
(or reuse an existing one).

� Add the process (and any other enterprise application used by the process) to
the server configuration.

� Deploy the process to the server.

To deploy the NiceJourney process to a server, perform the following steps:

1. Select the Server perspective. Right-click Servers and select New → Server
and Server Configuration.

2. Name the server NiceJourneyServer, verify that Integration Test
Environment is checked and click the Finish button.
 Chapter 7. Process choreographer: developing a simple process 179

Figure 7-40 Creating the WebSphere Test Environment

3. Right-click NiceJourneyServer and select Add or Remove Projects. Select
WPC_Simple_ProcessEAR and click the Add button. Click the Finish
button.

4. The Server Configuration should now look like Figure 7-41.

Figure 7-41 Server configuration view
180 WebSphere Business Integrator Server Foundation V5.1 Handbook

Using the process Web client
The following steps show you how to use the process Web client with your new
process.

1. Right-click NiceJourneyServer and select Start to start the server.

2. When the server has started (the text on the Console has stopped scrolling),
switch to the Servers view, right-click the NiceJourneyServer and select
Launch Business Process Web Client.

3. Click the My Template link in the Web client and select the check box next to
NiceJourney. Click the Start Instance button.

Figure 7-42 Process Web client - My Templates view

4. Fill out the details in the Process Input Message section.

Important: Ensure the integer and dateTime fields have valid values; see
the example in Figure 7-43.
 Chapter 7. Process choreographer: developing a simple process 181

Figure 7-43 Process input messages

5. Click the Start Instance button to run the NiceJourney Web service.

Figure 7-44 Starting the instance for the process
182 WebSphere Business Integrator Server Foundation V5.1 Handbook

6. You will receive output from the NiceJourney Web service, a reservation ID.
This was generated by the FlightBookingSystem which is referenced via
partner link flightBooking.

Figure 7-45 Output messages from the process

The simple NiceJourney Web service has now run successfully.

Refer to the Console of the WebSphere Test Environment to see the trace
messages from the NiceJourney Web Service and from its reference partner, the
FlightBookingSystem.

7.2.9 Debugging a process in WebSphere Test Environment
Once a business process is developed and deployed, it might be necessary to
debug it to solve certain problems. WebSphere Studio Application Developer
Integration Edition provides a Process Debugger to debug a business process at
its logical level, which is more practical than to debug at the code level.

Process debugging components
For debugging purposes, there are two different components, the Process
Debugger and the Process Engine.
 Chapter 7. Process choreographer: developing a simple process 183

� Process Debugger

The Process Debugger is a component of WebSphere Studio Application
Developer Integration Edition. It is used to set breakpoints in a business
process on activities and on links. Once an instance of a process template
with defined breakpoints is created, the Process Debugger comes up if the
process flow reaches the first breakpoint. It can be used for several tasks on a
process instance such as stepping through the process, viewing the value of
process variables, stepping into source code, terminatng the process
instance and so on. The Process Debugger is available in the Debug view of
WebSphere Studio Application Developer Integration Edition.

� Process Engine

The Process Engine always runs in an application server. This can be a
WebSphere Test Environment of WebSphere Studio Application Developer
Integration Edition, or WebSphere Business Integration Server Foundation. It
executes the activities of the business process.

The Process Debugger and Process Engine can work together for debugging
purposes, even if they reside on different machines; for details, refer to 7.2.11,
“Debugging a process on WebSphere Business Integration Server Foundation”
on page 194. For debugging purposes, at development time, they may reside on
the same machine. This is detailed in the rest of this chapter.

Setting and removing breakpoints
Setting breakpoints on the activities of a business process can be done in the
BPEL Editor. A breakpoint is indicated by one of the following symbols.

Figure 7-46 Symbols to indicate different states of a breakpoint

On each activity, a breakpoint can be set at the entry of the activity and/or at the
exit of the activity, which means giving the control flow to the Process Debugger
184 WebSphere Business Integrator Server Foundation V5.1 Handbook

just before the activity is executed by the Process Engine, or just after the activity
has been executed.

Setting breakpoints for a certain activity can be done by right-clicking it and
selecting the according breakpoint to be set from the pop-up menu, as shown in
Figure 7-47.

Figure 7-47 Setting a breakpoint for an activity

In the case of a Java snippet, breakpoints can additionally be set for every line of
code of the snippet, by double-clicking the grey area in front of the corresponding
line of code, as shown in Figure 7-48.

Figure 7-48 Adding a breakpoint to a line of code in a Java snippet

On a link, breakpoints can only be set if the condition of the link is an expression
type. Setting breakpoints to a link can be done in the same way as for a Java
snippet.

Removing breakpoints from a certain activity can be done by right-clicking it and
selecting the according breakpoint to be removed from the pop-up menu.
 Chapter 7. Process choreographer: developing a simple process 185

Breakpoints in Java snippets or in links can be removed by double-clicking the
breakpoint to be removed.

Process debugging views
For the purpose of debugging a business process, WebSphere Studio
Application Developer Integration Edition provides the Debug Perspective, which
can be added to your workspace by clicking Window → Open Perspective →
Other..., then selecting Debug from the dialog and clicking OK.

The Debug Perspective contains the following views:

� Breakpoints view

The Breakpoints view shows all the breakpoints which have been assigned to
the business process. When you right-click a breakpoint, a pop-up menu
appears which can be used to change certain properties of the breakpoint or
to disable/enable it. Furthermore, it is possible in this view to restrict a
breakpoint so that it only applies to a specific process instance and is ignored
by other process instances.

Figure 7-49 Breakpoint view in Debug Perspective

� Debug view

The Debug view displays information about the currently running threads and
process instances on the application server to which it is attached. It also
shows the name of the activity which causes a suspension on a thread,
186 WebSphere Business Integrator Server Foundation V5.1 Handbook

because of a breakpoint. From this view, the debugging tasks (see also
“Debugging tasks for a process” on page 188) can be performed by using the
tool bar shown in Figure 7-50.

Figure 7-50 Debug view in Debug Perspective

� Variable view

The Variable view shows all process variables, partner links, and their current
values. The content shown in the Variable view is always associated with the
selected activity in the Debug view and the activity which causes the block of
the thread. It is also possible to change the value of a variable at debugging
time by right-clicking the according value.

Figure 7-51 Variables view in Debug Perspective

The three views are refreshed when a debugging task is performed; this is
described in the next section.
 Chapter 7. Process choreographer: developing a simple process 187

Debugging tasks for a process
Once a breakpoint is reached in a process instance, the Debug view of the
Debug Perspective can be used to step through the process instance. The
Debug view may be used in combination with the Variable view to learn about the
flow in the process instance and the values of the variables as the flow
continues.

The debugging tasks are available from the Run menu of the Debug Perspective
as well as in the toolbar of the Debug view, shown below.

Figure 7-52 Debug view with toolbar to perform debugging tasks

The following table shows a subset of the available debugging tasks, the most
frequently used to debug a process instance.

Table 7-1 Debugging Tasks available for a process instance

At this point, we have everything prepared to start debugging a process instance.

Debugging a local process instance
In section 7.2.7, “Developing a new process” on page 156, we developed a new
process which then was deployed to a local server in section 7.2.8, “Deploying
and testing a process in the IBM WebSphere Test Environment” on page 177. In

Symbol Name function
key

 Description

Resume F8 Resume the execution of the processes instance,
after it has been interrupted by a breakpoint. It
can be used to jump to the next breakpoint.

Terminat
e

n/a Terminate the process instance. To do this, select
the activity which causes the block, because of
the breakpoint, and click the terminate button.

Step Into F5 Step into a Java snippet or into a link which has
an expression condition type.

Step Over F6 Step over an activity, to the next.

Step
Return

F7 Step to the return of a Java snippet or to return of
a link which has an expression condition type.
188 WebSphere Business Integrator Server Foundation V5.1 Handbook

this section, we discovered how to add breakpoints and how to work with the
Debug Perspective of WebSphere Studio Application Developer Integration
Edition.

In the NiceJourney process, we have set the following breakpoints.

Figure 7-53 Breakpoints set to NiceJourney process, shown in BPEL Editor and in Breakpoint view

All we have to do now to debug a process in the WebSphere Test Environment is
to start NiceJourneyServer in Debug mode.

1. If the NiceJourneyServer is still running, stop it.

2. Start the NiceJourneyServer in Debug mode. Right-click it and select Debug
from the pop-up menu.

3. If the following messages appears, click Yes.

Figure 7-54 Message that occurs when debugging is done first time in workspace

4. Watch the Servers view (either in Debug Perspective or in Business
Integration Perspective) and wait until the NiceJourneyServer has started (the
Status column will show Started in debug mode).
 Chapter 7. Process choreographer: developing a simple process 189

5. Right-click NiceJourneyServer and select Launch Business Process Web
Client.

6. Use the NiceJourney Template to create a process instance; this is shown in
“Using the process Web client” on page 181.

7. When a new instance is created using the Start Instance button in the
Process Web client, the Debug Perspective should come to the front; if not,
switch manually to it by clicking Window → Open Perspective → Debug.

8. When the first breakpoint is reached in the process instance, the Debug view
shows the activity (in our case the Java snippet) on which this breakpoint is
set. Switch to the Debug view and scroll down to the Java snippet.

9. Switch to the Variable view to see the current content.

10.Click the Step Into button of the Debug view’s toolbar to step into the Java
snippet.

11.Click the Step Over button of the Debug view’s toolbar to step over some
lines of code in the Java snippet.

12.Click the Step Return button of the Debug view’s toolbar to step to the return
of the Java snippet.

13.Use the Resume button of the Debug view’s toolbar to get to the next
breakpoint, the Invoke activity.

After resizing and closing some views, your window should be similar to the
following figure.
190 WebSphere Business Integrator Server Foundation V5.1 Handbook

Figure 7-55 Debugging a process instance in the Debug Perspective

While stepping through the process instance, the current position of the flow is
indicated in the BPEL Editor with the symbol . This symbol is also used to
indicate that the process is paused at a breakpoint that is installed and enabled.

The symbol indicates that the link on which the symbol resides was followed,
since the transition condition evaluated as true.
 Chapter 7. Process choreographer: developing a simple process 191

Refer to the WebSphere Studio Application Developer Integration Edition help to
read about several other symbols that are used to indicate the status of a
breakpoint and whether a link was followed.

7.2.10 Deploying a process to WebSphere Business Integration
Server Foundation

For the deployment task on the WebSphere Business Integration Server
Foundation, we will need the deployable package of the application.

1. Start the WebSphere Business Integration Server Foundation application
server and bring up the Administrative Console
(http://<server_name>:9090/admin).

2. Navigate to Servers → Application Servers, then select server1.

3. Select Business Process Container at the end of the Additional Properties
(right-hand pane).

4. Make a note of the data source. This is the JNDI name for the data source
that the Business Process Container is using. The default name is
jdbc/BPEDB, if you are using the default container.

5. Navigate to Applications → Install New Application.

6. Select Browse then select the WPC_Simple_Process.ear; this is the
enterprise application that holds the processes. Click Next.

7. Step through the installation steps of the process application, as if it were a
normal enterprise archive (EAR).

8. When you get to the step where you must provide a default data source
mapping for modules containing 2.0 entity beans, you will have to make some
changes.

a. Open the Apply Multiple Mappings section with the + (plus) symbol next to
it.

Note: You may get errors on the Console view during debugging. These
errors do not show when you run the test in normal mode.

The reason is that the debugger tries to evaluate every variable and partner
link at the breakpoints, even before they are available.

Important: The Resource JNDI name and the Business Process
Container Resource JNDI name must be the same.
192 WebSphere Business Integrator Server Foundation V5.1 Handbook

b. Select the correct Resource JNDI name from the drop-down list. There are
multiple items on the list; the one you need has a name very similar to the
data source JNDI name. It should have the eis/ prefix and the _CMP
extension, so the full name should look like: eis/datasourceJNDI_CMP.
The resource JNDI name for the default data source is
eis/jdbc/BPEDB_CMP.

In a Network Deployment environment, the JNDI name looks like
eis/datasourceJNDI_clustername_CMP.

c. Check the box next to the EJB module, where the processes are stored.

d. Click the Apply button below Specify existing Resource JNDI name.

9. When you deploy an interruptible process, you get the following question (see
Figure 7-56). Check the Enable box, then click Next.

Figure 7-56 Automatically generate database tables

10.At the end of the deployment steps, click Finish.

11.Save the configuration for the application server.

Once the process has been deployed, you can start the application.

1. Navigate to Applications → Enterprise Applications.

2. Check the box next to the recently installed application, the one that includes
the business processes; then click Start at the top of the page.

Wait until the application starts; you should get a message at the top of the
page, stating that the application was successfully started.

3. Log out from the Administrative Console.

Note: Interruptible processes need a database for persistence. The
process state is persisted in a database by entity beans (EJB).

By selecting this option, the necessary tables will be generated during
deployment in the database configured for the business process container.
 Chapter 7. Process choreographer: developing a simple process 193

You can run a quick test to make sure that the process has been deployed and
started.

1. Open a Web browser at the http://<server_name>:9080/bpe location.

2. Select a template, one that you have just installed with the application.

3. Run the process to see if it works.

For more information, refer to the WebSphere Business Integration Server
Foundation InfoCenter at
http://publib.boulder.ibm.com/infocenter/ws51help/index.jsp, then
navigate to WebSphere Business Integration Server Foundation →
Deploying → Applications → Process Choreographer; you can find more
details under this node in several documents.

7.2.11 Debugging a process on WebSphere Business Integration
Server Foundation

To debug a process instance on WebSphere Business Integration Server
Foundation, the Process Debugger can be attached to the Process Engine; see
also “Process debugging components” on page 183.

It does not matter whether or not both components reside on the same machine
or on different machines. In this chapter, we will show how to attach a Process
Debugger component of WebSphere Studio Application Developer Integration
Edition to a Process Engine, component of WebSphere Business Integration
Server Foundation residing on a different machine.

For this chapter, we assume that we have a BPEL process with defined
breakpoints (refer to 7.2.9, “Debugging a process in WebSphere Test
Environment” on page 183), and that the EAR file of this process is already
deployed to the WebSphere Business Integration Server Foundation (refer to
7.2.8, “Deploying and testing a process in the IBM WebSphere Test
Environment” on page 177).

Preparing for remote debugging
Before we can debug a process instance on WebSphere Business Integration
Server Foundation, we have to prepare in the following way.

1. Prepare WebSphere Studio Application Developer Integration Edition

To attach the Process Engine, we do not need a server configuration in
WebSphere Studio Application Developer Integration Edition, but we have to
enable the server targeting support.

a. Select Window → Preferences.
194 WebSphere Business Integrator Server Foundation V5.1 Handbook

http://publib.boulder.ibm.com/infocenter/ws51help/index.jsp

b. In the navigation tree on the left, select J2EE.

c. In the pane on the right, select the radio button Enable server targeting
support.

d. Click Apply.

Since debugging a process instance on a remote server takes time, the
Debugger time-out and the Launch time-out should be increased
appropriately.

e. Expand Java in the navigation tree of the still open preference dialog.

f. Select Debug.

g. In the pane on the right, change the Debugger time-out to 300000 and the
Launch time-out to 200000.

h. In the preference dialog, click OK.

2. Prepare WebSphere Business Integration Server Foundation.

To debug a business process on WebSphere Business Integration Server
Foundation, the Debug mode must be enabled. The default port for
debugging purposes is 7777. To speed up debugging, the JVM debug
argument -Xj9 should be used. Since debugging may take extra time, for
looking at variables, it is necessary to disable the transaction time-out, which
is done by setting a value of 0 for the client and server. All of this can be done
by performing the following steps.

a. Start the application server.

b. Open the Administrative Console of the WebSphere Business Integration
Server Foundation on which the deployed EAR file of our business
process resides and which you are going to debug.

c. Navigate to Servers → Application Servers, then select server1.

d. Select Debugging Service in the upper half of the Additional Properties
(right-hand pane).

e. Check the Startup check box and verify that the JVM debug port is set to
7777.

f. Add the argument -Xj9 to the JVM debug arguments.

g. Click OK.

h. Back in the Additional Properties, select Transaction Service.

i. Change the Total transaction lifetime time-out to 0 (zero).

j. Change the Client inactivity time-out to 0 (zero).

k. Click OK.

l. Log out of the Administrative Console.
 Chapter 7. Process choreographer: developing a simple process 195

m. Restart the application server.

Now we are ready to debug a process instance remotely.

Debugging a remote process instance
From the WebSphere Studio Application Developer Integration Edition where the
process with defined breakpoints resides, it is now possible to debug a remote
process instance on WebSphere Business Integration Server Foundation. To do
this, perform the following steps.

1. Switch to the Debug perspective.

2. Select Run → Debug....

3. In the navigation tree of the just opened Debug dialog, select WebSphere
Application Server Debug and click New.

4. In the Name field (right hand side), type RemoteDebugNiceJourney.

5. Click the Browse button and select the service project
WPC_Simple_Process.

6. In the input field Host name, type in the Name or IP of the host where the
WebSphere Business Integration Server Foundation is running in Debug
mode.

7. Verify that the JVM Debug Port is 7777.

8. Click Apply, then click Debug.

The Process Debugger will attach to the Process Engine, waiting for a process
instance to debug. To generate such a process instance, open an external Web
browser and type in the following URL:

http://<IP_of_RemoteHost>:9080/bpe/webclient

where <IP_of_RemoteHost> is the IP or name of your remote host.

From here on out, you can perform the same steps as those described in 7.2.9,
“Debugging a process in WebSphere Test Environment” on page 183 to debug a
local process instance.

Finishing remote debugging
Since only one Process Debugger can be attached at the same time to the
Process Engine, this should be detached once debugging is complete.
Therefore, all debugged process instances should be terminated, whether by
finishing them normally, or by clicking the Terminate button of the Debug view.
To detach the Process Debugger from the Process Engine, switch to the Debug
view and right-click the connection instance j9[<IPofRemoteHost>:7777]. In the
pop-up menu, select Disconnect.
196 WebSphere Business Integrator Server Foundation V5.1 Handbook

7.2.12 Process versioning
WebSphere Process Choreographer allows for multiple versions of your
business process to exist in your application server. You may install a newer
version of your process while preserving any running instances of the previous
template.

Versions of your process are determined by the validFrom timestamp in the
BPEL code, for example:

wpc:validFrom=”2003-01-01T00:00:00”

This can be specified in WebSphere Studio Application Developer Integration
Edition on the Server tab of the process properties, as shown in Figure 7-57.

Figure 7-57 Valid From fields in the BPEL Editor

If multiple versions of a process are installed and running, starting an instance of
that process will always result in the latest valid template being executed.

In order for multiple versions of a process to exist on your application server, they
must occupy separate install roots on the server. To accomplish this, you will
need to ensure that your process retains the same name across versions, but
has a different enterprise application name for each. There are a few ways that
the application name can be specified:

� In WebSphere Studio Application Developer Integration Edition, your
enterprise application name is set to the name of the Service Project where
your business process exists.

� In your project's application.xml file, you may change the <display-name>
field, which defines your application's name.

� Upon installing the application to your server, you can specify the application
name. This is under Step 1 of the application installation procedure if you are
using the Administrative Console, or the appname parameter if you are using
the wsadmin script client.
 Chapter 7. Process choreographer: developing a simple process 197

7.2.13 Uninstalling deployed processes
As you have already seen, business processes (BPEL4WS) are deployed as
simple enterprise applications (EAR). The process itself is part of the EJB
module, therefore it is managed under the EJB module.

There are differences between interruptible and non-interruptible processes from
the management point of view. Interruptible processes leave footprints as they
run and once they finish. Each time a process starts, a new instance is created
from the process template. The instances are persisted in a database configured
for the business process engine. A process cannot be removed until instances of
the process appear in the database, be they running or finished instances.

Before you can remove a business process from the business process container,
you have to:

1. Finish or terminate the running processes.

2. Delete the finished processes.

Once all the instances are removed, you can start removing the process
application. This entails two separate steps:

1. Stop the running process template.

2. Uninstall the process application.

There could be problems during the process described above. If a process
application cannot be uninstalled, you can be sure that there are instances of the
process running somewhere.

Terminating a process
Terminating a process works as a hard stop for the process. When terminating
the process, the instance stops running and never returns to the running state.
You can consider it a lost instance.

Terminating a process is not recommended under any circumstances. The
process does not perform any compensation or any rollback when terminated. A
terminated process can have a harmful impact on the business. The
recommended way of stopping a process is to finish the process as expected.
Administrators can manage the process instances and perform the necessary
activities to stop the processes.

If you really need to terminate a process, follow the steps below:

1. If you are running the process in a Network Deployment environment, make
sure that all the application servers are running.
198 WebSphere Business Integrator Server Foundation V5.1 Handbook

2. Start the business process Web client and open a Web browser with the
following URL: http://<server_name>/bpe or
http://<application_server_name>:9080/bpe (to access the application
server directly).

3. Select Process Instance Lists → Administered By Me.

4. Check the box next to the process(es) you want to terminate.

Figure 7-58 Terminating a process

5. Click Terminate.

6. Once the process is terminated, the state changes to Terminated.

Deleting a process instance
Before you can remove the business process applications, you have to remove
all existing process instances.

1. Start the business process Web client if it is not running.

2. Select Process Instance Lists → Administered By Me.

3. Check the box next to the process(es) you want to delete; you may want to
select all of them by checking the box in the header.

Note: You can terminate more than one process at a time.

You can select all the processes at the same time by checking the box at
the head of the process list.
 Chapter 7. Process choreographer: developing a simple process 199

Figure 7-59 Deleting the process

4. Click Delete to delete the process(es).

The process(es) should disappear from the list.

5. You can close the business process Web client.

Stopping the process template
Before you can remove the business process applications, you have to stop the
process template(s).

1. If you are running the process in a Network Deployment environment, make
sure that all application servers are running.

2. Open the Administrative Console in a Web browser at
http://<application_server_name>:9090/admin.

3. Navigate to Applications → Enterprise Applications.

4. Select the application link that runs the business process.

5. Select EJB Modules at the bottom of the page, under Related Items.

6. Select the JAR file that holds the business process.

7. Select Business Processes at the very bottom of the page.

8. Check the box at the head of the business process templates list. It will select
all the processes; then click Stop. It stops all the business process templates
for the application.
200 WebSphere Business Integrator Server Foundation V5.1 Handbook

Figure 7-60 Stopping a Business Process

9. Save the configuration for WebSphere.

Uninstalling the business process application
Uninstalling a business process application is the same as uninstalling any other
EAR file.

1. Check the box next to the enterprise application.

2. Click Stop to stop the running application.

3. Once the application is stopped, check the box next to the enterprise
application you want to remove, then click Uninstall.

4. When the application is uninstalled, save the configuration for WebSphere.

5. Log off of the Administrative Console.

At this point, you are ready to redeploy your new or revised business process
application.

Important: This is a critical step; you will only be able to uninstall the
application if it is stopped. It will not stop unless all the process instances
are removed.
 Chapter 7. Process choreographer: developing a simple process 201

202 WebSphere Business Integrator Server Foundation V5.1 Handbook

Chapter 8. Process choreographer:
developing a complex
process

In this chapter, we show how you can create a process that utilizes more of the
advanced capabilities provided by WebSphere Process Choreographer. We use
a travel agency scenario and gradually extend the capability of our travel agent
by making use of additional functionality in our process. You will see how to
model complex interactions with partners, how to implement advanced
sequencing logic, detailed fault handling and more. Each section can be read
individually in order to understand how to use a specific capability, or the chapter
can be read as a whole to understand how to model and build a complex
process. As a prerequisite, it is recommended that you read Chapter 7, “Process
choreographer: developing a simple process” on page 135, which demonstrates
how to build a simple process. This will familiarize you with the development
environment; this knowledge is assumed throughout this chapter.

8

© Copyright IBM Corp. 2004. All rights reserved. 203

8.1 Introduction
This chapter demonstrates the more advanced features of WebSphere Process
Choreographer which you did not see in the previous chapter when creating a
basic process. WebSphere Process Choreographer is capable of modeling and
implementing complex business processes that contain features such as:

� Alternate execution paths based upon business factors
� Human Interaction
� Advanced partner interactions, both synchronous and asynchronous
� Error handling
� Complex sequencing
� Interruptible processes potentially lasting for days, weeks or months

We show you how WebSphere Process Choreographer can be used to achieve
all of these advanced behaviors.

Our chosen scenario is that of a travel agency which is responsible for taking a
customer’s travel request and making the relevant arrangements. We begin with
a basic outline of the business model so that you can become familiar with the
overall requirements for the example business process. Each section of the
chapter then adds detail to a specific part of the process to extend the
functionality and to improve its robustness. Where possible, sections are created
separately in order to avoid prerequisites between them. This will allow you to
look at individual sections or combine them to gain more of the full process
function.

The overall intention of the business process is to model a fictional travel
agency’s booking process, which we call the NiceJourney process. The basic
capability of the process is shown in Figure 8-1, which illustrates the functionality
we want to achieve but includes none of the implementation details at this point.

Figure 8-1 Basic function of the NiceJourney process
204 WebSphere Business Integrator Server Foundation V5.1 Handbook

The process must receive some input from the customer, book some travel
arrangements for them and then reply back to the customer. In this outline, the
Book Customer’s Travel activity is an Empty type activity; this is a useful way of
putting an activity into a process without knowing what its implementation will be.
By the end of this chapter, we will have replaced the empty Book Customer’s
Travel with many activities that will perform the required actions for booking the
customer’s travel.

The basic outline shown in Figure 8-2 provides an additional level of detail about
the process that we will create. It shows how the booking breaks down into
booking three separate reservations that together comprise a customer’s trip - a
car, a flight and a hotel. We will be implementing each part using WebSphere
Process Choreographer activities in our process.

Figure 8-2 Basic Outline of the NiceJourney process implementation

8.2 Preparation
Before beginning to implement the individual parts of the complex process, you
need to perform some basic steps to prepare the workspace. These will create
the initial outline of the process and any one-time steps that are required to
configure the execution of the NiceJourney process.

If you want to skip the step-by-step instructions in this section, you can simply
import the completed outcome by using the Project Interchange feature
described in “Project Interchange archive import/export” on page 562. The steps
to import the solution are described in the following section.
 Chapter 8. Process choreographer: developing a complex process 205

Note that if you do not import the completed preparation project, however, you
will need to follow each of the manual steps.

8.2.1 Importing the prepared NiceJourney
The following instructions will enable you to create a workspace with the basic
outline of NiceJourney already completed.

1. Ensure that you have installed the Project Interchange plug-in as described in
“Project Interchange archive import/export” on page 562.

2. Start WebSphere Studio Application Developer Integration Edition with a new
workspace location.

3. Choose File → Import... and select Project Interchange from the menu
system. If you do not see this option then the Project Interchange feature
needs to be installed.

4. Browse to the additional directory and select the
ComplexNiceJourneyPreparationSolution.ic.zip file from the
ComplexProcess subdirectory.

5. Select the NiceJourney box to import this project into your workspace.

6. Click Finish.

8.2.2 Creating the prepared NiceJourney step-by-step
If you want to see the steps required to create the basic outline of the
NiceJourney process then follow the procedure described in this section.

Creating the NiceJourney business process
1. Create a new service project called NiceJourney.

2. Create a new flow-based BPEL business process called NiceJourney in the
package com.nicejourney.

3. Open the NiceJourney.bpel editor if it is not already open and find the top
point of the process, labeled NiceJourney. Click this and then open the server
properties at the bottom of the BPEL Editor.

This is where you set properties relating to the process itself as opposed to
individual activities.

4. Check the Process is long running option.
206 WebSphere Business Integrator Server Foundation V5.1 Handbook

Configuring namespaces
WSDL and BPEL are both XML-based description languages. XML uses a
concept called namespaces to give a degree of organization to the many tags that
are used. A detailed understanding of XML namespaces is not a requirement for
using WebSphere Process Choreographer or WebSphere Studio Application
Developer Integration Edition.

The default namespaces are generated names of the form
http://www.example.com/processXXXXXX. We want to edit these for our process
because it is good practice to use your own naming systems. In some cases, the
automatically created names can be used for speed and convenience.

1. Open the NiceJourney.bpel editor if it is not already open and find the top
point of the process, labeled NiceJourney. Click this and then open the Server
properties at the bottom of the BPEL Editor.

This is where you set properties relating to the process itself as opposed to
individual activities.

2. Change the target namespace to http://nicejourney.com/NiceJourney.
Save and close the file.

3. Switch to the Package Explorer view and open NiceJourney.wsdl from the
NiceJourney/com/nicejourney folder. This will open the file in the WSDL
editor. Switch to the Graph view, rather than the Source code view, if it did not
open automatically.

4. At the bottom left of the editor is the Definitions section. Click the Edit
Namespaces... button.

Note: You can think of namespaces as a folder structure with each
namespace value being a different folder. Any given XML tag used in the
BPEL and WSDL documents can come from one of the namespaces.
Because a business process will likely consume many services, there will be
many XML documents and tags that are referenced directly or indirectly by the
process. The namespace structure helps simplify this. It is similar to Java
packaging.

One further point to be aware of is that although a namespace value looks like
a URL, it is not actually intended to point to a real location and is just a unique
identifier string.
 Chapter 8. Process choreographer: developing a complex process 207

5. Change the Target Namespace value to
http://nicejourney.com/NiceJourney and click OK.

6. In the top half of the editor, right-click the import for
NiceJourneyInterface.wsdl and click Delete. This removes the import for the
default namespace. This import will be correctly regenerated later with the
updated namespace when we update the process partner link.

7. Save and close the file. Ignore the errors that may appear in the Tasks view
at this point.

8. Now open the NiceJourneyInterface.wsdl file and click the Edit
Namespaces... button. Change the Target Namespace value, this time using
http://nicejourney.com/NiceJourney/interface to indicate that this is the
namespace for the process interface.

9. Optionally, delete the NiceJourney/com/example folder and its contents from
the Navigator view in the Resource perspective (this view allows you to work
with the underlying file system directly). This will remove the remaining
unwanted entries, produced by default from the old namespace values that
were set by creating a new business process.

Defining the NiceJourney Process Interface
Now we will define the interface for our process by specifying the operations and
messages that it will use. We will modify the default operation and messages to
create the interface we want before building the process to implement this
interface. This is a top-down development style where the interface is defined
before the implementation is done.

1. If it is not already open, open NiceJourneyInterface.wsdl in the WSDL editor.

2. Rename the default port type from ProcessPortType to NiceJourney.

3. Rename the default operation from InputOperation to
NiceJourneyOperation.

4. Rename the default message from InputMessage to NiceJourneyInput.

5. Right-click the single part that belongs to the NiceJourneyInput message and
choose Delete to remove it.

6. Right-click the NiceJourneyInput message and select Add Child → part.
Name the part firstName and click OK.

Tip: If you do not see the Edit Namespaces... button then you may have
selected one of the imports, types, services, bindings, port types or
messages. You may have to click an area of white space in the top section
to deselect all of these, at which point the Edit Namespaces... button
should appear.
208 WebSphere Business Integrator Server Foundation V5.1 Handbook

7. Add the following additional parts to NiceJourneyInput in the same way:

– lastName
– address
– city
– zipcode
– state
– cityFrom
– cityTo
– dateTimeDeparture
– dateTimeReturn
– cardType
– cardNumber

8. Select the zipcode part and change its type to xsd:int.

9. Create a new message by right-clicking in the messages section of the editor
and selecting Add Child → message from the pop-up menu. Name the
message NiceJourneyOutput and click OK.

10.Add a part to the message called reservationID and set its type to xsd:long.

11.Expand NiceJourneyOperation and click the input node. Change the value
of the associated message from tns:InputMessage to tns:NiceJourneyInput.

12.Do the same for the output node, this time choosing tns:NiceJourneyOutput.

13.Right-click the NiceJourneyOperation and choose Add Child → Fault.
Name the fault NiceJourneyFault.

14.Right-click NiceJourneyFault and select Set Message....

15.Choose to Create a new message and name it NiceJourneyException.

16.Right-click the NiceJourneyException message and select Add Child →
part. Add the following parts, each of type xsd:string:

– firstName
– lastName
– reason

The completed definition of the interface is shown in Figure 8-3 on page 210.
 Chapter 8. Process choreographer: developing a complex process 209

Figure 8-3 Defining the NiceJourney interface in NiceJourneyInteface.wsdl

17.Save and close the file.

Creating the process outline
1. Return to the NiceJourney.bpel editor, select the partner link PartnerLink and

rename it to NiceJourney.

2. Open the implementation properties for the partner link and click New to
create a new partner link type called NiceJourneyPLT. Make sure that the file
is set to NiceJourneyInterface.wsdl and that there is only one role.

Click Browse... to locate the Port Type File and locate
NiceJourney/com/nicejourney/NiceJourneyInterface.wsdl. Choose the
NiceJourney port type. This is the port type we just defined when creating
our interface. Click OK to accept this.

3. The completed Partner Link Type dialog should look as shown in Figure 8-4
on page 211. Click OK.
210 WebSphere Business Integrator Server Foundation V5.1 Handbook

Figure 8-4 Completed Partner Link Type

4. The partner link type we just created contains the role that our process
interface is to fulfill. On the NiceJourney partner link implementation
properties, click the <--> arrow to switch the NiceJourneyProcessRole to the
Process Role Name to the right of the editor. This indicates that the partner
link role is being played by the process, not by a partner that the process will
invoke.

5. Delete the default process variable named InputVariable.

6. Select the Receive activity, rename it to Receive NiceJourney and change
the implementation settings to:

– Partner Link: NiceJourney
– Operation: NiceJourneyOperation

7. Click New... to the right of Request to create a new variable and name it
NiceJourneyInput. Because you set the Partner Link and Operation already,
this variable will be created with the correct message type automatically.

8. Select the Reply activity, rename it to Reply NiceJourney and change the
implementation settings to:

– Partner Link: NiceJourney
– Operation: NiceJourneyOperation
 Chapter 8. Process choreographer: developing a complex process 211

9. Click New... to the right of Response to create a new variable and name it
NiceJourneyOutput. Because you set the Partner Link and Operation already,
this variable will be created with the correct message type automatically.

10.Save the NiceJourney.bpel file. There should be no errors in the Tasks view
and one warning that the deployment code must be generated.

11.Optionally, delete the NiceJourney/com/example folder and its contents from
the Navigator view in the Resource perspective (this view allows you to work
with the underlying file system directly). This will remove the remaining
unwanted entries that were created by default when you created a new
business process.

12.Switch back to the Business Integration perspective.

13.Add empty activities and create control links so that your process is as shown
in Figure 8-2 on page 205. Be sure to rename all the activities using the same
names we used.

14.Save the NiceJourney.bpel process and close the editor.

At this point, the process skeleton is in place and is ready for you to begin
implementing one of its pieces.

8.3 Validation implementation
This part of the process is used to validate the input data that initiated the
process. We will check the content of some of the data and terminate the
process if any of the values are invalid.

We could create a more advanced validation that would look at the supplied
values and reply back to the calling partner requesting additional input instead of
terminating. However, this would depend upon the intelligence of the client to
receive our response asking for additional information. The client to our process
could easily be another computer system rather than a person operator. In many
cases, a process will be invoked automatically from elsewhere and we will not
want to reply when the data is invalid.

This also gives us an ideal opportunity to demonstrate one of the simplest activity
types, the Terminate activity. This is used to end a process abruptly when a

Tip: You may find it easier to arrange items on the process if you make use
of the auto-arrange functionality. Right-click the process or the flow and
select whether to arrange or align the process or flow. Selecting the
automatic option causes the editor to re-arrange the flow as you work.
212 WebSphere Business Integrator Server Foundation V5.1 Handbook

failure scenario has occurred. In our case, the validation will determine that we
do not have the necessary information to complete the process and therefore we
will terminate.

Our implementation demonstrates the following activity types:

� Sequence
� Assign
� Invoke
� Java snippet
� Terminate

In addition, it shows the following features of BPEL processes:

� Synchronous Invocation of a Java service
� Fault Handlers

We will start with the outline process shown in Figure 8-2 on page 205 and then
replace the empty Validate activity with the set of activities shown in Figure 8-5.

Figure 8-5 Completed Validation section of the NiceJourney process
 Chapter 8. Process choreographer: developing a complex process 213

A completed solution for this section can also be imported into a fresh workspace
by using the Project Interchange Zip format to import
ComplexNiceJourneyProcessValidationSolution.ic.zip. See “Project Interchange
archive import/export” on page 562 for details about how to import this zip file.

8.3.1 Preparation
We show how to implement this part of the process in isolation. Therefore, you
do not need to have completed any of the other implementation sections to be
able to follow these steps.

However, as a minimum requirement, you do need to have the workspace
prepared with the basic outline of the process. You can do this by either following
the steps described in 8.2, “Preparation” on page 205 or by building upon your
solution from another section. If you follow the instructions in 8.2, “Preparation”
on page 205, you can choose to import a prepared solution and begin working on
this section immediately.

If you intend to build upon another section then you can continue to use the
same workspace that you used then. In this case, we suggest that you back up
your projects at this point by exporting the NiceJourney project as a Project
Interchange Zip file. For more information about Project Interchange Zips, see
“Project Interchange archive import/export” on page 562.

Once you have either prepared the workspace with the basic outline or taken
your own workspace from the previous section, you are ready to complete the
Validation implementation.

8.3.2 Sequence activity
The validation will be implemented by multiple steps to be performed
sequentially. We will not need any conditional flow logic to model this so we will
use a sequence activity to contain this set of steps. Although we could continue
to use a flow activity, with a simple control link between each step, a sequence is
simpler to work with in the editor because the flow logic is provided for us by the
structured activity. We start the implementation of the validation part of the
process by creating this sequence:

1. Open the NiceJourney.bpel process in the editor.

2. Right-click the Validate activity and select Change Type → Sequence.

This will create a sequence within which we will place the necessary activities to
complete the validation.
214 WebSphere Business Integrator Server Foundation V5.1 Handbook

8.3.3 Invoke - Java Class synchronous invocation
Invoke activities are used to invoke some kind of service that a process needs to
fulfill its requirements. The invoked service can be implemented in many different
ways and the process does not need to know the details of this. As long as the
service can be described using WSDL then we can invoke it from our process.
Section 7.2.6, “Preparing to develop the process” on page 153showed how to
use WebSphere Studio Application Developer Integration Edition to automatically
create a WSDL-described service from a Java program.

In this section, we used a slightly different technique for invoking a service that is
implemented as a Java program. In the previous chapter, a service interface was
generated for the Java program and then this service was added to the process.
This time, we will add the Java program directly to the process.

This can be useful when it does not make sense to expose the Java code as a
reusable service for other clients, perhaps because it is only used by other Java
applications running locally and does not need a full service interface.

The following steps describe how to create and configure the Invoke activity.

1. Add an Invoke activity inside the Validate sequence and rename it to Invoke
Validation Partner.

This activity will call the external partner to our process that will perform the
validation for us. The definition of external can mean anything from another
piece of Java code executing within the same server environment as our
process, to a service implemented outside our fictional NiceJourney
company.

2. Create a new Service project called ValidatorPartner that will contain the
validation implementation.

3. Import Validator.java and ValidatorException.java from the ComplexProcess
directory from the additional material into the folder
ValidatorPartner/com/nicejourney/partners.

These are the Java classes that implement the Validation service. These
could just as well be any implementation that is callable as a service
(describable using WSDL).

4. Drag and drop the Validator.java file from the services view onto the
NiceJourney.bpel editor canvas.

Note: When you add a Java class to the process editor directly, WebSphere
Studio Application Developer Integration Edition will automatically create the
service interface. This makes it very similar to creating the service interface
yourself manually and then adding the service to the process.
 Chapter 8. Process choreographer: developing a complex process 215

Notice that a special type of partner link is created with the Java symbol used
as the icon. This indicates that this is a partner implemented as a Java
program. Select this partner link and note that the implementation is the Java
class, in this case Validator. Locate the generated WSDL definition of the
partner in
NiceJourney/com/nicejourney/comnicejourneypartnersValidatorNiceJourneyb
pel.wsdl.

5. Select the Invoke Validation Partner activity and go to the implementation
editor. Set the Partner Link to Validator and the operation to validate.

6. Create new Request and Response variables using the New... buttons to
ensure that the variable types are set automatically. Name them
ValidateDetailsRequest and ValidateDetailsResponse respectively.

The Invoke Validation Partner activity has now been successfully configured to
call the validate method of the Validator class, using the process variables
ValidateDetailsRequest and ValidateDetailsResponse.

8.3.4 Assign
Refer to 7.2.4, “Assign activity” on page 148 for additional instructions on how to
use the Assign activity.

We need to use an Assign activity to set the values on the
ValidateDetailsRequest variable before we invoke the Validator Java service.
This assign will take the relevant values that were passed in to the process in the
process request variable NiceJourneyInput. The following steps show how to
copy these values from NiceJourneyInput to ValidateDetailsRequest.

1. Add an Assign activity inside the Validate sequence, before the Validate
Details Invoke activity. Rename it to prep Validate Details.

Note: Although the validate method of the Java class is defined as returning
void, we found that it was necessary to supply a response variable.

When the Validator.java file was dropped onto the canvas, a new service
definition of the validate method was automatically created. The WSDL file
that describes this is found in the NiceJourney/com/nicejourney package and
is called comnicejourneypartnersValidatorNiceJourneybpel.wsdl.

Exploring this file will reveal that the generated operation is defined as having
both input and output. For this reason, we must supply a variable for both
request and response when configuring the Invoke activity. We will not use the
empty response variable.
216 WebSphere Business Integrator Server Foundation V5.1 Handbook

2. Open the implementation for the Assign and configure copies between the
following parts, using NiceJourneyInput in all cases as the From variable and
ValidateDetailsRequest as the To variable for each copy. See Figure 8-6 for
an example.

– firstName to firstName
– lastName to lastName
– address to address
– city to city
– zipcode to zipcode
– state to state
– cityFrom to from
– cityTo to to
– dateTimeDeparture to departDate
– dateTimeReturn to returnDate

Figure 8-6 prep Validate Details Assign activity

8.3.5 Fault Handler
The Validate Details service that we invoke will fail when the required details are
not provided (if any of the values is an empty string, or if the zip code is
negative). In these cases, an exception will be thrown. We want to capture that
error in our business process and terminate the process.

We can see that an error can occur by either inspecting the implementation
class, or better still, by looking at the generated service interface for it. The
implementation of the com.nicejourney.partners.Validator class shows that it
throws a ValidateException if invalid data is passed to it. You can see this if you
look at the imported class.

The generated service definition of this Java class is in
NiceJourney/com/nicejourney/comnicejourneypartnersValidatorNiceJourney
bpel.wsdl and this interface is shown in Figure 8-7 on page 218. You can see the
ValidateException fault that is defined on the validate operation.
 Chapter 8. Process choreographer: developing a complex process 217

Figure 8-7 Generated service interface to the Validator class

This is the fault that we want to handle in our process. The following steps show
how we add a Fault Handler that will catch this fault.

1. Open NiceJourney.bpel and click the icon for the sequence activity called
Validate.

2. Right-click the activity and click Add Fault Handler.

Figure 8-8 Adding Fault Handler graphically

At this point, there is a Fault Handler associated with this activity. You can see
whether there is a Fault Handler associated with an activity by looking for the
orange exclamation mark at the top right of the activity icon.

Fault handlers do not appear on the canvas by default. You have to choose to
show the Fault Handler for any given activity. In addition, only one Fault
Handler is shown at a time. Opening one will close all other Fault Handlers.

A Fault Handler can be added at any level of the process. For example, we
could have specified a Fault Handler on the individual activity of the Invoke.
Instead, we added it to the Validate sequence because logically it is
associated with a failure at that level. You can add at whatever level is
appropriate to your design. When an exception occurs, the runtime will
search for a Fault Handler on the failing activity. If none is found then it will
look for a Fault Handler at the next containing level. If none is found here then

Tip: Instead of right-clicking, you can hover the pointer over the activity.
Doing this with any activity causes options to appear in a speech bubble
above the activity. With a sequence, one of the shortcut options is to add
the Fault Handler, as shown in Figure 8-8.
218 WebSphere Business Integrator Server Foundation V5.1 Handbook

the next level is tried. This continues until the final level of the process. If no
Fault Handler exists on the process as a whole then the process will end in
failure.

It is important to try and keep Fault Handlers free from implementation details.
At the business process level, failures should be modeled as Reservation
failure rather than Failed to get DB2 database connection. A technical
failure should ideally be wrappered into a business level failure. This means
that a future change in database implementation, for example, would not
impact the business process.

3. View the Fault Handler that was just created by right-clicking the activity and
choosing Show Fault Handler from the pop-up menu. This will open a small
box to the right of the sequence; this is the empty Fault Handler. As an
alternative, you can also double-click the small orange exclamation mark in
the top right corner of the activity.

Next, we need to add a catch to the Fault Handler so that we can begin to use
it to catch exception scenarios. It is possible to catch all faults or to catch
specific types of faults. In this situation, we want to catch the type of fault that
is thrown by the Validator service.

4. Click the Fault Handler and then hover the pointer over it until the speech
bubble of options appears, then click the Add Catch icon, as shown in
Figure 8-9. Alternatively, right-click the Fault Handler and select Add Catch
from the pop-up menu.

Figure 8-9 Adding a catch to a Fault Handler

5. Select the Catch and change the fault details to:

– Fault type: User-defined

Namespace:

http://nicejourney.com/comnicejourneypartnersValidatorNiceJourneybpel/

– Fault Name: ValidateException
 Chapter 8. Process choreographer: developing a complex process 219

6. Click New... to create a new Fault Variable and name it ValidateException.

The variable is created with a default message type. We need to change this
to indicate that it matches the type of the ValidateException fault, as defined
in the WSDL definition of the Validator class.

7. Select the newly created ValidateException variable on the process editor
and change the message properties by browsing to the file
NiceJourney/com/nicejourney/comnicejourneypartnersValidatorNiceJourney
bpel.wsdl and selecting the validateException message as shown in
Figure 8-10.

Figure 8-10 Specifying the message type for the ValidateException variable

8. Save the process file.

This completes the creation of the Fault Handler. However, there are no
actions inside the Fault Handler at the moment so we need to add some
behavior.

8.3.6 Java snippet
We want to provide some basic auditing of processes that fail validation. In order
to do this, we will make use of a Java snippet to simply write an informative

Tip: The Namespace and Fault Name values here are important and must
match those that define the service fault. When the Validator class was
dropped onto the canvas, the
comnicejourneypartnersValidatorNiceJourneybpel.wsdl file was created to
describe the Validator class as a service. The namespace value specified
in the fault here must match the namespace of that WSDL file. The Fault
Name specified here must also match. You can check these values by
looking at the WSDL file.

In general, a catch must specify the correct namespace and fault name in
order to catch the fault. A common error is to specify these incorrectly,
which will result in the catch not triggering. A catch all would normally
trigger instead, if one was specified (we have not created a catch all for this
Fault Handler).
220 WebSphere Business Integrator Server Foundation V5.1 Handbook

message to the server console. In a production application, you would likely have
a much more sophisticated audit mechanism and not use the server standard
output. However, this simple method demonstrates the type of behavior that may
be modeled inside a Fault Handler.

We will use a Java snippet activity with some simple code to output the values of
the data that was passed to the process. This Java snippet could be a place
holder for a future upgrade where it would be replaced with a database write, for
example.

1. Add a new Java snippet inside the ValidateException Fault Handler that you
just created.

2. Rename it to Audit Validation Failure.

3. Add the following code for its implementation:

System.out.println("Validate failed because of :" +
getValidateException().getDetail().getReason());

4. Save the file.

8.3.7 Terminate
The Terminate activity will halt execution immediately without triggering any
further fault handling or compensation in the process. We will use this to end our
process when invalid input is encountered.

1. Add a Terminate activity inside the Fault Handler and after the Java snippet.
Rename it to Validation Failed.

2. At this point, it will be obvious that the default structure for the Fault Handler is
a flow, not a sequence. Because of this, you will need to add a control link
between the Java snippet and the Terminate activity.

Note: This code first gets the ValidateException variable. It then gets the
part of this exception object called Detail which is a complex type.
Therefore, it is then necessary to get the Reason element of the complex
type.

You can work out the structure of the message by looking at the
ValidateException message definition in the WSDL that was automatically
generated to describe the Validator Java class. This file is:
NiceJourney/com/nicejourney/comnicejourneypartnersValidatorNice
Journeybpel.wsdl.

You can also compare the message type with the Java equivalent by
opening the ValidateException class that you imported earlier.
 Chapter 8. Process choreographer: developing a complex process 221

At this point, the implementation of the Validation part of NiceJourney is complete
and should look like Figure 8-5 on page 213.

8.4 Reserve Flight implementation
This part of the process is used to reserve the flight in accordance with the
request that initiated the NiceJourney process. We are not so interested in the
implementation of the service so this will be a simple Java class that reports a
successful booking. The focus will be on how to model this interaction with a
service partner within the business process.

We will invoke the flight booking partner as a synchronous interaction where our
business process will block and wait for a reply. This can be compared with the
asynchronous style interaction with a partner that we modeled in 8.5, “Reserve
Car implementation” on page 226.

Our implementation demonstrates the following activity types:

� Sequence
� Assign
� Invoke

In addition, it will show the following feature of BPEL processes:

� Synchronous invocation of a Java service

We will start with the outline process shown in Figure 8-2 on page 205 and then
replace the empty Reserve Flight activity with the set of activities shown in
Figure 8-11 on page 223.

Important: A Terminate activity is designed to stop processing but it does not
necessarily stop the entire process. There are different contexts in which the
activity might be used and these will influence the behavior. In this case, we
have used the Terminate inside a Fault Handler. Our process design means
that only this Fault Handler will be executing and no parallel activity is
happening in the process. A Terminate activity inside a Fault Handler stops all
activities that are currently active within it.

For further information about the different effects of a Terminate activity within
different contexts, see The terminate activity in the Help for WebSphere
Studio Application Developer Integration Edition.
222 WebSphere Business Integrator Server Foundation V5.1 Handbook

Figure 8-11 Completed Reserve Flight section of the NiceJourney process

A completed solution to this section can also be imported into a fresh workspace
by using the Project Interchange Zip format to import
ComplexNiceJourneyReserveFlightSolution.ic.zip. See “Project Interchange
archive import/export” on page 562 for details about how to import this zip file.

8.4.1 Preparation
We show how to implement this part of the process in isolation. Therefore, you
do not need to have completed any of the other implementation sections to be
able to follow these steps.

However, as a minimum requirement, you do need to have the workspace
prepared with the basic outline of the process. You can do this by either following
the steps described in 8.2, “Preparation” on page 205 or by building upon your
solution from another section. If you follow the instructions in 8.2, “Preparation”
on page 205, you can choose to import a prepared solution and begin working on
this section immediately.

If you intend to build upon another section then you can continue to use the
same workspace that you used then. In this case, we suggest that you back up
your projects at this point by exporting the NiceJourney project as a Project
Interchange Zip file. For more information about Project Interchange Zips, see
“Project Interchange archive import/export” on page 562.

Once you have either prepared the workspace with the basic outline, or taken
your own workspace from the previous section, you are ready to complete the
Reserve Flight implementation.

8.4.2 Sequence activity
The flight reservation will be implemented by multiple steps to be performed
sequentially. We will not need any conditional flow logic to model this so we will
 Chapter 8. Process choreographer: developing a complex process 223

use a sequence activity to contain this set of steps. Although we could continue
to use a flow activity, with a simple control link between each step, a sequence is
simpler to work with in the editor because the flow logic is provided for us by the
structured activity. We start the implementation of the Reserve Flight part of the
process by creating this sequence:

1. Open the NiceJourney.bpel process in the editor.

2. Right-click the Reserve Flight activity and select Change Type →
Sequence.

This will create a sequence within which we will place the necessary activities to
complete the flight reservation.

8.4.3 Invoke - Java class synchronous invocation
For further information about how to add a Java class to a process and invoke it
as a service, refer to 8.3.3, “Invoke - Java Class synchronous invocation” on
page 215.

The following steps describe how to create and configure the Invoke activity.

1. Add an Invoke activity inside the Reserve Flight sequence and rename it to
Invoke Flight Partner.

This activity will call the external partner to our process that will perform the
flight booking for us. The definition of external can be anything from another
piece of Java code executing withing the same server environment as our
process to a service implemented outside our fictional NiceJourney company
on a non-Java platform.

2. Create a new Service project called FlightPartner that will contain the flight
booking implementation.

3. Import FlightBookingSystem.java and FlightReservation.java into the folder
FlightPartner/com/bookyourflight.

These are the Java classes that implements the Flight Booking service.
Instead of a Java class, the implementation could be any implementation that
is callable as a service (describable using WSDL).

4. Drag and drop the FlightBookingSystem.java file onto the NiceJourney.bpel
editor canvas.

Notice that a special type of partner link is created with the Java symbol used
as the icon to indicate that this is a partner implemented as a Java program.
Select this partner link and note that the implementation is a Java class.

5. Select the Invoke Flight Partner activity and go to the implementation
properties. Set the Partner Link to FlightBookingSystem and the operation
to makeReservation.
224 WebSphere Business Integrator Server Foundation V5.1 Handbook

6. Create new Request and Response variables using the New... buttons to
ensure that the variable types are set automatically. Name them
FlightBookingRequest and FlightBookingResponse respectively.

7. Save the file.

Look at the Message properties for the two variables to see how they are
typed by the auto-generated WSDL file that defines the FlightBookingSystem
Java class.

The Invoke Flight Partner activity has now been successfully configured to call
the makeReservation method of the FlightBookingSystem class, using the
process variables FlightBookingRequest and FlightBookingResponse.

8.4.4 Assign
Refer to 7.2.4, “Assign activity” on page 148 for additional instructions on how to
use the Assign activity.

We need to use an Assign activity to set the values on the FlightBookingRequest
variable before we invoke the FlightBooking Java service. This assign will take
the relevant values that were passed in to the process in the process request
variable, NiceJourneyInput. The following steps show how to copy these values
from NiceJourneyInput to FlightBookingRequest.

1. Add an Assign activity inside the Reserve Flight sequence, before the Invoke
Flight Partner activity. Rename it to prep Flight Partner.

2. Open the implementation for the Assign and configure copies between the
following parts, using NiceJourneyInput in all cases as the From variable and
FlightBookingRequest as the To variable for each copy. See Figure 8-12 on
page 226 for an example.

� cityFrom to cityFrom
� cityTo to cityTo
� dateTimeDeparture to dateTimeDeparture
� dateTimeReturn to dateTimeReturn

Tip: We found that you need to close and re-open the NiceJourney.bpel editor
to see the correct values in the message properties part of the new variables.
 Chapter 8. Process choreographer: developing a complex process 225

Figure 8-12 prep Flight Partner Assign activity

At this point, the implementation of the Reserve Flight part of NiceJourney is
complete and should look like Figure 8-11 on page 223.

8.5 Reserve Car implementation
This section describes how we implemented the Reserve Car section of the
NiceJourney process.

In order to reserve a car, we will use a fictional brokerage company called
BookCar that takes a customer request and finds a suitable car. The BookCar
broker will then reply with a car booking that can be from either of two rental
companies. The interaction will be modeled as an asynchronous interaction with
a business partner that can reply in two possible ways.

In order to do this, we will use the Invoke activity to make a one-way call to the
brokerage company. We will then use a Pick activity to wait for one of the two
possible replies from the brokerage.

In addition, we will implement the BookCar broker using another BPEL process.
This allows us to show you how to invoke a business process from another
business process.

Our implementation demonstrates the following activity types:

� Sequence
� Invoke
� Pick
� Assign
226 WebSphere Business Integrator Server Foundation V5.1 Handbook

In addition, it will show the following features of BPEL processes:

� Asynchronous invocation of another BPEL process
� Correlation
� Conditional links
� Asynchronous interaction pattern

We will start with the outline process shown in Figure 8-2 on page 205 and then
replace the empty Reserve Car activity with the set of activities shown in
Figure 8-13.

Figure 8-13 Completed Reserve Car section of the NiceJourney process

In addition, the BookCar broker implementation is shown in Figure 8-14 on
page 228.
 Chapter 8. Process choreographer: developing a complex process 227

Figure 8-14 Completed BookCar process

A completed solution to this section can also be imported into a fresh workspace
by using the Project Interchange Zip format to import
ComplexNiceJourneyReserveCarSolution.ic.zip. See “Project Interchange
archive import/export” on page 562 for details about how to import this zip file.

8.5.1 Preparation
We show how to implement this part of the process in isolation. Therefore, you
do not need to have completed any of the other implementation sections to be
able to follow these steps.

However, as a minimum requirement, you do need to have the workspace
prepared with the basic outline of the process. You can do this either by following
the steps described in “Preparation” on page 205 or by building upon your
solution from another section. If you follow the Preparation instructions you can
choose to import a prepared solution and begin working on this section
immediately.

If you intend to build upon another section then you can continue to use the
same workspace that you used then. In this case, we suggest that you back up
your projects at this point by exporting the NiceJourney project as a Project
Interchange Zip file. For more information about Project Interchange Zips see ,
“Project Interchange archive import/export” on page 562.

Once you have either prepared the workspace with the basic outline, or taken
your own workspace from the previous section, you are ready to complete the
Reserve Car implementation.
228 WebSphere Business Integrator Server Foundation V5.1 Handbook

8.5.2 BPEL process partner
We will create the secondary process that simulates the function of a car rental
brokerage company. Once this process is complete then we can then invoke it
from the NiceJourney process in an asynchronous interaction.

Creating the BookCar process
1. Create a new BPEL flow-based process called BookCar in package

com.bookyourcar in the NiceJourney project.

2. Open the BookCar.bpel editor if it is not already open and find the top point of
the process, labeled BookCar. Click this and then open the server properties
at the bottom of the BPEL Editor.

This is where you set properties relating to the process itself as opposed to
individual activities.

3. Check the process is long running option.

4. Save and close the process.

Configuring Namespaces
WebSphere Process Choreographer creates default namespaces to speed up
the development of a process and for convenience. In many cases it is worth
creating your own specific namespaces as this makes it easier to keep track of
them by using memorable, meaningful names. We will change the namespaces
to make them more relevant:

1. Open the BookCar.bpel editor if it is not already open and find the top point of
the process, labeled BookCar. Click this and then open the server properties
at the bottom of the BPEL Editor.

This is where you set properties relating to the process itself as opposed to
individual activities.

2. Change the target namespace to http://bookyourcar.com/BookCar. Save
and close the file.

3. Switch to the Package Explorer view and open BookCar.wsdl from the
NiceJourney/com/bookyourcar folder. This will open the file in the WSDL
editor. Switch to the Graph view, rather than the source code view, if it did not
open automatically.

Tip: We found that it was necessary to have the partner BPEL process in the
same service project as the client BPEL process. This meant that we had to
create BookCar.bpel in the same project as NiceJourney.bpel.
 Chapter 8. Process choreographer: developing a complex process 229

4. In the bottom left of the editor is the Definitions section. Click the Edit
Namespaces... button.

5. Change the Target Namespace value to http://bookyourcar.com/BookCar
and click OK.

6. In the top half of the editor, right-click the import for BookCarInterface.wsdl
and click Delete. This removes the import for the default namespace. This
import will be correctly re-generated later with the updated namespace when
we update the process partner link.

7. Save and close the file. Ignore the errors that may appear in the Tasks view at
this point.

8. Now open the BookCarInterface.wsdl file and click the Edit Namespaces...
button in the same way. Change the Target Namespace value, this time using
http://bookyourcar.com/BookCar/interface to indicate that this is the
namespace for the process interface.

9. Save and close the file.

10.Optionally, delete the NiceJourney/com/example folder and its contents from
the Navigator view in the Resource perspective (this view allows you to work
with the underlying file system directly). This will remove the remaining
unwanted entries, produced by default from the old namespace values that
were set by creating a new business process.

Defining the BookCar interface
1. Open BookCarInterface.wsdl using the WSDL editor and switch to the Graph

view.

2. Change the name of the port type from ProcessPortType to BookCar.

3. Change the operation name from InputOperation to BookCarOperation.

4. Change the name of the message from InputMessage to BookCarRequest.

5. Remove the contents part of the BookCarRequest message by right-clicking it
and selecting Delete.

6. Right-click BookCarRequest to add new parts by clicking Add Child → part.
Add the following parts:

Tip: If you do not see the Edit Namespaces... button then you may have
selected one of the imports, types, services, bindings, port types or
messages. You may have to click an area of whitespace in the top section
to deselect all of these, at which point the Edit Namespaces... button
should appear.
230 WebSphere Business Integrator Server Foundation V5.1 Handbook

– startDate
– endDate
– firstName
– lastName
– location

7. Right-click the input node of the BookCarOperation and select Set
Message.... Choose Select an existing message and select the
tns:BookCarRequest entry. Click Finish.

8. Right-click the output node under the BookCarOperation and select Delete.

9. The result should look as shown in Figure 8-15. Save the file and close the
editor.

Figure 8-15 Completed BookCar WSDL interface

Using the BookCar process interface
1. Return to the BookCar.bpel editor and select the partner link PartnerLink and

rename it to BookCar.

2. Open the implementation properties for the partner link and click New ... to
create a new partner link type called BookCarPLT. Make sure that the File is
set to BookCarInterface.wsdl and that there is only one role.

3. Type BookCarProcessRole for the name of the first role.

4. Click Browse... to locate the Port Type file and locate
NiceJourney/com/bookyourcar/BookCarInterface.wsdl. Choose the BookCar
port type. This is the port type we just defined when creating our interface.
Click OK to accept this. Click OK again to complete the Partner Link Type
definition.

5. The partner link type we just created contains the role that our process
interface is to fulfill. On the BookCar partner link implementation properties,
click the <--> arrow to switch the BookCarProcessRole into the Process Role

Note: There is no output operation because this process will be invoked in
a fire and forget style.
 Chapter 8. Process choreographer: developing a complex process 231

Name to the right of the editor. This indicates that the partner link role is being
played by the process, not by a partner that the process will invoke.

6. Delete the default process variable named InputVariable.

7. Select the Receive activity, rename it to Receive BookCar and change the
implementation settings to:

– Partner Link: BookCar
– Operation: BookCarOperation

8. Click New... to the right of Request to create a new variable and name it
BookCarInput. Because you set the Partner Link and Operation already this
variable will be created with the correct message type automatically.

9. Delete the Reply activity.

Because this process is invoked asynchronously with a fire-and-forget there
is no reply. Instead we will reply back to the calling NiceJourney process by
sending a message back to the instance of the NiceJourney process that
called us.

10.Save the BookCar.bpel file and verify that the Tasks view contains no errors
related to the BookCar process and only two warnings about the need to
generate deployment code.

Implementing the BookCar process
1. Add activities to the process, rename them and then link them together as

shown in Figure 8-16.

Figure 8-16 BookCar process activities
232 WebSphere Business Integrator Server Foundation V5.1 Handbook

2. Save the file. You will see eight errors because the two invoke activities are
still waiting to have their input variables, operations, port type and partners
defined. The two warnings about generating deployment code from earlier will
still be in the Tasks view.

The initial preparation of the BookCar process is now complete but you will
notice that the ABC and XYZ Car Reply activities have no implementation yet.
These reply activities will be sending a response back to the NiceJourney
process that originally called them. However, the NiceJourney process is
currently not able to accept these replies so we cannot configure the BookCar to
send its replies yet. We first need to extend the NiceJourney process to accept
these replies. Then we can complete the BookCar process as described in
“Reply - BPEL Asynchronous invocation” on page 244.

8.5.3 Sequence activity
Our car reservation will be implemented by multiple steps to be performed
sequentially within the NiceJourney process. We will not need any conditional
flow logic to model this so we use a sequence activity to contain this set of steps.
Although we could continue to use a flow activity with a simple control link
between each step, a sequence is simpler to work with in the editor because the
flow logic is provided for us by the sequence structure. We start the
implementation of the Reserve Car part of the process by creating this sequence:

1. Open the NiceJourney.bpel process in the editor.

2. Right-click the Reserve Car empty activity and select Change Type →
Sequence.

This will create a sequence within which we will place the necessary activities to
complete the car reservation.

8.5.4 Invoke - BPEL Asynchronous invocation
Now that the second process, BookCar, is available to be called as a partner, we
will add a call to it from the NiceJourney process. We also need to set up points
in the NiceJourney process where a reply can be received from the BookCar
process.

Tip: You may find it easier to arrange items on the process if you make use
of the auto-arrange functionality. Right-click the process or the flow and
select whether to arrange or align the process or flow. Selecting the
automatic option causes the editor to re-arrange the flow as you work.
 Chapter 8. Process choreographer: developing a complex process 233

1. Drag and drop the BookCar.bpel process onto the NiceJourney.bpel
canvas in the editor. This will create the special partner link to a BPEL
process.

2. Click the BookCar partner link and notice how the implementation is the
BookCar.bpel file and specifically the BookCar partner link.

3. Add an Invoke activity inside the Reserve Car sequence and name it Invoke
Car Partner.

4. Open the implementation properties for this activity and set the values to:

– Partner Link: BookCar
– Port Type: BookCar
– Operation: BookCarOperation

Figure 8-17 Setting a partner link using the graphical editor

5. Click New... to the right of Request to create a new variable and name it
BookCarRequest. Because you set the Partner Link and Operation already this
variable will be created with the correct message type automatically.

8.5.5 Assign
Refer to “Assign activity” on page 148 for additional instructions on how to use
the Assign activity.

Tip: When adding a BPEL partner link to your process the secondary
BPEL process must exist within the same project as the primary one.

Tip: Instead of opening the implementation properties to set the partner
link, try hovering the pointer over the activity until the ‘speech bubble’
appears at the top right. Click the first icon to set the partner link as shown
in Figure 8-17 and you will then be able to connect the arrow that appears
to the BookCar partner link in the top right of the process editor. Note that
you will still have to set the operation manually in this case.
234 WebSphere Business Integrator Server Foundation V5.1 Handbook

1. Add an Assign activity in front of the Invoke Car Partner activity, inside the
Reserve Car sequence, and rename it to prep Car Partner. This will be used
to set the input variables for the Book Car Request.

2. Open the implementation for the Assign and configure five copies between
the following parts, using NiceJourneyInput as the ‘From’ variable and
BookCarRequest as the ‘To’ variable for each copy. See Figure 8-18 for an
example.

– firstName to firstName
– lastName to lastName
– cityTo to location
– datetimeDeparture to startDate
– dateTimeReturn to endDate

Figure 8-18 Creating the Assign activity

3. Save the process and close the editor.

There should be no errors related to the NiceJourney process and one warning
about the deployment code. The eight errors for the BookCar process will still
exist and we will fix them soon.

8.5.6 Pick activity
The BookCar partner is invoked asynchronously and will subsequently respond
by sending a reply back to the NiceJourney process. It can reply in two possible
ways - an ‘ABC Car Reply’ or an ‘XYZ Car Reply’ which represent two different
types of car rental agreements that the BookCar broker could provide us. Our
NiceJourney process needs to receive either one of these two replies and then
pick how to proceed based upon which reply is received. We can model this
using the Pick activity.

A Pick activity will wait for one of a number of possible replies to occur and then
proceed based upon which one was received. This is exactly the behavior we
need.
 Chapter 8. Process choreographer: developing a complex process 235

In addition to creating the Pick activity we need to create the extra receive
capability so that our process can be replied to from the BookCar process. We
will do this by adding the additional operations to our process interface. These
receive operations will be used to accept replies from BookCar.

Adding Reply operations to the NiceJourney interface
The BookCar process will reply to the NiceJourney process by invoking some
operation that is available on the NiceJourney process interface. We need to add
operations that allow BookCar to reply with either an ABC or an XYZ car rental.

1. Open NiceJourneyInterface.wsdl from the folder
NiceJourney/com/nicejourney.

2. Use the graphical WSDL editor to add the following items. The steps are
similar to those used when editing the BookCarInterface WSDL in “Defining
the BookCar interface” on page 230.

– Port Type: XYZCarRental with Operation: XYZCarRental
– Port Type: ABCCarRental with Operation: ABCCarRental
– Message: XYZCarRentalReply
– Message: ABCCarRentalReply

3. Add an input node to the XYZCarRental and ABCCarRental operations.

4. Set the Message on each input node to either XYZCarRentalReply or
ABCCarRentalReply as appropriate.

5. Add the following parts to the XYZCarRentalReply message, ensuring that
you change the type from xsd:string where appropriate:

– firstName (xsd:string)
– lastName (xsd:string)
– price (xsd:long)
– carType (xsd:long)

6. Now add these parts to the ABCCarRentalReply message, again ensuring
that you change the type from xsd:string where appropriate:

– class (xsd:string)
– price (xsd:int)
– name1 (xsd:string)
– name2 (xsd:string)
– termsandconditions (xsd:string)

7. The final configuration should look as shown in Figure 8-19.
236 WebSphere Business Integrator Server Foundation V5.1 Handbook

Figure 8-19 Adding the car rental reply operations to the NiceJourney interface

Notice that there are two different messages, one for each reply type. You will
see these used shortly in the Pick activity.

8. Save the file and close it.

Adding the Pick activity to the NiceJourney process
Now that the process interface changes are complete we have two extra
operations that can be performed on our process. We will use these operations
to receive replies from the BookCar process. It will reply by invoking these one
way operations on our NiceJourney process. It could invoke either one of
XYZCarRental or ABCCarRental. A Pick activity will handle what to do if either
one of these operations is called.

1. Open NiceJourney.bpel in the BPEL Editor.

2. Add a Pick activity after the Invoke Car Partner activity and rename it to Pick
Car Rental Reply.

3. Right-click the Pick activity and choose Add OnMessage.

4. Select the OnMessage and set its Display Name to XYZ Car Reply on the
Description tab.

5. Add another OnMessage in the same way and name it ABC Car Reply.

6. Drag and drop NiceJourneyInterface.wsdl onto the NiceJourney.bpel
editor canvas. Select the XYZCarRental operation and click OK.

NiceJourneyInterface.wsdl is where we defined the operations so we need to
add it as a Partner Link.

7. Repeat the drag and drop but this time select ABCCarRental for the
operation.
 Chapter 8. Process choreographer: developing a complex process 237

This creates additional partner links for the XYZCarRental and ABCCarRental
operations. We need these when configuring the Pick activity.

8. Select the XYZCarRental partner link and switch to the implementation tab.
Click the <--> arrow to switch the roles and indicate that this is an operation
available on the process, not an operation that the process will call.

9. Do the same for the ABCCarRental partner link

10.Select the XYZ Car Reply onMessage section of the Pick activity and set the
following implementation values:

– Partner Link: XYZCarRental

– Port Type: XYZCarRental

– Operation: XYZCarRental

11.Click New... to the right of Request to create a new variable and name it
XYZCarRentalReply. Because you set the Partner Link and Operation
already this variable will be created with the correct message type
automatically.

12.Select the ABC Car Reply onMessage section of the Pick activity and set
the following implementation values:

– Partner Link: ABCCarRental

– Port Type: ABCCarRental

– Operation: ABCCarRental

13.Click New... to the right of Request to create a new variable and name it
ABCCarRentalReply. Because you set the Partner Link and Operation
already this variable will be created with the correct message type
automatically.

14.Save the process.

You should see three errors regarding the NiceJourney process (and still
eight others regarding BookCar.bpel) and one warning to generate the
deployment code. The errors relate to correlation and we will fix them soon.

Customizing the Pick behavior
The OnMessage structures allow you to add behavior that you want to execute
upon receipt of a given incoming message. We will add different behavior to each
one to indicate what kind of car rental we received.

1. Add a Java snippet to the XYZ Car Reply onMessage block and rename it to
XYZ Car Received. Add the following code to its implementation:

System.out.println(“XYZ Car Rental will be used”);
238 WebSphere Business Integrator Server Foundation V5.1 Handbook

2. Add another Java snippet, this time to the ABC Car Reply onMessage block
and rename it to ABC Car Received. Add the following code to its
implementation:

System.out.println(“ABC Car Rental will be used”);

The code in these Java snippets performs no business function but it allows
us to illustrate the effect of the Pick activity more clearly by printing a
message in the server console on receipt of one of the two Car Rental
messages.

In a real world scenario, it is likely that some additional business processing
of the results from the car rental would be required.

3. Save the NiceJourney.bpel file

8.5.7 Correlation sets
There are two types of messages that a process can receive at runtime:

1. Initiation messages

These messages start a new process. They are not passed to a process that
is already executing but instead start a new one.

2. Input messages

These messages are passed to a process instance. This means that they
provide input to an already executing process instance, at some point within
the process.

In our process, the initial Receive activity (named Receive NiceJourney) is an
initiation point. When the WebSphere Process Choreographer runtime receives a
message of the type defined on this activity (NiceJourneyInput) then it will initiate
an instance of the NiceJourney process.

In contrast to this Receive activity, the onMessage sections for the Pick activity
are designed to accept messages to the process while it is running. These are
points within the process where messages arrive that target a particular instance
of NiceJourney that is already running. There could be many NiceJourney
processes executing within the runtime - how do we match up an incoming
message with a specific active instance of NiceJourney?

The answer is to use correlation sets. A correlation set enables us to match
incoming messages with specific process instances. We want to correlate an
incoming XYZCarReply or ABCCarReply (from BookCar process) with the
particular NiceJourney instance that originally invoked the BookCar instance that
is replying. We need some piece of identifier information that will be used
between the two processes to provide the link.
 Chapter 8. Process choreographer: developing a complex process 239

In our scenario we will use a correlation set that uses the customer name as the
unique identifier information. We will use both the first name and second name
parts to build our unique identifier. The correlation set will then be initialized when
the first request comes in to initiate a NiceJourney process. After this, the
correlation set will be passed between the NiceJourney and BookCar process
instances so that they can specifically communicate with each other.

Configure the correlation set as follows:

1. Locate the CorrelationSet list on the NiceJourney.bpel canvas. Typically this
is to the left of the process. Click the + symbol to add a new correlation set.

2. Rename the new correlation set to CustomerName.

3. Click the Properties tab of the correlation set.

A correlation set can have multiple properties, each defined by either a
primitive type or as a type or element in an XSD file. In our example we want
a firstName part and a lastName part of primitive type xsd:string.

4. Click New... to create a new property named firstname and of built-in type
xsd:string. Refer to Figure 8-20 on page 241. Ignore the aliases section for
now - we will come back and fill in this information later.

5. Repeat the above step to create a property called lastname, also of type
xsd:string.

Note: Using the customer name alone is not a perfect correlation set choice
because there is no guarantee of uniqueness. It is conceivable that two
customers could share the same name. A more sophisticated choice could
involve adding a timestamp value or some other unique identifier.

Tip: Notice that the New property dialog asks you for a file name to create
the correlation property in. This always defaults to
<ProcessName>Interface.wsdl (NiceJourneyInterface.wsdl) in our case.
This is the default file that is used for partner links as well and we have
used it to define our processes interface and operations. However, if you
decide to use another filename then make sure that you alter the file name
here to match your chosen interface filename before creating the property.
240 WebSphere Business Integrator Server Foundation V5.1 Handbook

Figure 8-20 Adding properties to a correlation set

Now that we have the correlation set defined and we know the properties (a
firstname and a lastname) of the set, we need to consider how those
properties are set and where they are used. When operations are called on
the process (for example an XYZ or ABC car reply will call one of the
operations we defined in the WSDL earlier) they are called by passing a
message. What we must do is associate each correlation set property with
specific parts within each of the possible messages.

For example, the input to our process is a NiceJourneyInput message. It has
many parts but one of these is to be associated with the firstname property of
the correlation set. In the same way, another part of the NiceJourneyInput
message must be associated with the lastName part of the correlation set.

In the Reserve Car activity we then need to invoke the BookCar process and
at this point we need to pass this correlation set information. However, the
message type (and associated parts) that we call BookCar with are different
than we used to call NiceJourney. The message type is now a
BookCarRequest instead of a NiceJourneyInput. That means we need to
associate the correct parts of the BookCarRequest message with the
correlation properties as well.
 Chapter 8. Process choreographer: developing a complex process 241

This is why there is the concept of aliases. They are used to indicate which
parts of a given message matches which property of the correlation set.
Different messages will have the correlation set property information held in
different parts.

6. Select the firstname property and click Edit...

7. Click New... to create a new alias

8. Browse to NiceJourney/com/nicejourney/NiceJourneyInterface.wsdl and
select the NiceJourneyInput nessage. This indicates that we will find an
alias for the firstname property in the NiceJourneyInput message.

9. Select the firstName part of the message and click OK.

10.Click New... again to create another alias.

11.This time, browse to NiceJourney/com/bookyourcar/BookCarInterface.wsdl
and this time select BookCarRequest. Select the firstName part and click
OK.

12.Click New... to create another alias and this time select the
XYZCarRentalReply message, found in file
NiceJourney/com/nicejourney/NiceJourneyInterface.wsdl

13.Select the firstName part and click OK.

14.Finally, create another alias using the name1 part from the
ABCCarRentalReply message in
NiceJourney/com/nicejourney/NiceJourneyInterface.wsdl.

15.Click OK to complete editing the firstName message property.

16.Repeat steps 6 through 15 but using the appropriate parts for the lastname
correlation set property instead of firstName, taking them from the same
messages, in the same WSDL files that the firstname parts were obtained
from.

17.You should end up with a correlation set called CustomerName with two
properties, each with four aliases taken from the messages
NiceJourneyInput, BookCarRequest, XYZCarRentalReply and
ABCCarRentalReply.

18.Save the process. There should be one extra item in the Tasks view - an
information entry to tell us that our correlation set is not used at present which
causes a validation failure.

Now that all the aliases are in place we need to specify on the relevant
individual activites that they need to use our correlation set.

19.Select the first activity, Receive NiceJourney and locate the Correlation
settings tab.

20.Click Add to add a new correlation to this activity.
242 WebSphere Business Integrator Server Foundation V5.1 Handbook

21.Set the direction to Receive, Initiation to Yes and Correlation Set to
CustomerName. You can change values by clicking them and then using the
drop-down box.

Here we are indicating that on the receive direction (the only direction for a
Receive activity, unlike an invoke) this correlation set should be initiated. The
correlation set properties will then remain set for the lifetime of the process
(they cannot be changed). They will be set from the parts of the
NiceJourneyInput message that is received by this activity, in accordance
with the aliases we defined for the correlation set properties.

22.Now select the activity Invoke Car Partner.

23.On the correlation tab, click Add to add the correlation set and check that it is
set to:

– Direction: Send
– Initiation: No
– Correlation Set: CustomerName

We are not initiating the correlation set this time, instead we are using the
values that we initiated when the process was started by a NiceJourneyInput
message.

24.Select the XYZ Car Reply onMessage section for the Pick activity and add a
new correlation with these properties:

– Direction: Receive
– Initiation: No
– Correlation Set: CustomerName

25.Repeat the previous step for the ABC Car Reply onMessage section of the
Pick activity.

26.Save the process.

There should be no errors associated with the NiceJourney process and only
one warning to generate the deploy code. The BookCar process still has eight
errors that we will now resolve.

27.Close the file.

Tip: When you have added the correlation it can appear as if the values
are permanently set and that they have been chosen correctly by the
product. Be wary that this is not the case. In this example there is only one
correlation set so we have been presented with the correct one but this
would often not be the case. Also note that each value can be changed by
selecting the item and opening the drop-down selection box.
 Chapter 8. Process choreographer: developing a complex process 243

8.5.8 Reply - BPEL Asynchronous invocation
We need to return to the BookCar process and complete its implementation now
that the NiceJourney process is ready to accept replies through its Pick activity.

1. Open the BookCar.bpel file in the BPEL Editor

2. Drag and drop the NiceJourney.bpel file onto the canvas to create a partner
link to the NiceJourney process.

3. Select the partner link, which defaulted to being called NiceJourney, and
rename it to ABCCarReply.

4. Select its implementation tab and change the partner link to ABCCarRental.

5. Drag and drop the NiceJourney.bpel file onto the BookCar canvas once
again.

6. Select the partner link which again defaulted to being called NiceJourney and
rename it XYZCarReply.

7. Set its implementation partner link value to XYZCarRental.

We now have partner links back to the NiceJourney process that invoke its
two receive points that the pick chooses between. Next we must associate
the invoke activities with the correct partner link.

8. Select the ABC Car Reply Invoke activity and change its implementation
values to:

– Partner Link: ABCCarReply

– Port Type: ABCCarRental

– Operation: ABCCarRental

9. Click New... to the right of Request to create a new variable and name it
ABCCarReply. Because you set the Partner Link and Operation already this
variable will be created with the correct message type automatically.

10.Select the XYZ Car Reply Invoke activity and change its implementation
values to:

– Partner Link: XYZCarReply

– Port Type: XYZCarRental

– Operation: XYZCarRental

11.Click New... to the right of Request to create a new variable and name it
XYZCarReply. Because you set the Partner Link and Operation already this
variable will be created with the correct message type automatically.

12.Save the file.

There should be no errors in the Tasks view at this point and only two
warnings that we still haven’t generated any deploy code.
244 WebSphere Business Integrator Server Foundation V5.1 Handbook

8.5.9 Assign
We want to provide some output data from the broker, BookCar. Again we are
not too concerned with the implementation business logic and are focussing
instead on the integration logic. Therefore, we will use simple assigns to
determine the output data from the brokerage. In reality there would likely be
some kind of complex algorithm for determining an appropriate response.

Refer to “Assign activity” on page 148 for additional instructions on how to use
the Assign activity.

1. Select the prep ABC Reply Assign activity and configure it to copy the
following parts between the BookCarInput and ABCCarReply variables

– firstName and name1

– lastName and name2

2. In addition, use the Assign implementation editor to set these fixed values to
variables in ABCCarReply. See Figure 8-21 on page 246 for an example.

– From: Fixed Value

Type: xsd:string

Value: Driver must be over 25

To: termsandconditions

– From: Fixed Value

Type: xsd:string

Value: B

To: class

– From: Fixed Value

Type: xsd:int

Value: 2000

To: price
 Chapter 8. Process choreographer: developing a complex process 245

Figure 8-21 Assigning fixed values to BookCar reply parts

3. Select the prep XYZ Reply Assign activity and configure it to copy the
following parts between the BookCarInput and XYZCarReply variables.

– firstName and firstName

– lastName and lastName

4. In addition, use the Assign implementation editor to set these fixed values to
variables in ABCCarReply. See Figure 8-21 for an example.

– From: Fixed Value

Type: xsd:long

Value: 2

To: carType

– From: Fixed Value

Type: xsd:long

Value: 500

To: price

5. Save and close the file.

8.5.10 Conditional link
Although the process is now free from errors, the BookCar process is not quite
complete. We want this process to have some kind of intelligence and to choose
which of the two car type replies to send, based upon the input that this
simulated brokerage received.

In this chapter, we are focused on the choreography of individual services, not
the implementation of each service itself. Although BookCar is a special type of
246 WebSphere Business Integrator Server Foundation V5.1 Handbook

service in that it is a process itself, we still do not need to put much functionality
into it in order to demonstrate the points. Therefore, we will demonstrate the use
of a conditional link to hold some simple business logic only.

1. Open the BookCar.bpel process in the BPEL Editor.

2. Select the control link that joins the Receive BookCar Receive activity and the
prep ABC Reply Assign activity.

3. Switch to the Condition tab for this activity and choose Visual Expression
for the Value. This will open the Visual Expression editor as shown in
Figure 8-22.

Figure 8-22 The Visual Expression editor

4. Click the Condition ... and you will see the list of variables to the right of the
expression editor. Expand the BookCarInput and click the location part.
This will start the expression with the phrase BookCarInput.location.

5. Click the Method or Field option to specify a method and click the
equalsIgnoreCase(anotherString) method as shown in Figure 8-23 on
page 248. This will allow us to make a case-insensitive comparison to a string
value.

Tip: Visual Expression is a way of visually composing expressions for
comparing variables and values, without writing Java code. If you like, you
can optionally convert your visual expression to its pure Java
representation if you like. To do this, first build the visual expression and
then change the Value selection to Expression instead of Visual
Expression.
 Chapter 8. Process choreographer: developing a complex process 247

Figure 8-23 Creating the Visual Expression

6. At this point you will see that the expression is

BookCarInput.location.equalsIgnoreCase(anotherString)

The cursor (blue arrow pointing down) will be positioned after this string.
However, we want to enter a value for ‘anotherString’.

7. Click the anotherString text and this will open up the list of variables and
other items to choose from on the right. We are going to hardcode our
comparison string as this is a simple piece of demonstration business logic.
You could however compare against the contents of another variable for
example.

8. Click String at the bottom of the right hand list and enter New York into the
box as shown in Figure 8-24. Select Return.

Figure 8-24 Setting the value for the String comparison

Note: You may be wondering why we did not choose the ‘==’ operator and
instead selected the equalsIgnoreCase(anotherString) method. This is
because the comparison will be made in Java. Java uses the ‘==’ operator
to compare two objects to see if they are the same. Two strings that have
the same content may not be the same object - they are just two objects
with the same properties. In this case a ‘==’ comparison will return false.
What we want to do is compare the string contents, not the objects
themselves. Therefore, we use the equalsIgnoreCase(anotherString)
method instead of ‘==’ to check this.
248 WebSphere Business Integrator Server Foundation V5.1 Handbook

9. This completes the Visual Condition which should now read:

BookCarInput.location.equalsIgnoreCase("New York")

A control link will only be followed if its condition evaluates to true. This Visual
Expression will ensure that this link is only followed when the car booking
location is New York. This means that our broker will only return an ABC Car
Reply for New York rentals.

We want to complete the business logic by saying that in all other cases the
broker should send an XYZ Car Reply. We can do this by saying that the
alternative control link path has a condition of ‘otherwise’. This means that if
all other control link options evaluate to false then this link should be followed.
So if our check for a location of New York results in false then instead we
follow the alternative link to an XYZ Car Reply.

10.Select the control link between Receive BookCar and prep XYZ Reply
activities. Set the condition value to Otherwise.

11.Save the process.

The Book Car part of the process has now been completed. We modeled this as
a partnership with a brokerage company that asynchronously finds a suitable car
for our travel requirements and then sends it back to us some time later.

We used another BPEL process to provide an implementation of the brokerage
and demonstrated how to invoke it from the first process. We used a one way fire
and forget to invoke the second process then used a Pick activity to wait for
possible responses. In the second process we chose which type of reply to send
and then called back to the first process so that the Pick activity could proceed.

At this point the implementation of the Reserve Car part of NiceJourney is
complete and should look like Figure 8-13 on page 227. The BookCar process
should be as shown in Figure 8-14 on page 228.

8.6 Reserve Hotel implementation
This section describes how we implemented the Reserve Hotel section of the
NiceJourney process.

In order to reserve a hotel we will use a manual step that requires a real person
to organise the hotel arrangement. This is a powerful option provided by
WebSphere Process Choreographer and there is extensive support for
incorporating human interactions into a process. We will show how a team of
agents could complete the hotel bookings as they arise and provide the details of
the reservation back to the NiceJourney process in order that processing may
continue.
 Chapter 8. Process choreographer: developing a complex process 249

In order to do this, we will use the Staff activity to create a work item that can be
claimed by an agent. The agent can make the hotel booking, probably by calling
or faxing a suitable hotel, and then complete the work item and pass the
reservation details back to the process.

We will also make use of the Transformer activity which allows us to do more
advanced message mappings and variable manipulation that is possible with an
assign.

Our implementation demonstrates the following activity types:

� Sequence
� Staff
� Transformer

We will start with the outline process shown in Figure 8-2 on page 205 and then
replace the empty Reserve Car activity with the set of activities shown in
Figure 8-25.

Figure 8-25 Completed Reserve Hotel section of the NiceJourney process

8.6.1 Preparation
As with the other implementations, we again show how to implement this part of
the process in isolation. Therefore, you do not need to have completed any of the
other implementation sections to be able to follow these steps.

However, as a minimum requirement you do need to have the workspace
prepared with the basic outline of the process. You can do this by either following
the steps described in “Preparation” on page 205 or by building upon your
solution from another section. If you follow the Preparation instructions you can
choose to import a prepared solution and begin working on this section
immediately.

If you intend to build upon another section then you can continue to use the
same workspace that you used then. In this case, we suggest that you back up
250 WebSphere Business Integrator Server Foundation V5.1 Handbook

your projects at this point by exporting the NiceJourney project as a Project
Interchange Zip file. For more information about Project Interchange Zips see ,
“Project Interchange archive import/export” on page 562.

Once you have either prepared the workspace with the basic outline, or taken
your own workspace from the previous section, you are ready to complete the
Reserve Hotel implementation.

8.6.2 Sequence activity
The hotel reservation will be implemented by multiple steps to be performed
sequentially. We will not need any conditional flow logic to model this so we will
use a sequence activity to contain this set of steps. Although we could continue
to use a flow activity, with a simple control link between each step, a sequence is
simpler to work with in the editor because the flow logic is provided for us by the
structured activity. We start the implementation of the Reserve Hotel part of the
process by creating this sequence:

1. Open the NiceJourney.bpel process in the editor.

2. Right-click the Reserve Hotel activity and select Change Type → Sequence.

3. Save the process.

This will create a sequence within which we will place the necessary activities to
complete the hotel reservation.

8.6.3 Staff activity
The Staff activity is used to represent the point in the process at which human
involvement is required to proceed. The Staff activity is defined by an operation
that has associated input and output messages. This operation and these
messages are defined in a WSDL file, typically on the interface to the process.

The process is then defined to have two variables with message types that
match the input and output for the operation associated with the Staff activity. In
addition, during development the persons who are allowed to perform the staff
activities are defined in an abstract manner. At this point, although the developer
indicates what kind of person can perform the activity, they do not know about
the technology that will be used to implment the security enforcement.

At runtime, when the Staff activity is reached, the WebSphere Process
Choreographer runtime engine creates a work item that can be claimed by any
staff who are potential owners of the work item. The runtime is pre-configured
with the necessary security registry implementation. The WebSphere Process
Choreographer container maps the abstract security role that the developer
specified to a real query against the security registry implementation. This
 Chapter 8. Process choreographer: developing a complex process 251

mechanism allows the runtime to determine who is a potential owner and then
enforces this policy.

Once the work item is claimed by an eligible operator, the request variable and its
contents are passed to that person who then uses this information to decide how
to populate the response variable. The person enters this data and then
completes the work item, passing this response variable and its contents back to
the process which can then continue execution.

The most likely method of interaction between a person and their work items will
be through the Process Web Client. This supplied application enables a person
to log in and then interact with running processes in accordance with the
configured security. For example, a person qualified to be a hotel booking
operator would log in and see all processes that needed a hotel booking to be
completed. They could then claim one of these processes which would mark that
processes instance as claimed. It would then be unavailable for claim by other
qualified hotel booking operators. Once claimed, the person then has
responsibility to complete the Staff activity by providing the data to pass back to
the process instance to allow execution to continue.

In our case, we will provide the hotel booking operators with the customer name,
location required, checkin and checkout dates. The hotel operator would then
claim this activity and make a manual hotel booking based upon this information.
The reply from our Staff activity will be defined as requiring a reservation ID and
a price so the hotel booking operator must provide these values and then
complete the Staff activity. The operation that defines this request and response
(input and output) must first be added to the NiceJourney process.

Defining the HotelBooking operation
First we must extend the process interface to create the operation that will be
used by the Staff activity. This operation defines the input and output messages
that will be used by the Staff activity. We will define the operation and messages
in the same interface WSDL that we have used for the process interface already.

1. Open NiceJourneyInterface.wsdl from folder NiceJourney/com/nicejourney in
the WSDL editor.

2. Add a new Port Type called StaffHotelReservation.

3. Add an operation to it called StaffHotelReservationOperation.

4. Add an input node to this operation.

5. Add an output node to this operation.

6. Right-click the input node and choose Set Message...

7. Select the Create a new message option and name it StaffHotelRequest.
252 WebSphere Business Integrator Server Foundation V5.1 Handbook

8. Click Finish.

9. Right-click the output node and choose Set Message....

10.Select the Create a new message option and name it StaffHotelResponse.

11.Click Finish.

12.Add the following parts to the StaffHotelRequest message (each should be of
type xsd:string):

– location
– checkinDate
– checkoutDate
– customerName

13.Add the following parts to the StaffHotelResponse message:

– reservationID
– price

14.Change the type of both parts from xsd:string to xsd:long.

15.The completed interface changes should look as shown in Figure 8-26.

Figure 8-26 Adding StaffHotelReservation to the NiceJourneyInterface.wsdl

16.Save and close the NiceJourneyInterface.wsdl file.

Adding the Staff activity
1. Open NiceJourney.bpel in the BPEL Editor.

2. Add a Staff activity inside the Reserve Hotel sequence and rename it to
Manual Hotel Booking.
 Chapter 8. Process choreographer: developing a complex process 253

3. Open the implementation properties and click Browse... to locate the
NiceJourneyInterface.wsdl file in folder NiceJourney/com/nicejourney.
Choose the StaffHotelReservation port type and click OK.

4. The Port Type and Operation values should automaticallly be set. Check that
they are StaffHotelReservation and StaffHotelReservationOperation.

5. Click New... to the right of Request to create a new variable and name it
StaffHotelRequest. Because you set the Partner Link and Operation already
this variable will be created with the correct message type automatically.

6. Click New... to the right of Response to create a new variable and name it
StaffHotelResponse. Because you set the Partner Link and Operation
already this variable will be created with the correct message type
automatically.

7. Save the process.

At this point there should be no errors in the workspace and one warning to
remind you to generate the deployment code.

8.6.4 Transformer Service activity
You may have noticed that the interface to the Staff activity defined the
StaffHotelRequest message and that this message has a part called
customerName. This part needs to be populated with the customer’s full name,
in other words a concatenation of the first and seconds names.

In the NiceJourney process we have created a variable called StaffHotelRequest
that we will pass as the request variable for the Staff activity. This variable must
be populated with the correct data. The customer’s name can be taken from the
NiceJourneyInput variable but this has it split across two parts - firstName and
lastName.

An Assign activity is frequently used for copying the value of variable parts
between variables. In this case we want to copy two parts of one message into
one part of another message. This requires a more advanced message
transformation.

We can use a Transformer service to perform such advanced message
manipulation. A Transformer service is also a re-usable service that we describe
in WSDL and it can therefore be used in multiple places within a process or even

Tip: If the StaffHotelReservation port type does not appear then you may
find that closing the NiceJourney.bpel file and then re-opening it will refresh
the list of Port Types.
254 WebSphere Business Integrator Server Foundation V5.1 Handbook

in another process. You should be careful to use Assign if possible however
because it is likely to perform better than a Transformer.

A Transformer also allows you to do much more complicated mappings, for
example combining multiple parts from multiple messages. Transformers use
XPath and eXtensible Style Language (XSL) transforms. Because the data
variables are defined by XML documents, XSL transformations allow you to
make any conversion between data variables

We show how to create a new Transformer service and place a transformer
activity in the process to call it:

1. Add a Transformer activity just before the Manual Hotel Booking Staff activity,
inside the Reserve Hotel sequence, and rename it to Map Customer Name.

2. Switch to the implementation tab for the transformer activity and select the
following values from the drop-down selection boxes:

– Request: NiceJourneyInput
– Response: StaffHotelRequest

3. Now that you have specified the input and output messages, note that the
New... button becomes enabled. Click this to launch the new transform
wizard, which will automatically know that you want to map between parts of
NiceJourneyInput, in order to set the parts fo StaffHotelRequest. Complete
the values as shown in Figure 8-27 on page 256. Click OK when you have
completed the dialog.
 Chapter 8. Process choreographer: developing a complex process 255

Figure 8-27 Creating a new transform

4. The new transformer file, MapCustomerNameTransformer.wsdl is opened in
the transformer editor, a special editor for WSDL files that describe transform
services.

Take a look around the editor. See on the left hand side is the input message,
in this case NiceJourneyInput, and on the right hand side is the output, in this
case StaffHotelRequest. It is possible to add additional input messages that
can be aggregated together to create the output message. You could add
more input messages by using the Transformer Editor → Add Input
Message option from the menu system. However, all of the input information
that we need in this case can be found in the single message,
NiceJourneyInput.

5. Drag the firstName part of NiceJourneyInput from the left of the editor and
drop it onto the customerName part of StaffHotelRequest.
256 WebSphere Business Integrator Server Foundation V5.1 Handbook

Figure 8-28 Creating the mapCustomerName transform

6. The editor will show the mapping in the bottom section as shown in
Figure 8-29. Notice that the output message is on the left in this section with
the input in the middle. On the right is an XPath Expression to show how the
firstName part is located within the input message using XPath.

Figure 8-29 Basic XPath expression

7. Perform similar drag and drops to map:

– NiceJourneyInput.city to StaffHotelRequest.location

– NiceJourneyInput.dateTimeDeparture to StaffHotelRequest.checkinDate

– NiceJourneyInput.dateTimeReturn to StaffHotelRequest.checkoutDate

8. At this point we still need to combine the NiceJourneyRequest.lastName part
with the first name. Drag and Drop the lastName part onto
StaffHotelRequest.customerName. Now, both first and last names are
being dropped onto customerName.

You will notice that the XPath Expression for the
StaffHotelRequest.customerName is now empty. This is because the editor
can no longer assume a simple copy of the data value between the input and
output parts. How should the two input parts provided be combined to create
this output part? We need to provide this information.

9. Click in the empty XPath Expression box for the part customerName until
you see the ... button appear as shown in Figure 8-30 on page 258. You may
have to click at least twice.
 Chapter 8. Process choreographer: developing a complex process 257

Figure 8-30 Customizing the MapCustomerName transformer

10.Click the ... button to open the details of the transformation.

Note that you can click any of the values in the Input Message or XPath
Expression columns of the editor and then alter their settings from here.

You will see the transformation details and notice that the default action has
been to perform a join between the two input variables. We want to pass the
customer name in the format “lastname, firstname”. This means we need to
join them with a “, “ delimeter.

11.Click /NiceJourneyInput/lastName and then click the up arrow to move the
lastName to the beginning.

12.Click the Delimeter field to the right of /NiceJourneyInput/lastName and
enter “, “ without the quotation marks. Then click away from the entry field.
The results are shown in Figure 8-31. Notice that there is an Example which
shows how the two parts are to be joined, using their XPath references. Click
Finish.

Figure 8-31 Creating the join transform

13.In the transformer editor you will now see the join expression. Review the
other XPath Expressions to see examples of a ‘Move’ expression which
makes a simple copy of a parts value.
258 WebSphere Business Integrator Server Foundation V5.1 Handbook

14.Save the MapCustomerNameTransformer.wsdl file and close the transformer
editor

15.Save the NiceJourney.bpel file and close the file.

The Reserve Hotel part of the process has now been completed. We modeled
this as a manual step that required a person to take the hotel requirements,
manually make a booking, and then respond to the business process. We saw
how simple it was to add such an interaction to the process.

We also used a Transformer service to perform some message mapping
intelligence above and beyond the capabilities offered by an Assign activity. This
was important because the Staff activity interface used a different format for the
customer name - a single part instead of two separate ones for first and last
names.

8.7 Bill Customer implementation
This section describes how we implemented the Bill Customer section of the
NiceJourney process.

In order to bill the customer, we will first determine the type of card that the
customer supplied, allowing either a credit or debit card type. We will use a
Switch activity to switch behavior depending upon the card type and will call a
different payment service for each type of card that was used. The payment
services will then validate the card number and debit the account, creating errors
if there is a problem with this step.

In fact, there are a number of possible errors within the Bill Customer section so
we will build more comprehensive error handling logic than that used in 8.3,
“Validation implementation” on page 212.

As a result of an error, the process may be unable to bill the customer
successfully. This would constitue a failure of the overall NiceJourney booking
process and in this scenario, we will reverse the booking of the hotel, car and
flight because they will not be required if payment fails.

In order to reverse the booking procedures we will use a feature of WebSphere
Process Choreographer known as Compensation. A service invocation can be

Tip: We found that if you did not set every part of the output message
when using the Transformer then an exception would be thrown at runtime.
You should ensure that every part of the output message is set to some
value by your transformer in order to avoid this problem.
 Chapter 8. Process choreographer: developing a complex process 259

defined to have an associated compensating service. This compensating service
can then be used to reverse the work done when the service was originally
invoked, In some scenarios, the compensating action might not be a reversal of
the forward process but may be some alternative action that compensates for
what was done. For this reason, the term Compensation is more appropriate and
will be used instead of reverse in the remainder of this chapter. An example
would be the mailing of a letter to a customer. This cannot be reversed but it can
be compensated for by mailing a subsequent letter advising to ignore the first
one.

Our implementation demonstrates the following activity types:

� Switch
� Assign
� Invoke
� Throw

We will replace the empty Bill Customer activity from Figure 8-2 on page 205,
with the set of activities shown in Figure 8-32. However, unlike for the other
sections, we cannot start implementing Bill Customer from this basic outline
because it does not have Reserve Hotel, Reserve Flight or Reserve Car
implemented and we need these to be complete so that we can configure
compensation for them.

Figure 8-32 Completed Bill Customer section of the NiceJourney process
260 WebSphere Business Integrator Server Foundation V5.1 Handbook

8.7.1 Preparation
Because we will be using compensation in this section of the chapter we need to
have the forward processing implementations for Reserve Hotel, Reserve Car
and Reserve Flight already completed. We will then configure the compensating
actions necessary to reverse these reservations when a billing failure occurs.

Therefore, we did not start the Bill Customer implementation with the outline
process shown in Figure 8-2 on page 205. Instead, we first implemented the
three reservation sections as described in 8.4, “Reserve Flight implementation”
on page 222, 8.5, “Reserve Car implementation” on page 226 and 8.6, “Reserve
Hotel implementation” on page 249.

You can either:

� Follow each of these sections and implement them sequentially, building your
NiceJourney process until all three implementations are added.

� Import our solution that contains all three implementations already.

If you intend to build each implementation section sequentially then we suggest
that you back up your projects as you progress by exporting the NiceJourney
project as a Project Interchange Zip file. For more information about Project
Interchange Zips see , “Project Interchange archive import/export” on page 562.

If you choose to start with our prepared solution, import the Project Interchange
zip, ComplexNiceJourneyReserveFlightCarHotelSolution.ic.zip

Once you have either prepared the workspace yourself, or imported our solution
workspace, you are ready to complete the Bill Customer implementation.

8.7.2 Switch
The payment can be made by two types of card, credit or debit. We want to
perform different steps in the process depending upon which card is used so that
we can invoke a different payment system partner for each type of card. The
ideal activity type is the Switch. This activity enables choosing one of a number
of different possible paths in the process.

A Switch activity is similar to a case statement in many programming language.
In fact, when you configure a Switch activity, you use the Add Case option to
create different possible paths. A Switch activity will execute one, and only one,
of these possible paths.

We want to choose different paths based upon the card type that was specified.
The following steps show how to add the Switch to the process and then how to
 Chapter 8. Process choreographer: developing a complex process 261

specify the conditional logic that will determine which of the different cases is
followed.

1. Open the NiceJourney.bpel process in the editor.

2. Right-click the Bill Customer activity and select Change Type → Switch.

3. Right-click the Switch activity and choose Add Case

This creates the first case. Each case has its own flow to specify what
processing to perform if that case is the one that executes. Therefore, the
container for the new case is a flow.

4. Select the new case and change its display name in the Description
properties to Credit Card.

5. Add another case to Bill Customer switch and change its display name to
Debit Card.

6. Right-click the Bill Customer Switch activity again but this time choose Add
Otherwise.

We are using the otherwise case for when the card type is neither credit or
debit. We will treat this as an error case and configure it to reflect this.

Now that we have the two cases for the different card types, we have to set
the condition for when each case will evaluate to true.

7. Select the Credit Card case flow and change to the Condition properties.
Select Visual Expression.

8. Use the Visual Expression editor in a similar way to that described in
“Conditional link” on page 246 to build the following condition:

NiceJourneyInput.cardType.equalsIgnoreCase("credit")

9. Select the Debit Card case flow and change its condition, again using the
Visual Expression builder but this time specifying:

NiceJourneyInput.cardType.equalsIgnoreCase("debit")

10.Save the process. The completed Switch should look as shown in Figure 8-33
on page 263.

Note: A final subtlety with the Switch activity is that when more than one case
evaluates to true, the first one will be chosen and the other(s) will not be
executed.
262 WebSphere Business Integrator Server Foundation V5.1 Handbook

Figure 8-33 Completed Bill Customer Switch activity

At this point we have set up the Switch activity framework for billing the customer
but now we need to perform the correct processing for each different type of
card. We need to invoke a different payment processing service for each card
type and also handle any errors that may be thrown by those services.

8.7.3 Import the Payment Processing Services
We created some simple services that simulate the processing of a card
payment. These services must be imported into the workspace before they can
be configured as partner links and then invoked from within the NiceJourney
process.

These services are supplied in a Project Interchange Zip file. For more
information about Project Interchange Zips see , “Project Interchange archive
import/export” on page 562.

1. Import the Project Interchange zip, BillCustomerPaymentPartners.ic.zip.

2. Check that the Payment Partners project now exists in the workspace.

Tip: We found it useful to collapse the sequences for Reserve Car, Reserve
Flight and Reserve Hotel while implementing Bill Customer so as to reduce
the amount of busy canvas space in the BPEL Editor at one time. You can do
this by clicking the - (minus) sign at the root of any sequence structured
activity.
 Chapter 8. Process choreographer: developing a complex process 263

Figure 8-34 Payment Partner Services Implemenations project

Explore the implementation of the credit and debit card processing services.
They are simple Java classes but we also created them to return exceptions
when the payment processing was invalid. We will need to deal with these
exceptions from within the process when we invoke the services.

8.7.4 Creating the partner links
Now that the services are available in the workspace we will create partner links
in NiceJournet.bpel to invoke them. We will add the Java files directly and have
WebSphere Studio Application Developer Integration Edition therefore
auto-generate the Web services definition of the them.

1. Drag and drop the CreditCardPayment.java file from
PaymentPartners/com/nicejourney/payments/credit onto the
NiceJourney.bpel canvas. After a few seconds of processing the
CreditCardPayment partner link will appear.

2. Repeat the above step but this time drag and drop DebitCardPayment.java
from its package location to create the DebitCardPayment partner link.

3. Save the process.

8.7.5 Credit Card case
Now we will create the processing logic for the Credit Card case of the Bill
Customer Switch activity.

Invoke
1. Add an Invoke activity inside the Credit Card case flow and rename it to

Credit Card Payment.

2. Set the Partner Link in its Implementation properties to CreditCardPayment.
The Port Type and Operation will automatically be selected.

3. Click New... to the right of Request to create a new variable and name it
CreditCardPaymentRequest. Because you set the Partner Link and Operation
already this variable will be created with the correct message type
automatically.
264 WebSphere Business Integrator Server Foundation V5.1 Handbook

4. Click New... to the right of Response to create a new variable and name it
CreditCardPaymentResponse. Because you set the Partner Link and
Operation already this variable will be created with the correct message type
automatically.

Assign
1. Insert an Assign activity before the new Invoke activity and rename it to prep

Credit Card Payment.

2. Be sure to create the necessary control link from the Assign to the Invoke.

3. Use the Assign activity to assign the following parts from the
NiceJourneyInput variable to the CreditCardPaymentRequest variable:

– cardNumber to cardNumber
– firstName to firstName
– lastName to lastName

4. Save the process. This completes the Credit Card payment case which
should look as shown in Figure 8-35.

Figure 8-35 Completed Credit Card Case

8.7.6 Debit Card case
Now we will create the processing logic for the Debit Card case of the Bill
Customer Switch activity. It is very similar to the Credit Card case.

Invoke
1. Add an Invoke activity inside the Debit Card case flow and rename it to Debit

Card Payment.

2. Set the Partner Link in its Implementation properties to DebitCardPayment.
The Port Type and Operation will automatically be selected.
 Chapter 8. Process choreographer: developing a complex process 265

3. Click New... to the right of Request to create a new variable and name it
DebitCardPaymentRequest. Because you set the Partner Link and Operation
already this variable will be created with the correct message type
automatically.

4. Click New... to the right of Response to create a new variable and name it
DebitCardPaymentResponse. Because you set the Partner Link and Operation
already this variable will be created with the correct message type
automatically.

Assign
1. Insert an Assign activity before the new Invoke activity and rename it to prep

Debit Card Payment.

2. Be sure to create the necessary control link from the Assign to the Invoke.

3. Use the Assign activity to assign the following parts from the
NiceJourneyInput variable to the DebitCardPaymentRequest variable:

– cardNumber to cardNumber
– firstName to firstName
– lastName to lastName

4. Save the process. This completes the Debit Card payment case which should
look as shown in Figure 8-36.

Figure 8-36 Completed Debit Card Case

8.7.7 Unknown Card Otherwise case
When an unknown card type is encountered we will not be able to process the
payment for the NiceJourney booking that we have made and this will therefore
result in a failure. It would be more realistic to have checked the card type prior to
266 WebSphere Business Integrator Server Foundation V5.1 Handbook

making the reservations but we will use it here to illustrate a possible failure in
payment processing.

We will configure an unknown card type to throw a fault within the process. Later
we will configure the error handling to deal with this scenario.

We also want to audit any failures due to an unknown card type. We will use a
simple Java snippet activity to do this but the auditing could be implemented as a
separate invokable service if necessary.

Audit
1. Add a Java snippet inside the Otherwise case and rename it to Audit Unknown

Card.

2. Add the following Java code to its Implementation properties:

System.out.println("Unknown Card Type Passed To Billing. Card Type: "+
getNiceJourneyInput().getCardType());
System.out.println("PAYMENT FAILED ");

3. Save and close the NiceJourney.bpel file.

Throw
We are going to throw a fault that will indicate that an exception has happened in
the billing. We will define this fault ourself and must therefore define its message
format.

In this way, you create your own user-defined faults and then throw and catch
them as appropriate in your process.

1. Open NiceJourneyInterface.wsdl in the WSDL editor.

2. Use the Graph view of the WSDL editor to create a new message named
BillingException with a single part named detail, of type xsd:string. See
Figure 8-37.

Figure 8-37 Definition of the BillingException message

3. Save and close NiceJourneyInterface.wsdl.

4. Open NiceJourney.bpel in the BPEL Editor again.

Now that the message type has been defined we will add a Throw activity and
use our message type for the fault variable that the Throw will use.
 Chapter 8. Process choreographer: developing a complex process 267

5. Add a Throw activity to the Otherwise case of the Bill Customer Switch
activity. Rename it to Unknown Billing Exception. Do not create any control
links at this point.

6. Switch to the Fault properties for the Throw activity and select User-defined.

7. Enter BillingException for the Fault name.

8. Click New... to create a new variable called UnknownBillingException.

9. Select the newly created UnknownBillingException variable at the bottom
of the variables list (in the top left of the canvas).

10.Switch to its Message properties and notice that it is defined by a bpelFault
message - a supplied built-in type that carries information about process
execution errors. We want to use our own message definition instead.

11.Click Browse ... and locate
NiceJourney/com/nicejourney/NiceJourneyInterface.wsdl and then choose
the BillingException message in the drop-down selection. Click OK.

12.Finally add a control link between the Audit Java snippet activity and the
Throw activity as shown in Figure 8-38 on page 269.

Note: Any fault variable that you define in this way will automatically be
created. When creating it the BPEL Editor needs to decide what message
definition to use for the variable.

Because you are free to define your own fault message definitions (as we
have just done), the editor does not know what message definition to use.
Therefore, a default supplied definition is used, called bpelFault. This fault
is used for errors specific to the execution of a BPEL process, not your own
processes. If you want to work with potential errors that might happen in
the BPEL runtime environment, consider using the bpelFault message
type.

More typically, you will want to provide your own error information, often
with business relevant information. In this example, we are going to alter
the default message type that UnknownBillingException has been created
with, and instead use our own definition.
268 WebSphere Business Integrator Server Foundation V5.1 Handbook

Figure 8-38 Completed Unknown Card Case

13.Save and close the NiceJourney.bpel process.

8.7.8 Fault handling
In this section we will be creating Fault Handlers that will control what happens in
the events of faults occuring in the process execution. We have already
deliberately created our own Throw activity and we will use a Fault Handler to
catch this fault.

In addition, faults can come directly from an activity without being explicitly
thrown by a deliberate Throw activity. For example, the credit and debit card
payment partners can both throw a fault if payment processing fails.

Fault handlers are associated with activities within the process and are defined to
handle certain faults. A given Fault Handler will be invoked whenever a matching
fault type occurs within the activity it is associated with.

Because many activities are actually containers for other activities (for example a
flow, sequence, pick or switch) then the Fault Handler applies to all activites
contained within the container. The term scope is useful when describing what
set of activities a Fault Handler applies to. For example, a Fault Handler defined
on a Switch activity has a scope which contains all activities within that switch
construct.

Scopes are also nested. Whenever a fault occurs in an activity, the WebSphere
Process Choreographer runtime checks to see if there is a Fault Handler for that
scope. If there isn’t then it will pass it up to the next enclosing scope, which itself
may or may not have a Fault Handler. This proceduce is then repeated all the
way up to the scope of the process itself.
 Chapter 8. Process choreographer: developing a complex process 269

We will use Fault Handlers with different scopes to catch the faults we are
interested in. We will even apply a Fault Handler to the entire process so that we
can catch any fault condition that occurs in any of the enclosed scopes.

Credit card
The Java implementation of the Credit Card Payment system uses a method
called processPayment. The method signature for this method shows that it can
throw a Java exception called CreditCardException.

WebSphere Process Choreographer is based upon Web services and uses XML
to define its variables. These variables are used for input and output when
invoking services. In addition, services can return errors using faults - the name
given to special return messages that represent an error scenario. The data type
of a fault is defined in the same way as the input and output - by using XML
message definitions within a WSDL file.

The Java credit card payment partner was added by dragging and dropping the
Java class onto the canvas. This is a quick way of firstly exposing the Java class
as a Web service and secondly adding it to the process canvas. WebSphere
Studio Application Developer Integration Edition has automatically created a
WSDL definition that is equivalent to the Java class but has made it easier by
doing this automatically.

If we want we can inspect the Web service definition that was created by looking
at the generated WSDL file that represents the service. For the credit card
payment we would see that the service defines an input, an output, but also a
fault. This fault is the WSDL representation for what is represented in Java as the
CreditCardException class.

What this means is that when we invoke the credit card payment partner, we
might receive a fault message reply instead of the successful output. We will add
a Fault Handler that is designed to catch such a fault and to take action on it.

Adding the Fault Handler
1. Select the Credit Card section of the Bill Customer switch and click the Add

Fault Handler icon as shown in Figure 8-39 on page 271. Be sure to select
the complete flow and not one of the individual activities that are part of it.
270 WebSphere Business Integrator Server Foundation V5.1 Handbook

Figure 8-39 Adding a Fault Handler to the Credit Card section

This causes a Fault Handler to be associated with the Credit Card section
and the Fault Handler is indicated by a small orange exclamation mark icon in
the top right corner of the flow. By default, the Fault Handler itself is not
actually shown on the canvas when it is first created.

2. We want to edit the Fault Handler so first we need to display it. There are two
ways of doing this. Either double-click the small icon in the top right corner of
the Credit Card case or alternatively right-click the whole flow and select
Show Fault Handler. The Fault Handler is displayed as an empty structure
as shown in Figure 8-40.

Figure 8-40 Fault Handler (circled to the right) and Fault Handler icon (circled left)

3. Select the Fault Handler and then use the speech bubble icons to select Add
Catch. Alternatively, right-click and select it from the pop-up menu instead.

Important: In fact, it is only possible to display one Fault Handler at a time
on the canvas. If you try to show a Fault Handler when another one is
already displayed, the first one will automatically close when the new one
is displayed.
 Chapter 8. Process choreographer: developing a complex process 271

This creates a catch that can be configured to catch certain types of fault
occuring within the Fault Handler’s scope. Alternatively you can add Catch All
to catch all faults within the scope, irrespective of the actual type of the fault.

4. Select the new Catch block and complete the information :

Fault type: User-defined

Namespace:
http://nicejourney.com/comnicejourneypaymentscreditCreditCardPayment
NiceJourneybpel/

Fault Name: CreditCardException

5. Click New ... to create a fault variable and name it CreditCardException.

6. Select the new CreditCardException variable from the variables list at the
top left of the canvas.

7. On its message properties page, click Browse ... and locate the WSDL file
that was generated for the Java credit card payment system. This file is
located at

Note: Once a Catch has been created it is necessary to define the Fault
which you are trying to catch. There are lots of acceptable combinations for
defining a catch:

� faultname and no variable
� typed faultVariable but no faultName
� fully specified with faultName and faultVariable

When a fault occurs, it will be matched by the Catch which most
specifically matches it. The more qualified a Catch, the more you will know
why it has been thrown. If no match is found then it will go to the Catch All
of the Fault Handler.

Of particular importance is the Namespace definition which must be
correctly set to the namespace of the fault message type. Incorrectly
setting the Namespace is a frequently encountered problem that leads to
the Catch All being executed, rather than the intended Catch that has been
incorrectly specified.

Note: We want to catch the specfic fault that is thrown by the Credit Card
payment system. Therefore we specify the exact same namespace that is
used to define the fault on the credit card system. This was auto-generated
when we dragged and dropped the Java class onto the canvas. We must
also set the fault name to match that defined in the same WSDL file.
272 WebSphere Business Integrator Server Foundation V5.1 Handbook

NiceJourney/com/nicejourney/comnicejourneypaymentscreditCreditCardPa
ymentNiceJourneybpel.wsdl . Select the CreditCardException message
definition shown in Figure 8-41. Click OK.

Figure 8-41 Changing the CreditCardException variable type

Completing the Fault Handler
We will use the Fault Handler to audit that a credit card payment has failed and
then we will throw a new fault. This new fault will indicate that a more generic
failure has occured - the billing process as a whole has failed. (We have already
used this technique when dealing with the unknown card type). This fault will
then be handled by another Fault Handler that we will create later on the
enclosing Bill Customer scope.

1. Add a Java snippet inside the Fault Handler, naming it Audit CreditCard
Exception and adding the following code for its Implementation:
 Chapter 8. Process choreographer: developing a complex process 273

System.out.println("Credit Card Payment Failure: " +
getNiceJourneyInput().getCardType() + " " +
getNiceJourneyInput().getCardNumber());

This will write the invalid card details to the system log for auditing purposes.

2. Add a Throw activity and rename it to Credit Billing Exception.

3. Change its Fault properties to:

Fault type: User-defined

Namespace: http://nicejourney.com/NiceJourney

Fault Name: BillingException

4. Click New ... and name the new variable CreditBillingException.

We can re-use the message type that we used when we threw an exception
earlier for an unknown card. However, we must create another variable for
this specific Throw activity, even though the variable will share the message
definition with the UnknownBillingException variable we created earlier.

5. Select the new CreditBillingException variable from the variables list and
Browse to change its Message definition to BillingException as defined in
NiceJourney/com/nicejourney/NiceJourneyInterface.wsdl. Click OK.

6. Return to the Fault Handler and add an Assign activity and rename it to prep
CreditCard Exception. Use it to copy the reason part of the
CreditCardException variable to the detail part of the
CreditBillingException as shown in Figure 8-42.

Figure 8-42 Assigning the data from CreditCardException to CreditBillingException

7. Finally add control links so that the Java snippet connects to the Assign which
then connects to the Throw as shown in Figure 8-43 on page 275.
274 WebSphere Business Integrator Server Foundation V5.1 Handbook

Figure 8-43 Completed Fault Handler for faults occuring in the Credit Card scope

8. Save and close the NiceJourney.bpel process.

We have now completed a Fault Handler that will catch any faults that are thrown
by failures in the Credit Card payment partner. The Fault Handler will log the
credit card failure and credit card details before throwing a more generic fault to
indicate that billing has failed. At a higher scope we will handle all billing failures
(credit card problem, debit card problem or unknown card) using a shared fault
message type and Fault Handler.

Debit Card
We will create a very similar Fault Handler for the debit card payment as we used
for the credit card payment. Therefore the description of the steps we took will be
briefer in this section than the previous one.

Adding the Fault Handler
1. Open NiceJourney.bpel in the BPEL Editor.

2. Select the Debit Card section of the Bill Customer switch and click the Add
Fault Handler. Be sure to select the complete flow and not one of the
individual activities that are part of it.

3. Right-click the whole flow and select Show Fault Handler.

4. Select the Fault Handler and then use the speech bubble icons to select Add
Catch. Alternatively, right-click and select it from the pop-up menu instead.

5. Select the new Catch block and complete the information :

Fault type: User-defined
 Chapter 8. Process choreographer: developing a complex process 275

Namespace:
http://nicejourney.com/comnicejourneypaymentsdebitDebitCardPaymentNi
ceJourneybpel/

Fault Name: DebitCardException

6. Click New ... to create a fault variable and name it DebitCardException.

7. Select the new DebitCardException variable from the variables list at the top
left of the canvas.

8. On its Message properties page, click Browse ... and locate the WSDL file
that was generated for the Java debit card payment system. This file is
located at
NiceJourney/com/nicejourney/comnicejourneypaymentsdebitDebitCardPaym
entNiceJourneybpel.wsdl . Select the DebitCardException message
definition and click OK.

Completing the Fault Handler
The content of the Fault Handler will be very similar to that used for the Fault
Handler on the Credit Card payments scope.

1. Add a Java snippet inside the Fault Handler, naming it Audit DebitCard
Exception and adding the following code for its Implementation:

System.out.println("Debit Card Payment Failure: " +
getNiceJourneyInput().getCardType() + " " +
getNiceJourneyInput().getCardNumber());

This will write the invalid card details to the system log for auditing purposes.

2. Add a Throw activity and rename it to Debit Billing Exception.

3. Change its Fault properties to:

Fault type: User-defined

Namespace: http://nicejourney.com/NiceJourney

Fault Name: BillingException

4. Click New ... and name the new variable DebitBillingException.

Again, we can reuse the message type that we used when we threw an
exception earlier for an unknown card. However, we must create another
variable for this specific Throw activity, even though the variable will share the
message definition with the UnknownBillingException and
CreditBillingException variables we created earlier.

5. Select the new DebitBillingException variable from the variables list and
Browse to change its Message definition to BillingException as defined in
NiceJourney/com/nicejourney/NiceJourneyInterface.wsdl. Click OK.
276 WebSphere Business Integrator Server Foundation V5.1 Handbook

6. Return to the Fault Handler and add an Assign activity and rename it to prep
DebitCard Exception. Use it to copy the reason part of the
DebitCardException variable to the detail part of the DebitBillingException.

7. Finally add control links so that the Java snippet connects to the Assign which
then connects to the Throw as shown in Figure 8-44.

Figure 8-44 Completed Fault Handler for faults occuring in the Debit Card scope

8. Save and close the NiceJourney.bpel process.

Bill Customer
There are now Throw activities in three places within the Bill Customer Switch
activity:

� Fault Handler for the Credit Card
� Fault Handler for the Debit Card
� Otherwise case of Bill Customer

Each one of these throw activites throws a fault of message type:
BillingException, although each one has its own fault variable of this type. We
will now create a Fault Handler on the Bill Customer activity to catch all of these
faults and handle the scenario of a billing failure in general.

Adding the Fault Handler
1. Select the Bill Customer activity and add a Fault Handler to it.

2. Display the Fault Handler and select Add Catch.
 Chapter 8. Process choreographer: developing a complex process 277

3. Set the fault properties for the Catch as follows:

Fault type: User-defined

Namespace: http://nicejourney.com/NiceJourney

Fault Name: BillingException

4. Click New ... and name the new variable GeneralBillingException.

5. Select the new GeneralBillingException variable from the variables list and
Browse to change its Message definition to BillingException as defined in
NiceJourney/com/nicejourney/NiceJourneyInterface.wsdl. Click OK.

Completing the Fault Handler
We will use a very similar style Fault Handler to the ones already created. Firstly
we will audit the failure using a simple Java snippet and then we will throw the
exception to a higher scope. It could be possible that the Fault Handler would
have the ability to handle the error and allow the process to continue. However,
in our process a Billing Exception is regarded as a fatal error and so must be
re-thrown as a process failure fault.

We will then use this fault later in the process development to trigger automatic
compensation which will undo all of the work that had already been committed
when the failure occured.

1. Add a Java snippet inside the Fault Handler, naming it Audit Billing
Exception and adding the following code for its Implementation:

System.out.println("BILLING EXCEPTION");

This will log the billing exception for auditing purposes.

2. Add a Throw activity and rename it to NiceJourney Failure.

3. Change its Fault properties to:

Fault type: User-defined

Namespace: http://nicejourney.com/NiceJourney

Fault Name: NiceJourneyFailure

4. Click New ... and name the new variable NiceJourneyException.

5. Select the new NiceJourneyException variable from the variables list and
Browse to change its Message definition to NiceJourneyException as
defined in NiceJourney/com/nicejourney/NiceJourneyInterface.wsdl. Click
OK.

Note: The Fault Handler appears to the right of the activity and may
therefore be hidden from view. Scroll to the right of the canvas to see it.
278 WebSphere Business Integrator Server Foundation V5.1 Handbook

6. Return to the Fault Handler and add an Assign activity and rename it to prep
NiceJourney Exception. Use it to make the following three copies between
parts of variables:

GeneralBillingException: detail → NiceJourneyException: reason

NiceJourneyInput: firstName → NiceJourneyException: firstName

NiceJourneyInput: lastName → NiceJourneyException: lastName

7. Finally add control links so that the Java snippet connects to the Assign which
then connects to the throw activity as shown in Figure 8-45.

Figure 8-45 Completed Fault Handler for Bill Customer scope

8. Save and close the NiceJourney.bpel process.

NiceJourney process
There is one throw activity inside the Fault Handler for the Bill Customer Switch
activity. We want to catch this fault when it is thrown. Currently there are no Fault
Handlers defined that will catch it so we need to create one at a higher scope.
We will use the top level Fault Handler for the entire process to do this.

Adding the Fault Handler
1. Select the root of the entire process which is labeled NiceJourney and add a

Fault Handler to it, either using the icon or the pop-up menu as before.

2. Display the Fault Handler and select Add Catch.

3. Set the fault properties for the Catch as follows:

Fault type: User-defined

Namespace: http://nicejourney.com/NiceJourney
 Chapter 8. Process choreographer: developing a complex process 279

Fault Name: NiceJourneyFailure

4. Click New ... and name the new variable NiceJourneyFailed.

5. Select the new NiceJourneyFailed variable from the variables list and
Browse to change its Message definition to NiceJourneyException as
defined in NiceJourney/com/nicejourney/NiceJourneyInterface.wsdl. Click
OK.

Completing the Fault Handler
If a fault reaches the top level of the process then we need to consider what the
final action should be. Because the NiceJourney process is an interruptible one,
if a failure occurs then it is likely that some work will already have been
committed. In this scenario we want to use compensation to undo those
changes.

We will configure compensation in the next section but before doing this we must
add a manual compensation for the hotel booking. This is because the hotel
booking was done through a Staff activity and compensation does not support
staff activities.

We will use this Fault Handler to manually undo the hotel booking. The Fault
Handler will not do anything else and therefore the fault will exit the handler and
cause the complete process to end in a fault. This will be the trigger for the
compensation of all the other steps.

1. First import the implementation of the compensating service. In our case we
used a very simple Java class to demonstrate the functionality.

2. Import Compensator.java from the ComplexProcess directory of the
additional material and into folder NiceJourney/com/nicejourney/

3. Drag and drop the Compensator.java file from the services view onto the
NiceJourney.bpel editor canvas.

Notice that a special type of partner link is created with the Java symbol used
as the icon. This indicates that this is a partner implemented as a Java
program. Select this partner link and note that the implementation is the Java
class, in this case Compensator. Locate the generated WSDL definition of the
partner in
NiceJourney/com/nicejourney/comnicejourneyCompensatorNiceJourneybpel.
wsdl.

4. Add an Invoke activity inside the new Fault Handler and rename it to Cancel
Hotel.

5. Select the Cancel Hotel activity and go to the implementation editor. Set the
Partner Link to Compensator and the operation to cancelHotel.
280 WebSphere Business Integrator Server Foundation V5.1 Handbook

6. From the drop-down selection box, set the request variable to
StaffHotelReponse - we will use the reply from the booking invocation as the
input to the cancellation service. This variable contains the reservation ID so
will be enough information to cancel the hotel.

7. Create a new Response variable using the New... button to ensure that the
variable type is set automatically. Name it CancelHotelResponse. The Fault
Handler is now complete and should look like that shown in Figure 8-46.

Figure 8-46 Completed Fault Handler for NiceJourney process scope

8. Save and close the NiceJourney.bpel process.

8.7.9 Compensation
The process is now configured so that a payment failure will be handled, logged
and then re-thrown to the parent scope for the whole process. The Fault Handler
at this point will cancel the hotel booking.

Inside this Fault Handler we do not do anything to end the process gracefully so
the fault propogates through, resulting in failure of the overall process. This will
trigger any compensation we have configured.

If the payment failure has caused us to end the process in failure then we will
want to cancel both the flight and the car (as well as the hotel we already
cancelled). In this section we show how to configure the compensation of these
two services.

Compensation allows us to select another WSDL described service that is
associated with an activity. If that activity has already completed when the
process ends in failure, the associated compensation service will be called.
 Chapter 8. Process choreographer: developing a complex process 281

In our case, if the payment fails then the flight and car services will be called in
the forward direction already. Compensation will automatically call the associated
compensating services to cause a reversal of this work.

Flight compensation
We will configure a simple Java service to perform the flight cancellation that gets
triggered by compensation.

1. Locate the Reserve Flight sequence and then find the Invoke Flight
Partner activity inside the sequence.

2. Select the activity and switch to its Compensation properties.

3. Change the Partner Link to FlightBookingSystem, the operation to
cancelReservation, and select FlightBookingRequest from the drop-down
list of input variables.

The compensation is now set to call the service that is implemented by the Flight
Booking System Java class, using method cancelReservation.

Car compensation
The cancellation of the car booking is also implemented by a simple Java class
that writes to the system log. In a production system this would probably remove
some entry from a database.

1. Locate the Reserve Car sequence and then find the Invoke Car Partner
activity inside the sequence.

2. Select the activity and switch to its Compensation properties.

3. Change the Partner Link to Compensator, the operation to cancelCar, and
select BookCarRequest from the drop-down list of input variables.

4. Save and close the process.

8.8 Testing
We have now completed a travel agency process that processes an incoming
request and books a hotel, car and flight. It then calls payment services that
simulate the payment from a debit or credit card. If a failure occurs in the process
then this is audited and the compensation and fault handling ensures that all of
the bookings are cancelled.

You can test the process by generating the deployment code for
NiceJourney.bpel and BookCar.bpel. Then use the business process Web client
to initiate the process and interact with the Book Hotel Staff activity.
282 WebSphere Business Integrator Server Foundation V5.1 Handbook

You may wish to import the final solution directly by using our completed
workspace, supplied as a project interchange zip file called
NiceJourneyComplete.zip.

8.9 Problem determination and tips
While working with WebSphere Studio Application Developer Integration Edition
you may find the following tips and problem determination aids useful.

8.9.1 How to delete generated deployment code
Sometimes you will want to completely delete the generated deployment code
for a process. If you have made major changes since the previous generation of
deployment code then this can be a good idea because some of old generated
code will not be removed upon re-generation.

There are two useful techniques for achieving this quickly. Either

� Delete the entire generated EAR project and its modules, taking care to
exclude your services project from the deletion

� Delete each individual generated module project except your services project

Deleting EAR project but preserve services projects
If the generated EAR project only contains deployment code in support of the
process then you can delete this entire project and the supporting Web and EJB
modules that it contains. You must be careful however to not delete the services
projects that contain your business processes.

1. Switch to the J2EE Hierarchy view and expand Enterprise Applications to
display the EAR project.

It will be called <ServiceProjectName>EAR where <ServiceProjectName> is
the name of the service project that was used to create this generated code.

2. Select this project and press Delete.

3. Select the Also delete module and utility Java projects option and make
sure both of the options are checked.

4. Click the Details >> button to display the list of projects.

5. Carefully de-select the projects that contain your processes. Leave the
generated projects checked.

6. Click OK.

7. Choose to also delete the contents from the file system to complete the
deletion.
 Chapter 8. Process choreographer: developing a complex process 283

8. Re-generate your code as necessary.

Deleting each individual generated project
An alternative method is to delete each of the module projects and EAR project
separately. In this method, you have to opt to include each project in your
deletion, rather than to exclude each one from a deletion. The end result is the
same:

1. Switch to the package explorer.

2. Select (multi-select if you like) each generated project and then click Delete
for each one (or all in one go).

The generated projects will be called <ServiceProjectName>Web,
<ServiceProjectName>EJB, <ServiceProjectName>EAR where
<ServiceProjectName> is the name of the service project that was used
when generating the code.

3. For each deletion, also select to delete the contents from the file system.

8.9.2 Forgetting to create tables and datasources
When testing the process, it is important to remember to select the Create
Tables and Datasources option before starting the server. Failure to do this will
result in an exception when attempting to execute the process. The console log
will show lots of errors about missing tables.

Fix this by stopping the server and choosing the Create Tables and Datasources
option (it can only be done with the server stopped). This might fail the first time
because the tables will be corrupted by the previous attempt to use the server. If
the message is not free of errors, simply repeat the Create Tables and
Datasources step. On the second attempt there should be no errors. You can
now start the server and test your process.

8.9.3 Type mapping - primitive and complex types
Because WebSphere Process Choreographer uses XML to describe all variable
types (either in a separate XSD file or embedded within a WSDL file) then it is
important to consider mapping data to and from XML.

Web services development is easier when done ‘top-down’ which means
creating the interface first, including the data type definitions in XML. The service
is then implemented. When developed bottom up, the implementation is already
done and a corresponding Web services interface must be generated to describe
it. This means describing the XML data types to represent the implementation.
For example, if the implementation is some kind of Java service then it will be
284 WebSphere Business Integrator Server Foundation V5.1 Handbook

necessary to define the service’s method signature in XML types that are
equivalent to the Java types.

For a top-down development (XML first) it is necessary to map the XML data
types you define into Java types. For a bottom-up approach to developing each
service, the Java types must be mapped to XML types.

WebSphere Process Choreographer uses the Web Services Invocation
Framework (WSIF) to invoke Web services at runtime. WSIF defines mappings
between Java and XML types and these mappings should be used when
developing the services.

We recommend to be aware of round-tripping issues. Round-tripping refers to
mapping a Java type to its XML type and then back to Java (or XML to Java to
XML). For some mappings, the end result is not the same as the start point and
we recommend that you avoid using any XML or Java types that do not have
round-tripping.

We also recommend that you avoid mappings that are different in WSIF than in
the emerging JAX-RPC technology. You can refer to the Help in WebSphere
Studio Application Developer Integration Edition for information about type
mapping issues with WSIF.

A complicated interface to a Web service can require XML complex types which
may require particularly sophisticated mappings and care should be taken to try
to minimise the complex type usage. As well as potential difficulties in mapping
between types, some areas of WebSphere Studio Application Developer
Integration Edition do not support complex types in full. For example, a variable
that is defined by a message using complex types cannot be fully manipulated by
an Assign activity. It also cannot be used within a Correlation Set alias.

Note: For further information about round-tripping refer to the following series
of developerWorks® articles:

http://www-106.ibm.com/developerworks/webservices/library/ws-tip-roundtri
p1.html
http://www-106.ibm.com/developerworks/webservices/library/ws-tip-roundtri
p2.html
http://www-106.ibm.com/developerworks/webservices/library/ws-tip-roundtri
p3.html
 Chapter 8. Process choreographer: developing a complex process 285

http://www-106.ibm.com/developerworks/webservices/library/ws-tip-roundtrip1.html
http://www-106.ibm.com/developerworks/webservices/library/ws-tip-roundtrip2.html
http://www-106.ibm.com/developerworks/webservices/library/ws-tip-roundtrip2.html
http://www-106.ibm.com/developerworks/webservices/library/ws-tip-roundtrip3.html
http://www-106.ibm.com/developerworks/webservices/library/ws-tip-roundtrip3.html
http://www-106.ibm.com/developerworks/webservices/library/ws-tip-roundtrip2.html
http://www-106.ibm.com/developerworks/webservices/library/ws-tip-roundtrip2.html

286 WebSphere Business Integrator Server Foundation V5.1 Handbook

Chapter 9. Process choreographer:
clients

There are several ways to start/access a process instance in WebSphere
Process Choreographer. Depending on the type of client you want to interact
with a process instance, you have two choices:

� Developing a standalone client which uses the BPE, J2EE- or SOA API to
interact with the process instance.

� Using the business process Web client shipped with WebSphere Studio
Application Developer Integration Edition and customizing its look and feel.

9

© Copyright IBM Corp. 2004. All rights reserved. 287

9.1 Standalone client
Implementing a standalone client is the most flexible way to access a process
instance; furthermore, it provides the highest degree of independence regarding
the GUI of your client.

Figure 9-1 shows the different layers involved in accessing/starting a process
instance.

Figure 9-1 Interacting with the business process

Each layer has a different level of abstraction. The most abstract one is the
WSDL layer; the Generic Process Choreographer API layer has the lowest level
of abstraction. A layer with a higer level of abstraction uses a layer with a lower
level of abstraction to interact with the process instance.

A standalone client can also directly use one of these layers to access a process
instance.

9.1.1 Invoking a business process using the Process
Choreographer API

The Process Choreographer API, also known as BPE API, is the most direct way
to interact with a process. As a result of this, clients built on this API have to be
changed if the business process is changed, even if the change is a minor one.

WSDL Interface

Façade EJB/JMS

Receive
Order

Check
Availability

Check Customer
Credit

OK? Process
Order

Cancel
Order

Yes

No

Process

Generic
Process

Choreographer
API

I

288 WebSphere Business Integrator Server Foundation V5.1 Handbook

The API is public but propriatery, which means that it is not commonly known by
J2EE developers; furthermore, once you start using the API, you also need to be
familiar with the WSIF API.

The BPE API provides a session bean, called the BusinessProcess bean. This
session bean exposes several methods that can be used to query the BPE
database. You call methods on this session bean to invoke the process with the
appropriate message. Note that you have to compose the message (instantiate
the WSIFMessage object) programmatically prior to invoking the BPE API. A
WSIFMessage object can consist of multiple parts. It is complicated to compose
the message parts programmatically, but this method of invoking processes
provides very tight coupling with the BPE API and much more control. This may
or may not be necessary when invoking a Business Process.

Because the BPE API is the most direct way to interact with the process
instance, it provides calls which cannot be performed from the more abstract
layers above. The documentation (Javadoc) of the BPE API can be found at the
WebSphere InfoCenter at:

http://publib.boulder.ibm.com/infocenter/ws51help/index.jsp

From there, navigate to WebSphere Business Integration Server
Foundation → Reference → Javadoc → Enterprise Extensions API.

9.1.2 Invoking a business process using the generated façade EJBs
When the deployed code is generated for the business process, as discussed in
“Generating deploy code” on page 177, façade Enterprise Java Beans are
generated depending on the chosen binding. These façade Enterprise Java
Beans can be used to invoke a process in a common J2EE manner.

Similar to the BPE API, façade Enterprise Java Beans are also a very direct way
to interact with a process instance, so the invoker and the business process are
tightly coupled. It might be meaningful in some cases to choose this way of
invocation to avoid the creation of an internal object model, which takes place
using the WSDL layer for invocation. This internal object model, used by WSIF,
may result in a performance overhead. Since there is no external access to the
process instance, it might be better to call the façade Enterprise Java Beans
directly, instead of exposing them as Web services and using the WSDL for the
process invocation.

There is a relationship between the type of business process (short running or
long running) and the available bindings when generating deploy code.
According to the chosen binding, the façade Enterprise Java Beans are
generated. These issues are covered in the following sections.
 Chapter 9. Process choreographer: clients 289

http://publib.boulder.ibm.com/infocenter/ws51help/index.jsp

EJB binding for deployed business processes
The EJB binding is the default binding type for short running business processes,
but it can also be used for long running business processes.

For this binding type, the façade is implemented as a Session Enterprise Java
Bean, available in a J2EE EJB 2.0 project in the workspace of WebSphere
Studio Application Developer Integration Edition.

After you have generated the deployment code for the business process using
the EJB façade, you should find the Session EJB for your process as shown in
Figure 9-2 on page 290, for the NiceJourney process.

Figure 9-2 J2EE Hierarchy view

For each receive or Pick activity in the business process, a wrapper method is
added to the façade Session Enterprise Java Bean, wrapping all calls to the

Note: If the refresh function (menu) is not working properly in the J2EE
Hierarchy view, close the view and reopen it again to see the session bean.
290 WebSphere Business Integrator Server Foundation V5.1 Handbook

business process. It can be accessed directly from other J2EE clients such as
other Session Enterprise Java Beans, servlets or J2EE application clients in a
common J2EE manner, JNDI lookup and so on.

To test the invocation of the business process over the Session Enterprise Java
Bean, the Universal Test Client can be used. It allows the use of the Session
Enterprise Java Bean which then interacts with the business process. To start the
Universal Test Client, follow the steps below.

1. Add the generated deploy code to an Integration Test Server Environment; for
details, refer to “Deploying a process to the WebSphere Test Environment” on
page 179.

2. Make sure that on the Configuration tab of the Integration Test Server, the
checkbox Enable universal test client is selected; this is the default for a
new generated Integration Test Server Environment.

3. Start the Integration Test Server Environment.

4. Start the Universal Test Client; right-click the started Integration Test Server
from the pop-up menu and select the item Run universal test client. For
more information about how to use the Universal Test Client, refer to the
WebSphere Studio Application Developer Integration Edition help by clicking
WebSphere Studio → Testing → Testing the enterprise service and its
deploy code → Testing the session bean with the IBM Universal Test
Client.

SOAP binding for deployed business processes
The SOAP binding type is only available for short running business processes.

As for the EJB binding type, for this binding type the façade is implemented as a
Session Enterprise Java Bean, available in a J2EE EJB 2.0 project in the
workspace of WebSphere Studio Application Developer Integration Edition, as
shown in Figure 9-2 on page 290. In addition, a WSDL file is generated
containing binding and service information to provide access to the business
process by any SOAP compatible client.
 Chapter 9. Process choreographer: clients 291

Figure 9-3 Package Explorer view

In fact, a client using the above-mentioned WSDL file will access the façade
Session Enterprise Java Bean (through a generic Web Services Router Servlet)
which, finally, interacts with the business process. This is the best deploy option
to allow non-Java clients to interact with the business process.

To test the invocation of the business process using the SOAP binding, the Web
Services Explorer can be used, as follows:

1. Add the generated deploy code to an Integration Test Server Environment, as
discussed in “Deploying a process to the WebSphere Test Environment” on
page 179.

2. Start the Integration Test Server Environment.

3. Right-click the WSDL file that contains the SOAP binding and service
information; see also Figure 9-3 on page 292.

4. In the pop-up menu, select Web Services → Test with Web Services
Explorer.

The Web Services Explorer can now be used to send SOAP messages to the
business process, as shown in Figure 9-4.
292 WebSphere Business Integrator Server Foundation V5.1 Handbook

Figure 9-4 Web Services Explorer

JMS binding for deployed business processes
The JMS binding is the default binding type for long running business processes.
If the invocation of the long running business processes is a request/response
operation, the binding must be of JMS type. A JMS binding can also be
generated for a short running process.

For this binding type, the façade is implemented as a Session Enterprise Java
Bean, and in case of a long running business process, an additional Entity
Enterprise Java Bean is generated. This will be used to store states of the long
running business process in a database.

In version 5.0.x of WebSphere Studio Application Developer Integration Edition,
there is also a Message-Driven Bean generated to invoke the process triggered
by a message on a queue. In V5.1, this Message-Driven Bean is no longer
generated; instead, a generic WebSphere Process Choreographer
Message-Driven Bean can be used to invoke the business process with a
message on a queue. For more details, refer to the InfoCenter at:

http://publib.boulder.ibm.com/infocenter/ws51help/index.jsp

From there, navigate to WebSphere Business Integration Server
Foundation → Developing → Applications → Process choreographer →
 Chapter 9. Process choreographer: clients 293

http://publib.boulder.ibm.com/infocenter/ws51help/index.jsp

Developing applications for BPEL-based process → Accessing the
process choreographer JMS interface.

The default values for the JMS destination is jms/BPEIntQueue; for the
connection factory, it is jms/BPECF.

9.1.3 Invoking a business process as a Web service using the
generated proxy

When the deployed code is generated for the business process, as discussed in
“Generating deploy code” on page 177, a WSDL file will be generated according
to the chosen binding type. This WSDL file can be used to invoke the business
process as a Web service. To do this, a service proxy can be generated from it.

If there is a good deal of external access to the process instance, this is the
recommended way to call a business process as a Web service, because the
invoker and the business process are loose coupled.

Generating a service proxy from a WSDL file which contains binding and service
information is very similar for all available bindings of a business process. The
differences will be pointed out in the next three sections.

EJB binding proxy
If the deployed code for the BPEL process was generated for an EJB binding
(refer to “EJB binding for deployed business processes” on page 290), a WSDL
file for this binding will be generated in the same package as the BPEL process.
This WSDL file can be used to generate a service proxy to access the business
process, as shown in Figure 9-5.
294 WebSphere Business Integrator Server Foundation V5.1 Handbook

Figure 9-5 Generate Service Proxy

If the Generate Service Proxy item is selected, you will be guided through three
dialogs to define:

1. The type of proxy to generate: Web Services Invocation Framework (WSIF)
or Java API for XML-based RPC (JAX-RPC).

Figure 9-6 Proxy selection

Important: The JAX-RPC type proxy is not available; it is disabled on the
panel because the current version of JAX-RPC does not support RMI/IIOP
transport.
 Chapter 9. Process choreographer: clients 295

2. The service for which to generate the proxy and coordinates of the proxy
class.

Figure 9-7 Service proxy

3. The proxy style: Client stub or Command bean.
296 WebSphere Business Integrator Server Foundation V5.1 Handbook

Figure 9-8 Service proxy

SOAP binding proxy
If the deployed code for the BPEL process was generated for a SOAP binding
(refer to section “SOAP binding for deployed business processes” on page 291),
there are several options available on the type of SOAP binding.

Figure 9-9 Generate BPEL Deploy Code
 Chapter 9. Process choreographer: clients 297

For each option, a WSDL file for the binding will be generated. This WSDL file
can be used to generate a service proxy to access the business process; simply
right-click it.

For the SOAP bindings, the generated proxies can be of type Web Services
Invocation Framework (WSIF) or Java API for XML-based RPC (JAX-RPC).

JMS binding proxy
If the deployed code for the BPEL process was generated for a JMS binding
(refer to section “JMS binding for deployed business processes” on page 293), a
WSDL file for this binding will be generated in the same package as the BPEL
process. This WSDL file can be used to generate a service proxy to access the
business process; simply right-click it.

For a JMS binding, only a proxy of type Web Services Invocation Framework
(WSIF) can be generated.

9.2 Web client
This section provides details about the Web client interface for WebSphere
Process Choreographer. The Web client is a Web application, installed by
default together with the Business Process Container.

The BPEL Editor provides interfaces to customize certain pages for the Web
client. The following is a list of activities with customizable pages:

� Staff
� Receive
� Reply
� Pick

We will show only the Staff activity customization; the rest of the activities are
very similar in terms of their pages and customization.

The process itself has customizable pages; these are discussed in the following
section.

9.2.1 Customizing process pages
When you create customized or additional pages for your Web client, you need
to place them in a Web project. There are two options available:

� Import the Web client Enterprise Application in WebSphere Studio Application
Developer Integration Edition, then customize the pages and add new ones.
298 WebSphere Business Integrator Server Foundation V5.1 Handbook

This option provides the most flexibility but requires the most knowledge
about the default Web client.

You can import the Web client from the
<WebSphere_Studio_root>/runtimes/ee_v51/installableApps directory; the
file is called processportal.ear.

This option is beyond the scope of this redbook.

� Create a new Web project and use it together with the default Web client
Enterprise Application.

This option is useful if you only want to make minor changes to the Web client
or if you only want to create customized pages for the activities.

We will discuss this option in the following sections.

Perform the following steps to create your own customized pages for the Web
client.

1. Create a new Web project and provide a name, for example: NJWebClient.
Add the new Web project to the Enterprise Application where your process
runs, if it is not added automatically.

2. Fix the context root for your Web application to reflect the one you want to set
up to serve the custom pages for the Web client.

3. Copy the following JAR files under the WEB-INF/lib folder:

– jaxen-full.jar
– jstl.jar
– processportal.jar
– saxpath.jar
– standard.jar

You can get the JAR files from any installed Web client, for example:
<WebSphere_Studio_root>/runtimes/ee_v51/installedApps/localhost/
BPEWebClient_localhost_server1.ear/processportal.war.

4. Create a tld folder under WEB-INF and copy the webclient.tld file into the
directory.
 Chapter 9. Process choreographer: clients 299

Figure 9-10 WEB-INF folder

5. Open the web.xml file and click Add to add the
WebContent/WEB-INF/tld/webclient.tld JSP tag library under the
References → JSP tag libraries tab.

You can get the TLD file from any installed Web client, for example:
<WebSphere_Studio_root>/runtimes/ee_v51/installedApps/localhost/
BPEWebClient_localhost_server1.ear/processportal.war.

6. Create your custom pages. It is recommended that you create subfolders for
each set of custom page, for example ApproveStaff for the Approve Staff
activity.

7. We will create three JSPs in the following section: Input.jsp, Output.jsp,
Mapping.jsp. Create all three of them under the ApproveStaff folder.

9.2.2 Staff activity
In WebSphere Studio Application Developer Integration Edition V5.1, it is
possible to define specific JSPs for staff activities. These JSPs can provide
additional functionality to the WebSphere Web Client by including upfront data
validation (performed in the Mapping JSP) and the ability to provide a more
descriptive user interface.
300 WebSphere Business Integrator Server Foundation V5.1 Handbook

To implement user-defined JSPs for the Staff Activity, you will create these JSPs:

� InputMessageJSP - to display an activity Input Message.

� OutputMessageJSP - to contain the user data and wrap it for the business
process engine.

� MessageMappingJSP - this message-mapping JSP will receive the user
data, wrap it in an appropriate message object and then forward the message
to the business process container.

In this sample, we have extended the NiceJourney Simple Process as described
in Chapter 7, “Process choreographer: developing a simple process” on
page 135 by adding a Staff activity. In this activity, the staff member will decide
whether or not to approve the customer’s request to book a flight. This scenario
aims to show how customizable JSPs can be implemented.

The input message for the approval activity has only one part:

� question (xsd:string)

The output message for the approval activity has two parts:

� approve (xsd:boolean): represents the approval, true (approved) or false
(rejected)

� notes (xsd:string): represents the additional notes provided by the approver

The following figure represents a sample process to show how the approval Staff
activity is set up in our sample.

Note: The code presented can be used for any other approval scenario in
other processes with the necessary customizations.
 Chapter 9. Process choreographer: clients 301

Figure 9-11 The NiceJourney process with an additional Staff activity

InputMessageJSP
The Web client will invoke the Staff activity input JSP each time it needs to
display the data this activity received when it started. This provides the owner of
the activity with enough information to progress and complete this activity.

In our sample, we will replace the approve text input field with a checkbox;
instead of typing true or false, selecting the checkbox will implement the
approval.

Example 9-1 Input.jsp

<%@ page contentType="text/html;charset=UTF-8"
language="java"
import="com.ibm.bpe.api.*,
com.ibm.bpe.client.MessageUtilities,
org.apache.wsif.WSIFMessage"

%>
<%@ taglib uri="http://portal.bpe.ibm.com/Taglib" prefix="bpe"%>
<%@ taglib uri="http://java.sun.com/jstl/core" prefix="c"%>

Note: The NiceJourney BPEL process is now a long-running/interruptible
process due to the inclusion of the Staff activity.
302 WebSphere Business Integrator Server Foundation V5.1 Handbook

<bpe:InitContext/>
<c:set var="activity" value="${context[constants.JSP_ACTIVITY]}" />
<%

//initializing the message object
BusinessProcessService bean =

MessageUtilities.getBusinessProcessService(request);
String aiid = request.getParameter("WF_AIID");
ClientObjectWrapper messageWrapper = bean.getInputMessage(aiid);
WSIFMessage message = (WSIFMessage) messageWrapper.getObject();

%>

<c:choose>
<c:when test="${activity.executionState ne

constants.activity.STATE_FINISHED}">
<p>The question is: <%= message.getObjectPart("question") %></p>

</c:when>
<c:otherwise>

<p>The question was: <%= message.getObjectPart("question") %></p>
</c:otherwise>

</c:choose>

As you can see in the code, two cases are described. The first is when the
process is not finished; in that case, the client should show the current input
variables. The second is when the process has finished and the client shows the
client variables from the time when the activity finished.

OutputMessageJSP
In the sample Staff activity, the staff member must approve/reject the request and
can provide additional notes if required.

Depending on the state of the current activity, the JSP displays the activity output
message in different ways.

� When the activity has been claimed, it displays an input form so
approve/reject data can be entered.

� After the activity has finished, the option that has been chosen is presented
as text, for example: The claim has been approved.

� Otherwise, the activity just waits for an authorized user to claim it.

Example 9-2 Output.jsp

<%@ page contentType="text/html;charset=UTF-8"
language="java"
import="com.ibm.bpe.api.*,
com.ibm.bpe.client.MessageUtilities,
org.apache.wsif.WSIFMessage"
 Chapter 9. Process choreographer: clients 303

%>
<%@ taglib uri="http://portal.bpe.ibm.com/Taglib" prefix="bpe"%>
<%@ taglib uri="http://java.sun.com/jstl/core" prefix="c"%>

<bpe:InitContext/>
<c:set var="activity" value="${context[constants.JSP_ACTIVITY]}" />

<c:choose>
<c:when test="${activity.executionState eq

constants.activity.STATE_CLAIMED}">
<%

String approve = "";
String notes = "";
if (MessageUtilities.getValidationError(request) != null) {

approve = request.getParameter("approve");
notes = request.getParameter("notes");

}
%>

<p>I approve this claim: <input type="checkbox" name="approve"
value="on" <%= (approve.equals("on") ? "checked" : "") %> > (check the box if
approved). </p>

<p>Notes: <input type="text" name="notes" value="<%= notes%>"></p>
</c:when>
<c:when test="${activity.executionState eq

constants.activity.STATE_FINISHED}">
<%

BusinessProcessService bean =
MessageUtilities.getBusinessProcessService(request);

String aiid = request.getParameter("WF_AIID");
ClientObjectWrapper messageWrapper = bean.getOutputMessage(aiid);
WSIFMessage message = (WSIFMessage) messageWrapper.getObject();
boolean approve=false;
if(message.getBooleanPart("approve")) approve=true;
String notes=(String)message.getObjectPart("notes");

%>
<p>The claim was <%= (approve ? "approved" : "declined")

%>.</p>
<p>Notes: <%=notes%></p>

</c:when>
<c:otherwise>

<p>You have to claim the activity.</p>
</c:otherwise>

</c:choose>

MessageMappingJSP
The MessageMapping JSP ensures that the required input data is supplied and
checks the data type before it is forwarded to the business process container.
304 WebSphere Business Integrator Server Foundation V5.1 Handbook

The sample MessageMapping JSP gets the client responses and defines the
message that is sent to the business process container.

Example 9-3 Mapping.jsp

<%@ page contentType="text/html;charset=UTF-8"
language="java"
import="com.ibm.bpe.api.*,
com.ibm.bpe.client.MessageUtilities,
org.apache.wsif.WSIFMessage,
org.apache.wsif.base.WSIFDefaultMessage"

%>
<%
try {

WSIFMessage message = new WSIFDefaultMessage();
// set approved part of message...
if(request.getParameter("approve")!=null &&

request.getParameter("approve").equals("on")) message.setBooleanPart("approve",
true);

else message.setBooleanPart("approve", false);
if (!request.getParameter("notes").trim().equals("")) {

//this is how we assign String object to the message
String notesMsg=(String)request.getParameter("notes");
message.setObjectPart("notes", notesMsg);

}
// forward message to controller...
ClientObjectWrapper messageWrapper = new ClientObjectWrapper(message);
MessageUtilities.forwardMessageToController(request, response,

messageWrapper, null, null);
} catch (Exception e) {

// problem creating message...
MessageUtilities.validationFailed(request, "You must enter valid values!");
MessageUtilities.forwardMessageToController(request, response, null, null,

null);
}
%>

Adding the user-defined JSPs to the Web Client
To use these JSPs instead of the standard WebSphere Web Client, follow these
steps:

1. Open the NiceJourney.bpel and select the Staff activity.

2. Select the Client tab and in the Web Client settings, in the InputMessageJSP
row, click the ... button in the Value column. Navigate to
/ApproveStaff/Input.jsp and click OK.

3. Add Mapping.jsp and Output.jsp as per the previous step and save the file.
See Figure 9-12 on page 306 for a screenshot of the Client area.
 Chapter 9. Process choreographer: clients 305

Figure 9-12 Adding user-defined JSPs to the Staff activity

Results
After creating a test server and running the process, the user-defined JSPs will
appear as follows.

1. After creating a new instance and opening the activity:

Figure 9-13 New instance

2. After claiming the activity:

Figure 9-14 Submitting the activity
306 WebSphere Business Integrator Server Foundation V5.1 Handbook

3. After completing the activity, the finished process details for the Staff activity.

Figure 9-15 Checking the finished process activity

9.2.3 More information about Web Client customization
You can find more information about Web Client customization in the following
ways:

� WebSphere Studio Application Developer Integration Edition help can be
found by clicking WebSphere Studio → Developing → Processes → The
Process editor (BPEL) → Claims handling. This tutorial comes with sample
code which will help you to understand the client code in more detail.

� You can import the default Web client application, processportal.ear, from the
<WebSphere_Studio_root>/runtimes/ee_v51/installableApps location, then
inspect the code to learn further details.

� The IBM developerWorks article at:

http://www-106.ibm.com/developerworks/websphere/library/techarticles/wasid/
WPC_Client1/WPC_Client1.html

is a three-part article about Web Client customization for WebSphere
Enterprise V5.
 Chapter 9. Process choreographer: clients 307

http://www-106.ibm.com/developerworks/websphere/library/techarticles/wasid/WPC_Client1/WPC_Client1.html

308 WebSphere Business Integrator Server Foundation V5.1 Handbook

Chapter 10. Common Event
Infrastructure

The Common Event Infrastructure is an IBM technology which allows events to
be created, stored, routed and retrieved by applications. There are many
applications within the CEI, ranging from consistent logging across multiple
platforms to complex autonomic infrastructures.

WebSphere Business Integration Server Foundation is one of the first
implementations of this technology, providing a method of emitting, storing and
handling events which can be used within applications.

10

Important: This chapter relates to the Technology Preview of the CEI which
ships with WebSphere Business Integration Server Foundation V5.1.
© Copyright IBM Corp. 2004. All rights reserved. 309

10.1 Introduction
The Common Event Infrastructure is a set of modular components which
provides simple event management. CEI has been designed as a core
technology that will be integrated into many other IBM products in the medium
term. WebSphere Business Integration Server Foundation is one of the first
application platforms to provide an implementation of this core technology.

The fundamental concept behind the CEI is that applications or middleware
components create events whenever they perform some processing that could
be of relevance to an external application. The event contains information
relating to event identification, timing and other details.

The component creating the event object is called the event source. The event
object is passed to the event infrastructure, whose role is to forward the event on
to event consumers. These are other applications which have expressed an
interest in the event. The event infrastructure may also store the event object in a
database for later retrieval.

Figure 10-1 shows the activities that are supported by the CEI.

Figure 10-1 Common Event Infrastructure activities

Note: The Technology Preview version of CEI does not support the event
distribution. This will only be available in the full version of this technology in a
future release of WebSphere Business Integration Server Foundation.

Event Source

Event ConsumerEvent ConsumerEvent ConsumerEvent Consumer

Event Data
Store

Submit

Store

Distribute

Query
310 WebSphere Business Integrator Server Foundation V5.1 Handbook

Event structure
The standard structure used for event objects is the Common Base Event (CBE),
which is part of the IBM Autonomic Computing Toolkit. The CBE standard defines
a set of common fields, the values they can take and the meaning of these
values. Further details of the CBE and the IBM Autonomic Toolkit can be found
in:

� The IBM Redbook A Practical Guide to the IBM Autonomic Computing Toolkit,
SG24-6635

� The IBM developerWorks article Standardize messages with the Common
Base Event model, found at:

http://www.ibm.com/developerworks/autonomic/

� Specification: Common Base Event, from IBM developerWorks, found at:

http://www.ibm.com/developerworks/webservices/library/ws-cbe/

CEI implementation
The InfoCenter has detailed information about the Common Event Infrastructure.
Review the information by clicking WebSphere Business Integration Server
Foundation → All topics by feature → Application → Application
Services → Working with the Event Programming Model in WebSphere.

WebSphere Business Integration Server Foundation provides support for both
the CEI client and server components.

� Client support is provided by three mechanisms. CBEs can be created:

– Explicitly, with a Java API
– By configuring deployment descriptors

– By configuring activities within a BPEL4WS process

These are passed to the State Observer Plugin (SOP) which uses the CEI
exploitation layer to populate the CBE.

� Server components include:

– A database to store the CBEs

Note: The deployment descriptor method is not available in the
technology preview, and so is not covered in detail in this redbook.

Note: The only supported database for the Technology Preview is
Cloudscape.

With V5.1.1, DB2 and Oracle will also be supported.
 Chapter 10. Common Event Infrastructure 311

http://www.ibm.com/developerworks/autonomic/
http://www.ibm.com/developerworks/webservices/library/ws-cbe/

– An application to handle the incoming events

The application can store the events in a database, forward the events to
another CEI server or do both.

– A sample Web application to examine CBEs in the database

10.2 Sample scenario
We will use the CEI to add an audit capability to the simple process described in
Chapter 7, “Process choreographer: developing a simple process” on page 135.
This audit capability will be implemented as a custom event containing some
relevant data from the business context. The event we wish to audit is the receipt
of a new travel request. The audit will be triggered based on content of the input
message.

This will demonstrate the capabilities of the CEI Technology Preview by:

� Reviewing the events generated by a running process
� Using the Java API to create a custom event within a process

Note: The Technology Preview only supports a single-server instance
of the CEI application.

Note: While the current Technology Preview of the CEI capability is not
suitable for use as a business audit mechanism, future enhancements should
make this technology suitable for such an application.

The audit function introduced in the sample application does not implement or
use any audit framework or environment; it is solely an example of using CEI.

Note: The third method of generating events, by using deployment descriptor
metadata, is not provided as part of the technology preview.

The programming model for Java applications of the technology preview will
not be continued in future versions of WebSphere Business Integration Server
Foundation. In this redbook, we have added notes to point out wherever
examples will not be applicable for future versions.
312 WebSphere Business Integrator Server Foundation V5.1 Handbook

Development
This section will demonstrate the different ways of creating CBEs within the CEI.
It will show how to:

� Configure a process to report events
� Create new custom events with the Java API

The section starts with the necessary steps you have to perform in order to set
up the development environment for CEI development. It continues by enabling
the built-in capabilities of the product to report relevant events from within a
BPEL4WS process. It then shows how to extend the process to create an explicit
event.

Configuration
CEI requires additional configuration in the runtime environment of the
WebSphere Business Integration Server Foundation. The configuration section
will outline the steps required to perform this task.

Unit test
The CEI is not supported within the Universal Test Environment, so any test
activity has to take place in a runtime environment.

Assembly
We are going to use the simple process to introduce CEI. There are no specific
assembly tasks to be performed for CEI. For the simple process assembly, follow
the directions given in Chapter 7, “Process choreographer: developing a simple
process” on page 135.

Deployment
We will use the simple process to introduce CEI. There are no specific
deployment tasks to be performed for CEI. For the simple process deployment,
follow the indications in Chapter 7, “Process choreographer: developing a simple
process” on page 135.

Testing
We will run the enhanced process and review the results.

10.3 Development
This section outlines the two methods of generating events currently provided in
the WebSphere Business Integration Server Foundation implementation of CEI.
 Chapter 10. Common Event Infrastructure 313

10.3.1 Setting up the development environment
Before development can start, the development environment must be
customized. The steps to do so are outlined in the following section.

Importing the simple process project
We will be basing the rest of the chapter on the simple process developed in
Chapter 7, “Process choreographer: developing a simple process” on page 135.
Before continuing, you should set up the project workspace.

1. Launch WebSphere Studio Application Developer Integration Edition with a
new workspace and make sure you enable server targeting support.

2. Follow the instructions from “Project Interchange archive import/export” on
page 562to import the simple process project, simpleProcess.pi.zip, from the
additional material.

3. Switch to the Business Integration perspective and rename the project to
distinguish this solution from other projects. Right-click
WPC_Simple_Process and select Refactor → Rename. Enter
WPC_CEI_demo and click OK.

Preparing the project environment

The classpath must be altered to allow the project to be built successfully.

1. Create a directory on your development workstation called C:\cei_libs.

2. Locate the files events-client.jar and events-consumer.jar on the WebSphere
Business Integration Server Foundation server which you set up earlier. You
will find these in the <WebSphere_root>\lib directory. Copy these files into
C:\cei_libs.

3. Right-click the WPC_CEI_demo project folder which contains the
NiceJourney.bpel file and select the Properties menu item.

4. Within the properties window that is presented, select the Java Build Path
menu item.

5. Select the Libraries tab.

6. Click the Add External JARs... button on the Libraries tab.

7. Navigate to C:\cei_libs.

Note: These steps are required because CEI is a technical preview. It is not
currently officially supported in WebSphere Studio Application Developer
Integration Edition.
314 WebSphere Business Integrator Server Foundation V5.1 Handbook

8. Select both events-consumer.jar and events-client.jar. Click Open. YOu
will be taken back to the Libraries tab.

9. Click the Add variable... button on the Libraries tab.

10.Select the WAS_EE_V51 variable in the list and click Extend.

11.Select both lib\common.jar and lib\ecore.jar in the window. Click OK.

12.You should be presented with a screen similar to Figure 10-2.

Figure 10-2 Service project Java build classpath

10.3.2 Configuring a process to report events
Each activity within a process, including the process itself, can be set to report
relevant events to the Common Event Infrastructure. This is performed using the
Business Relevant checkbox on the Server tab of the details area. Figure 10-3 on
page 316 shows this flag.

Review the process to see which events are marked as business relevant.
 Chapter 10. Common Event Infrastructure 315

Figure 10-3 The Business Relevant flag

This changes the wpc:businessRelevant attribute of the activity tag in the
BPEL4WS XML file. This is shown in Example 10-1.

Example 10-1 BPEL4WS representation of the business relevant flag

<invoke inputVariable="flightRequest" name="Invoke"
operation="getReservation" outputVariable="flightResponse"
partnerLink="flightBooking" portType="wsdl2:FlightBookingSystem"
wpc:businessRelevant="yes" wpc:displayName="Invoke" wpc:id="4">
<target linkName="Link4"/>
<source linkName="Link1" transitionCondition="DefinedByJavaCode">

<wpc:transitionCondition>
...................

</wpc:transitionCondition>
</invoke>

Note: wpc:businessRelevant is implicitly set to yes for certain activities, such
as Invoke. To make the wpc:businessRelevant setting appear as
Example 10-1, you must uncheck and check the Business Relevant
checkbox, then save the process.
316 WebSphere Business Integrator Server Foundation V5.1 Handbook

10.3.3 Creating custom events using the Java API
We now have to address creation of a custom audit event, which could be picked
up by another application.

Creating new Java classes
We will create two new Java classes: an audit utility which generates a custom
event type, and an audit exception handler.

1. Create a new package by right-clicking the WPC_CEI_demo project and
selecting New → Package. Name the package com.nicejourney.utility.

2. Create a new class by right-clicking the com.nicejourney.utility package and
selecting New → Class. Name the class AuditException, and select all the
defaults.

3. Replace the generated Java code with the following code:

Example 10-2 AuditException.java

package com.nicejourney.utility;
public class AuditException extends Exception {

public AuditException() {
super();

}
public AuditException(String message) {

super(message);
}
public AuditException(String message, Throwable cause) {

super(message, cause);
}
public AuditException(Throwable cause) {

super(cause);
}

}

4. Create another new class under the com.nicejourney.utility package, this time
named AuditUtil.

5. Replace the generated code with the following code.

Example 10-3 AuditUtil.java

package com.nicejourney.utility;
import javax.naming.*;
import com.ibm.events.*;
import com.ibm.events.cbe.*;
import com.ibm.events.emitter.*;
public class AuditUtil {

private static EventFactory eventFactory = null;
 Chapter 10. Common Event Infrastructure 317

private static EmitterFactory emitterFactory = null;
public AuditUtil() throws AuditException {

try {
initLookup();

} catch (NamingException ne) {
throw new AuditException(ne);

}
}
private void initLookup() throws NamingException {

if (eventFactory == null || emitterFactory == null) {
Context context = new InitialContext();
// Locate the event factory and emitter factory
eventFactory = (EventFactory) context.lookup(

"com/ibm/websphere/events/factory");
emitterFactory = (EmitterFactory) context.lookup(

"com/ibm/events/configuration/emitter/Default");
}

}
public void AuditLog(String auditText) throws AuditException {

try {
initLookup();
// Create the event
CommonBaseEvent commonBaseEvent = eventFactory.createCommonBaseEvent(

"NewTravelArrangementReceived");
commonBaseEvent.addExtendedDataElement("eventDomain", "Business");
commonBaseEvent.addExtendedDataElement("eventPurpose","Information");
commonBaseEvent.addExtendedDataElement("customerName", auditText);
// Write the event
Emitter emitter = emitterFactory.getEmitter();
emitter.sendEvent(commonBaseEvent);

} catch (Exception e) {
throw new AuditException(e);

}
}

}

6. Close the open editor windows.

Changing the process interface
We wish to pass a flag to the process to define whether or not an audit event is
performed. This is achieved by adding a header section into the interface.

1. Edit the NiceJourneyPublicInterface.wsdl file.

Note: With version 5.1.1 a convenience class ECSEmitter will be provided
that will also support a new correlation model. This convenience class will
encapsulate all JNDI lookup calls.
318 WebSphere Business Integrator Server Foundation V5.1 Handbook

2. In the Source editor, add the following code below the second
</xsd:element> tag.

<xsd:element name="header">
<xsd:complexType>

<xsd:sequence>
<xsd:element name="auditThis" type="xsd:boolean"/>

</xsd:sequence>
</xsd:complexType>

</xsd:element>

3. Add the following line below the <message name=”travelAgencyIn”> tag:

<part element="tns:header" name="headerData"/>

4. Close and save the file.

5. Select Project → Rebuild All to rebuild the projects. Check for and resolve
any errors.

Extending the BPEL4WS process for Audit
This following section is going to extend the simple process with our custom
audit activity.

1. Prepare the NiceJourney process to use the audit utilities.

a. Open the NiceJourney.bpel process in the BPEL Editor.

b. Select the NiceJourney process lozenge at the top of the screen and
change to the Imports tab on the details area.

c. Add the following line to the bottom of the list of imports in the editor:

import com.nicejourney.utility.*;

2. Create the Audit activity

a. Drag a new Java snippet onto the process canvas.

b. Rename the Java snippet to Audit.

c. Link this below the Receive activity.

i. Right-click Receive and select Set Link between Flow Activities.

ii. Drag the line to the top of the Audit activity.

3. Change the condition on the link

a. Select the link between Receive and Audit.

b. Select the Condition tab in the details area.

c. Select Expression in the drop-down list.

d. Enter return getTravelRequest().getHeaderData().getAuditThis(); in
the expression box.
 Chapter 10. Common Event Infrastructure 319

4. Add the invocation of the audit code

a. Select the Audit activity and change to the Implementation tab

b. Enter the following Java code:

String auditText=getTravelRequest().getCustomerData().getLastName();
try {

AuditUtil auditUtil=new AuditUtil();
auditUtil.AuditLog(auditText);

} catch(AuditException ae) {
System.out.println("Audit error:"+ae);

}

This invokes the Java audit utility that we created earlier. You should end
up with a process that resembles Figure 10-4.

Figure 10-4 The new audit activity

5. Close all the open editors and regenerate the deploy code for the process.

a. Right-click NiceJourney.bpel and select Enterprise Services →
Generate Deploy Code.

b. Ensure that there are no errors in the generation of the deploy code.

To test the code, you need to deploy the generated EAR file to the server which
you set up with the CEI server by following the instructions in 10.4.1, “Configuring
CEI in WebSphere Business Integration Server Foundation” on page 321.
320 WebSphere Business Integrator Server Foundation V5.1 Handbook

10.4 Configuration
CEI insfrastructure needs to be configured on a full WebSphere Business
Integration Server Foundation server, as it is not currently supported on the
Universal Test Environment.

10.4.1 Configuring CEI in WebSphere Business Integration Server
Foundation

Assuming that WebSphere Business Integration Server Foundation has been
set-up, configuring and validating the CEI infrastructure is a five-step process:

1. Configure the CEI database.

2. Install the CEI application.

3. Start the CEI application.

4. View the contents of the CEI database (optional).

5. Install and run the CBE viewer.

We used the single-server instance of WebSphere Business Integration Server
Foundation which was configured in 4.2, “Basic configuration” on page 36. All of
the steps are performed as the owner of the WebSphere Business Integration
Server Foundation instance, which in this case is the Administrator user.

Configuring the CEI database

Note: This following instructions relate to the technology preview CEI, and are
likely to change significantly for the final release. Installation is likely to be
similar to the WebSphere Process Choreographer component, that is, largely
silent during the installation of WebSphere Business Integration Server
Foundation, with some configuration required afterwards.

Note: Our test environment used the following variables:

� <WebSphere_root> = C:\WebSphere\AppServer
� node = m23vnx61
� server = server1

Note: This will change for the final version, when databases other than
Cloudscape are supported.
 Chapter 10. Common Event Infrastructure 321

Perform the following steps to configure the Cloudscape event database:

1. Start the WebSphere Business Integration Server Foundation server
(server1).

2. Open a Windows command prompt, change to the
<WebSphere_root>\event\dbconfig directory

cd <WebSphere_root>\event\dbconfig

Configure the event database using the supplied batch script and Cloudscape
response file, as follows:

config_event_database.bat .\CloudscapeResponseFile.txt

Figure 10-5 Configure the event database

Installing the CEI application
The CEI server is a J2EE application. This needs to be installed.

1. In the command prompt, change to the <WebSphere_root>\bin directory.

cd <WebSphere_root>\bin

2. Execute the event-application.jacl script to install the CEI application.

wsadmin -f "<WebSphere_root>\event\application\event-application.jacl"
-action install -earfile
"<WebSphere_root>/event/application/event-application.ear" -node node
-server server
322 WebSphere Business Integrator Server Foundation V5.1 Handbook

Figure 10-6 Result of application install script

The application is now installed.

Starting the CEI application
To start the application:

1. Open a new browser window and navigate to http://localhost:9090/admin.

2. Go to Applications → Enterprise Applications.

3. Find the application named CommonEventInfrastructure, select the checkbox
next to it and click the Start button at the top of the list.

4. If the application starts successfully, you will get the following message at the
top of the screen.

Figure 10-7 CEI Server application startup message

Viewing the contents of the CEI database (optional)
To validate that the installation has been successfully completed, we will review
the contents of the CEI database.

1. Log out of the Administrative Console in the browser window, stop the
application server (server1).

Note: You have to stop the application server in order to connect to the
CEI Cloudscape database. Cloudscape does not support multiple
connections to a database.
 Chapter 10. Common Event Infrastructure 323

2. You can use the Cloudscape viewer to look at the CEI database. Open
Windows Explorer and navigate to the
<WebSphere_root>\cloudscape\bin\embedded directory. Run cview.bat by
double-clicking it. Cloudview will open.

3. Select File → Open. Browse to
<WebSphere_root>\event\CloudScapeEventDB. Select the event
Cloudscape database and click Open.

4. You should now be able to see the event tables. At the moment, they should
contain no CBE objects.

Installing and running the CBE Event browser

We will now install the CBE Event browser application. We do this to prepare for
the testing phase of the chapter and as a final confirmation that installation of the
CEI infrastructure has been successful.

1. Make sure your application server is running.

2. Launch the Administrative Console then login.

3. Open Applications → Install New Application.

4. Using the local path box, browse to the CBEViewer.ear file which is located
in <WebSphere_root>\eventbrowser\, click Next.

5. Make sure that default bindings will be generated by selecting the apropriate
checkbox. Click the Next button.

6. Accept the default values by clicking the Next button for the upcoming pages,
then press the Finish button on the last page.

7. Once the application is installed, save the configuration for WebSphere.

8. Start the application from the Applications → Enterprise Applications
page. Locate CBEViewer on the list and click Start.

9. Open a new browser at http://localhost:9080/cbeviewer.

You will be presented with the CBE Event browser window, as shown in
Figure 10-8 on page 325. Close the viewer: we will come back to this later.

Note: The CBE Event browser will be changed significantly with version 5.1.1
supporting a new correlation model.
324 WebSphere Business Integrator Server Foundation V5.1 Handbook

Figure 10-8 The CBE Event browser application window

10.5 Testing
This section describes running the updated business process and reviewing the
events logged in the CBE viewer.

First, we need to execute the updated NiceJourney process.

1. Start the BPE WebClient by opening a new browser window and navigating
to http://server:9080/bpe/webclient.

2. Browse to My Templates and select the checkbox next to the NiceJourney
template. Click Start Instance.

3. First, we will start the process with the audit flag set to false. This will highlight
the data that is recorded. The important values used in the test are listed in
Table 10-1 on page 326.
 Chapter 10. Common Event Infrastructure 325

Table 10-1 Input values for the first test

The rest of the variables can be set as you wish. This will have logged some
CBE records in the data store. We will now review these using the CBE Event
browser.

4. Start the CBE Event browser by opening a new browser and navigating to
http://server:9080/cbeviewer.

5. Clear the Business, Process, System, Information, Audit, Exception and
Correlation checkboxes.

6. Click the Get Data button. The count of records retrieved should change.

Figure 10-9 The CBE Event browser

7. Select the View data menu item at the left of the screen. You will be
presented with the data viewer. Select the Processes tab at the top of the
screen.

Input variable Value

headerData.auditThis false
326 WebSphere Business Integrator Server Foundation V5.1 Handbook

8. The viewer is now split into three sections, covering process template,
process instances and the events triggered by the instance.

9. Select the NiceJourney process, and the instance second from the bottom.
Select one of the events in the right-hand pane. You should be presented with
a window similar to Figure 10-10.

Figure 10-10 Viewing an event in the CBE Event browser

The event that has been selected here is related to the Invoke activity in the
NiceJourney BPEL4WS process.

10.Browse the other events created by the process, noting the types of data that
are automatically logged.
 Chapter 10. Common Event Infrastructure 327

11.Invoke the process for a second time by following the first two steps. This time
we will make the process audit itself by setting the audit flag to true. The input
message used is shown in Table 10-2.

Table 10-2 Input values for the second test

Other values can be set as you wish.

12.Starting this instance will place additional audit records in the event log.
Repeat steps 4-8 to start the CBE Event browser.

13.Select the NiceJourney process and select the last instance in the list. This
should contain the custom event created as a result of the new Audit activity.
Select this event in the list, and review the data in the event record. This is
shown in Figure 10-11 on page 329.

Input variable Value

customerData.lastName Smith

headerData.auditThis true

Important: You must rerun steps 4-8 to refresh the data in the CBE Event
browser. If you do not, the latest events will not be shown.
328 WebSphere Business Integrator Server Foundation V5.1 Handbook

Figure 10-11 The NewTravelArrangementReceived custom audit event

Again, notice the amount of additional data that is recorded by the
infrastructure. The three data elements that were explicitly placed in the event
are highlighted.

10.6 More information
Further information can be found in the InfoCenter at;

http://publib.boulder.ibm.com/infocenter/ws51help/index.jsp
 Chapter 10. Common Event Infrastructure 329

http://publib.boulder.ibm.com/infocenter/ws51help/index.jsp

Navigate to WebSphere Business Integration Server Foundation -> All
topics by feature -> Applications -> Application services -> Working with
the Event Programming Model in WebSphere.

An overview of the aims of the CBE can be found at:

http://www.ibm.com/developerworks/rational/library/2084.html
330 WebSphere Business Integrator Server Foundation V5.1 Handbook

http://www.ibm.com/developerworks/rational/library/2084.html

Chapter 11. Business Rule Beans

Business Rule Beans are statements that define or constrain some aspect of a
business by asserting control over some behavior of that business. A business
rule officiates over frequently changing business practices, and can come from
government regulations, company practices, customer status, or other external
factors such as adapting business processes to react to competitive pressure.
These types of rules can change periodically, and do not require a rebuild of all
applications that support the business process. By externalizing rule processing,
the rule can change without affecting the business process. At its simplest level,
a business rule is little more than a well-placed if/then statement that compares a
variable against a determined value, and then issues a command when they
match.

11
© Copyright IBM Corp. 2004. All rights reserved. 331

11.1 Prerequisites
Familiarize yourself with the following WebSphere Business Integration Server
Foundation V5.1 topics in the InfoCenter at
http://publib.boulder.ibm.com/infocenter/ws51help/index.jsp; select
WebSphere Business Integration Server Foundation on the right-hand side,
then click Highlights and Features → Business Rule Beans.

11.2 Sample scenario
We are going to create a Business Rule Bean to be invoked in the sample
process which was created in Chapter 7, “Process choreographer: developing a
simple process” on page 135.

Our sample application of Business Rule Beans is for validating a data from a
user request, for example, validating a price limit if the price which a user
requested is higher than the minimum price.

Development
Once you understand how Business Rule Beans work, you can start developing
your own. WebSphere Studio Application Developer Integration Edition does not
provide any specific tooling for Business Rule Beans development, but you can
easily develop your components in the Java perspective, following a few steps:

1. Import the Business Rule Beans EAR application supplied in WebSphere
Business Integration Server Foundation.

2. Develop the Rule Implementor for your rule.

3. Create and configure the rule using the Rule Management Application.

4. Create a rule client.

5. Integrate the Business Rule Beans into your application, for example, into a
business process.

Unit test
If you want to test your Business Rule Beans before deployment, you can do so
using the IBM Universal Test Client in the WebSphere Test Environment inside
WebSphere Studio Application Developer Integration Edition.

Assembly
Packaging your Business Rule Beans with an application does not have any
special requirement beyond configuring resource references (JNDI names) for
your components.
332 WebSphere Business Integrator Server Foundation V5.1 Handbook

http://publib.boulder.ibm.com/infocenter/ws51help/index.jsp

Deployment
Deployment requires a few additional steps before you can use Business Rule
Beans. The Business Rule Beans application (EAR) has to be installed on the
application server and configured with a proper datasource. This is a one-time
configuration for the application server to use Business Rule Beans from every
other enterprise application.

Installing your application using Business Rule Beans does not require any
specific tasks during deployment in the runtime environment.

11.3 Development
There is one BRB in the sample scenario; the following steps will guide you
through the process of developing this component for your application.

11.3.1 Development environment setup
This section guides you throug the process of setting up the development
environment for developing applications using Business Rule Beans. In the test
environment, we will use a Cloudscape database to store the rules for Business
Rule Beans.

1. Open WebSphere Studio Application Developer Integration Edition with a
new workspace; make sure you enable server targeting support.

2. We need to add a JAR file for database mapping. We choose the Cloudscape
JAR file for the development environment.

a. Switch to the J2EE perspective.

b. Select File → Import. Then select EJB JAR file in the list box and click
Next.

c. Click Browse... beside the EJB JAR file field and select
<WebSphere_Studio_root>\runtimes\ee_v51\BRBeans\
BEBeansCloudscape.jar.

d. Select Integration Server V5.1 for the target server.
 Chapter 11. Business Rule Beans 333

Figure 11-1 Importing EJB JAR

e. Click Finish.

3. Next, we can generate Business Rule Beans deployment code.

a. Double-click the BRBeansCloudscapeEJB item under the EJB Modules
to open the deployment descriptor.

b. Go to the bottom of the Overview tab and enter jdbc/BRBeansDataSource
for the JNDI - CMP Connection Factory Binding JNDI Name.

c. Switch to the Beans tab, select the Rule bean, and enter the
jdbc/BRBeansDataSource for CMP Connection Factory JNDI Name.

d. Select the RuleFolder bean and again, enter the jdbc/BRBeansDataSource
for CMP Connection Factory JNDI Name.

e. Save and close the file.
334 WebSphere Business Integrator Server Foundation V5.1 Handbook

f. Right-click the BRBeansCloudscapeEJB item under the EJB Modules,
then select Generate → Deployment and RMIC code....

g. Click Select All on the new panel, then click Finish.

4. Open the Server perspective and create a new Integration Server V5.1 test
server, with the name: BRBeansUnitTestServer.

a. Add the BRBeansCloudscapeEAR project to the server.

b. Open the server configuration, select the Environment tab, and add the
following item under the System properties:

• Name: brbPropertiesFile

• Value: <WebSphere_Studio_root>\runtimes\ee_v51\bin\brbeansDefault
Properties

c. Switch to the Data sources tab and make sure that the Cloudscape JDBC
Driver already exists in the JDBC provider list.

d. Save and close the server configuration.

e. Right-click the BRBeansUnitTestServer and select Create tables and
data sources.

f. You will see a pop-up window if tables and data sources were created
successfully.

Figure 11-2 Table and Data Source Creator

g. Click OK to close this window.
 Chapter 11. Business Rule Beans 335

11.3.2 Developing the rule implementor
We need to develop the rule implementor, which means creating Java classes
including business logic. We need to implement the RuleImplementor interface to
our business rule code. The interface has three methods.

� init()

This method is called only once when Business Rule Beans are fired for the
first time. The method is used to initialize parameters or objects.

� fire()

This method implements business logic of the rules.

� getDescription()

This method gives you the description of this rule.

Follow these steps to create the Rule Implementor:

1. Switch to the J2EE perspective and create a new Enterprise application with
the name BRBeans, then create a new EJB module: BRBeansEJB. Make sure
you select Integration Server V5.1 for the target server.

2. Create a new package under the BRBeansEJB: com.nicejourney.brb.rules.

3. Create a new class in the new package with the name PriceLimit, then
select the interface RuleImplementor for the class. The class is not available
for selection; you have to type the full name or just part of it, then select from
the list.

PriceLimit.java should be generated on the com.nicejourney.brb.rules
package.

4. Implement the methods in the code, open the PriceLimit.java and use the
code shown in Example 11-1 for implementation.

Example 11-1 PriceLimit.java

package com.nicejourney.brb.rules;

import com.ibm.websphere.brb.*;
import com.ibm.websphere.brb.mgmt.*;

public class PriceLimit implements RuleImplementor {
private int approvalLimit = 0;

public Object fire(
TriggerPoint arg0,
Object arg1,
IRuleCopy arg2,
Object[] arg3)
336 WebSphere Business Integrator Server Foundation V5.1 Handbook

throws BusinessRuleBeansException {
Boolean result = null;
int userPriceLimit = 0;
userPriceLimit = ((Integer) arg3[0]).intValue();
if (userPriceLimit >= approvalLimit) {

result = new Boolean(true);
} else {

result = new Boolean(false);
}
System.out.println("Is approval required for:" + userPriceLimit + "?

" + result.toString());

return result;
}

public String getDescription() {
return "This rule checks if price limit which user entered is over our

least price limit";
}

public void init(Object[] arg0, String[] arg1, String arg2, IRuleCopy arg3)
throws BusinessRuleBeansException {

//Store the initialization parameters.
approvalLimit = ((Integer)arg0[0]).intValue();

}
}

11.3.3 Creating and configuring the rule using the Rule Management
Application

The Rule Management Application is a J2EE Client Application GUI tool to
create and configure business. The following steps will show you how to start the
client in WebSphere Studio Application Developer Integration Edition and how to
create a new rule with it.

1. Switch to the J2EE perspective.

2. Create a new Enterprise Application Project with the name RuleManagement,
and add only a new Application Client module:
RuleManagementApplicationClient.

3. Right-click RuleManagementApplicationClient under the Application Client
Modules item, select Properties, then navigate to Java Build Path. Under the
Libraries tab, add a new variable: WAS_EE_V51, and extend it with
lib/brbRuleMgmtApp.jar. Close the window by clicking OK.

4. Right-click RuleManagementApplicationClient and select Open With →
JAR Dependency Editor.
 Chapter 11. Business Rule Beans 337

5. Type the following value as the Main Class:

com.ibm.ws.brb.rm.ui.RuleManagement

6. Save and close the editor.

7. Select Run → Run... from the menu.

8. Navigate to WebSphere v5.1 Application Client and click New.

a. Set the name of the configuration to Rule Management.

b. Set the server type to WebSphere v5.1 EE.

c. Set Enterprise Application to Rule Management.

d. Set Application Client to RuleManagementApplicationClient.

e. Under the Arguments tab, in the VM arguments text area, replace all the
base_v51 directory names with ee_v51; you have to replace eight
occurrences of the wrong directory name.

f. Add the following directive to the VM arguments:

-DbrbPropertiesFile="<WebSphere_Studio_root>\runtimes\ee_v51\bin\brbeans
DefaultProperties"

g. Click Apply to save the settings, then click Run to start the application.

The Rule Browser will be launched. You will see a folder tree.

Figure 11-3 Rule Browser

Tip: In Windows, the default installation root for WebSphere Studio
Application Developer Integration Edition is C:\Program
Files\IBM\WebSphere Studio\Application Developer IE\v5.1.

Note: The Test server has to be started to be able to run the Rule
Browser application.
338 WebSphere Business Integrator Server Foundation V5.1 Handbook

9. Add a new rule using the Rule Management application.

a. It is recommended that you follow the Business Rule Beans package
naming rule. Create three folders to follow the naming rule. Right-click the
com folder and select New → Folder, then name the folder to
nicejourney. Create the subfolders to achieve the following hierarchy:
com/nicejourney/brb/rules.

b. Right-click the rules folder and select New → Rule. The New Rule
Properties window will appear.

c. Make sure com/nicejourney/brb/rules is specified for the Folder name.
Enter Price Limit in the name field.

d. Enter the Start date; this indicates when this Business Rule Bean will start
applying. For example, this could be 01/01/04 0:00 AM; the date is in the
mm/dd/yy h:mm a format.

e. Make sure you select the Rule performs a classification option.
 Chapter 11. Business Rule Beans 339

Figure 11-4 New Rule window

f. Select the Implementation tab, then enter
com.nicejourney.brb.rules.PriceLimit in the Java Rule Implementor.

g. Click Add to add Initialization parameters; the Add Initialization Parameter
window will appear.

h. Enter the Description which is a parameter name, for example Approval
limit for customers. Select Integer for the type, which is a type of the
parameter.

i. Enter the Value, which is the initial value, for example 100.
340 WebSphere Business Integrator Server Foundation V5.1 Handbook

Figure 11-5 Rule Browser -Add Initialization Parameter window

j. Click Add, then click Close. Then new line will be added to the
Initialization Parameters table.

Figure 11-6 New rule implementation
 Chapter 11. Business Rule Beans 341

k. Click OK; you should find your new rule on the Rule browse.

Figure 11-7 Rule Browser after defining a rule

l. Close the Rule Browser.

11.3.4 Creating the rule client
In our sample application, the rule client is a session bean that is used by
another application or process.

To create the rule client session bean and to place a trigger point, do the
following:

1. Switch to the J2EE perspective.

2. Create a new Enterprise Application Project with the name BRBeans, then add
a new EJB Module: BRBeansEJB. Make sure the Integration Server V5.1 is
selected as the server target.

3. Create a new EJB in the BRBeansEJB project with the following details:

– Type: Session bean
– Bean name: PriceLimitClient
– Default package: com.nicejourney.brb.ejbs
– Session type: Stateless
– Transaction type: Container

Check both Local and Remote client view.

4. Open the PriceLimitClientBean.java file and add a new import statement to
the top of the file:

import com.ibm.websphere.brb.*;

5. Add the isPriceLimit() method to the class; insert the code into the source
shown in Example 11-2 on page 343.
342 WebSphere Business Integrator Server Foundation V5.1 Handbook

Example 11-2 isPriceLimit() method

public boolean isPriceLimit (int total) {
boolean result = false;
try{

//Create new trigger point
TriggerPoint tp = new TriggerPoint();

//Disable caching - for demonstration purpose
tp.disableCaching();

//The rule expects one parameter: the total purchase order amount
Object[] firingParams = { new Integer(total) };
// Specify the business rule path.
String ruleName = "com/nicejourney/brb/rules/PriceLimit";
//Call the rule
Object resultObject = tp.triggerClassifier(

null, //Target Object-not required by rule implementation
firingParams, //Rule Implementor firing parameters
ruleName); //The name of the rule to fire

if (resultObject!=null){
//Rule successfully called
result = ((Boolean) resultObject).booleanValue();

}
}catch (BusinessRuleBeansException brb){

brb.printStackTrace();
// normally here you would do proper exception handling

}catch (Exception e) {
e.printStackTrace();
// normally here you would do proper exception handling

}
return result;

}

6. Select the Outline view for the lower left view, right-click the isPriceLimit(int)
method, then select Enterprise Bean → Promote to Remote Interface.

7. Perform the previous step again, clicking Enterprise Bean → Promote to
Local Interface.

8. Save and close the file.

9. Generate the deployed code for the EJBs in the BRBeansEJB project.

10.Switch to the Server view and add the BRBeans project to the
BRBeansUnitTestServer.
 Chapter 11. Business Rule Beans 343

11.3.5 Using Business Rule Beans in Process Choreographer
This section will use the Business Rule Bean developed in the previous section;
we will use it in the process developed in Chapter 7, “Process choreographer:
developing a simple process” on page 135. We have a slightly modified version
of the simple process in order to support the Business Rule Bean in the process.

The customer can set a maximum price for the travel booking. The Business
Rule Bean validates this maximum price, and does not let the customer set a
very low value. If the maximum price is lower than the PriceLimit set for the
process then the process terminates.

You can call Business Rule Beans as a Partner Link using the Invoke activity in
the process. The sequence of steps with which the Business Rule Beans is
called is as follows:

1. The Business Rule Beans Client, which is the session EJB, is called by the
Invoke activity.

2. The Business Rule Beans Client calls Business Rule Beans using the
TriggerPoint.

3. The Business Rule Beans gets the rules which you set and adapt to the
parameters.

4. An object is returned as a result to the Business Rule Beans Client from the
Business Rule Beans.

5. The result is returned to the process.

You need to add or modify the following activities and variables to use BRBeans
in the process.

� Partner Link
Define the Business Rule Beans that can be accessed by an Invoke activity.

� Variables
Define request and response which are sent and received between an Invoke
activity and Business Rule Beans.

� Assign
Copy a request parameter from TravelData to PriceLimitRequest.

� Invoke
Create this activity to call the Business Rule Beans and get a result in the
process.

� Java snippet
Modify this activity to show you the value of response from the Business Rule
Beans.
344 WebSphere Business Integrator Server Foundation V5.1 Handbook

Prerequisites
Import the simpleProcess_for_BRB.pi.zip archive from the additional material
into the workspace using the Project Interchange plug-in. You can find details
about how to import the simple process using the Project Interchange plug-in in
“Project Interchange archive import/export” on page 562. Select the
simpleProcess.pi.zip for import from the additional material.

Creating a Partner Link
First, you need to create a Partner Link for the Business Rule Beans service.

1. Select the Business Integration perspective and open nicejourney.bpel.

2. Switch to the Package Explorer view, then select the EJB Remote Interface,
LimitPriceClient.java, from the com.nicejourney.brb.ejbs package in the
BRBeansEJB project. Drag and drop the file to the BPEL Editor. A new
Partner Link will be created.

3. Rename the partner link to PriceLimitRule.

4. Select PriceLimitRule and switch to the Implementation tab. Make sure that
the PriceLimitClient is specified in the EJB Remote Interface field.

5. Save the file.

Creating variables
The next step is to create variables for the rule invocation.

1. Click the + button next to Variables in the BPEL Editor. Name the new
variable to priceLimitRequest. Switch to the Message tab, then click
Browse... and click WPC_Simple_Process → com → nicejourney, then
select comnicejourneybrbejbsPriceLimitClientNiceJourneybpel.wsdl,
making sure isPriceLimitRequest is selected.

2. Create another variable: priceLimitResponse, and set the message to
isPriceLimitResponse from the
comnicejourneybrbejbsPriceLimitClientNiceJourneybpel.wsdl file.

3. Save the file.

Adding the Assign element
The Assign element will prepare the variables for the validatePrice activity.

Important: If you try to create from the Partner Link in the BPEL Editor and
change the type to EJB, be aware that there is a known bug; although
WSDL files will be generated, the WSDL files will not define the binding as
Java instead of the EJB type.
 Chapter 11. Business Rule Beans 345

1. Select the prepValidatePriceLimit Assign activity and set up the following
assignments; click travelRequest → travelAgencyIn → customerData →
priceLimit to priceLimitRequest → isPriceLimitRequest → total.

Figure 11-8 Assign

2. Save the file.

Creating an Invoke activity for the rule client
We are going to call the rule bean via the rule client EJB using the Invoke activity.

1. Right-click the validatePriceLimit empty activity and change the type to
Invoke.

2. Right-click the validatePriceLimit Invoke activity and set the partner link to
the PriceLimitRule partner link.

3. Switch to the Implementation tab and select isPriceLimit for the Operation.

Select PriceLimitRequest for the Request variable, then select
PriceLimitResponse for the Response variable.

4. Save the file. The final version of your process should look similar to
Figure 11-9 on page 347.
346 WebSphere Business Integrator Server Foundation V5.1 Handbook

Figure 11-9 Final process for the Business Rule Beans sample

Generating the deployed code and running the process
At this point, the process development is complete. You can generate the
deployed code for the process then add it to the test server to run.

11.4 Unit test
In this section, we test our business rule and business rule client using the
Universal Test Client.

In order to use the Universal Test to test the rule itself without the sample
application, do the following:

1. Start the BRBeansUnitTestServer test server.

2. Switch to the J2EE perspective, navigate to EJB Modules →
BRBeansEJB → Session Beans, then right-click the PriceLimitClient and
select Run on Server....

3. When you get a confirmation window, click Finish.
 Chapter 11. Business Rule Beans 347

4. Select Test EJB remote interface in the Select a server client window; click
Finish.

5. The IBM Universal Test Client should start with the PriceLimitClient EJB
already listed under EJB References.

6. Create an instance of the bean then open the new instance and select the
boolean isPriceLimit(Integer) method.

7. Provide a numerical value in the input field, for example: 120. Then click
Invoke. You should get the result true, as shown in Figure 11-10.

Figure 11-10 Testing the Business Rule Beans

8. Enter another number in the input field (lower than 100), for example 90, and
click Invoke again.

9. The client should return the result false.
348 WebSphere Business Integrator Server Foundation V5.1 Handbook

11.5 Deployment
This section contains detailed information about the setup and configuration of
an application using Business Rule Beans. There are a few additional steps to be
performed before you can use your enterprise application.

In the runtime environment, described below, we are going to use the IBM DB2
database. If you need to use other database servers, the steps below can be
easily applied to other situations.

1. Start the application server, launch and log on to the Administrative Console.

2. We have to define the brbPropertiesFile directive for the application server
JVM. Select Servers → Application Servers then select server1. In the
additional properties section, select Process Definition, which is used to
define the command line information necessary to start/initialize a process.

a. In the Process Definition additional properties, select Java Virtual
Machine → Custom Properties.

b. In the Custom properties window, click the New button to create a new
property. Enter the following values:

• Name: brbPropertiesFile
• Value: <WebSphere_root>\bin\brbeansDefaultProperties

c. Click OK and save the configuration for WebSphere.

3. Restart the application server and launch the Administrative Console again.

4. Navigate to Environment → Manage WebSphere Variables; make sure that
the DB2UNIVERSAL_JDBC_DRIVER_PATH and the
DB2_JDBC_DRIVER_PATH variables are pointing to the <DB2_root>/java
directory.

5. Navigate to Resources → JDBC Providers and create a new non-XA JDBC
Provider (ConnectionPool) for DB2.

6. Create a JAAS Authentication Entry for the database access with the
following details:

– Alias: BRBDBAlias
– User ID: <DB2 user ID for the BRB database>
– Password: <DB2 password for the BRB database>

7. Create a new datasource (version 4) under the DB2 (non-XA) JDBC provider
with the following details.

– Name: BRBeansDatasource
– JNDI name: jdbc/BRBeansDatasource
– Component-managed authentication alias: BRBDBAlias
– Container-managed authentication alias: BRBDBAlias
 Chapter 11. Business Rule Beans 349

– Database Name: BRBDB
– serverName (under the Custom properties): localhost

8. Install the enterprise application BRBeansDB2.jar from the
<WebSphere_root>\BRBeans directory.

a. At step 1, make sure the Deploy EJBs box is checked, so the deployment
code for the EJBs will be generated during installation.

b. At step 4, provide default datasource mapping for modules containing 1.x
entity beans. Also provide the JNDI name for the datasource:
jdbc/BRBeansDatasource.

c. At step 5, map datasources for all 1.x CMP beans and provide the JNDI
name jdbc/BRBeansDatasource for both EJBs (Rule, RuleFolder).

d. At step 8, map security roles to users/groups and map your users
according to your security policy. In our case, for testing purposes, we set
Everyone for both roles (RuleManager, RuleUser).

9. The next step is to set up the database for the Business Rule Beans. We left
this step for the end, so we can use the DDL file to create the database
tables, generated during the application deployment in WebSphere.

a. Navigate to Applications → Enterprise Applications.

b. Check the box next to BRBeansDB2_jar, then click Export DDL.

c. On the following page, click the
BRBeansDB2_jar.ear/_BRBeansDB2.jar_Table.ddl link to save the DDL
file on your machine. Save it to a temporary location, for example: c:\temp.

d. Open a DB2 Command Window and issue the following commands:

db2 create db BRBDB
db2 connect to BRBDB
db2 -tvf c:\temp_BRBeansDB2.jar_Table.ddl
db2 disconnect current

Check that the script ran successfully, then close the command window.

10.Switch back to the WebSphere Administrative Console and navigate to
Applications → Enterprise Applications. Check the box next to
BRBeansDB2_jar, then click Start.

The application should start.

Note: You have to create a V4 data source, because CMP 1.x EJBs do not
work with relational resource adapters in newer versions (V5).
350 WebSphere Business Integrator Server Foundation V5.1 Handbook

Rule management application
The rule management application can be started from a command window from
the <WebSphere_root>/bin directory. Use the following command:

rulemgmt <WebSphere_root>/bin/brbeansDefaultProperties

The brbeansDefaultProperties file defines the connection properties; if you
connect to a server other than localhost or the port (RMI) is other than 2809, then
you will need to modify the properties file.
 Chapter 11. Business Rule Beans 351

352 WebSphere Business Integrator Server Foundation V5.1 Handbook

Chapter 12. Extended messaging

Asynchronous messaging patterns are an important part of the J2EE
applications programming model. These patterns provide for "loose coupling"
between applications and are useful for process flows, parallel processing,
time-independent processing, and event-driven processing.

Extended messaging extends the base JMS support, support for EJB 2.0
Message-Driven beans, and the Enterprise Java Bean (EJB) component model,
to use the existing container-managed persistence and transactional behavior.

In addition to providing such container-managed messaging, extended
messaging provides new types of enterprise beans and administrative objects for
messaging, and new functionality like data mapping and late response handling.
(The abbreviation, CMM, for the term container-managed messaging is
sometimes used to represent extended messaging.)

12
© Copyright IBM Corp. 2004. All rights reserved. 353

12.1 Prerequisites
Read the details about WebSphere Business Integration Server Foundation’s
Extended Messaging at the following locations:

� WebSphere Business Integration Server Foundation InfoCenter at:

http://publib.boulder.ibm.com/infocenter/ws51help/index.jsp

Select Extended messaging under Highlights and Features.

� Open the WebSphere Studio Application Developer Integration Edition help
and navigate to WebSphere Business Integration Server Foundation, then
select Extended messaging under Highlights and Features.

� Read the article IBM WebSphere Developer Technical Journal: Creating
Extended Messaging Applications for WebSphere Application Server
Enterprise, Version 5 at IBM developerWorks:

http://www-106.ibm.com/developerworks/websphere/techjournal/0304_klinger/
klinger.html

� Read the article WebSphere V5 Extended Messaging Support at IBM
developerWorks:

http://www-106.ibm.com/developerworks/websphere/library/
techarticles/0302_wadley/wadley.html

� Read the article IBM WebSphere Developer Technical Journal: Simplify
Applications by Using WebSphere Extended Messaging at IBM
developerWorks:

http://www-106.ibm.com/developerworks/websphere/techjournal/0303_green/
green.html

12.2 Sample scenario
The sample application is using the travel agency (NiceJourney) scenario to
show the usage of Extended Messaging. First, we will develop a self-contained
messaging component as part of an enterprise application (the only component
of the application). The sample is quite simple; it implements a fire-and-forget
pattern; the resulting component is a Message Sender bean.

Later, we will use the Extended Messaging component in the simple business
process introduced in Chapter 7, “Process choreographer: developing a simple
process” on page 135. The Sender bean will send a log message using the same
fire-and-forget pattern introduced in the self-contained application.
354 WebSphere Business Integrator Server Foundation V5.1 Handbook

http://publib.boulder.ibm.com/infocenter/ws51help/index.jsp
http://www-106.ibm.com/developerworks/websphere/techjournal/0304_klinger/klinger.html
http://www-106.ibm.com/developerworks/websphere/library/techarticles/0302_wadley/wadley.html
http://www-106.ibm.com/developerworks/websphere/library/techarticles/0302_wadley/wadley.html
http://www-106.ibm.com/developerworks/websphere/techjournal/0303_green/green.html
http://www-106.ibm.com/developerworks/websphere/library/techarticles/0302_wadley/wadley.html
http://www-106.ibm.com/developerworks/websphere/library/techarticles/0302_wadley/wadley.html

Migration
There are no specific tasks to perform to migrate WebSphere Enterprise V5
applications using Extended Messaging to WebSphere Business Integration
Server Foundation.

Development
Developing messaging applications and application components using Extended
Messaging is quite simple. Extended Messaging reduces the efforts spent on
coding messaging for applications using messaging APIs. Extended Messaging
is supported by a wizard-based rapid application development environment in
WebSphere Studio Application Developer Integration Edition.

The development of a simple Sender bean is described in 12.3, “Development”
on page 356. Later, we will extend the development using the Sender bean in a
simple business process. Since we do not go into details about Extended
Messaging patterns and development, the focus in this chapter is to show how to
use an Extended Messaging component in a business process.

Unit test
Unti testing a Extended Messaging component or application is very similar to
testing any other EJB component or application.

Assembly
There are a few settings for Extended Messaging in the EJB deployment
descriptor. We will check these settings to see what can be done in assembly
time.

Deployment
There are a few specific tasks to perform when deploying an application with
Extended Messaging.

Applications with Extended Messaging components simply deploy like any other
application with messaging components. You have to configure your messaging
providers and components for WebSphere Business Integration Server
Foundation through administration before you deploy your application.

Once you have the messaging provider and components taken care of, you can
configure the Extended Messaging components.

Testing
Testing in the runtime environment can be performed using the same methods
as in the development environment. You can either turn on tracing for the
messaging component to see the messaging activities or you can use a
 Chapter 12. Extended messaging 355

messaging queue browser when you have an external messaging provider, such
as MQ Explorer in the case of WebSphere MQ.

12.3 Development
We will first create an Extended Messaging bean, and then invoke it from a
process.

12.3.1 Creating an Extended Messaging bean
This section describes how to develop a simple Sender bean. Discussing all the
messaging patterns and developing all the different bean types is outside of the
scope of this book. If you want to know more about these details, refer to 12.1,
“Prerequisites” on page 354 for help.

The Sender bean will be the message sender in our fire-and-forget scenario. We
will not develop the receiver side for the pattern. To test the application, we can
simply enable tracing to see the results, or we can use a message queue
browser, for example: MQ Explorer for WebSphere MQ.

Creating the project
In this section, we will create a new project for this development.

First, create the EJB project and its associated EAR project.

1. Open the WebSphere Studio Application Developer Integration Edition J2EE
perspective and change to the J2EE view.

2. Select File → New → EJB Project from the menu and select Create 2.0
EJB Project. Click Next.

3. Name the project EMS_loggingQueue and select Integration Server v5.1 as
the target server.

4. Click the New... button to create a new EAR project called
EMS_loggingQueueEAR; and target this at Integration Server V5.1. Click
Finish.

5. Click Finish.

Important: Before developing, make sure that Server Targeting is enabled.
Open WebSphere Studio Application Developer Integration Edition and select
Window → Preferences from the menu. Open the J2EE preferences page
and select the Enable server targeting support radio button.
356 WebSphere Business Integrator Server Foundation V5.1 Handbook

Creating the Sender bean
Once we have the project established, we will create the Sender bean for the
fire-and-forget pattern.

1. Right-click the EMS_loggingQueue project and select Extended
Messaging → Create Sender Bean.

2. Click Create sender.

– Bean name: LogSender
– Default package: com.nicejourney.log

Click Next

3. On the Enterprise Beans details window, make sure that both Local client
view and Remote client view checkboxes are selected.

4. Click Finish.

5. Fill in the port, response and data mapping information as per Figure 12-1,
then click Next.

Figure 12-1 Create LogSender bean

The Output port resource-ref name is the hard-coded reference used
internally in the extended messaging EJB. This is mapped to the Output port
JNDI name in the EJB deployment descriptor. The setting entered here is
 Chapter 12. Extended messaging 357

merely an initial value which can be changed at a later date. This JNDI name
eventually maps to a physical JMS provider, which could be a WebSphere
MQ queue.

The response information setting of No response means that this sender is
not expecting a response (as we are implementing a fire-and-forget pattern).

The data mapping setting of Extended Messaging data mapping provides a
signature to the LogSender send method which assists in creating a
message. The format identifier is an arbitrary name which will be used when
creating the JMS message.

Click Next.

6. On the Send with no response window, select both the Add to remote
interface and Add to local interface checkboxes. This adds the send()
method to the LogSender bean interfaces. Click Next.

7. Select the Define and validate method signature radio button. This will
define the parameters for use with the send() method. These will then be
used by the CMMFormatter class to create the JMS message. Click Next.

8. The send() method parameters are listed in Table 12-1. Add these
parameters on the Define and validate the sending method signature by
entering the relevant details in the Parameter name and Parameter type
boxes and clicking the Add button.

Table 12-1 LogSender send() method parameters

When complete, , the window should look similar to Figure 12-2 on page 359.

Note: Although we will use the local interface during the unit test of this
code, we have to use a remote EJB interface when using the Extended
Messaging bean as part of a business process.

Parameter name Parameter type

customerData java.lang.String

travelData java.lang.String
358 WebSphere Business Integrator Server Foundation V5.1 Handbook

Figure 12-2 Define LogSender send() method signature

Click Next.

9. The summary window will be displayed. Check that the details are correct and
click Finish.

10.Right-click the LogSender session bean and select Generate Deployment
Code from the menu.

Reviewing the generated bean
The previous steps have created a stateless session bean with a send() method.
Execution of the method will customerData and travelData strings provided as
parameters, assemble a JMS message and place the message on the queue
defined by the ems/LogOutputPort resource.

1. Expand EJB Modules → EMS_loggingQueue → Session Beans →
LogSender in the J2EE Hierarchy view. Notice that both remote and local
interfaces have been created because both were specified.

2. Double-click LogSenderBean to open the source code and scroll down to the
send() method.
 Chapter 12. Extended messaging 359

You will see:

– A Sender bean being created linked to the resource-ref name:

CMMSender sender = CMMFactory.createSender(“ems/LogOutputPort”);

– A formatter being created and then updated with the input parameters:

CMMFormatter formatter = CMMFactory.createCMMFormatter(factory);
formatter.addStringParameter(customerData);
formatter.addStringParameter(travelData);

– The assembled request message being received from the formatter:

Object request = formatter.getMessage();

– The message type set to LogMessage on the sender

sender.setRequestMessageType(“LogMessage”);

– The message being sent to the queue

sender.sendRequest(request);

3. Double-click ResourceRef ems/LogOutputPort under LogSender in the
J2EE Hierarchy to open the References tab of the Deployment Descriptor.
You should see a window similar to Figure 12-3.

Figure 12-3 Deployment descriptor References tab for LogSender bean

Notice the local resource name ems/LogOutputPort which is bound to the
WebSphere JNDI resource ems/nicejourney/LogOutputPort. This indirection
360 WebSphere Business Integrator Server Foundation V5.1 Handbook

provides additional flexibility when deploying the code. We will configure the
WebSphere JNDI resource later.

12.3.2 Using Extended Messaging with Process Choreographer
1. Import the simple process into the workspace. Refer to “Project Interchange

archive import/export” on page 562 for detailed instructions.

2. Right-click the WPC_simpleProcess project, select Refactor → Rename...
and rename the project WPC_EMS_demo.

3. Open NiceJourney.bpel using the BPEL Editor.

4. Switch to Package Explorer view, and open EMS_loggingQueue →
ejbModule → com.nicejourney.log.

5. Drag and drop the file LogSender.java EJB remote interface source file to the
BPEL Editor canvas. This will create a new EJB partner link called
LogSender.

6. Add a JavaSnippet and an Invoke activity into the process, renaming and
linking them so that they resemble Figure 12-4.

Figure 12-4 EMS demonstration process

7. Select the InvokeLog activity. Set the partner link to LogSender.

8. Open the Implementation tab in the details area.

9. Set the Operation to send using the drop-down list.

10.Click the New button next to the Request and create a new variable called
logMessage.
 Chapter 12. Extended messaging 361

11.Click the New button next to the Reply and create a new variable called
logResponse.

12.Select the JavaSnippetLogMsg activity and open the Implementation tab.

13.Enter the following code into the Implementation text box.

Example 12-1 Contents of the JavaSnippetLogMsg

// Create and populate temporary strings
String customerDataLogMsg=getTravelRequest().getCustomerData().getLastName()+", "
 +getTravelRequest().getCustomerData().getFirstName();
String travelDataLogMsg = getTravelRequest().getTravelData().getCityFrom()+" to "
 +getTravelRequest().getTravelData().getCityTo();
// Set log message parts
getLogMessage(true).setCustomerData(customerDataLogMsg);
getLogMessage(true).setTravelData(travelDataLogMsg);

14.Save and close the NiceJourney BPEL4WS process. Check that there are no
errors in the Tasks view.

15.Right-click the NiceJourney process and select Enterprise Services →
Generate Deploy Code. This will open the Generate BPEL Deploy Code
window.

16.Open Referenced Partners → LogSender. Check that the details resemble
Figure 12-5, then click OK.

Figure 12-5 LogSender referenced partner

17.Check that the build activity did not generate any errors.

Note: Although there is no response from the LogSender bean, the BPEL
process needs to have a response variable allocated. If you examine this
variable, you will see that it has no parts.
362 WebSphere Business Integrator Server Foundation V5.1 Handbook

12.4 Unit test
In this section, we will test the Sender bean component independently from the
process where we are going to use this component later.

12.4.1 Creating and configuring a server
Create a new Integration Test Environment with the name EMS_unitTest, then
add the EMS_loggingQueueEAR project to the configured projects list. If you
need detailed steps for this task, refer to “Integration Server V5.1 test
environment setup” on page 563.

Before the code can be executed on the server, some configuration needs to be
peformed.

1. Switch to the Server perspective, then double-click the EMS_unitTest server
in the Server Configuration view to open the server configuration editor.

2. Select the JMS tab and open the Node Settings part.

3. Create a new JMS Connection Factory by clicking the Add button next to the
WASQueueConnectionFactories entries, then specify the settings as shown
in Figure 12-6 on page 364.
 Chapter 12. Extended messaging 363

Figure 12-6 Queue Connection Factory settings

4. Create a queue for the server by clicking Add next to the WASQueue entries.
Use the details shown in Figure 12-7 on page 365.
364 WebSphere Business Integrator Server Foundation V5.1 Handbook

Figure 12-7 JMS Queue

5. Scroll down to the Server Settings section in the JMS window.

6. Add the new queue to the list by clicking the Add button and entering
LogQueue in the text box.

7. Switch to the Extended Messaging tab.

8. Scroll down to the Node Settings section and click Add next to the list of
Output Ports. Specify the settings shown in Figure 12-8 on page 366 and click
OK.
 Chapter 12. Extended messaging 365

Figure 12-8 Creating the Extended Messaging Output Port

9. Select the Trace tab and check that Enable trace is selected. Enter the
following Trace string:

com.ibm.ejs.jms.JMSQueueSenderHandle=all=enabled

10.Save and close the configuration.

11.Right-click EMS_unitTest in the workspace Servers view and select Publish
from the menu. You should be presented with a message saying Publishing
was successful.

Note: Make sure you select the JNDI name for the JMS destination, as
shown in Figure 12-8, before you go any further.
366 WebSphere Business Integrator Server Foundation V5.1 Handbook

12.4.2 Testing the LogSender in isolation
The following steps will show how to test the Sender bean in isolation,
independently from other application components.

1. Start the EMS_unitTest server.

2. Check that the following messages appear in the console, and that no errors
are reported.

Binding EMSLogOutputPort as ems/nicejourney/LogOutputPort
Binding EMS_testQCF as jms/nicejourney/QCF
Binding LogQueue as jms/nicejourney/logQ
The Extended Messaging service started successfully.
Starting application: EMS_loggingQueueEAR
Preparing to start EJB jar: EMS_loggingQueue.jar
Starting EJB jar: EMS_loggingQueue.jar
Application started: EMS_loggingQueueEAR

3. Switch to the J2EE perspective and select LogSender under the EJB
Modules folder in the J2EE Hierarchy.

4. Right-click the LogSender entry and select Run on Server.... Select Finish.

5. Select Test EJB local interface from the window that is presented, then click
Finish. The IBM Universal Test Client should start.

6. Expand the LogSenderLocal → LogSenderLocalHome tree in the
References pane. Select LogSenderLocal create().

7. Click the Invoke button in the Parameters pane, then click Work with Object.
The test client should now look like Figure 12-9.

Figure 12-9 Test client ready to run the local interface
 Chapter 12. Extended messaging 367

8. Select the void send(String, String) method from the References pane.

9. Enter the parameters as shown in Figure 12-10.

Figure 12-10 Prepare to run the send() method

10.Click the Invoke button.

11.You should see the message The method completed successfully
displayed in the test client.

12.Review the trace.log file created by the server. This should be in the
<EMS_project_workspace>\.metadata\.plugin\com.ibm.etools.server.core\tm
p0\logs\server1 directory. You should see an entry similar to Example 12-2.

Example 12-2 trace.log output for unit test

[5/20/04 18:13:23:185 EDT] 606c51a1 JMSQueueSende > send
 queue:///WQ_LogQueue
JMS Message class: jms_stream
 JMSType: LogMessage
 JMSDeliveryMode: 2
 JMSExpiration: 0
 JMSPriority: 4
 JMSMessageID: null
 JMSTimestamp: 0
 JMSCorrelationID:null
 JMSDestination: null
 JMSReplyTo: null
 JMSRedelivered: false
<stream><elt>J Smith</elt><elt>London, Raleigh</elt>
[5/20/04 18:13:23:195 EDT] 606c51a1 JMSQueueSende < send
368 WebSphere Business Integrator Server Foundation V5.1 Handbook

12.4.3 Testing the Sender bean in the simple process
This section will test the Sender bean component as an integral part of the
simple process.

1. Make sure the server is stopped by checking the Servers view.

2. Add the WPC_EMS_demoEAR project to the EMS_unitTest server.

3. Publish and start the server. Check that the console contains no errors.

4. Switch to the Servers view and right-click the EMS_unitTest server. Select
Launch Business Process Web Client to start the BPE Web Client.

5. Select My Templates from the menu. Check the checkbox next to
NiceJourney and click Start Instance.

6. Enter some message data in the form that is presented, then click Start
Instance.

Figure 12-11 Input Message for NiceJourney process

7. You should see the output message stating the reservation ID.

8. Look into the trace.log file and check for the trace record as shown in
Example 12-3.

Example 12-3 trace.log output for process invocation

[5/21/04 16:59:45:429 EDT] 34a971ce JMSQueueSende > send
 queue:///WQ_LogQueue
JMS Message class: jms_stream
 JMSType: LogMessage
 JMSDeliveryMode: 2
 JMSExpiration: 0
 JMSPriority: 4
 Chapter 12. Extended messaging 369

 JMSMessageID: null
 JMSTimestamp: 0
 JMSCorrelationID:null
 JMSDestination: null
 JMSReplyTo: null
 JMSRedelivered: false
<stream><elt>Traveller,BJD</elt><elt>Manchester to Raleigh</elt>
[5/21/04 16:59:45:449 EDT] 63c131cd JMSQueueSende < send

12.5 Assembly
There are a few settings that you can modify in your enterprise application (EAR)
during assembly time. These settings are also available for the application at
development time, of course.

When you have a Extended Messaging component in your EJB project, open the
deployment descriptor for the EJBs in the Application Server Toolkit for
WebSphere Business Integration Server Foundation or in WebSphere Studio
Application Developer Integration Edition.

You should find an Extended Messaging tab in the EJB deployment descriptor
editor as show in Figure 12-12 on page 371.
370 WebSphere Business Integrator Server Foundation V5.1 Handbook

Figure 12-12 Extended Messaging tab in the EJB Deployment Descriptor editor

You can find more information about the Extended Messaging Extensions,
method policies and handling late responses in the WebSphere Studio
Application Developer Integration Edition help at WebSphere Business
Integration Server Foundation, Extended messaging under the Highlights and
Features section.

12.6 Deployment
In the WebSphere Business Integration Server Foundation runtime environment,
the Extended Messaging configurations are available in the Resources →
Extended Messaging Provider panel. You can configure input and output ports
and custom properties for the provider.

The Extended Messaging service is enabled and starts up with the application
server by default. You can change the behavior and disable the service by
clicking Servers → Application Server → <your_server> → Extended
Messaging Service. You can also configure listener port extensions for your
Extended Messaging Service starting from this page.
 Chapter 12. Extended messaging 371

Before you go further with the Extended Messaging configuation, you will need to
configure your messaging provider for the application server under resources.
You can use either embedded (WebSphere JMS), WebSphere MQ or other
external messaging providers together with extended messaging.

Once you have the messaging provider and messaging components configured,
you can configure your Extended Messaging components.

Figure 12-13 Extended Messaging provider configuration

To create a new Input port, select Input Port, then click New; you should get the
page shown in Figure 12-14 on page 373.
372 WebSphere Business Integrator Server Foundation V5.1 Handbook

Figure 12-14 New Input port definition

To create a new Output port, select Output Port on the Extended Messaging
Provider page, then click New; you should get the page shown in Figure 12-15
on page 374.
 Chapter 12. Extended messaging 373

Figure 12-15 New Output port definition

Once you have finished the setup of Extended Messaging, save the
configuration for WebSphere.
374 WebSphere Business Integrator Server Foundation V5.1 Handbook

Chapter 13. Startup beans

A Startup bean is a stateful session bean executed when an application starts.
Startup beans enable J2EE applications to execute business logic automatically,
whenever an application starts or stops normally.

Startup beans are used to perform initialization and cleanup tasks when a J2EE
application is started or shut down. Startup beans have a number of uses. They
can check application runtime dependencies such as the availability of a
database or legacy system connection before application startup. They can also
be used for data caching and to “warm up” entity beans, by executing a finder
method and storing the EJB handles for future use.

Startup beans are particularly suited to asynchronous programming and they can
be used for independent fast logging and for caching purposes. Where an
application is using a large cache of objects but can operate without the cache,
application processing does not need to be delayed until the full cache is built. By
using a Startup bean, we can initiate an Asynchronous bean which populates the
cache and starts the application.

Startup beans can also be used with the scheduler service. Before the
application starts up, we can create a task and schedule it with the Scheduler
service. A sample application illustrating this purpose can be found in
Chapter 14, “Scheduler service” on page 391.

13
© Copyright IBM Corp. 2004. All rights reserved. 375

The benefits of using Startup beans are as follows:

� Initialization and cleanup tasks are contained within a single EJB

� Startup Beans run with full security context.

� Startup Beans run within WebSphere’s name space. Therefore it uses the
Java Naming and Directory Interface (JNDI) to find and use other resources.

� In comparison to using a servlet’s init() method, the functionality of Startup
beans also provides a stop() method that executes when the application is
shut down.
376 WebSphere Business Integrator Server Foundation V5.1 Handbook

13.1 Prerequisites
Here are some useful resources that will help you get started with Startup beans:

� WebSphere Business Integration Server Foundation V5.1 InfoCenter:

http://publib.boulder.ibm.com/infocenter/ws51help/index.jsp?topic=/
com.ibm.wasee.doc/info/welcome_ee.html

� WebSphere Studio Application Developer Integration Edition V5.1 Help at the
following locations:

– WebSphere Business Integration Server Foundation → Highlights
and Features → Startup Beans

– Cheat Sheets → Creating and Testing a Startup Bean

� IBM Redbook: WebSphere Application Server Enterprise V5 and
Programming Model Extensions, SG24-6932.

13.2 Sample scenario
This chapter demonstrates a simple example of a Startup bean being used to
invoke a BPEL process on the startup of an application. For this scenario, we are
invoking the Hello World process developed in “HelloWorld process application”
on page 562 and printing the output to the Console.

Development
The development process consists of creating a Startup bean and implementing
the start() and stop() methods as shown in 13.3, “Development” on page 378.

Unit testing
For Startup beans, no configuration in the WebSphere Test Environment is
required since the Startup bean service is always enabled. When the
development is finished, you simply publish the project that contains the Startup
bean on the WebSphere Test Environment server.

Note: The final solution is also available as part of the additional material. You
can import the startup.pi.zip file using the Project Interchange.

After importing the code you will get some error messages, they should
disappear as soon as you generate the deployed code for the process.
 Chapter 13. Startup beans 377

http://publib.boulder.ibm.com/infocenter/ws51help/index.jsp?topic=/com.ibm.wasee.doc/info/welcome_ee.html

Assembly
At Assembly time, you may need to specify properties such as Startup Bean
priorities, security identity and transactional properties. For further information,
refer to 13.4, “Unit test” on page 383.

Deployment
There are no specific deployment tasks for Startup beans.

Testing and runtime
Information regarding how the Startup Bean service operates in the runtime
environment is in 13.6, “Runtime environment” on page 387.

13.3 Development
This section discusses how to create and use a Startup bean in an application. In
this scenario, we will use a Startup bean to call an existing BPEL process to
demonstrate how they can be used in conjunction with Process Choreographer.

To add a Startup bean to the Hello World process, you need to:

� Import the Hello World process
� Create an EJB Project
� Fix the Java build path
� Create a new Startup session bean (EJB)
� Add Projects to the Java Build Path
� Add start() and stop() methods to the Startup bean

Follow these steps to develop the code for the Startup beans example:

1. Start WebSphere Studio Application Developer Integration Edition with an
empty workspace, then make sure you enable server targeting.

2. Set up the Hello World BPEL process as specified in “HelloWorld process
application” on page 562.

3. Generate the deployed code for the HelloWorld.bpel process.

4. Switch to the J2EE perspective, and create a new enterprise application with
an EJB Project. Go to File → New → Project and select the EJB tab and
EJB Project. Name the EJB project: StartupEJB, the enterprise application:

Note: If you wish to use Startup beans for tasks not in conjunction with
Process Choreographer, you can still use the code and techniques described
in this chapter.
378 WebSphere Business Integrator Server Foundation V5.1 Handbook

StartupEAR, and select Integration Server v5.1 for Target server. Click the
Finish button.

5. Create a new Startup session bean (EJB)

A Startup Bean is a user-defined EJB 2.0 session bean. It can be either
stateful or stateless. If it is stateful, the same instance is used for start and
stop. Otherwise, two instances are created.

The following home and remote interfaces are mandatory:

– EJB home interface must be:

com.ibm.websphere.startupservice.AppStartUpHome

– EJB remote interface must be:

com.ibm.websphere.startupservice.AppStartUp

a. To create a new stateless Startup bean select File → New → Other, and
select EJB on the left window and Enterprise Bean on the right, then click
the Next button. Select StartupEJB from the drop-down list, then click
Next.

b. Type HelloWorldStartup in the Bean Name field,
com.ibm.itso.sg246318.startup in the Package field and click the Next
button.

Figure 13-1 Creating a Startup Enterprise Bean
 Chapter 13. Startup beans 379

c. Type in com.ibm.websphere.startupservice.AppStartUpHome in the
Remote home interface field and
com.ibm.websphere.startupservice.AppStartUp in the Remote Interface
field and click the Finish button.

6. Add Projects to the Java build path. Right-click StartupEJB project and
select Properties. Select Java Build Path and the Projects tab. Select the
HelloWorldProcess and HelloWorldProcessEJB and click the OK button.

Figure 13-2 Adding projects to the Java build path

7. Add start() and stop() methods to the Startup bean.

Now we will add two new methods called start and stop to
MyStartupBean.java.

The purpose of these methods are as follows:

– boolean start()

This method is called before an application starts. From this method we
call all the user-defined initialization code we want to execute. The start()
method returns true when the method runs successfully and does not
throw any exceptions. Otherwise the start() method will return false and
indicates that application start will be aborted.

– void stop()

This method is called before the application stops. Specifically it is called
after you initiate the stop of the application and all the requests have been
served. This method can call all the user-defined “cleanup” code we want
to execute.

Any Exceptions thrown by this method will be logged but ignored and the
application will continue to stop.
380 WebSphere Business Integrator Server Foundation V5.1 Handbook

What does the start() method do?

– In the start() method, we look up the reference of the existing Business
Process bean (Hello World).

– Call the SayHello() method passing the input string “World”.

– The SayHello() method returns the string “Hello World” which is printed to
the Console.

a. Open the HelloWorldStartupBean.java file and add the start() and stop()
methods to the end of the source, as shown in Example 13-1.

Example 13-1 Implementation of the start() and stop() methods

//...
public boolean start() {

String jndi_name_process = "java:comp/env/ejb/HelloWorldBean";
System.out.println("**");
System.out.println("Startup bean: starting...");
try {

// Obtain the default initial JNDI context
Context initialContext = new InitialContext();
// Lookup the remote home interface of the BusinessProcess bean
Object result = initialContext.lookup(jndi_name_process);
// Convert the lookup result to the proper type
HelloWorldHome processHome = (HelloWorldHome)

javax.rmi.PortableRemoteObject.narrow(result,HelloWorldHome.class);
// Get a reference to Hello World bean interface
HelloWorld process = processHome.create();
// Call the SayHello operation
System.out.println("Startup bean: Executing SayHello() method");
String response = process.SayHello("World");
System.out.println("Startup bean: Finished executing SayHello()

method");
} catch (Exception e) {

System.out.println("Error in Startup bean: " + e.toString());
}
System.out.println("**");
return true;

}

public void stop() {
System.out.println("**");
System.out.println("Startup bean: stopping...");
System.out.println("**");

}
//...
 Chapter 13. Startup beans 381

b. Also copy and paste these import statements at the top of
HelloWorldStartupBean.java:

import javax.naming.*;
import process.helloworld.com.process91337437.*;

When you are developing a Startup bean for your own process, you will
have to import the packages related to your process. The process EJB
package names are unique to the process, you will get that after you have
generated the deployed code for the process.

When you invoke a process, you will also need to instantiate message
objects and build the message, those will require a couple more additional
package imports as well.

8. At this point, you are done with creating the Startup bean and developing the
code. You can generate the deployed code for the Startup bean.

On the J2EE Hierarchy perspective, right-click the HelloWorldStartup EJB
and select Generate Deployment Code.

13.3.1 Additional development considerations
Here are some additional considerations when developing Startup beans.

Transactional considerations
The startup session bean must use Container Managed Transactions. On the
stop() and start() methods, any transactional attribute can be used except
TX_MANDATORY because the methods are not started from a thread that has a
defined transactional context. If you use the TX_MANDATORY attribute, an
exception is thrown and the application start is aborted.

Refer to 13.6, “Runtime environment” on page 387 for more information.

Security considerations
There are no specific security settings for Startup Beans.

If you use security enabled for WebSphere, the default identity for Startup Bean
is system. This means if you do not specify any deployment-related security
settings on the Startup Bean, the identity of the Startup Bean will be the same as
the one used for starting WebSphere.

If your Startup bean uses some secured object that requires a different caller
identity, then the security identity must be enabled on the Startup Bean and
Run-as on the Startup Beans start() and stop() methods must be configured to
use the correct identity.
382 WebSphere Business Integrator Server Foundation V5.1 Handbook

Required session bean time-out
Set the time-out to 0. If it is set to any other value it will be ignored since startup
service automatically checks and sets it to 0.

13.4 Unit test
Upon application startup, WebSphere will recognize and run Startup beans.

To deploy the Startup Bean, you need to:

� Modify EJB Deployment Descriptor for Startup bean
� Modify EAR Deployment Descriptor for HelloWorldProcess
� Create, configure and start the server

Follow the steps below to deploy the Startup bean.

1. Generate Deploy Code for Startup bean

In the Business Integration perspective, right-click StartupEJB and select
Generate → Deployment and RMIC Code. Ensure Startup is selected and
click the Finish button.

2. Add an EJB reference in the Startup bean descriptor.

a. Switch to the J2EE perspective, right-click StartupEJB and select Open
With → Deployment Descriptor Editor.

b. Select the References tab and select HelloWorldStartup. Click the Add
button and select the first option EJB reference and click the Next button.

c. Click Enterprise bean in different EAR and navigate to
HelloWorldProcessEAR → HelloWorldProcessEJB →
HelloWorldBean. Click the Finish button.
 Chapter 13. Startup beans 383

Figure 13-3 Adding an EJB reference

d. Save and close the file.

3. Create, configure and start the test server.

a. Create a new server called StartupServer.

b. Add the HelloWorldProcessEAR and the StartupEAR applications to the
server.

c. Open the Server configuration, switch to the Configuration tab and
change the Application class loader policy to SINGLE.

d. Start the server.

Note: Changing the class loader policy ensures that the applications
can “see” eachother. Technically speaking, in our case, the Startup
bean can access the classes packaged with the process.

Another solution would be, if you want to keep the classloader policy
multiple, to create a new EJB module under the process enterprise
application and code your startupbean there and add the process EJB
jar as a dependency module to the startup EJB jar.
384 WebSphere Business Integrator Server Foundation V5.1 Handbook

In Example 13-2, you can see part of what is displayed in the test environment
server output console. For more detailed traces of startup service execution for
this sample, refer to 13.7, “Problem determination” on page 390.

Example 13-2 Output from Startup bean on the Console

...
SystemErr **
SystemOut Startup bean: starting...
SystemOut Startup bean: Executing SayHello() method
SystemOut Hello World
SystemOut Startup bean: Finished executing SayHello() method
SystemErr **
...

13.5 Assembly
At assembly time, you may need to specify the following settings for Startup
Beans:

� Startup Bean priorities
� Security identity
� Transactional properties

Startup bean priorities
If there is more than one Startup Bean in your application, you can specify
priorities among them. See 13.5.1, “Priorities when using multiple Startup beans”
on page 386 for further details.

Security identity
You can set security for the bean using the Application Server Toolkit. You will
need to install this as it is a separate executable from WebSphere Studio
Application Developer Integration Edition V5.1.

In the J2EE perspective, double-click StartupEJB to open the EJB Deployment
Descriptor. On the Assembly Descriptor tab, you can create roles, define method
permissions (you can set security on your start and stop methods) and set
transactional properties on these methods as seen in Figure 13-4 on page 386.
 Chapter 13. Startup beans 385

Figure 13-4 Setting security for the Startup EJB

For further information, consult the appropriate topics in the Help at WebSphere
Studio → Developing → EJB Applications → Editing the EJB Deployment
Descriptor → Defining the assembly settings.

JNDI considerations
During application assembly, we can specify a JNDI name for the Startup Bean.
However, Startup beans are not exposed in JNDI this is not required since the
only client for Startup Beans is the application server runtime.

13.5.1 Priorities when using multiple Startup beans
When an application has more than one Startup Bean, an environment property
must be defined on each Startup Bean. The name of this priority must be
wasStartupPriority and its type must be java.lang.Integer. In Figure 13-5 on
page 387, you can see how to add an environment property in WebSphere
Studio or in the Application Server Toolkit.

The default priority of a Startup Bean is 0. The property can be looked up using
JNDI via java:comp/env/wasStartupPriority.

Within one application’s scope, a Startup Bean with a higher priority will be
executed first. Beans with the same priority will be executed in undefined order.
Beans are stopped in the reverse order that they are started in.
386 WebSphere Business Integrator Server Foundation V5.1 Handbook

Figure 13-5 Adding the wasStartupPriority environment property to the Startup Bean

13.6 Runtime environment
This section describes how Startup Bean service behaves from the runtime point
of view.

Startup service runtime flow
The following steps represent the different states in the life cycle of a Startup
Bean. A diagram is shown in Figure 13-6 on page 389.

1. Application startup

After the application’s EAR is loaded, the service looks for all of the Startup
Beans and finds them using the home interface. It then checks whether the
property wasStartupPriority is defined for the startup EJB in the Deployment
Descriptor. If there is no priority property defined or it is the wrong type, it
would be set to the lowest possible value for the integer.
 Chapter 13. Startup beans 387

Startup Beans are ordered according to priority and the startup service takes
the bean with the highest priority from the queue. It checks its transactional
properties on the start() and stop() methods. If a TX_MANDATORY exception
is thrown, the startup of the application is aborted. Then it finds the actual
bean using JNDI and runs its start() method.

If there is no problem with the lookup and the start() method returned true, the
startup service stores the bean handle and proceeds to next Startup Bean in
the ordered queue.

When it finishes successfully with all the Startup Beans, WebSphere starts
the application and its JMS, IIOP and HTTP listener.

2. Application shutdown

In the application shutdown process, after the containers stop serving
requests Startup Beans are taken one by one in the reverse order of
precedence they were run when the application started. For each bean, the
stop() method is executed. Any exception thrown at this stage is ignored and
the startup service continues to run the next bean in the queue.

3. EJB Module re-start

Suppose we have an application with more than one EJB module and each
contains Startup Bean(s). If one of the EJB modules is stopped and restarted,
the Startup service will consider it an application start. Therefore, it will
execute the Startup Beans that are part of the restarted EJB module.

4. Application server crash

If the application server crashes, the Startup Bean stop() method may not be
executed. When restarting the server, the start() method will be executed as
normal.

Tip: The Startup service waits until the start() method finishes its
execution. If there is a demanding task triggered by the start() method, it
can take some time before the application starts. In these situations, it is
recommended that you use Asynchronous Beans to perform the task so
application startup is not unnecessarily delayed.
388 WebSphere Business Integrator Server Foundation V5.1 Handbook

Figure 13-6 Startup Bean service runtime flow on startup

13.6.1 Scalability
If we use Startup Beans on clustered applications, multiple clones will run the
applications. Therefore, every clone will have a Startup Bean instance of the
application. The Startup Bean is invoked for each clone in a cluster.

Keep in mind that the Startup Bean service of a clone is not aware of other
clones and does not synchronize any actions between instances of Startup
Beans amongst clones. Therefore it is the programmer’s responsibility to take
the appropriate actions to avoid deadlocks or data inconsistencies.

Set Priority
to Lowest

Select Next Startup Bean
According to Priority

Transactional
Attribute for stop() and
start() Methods is NOT

TX_MANDATORY

Find the Startup Bean

ABORT the
Startup of

the Application

START
the

Application

Any Startup
Bean Left?

Store Startup
Bean’s Handle

start()
Returned

TRUE

Invoke
start()

Method

Yes

No

Yes

Yes

Load
Application’s

EAR File

Find Startup
Beans

wasStartupPriority
Defined and is

it of Integer
Type?

No

Yes

No

JNDI Lookup
OK?

Order Startup
Beans According to
wasStartupPolicy
 Chapter 13. Startup beans 389

13.7 Problem determination
If there is a problem with the configuration of the Startup Beans(s), the
application will not start. The first thing to check is the transactional and security
settings.

If you encounter problems using Startup Beans and you suspect that the problem
source is within the startup service itself, you can use the following trace string to
monitor what is happening during execution.

com.ibm.ws.startupservice.*=all=enabled
390 WebSphere Business Integrator Server Foundation V5.1 Handbook

Chapter 14. Scheduler service

The Scheduler service was previously introduced in WebSphere Application
Server V5.0 Enterprise Edition. This service extends the normal J2EE services
by introducing time-driven actions. These actions can be scheduled to run once,
in the future, or on a recurring basis at regular intervals.

The advantages of using the Scheduler service are as follows:

� The service facilitates the development of date- or time-based functionality.
This feature of WebSphere Business Integration Server Foundation can be
applied to various scenarios which are listed in this chapter as well.

� Scheduler server administration is consistent with WebSphere resource
management.

� Scheduler tasks can be persisted. This means that the Scheduler service
stores the task definition in relational database (RDB) tables. These tables
must be created ahead of time. RDB ensures that the task definition is
retained as WebSphere Business Integration Server Foundation processes
are recycled, in a single machine or cell configuration.

� The Scheduler service can be workload-managed for high availability
configurations and for performance.

� Calendars are used to calculate the timing for a given scheduler task.
Out-of-the-box calendars are shipped with WebSphere Business Integration
Server. However, customized, business-oriented calendars can be developed
to suit specific scheduler needs.

14
© Copyright IBM Corp. 2004. All rights reserved. 391

� The Scheduler task design is very flexible. Scheduled actions can be
EJB-based or can be triggered using JMS messages.

� Scheduler can perform notification actions on various task activity events.

Typical usage scenarios for WebSphere Business Integration Server Foundation
scheduler service are as follows.

� Any time certain actions must be performed on a regular basis.

� When scheduling regular back-ups, clean-ups, night-time or batch
processing.

� When implementing automatic, non-user-driven activities. These could be
primarily activities tied to the back-end system integration, for example,
kick-starting a business process in Business Process Container of
WebSphere Business Integration Server Foundation using the JMS triggering
mechanism mentioned earlier.
392 WebSphere Business Integrator Server Foundation V5.1 Handbook

14.1 Prerequisites
You can familiarize yourself with the following WebSphere Business Integration
Server Foundation topics in InfoCenter at:

http://publib.boulder.ibm.com/infocenter/ws51help/index.jsp

� For information about installing WebSphere Business Integration Server
Foundation, see:

http://publib.boulder.ibm.com/infocenter/ws51help/topic/com.ibm.wasee.doc/
info/ee/ae/welc_installing.html

� For information about administering a Scheduler service in WebSphere
Business Integration Server Foundation, see:

http://publib.boulder.ibm.com/infocenter/ws51help/topic/com.ibm.wasee.doc/
info/ee/scheduler/tasks/tsch_managescheduler.html

� It is important to gain familiarity with Scheduler tasks because the section
14.3, “Development” on page 395 assumes this knowledge. Using
WebSphere Business Integration Server Foundation InfoCenter, navigate to
Developing → Applications → Application Services → Developing
and scheduling tasks in:

http://publib.boulder.ibm.com/infocenter/ws51help/topic/com.ibm.wasee.doc/
info/ee/scheduler/tasks/tsch_developtasks.html

Familiarize yourself with the managing of Programming Model Extensions by
clicking WebSphere Studio → Deploying Business Integration application
→ Deploying business integration application → Managing Programming
model extensions in the WebSphere Studio Application Developer Integration
Edition Help Content.

14.2 Sample scenario
The scenario used in the following sections is meant to develop a background
batch job using the WebSphere Business Integration Server Foundation
Scheduler service. This background job will invoke a business process at
specific interval of times. The example will illustrate the following key points:

� How to invoke a business process from a Java client.

� How to implement the Scheduler service in conjunction with the Startup bean
service.

� How to receive notifications from the Scheduler service.

� How to programatically cancel and stop scheduled jobs.
 Chapter 14. Scheduler service 393

http://publib.boulder.ibm.com/infocenter/ws51help/topic/com.ibm.wasee.doc/info/ee/ae/welc_installing.html
http://publib.boulder.ibm.com/infocenter/ws51help/topic/com.ibm.wasee.doc/info/ee/scheduler/tasks/tsch_managescheduler.html
http://publib.boulder.ibm.com/infocenter/ws51help/topic/com.ibm.wasee.doc/info/ee/scheduler/tasks/tsch_developtasks.html
http://publib.boulder.ibm.com/infocenter/ws51help/index.jsp
http://publib.boulder.ibm.com/infocenter/ws51help/index.jsp

Migration
The WebSphere Enterprise V5.0 Scheduler service has interoperability issues
that affect the behavior of this service in a clustered environment. It is important
to familiarize yourself with these issues. These are listed in the WebSphere
Business Integration Server Foundation InfoCenter:

http://publib.boulder.ibm.com/infocenter/ws51help/topic/com.ibm.wasee.doc/
info/ee/scheduler/tasks/tsch_interop.html

Development
The development of a Scheduler service consists of implementing a Task
session bean and developing the code that will register this Task session bean in
the Scheduler service (or the persistent store). The Scheduler daemon will then
take care of invoking this task at specified intervals.

The role of the Scheduler service is to fire off tasks at specified times or intervals.
Scheduler tasks can:

� Invoke a user-defined Stateless Session EJB
� Send a JMS message to a user-defined JMS queue or topic

Once the task is scheduled, the Scheduler service stores the task definition in
the relational database table. The database and schema for the table must exist
ahead of time. This ability to persists tasks in the database allows for the
Scheduler to be configured in a clustered/cell configuration.

The Schedule service also supports the notion of calendars. Calendars are
needed to schedule a task. The primary purpose of calendars is to calculate a
point in time in the future when a scheduled task is to be executed. If no
calendars are specified when a task is being scheduled, a default calendar is
used. Two out-of-the-box calendars are provided; each of these is discussed
later in this chapter.

Note: The sample application developed in this chapter is available as part of
the additional material. You can import the scheduler.pi.zip into WebSphere
Studio Application Developer Integration Edition using the Project Interchange
plug-in.

After import, you will get some error messages. You have to generate the
deployed code for the HelloWorld process.

You will also have to generate the deployed code for the EJBs before you can
run the application.
394 WebSphere Business Integrator Server Foundation V5.1 Handbook

http://publib.boulder.ibm.com/infocenter/ws51help/topic/com.ibm.wasee.doc/info/ee/scheduler/tasks/tsch_interop.html

� Arithmetic calendar
� CRON-based calendar

Unit test
As custom Scheduler tasks are developed, there can be tests within the
WebSphere Test Environment in WebSphere Studio Application Developer
Integration Edition V5.1. For details about WebSphere Test Environment, refer to
14.4, “Unit test” on page 407.

Assembly
Scheduled tasks, at the application code level, use local references to refer to
the Scheduler service. Keep that in mind, before the application can use the
service, the local JNDI name for the Scheduler must be specified. If the name of
the Scheduler service is different in production environment compared to unit
test environment, which would most likely be the case, Application Server Toolkit
can be used to specify the JNDI name.

Deployment
As mentioned previously, Scheduler tasks and calendars are stateless session
beans and should be treated as such when it comes to packaging, deployment
and usage. There are no specific steps related to the deployment of Scheduler
beans in the WebSphere Business Integration Server Foundation runtime.

Testing and runtime
Scheduler task and calendars can be tested in the unit test environment.
However, for functional and integration tests, Scheduler components should be
further tested in the runtime environment. Runtime environment is configured
using the Administrative Console and primarily contain a scheduler daemon.

14.3 Development
The following section describes how to use the Scheduler service from an Java
application.

In order to invoke a scheduled task, first a BeanTaskInfo object, set the
properties on this object, and the appropriate TaskHandler that will be invoked
when the scheduler kicks in. The final step is to schedule the task in the
Scheduler service persistent storage.

In Chapter 13, “Startup beans” on page 375, the bean’s start() method
implemented Java code to invoke a Business Process. However, in this section,
the Startup bean code in start() will be changed to instead schedule a task.
 Chapter 14. Scheduler service 395

The Task session bean, BatchProcessBean, developed in this section will execute
exactly the same code as in the Startup Bean, StartupBean, in Chapter 13,
“Startup beans” on page 375. That is, BatchProcessBean will invoke a Business
Process.

In addition to changing the start() method code in StartupBean to schedule the
task, stop() method will include code that illustrate how to Programatically cancel
and purge a scheduled task that is either running, suspended, or any other state.

Additionally, a Notification bean is developed that demonstrates different
notification events that are thrown by the scheduler demon and that be captured
via in a session bean.

The Scheduler API is contained in the com.ibm.websphere.scheduler package.
Check the complete description of the Scheduler API in the WebSphere
Business Integration Server Foundation InfoCenter:

http://publib.boulder.ibm.com/infocenter/ws51help/topic/com.ibm.wasee.doc/
info/ee/javadoc/ee/com/ibm/websphere/scheduler/package-summary.html

14.3.1 Steps for using the Scheduler API
There are no tools that provide help creating and scheduling tasks. All must be
done programmatically in your J2EE application. However, administrative
console can be used to configure the Scheduler service and resources. The
following steps must be performed when developing the Scheduler service:

1. Developing a task

Scheduler API supports two different ways to develop a Task, effectively a
TaskInfo interface. Each of these ways can be used to schedule a particular
type of work.

a. Task that calls a session bean by implementing the process() method in
the com.ibm.websphere.scheduler.TaskHandler remote interface. Place
the business logic you want created in the process() method. The
process() method is called when the task fires. The Home and Remote
interfaces must be set as follows in the bean's deployment descriptor:

• home: com.ibm.websphere.scheduler.TaskHandlerHome
• remote: com.ibm.websphere.scheduler.TaskHandler

b. Task that sends a Java Messaging Service (JMS) message. This task
object can send a JMS message to either a queue or a topic. This activity
consequently requires the creation of an instance of the MessageTaskInfo
interface by using the Scheduler.createMessageTaskInfo() method.

2. Define the notifications.

3. Define the calendar.
396 WebSphere Business Integrator Server Foundation V5.1 Handbook

http://publib.boulder.ibm.com/infocenter/ws51help/topic/com.ibm.wasee.doc/info/ee/javadoc/ee/com/ibm/websphere/scheduler/package-summary.html

4. Submit the task to a scheduler.

5. Manage the tasks with a scheduler.

Each of these steps is discussed in the following sections.

Configuring the Scheduler service
The first step is to have the Scheduler service and its prerequisites configured as
the work manager and Scheduler database. This can be done using the
WebSphere administration. Note that this step pertains more to the
administrative tasks and is not necessarily tied to the development process of a
scheduler. Scheduler task can be developed in parallel as long as the JNDI
name for the Scheduler is known in advanced. Refer to 14.7.1, “Problem
determination” on page 411

Developing the Scheduler code
This step consists of developing a scheduled task, defining optional notification,
defining optional calendar, submitting the task to a scheduler. Scheduled tasks
can be managed programmatically. These steps will not be discussed in detail in
this chapter since they are well documented in the WebSphere Business
Integration Server Foundation InfoCenter:

http://publib.boulder.ibm.com/infocenter/ws51help/topic/com.ibm.wasee.doc/i
nfo/ee/scheduler/tasks/tsch_developtasks.html

Important: Remember the JNDI name you used for the Scheduler service
configuration.

Note: It is important to note that defining notification and custom calender is
optional. Tasks can be scheduled without a notification mechanism or without
providing a calender. WebSphere Business Integration Server Foundation
implements two calendars that cover the majority of the needs. These
calendars are used by default.

Note: Tasks are managed programmatically by using the scheduler API.
There is no mechanism in place to delete the task except through the API.

Restriction: The Scheduler is available only to server-side components
where the Scheduler daemon is running. If a Scheduler resource is defined at
the node level, for example, all the application servers on that node have
access to that Scheduler and will run its daemon. You can selectively disable
the daemon on an application server.
 Chapter 14. Scheduler service 397

http://publib.boulder.ibm.com/infocenter/ws51help/topic/com.ibm.wasee.doc/info/ee/scheduler/tasks/tsch_developtasks.html

14.3.2 Using Scheduler with Process Choreographer
As discussed in section 14.2, “Sample scenario” on page 393, the sample
scenario uses Startup bean to register a scheduler task. The scheduler task then
executes at specified intervals of time and invokes the same Business Process
used in the Chapter 13, “Startup beans” on page 375.

Prerequisites
The following prerequisites must be met before developing for the Scheduler
service:

� Set up the Hello World BPEL process as specified in “HelloWorld process
application” on page 562.

� Have the Startup bean EJB project imported in the workspace prior to working
with Scheduler chapter. Complete steps in Chapter 13, “Startup beans” on
page 375 to create a StartupBean; refer specifically to 13.3, “Development”
on page 378.

� For testing the sample with WebSphere Studio Application Developer
Integration Edition, a test server needs to be created and configured. For
more information, refer to 14.4, “Unit test” on page 407.

� The scheduler-client.jar and scheduler-server.jar files needs to be in the Java
build path of the EJB module that will contain the Scheduler Bean.

� The Scheduler service will be used from the Startup Bean. For the startup
EJB, you need to define a resource reference that points to the Scheduler
service.

Creating the task session EJB
Perform the following steps to create the Task.

1. Launch WebSphere Studio Application Developer Integration Edition with an
empty workspace. Make sure you enable server targeting.

2. Import the HelloWorld process into the workspace using the Project
Interchange plug-in, for more information refer to, “HelloWorld process
application” on page 562.

3. In the J2EE hierarchy window, right-click EJB Modules. From the
context-menu, select New → EJB Project.

4. In the Select an EJB version window, select Create 2.0 EJB Project. Click
Next.

5. In EJB Project window, type Scheduler as the name of the project. Select
SchedulerEAR as the EAR Project. Select Integration Server V5.1 for
server target. Click Next.
398 WebSphere Business Integrator Server Foundation V5.1 Handbook

6. Right-click the Scheduler EJB project and select Properties. Under Java
Build path, switch to the Projects tab and check the box next to
HelloWorldProcess and HelloWorldProcessEJB. Click OK.

7. Right-click the Scheduler EJB Project and from the context-menu select New
→ Enterprise Bean.

8. In Create an Enterprise Bean window, make sure that Scheduler EJB Project
is selected. Click Next.

9. In the Create a 2.0 Enterprise Bean window, select the values as specified in
Figure 14-1.

Figure 14-1 Create Enterprise Bean: Project and Bean name

10.In the Enterprise Bean Details window, accept the defaults but change the
Remote home interface and Remote interface as follows.

– Remote home interface: com.ibm.websphere.scheduler.TaskHandlerHome
– Remote interface: com.ibm.websphere.scheduler.TaskHandler

Click Finish when done.

11.Still in the J2EE Hierarchy view, expand the newly created BatchProcess
Session bean and locate BatchProcessBean Java file. Open
BatchProcessBean.java and add the following code to create process()
method.
 Chapter 14. Scheduler service 399

Example 14-1 BatchProcessBean.java

//...
import javax.naming.*;
import process.helloworld.com.process91337437.*;
import com.ibm.websphere.scheduler.TaskStatus;

//...

public void process(TaskStatus status) {
String jndi_name_process = "java:comp/env/ejb/HelloWorldBean";
System.out.println("**");
System.out.println("Scheduler bean: starting...");
try {

// Obtain the default initial JNDI context
Context initialContext = new InitialContext();
// Lookup the remote home interface of the BusinessProcess bean
Object result = initialContext.lookup(jndi_name_process);
// Convert the lookup result to the proper type
HelloWorldHome processHome = (HelloWorldHome)

javax.rmi.PortableRemoteObject.narrow(result,HelloWorldHome.class);
// Get a reference to Hello World bean interface
HelloWorld process = processHome.create();
// Call the SayHello operation
System.out.println("Scheduler bean: Executing SayHello() method");
String response = process.SayHello("World");
System.out.println("Scheduler bean: Finished executing SayHello()

method");
} catch (Exception e) {

System.out.println("Error in Scheduler bean: " + e.toString());
}
System.out.println("**");

}

12.Save and close the file.

Adding an EJB reference
Next, we will add a EJB reference to the HelloWorld Business Process.

1. Double click the Scheduler EJB Project to bring up the EJB Deployment
Descriptor for this project. Switch to the References tab.

2. Select BatchProcess session bean and click Add on the References tab.

3. Select EJB Reference then click Next.

4. Select Enterprise Bean in a different EAR, then select the
HelloWorldProcessEAR → HelloWorldProcessEJB → HelloworldBean.

5. Click Finish to create the EJB reference.
400 WebSphere Business Integrator Server Foundation V5.1 Handbook

Figure 14-2 Scheduler EJB Project Deployment Descriptor

14.3.3 Notification bean
You can set a notification sink on a task in order to receive the notification events
that are generated by a scheduler when it performs an operation on the task.

Follow the steps below to create ReceiveNotification bean. This bean will be
made part of the Scheduler EJB project.

1. In the J2EE Hierarchy view, right-click the Scheduler EJB Project. From the
context-menu, select Enterprise Bean.

Important: Take note of the JNDI name:
process/helloworld/com/process91337437/HelloWorld20030101T000000.
This is the JNDI name for the process that NiceJourney Session bean will
invoke.This JNDI may be different in the Runtime environment hence it
could be changed here prior to exporting the EAR. This process is
discussed in 14.5, “Assembly” on page 410.
 Chapter 14. Scheduler service 401

2. In the Create an Enterprise Bean window, make sure the Scheduler EJB
Project is selected and click Next.

3. In the Create a 2.0 Enterprise Bean window, accept the default values except
the bean name and project. Enter ReceiveNotification as the bean name
and com.ibm.itso.sg246318.scheduler as the project name.

4. In Enterprise Bean Details window, accept the defaults except change the
Remote home interface and Remote interface as follows.

Remote home interface:
com.ibm.websphere.scheduler.NotificationSinkHome

Remote interface: com.ibm.websphere.scheduler.NotificationSink

Click Finish when done.

5. In the J2EE Hierarchy view, expand the newly created ReceiveNotification
session bean and locate the ReceiveNotificationBean Java file. Open the
ReceiveNotificationBean.java file and add the following code to create
handleEvent() method.

Example 14-2 ReceiveNotificationBean.java

import javax.naming.*;
import com.ibm.websphere.scheduler.*;

//.....

public void handleEvent(TaskNotificationInfo task) {
System.out.println("--");
 try {
 int eventType = task.getEventType();
 System.out.println("ReceiverNotificationBean.handleEvent(): Event received at " +
task.getTime());
 switch (eventType) {
 case TaskNotificationInfo.CANCELLED:
 System.out.println("ReceiverNotificationBean.handleEvent(): Task CANCELLED");
 break;
 case TaskNotificationInfo.COMPLETE :
 System.out.println("ReceiverNotificationBean.handleEvent(): Task COMPLETED");
 break;
 case TaskNotificationInfo.FIRE_DELAYED :
 System.out.println("ReceiverNotificationBean.handleEvent(): Task FIRE_DELAYED :
Task was unable to start and hence skipped");
 break;
 case TaskNotificationInfo.FIRE_FAILED :
 System.out.println("ReceiverNotificationBean.handleEvent(): Task FIRE_FAILED : Task
fired but TaskInfo threw an unexpected exception when executing");
 break;
 case TaskNotificationInfo.FIRED :
402 WebSphere Business Integrator Server Foundation V5.1 Handbook

 System.out.println("ReceiverNotificationBean.handleEvent(): Task FIRED");
 break;

 case TaskNotificationInfo.FIRING :
 System.out.println("ReceiverNotificationBean.handleEvent(): Task is FIRING");
 break;
 case TaskNotificationInfo.PURGED :
 System.out.println("ReceiverNotificationBean.handleEvent(): Task PURGED from
persistant store");
 break;
 case TaskNotificationInfo.RESUMED :
 System.out.println("ReceiverNotificationBean.handleEvent(): Task was RESUMED");
 break;
 case TaskNotificationInfo.SCHEDULED :
 System.out.println("ReceiverNotificationBean.handleEvent(): Task was
SCHEDULED");
 break;
 case TaskNotificationInfo.SUSPENDED :
 System.out.println("ReceiverNotificationBean.handleEvent(): Task is
SUSPENDED");
 break;
 }
 checkTaskStatus(task.getTaskStatus());
 }
 catch (Exception e) {
 System.out.println("ReceiverNotificationBean.handleEvent(): " + e.getMessage());
 }

System.out.println("--");
}

public void checkTaskStatus (TaskStatus status) {
 System.out.println("ReceiverNotificationBean.checkTaskStatus(): Task Name : " +
status.getName());
 System.out.println("ReceiverNotificationBean.checkTaskStatus(): Task ID : " +
status.getTaskId());
 System.out.println("ReceiverNotificationBean.checkTaskStatus(): Repeats left : " +
status.getRepeatsLeft());
 System.out.println("ReceiverNotificationBean.checkTaskStatus(): Next fire time : " +
status.getNextFireTime());
 switch (status.getStatus()) {
 case TaskStatus.CANCELLED:
 System.out.println("ReceiverNotificationBean.checkTaskStatus(): Task Status :
CANCELLED");
 break;
 case TaskStatus.COMPLETE :
 System.out.println("ReceiverNotificationBean.checkTaskStatus(): Task Status :
COMPLETED");
 break;
 case TaskStatus.INVALID :
 Chapter 14. Scheduler service 403

 System.out.println("ReceiverNotificationBean.checkTaskStatus(): Task Status :
INVALID");
 break;
 case TaskStatus.RUNNING :
 System.out.println("ReceiverNotificationBean.checkTaskStatus(): Task Status :
RUNNING");
 break;
 case TaskStatus.SCHEDULED :
 System.out.println("ReceiverNotificationBean.checkTaskStatus(): Task Status :
SCHEDULED to execute");
 break;
 case TaskStatus.SUSPENDED :
 System.out.println("ReceiverNotificationBean.checkTaskStatus(): Task Status :
SUSPENDED");
 break;
 }
}

6. Save and close ReceiveNotificationBean.java.

Adding a Startup bean
In this section, we will create a Startup bean to register the BatchProcess session
bean (scheduler task) created earlier. You can follow the steps from the
Chapter 13, “Startup beans” on page 375 to create the Startup bean.

1. Create a new EAR, StartupSchedulerEAR, and EJB, StartupSchedulerEJB,
project with the Startup bean: HelloWorldSchedulerStartup.

2. Add the Scheduler project to the StartupSchedulerEJB Java build path.

3. Open the HelloWorldSchedulerStartupBean.java file Insert the start() method
with the code given below.

Example 14-3 HelloWorldSchedulerStartupBean.java start() method

public boolean start() {
 boolean result = false;
 System.out.println("StartupBean.start()");
 try {
 // Check the TestProcessBean deployment descriptor under "Beans" tag to figure out the
JNDI name
 // to use below
 String jndi_name_sched = "java:comp/env/BPEScheduler";
 String jndi_name_task = "java:comp/env/ejb/BatchProcess";
 String jndi_name_notify = "java:comp/env/ejb/ReceiveNotification";
 Context initialContext = new InitialContext();
 // lookup the scheduler instance to be used
 System.out.println("StartupBean.start(): Getting the Scheduler");
 Scheduler schedulerHome = (Scheduler) initialContext.lookup(jndi_name_sched);
404 WebSphere Business Integrator Server Foundation V5.1 Handbook

 // find the session bean to be called when the task executes
 System.out.println("StartupBean.start(): Getting the TaskHandler");
 Object taskHome = initialContext.lookup(jndi_name_task);
 TaskHandlerHome taskHandlerHome = (TaskHandlerHome)
javax.rmi.PortableRemoteObject.narrow(taskHome, TaskHandlerHome.class);
 // lookup session bean that should receive notification events from scehduler
 System.out.println("StartupBean.start(): Getting the ReceiverNotication");
 Object receiverNotificationHome = initialContext.lookup(jndi_name_notify);
 NotificationSinkHome notifyHome = (NotificationSinkHome
)javax.rmi.PortableRemoteObject.narrow(receiverNotificationHome,NotificationSinkHome.class);
 // Create our Schedule Task Info for our BatchProcessTask task handler
 System.out.println("StartUpBean.start(): Creating the task");
 BeanTaskInfo taskInfo = (BeanTaskInfo)
schedulerHome.createTaskInfo(BeanTaskInfo.class);
 // create a date object which represents 30 seconds from now
 // the task will start 30 seconds from now, it will run 5 times,
 // and it will repeat 1 minute.
 java.util.Date startDate = new java.util.Date(System.currentTimeMillis() + 30000);
 taskInfo.setTaskHandler(taskHandlerHome);
 taskInfo.setNotificationSink(notifyHome, TaskNotificationInfo.ALL_EVENTS);
 taskInfo.setName("BatchProcessTask");
 taskInfo.setStartTime(startDate);
 taskInfo.setRepeatInterval("1minutes");
 taskInfo.setNumberOfRepeats(5);
 // submit the Task to scheduler to be stored in persistant store
 TaskStatus status = schedulerHome.create(taskInfo);
 System.out.println("StartupBean.start(): Task submitted");
 System.out.println("StartupBean.start(): Task ID is: " + status.getTaskId());
 System.out.println("StartupBean.start(): The name of the Task is: " +
status.getName());
 System.out.println("StartupBean.start(): Task status is: " + status.getStatus());
 result = true;
 } catch (Exception e) {
 System.out.println("StartupBean.start(): " + e.toString());
 }
 return result;
}

4. Add the following import statements at the top of the file:

java.util.*;
javax.naming.*;
com.ibm.websphere.scheduler.*;

5. We need to add three references to the Startup bean, as you see them in the
source code. Open the EJB Deployment Descriptor and switch to the
References tab.

a. Select the HelloWorldSchedulerStartup and click Add at the bottom.
 Chapter 14. Scheduler service 405

b. Add the following EJB reference:

Enterprise bean in a different EAR: click SchedulerEAR → Scheduler →
BatchProcess

c. Add the following EJB reference:

Enterprise bean in a different EAR: click SchedulerEAR → Scheduler →
ReceiveNotification

d. Add the following Resource reference:

– Name: BPEScheduler
– Type: com.ibm.websphere.scheduler.Scheduler
– Authentication: Container
– Sharing scope: Shareable
– JNDI: BPEScheduler

6. Save and close the file.

Modifying the Startup Bean for programmatic management of
scheduled tasks

A scheduled task has an associated task ID. When a scheduled task is created,
a TaskStatus object is returned to the caller. Using the task ID of the scheduled
tasks, it is possible to perform various management tasks on the task. The
scheduler API defines several additional methods that pertain to the
management of tasks. In this section we will illustrate how to Cancel and Purge a
task that has been scheduled.

1. Open the HelloWorldSchedulerStartupBean.java file. Insert the stop() method
with the code given below.

Example 14-4 HelloWorldSchedulerStartupBean.java stop() method

public void stop() {
 System.out.println("StartupBean.stop()");
 try {
 // Check the TestProcessBean deployment descriptor under "Beans" tag to figure out the
JNDI name
 // to use below
 String jndi_name_sched = "java:comp/env/BPEScheduler";
 Context initialContext = new InitialContext();
 // lookup the scheduler instance to be used
 System.out.println("StartupBean.stop(): Getting the Scheduler");
 Scheduler schedulerHome = (Scheduler) initialContext.lookup(jndi_name_sched);
 // find all TaskStatus objects with a specified name that were
 // created in start() method above. Keep in mind we set the
 // name of the task so that we can look it up later on. This
 // is our only handle for finding a task. If there are a lot
 // of tasks that you plan on creating, create a single place
406 WebSphere Business Integrator Server Foundation V5.1 Handbook

 // where you can store all these tasks and then refer to them
 // instead of hard coding them in the code.
 System.out.println("StartupBean.stop(): Finding all Tasks : \"BatchProcessTask\"");
 Iterator list = schedulerHome.findTaskStatusByName("BatchProcessTask");
 while (list.hasNext()) {
 TaskStatus status = (TaskStatus)list.next();
 System.out.println("StartupBean.stop(): Task Found : ID is " + status.getTaskId());
 System.out.println("StartupBean.stop(): Task Found : Name is: " +
status.getName());
 System.out.println("StartupBean.stop(): Task Found : Status is: " +
status.getStatus());
 // Cancelling task programmetically
 System.out.println("StartupBean.stop(): Cancelling task id: " +
status.getTaskId());
 schedulerHome.cancel(status.getTaskId(), true);
 }
 } catch (Exception e) {
 System.out.println("StartupBean.stop(): " + e.toString());
 }
}

2. Save and close the file.

14.4 Unit test
The Scheduler service must be configured in WebSphere Studio Application
Developer Integration Edition test environment. In WebSphere Studio Application
Developer Integration Edition, there is a limited set of administration tasks for the
test server available through the GUI. In particular, there is no Scheduler
administration using the server editor tool in WebSphere Studio Application
Developer Integration Edition. You have to have the test environment server
running and the Administrative Console enabled for the server. Once the server
is running, use a Web browser to access the Administrative Console where you
can configure the Scheduler service the same way as for the runtime application
server.

1. Create a new Integration Test server and configuration. Add all the projects to
the server: HelloWorldProcessEAR, SchedulerEAR, StartupSchedulerEAR.

2. Switch to the Configuration tab and change the Classloader policy to
SINGLE.

3. Switch to the Applications tab and set the Start weight for each application to
ensure the proper startup sequence

– HelloWorldProcessEAR: 10
– SchedulerEAR: 20
 Chapter 14. Scheduler service 407

– StartupSchedulerEAR: 30

4. Scheduler can be configured in WebSphere Test Environment as illustrated in
14.6, “Configuration” on page 411. The figure below indicates that a
scheduler must be defined in the WebSphere Test Environment for testing
scheduler task beans.

Figure 14-3 WebSphere Test Environment Scheduler configuration

5. Save and close the configuration.

6. You can start the server to test the application.

During startup, you should see the following messages on the console.
408 WebSphere Business Integrator Server Foundation V5.1 Handbook

Example 14-5 System out during startup

SystemOut O StartupBean.start()
SystemOut O StartupBean.start(): Getting the Scheduler
SystemOut O StartupBean.start(): Getting the TaskHandler
SystemOut O StartupBean.start(): Getting the ReceiverNotication
SystemOut O StartUpBean.start(): Creating the task
SystemOut O --
SystemOut O ReceiverNotificationBean.handleEvent(): Event received at Thu Jun 10 23:04:35
EDT 2004
SystemOut O ReceiverNotificationBean.handleEvent(): Task was SCHEDULED
SystemOut O ReceiverNotificationBean.checkTaskStatus(): Task Name : BatchProcessTask
SystemOut O ReceiverNotificationBean.checkTaskStatus(): Task ID : 1
SystemOut O ReceiverNotificationBean.checkTaskStatus(): Repeats left : 5
SystemOut O ReceiverNotificationBean.checkTaskStatus(): Next fire time : Thu Jun 10
23:05:04 EDT 2004
SystemOut O ReceiverNotificationBean.checkTaskStatus(): Task Status : SCHEDULED to
execute
SystemOut O --
SystemOut O StartupBean.start(): Task submitted
SystemOut O StartupBean.start(): Task ID is: 1
SystemOut O StartupBean.start(): The name of the Task is: BatchProcessTask
SystemOut O StartupBean.start(): Task status is: 1

A minute after the application server started, you shuld see the following
messages on the console.

Example 14-6 System out after startup

WsServer A WSVR0001I: Server server1 open for e-business
SystemOut O --
SystemOut O ReceiverNotificationBean.handleEvent(): Event received at Thu Jun 10 23:05:04
EDT 2004
SystemOut O ReceiverNotificationBean.handleEvent(): Task is FIRING
SystemOut O ReceiverNotificationBean.checkTaskStatus(): Task Name : BatchProcessTask
SystemOut O ReceiverNotificationBean.checkTaskStatus(): Task ID : 1
SystemOut O ReceiverNotificationBean.checkTaskStatus(): Repeats left : 5
SystemOut O ReceiverNotificationBean.checkTaskStatus(): Next fire time : Thu Jun 10
23:05:04 EDT 2004
SystemOut O ReceiverNotificationBean.checkTaskStatus(): Task Status : SCHEDULED to
execute
SystemOut O --
SystemOut O **
SystemOut O Scheduler bean: starting...
SystemOut O Scheduler bean: Executing SayHello() method
SystemOut O Hello World
SystemOut O Scheduler bean: Finished executing SayHello() method
SystemOut O **
SystemOut O --
 Chapter 14. Scheduler service 409

SystemOut O ReceiverNotificationBean.handleEvent(): Event received at Thu Jun 10 23:05:07
EDT 2004
SystemOut O ReceiverNotificationBean.handleEvent(): Task FIRED
SystemOut O ReceiverNotificationBean.checkTaskStatus(): Task Name : BatchProcessTask
SystemOut O ReceiverNotificationBean.checkTaskStatus(): Task ID : 1
SystemOut O ReceiverNotificationBean.checkTaskStatus(): Repeats left : 5
SystemOut O ReceiverNotificationBean.checkTaskStatus(): Next fire time : Thu Jun 10
23:05:04 EDT 2004
SystemOut O ReceiverNotificationBean.checkTaskStatus(): Task Status : SCHEDULED to
execute
SystemOut O --
SystemOut O --
SystemOut O ReceiverNotificationBean.handleEvent(): Event received at Thu Jun 10 23:05:07
EDT 2004
SystemOut O ReceiverNotificationBean.handleEvent(): Task was SCHEDULED
SystemOut O ReceiverNotificationBean.checkTaskStatus(): Task Name : BatchProcessTask
SystemOut O ReceiverNotificationBean.checkTaskStatus(): Task ID : 1
SystemOut O ReceiverNotificationBean.checkTaskStatus(): Repeats left : 5
SystemOut O ReceiverNotificationBean.checkTaskStatus(): Next fire time : Thu Jun 10
23:05:04 EDT 2004
SystemOut O ReceiverNotificationBean.checkTaskStatus(): Task Status : SCHEDULED to
execute
SystemOut O --

You can see five execution of the HelloWorld process, then the Task status
becomes: INVALID.

7. Stop the server.

14.5 Assembly
The following section discusses the application assembly related actions for the
Scheduler service.

In the application code, local name references are used for the Scheduler service
so before you can use the Scheduler Task beans in WebSphere Business
Integration Server Foundation runtime environment, you have to tell your
application where they are in the JNDI name space. There are two ways to
accomplish this task:

1. Use WebSphere Studio Application Developer Integration Edition and make
appropriate changes to the Deployment Descriptors prior to importing the
Enterprise Application Archive.

2. Use the Application Server Toolkit to make the changes.
410 WebSphere Business Integrator Server Foundation V5.1 Handbook

14.6 Configuration
Detailed information regarding Scheduler configuration and administrative tasks
can be found in the WebSphere Business Integration Server Foundation
InfoCenter. The link to the InfoCenter is provided below.

http://publib.boulder.ibm.com/infocenter/ws51help/topic/com.ibm.wasee.doc/
info/ee/scheduler/tasks/tsch_managescheduler.html

Primarily there are three high-level tasks that must be performed in order to
configure scheduler:

� Create the database for the scheduler.
� Configure the scheduler.
� Enable the scheduler service.

14.7 More information
This section aims at covering a few common discussion topics that are usually
associated with any J2EE application. More importantly, the focus of this section
will be Configuration, Problem Determination, Monitoring, Security
Considerations.

14.7.1 Problem determination
If you encounter problems using the Scheduler service and you suspect that the
source of the problem is somewhere within the service, then you can also use
the following trace string to monitor what is happening in the execution time:

com.ibm.ws.scheduler.*=all=enabled

14.7.2 Security considerations
If you use security on WebSphere Application Server V5.0 Enterprise, the default
identity that the Scheduler service uses with the task action session bean is
system. This means if you do not specify any deployment-related security
settings on the bean, the identity of the bean will be the same as the one used for
starting WebSphere.

If the task action session bean (TaskHandler) uses some secured objects that
require a different caller identity, then the security identity must be enabled on
the Startup Bean and The Run-as on the bean’s process must be configured to
use the correct identity.
 Chapter 14. Scheduler service 411

http://publib.boulder.ibm.com/infocenter/ws51help/topic/com.ibm.wasee.doc/info/ee/scheduler/tasks/tsch_managescheduler.html

14.7.3 Clustering
Scheduler service can be clustered for high-availability. No steps are required to
cluster a scheduler. If a scheduler resource is created a the cell level, the
scheduler is automatically clustered across the cell.

When multiple scheduler daemons are configured to the same table (as is the
case in a clustered environment), any of the daemons can find a task and set the
timer in its Java Virtual Machine (JVM). The task is executed in the virtual
machine where the timer first fires.

It is important to realize that if a scheduler daemon fails for some reason, that
doesn't stop the scheduler service. If a daemon fails while processing a task, the
task may be fired again hence implementing “at least once” behavior on
scheduled task.

Consequently, each scheduler daemon configured in the cell try and execute the
same scheduled task. However, each daemon verifies whether another daemon
has previously fired the task. However if a daemon fails while firing off the task
(and before updating the database for task status), the same scheduled task may
be picked up by another scheduler daemon. Thus, scheduler service ensures
“run at least once” behavior. It is not possible to implement, run “once and only
once” behavior.

Scheduler daemon internals are discussed in more details in the WebSphere
Business Integration Server Foundation InfoCenter:

http://publib.boulder.ibm.com/infocenter/ws51help/topic/com.ibm.wasee.doc/
info/ee/scheduler/concepts/csch_schedulerdaemon.html

14.7.4 Performance considerations
The polling interval for a Scheduler service can have an impact on performance.
The longer the interval, the lower the performance impact, and the lower the time
accuracy with which a scheduled task is executed.

Both custom and WebSphere based calendars are treated equally by the
Scheduler. There is a slight performance advantage when using the
IBM-implemented calendars (CRON and Arithmetic).

When implementing scheduler base tasks, it should be kept in mind that
scheduler is not meant for split-second type of accuracy. The reason for that is
scheduler daemon has to poll the database at regular interval. The polling
sequence itself introduces a margin of error on the time accuracy with which a
task can be fired. For example, if a polling interval of 30 seconds is used, the
margin of error is about one minute.
412 WebSphere Business Integrator Server Foundation V5.1 Handbook

http://publib.boulder.ibm.com/infocenter/ws51help/topic/com.ibm.wasee.doc/info/ee/scheduler/concepts/csch_schedulerdaemon.html

Scheduler can benefit organizations by automating administrative tasks and/or
manually starting tasks. Typical tasks that can be implemented using Scheduler
service include periodic back-up operations or clean-ups, auditing tasks and
report generation. Generally, the tasks do not require millisecond accuracy.
Scheduler can also be shared by multiple applications, further simplifying overall
administration.

14.7.5 Future direction
The new EJB V2.1 specification includes the Timer Service component. This
service provides some of the features of WebSphere Business Integration Server
Foundation scheduler service. Future versions of WebSphere Business
Integration Server Foundation may include a Scheduler service that builds on top
of the standard timer service.
 Chapter 14. Scheduler service 413

414 WebSphere Business Integrator Server Foundation V5.1 Handbook

Chapter 15. Asynchronous beans

The Asynchronous bean framework provided by WebSphere Business
Integration Server Foundation V5.1 provides J2EE components with access to
managed threads and allows J2EE contexts to be propagated to a separate
thread. By using Asynchronous beans, your J2EE components will be able to run
code on simultaneous threads and asynchronously.

An Asynchronous bean is a Java object or Enterprise Java Bean (EJB) that can
be executed asynchronously by a J2EE application using the J2EE context of the
bean’s creator. The following J2EE contexts can be inherited:

� Internationalization context
� WorkArea context
� Application profile
� Security context

The ability to transfer a J2EE context to the newly spawned thread is very
important because it provides full access to the full J2EE programming model
and API.

Asynchronous beans enable the construction of stateful, “active” and
event-driven J2EE applications. Some of the benefits of using Asynchronous
beans include:

15
© Copyright IBM Corp. 2004. All rights reserved. 415

� The ability to partition tasks so they can run in parallel

You can execute a complex database task using multiple threads. An
example is a calculation over a large set of rows where the set can be
partitioned and each partition can execute in parallel. The EJB can block until
all threads have finished before aggregating the results.

� Integration of non-JMS messaging middleware

Applications can integrate a third-party messaging solution that does not
support JMS but has a Java API.

� Ability to dynamically listen for JMS queues and topics

Threads can be used to block and receive messages regarding queues or
topics that were unknown at deployment.

� The use of background processing for performance

An application that performs persistent message logging can use a
background task to write batched insert operations to a database in a single
transaction. Foreground tasks can store the log message in a synchronized
data structure and continue processing without waiting for the message to be
persisted.

Instead of each log operation resulting in a “begin, insert msg, commit”
operation that can slow the application down significantly, a background
thread can batch the insert operations together (for example begin, insert
msg1,msg2,msg3,msg4, commit). This lowers the impact of this logging on both
the application server and the database.
416 WebSphere Business Integrator Server Foundation V5.1 Handbook

15.1 Prerequisites
Here are some useful resources that will help you get started with Asynchronous
beans:

� WebSphere Business Integration Server Foundation V5.1 InfoCenter at
http://publib.boulder.ibm.com/infocenter/ws51help/index.jsp, then
navigate to WebSphere Business Integration Server Foundation and choose
Asynchronous beans under Highlights and Features.

� WebSphere Studio Application Developer Integration Edition V5.1 Help at
WebSphere Business Integration Server Foundation → Highlights and
Features → Asynchronous beans.

� IBM Redbook: WebSphere Application Server Enterprise V5 and
Programming Model Extensions, SG24-6932, Chapter 7, “Asynchronous
beans.”

15.2 Design
This section describes some design considerations to take into account when
developing Asynchronous beans.

Asynchronous beans: simple Java objects or EJBs?
An Asynchronous bean can be either a Java object or an EJB. Applications that
use the servlet-only approach may use Java objects whereas applications using
EJBs may use stateless session beans or entity beans.

There are several differences in behavior between the two choices; these are
summarized in Table 7-1.

Table 15-1 Java or EJB Asynchronous beans comparision

Java Beans EJB

Transactions If created by a servlet then
java:comp/UserTransactio
n is available. If created by
an EJB then only
TX_NOT_SUPPORTED is
allowed and a ‘buddy’ EJB
must be used for full global
transaction support.

The support is specified by
the descriptor for the EJB
and the J2EE
specification.
 Chapter 15. Asynchronous beans 417

http://publib.boulder.ibm.com/infocenter/ws51help/index.jsp?topic=/com.ibm.wasee.doc/info/welcome_ee.html

There is not much difference between the two performance-wise because the
performance is roughly equivalent to a local method call in both cases.

The types of Asynchronous beans
The three types of Asynchronous beans are as follows:

� Work

A work object implements the com.ibm.websphere.asynchbeans.Work
interface and runs parallel to its caller using the WorkManager.startWork()
method. Applications implement work objects to run code blocks
asynchronously.

� AlarmListener

An alarm listener is an object that implements the
com.ibm.websphere.asynchbeans.AlarmListener interface and is called when
a high-speed transient alarm expires. Depending on whether an alarm is a
once only or repeating event, actions can be taken to improve performance. If
the alarm is a once only event or the last alarm, the alarm should be
cancelled, otherwise if the alarm is repeating, the Alarm.reset() method
should be called to schedule the alarm to fire again later.

Security The credentials on the
thread that created the
Asynchronous bean are
used when the bean is in-
voked.

The credentials on the
thread that created the
Asynchronous bean are
used. However, the
descriptor for the bean can
override this with the
Run-as role attribute.

Application Profile The profiles active for the
creating component are
used.

The profiles active for the
creating component are
used but they may be
augmented by specifying
additional ones on the
target EJB method.

Java: comp scope The Java:comp of the
component that created
the Asynchronous bean
are always available to the
Asynchronous bean.

The java:comp of the
creating component is
ignored. The java:comp of
the async EJB is always
used.

Java Beans EJB
418 WebSphere Business Integrator Server Foundation V5.1 Handbook

� EventListener

Event listeners are asynchronous by nature. An application can create an
event listener and subscribe it to monitor the occurrence of a certain event.
When the event occurs, the listener will be notified and will handle the event.

Listeners can implement any interface, however, the application that
originates the event needs to know which method corresponds to the event
on the listener’s interface. The event originator will do this by acquiring a
“proxy” from the EventSource. Calling a method on the proxy will cause the
same method to be invoked on all listeners that are registered and implement
the requested interface.

The listener’s method will be executed in its own thread but it will run under
the J2EE context of the component that registered the listener itself. It will not
use the J2EE context of the application that is firing the event.

15.3 Sample scenario
In this section, we will design an Asynchronous J2EE application that uses the
Work, AlarmListener and EventListener Asynchronous beans. Also, this
application uses the Startup Bean service. For more information about Startup
Beans, refer to Chapter 13, “Startup beans” on page 375.

The purpose of our application is to use a Startup bean to start Asynchrnous
work to initialize the cache so the server does not appear to be ‘hanging’ during
application startup. After we have loaded the application cache using a CMP
bean, we also need a way to refresh our cache to get any updated data. To do
this we will create an Alarm in the Startup bean to go off every 30 seconds. If the
user then refreshes the JSP, they will receive the latest, up-to-date data held in
cache.

Migration
The Asynchronous beans implementation is the same as it was in WebSphere
Application Server Enterprise V5 there are no specific migration tasks.

Development
In this chapter we are not going to develop the whole sample application using
Asynchronous beans. The application is available as an additional material,
downloadable from the IBM ITSO Web site, together with the PDF version of this
book.

Instead, we show how to import the fully written application into WebSphere
Studio Application Developer Integration Edition, then the development section
points out the Asynchronous beans development related key points.
 Chapter 15. Asynchronous beans 419

Test environment
The test environment supports the unit test for the application. This section we
provide detailed information about how to set up the test environment for the
Asynchronous Beans sample application.

Assembly
There are a few application settings you have to be aware of when developing or
assembling an application using Asynchronous Beans.

Configuration and deployment
The configuration part shows what the necessary configuration steps for the
WebSphere Business Integration Server Foundation runtime environment before
you can deploy and run your application.

The deployment of an application using Asynchronous Beans is not different than
any other enterprise application deployment.

15.3.1 Understanding the sample application
The sample application is a standard J2EE application with one CMP Entity Bean
(Department), one singleton Java object (EntityBeanCacheSingleton), one
startup session bean (AppBootstrapBean) and one JSP (ListDepartment.jsp).

The application is initialized when the application server starts. The WebSphere
runtime invokes the start() method of the AppBootstrapBean, which in turn
creates an instance of a singleton class EntityBeanCacheSingleton. The
singleton class will call the findAll() method in the home interface of the entity
bean Department and will store the result in the cache. So, when the WebSphere
server is up and running, the application is also initialized with CMP cache in the
singleton. Whenever the user invokes ListDepartment.jsp, it will get data from the
cache held by the singleton class.

Figure 15-1 Interaction diagram for the sample

WebSphere runtime AppBootstrapBean EntityBeanCache (singleton) DepartmentHome (CMP)

start() getDepartments() findAll()

ListDepartment.jsp getDeptCached()

"startup"
420 WebSphere Business Integrator Server Foundation V5.1 Handbook

15.4 Development
This section tells you how to develop the sample application using Asynchronous
Beans.

The AppBootstrapBean Startup bean
In this sample application, we want to offload the task of looking up CMP Entity
Beans from the AppBootstrapBean on the main thread of execution.

� We create a Work object (InitializeCacheWork). it will invoke the
EntityBeanCacheSingleton, which will in turn do the heavy-duty work of
finding all instances of the entity beans and store the cache in memory.

� In order to simulate the data change behavior in our sample application, we
will be implementing an AlarmListener UpdateDbAlarmListener, which will be
called every 30 seconds when an associated alarm fires. The AlarmListener
will use the Department CMP to insert a record into the database and then fire
the updateEntityCache event in the UpdateCacheEventListener class.

We use one Startup Bean in this sample to initialize the singleton class and thus
the CMP cache. The code in Example 15-1 is the start method of the bean.
 Chapter 15. Asynchronous beans 421

Example 15-1 Startup Bean, start() method

public boolean start() {
try {

//get the Work Manager from the JNDI
InitialContext ic = new InitialContext();
WorkManager wm = (WorkManager)

ic.lookup("java:comp/env/wm/WorkManager");
//Start an Asynchronous work to initialize the cache
InitializeCacheWork pw = new InitializeCacheWork();
wm.startWork(pw);
//get the AsynchScope
AsynchScope as = wm.findAsynchScope("ItsoScope");
if (as == null) {

as = wm.createAsynchScope("ItsoScope");
}
//get the AlarmManager
AlarmManager am = as.getAlarmManager();
UpdateDbAlarmListener updateListener = new UpdateDbAlarmListener();
//create an Alarm to go off every 30 seconds
Alarm a1 = am.create(updateListener, this, 30000);

} catch (Exception e) {
//...
return false;

}
return true;

}

The EntityBeanCacheSingleton object
When the instance of this class is created, it will call the findAll() method in the
home interface of the entity bean Department and store the results in a static
data structure.

We will also implement asynchronous notification to refresh our CMP cache in
case the underlying data changes. It works in the following way:

� First, we define an UpdateCacheEventListener interface with an
method/event updateEntityCache.

� The EntityBeanCacheSingleton object needs to be notified when such event
fires, so it implements the EventListener interface
UpdateCacheEventListener.

� To facilitate intra-application notification, WebSphere provides a special type
of EventSource, which is included in each enterprise application. This
EventSource can be found using JNDI lookup in any servlet or EJB code in
the application.
422 WebSphere Business Integrator Server Foundation V5.1 Handbook

Whenever the data in the database changes, updateEntityCache event will be
fired and the Singleton object will be called to update its copy of the cache of
CMP data.

Example 15-2 EntityBeanCacheSingleton.java

//...
import com.ibm.websphere.asynchbeans.*;

public class EntityBeanCacheSingleton implements UpdateCacheEventListener{

static private EntityBeanCacheSingleton _instance = null;
private Vector deptCache = null;

// constructor method for EntityBeanCacheSingleton
protected EntityBeanCacheSingleton() {

try {
deptCache = this.getDepartments();
//register this as a listener to asynchronous event
InitialContext ic = new InitialContext();
EventSource appES = (EventSource)

ic.lookup(EventSource.APPLICATION_NOTIFICATION_EVENT_SOURCE);
 appES.addListener(this);

} catch (Exception e) {
//...

}
}

// creating a singleton instance of the EntityBeanCacheSingleton
static public EntityBeanCacheSingleton instance() {

if (null == _instance) {
_instance = new EntityBeanCacheSingleton();

}
return _instance;

}

private Vector getDepartments() {
Vector v = new Vector();
try {

// Get a local reference
InitialContext ic = new InitialContext();
DepartmentLocalHome cbHome =

(DepartmentLocalHome) ic.lookup("java:comp/env/ejb/Department");
Collection c = cbHome.findAll();
Iterator i = c.iterator();
while (i.hasNext()) {

DepartmentLocal dl = (DepartmentLocal) i.next();
DepartmentData dd = new DepartmentData();
String dno = ((DepartmentKey) dl.getPrimaryKey()).getDeptno();
 Chapter 15. Asynchronous beans 423

dd.setDeptNo(dno);
dd.setDeptName(dl.getDeptname());
dd.setMgrNo(dl.getMgrno());
v.add(dd);

}
} catch (Exception e) {

//...
}
return v;

}

// this method updates the cache
public void updateEntityCache() {

setDeptCache(getDepartments());
}

public Vector getDeptCache() {
return deptCache;

}

public void setDeptCache(Vector deptCache) {
this.deptCache = deptCache;

}
}

The ListDepartment JSP
The ListDepartment.jsp will calls the EntityBeanCacheSingleton, and displays
data from the cache. It is a very simple JSP that iterates through a vector of data
and writes them out to the response output. The JSP only serves testing
purposes, it does not have any Asynchronous Beans specific code implemented
in it. For more information check the source code of the JSP.

The Department CMP Bean
Department CMP Bean is a standard EJB 2.0 entity bean with
container-managed persistence. In this sample, we created only local home and
remote interfaces for it, since it is not accessed remotely by other clients from
outside the container. We also created a custom finder findAll() in its home
interface (DepartmentLocalHome.java) using the Enterprise Java Bean Query
Language (EJB QL). For more information about EJB QL, refer to the IBM
developerWorks article: Introduction to container-managed persistence and
relationships, Part 3 at:

http://www-106.ibm.com/developerworks/edu/ws-dw-wscomp3-i.html
424 WebSphere Business Integrator Server Foundation V5.1 Handbook

http://www-106.ibm.com/developerworks/edu/ws-dw-wscomp3-i.html
http://www-106.ibm.com/developerworks/edu/ws-dw-wscomp3-i.html

15.5 Test environment
This section provides information on how to import the Asynchronous Beans
sample application to WebSphere Studio Application Developer Integration
Edition and how to test it in the test environment.

Setting up the sample application project
1. Launch WebSphere Studio Application Developer Integration Edition with a

new workspace for the Asynchronous Beans sample application. Make sure
you enable the server targeting support.

2. Import the ItsoAsyncBeans.ear application, make sure you select
Integration Server V5.1 for target server.

3. Create the database mapping for the EJBs. On the J2EE perspective, J2EE
Hierarchy view, right-click EJB Modules → ItsoAsynchBeansEJB and
select Generate → EJB to RDB Mapping.

a. Select Create a new back-end folder and click Next.

b. Select Top Down and click Next.

c. For the target database, select your database, for testing purposes we
used Cloudscape, V5.1, Database name: ASYNCB, Schema name: EJB.
Click Finish.

Figure 15-2 The generated Map.mapmxi file for Cloudscape
 Chapter 15. Asynchronous beans 425

d. Close the generated Map.mapmxi file.

4. Generate the deployed code for the EJBs. Right-click EJB Modules →
ItsoAsynchBeansEJB and select Generate → Deploy and RMIC Code.

Click Select All, to select all the EJBs, then click Finish.

5. Open to the Server perspective and create a new WebSphere version 5.1 →
Integration Test Environment test server, with the name: AsyncBean server.

a. Add the ItsoAsyncBeans application to the server.

b. Use the Create tables and data sources for the server to generate the
necessary database components for the test environment.

c. You can open the server configuration and check the sample
WorkManager configured for the server by default, the sample application
is going to use this WorkManager. Switch to the Work Managers tab on
the server configuration and check if the DefaultWorkManager item exist
under the Node settings.

Figure 15-3 Work Manager settings
426 WebSphere Business Integrator Server Foundation V5.1 Handbook

If you want to create a new Work Manager for your application, this is the
place where you can define one.

6. Open the Data perspective, then create a new Database connection,
according to the following figure.

Figure 15-4 New database connection definition

Make sure that the Database location is correct, use Browse to find the
database under your workspace directory. You may find the database under a
different tmp directory, make sure you select the latest tmp (with the highest
number) in the directory.

7. Navigate to the ItsoAsyncBeansEJB → META-INF, right-click the
populate.dll file, then select Run on Database server ...

a. A new wizard appears; make sure all statements are selected, then click
Next.

b. Select Automatically commit changes, then click Next.
 Chapter 15. Asynchronous beans 427

c. Select Use existing connection, select the AsynchBeans database
connection, then click Finish.

8. Under the DB Servers view, navigate to AsyncBeans database →
ASYNCB → EJB → Tables, right-click the EJB.DEPARTMENT, then select
Sample Contents. The inserted records should show under the DB Output
view on the Results panel.

9. Make sure you disconnect from the ASYNCB database after you have
finished the work or before you start the application server.

Testing the sample application
This section will guide you htrough, how to test the sample application in the
WebSphere Test Environment.

1. Start the test application server and monitor the console. Once the server
started, you will see the following messages on the console.

Example 15-3 Console output WebSphere Studio

SystemOut O $$$$$$$$$$$$ APPBOOTSTAPBEAN HAS BEEN CALLED
SystemOut O $$$$$$$$$$$$ STARTING ASYNCHRONOUS WORK TO INITIALIZE CACHE
ApplicationMg A WSVR0221I: Application started: ItsoAsynchBeans
StaffServiceI I STFF0032I: The Staff Service started successfully.
WSRdbDataSour I DSRA8203I: Database product name : DBMS:db2j
WSRdbDataSour I DSRA8204I: Database product version : 5.1.45
WSRdbDataSour I DSRA8205I: JDBC driver name : Cloudscape Embedded JDBC Driver
WSRdbDataSour I DSRA8206I: JDBC driver version : 5.1
HttpTransport A SRVE0171I: Transport http is listening on port 9,080.
SystemOut O $$$$$$$$$$$$ THE CMP CACHE INITIALIZED
SystemOut O
HttpTransport A SRVE0171I: Transport https is listening on port 9,443.
SchedulerServ I SCHD0031I: The Scheduler Service is starting.
SchedulerServ I SCHD0032I: The Scheduler Instance BPEScheduler is starting.
SchedulerDaem I SCHD0038I: The Scheduler Daemon for instance BPEScheduler has
started.
SchedulerServ I SCHD0033I: The Scheduler Instance BPEScheduler has started.
SchedulerServ I SCHD0001I: The Scheduler Service has started.
RMIConnectorC A ADMC0026I: RMI Connector available at port 2809
WsServer A WSVR0001I: Server server1 open for e-business

Note: You have to run the populate.ddl script every time before you
start your test server, to start with a clean database. Otherwise you will
get database errors, when the update tries to create a new item in the
database (to simulate data changes) that already exist.
428 WebSphere Business Integrator Server Foundation V5.1 Handbook

The messages indicate that the AppBootstrapBean has been started and the
asynchronous work has been initialized.

2. After the server start, 30 seconds later you should see the following
messages on the console.

Example 15-4 Console output WebSphere Studio

SystemOut O $$$$$$$$$$$$ UPDATEdbALARM FIRED.
SystemOut O $$$$$$$$$$$$ HANDLE ALARM: INSERTING NEW ROW INTO TABLE, AND
.....
SystemOut O $$$$$$$$$$$$ FIRING ASYNCHRONOUS UPDATE CACHE EVENT......
SystemOut O $$$$$$$$$$$$ HANDLE ASYNCHRONOUS EVENT: UPDATING CACHE......
SystemOut O $$$$$$$$$$$$ THE CMP CACHE UPDATED.

The comments on the console tells you that the alarm was fired and the
cache was refreshed.

In order to simulate changes in the database, a new record is being created
every time the alarm fires.

3. If you open the DepartmentList.jsp on the test server, right-click the
DepartmentList.jsp and select Run on server... You should see something
similar to the following figure.
 Chapter 15. Asynchronous beans 429

Figure 15-5 Sample data from the ListDepartments.jsp

4. When you are done with the testing, you can stop the test server.

15.6 Assembly
Asynchronous Beans have a few configuration settings for the enterprise
applications to be set.

Asynchronous Beans use Work Manager(s) in WebSphere Business Integration
Server Foundation to manage the work they are performing. Work Managers are
defined in WebSphere Business Integration Server Foundation JNDI
namespace. Asynchronous Beans need to lookup and use these Work
Managers. Instead of hardcoding the Work Manager name in the code,
developers should use resource references in their code.

You can find the same practice in the sample application, where the EJB
resource reference: wm/WorkManager refers to the wm/default JNDI name in the
Intergration Server V5.1 test server.
430 WebSphere Business Integrator Server Foundation V5.1 Handbook

If you use any WorkManager from your EJB, Web or client module and you are
using resource references, you can use the Application Server Toolkit or
WebSphere Studio Application Developer Integration Edition to modify these
resource references to reflect the correct names.

15.7 Configuration
The starting point for the configuration is the ItsoAsynchBeans EAR file. We will
first create a data source and WorkManager for the application using the
Administrative Console. Subsequently, we will install the application in
WebSphere Application Server and test it.

Create a WorkManager for the sample application
In this section we are going to create a Work Manager in WebSphere Business
Integration Server Foundation for the sample application.

1. Start the application server, then open and login to the Administrative
Console.

2. Expand Resources → Work Manager. Click New to create a new item. Use
the following details for the entry:

– Name: ItsoAsynchBeansWM
– JNDI name: wm/ItsoAsynchBeansWM
– Number Of Alarm Threads: 5
– Minimum Number Of Threads: 1
– Maximum Number Of Threads: 10
– Thread Priority: 2

Check the Security check box in the Service Names field. This will ensure
the security context, if any, will be propagated to the Work implementation.
 Chapter 15. Asynchronous beans 431

Figure 15-6 Work Manager definition

3. Save the configuration for WebSphere.

4. Restart the application server.
432 WebSphere Business Integrator Server Foundation V5.1 Handbook

15.8 Deployment
This section describes the deployment steps for an application that has
Asynchronous Beans components.

At this point, you will need the EAR file of your application, then follow the steps
below.

1. Start installing the application for WebSphere in the Administrative Console.

2. When you get to the panel, show on the next figure, make sure you set the
resource reference right.

Figure 15-7 Setting the resource reference to the Work Manager’s JNDI name

Important: For the Asynchronous Beans sample application, you will have to
create a datasource for the sample application. You can use either
Cloudscape as we did in the test environment or you can also set up a DB2
database. Either way, follow the steps below.

1. Create the database for your application and populate it with some data if
you like.

2. Start WebSphere Application Server Enterprise, launch the Administrative
Console, then log in.

3. Create a new data source for the server.

4. Save the configuration for WebSphere.

Important: For the sample application In WebSphere Studio Application
Developer Integration Edition generate the RDB to EJB (database) mapping,
generate the deployed code for your enterprise application, then export the
EAR file of your application.
 Chapter 15. Asynchronous beans 433

3. At the end of the deployment, save the configuration for WebSphere. At this
point, your application should be ready to start and ready for testing.
434 WebSphere Business Integrator Server Foundation V5.1 Handbook

Chapter 16. Container Managed
Persistence over Anything

It is well known that WebSphere Application Server supports Container Managed
Persistence (CMP) for Enterprise Java Beans (EJB) over many different
databases. In the EJB V2.0 specification, under the Goals section, one of the
goals is to provide improved support for the persistence of entity beans. The
process of creating and maintaining a Container Managed Persistence entity
bean to persist in any relational database is well known.

Whenever there is a need to persist data over a non-relational database, the only
option for the developer is to create a Bean Managed Persistence (BMP) Entity
Bean and implement persistent logic inside the bean.

In WebSphere Business Integration Server Foundation V5.1, a new feature is
called: CMP over Anything. It allows the mapping of CMP EJBs to any back-end
application, beyond the traditional relational database. This feature allows the
use of a CMP Entity Bean with virtually any type of support, for example:

� Stored Procedure (JDBC and SQL)
� Web services
� JCA adapters (CCI)
� EJB (RMI-IIOP)

16
© Copyright IBM Corp. 2004. All rights reserved. 435

16.1 Container Managed Persistence over Anything
architecture

Figure 16-1 shows a high-level architecture of Container Managed Persistence
over Anything in WebSphere Business Integration Server Foundation.

Figure 16-1 CMP over Anything conceptual diagram

The CMP over Anything programing model is similar to the standard CMP Entity
Bean programing model. In the bean implementation class, optional push-down
methods are defined as abstract methods. The Deployer then implements the
UserDefinedPushDownMethodsImpl class. The clients can call a push-down
method just like any other EJB method. The client is unaware of the back-end
datastore; it is completely transparent to the client. The bean developer is

EJB Container

Persistence Mgr

Function Set Class

User-Defined Push-Down
Methods Implementation

Partially
Generated

Relational
Database

Non-Relational
Back-End

Abstract CMP EJB

User-
Provided

Concrete EJB
Implementation

Generated
by

EJBDeploy

Traditional Relational
Deployment
436 WebSphere Business Integrator Server Foundation V5.1 Handbook

unaware of back-end data store. Only the Assembler/Deployer has to know
about the back-end configuration.

In other words, WebSphere Business Integration Server Foundation introduces
support for push-down methods. These methods are considered
container-managed business methods. In the CMP framework, we can use the
class called UserDefinedPushDownMethodsImpl to place connectivity logic with
a non-relational back-end data store. The Java source code for this class is
generated by the WebSphere Application Server deployment tools and contains
methods corresponding to each CRUD method and each push-down data logic
method defined in the WebSphere Business Integration Server Foundation EJB
deployment descriptor.

This means that methods can be defined on a CMP bean. The store logic is not
implemented by the developer but by the container and deployment tools. This is
accomplished by defining the method as abstract, and then marking new
WebSphere Business Integration Server Foundation extended deployment
descriptor settings for the PushDownMethodElements.

The new command line code generation tool reads these extensions and
generates the appropriate entries.

WebSphere Business Integration Server Foundation also includes a generic
UserDefinedPushDownMethods interface (not related to the back end) and a
UserDefinedPushDownMethodsImpl class that implements the interface which is
specific to a given back end. When a method has been marked userDefined, the
FunctionSet is delegated to the corresponding method of the
UserDefinedPushDownMethodsImpl. The implementer of the
UserDefinedPushDownMethodsImpl does not need to worry about processing
CCI Records; the FunctionSet code will take care of that.

16.2 Sample scenario
This chapter has two sample scenarios using CMP over Anything. The first is an
implementation using CMP over Stored Procedure in a database. The second is
an implementation using Web services.

Development
Development of CMP over Anything does not differ from the development of a
normal entity bean. Follow the steps to create a container-managed entity bean
with push-down methods to support the CMP over Anything feature.

1. Generate the CMP Entity EJB with the usual wizards.

2. Define any Business logic push-down methods as abstract in the bean class.
 Chapter 16. Container Managed Persistence over Anything 437

3. Promote the abstract push-down methods to the interface, if needed.

4. Open EJB Deployement Descriptor and use the Pushdown tab to perform
mapping.

5. Generate the push-down implementation and possibly complete the code.

6. Generate the code for deployment.

Assembly
There are no specific assembly tasks related to CMP over Anything in enterprise
applications. Some of the information for CMP over Anything is stored in the EJB
deployment descriptor; you can find those items in “Development” on page 437.

Unit test
WebSphere Studio Application Developer Integration Edition V5.1 is not capable
of testing applications with CMP over Anything. You have to use either a
standalone WebSphere Business Integration Server Foundation application
server or the application server from WebSphere Studio Application Developer
Integration Edition via the IBM Agent Controler.

Deployment
There are a few deployment-specific steps for applications using CMP over
Anything.

Testing and runtime
There are various options for testing the application in the runtime environment.
You can use the Universal Test Client from WebSphere Studio Application
Developer Integration Edition when you deploy and test your application
remotely using the IBM Agent Controller.

You can also install the Universal Text Client in the runtime environment for
testing purposes. You can find the application in the WebSphere Studio
Application Developer Integration Edition directory; make sure you change the
classloader policy to single before you start using the client.

16.2.1 CMP over a database stored procedure
A stored procedure acts as an extension of the back-end store to the clients.
Clients can access the back-end store through stored procedures in the function
call using CALL statements. WebSphere Business Integration Server Foundation
extends the existing J2EE CMP programming model to utilize the stored
procedure feature for pushing down the CMP EJB methods to the back-end
store. The mapping is done using the Application Server Toolkit or WebSphere
Studio Application Developer Integration Edition V5.1. This will help the bean
438 WebSphere Business Integrator Server Foundation V5.1 Handbook

developers to map the bean logic methods and the CMP EJB accessor methods
to the stored procedures.

There is a PushDownMethodElement defined for each method that needs
implementation with the stored procedure in WebSphere Studio Application
Developer Integration Edition deployment descriptor extensions, which acts as a
trigger. The logic that accesses the stored procedure is provided by the
user-written class which plugs into the EJB support for WebSphere. Because of
this, the bean’s logic is simplified and uses the existing tested stored procedures.

Implementing the BeanUserDefinedPushDownMethod interface provides access
to the stored procedure once the CMP EJB is deployed.

Developing CMP over a stored procedure
This section provides detailed steps to develop an entity bean using stored
procedures at the back-end database for persistence.

This sample requires a database with a defined stored procedure. We used IBM
DB2 for this scenario. You can find more details about creating the sample
database and the stored procedure in “Building a stored procedure in DB2 for the
CMP over Anything sample” on page 568.

1. Launch WebSphere Studio Application Developer Integration Edition with a
new workspace and make sure you enable server targeting support.

It is recommended that you use an empty workspace for the samples
introduced in the book, for example: C:\projects\cmpa_sample.

2. Open the J2EE perspective, create a new J2EE 1.3 Enterprise Application
Project with the name cmpa, using the server targeting Integration Server
V5.1. Create a new EJB project for the application with the name cmpaEJB.
Also create a new Web project for the application, with the name cmpaWeb.

Developing the CMP Entity Bean as usual
At this point, the EJB creation process is exactly the same as for the CMP Entity
Bean. Once the bean is created, additional ejbCreate() methods will be
developed.

1. Create the EJB using the details from the following figure, then click Next.
 Chapter 16. Container Managed Persistence over Anything 439

Figure 16-2 Creating a new EJB

2. Create the following CMP attributes:

– account - int - Key field
– custno - int
– name - java.lang.String
– balance - float

3. Click Finish.

Note: Do not create deployment code at this time. If you do so, WebSphere
Studio Application Developer Integration Edition will show errors when
creating the push-down method.

The reason is that we are deviating from the J2EE specification by creating an
abstract business logic method. So, if you create deployment code,
WebSphere Studio Application Developer Integration Edition will show a J2EE
imcompatibility error.

The deployment code should be generated only after updating the push-down
method with the logic needed and generating the code for the push-down
method.
440 WebSphere Business Integrator Server Foundation V5.1 Handbook

If you create CMP attributes for your entity bean, you can do that following the
regular steps. Once the attributes are set, you can use the mapping tool to map
the attributes to database fields; in most cases, you would probably use meet in
the middle mappings if the database already exists.

Creating an abstract method as a push-down method
Once the CMP is created, open the bean class and add an abstract method. Do
not create the implementation of the method. Just create the parameter it can
take and the return type.

1. Open the Account_CMPBean.java source and insert the following line at the
end of the class:

public abstract java.lang.String getMyBalance();

2. Save and close the file.

Promoting the local method for the push-down method

1. Open EJB Deployment Descriptor, select the Account_CMP bean under the
Enterprise JavaBeans section and click the Pushdown tab.

2. Click Add at the bottom of the window to add a new push-down entity. This
will open up the push-down entity window.

Select the back-end type JDBC. In our case, we have selected JDBC since
we are going to call a Stored procedure. Select the CMP Entity Bean
Account_CMP from the bean drop-down list. Click Next.

Note: This method will be defined as the push-down method later.
 Chapter 16. Container Managed Persistence over Anything 441

Figure 16-3 Back-end type for the entity bean

3. A new window opens up showing the methods available in the bean which
can be used as push-down methods. Since there is only one abstract method
available, it is preselected for a push-down method; in our case, it is the
getMyBalance() method.
442 WebSphere Business Integrator Server Foundation V5.1 Handbook

Figure 16-4 JDBC attributes for the push-down method

4. Click Finish. This will create a skeleton code for the push-down method.

5. Select the new push-down method created, getMyBalance(), under the
Push-down methods section, then click Edit to add the JDBC SQL statement.
 Chapter 16. Container Managed Persistence over Anything 443

Figure 16-5 Push-down entities

6. Change Preflush to true and provide the stored procedure name with the
required parameters, in our sample:

{call ITSO.ACCOUNT_SP(?,?)}

Figure 16-6 Push-down method details

7. Click Finish.

8. Click Generate in the Push-down entities window.

9. Make sure the Account_CMP bean is selected then click Finish.
444 WebSphere Business Integrator Server Foundation V5.1 Handbook

10.Save and close the deployment descriptor file.

11.Once the push-down method is generated, we can create the deployment
code. The push-down method skeleton has been created. We need to update
the push-down method logic before generating the deployment code.

When the push-down method implementation skeleton was generated,
WebSphere Studio Application Developer Integration Edition generated and
opened the file Account_CMPBeanUserDefinedPushDownMethods.java. If
the file is not open, open it from the com.ibm.ITSO.websphere_deploy.jdbc
package.

The generated push-down skeleton method has a comment section where
you need to insert the actual code. There are two places to insert code; these
are indicated with comments.

The first comment is as follows:

// Begin customer-written code to populate callableStatement
// Place code here like: callableStatement.setXXX(X, argX);
// End customer-written code to populate callableStatement

Replace it with the following code:

callableStatement.setString(1,bean.getCustno());
callableStatement.registerOutParameter(2, Types.FLOAT);

You will also have to add the following import statement to make it work:

import java.sql.Types;

The second comment is as follows:

// The returnValue variable should be set to the appropriate value

Replace it with the following code:

returnValue = "The value from Stored Procedure = " +
callableStatement.getDouble(1);

12.Save and close the file.

13.If you have not generated the EJB to RDB mapping then do it now. In this
example, we used DB2 8.1, with database name CMPA and schema name EJB.

14.Generate Deployment and RMIC code for the EJB.

Deploying the sample in the runtime environment
1. Export the enterprise application, using the name cmpa-sp.ear.

2. Make sure you have the database set up and configured as described in
“Building a stored procedure in DB2 for the CMP over Anything sample” on
page 568.

3. Start your WebSphere Business Integration Server Foundation application
server.
 Chapter 16. Container Managed Persistence over Anything 445

4. Launch the Administrative Console and log in.

5. Create a J2C Authentication alias with the following details:

– Alias: AccountAlias
– User ID: db2admin, or your database administrator’s ID
– Password: the user’s password

Click Apply.

6. Create a JDBC driver and a Data source for the application database.

a. Select Resources → JDBC Providers.

b. Set the scope to Node, then click New.

c. Select the JDBC provider DB2 Universal JDBC Driver Provider (XA),
then click Apply.

d. Select Data sources at the bottom and click New to create a new
datasource. Provide the following information:

• Name: AccountDS
• JNDI name: jdbc/Account
• Component-managed Authentication Alias: AccountAlias
• Container-managed Authentication Alias: AccountAlias

Click Apply.

e. Select Custom Properties at the bottom.

f. Set the databaseName property to reflect the database name, in our
example: ITSO_CMP.

7. Save the configuration for WebSphere.

8. Install the resource adapter for CMP over Anything EJBs.

a. Select Resources → Resource Adapters.

b. Set the scope to Node, then click Install RAR.

c. Browse for the cmpaAdapter.rar file under the
<WebSphere_root>/installableApps directory. Click Next.

d. Provide the following information:

• Name: CMPA Resource Adapter

Click Apply.

e. Select the new resource adapter then click J2C connection factories at
the bottom of the page.
446 WebSphere Business Integrator Server Foundation V5.1 Handbook

f. Click New to create a new connection factory; provide the following
information:

• Name: AccountCF
• JNDI name: jdbc/Account
• Component-managed Authentication Alias: AccountAlias
• Container-managed Authentication Alias: AccountAlias

Click OK.

9. Save the configuration for WebSphere.

10.Start the installation of the application cmpa-sp.ear, then select
Applications → Install New Application.

11.Browse for the cmpa-SP.ear and click Next and Next again.

12.Follow the installation steps and stop at Provide default datasource mapping
for modules containing 2.0 entity beans and at Map datasources for all 2.0
CMP beans.

13.At “Provide default datasource mapping for modules containing 2.0 entity
beans“, click the + next to Apply Multiple Mappings to open the list of
available datasource JNDI names.

14.Select the eis/jdbc/Account_CMP next to Specify existing Resource JNDI
name, check the box next to the cmpaEJB item, then click Apply under the
JNDI name.

15.At Map datasources for all 2.0 CMP beans click the + next to Apply Multiple
Mappings to open the list of available datasource JNDI names.

16.Select eis/jdbc/Account_CMP next to the Specify existing Resource JNDI
name, check the box next to the Account_CMP item, then click Apply under
the JNDI name.

17.At the last step, click Finish.

18.Save the configuration for WebSphere.

19.Start the new application, cmpa, in WebSphere.

Testing the sample
In this section we will use the Universal Test Client installed under WebSphere
(the application can be found under WebSphere Studio Application Developer
Integration Edition).

1. Launch a Web browser and open the URL: http://localhost:9080/UTC/.

2. Select JNDI Explorer, then drill down to [Local EJB beans] → com →
ibm → itso → sg246318 → cmpa and click the Account_CMPLocalHome
item.
 Chapter 16. Container Managed Persistence over Anything 447

3. Use the Account_CMPLocal findByPrimaryKey(Account_CMPKey) method to
find a bean. If you have the database populated as described in “Building a
stored procedure in DB2 for the CMP over Anything sample” on page 568
then use the int value 11 for the lookup. Once the bean is found, click the
Work with Object button; the new object appears on the navigation bar.

4. Use the String getMyBalance() method of the Account_CMPLocal object to
return the balance for the customer. The result should be the following string:

The value from Stored Procedure = 60.0 (java.lang.String).
448 WebSphere Business Integrator Server Foundation V5.1 Handbook

Chapter 17. Application profiling

Application profiling enables you to identify particular units of work to the
WebSphere Application Server runtime environment. The runtime can tailor its
support to the exact requirements of that unit of work. Access intent is currently
the only runtime component that makes use of the application profiling
functionality. The application profile itself is a set of access intent policies that
should be selectively applied for a particular unit of work (a transaction or
ActivitySession).

In WebSphere Business Integration Server Foundation V5.1, application profiling
consists of tasks and profiles. A task is a named unit of work within a distributed
application whereas a profile is simply a mapping of a task to a set of access
intent policies that are configured for entity beans.

17
© Copyright IBM Corp. 2004. All rights reserved. 449

17.1 Prerequisites
The WebSphere Business Integration Server Foundation InfoCenter provides
valuable information regarding various development, deployment and
administration aspects. The InfoCenter is located at:

http://publib.boulder.ibm.com/infocenter/ws51help/index.jsp

It is a good idea to familiarize yourself with the following topics in the WebSphere
Business Integration Server Foundation InfoCenter.

� There is additional information available about application profiling
administration and development in the InfoCenter. Using WebSphere
Business Integration Server Foundation InfoCenter, navigate to All topics by
feature → Applications → Application services → Application
profiling.

� It is important to gain familiarity with development tasks associated with
Application Profiling and Access Intents. Next few sections assume this
knowledge and refer to the InfoCenter where possible. Using WebSphere
Business Integration Server Foundation InfoCenter, navigate to Developing
→ Task overviews → Application profiling

Familiarize yourself with the following topics in WebSphere Studio Application
Developer Integration Edition help:

� EJB Deployment tool. This can be navigated by going into WebSphere Studio
Application Developer Integration Edition Help Content and then navigating to
WebSphere Studio → Developing → EJB applications → EJB
application development overview → Tools for developing EJB
applications → EJB deployment tool

� Defining Access Settings. This can be navigated by going into WebSphere
Studio Application Developer Integration Edition Help Content and then
navigating to WebSphere Studio → Developing → EJB applications →
Editing EJB deployment descriptor → Defining access settings →
Adding bean-level access intent for EJB 2.0 entity beans

� Extended Access. This can be navigated by going into WebSphere Studio
Application Developer Integration Edition Help Content and then navigating to
WebSphere Studio → Developing → Enterprise services → Extended
Access (Application Profiling)

17.2 Overview
WebSphere Business Integration Server Foundation runtime can make
optimizations for an application based on “hints” on the behavior of the
450 WebSphere Business Integrator Server Foundation V5.1 Handbook

http://publib.boulder.ibm.com/infocenter/ws51help/index.jsp

application. Application Profiling and Access Intents feature of WebSphere
Business Integration Server Foundation allows for declaratively or dynamically
configuring these hints at assembly time or at runtime.

Using Access Intents, EJB container can be configured to provide optimal
performance based on a specific type of EJB use. Various Access Intent hints
can be declared at assembly time to indicate to WebSphere resources (such as
the container and the persistence manager) to provide the appropriate Access
Intent services for every EJB request.

EJB 2.0 introduces the Container Managed Relationships but the EJB container
does not have enough information to optimize access. A good example of such
shortcoming is EJB read ahead, that is, how far to read ahead in the Object
Relationship graph. Read-aheads, combined with other forms of application
profiling and access intents, can have dramatic impact on the runtime
performance.

The concept of Application profiling and Access Intent further extends beyond
Container Managed Persistence. Application profiling policies are hints that also
apply to Relational Resource Adapter, for example. Following are some common
applications of Application Profiles and Access Intents:

� Persistence manager makes decisions about isolation level, cursor
management, and so on.

� EJB container influences the management of EJB collections.

� Relational Resource Adapter (RRA) provides prefetch hints in defined
increments to control the number of rows read from database at a time.
WebSphere does not provide paging nor does the RRA provide prefetch.
Instead, a prefetch hint is passed to the database telling how many rows are
going to be read so that the database can optimize the access.

Profiling levels
Profiling can be configured at different levels, depending on your needs.
Table 17-1 shows the different Profiling configurations available as they are seen
in the Application Server Toolkit and their granularity level.

Table 17-1 Profiling configurations

PME Scope

Dynamic Query Entity

Access Intent Method

Application Profiling Unit of Work
 Chapter 17. Application profiling 451

You can set different Profiling configurations on the same EJB, so apparently
there will be collisions. But a clear priority hierarchy has been defined upon these
three levels of Profiling. Notice that there are three types of Profiling, each with a
different level of granularity.

Access Intent
Access Intent lets you associate an Entity CMP EJB method with an Access
Intent Policy. An Access Intent Policy is a set of properties defining how the EJB
container should access the persistence layer.

This feature is provided in WebSphere Application Server as well as in the
WebSphere Business Integration Server Foundation. It is a step forward in
performance tuning but yet limited.

Figure 17-1 Access Intent

Because Access Intents are defined at method level, you can assign different
Access Intent Policies to EJB’s create, remove, setter and getter methods,
achieving some performance tuning. If you are unable to decide which Access
Intent to apply in deciding upon the caller or client of the Entity EJB, this issue is
covered by Application Profiling.

Application Profiling
Application Profiling lets you associate task names to Session and Entity EJB
methods and group a set of tasks under a set of Access Intents. This provides
the capability of associating at runtime an Entity EJB method with a specific
Access Intent depending on the task under which it is called. So the binding is
caller dependent and resolved dynamically at runtime.

Entity EJB
Method

Access Intent1 1

1

N

Policy
452 WebSphere Business Integrator Server Foundation V5.1 Handbook

Figure 17-2 Application Profiling diagram

A task is associated with an Application Profile at deploy time. At runtime, the
task name gets propagated and its arrival identifies the caller. An Application
Profile associated with that caller task defines the Access Intents to be applied.

Default Access Intent
There is another level of configuration for Access Intent. You can set an Entity
EJB to be accessed with a specific Access Intent when it is loaded as a result of
a Dynamic Query. In fact, this configuration is used by default if no other Access
Intent is specified. This Access Intent is defined at bean level.

Access Intent

Access
Intent

Policies Entity EJB
MethodTask

Session EJB
Method

Entity EJB

Access Intent

Application Profile

Container Tasks

Application Profiles

1 1

1

1

1 1 NN

N

N

Policy

N

 Chapter 17. Application profiling 453

Figure 17-3 Default Access Intent, Dynamic Query Access Intent diagram

Profiling prioritization
When different Access Intents are defined on the same entities, prioritization is
applied to resolve which Access Intent to apply. Figure 17-4 on page 455 shows
the decision algorithm used to apply an Access Intent when many Access Intents
have been defined or are applicable for the current request.

Note: Access Intents are defined at bean level. Access Intents are defined at
method level. Compare the Access Intent diagrams in Figure 17-1 on
page 452, Figure 17-2 on page 453, and Figure 17-3.

Entity EJB

Access Intent
1 1

1

N

Policy
454 WebSphere Business Integrator Server Foundation V5.1 Handbook

Figure 17-4 Application Profiling prioritization

Start

Is there a task
associated

with the
request?

Apply this
access intent

Is the requester
method

configured with
an access

intent?

Is the bean
configured with
a default access

intent?

Is the bean
enabled for
lifetime in
cache?

Apply this
access intent

Use
wsOptimisticRead

Use
wsPessimisticUpdate-weakestLockAtLoad

Is this bean
configured with
an access intent
in this profile?

Apply this
access intent

End

False

False
False

False

False

True

True

True

True

True

Is this task
associated to an

application
profile?

True

Application
Profile

Access
Intent
Defult

(Dynamic Query)
 Chapter 17. Application profiling 455

17.3 Planning
Application Profiling and Access Intent, hereafter referred to as Application
Profiling or just Profiling, are meant to be configured at deployment time through
the extended Deployment Descriptors. For flexibility, an API is exposed for Entity
BMP EJBs. This section shows you how to configure Application Profiling and
how to work with the exposed API.

Steps for setting up Application Profiling
This section provides an overview and discussion of the major steps needed to
set up application profiles. Figure 17-5 highlights these steps.

Figure 17-5 Steps for setting Application Profiles

1. Create custom Access Intent policy

Before setting up the profile, there has to be scenario that could benefit from
access intents and application profiling. You need a policy where you can
express whether you intent to read or update, whether you intent to use an
optimistic or pessimistic approach, whether you intent to use pre-fetching
mechanism or not. WebSphere Business Integration Server Foundation
comes with 7 predefined Access Intent Policies. You can use those as they
are, or "tweak" them at the time you use them to provide for necessary
variations. You can also create your own policies on EAR file by using
Application Server Toolkit.

2. Create Application Profile

Next a custom application profile must be created using the Application
Server Toolkit. The application profile is a definition that includes

– a number (one of more) of access intents applied to one or more EJBs,

– a number of task names that identify a logical "business task".

Profile (example)
wsPessimisticUpdate

A Task name

Set Profile

EJB1 EJB2

Access Profile

TaskID TaskID

Access Intent Policy1

2

3 3
456 WebSphere Business Integrator Server Foundation V5.1 Handbook

3. Container Task

Container task definition points to a "task name" you associated with a profile.
Container task definition can be applied to EJB methods (session EJB).
When a client calls that particular method on the session EJB, the profile that
is associated with the task is going to be used, and therefore the access
intents specified in the profile are going to be used for the Entity EJB.

An association graph between client methods, Tasks, Profiles, Access Intents
and Entity EJBs methods is shown in Figure 17-2 on page 453.

17.3.1 Access Intent Policies
There are several different Access Intent Policies available in WebSphere
Business Integration Server Foundation, these are listed below. Each policy is
really a configurable data access parameter specified in Access Intent Policy for
the persistent manager:

1. Concurrency Control

2. Access Type

3. Read-ahead - Container Managed Relationships

4. Collection Scope

5. Collection Increment

6. Resource Manager Pre-fetch Increment

The following sections discuss each Access Intent Policy in detail

Concurrency Control
Concurrency control allows a choice of pessimistic or optimistic access.

Pessimistic Access
Pessimistic Access implies that the Entity EJB is locked for the duration of the
transaction. At a minimum, no one, except the call, can modify that EJB instance.
In caller's transaction, it is guaranteed that the data it is dealing with is not stale.
This level of locking provides data integrity. On the downside, pessimistic access
provider lesser concurrency. Typically, pessimistic access results in a higher
isolation level on the RDB.

Important: It is important that the method on which you created the
container task initiates a transaction, because the application profile
definition "flows" with the transaction context to the EJBs that are called by
the session bean.
 Chapter 17. Application profiling 457

Optimistic Access
Optimistic Access reduces the demands in terms of data integrity. During an
optimistic transaction, no locks are maintained on the instance. This implies that
another transaction can modify the instance, and commit those changes too.
When the optimistic transaction tries to commit, it will verify that someone else
hasn't changed the data in the meantime. If the data did change, the commit will
fail, and the end user has the option of resubmitting the transaction.

Optimistic access improves concurrency, but introduces complexity in application
design where programmers must take into account situations where exceptions
might be thrown because of data integrity issues.

Access Type
When defining application profiles, it is possible to choose between read or
update access intents.

Read access intent
Read intent can be optimistic or pessimistic. If pessimistic read intent is specified
and an update method is called on a CMP EJB, the container throws:
com.ibm.ws.ejbpersistence.utilpm.UpdateCannotProceedWithIntegrityException
exception. For BMP EJBs, the EJB should throw javax.ejb.EJBException
exception. Typically read intents result in lower contention.

if pessimistic read is used, it will not be possible to escalate the intent to perform
an update. For example, if a transaction specific read intent, and then it calls a
method that actually updates (like a setter method), the container will throw an
UpdateCannotProceedWithIntegrityException exception.

The container prevents from loading the same EJB in the same transaction using
incompatible access intents. For example, if EJB is loaded with pessimistic read
intent, and then subsequently loaded with an update intent, the
InconsistentAccessIntentException is thrown.

Update access intent
Update intent can be optimistic and pessimistic, as the read intent before.
Pessimistic update is the most “stringent” form of intent, that is, it is the most
demanding in terms of isolation.

Note: Optimistic concurrency always implies that dead locks are possible, but
are less likely.

Note: Under pessimistic concurrency control, transactions started with read
intent are not capable of supporting an update.
458 WebSphere Business Integrator Server Foundation V5.1 Handbook

There are three combinations that are available for pessimistic update:

� Weakest Lock at Load

Although update intent is specified, a container acquires read lock first. If the
transaction then updates, lock escalation will be pursued. This allows better
concurrency than if an update lock was attempted at the beginning, but it may
result in dead locks. This is the default Access Intent for all CMP EJBs.

� Exclusive

This is the most restrictive option and provides highest level of locking, hence
resulting in the most restrictive isolation levels. It should be used careful when
used with large result sets, for example in finder methods. It is used to
prevent phantom reads and non-repeatable reads.

� No Collision

No collision behaves like Exclusive option but it allows for EJB instances to
be cached in memory. There, the isolation level requirement are not so
stringent. In other words, with this option there is no concurrency control, that
is, it selects without locks and update without checks. This option can be used
safely only if database tables, where EJBs are persisted, are not shared with
any other software other than WebSphere, otherwise data loss might occur.

Read-ahead
This parameter is applied to multiple Entity EJBs. It is only available for Entity
EJBs with a Container Managed Relationship (CMR) defined on them. Possible
values are the names of any CMR field on the current Entity EJB. At the time a
findByPrimaryKey() method is invoked, the container uses the read-ahead hint to
pre-fetch data for the specified related objects.

For example, as shown in Figure 17-6, when a findByPrimaryKey() operation is
performed on Manufacturer table, the container could run a join query to get not
only the Manufacturer information, but also the information for all the related cars
and their sales information.

Important: Do not confuse the lock escalation concept in an Access Intent
context with lock escalation in a database context. In a database context,
escalation of locks refers to the internal mechanism of the database that
reduces the number of locks. In a single table, locks may be escalated to a
table lock from many row locks. In an Access Intent context, lock escalation is
a synonym of lock conversion in a database context. It happens when a more
restrictive lock than the one held is needed. A read lock on an object may be
converted to an update lock.
 Chapter 17. Application profiling 459

Figure 17-6 Data model representing Read-ahead Access Intent scenario

The read-ahead intent is relatively complex in that it deals with multiple Entity
EJBs. When navigating through a CMR graph by calling a get method on a CMR
field, that method call effectively corresponds to a finder method on the related
EJBs. The application profile associated with the source of the relationship will
be propagated to the target as well. In WebSphere Business Integration Server
Foundation, the same EJB cannot be loaded twice with different intents. Hence
the target EJBs must be configured to have the same access intent for the finder
method to work properly. If this condition cannot be met, read-ahead for the
target EJBs cannot be configured.

For example, in Figure 17-7, if you want to read-ahead from Manufacturer to
Trucks and that an optimistic intent is defined for the Manufacturer. If trucks was
not configured with a optimistic intent, the following may happen:

� department is loaded

� the container optimistically loads some trucks

� in the same transaction, there is a findByPrimaryKey() on a truck that was
already optimistically loaded, but this time we have to use the default
pessimistic intent.

The last operation above will cause an exception. That is why Application Server
Toolkit will force you to define an optimistic intent on the Trucks EJB and then
you will be able to configure the read-ahead intent.

Tip: This operation is beneficial only when the task looking up the
Manufacturer information is also going to use related EJBs.

Manufacturer

ModelCars

Trucks

1

n n

n

1

1

460 WebSphere Business Integrator Server Foundation V5.1 Handbook

Figure 17-7 Access Intents and Read-ahead

Collection Scope
Collection scope intent is used to control the lifecycle of a "lazy" collection. When
you call a finder method optimistically, you get a "lazy" collection back from the
container. The collection can be loaded in memory "in chunks", so that as you
iterate through it, the elements that you are looking for are already in memory.

However, a “lazy” collection normally expires at the transaction boundary. The
default value for the collection scope hint is "transaction" boundary. The scope
can be extended by specifying "activity session" for the collection scope and
have the collection survive multiple transactions as long as they are all taking
place within the same Activity Session.

� Transaction is the default value. The collection will no longer be usable at
the end of the transaction that created it. References will be dropped and
objects will be ready for garbage collection.

� ActivitySession. The collection may be accessed until the end of the Activity
Session under which the collection was retrieved, spanning multiple
transactions.

In cases where an attempt is made to iterate over a collection that has "expired",
following exception is thrown:
com.ibm.websphere.ejb.container.CollectionCannotBeFurtherAccessed

Tip: In general, you must specify consistent access intent on the related EJBs.

Manufacturer

ModelCars

Trucks

1

n n

n

1

1

Optimistic

Optimistic

Pessimistic
 Chapter 17. Application profiling 461

Collection Increment
As mentioned previously, when a finder method is invoked optimistically, the
container returns a “lazy” collection. Collection increment intent controls how
many elements can be pre-fetched in a single operation. The number of
elements loaded can influence application performance:

� Too many objects may clutter the cache.

� Too few may cause the iterator to wait for incoming data.

Resource Manager Pre-fetch Increment
This parameter suggest how many rows should be retrieved from the underlying
relational database in a single operation. If set to zero, the JDBC driver will
ignore it. This parameter may be completely ignored by some database
implementations that have their own optimization mechanism. It is a hint to the
JDBC driver and may or may not be taken into account.

This number may differ from the collection increment discussed earlier. For
example, it is possible to have a data mapping that is scattered across multiple
tables. In that case, this access intent type is very useful.

Summary
The table below, Table 17-2, summarizes the various options available to
configure access intent policies.

Table 17-2 Access Intent Polices Summary

Tip: Collection increment is useful in optimistic approach.

Access Intent Type Options

Concurrency Control Pessimistic, Optimistic

Access Type Read, Update, WeakestLockAtLoad

Read-ahead (Container Managed
Relationships)

Allows pre-fetching related EJBs

Collection Increment Allows pre-fetching certain number of
elements of a collection of EJBs

Collection Scope Transaction, Activity Session

Resource Manager Pre-fetch Increment Hint to JDBC driver to allow pre-fetching
number of rows
462 WebSphere Business Integrator Server Foundation V5.1 Handbook

17.3.2 Predefined Access Intent Policies
WebSphere Business Integration Server Foundation ships with seven predefined
access intent policies, as noted in Table 17-3.

Table 17-3 Predefined Access Intent Polices

The following are a few key points that should be kept in mind regarding
predefined access intent policies:

� All optimistic access intents have the collection increment set to 25.

� All access intents have the read-ahead parameter set to black (no
read-ahead)

� All pessimistic access intents have collection set to 1 (except for
wsPessimisticUpdateNoCollisions where it is 25). In this case you need to
make sure that WebSphere Persistence Manager is the only user for those
database tables, or data loss and inconsistency may occur as previously
indicated.

� The wsWeakestLockAtLoad is pessimistic update. However, it initiates data
access in read mode, and tries to escalates the lock level as needed

Access Intent Policy Description

wsWeakestLockAtLoad
[DEFAULT]

Starts a pessimistic read, then escalate when
update is required. This is the default policy.

wsPessimisticUpdate Gets update lock at the beginning of the
transaction. Prevents dead locks.

wsPessimisticRead Read locks are held for the duration of the
transaction. Updates are not permitted.

wsOptimisticUpdate No locks are held. Updates are allowed. If data
originally queried has changed since the read, the
update will produce an exception and will not take
place.

wsOptimisticRead No locks are used. Updates are not allowed.

wsPessimisticUpdateNoCollision No locks held but updates permitted. Provides no
concurrency control. Can lead to data corruption if
misused.

wsPessimisticUpdate-Exclusive Read or update locks are held for the duration of
the transaction on the entire range of data affected
by the SQL statement. Misuse may result in dead
locks.
 Chapter 17. Application profiling 463

17.3.3 Isolation Levels and Access Intents
This section describes various database isolation levels that an access intent
may be mapped to. A summary of supported database, predefined access
intents, and the corresponding isolation levels is also provided.

Read Committed
A read committed transaction isolation level ensures only committed data is
read, that is, no dirty reads allowed. However, no locks are maintained for the
duration of the transaction. This implies that another process may change and
commit the data you are reading, leading to a non-repeatable read. Also rows
matching your criteria may be inserted or deleted, causing a phantom read. In
database terminology, this isolation level is called cursor stability.

Repeated Read
The repeatable read transaction isolation level works like the read committed but
it also ensures repeatable reads. In other words, another process will not be able
to update a row you obtained until your transaction is complete. However,
phantom reads are still possible, as another process might insert a row that
matches the selection criteria; if you repeat the query, you would get the newly
inserted row. In database terminology, this isolation level is called read stability.

Seralizable
A serializable transaction isolation level ensures repeatable reads and disallows
phantom reads by preventing other processes from inserting or deleting rows
that would modify your result set until your transaction has completed. In
database terminology, this isolation level is called repeatable read.

Summary
The table below, Table 17-4, summaries the mapping between the various
access intents and the corresponding isolation levels on the supported relational
databases.

Note: Optimistic locking results in better concurrency handling. However, the
application have to be engineered to catch optimistic exceptions and to avoid
deadlocks.
464 WebSphere Business Integrator Server Foundation V5.1 Handbook

Table 17-4 Isolation Levels and Access Intents mapping for databases: Summary

17.3.4 Access Intent Decision
Now that we have discussed Access Intent and various Isolation levels, a key
point in making an application perform better is how to pick the right Access
Intent. This decision has to be based on the intention of the transaction involved
and the isolation level that the transaction requires.

Pessimistic Concurrency Control Decision
Under pessimistic concurrency control, transactions that start with read intent are
not prepared to support an update with integrity because locks are not held at the
time of SELECT. Hence, if a bean is loaded into transaction with read intent and
a CMP field is subsequently updated (through a setter method), Persistent
Manager must throw a CannotUpdateEntityException exception.

Table 17-5 Pessimistic Concurrency Control Decision table

DB2 Oracle Sybase Informix Cloud
scape

SQL
Server

wsWeakestLockAtLoa
d (default)

RR RC RR RR RR RR

wsPessimisticUpdate RR RC RR RR RR RR

wsPessmisticRead RR RC RR RR RR RR

wsOptimisticUpdate RC RC RC RC RC RC

wsOptmisiticRead RC RC RC RC RC RC

wsPessmisticUpdateN
oCollosions

RC RC RC RC RC RC

wsPessimisticUpdateE
xclusive

S RC S S S S

Access
Type

PM Action 1st Method
in
Transaction

Subsequent
Methods in
Transaction

Isolatio
n level

Comments

update
(default)

Select for
Update

Reads Updates RR

update Select for
Update

Updates Reads RR
 Chapter 17. Application profiling 465

Optimistic Concurrency Control Decision
Optimistic concurrency always implies that deadlocks are possible, because no
real lock is required on the object until the transaction is about to commit.
However, lock escalation is always possible with optimistic concurrency. Even if
the transaction is started with an optimistic read intent, you still have the freedom
to decide to update the instance at a later time.

Table 17-6 Optimistic Concurrency Control Decision table

Summary
Figure 17-8 on page 467 shows a better approach to decide which Access Intent
should be chosen, taking into consideration the intention of the transaction and
the isolation level that the transaction requires.

read Select
(not for
update)

Reads Updates RC throws
exception

read Select for
Update

Updates NA RC throws
exception

Access
Type

PM Action 1st Method
in
Transaction

Subsequent
Methods in
Transaction

Isolation
level

Comments

update
(default)

Select
(not for
update)

Reads Updates RC deadlock
potential

update Update Updates Reads RC deadlock
potential

read Select
(not for
update)

Reads Updates RC deadlock
potential

read Select
(note for
update)

Updates Reads RC deadlock
potential

Access
Type

PM Action 1st Method
in
Transaction

Subsequent
Methods in
Transaction

Isolatio
n level

Comments
466 WebSphere Business Integrator Server Foundation V5.1 Handbook

Figure 17-8 Access Intent decision table

17.3.5 Switching Access Intents within a Single Transaction
Under some circumstances, it may happen that client code attempts to access
the same EJB or even the same EJB instance with different intents. These
situations should be avoided because of the potential for runtime exceptions or
deadlocks. In general, if you try to access the same EJB within the same
transaction using different intents, the Persistent Manager will perform a number
of checks, in order to prevent deadlocks as much as possible, and in order to
prevent data loss or data inconsistencies.

If you try to use intents that imply different isolation levels for same EJB, the
Persistent Manager will attempt to start a new connect to accommodate the
various isolation levels. It is not possible to switch isolation levels on the same db
connection. Multiple connections can be managed in s single transaction only if
the database is XA capable. If you are using single-phase datasource, the
situation described above will result in exceptions.

If the same instance of EJB is accessed using an incompatible access intent
type, an exception may be thrown, that is, InconsistantAccessIntentExcepton.
For example, Pessimistic Read cannot switch to Pessimistic Update, or
Optimistic intents cannot be converted into Pessimistic intents.

One very common situation where same instance of an EJB is accessed
differently in the same transaction is when Container Managed Relationships are
involved, this is illustrated in Figure 17-9.

Transaction
Isolation Level

Access Type Read Update

wsOptimisticRead wsPessimisticUpdate-NoCollision

wsPessimisticRead wsOptimisticUpdate

wsPessimisticUpdate wsPessimisticUpdate-weakestLockAtLoad

Read commited

Repeatable read

Identifies access intents that hold locks.
All locks are help for the duration of the transaction.
 Chapter 17. Application profiling 467

Figure 17-9 Container Managed Relationship with access intent

One client may look up an account using getByPrimaryKey(), on which a
Pessimistic Read intent is defined. Later, but within the same transaction, the
client accesses the customer that happens to own that account. The customer is
accessed with a write intent. When getAccounts() is called, the collection of
accounts include the account that the client already holds in read only mode.
This results in a InconsistentAccessIntentException exception. Sample code that
would cause this condition is shown below:

Example 17-1 Switching Access Intents sample code

accountHome.getByPrimaryKey(“001”); // read intent
//...
customer.getAccount(); // includes account “001”, inconsistent intent
//...

Reminder: If you load the same instance of EJB with different access intents
that imply the same isolation level, you may get:

� a deadlock
� InconsistantAccessIntentException exception

Customer

1

n

Account

getAccounts()

getByPK()

WriteIntent

ReadIntent
468 WebSphere Business Integrator Server Foundation V5.1 Handbook

These situations are much more common on the base application server rather
than in WebSphere Business Integration Server Foundation. In the base
application server, you would be using access intents specified on the individual
methods of the EJB, rather than intents specified on the Application Profile (and
therefore applicable to the entire transaction scope).

17.4 Assembly
This section guides you through the configuration of application profiles for an
enterprise application. You can use either WebSphere Studio Application
Developer Integration Edition or the Application Server Toolkit to define your
application profile tasks and policies together with Access Intents.

The steps below are not configuring application profiling to a specific application,
they are simply sample steps to show you how to do it for any application.

1. Open the EJB deployment descriptor for the EJB module.

2. You can set up access intents for entity beans on the bean and on the method
level under the Access tab. Access Intent is a base application server
functionality in WebSphere Application Server.

3. Switch to the Extended Access tab. During the next couple steps we are
going to set up application profiling for an application.

You have two options to start with for configuring application profiling for your
application: Container-Managed Tasks (CMT), Application-Managed Tasks
(AMT). Application Profiling Tasks are set up for EJB methods (CMT) or EJBs
(AMT). You can also combine the two different task types in one application.

a. Container-Managed Tasks show on the upper left side of the page.

Figure 17-10 Container-Managed Tasks

To create a new task, click Add...
 Chapter 17. Application profiling 469

i. On the first panel select the bean, then select the method you want to
assign the task to.

Figure 17-11 New Container-Managed Task 1.

Click Next.

ii. Name the task that you are going to configure later, then click Finish.
470 WebSphere Business Integrator Server Foundation V5.1 Handbook

Figure 17-12 New Container-Managed Task 2.

b. Application-Managed Tasks shows on the upper right side of the page.

Figure 17-13 Application-Managed Tasks

To create a new task, click Add...

On the first panel select the bean, set the logical name for the task
reference and the name for the task, at the end click Finish.
 Chapter 17. Application profiling 471

Figure 17-14 New Application-Managed Task 1.

4. The next step is to configure the tasks named in the previous step. The tasks
are shown under the Application profiles section.

Figure 17-15 Application profiles

To define a new task, click Add...

a. First, set the name of the task, then click Next.
472 WebSphere Business Integrator Server Foundation V5.1 Handbook

Figure 17-16 New application profile task 1

b. Select the managed beans for the task, then click Finish.
 Chapter 17. Application profiling 473

Figure 17-17 New application profile task 2

Once the task is set, you will find the Access Intent set for the entities under
the Access Intent for Entities 2.x (Profile Level) section.

You can modify the access intent for a certain entity in the task.

a. Select the task under the Application profiles section, then select the
entity bean under the Access Intent for Entities 2.x (Profile Level) section.
Click Edit... underneath the beans.

b. On the panel, select the Access intent name, then click Next.
474 WebSphere Business Integrator Server Foundation V5.1 Handbook

Figure 17-18 Configuring access intent for entity bean 1

c. Set further details for the access intent on the next panel. Check the
box(es) that you want to configure then enter or select a value. Click
Finish at the end.
 Chapter 17. Application profiling 475

Figure 17-19 Configuring access intent for entity bean 2

d. You can repeat the steps for all the entity beans to set up or change the
access intent.

5. If you need to define a custom access intent policy for your application, click
Add under the Defined Access Intent Policies section, bottom of the page.

Provide a name for the custom access intent, then set up the attributes for it.
476 WebSphere Business Integrator Server Foundation V5.1 Handbook

Figure 17-20 Custom defined access intent policy

After defining a new custom access intent policy, it is going to be available for
selection for the entity beans at the Access Intent for Entities 2.x (Profile
Level) section.

6. Save the EJB deployment descriptor and close the file.
 Chapter 17. Application profiling 477

478 WebSphere Business Integrator Server Foundation V5.1 Handbook

Chapter 18. Shared Work Area service

In this chapter, we will discuss the Shared Work Area. A Shared Work Area
(SWA) is a service in WebSphere Business Integration Server Foundation. With
this service, developers can easily pass user-defined information in a J2EE
environment. The Work Area will be propagated automatically, like the security
and transaction context.

18
© Copyright IBM Corp. 2004. All rights reserved. 479

18.1 Prerequisites
The Shared Work Area service has had some enhancement, since the
WebSphere Application Server Enterprise V5 implementation, although the
concept and the basics are the same.

For basic information about the Shared Work Area service, please refer to the
redbook WebSphere Application Server Enterprise V5 and Programming Model
Extensions, SG24-6932. This chapter will address some of the new features in
the WebSphere Business Integration Server Foundation V5.1 release.

18.1.1 Work area partition service
The Work Area partition service is an extension of the Work Area service that
allows users to create multiple customer Work Areas. WorkArea Partition can be
thought of in the same way as the UserWorkArea and has the same API as the
UserWorkArea. Any user that currently uses the Work Area service and the
UserWorkArea partition can continue using it in the same manner. A WorkArea
Partition differs from the UserWorkArea in a number of ways.

� The UserWorkArea is publicly available, through
java:comp/websphere/UserWorkArea, thus allowing multiple users on the
same thread to access the context in the WorkArea. A Work Area partition is
created by a certain user and is only known to that user, unless of course that
user makes its partition publicly known. The Work Area partition service does
not strictly enforce that a partition is accessed by the partition creator. It can
be accessed by anyone who knows the certain partition name. Users can
choose to publish a certain partition name or not. On the other side, Work
Area partition service will try to hide a partition as much as possible, actually,
it does not allow a person to determine or query all the names of partition that
have been created.

� A WorkArea Partition can be configured to allow for bidirectional propagation
of its context. That is to say, changes made to a WorkArea's context by a
downstream process will be propagated back upstream to the originator of
that WorkArea.

The WorkAreaPartitionManager.createWorkAreaPartition() method can only be
used from J2EE clients. Administrators can use the Administrative Console to
create a Work Area partition on the server side. On the server side a Work Area
partition must be created during server startup because each partition needs to
be registered with the appropriate Web and EJB collaborators before the server
is started. When creating the Work Area partition, there are some configuration
properties available, which are defined as described in the following sections.
480 WebSphere Business Integrator Server Foundation V5.1 Handbook

Bidirectional propagation of WorkArea context
In the previous manner, applications can create a Work Area, insert information
in it, and perform a remote invocation. The Work Area is propagated with a
subsequential remote method invocation. The server side methods which are
invoked by client can use or simply ignore the information included in the Work
Area as appropriate. If the method being called has a nested Work Area
associated with it, a copy of the nested Work Area and all its ancestors are
propagated to the target application.

There is a new configuration property Bidirectional propagation of WorkArea
context, which can be specified when creating the Work Area partition service
either in Administrative Console or using the API. If the bidirectional property is
specified during creation time, the changes made by server side will be
propagated back to calling application, meaning that changes made to the Work
Area context by a downstream process will propagate back to upstream.

Deferred attribute serialization of WorkArea context
By default, the serialization and deserialization are automatically performed by
the Work Area services. On each set of operations, the Work Area service
serializes and deserializes the attributes. The mechanism gives the server
complete control over the attribute so that any changes to a mutable object are
not reflected in the Work Area's copy of the attribute unless a user specifically
resets the attribute into the Work Area. However, from performance point of view,
this will lead to excessive serialization/deserialization operation and can result in
performance degradation under heavy load.

The deferred attribute serialization is a cache service to address this issue. With
this property specified (using the Administrative Console or the API), attributes
set into the Work Area service are not automatically serialized during the set
operation. Rather, the Work Area stored a reference to the attribute as a cache.
When a get operation is performed on an attribute, the reference to the object is
returned to the requester and no deserialization is performed. So, when does the
serialization/deserialization occur? When the deferred attribute serialization
property is enabled, the Work Area service will always store the reference of
mutable objects attributes except when:

� An attribute is reset or removed.

� The Work Area is explicitly completed by the application.

� Server component ends execution of the request during which the Work Area
was begun.

Note: UserWorkArea partition can not be configured to be bidirectional, it has
been "hard configured" as non-bidirectional; therefore the changes only can
be passed one way under UserWorkArea partition.
 Chapter 18. Shared Work Area service 481

� Client process which began the Work Area terminates.

Partition context propagation across process boundaries
The Work Area service enables application developers to implicitly propagate
information beyond the information passed in remote calls. Applications can
create a Work Area, insert information into it, and make remote invocations. If a
client has multiple different Work Area partitions when it makes remote
invocation to server side, the information included in each partition on the client
thread propagates to the application server. Which information (context) will be
demarshalled at server side, depends on appropriate partition name both defined
at client and server side. It means that only the context associated with a partition
that is resident on both the client and server is demarshalled. The information
(context) associated with a partition that does not reside on server side is still
there but will not accessible, it will be propagated to a different server during the
next remote invocation.

18.1.2 Distributed Work Areas
Following are some details about the distributed Work Areas.

Non-bidirectional Work Area partitions (UserWorkArea
partition)

As with the previous UserWorkArea, if the calling application has a Work Area or
nested Work Area, a copy of the Work Area and nested Work Area are
automatically propagated to the remote method, which can modify or ignore the
information in the Work Area as appropriate. The changed information then will
be propagated to any other sequent method invocations. However, no changes
made to a nested Work Area on a target object are propagated back to the
calling application. The caller's Work Area is never affected by changes made in
the remote method.

Bidirectional Work Area partitions
In WebSphere Application Server Enterprise V5, the Shared Work Area (SWA)
had an important characteristic: the data can only passed one way. That means,
if the remote method makes changes to the data, the changes will not be
propagated back to the caller. However, if a partition is defined as bidirectional,
and the target application does not need to begin a nested Work Area, any new

Note: Be careful; if the changed attribute has not been reset in the Work Area,
sequent invocation will not see the changed value. In other words, any direct
changes to that mutable attribute are not propagated because the Work Area
still holds an old serialized version of that attribute.
482 WebSphere Business Integrator Server Foundation V5.1 Handbook

changes set into the Work Area will propagate not only subsequent remote
invocations but also back to the originator applications. If the target application
does not want the changed context to propagate back to the calling application,
then the target application must begin a nested Work Area to scope the context
to its process. The changed context in the nested Work Area will normally
propagate to subsequent remote invocation if it has any.

18.2 Managing Work Area partitions
Work area service is managed in the Administrative Console. You have the
following tasks available for the Work Area Partition service.

� Creating a new Work Area
� Enabling the Work Area service
� Managing the size of the Work Area

Creating a new Work Area
1. Start the Administrative Console and login.

2. Navigate to Servers → Application Servers → <server_name> → Work
Area Partition Service.

3. Click New to create a new Work Area Partition.

4. Fill out the fields, the Name is mandatory, then click OK.
 Chapter 18. Shared Work Area service 483

Figure 18-1 Shared Work Area service configuration for the server

5. Once the new item is created, save the configuration for WebSphere.

Enabling Work Area service
1. By default, the Work Area service is enabled on both clients and servers. But

you still can choose this task to enable/disable the Work Area on a server.

a. In the Administrative Console navigate to Servers → Application
Servers → <server_name> → Work Area Service, see Figure 18-1.

b. Select (deselect to stop) the Startup checkbox.

2. Enable/disable WorkArea service on a J2EE client.
484 WebSphere Business Integrator Server Foundation V5.1 Handbook

Set the com.ibm.websphere.workarea.enabled property to true or false before
starting the client. For example, you can add the following line to the
launchClient.bat (Windows) or the launchClient.sh (Unix):

-Dcom.ibm.websphere.workarea.enabled=true|false

Managing the size of Work Area
Users can use this option to limit the data size sent/received both on the client
and server side. Applications can set maximum sizes on each Work Area to be
sent or received. By default, the maximum size of a Work Area that is sent by a
client and received, then possibly re-sent, by a server is 32,768 bytes.

1. Set the sent/received data size of WorkArea on a server.

a. In the Administrative Console navigate to the Servers → Application
Servers → <server_name> → Work Area Partition Service, see
Figure 18-1 on page 484.

b. Enter a value for maxSendSize or maxReceiveSize to modify the size of
the Work Area that this server can accept.

2. Set the sent/received data size of WorkArea on a J2EE client

Set the com.ibm.websphere.workarea.maxSendSize property to the number
of bytes before starting the client. For example, you can add the following line
to launchClient.bat (Windows) or launchClient.sh (Unix):

-Dcom.ibm.websphere.workarea.maxSendSize=1000

18.3 Sample scenario
This chapter is using the Travel Agency scenario introduced for the whole book.
The sample application consists of a J2EE client named TravelTestClient and
and EJB component on the server side. TravelTestClient creates two Work Area
partitions: one is customerInfoArea which is then used to store customer
information and the other is travelInfoArea which is then used to return some
server side information back to client.

The application simulates a customer made travel reservation. The Customer
inputs some information on the client, and passes the information to the server.
On the server side a façade EJB gets the information, then makes the
appropriate invocation to process the user’s request, then it generates a
confirmation number that is sent back to client.

Note: Only the original thread that makes the invocation can get the right
information from WorkArea.
 Chapter 18. Shared Work Area service 485

18.4 Development
For this chapter we have created a sample J2EE V1.3 application with all the
code, we are not going to provide step-by-step instructions about how to build
such an application. The description you can find here is how to use the Shared
Work Area service in a J2EE application.

To develop an application using the Shared Work Area service, you need add
two JAR files to your Java build directory: acwa.jar and distexcep.jar.

Figure 18-2 Java Build Path for the server application

The EJB module
The sample application has an EJB module and an application client module.
The EJB module has two session EJBs: SessionFaçade, BusinessLogic.

The SessionFaçade is a façade component that routes the customer request to
the appropriate business logic invocation. Only the SessionFaçade has remote
interface, the subsequent logic beans only have local interface. We get the
BusinessLogic local instance in ejbCreate() method to gain some performance
benefit.

private BusinessLogicLocalHome home = null;
486 WebSphere Business Integrator Server Foundation V5.1 Handbook

private BusinessLogicLocalHome home = null;
...
public void ejbCreate() throws javax.ejb.CreateException {

try {
InitialContext ctx = new InitialContext();
// Get the BusinessLogic bean instance
home = (BusinessLogicLocalHome) ctx.lookup(businessName);
business = home.create();

} catch (NamingException e) {
System.out.println("SessionFacde Bean : Lookup the BusinessBean

failed!");
e.printStackTrace();

}
}

The actual business invocation will be delegated to BusinessLogic bean method.

// Business logic invocation
public void bookingProcess(){

business.makeReservation();
}

There are two serializable classes: CustomerInfo.java and TravelInfo.java.
These two classes will store the information exchanged between client and
server side. In the TravelInfo.java, we defined a travelConfirmNumber parameter
to store the confirmation information generated by the server. Because we will
specify the travelInfoArea partition as "bidirectional", we assume this information
will be propagated back to client thread automatically.

As usual, in the BusinessLogic bean, we get the partition service instance in
ejbCreate() method to gain some performance benefit.

import com.ibm.websphere.workarea.NoSuchPartitionException;
import com.ibm.websphere.workarea.PropertyModeType;
import com.ibm.websphere.workarea.UserWorkArea;
import com.ibm.websphere.workarea.WorkAreaPartitionManager;
...
private static final String jndiName =
"java:comp/websphere/WorkAreaPartitionManager";
private WorkAreaPartitionManager manager = null;
private UserWorkArea custInfoArea = null;
private UserWorkArea travelInfoArea = null;
private CustomerInfo custInfo = null;
private TravelInfo travelInfo = null;
...
public void ejbCreate() throws javax.ejb.CreateException {

try {
InitialContext ctx = new InitialContext();
manager = (WorkAreaPartitionManager) ctx.lookup(jndiName);
 Chapter 18. Shared Work Area service 487

} catch (Exception e) {
e.printStackTrace();

}
try {
custInfoArea = (UserWorkArea)

manager.getWorkAreaPartition("customerInfoArea");
travelInfoArea = (UserWorkArea)

manager.getWorkAreaPartition("travelInfoArea");
} catch (NoSuchPartitionException e) {

e.printStackTrace();
}

}

The WorkAreaPartitionManager instance looks up the WebSphere JNDI for the
java:comp/websphere/WorkAreaPartitionManager. Then, we get the two Work
Area partitions which are defined on the server using the
WorkAreaPartitioniManager.getWorkAreaPartition("partition_name") method.

How the makeReservation() business method works:

1. Retrieve all the information: UserWorkArea.retrieveAllKeys() method will
return all the informations included in the Work Area.

2. Make some changes to TravelInfo class, to simulate that we have some follow
on invocation to generate the confirmation number for user travel booking.

3. Reset the property in the Work Area and try to propagate this information
back to the client side. We use the UserWorkArea.set() method to achieve
this.

Example 18-1 Propagating back to the client side

// The reservation business method
public void makeReservation() {

System.out.println("BusinessLogicBean: Testing...");
// Get information from CustomerInformation work area
try {

String[] custInfoProperties = custInfoArea.retrieveAllKeys();
if (custInfoProperties != null) {

for (int i = 0; i < custInfoProperties.length; i++) {
// … print out information here

}
} else {

System.out.println("BusinessLogicBean: No Properties found!...");
}

// You can make some other invocations like WPC to process the user
// request based on the user information
// Then, Store the confirm information in the bidirectional work area
488 WebSphere Business Integrator Server Foundation V5.1 Handbook

// Get information from TravelInformation work area
String[] travelInfoProperties = travelInfoArea.retrieveAllKeys();
if (travelInfoProperties != null) {

for (int i = 0; i < travelInfoProperties.length; i++) {
//print out information here
}

// We store the confirmation number in the work area so that it can be
// propagated back to caller this number is for test purpose,

// meaning it can be some other return values on other invocation
travelInfo.setTravelConfirmNumber("1234567890");
travelInfoArea.set("travel", travelInfo, PropertyModeType.normal);

}
} else {

System.out.println("BusinessLogicBean: No Properties found!...");
}

} catch (Exception e) {
}

}

The application client
This section will discuss how the TravelTestClient application works.

1. To get the Work Area partition manager and SessionFacade session
instances the client uses the JNDI lookup to find the two services:
java:comp/websphere/WorkAreaPartitionManager and
java:comp/env/ejb/SessionFacade.

2. Once got the Work Area manager instance, we are going to create two Work
Area partition at client side because only the context associated with a
partition that is resident on both the client and server is demarshalled. See
below code snippet:

//Find the work area partition manager
Properties props = new Properties();
props.put("maxSendSize", "32768");
props.put("maxReceiveSize ", "32768");
props.put("Bidirectional ", "true");
partition = manager.createWorkAreaPartition("partition_name", props);

3. Get the information that was changed in the server.

If the Work Area partition was defined as bidirectional, the changed
information will be propagated back to client thread automatically. We use
UserWorkArea.retrieveAllKeys() to get the information back.

String[] travelInfoProperties = travelInfoArea.retrieveAllKeys();

The following code example is a snippet from the TravelTestClient.java source,
for more information read the comments inserted into the source.
 Chapter 18. Shared Work Area service 489

Example 18-2 TravelTestClient.java

//...
UserWorkArea custInfoArea = null;
UserWorkArea travelInfoArea = null;
WorkAreaPartitionManager manager = null;

SessionFacade facade = null;
final String facade_jndiName = "java:comp/env/ejb/SessionFacade";
final String workAreaPartitionManager_jndiName =
"java:comp/websphere/WorkAreaPartitionManager";

// Prepare some parameters for test, leave the travelConfirmationNumber blank for test.
CustomerInfo custInfo = new CustomerInfo("SAM", "Male", "12345678");
TravelInfo travelInfo = new TravelInfo(new Date(System.currentTimeMillis()), "LA", true, true,
true, "");

// Find the work area partition manager instance
try {

InitialContext ctx = new InitialContext();
manager = (WorkAreaPartitionManager) ctx.lookup(workAreaPartitioinManager_jndiName);
SessionFacadeHome home = (SessionFacadeHome)

PortableRemoteObject.narrow(ctx.lookup(facade_jndiName), SessionFacadeHome.class);
facade = home.create();

} catch (Exception e) {
e.printStackTrace();
System.exit(1);

}

// Create the work area partition on the client side
Properties props = new Properties();
props.put("maxSendSize", "32768");
props.put("maxReceiveSize", "32768");
props.put("Bidirectional", "false");
try {

custInfoArea = manager.createWorkAreaPartition("customerInfoArea", props);
// Let travelInfoArea partitioin bidirectional
props.setProperty("Bidirectional", "true");
travelInfoArea = manager.createWorkAreaPartition("travelInfoArea", props);

} catch (PartitionAlreadyExistsException e) {
e.printStackTrace();

} catch (IllegalAccessException e) {
e.printStackTrace();

}

// Set the information in the work area
try {

// Begin a non-directional work area to store customer information
custInfoArea.begin("CustomerInformation");
490 WebSphere Business Integrator Server Foundation V5.1 Handbook

System.out.println("TravelTestClient: Work Area " + custInfoArea.getName() + "Successfully
Created!");

custInfoArea.set("user", custInfo, PropertyModeType.normal);
//Begin a bidirectional work area to store customer information
travelInfoArea.begin("TravelInformation");
travelInfoArea.set("travel", travelInfo, PropertyModeType.normal);

} catch (Exception e) {
e.printStackTrace();

}

// Test this information with the server
try {

facade.bookingProcess();
} catch (Exception e) {

e.printStackTrace();
}

// Get the information from the TravelInformation work area for the confirmation number.
// Since this work area is defined as bidirectional
try {

String[] travelInfoProperties = travelInfoArea.retrieveAllKeys();
if (travelInfoProperties != null) {

for (int i = 0; i < travelInfoProperties.length; i++) {
System.out.println("TravelTestClient: found <" + travelInfoProperties[i] + "> in

WorkArea: " + travelInfoArea.getName());
travelInfo = (TravelInfo) travelInfoArea.get(travelInfoProperties[i]);
System.out.println("TravelTestClient: the detail travel information is: " +

travelInfo.getTravelDate().toString());
System.out.println("TravelTestClient: the detail travel information is: " +

travelInfo.getTravelDestination());
System.out.println("TravelTestClient: the detail travel information is: " +

travelInfo.getTravelConfirmNumber());
}

} else {
System.out.println("BusinessLogicBean: No Properties found!...");

}
} catch (Exception e) {

e.printStackTrace();
}
//...

18.5 Testing
You can easily test the Shared Work Area service using the sample application
provided with this book.
 Chapter 18. Shared Work Area service 491

You can import the application to WebSphere Studio Application Developer
Integration Edition and run it in the WebSphere Test Environment.

You can also deploy the application on the WebSphere Business Integration
Server Foundation.

In both cases, you have to use the Administrative Console to create the following
Shared Work Area items for the server.

Figure 18-3 Shared Work Area items

You have to restart the server to have the Shared Work Area service running with
the new items. You should see the following lines in the SystemOut.log file:

WorkAreaParti A ACWA0017I: WorkArea Partition: customerInfoArea, is ready
on server1
WorkAreaParti A ACWA0017I: WorkArea Partition: travelInfoArea, is ready on
server1

For testing, you will need to run the application client from a console window,
using the same .ear file with the launchclient.bat (launchclient.sh on Unix).

After a successful testing, you should see the following results in the server
SystemOut.log file:

BusinessLogicBean: Testing..
BusinessLogicBean: found <user> in WorkArea: CustomerInformation
BusinessLogicBean: the detail user information is: SAM
BusinessLogicBean: the detail user information is: Male
BusinessLogicBean: the detail user information is: 12345678

Note: Make sure you add the acwa.jar and the distexcep.jar to both the EJB
and Application client module.
492 WebSphere Business Integrator Server Foundation V5.1 Handbook

BusinessLogicBean: found <travel> in WorkArea: TravelInformation
BusinessLogicBean: the detail travel information is: Wed May 12 00:13:46
EDT 2004
BusinessLogicBean: the detail travel information is: LA

The client should return the following results:

Figure 18-4 Client application log

Tracing
In order to enable tracing for the Shared Work Area service, enable the
WebSphere system component trace using the following expression:

com.ibm.ws.workarea.*=all=enabled
 Chapter 18. Shared Work Area service 493

494 WebSphere Business Integrator Server Foundation V5.1 Handbook

Chapter 19. Dynamic Query

The Dynamic Query service is provided by WebSphere Business Integration
Server Foundation in the area of data access through CMP EJBs. The base
application server supports the standard EJB QL specifications, with some
extensions that increase the flexibility of the syntax of EJB QL. However, one of
the characteristics of EJB QL is its static nature. Once an EJB QL query is
associated with a finder method and the EJB deployed, the query can only be
modified by redeploying and re-installing the EJB. The Dynamic Query service
removes this limitation. It allows applications to formulate queries at runtime and
have them submitted and executed on the fly, providing a behavior that
resembles that of traditional dynamic SQL.

The Dynamic Query service works at the object schema level, just like regular
EJB QL. This is a form of object query, and not a database query. It works for
CMP Entity EJBs, and provides the ability to perform queries on both CMP and
CMR fields. Hence dynamic EJB query is largely independent of the way objects
are schema mapped to the relational database tables.

19
© Copyright IBM Corp. 2004. All rights reserved. 495

19.1 Prerequisites
WebSphere Business Integration Server Foundation InfoCenter provides
valuable information regarding various development, deployment and
administration aspects. InfoCenter is located at:

http://publib.boulder.ibm.com/infocenter/ws51help/index.jsp

Familiarize yourself with the following topics in the WebSphere Business
Integration Server Foundation InfoCenter:

� Installing WebSphere Business Integration Server Foundation:

http://publib.boulder.ibm.com/infocenter/ws51help/topic/com.ibm.wasee.doc/
info/ee/ae/welc_installing.html

� Using Dynamic Query service:

http://publib.boulder.ibm.com/infocenter/ws51help/topic/com.ibm.wasee.doc/
info/ee/query/tasks/tque_dynamic.html

� There is additional information available on Dynamic Query Service
development practices in the InfoCenter. Using WebSphere Business
Integration Server Foundation InfoCenter, navigate to All topics by feature
→ Applications → Application services → Using EJB query.

� It is important to gain familiarity with the EJB query language. The next few
sections assume this knowledge and refer to the InfoCenter where possible.
In the WebSphere Business Integration Server Foundation InfoCenter,
navigate to Developing → Task overviews → Using EJB query.

For EJB Query language specifics, click Developing → Task overviews →
Using EJB query → EJB query language.

� Familiarize yourself with Dynamic Query API, because references to various
functions will be made in the Development section below. In the WebSphere
Business Integration Server Foundation InfoCenter, navigate to Reference
→ Javadoc → Enterprise Extensions API. Then click
com.ibm.websphere.ejbquery.

Familiarize yourself with the following topics in WebSphere Studio Application
Developer Integration Edition help:

� EJB Deployment tool. This can be navigated by going to WebSphere Studio
Application Developer Integration Edition Help Content and then navigating to
WebSphere Studio → Developing → EJB applications → EJB
application development overview → Tools for developing EJB
applications → EJB deployment tool.

� The Dynamic Query Cheat Sheet can be perused by going to WebSphere
Studio Application Developer Integration Edition Help Content and then
496 WebSphere Business Integrator Server Foundation V5.1 Handbook

http://publib.boulder.ibm.com/infocenter/ws51help/topic/com.ibm.wasee.doc/info/ee/query/tasks/tque_dynamic.html
http://publib.boulder.ibm.com/infocenter/ws51help/index.jsp
http://publib.boulder.ibm.com/infocenter/ws51help/topic/com.ibm.wasee.doc/info/ee/ae/welc_installing.html

navigating to WebSphere Studio → Developing → Enterprise services
→ Tools for building enterprise services → Cheat sheets.

The sample application used in this chapter assumes the knowledge of DB2
UDB 8.1. It is further assumed that the user’s development environment has DB2
UDB 8.1 installed. Sample Dynamic Query application contains database scripts
that are DB2 specific. Furthermore, setup instruction for the development
environment can be found in 19.3.4, “Development environment setup” on
page 504.

19.2 Sample scenario
In order to illustrate the usage of Dynamic Query service in WebSphere Business
Integration Server Foundation, a sample Web application is developed. This
Web application simulates ordering subsystem of an online e-commerce Web
site. The application contains several Entity EJBs that map to back-end database
tables. Additionally, the application consists of Session EJBs, servlets and HTML
forms. The front-end of the application was modified for illustrating the Dynamic
Query service. Figure 19-1 highlights the application’s architecture and highlights
the interactions between application components.

Figure 19-1 Dynamic Query Service: Sample Application Architecture

Using this Web application, users can execute pre-defined Dynamic Queries or
compose Dynamic queries on the fly and execute them. This sample application
will illustrate the following key extensions to the base EJB 2.0 EJB QL language:

� How to use multiple element in the SELECT clause.

� How to use WebSphere extension aggregate functions.

DQSFacade
Session

Bean

Customers
Entity Bean

Orders
Entity Bean

Catalog
Entity Bean

Database

1

N
CM
R

1

DQSServlet
Servlet

DQSForm
HTML

N
CM
R

Query
Session

Bean

Query
Engine
 Chapter 19. Dynamic Query 497

� How to invoke business method on EJB that are activated as part of
executing the query.

Migration
There are no migration tasks for the Dynamic Query service in WebSphere
Business Integration Server Foundation V5.1.

Development
The effort involved in developing code for Dynamic Query service is as follows:

� Properly formulating Dynamic Query and have a better understanding of what
data is required for business purposes.

� Instantiate Query Session bean’s and invoke one of the remote interface
method of Query Session bean.

� Exception handling as Query Session bean throws Dynamic Query specific
exceptions that should be caught by the application.

All components of the sample application, illustrated in Figure 19-1 on page 497,
are discussed in more detail in “Development” on page 498.

Unit test
Application containing Dynamic Query service code can be tests within the
WebSphere Test Environment in WebSphere Studio Application Developer
Integration Edition v5.1. For details on WebSphere Test Environment refer to
19.4, “Unit test” on page 514.

Assembly
It is important to note that Dynamic Query service provides both local and remote
interfaces to the Query Session Bean - the core of Dynamic Query service.
When using the local interface, the local JNDI name for the QueryBean must be
specified; and for remote interface, use the remote JNDI name.

Additionally, the default JNDI name for the query bean can be different for
development and production environment. Application Server Toolkit can be
used to specify the right JNDI name.

Deployment
When it comes to packaging, deployment and usage of application containing
Dynamic Query service code, it should be treated as standard J2EE application.
There are no specific steps related to the deployment of application containing
Dynamic Query service code in the WebSphere Business Integration Server
Foundation runtime.
498 WebSphere Business Integrator Server Foundation V5.1 Handbook

In WebSphere Business Integration Server Foundation, Dynamic Query Services
is provided as a special stateless session bean, named QueryBean. The
QueryBean is packed in query.ear file that is automatically installed on the
default server during the WebSphere Business Integration Server Foundation
installation. If new application servers are created, the query.ear file must be
manually installed on each additional application server in the same fashion any
other application is installed.

Testing
Dynamic Query service code can be tested in the unit test environment.
However, for functional and integration tests, query components should be
further tested in the runtime environment.

You can install the Universal Test Client in the runtime environment to perform
testing.

19.3 Development
The following section describes how to make use of the Dynamic Query Service
in a J2EE application. The sample application used here is described in section
19.2, “Sample scenario” on page 497. First a general discussion of Dynamic
Query API is given in this section. The development environment setup for
Dynamic Query is discussed next followed by a discussion of sample application
development.

For development purposes, using WebSphere Studio Application Developer
Integration Edition, query.ear must be imported into the Project where
QueryBean is used. Client interfaces to the QueryBean, must also be imported.
Refer to section 19.3.4, “Development environment setup” on page 504 for more
details.

Table 19-1 shows the JAR files that comprise the Dynamic Query service.

Table 19-1 Dynamic Query service JAR files

JAR File Usage

query.jar Query parser, runtime, Query Session bean

qryclient.jar Client stubs and classes

query.ear Query Session Bean application (located in installableApps, it
should be installed in application server runtime environment)
 Chapter 19. Dynamic Query 499

When QueryBean is installed in application server, or imported into development
environment, the default JNDI name for the QueryBean is
com/ibm/websphere/ejbquery/Query. In the runtime environment, this name can
be changed by system administrators.

19.3.1 Dynamic Query service
The Dynamic Query service is implemented using “push down” technology. The
technology involves taking an object query statement and using metadata that
describes the mappings of EJB attributes to database tables and columns, to
translate it to an SQL statement that can be executed by the database
management system. In effect, the EJB query is pushed down to the database,
which is designed to perform this type of query evaluation, and groups and sorts
very efficiently. As would be expected, not all of an EJB query can be pushed
down. The application server must still evaluate some query criteria, such as
results of method invocations. By delegating most of the work, including
navigation of relationships, to the database, excellent performance can be
provided. Lastly, this push down technology is designed to be independent of the
database vendor. It works with any relational database supported by
WebSphere.

The Dynamic Query service is provided by the stateless Query session bean.
The client of the Query session bean may be a remote client or it may be a local
client, depending on whether the client makes use of the bean’s remote or local
interfaces. A remote client accesses the query bean through the bean’s remote
interface, and remote home interface. A remote client can be any Java program
such as an application, JSP, applet, or servlet. A local client accesses the query
bean through the bean’s local interface and local home interface. A local client is
collocated in the same JVM with the query bean and can be another enterprise
bean such as a session bean, entity bean or Message-Driven bean, as shown in
Figure 19-2 on page 501. The Query Engine can perform queries on entity
beans, on CMP fields, and on CMR fields, represented by Entity EJB X and
Entity EJB Y in the figure.

Tip: Applications invoking the QueryBean can either used the full JNDI name,
given above, or use EJB reference. Using the EJB reference, there are no
code changes required if the default QueryBean JNDI name is changed by
System Administrator at deployment time. Application deployer can simply
update the QueryBean EJB reference in deployment descriptor. The use of
QueryBean EJB reference is recommended.

Sample Dynamic Query application makes use of EJB reference.
500 WebSphere Business Integrator Server Foundation V5.1 Handbook

Figure 19-2 Dynamic Query service

19.3.2 Design concerns and recommendations
There are two major concerns to explore before deciding to use Dynamic
Queries with your enterprise applications. One of these concerns is related to
performance, while the other is related to security.

� If you have a query that has a high frequency of execution, you should define
it as a finder or select method and consider using SQLJ as a deployment
option for best performance. The Dynamic Query service always uses JDBC
and must parse and process the EJB query at runtime.

text

WebSphere Business Integration Server Foundation V5.1

Servlet EJB Query
Client

Query
Engine

JSP

Java
Client

Query Bean
(Local Interface)

Query Bean
(Remote Interface)

Entity
EJB

X

Entity
EJB

Y

EJB
Container

Web
Container
 Chapter 19. Dynamic Query 501

� If you need security control over which queries a user can execute, you need
to define the queries as finder or select methods and use EJB method
authorization. The Dynamic Query service does not have fine-grain security
control at this time. You can control who is permitted access to the remote
query bean and the local query bean, but once authorized a user can execute
any valid query and return any data in the server.

19.3.3 Dynamic Query Bean API
The query bean has both a remote and a local interface to support both remote
and local clients.

The QueryBean interface has three client methods:

� executeQuery(): this method parses and executes the query in a single
operation. The executeQuery method in the remote interface has some extra
arguments over the method provided by the local interface.

� prepareQuery(): this method invokes the query parsing and plan creation
process. It receives exactly the same three common input parameters
described above (queryStatement, parameterVars, and queryDomain). This
method returns the optimized query plan generated from the query string
input parameter. Normally a client would not directly invoke the prepareQuery
or executePlan methods. The return type of this method is a string containing
the created query plan, which is a query statement parsed, validated, and
optimized, and it is presented as an input to the executePlan method.

� executePlan(): this method executes a query plan that is in a string text form.
It receives two input parameters for the local interface, and an additional two
for the remote interface.

For API details on QueryBean interface, refer to WebSphere Business
Integration Server Foundation v5.1 InfoCenter:
http://publib.boulder.ibm.com/infocenter/ws51help/topic/com.ibm.wasee.d
oc/info/ee/javadoc/ee/com/ibm/websphere/ejbquery/package-summary.html

Note: There might be times when the same query is being executed
multiple times. Therefore, some performance optimization can be received
by invoking prepareQuery once, and then invoking executePlan multiple
times, rather than invoking executeQuery multiple times. Doing this helps
save parsing effort.
502 WebSphere Business Integrator Server Foundation V5.1 Handbook

http://publib.boulder.ibm.com/infocenter/ws51help/topic/com.ibm.wasee.doc/info/ee/javadoc/ee/com/ibm/websphere/ejbquery/package-summary.html
http://publib.boulder.ibm.com/infocenter/ws51help/topic/com.ibm.wasee.doc/info/ee/javadoc/ee/com/ibm/websphere/ejbquery/package-summary.html

Local client programming model
For a local client to use the Dynamic Query service, the client implementation
should perform the following steps:

1. Look up the QueryLocalHome.

2. Populate the parameter list.

3. Create an instance of the Query bean.

4. Formulate the query string.

5. Run the query.

6. Iterate through the result set. Each iteration will retrieve a tuple. For each
tuple, the client should get the name of the field and its corresponding value.
If one of the values is an EJB reference, then that will be an EJB local
reference. You just need to cast it to the correct type using normal Java
casting. It has to be narrowed to the correct type using
java.rmi.PortableRemoteObject.

The usage of Dynamic Query local client interface is given in WebSphere
Business Integration Server Foundation v5.1 InfoCenter. Refer to the following
link for details:
http://publib.boulder.ibm.com/infocenter/ws51help/topic/com.ibm.wasee.d
oc/info/ee/query/xmp/xque_localclient

Remote client programming model
For a remote client to use the Dynamic Query service, the client implementation
should perform the following:

1. Look up the QueryBean home.

2. Populate the parameter list.

3. Create an instance of the Query bean.

4. Formulate the query string.

5. Specify the desired number of rows to be retrieved.

6. Run the query.

7. Iterate through the result set. Each iteration will retrieve a tuple. For each
tuple, the client should get the name of the field and its corresponding value.
If one of the values is an EJB reference, that it has to be narrowed to the
correct type using java.rmi.PortableRemoteObject.

Note: When using a local client with Dynamic Query, the query must be
invoked from within a transaction scope. At transaction termination, local
query iterator is invalidated.
 Chapter 19. Dynamic Query 503

http://publib.boulder.ibm.com/infocenter/ws51help/topic/com.ibm.wasee.doc/info/ee/query/xmp/xque_localclient

The usage of Dynamic Query remote client interface is given in WebSphere
Business Integration Server Foundation V5.1 InfoCenter. Refer to the following
link for details:

http://publib.boulder.ibm.com/infocenter/ws51help/topic/com.ibm.wasee.doc/
info/ee/query/xmp/xque_remoteclient.html

19.3.4 Development environment setup
When developing applications that use the Dynamic Query service, you need to
start by setting up WebSphere Studio Application Developer Integration Edition
to develop and run applications using dynamic queries.

Sample Application Workspace setup
One of the first step that should be done when developing Dynamic Query
applications, like other J2EE applications, is to set up the WebSphere Studio
Application Developer Integration Edition workspace.

The following instructions can be used to set up the Studio workspace for the
sample Dynamic Query application.

1. Launch WebSphere Studio Application Developer Integration Edition with a
new workspace, make sure you enable server targeting for the workspace.

2. Import ACompanyDQS.ear file into workspace. Make sure to not check
Preserve project names, classpath.... checkbox; check ACompanyUtility.jar
module, and to select Expanded: extract project contents for
development radio button. Make sure that the target server is set to
Integration Server V5.1.

Click Finish button to import the EAR file.

3. Switch to the J2EE perspective, open the EJB Deployment Descriptor for the
ACompanyEJB module. Verify that the JNDI name for the datasource is set to
jdbc/redbookDS and Container authorization type is
Per_Connection_Factory. The Backend ID should be set to
DB2UDBNT_V8_1.

Important: When an object is selected by the query, the return value is an
EJB local reference, which needs casting to the correct type using normal
Java casting, when using a local client. When using a remote client, the EJB
reference has to be narrowed to the correct type using
java.rmi.PortableRemoteObject.
504 WebSphere Business Integrator Server Foundation V5.1 Handbook

http://publib.boulder.ibm.com/infocenter/ws51help/topic/com.ibm.wasee.doc/info/ee/query/xmp/xque_remoteclient.html

Dynamic Query dependencies
It is worth noting the most important tasks to set up development environment for
Dynamic Query Service is the inclusion of query.jar and qryclient.jar in
WebSphere Studio Application Developer Integration Edition project.

In order to define EJB reference to QueryBean remote interface in DQSFacade
session bean, the query.ear must be imported into the workspace. Import the
query.ear as an EAR project located in the
<WSADIE_root>/runtimes/ee_v51/installableApps/ folder.

EJB References
Sample Dynamic Query application includes EJB references in both DQSFacade
session bean and DQSServlet. Perform the following steps to make sure that
EJB references are defined properly

1. Switch to Business Integration perspective and to J2EE Hierarchy view.

2. Expand Web Modules → ACompanyWeb and verify that EjbRef
DQSFacade exists. Refer to Figure 19-3

3. Expand EJB Modules → ACompanyEJB → Session Bean and verify
that EjbRef ejb/Query reference exists, refer to Figure 19-3

Figure 19-3 EJB References

Note: Note that the query.ear and the query.jar are not the same. The first is
an enterprise application to support the Dynamic Query service, the latter
holds the API for programming.
 Chapter 19. Dynamic Query 505

Sample application database setup
The sample Dynamic Query application, ACompanyDQS Enterprise App,
contains CMP Entity Beans. These Entity beans require a persistent storage to
map to. The following steps will require IBM DB2 database.

1. Open a DB2 Command Window, change directory to the
<DQSample_root>\ACompanyEJB\ejbModule\META-INF\database.

2. Open the setup.bat file in a text editor and replace the
CHANGE_USERNAME (two occurrences) and the CHANGE_PASSWORD
(one occurrence) with your database user name end password.

3. Issue the setup.bat command from the DB2 Command Window.

4. Make sure that the script ran successfully, at the end of each executed
command you should find the results.

The script also creates tables for the database and populates them with data. At
this point the REDBOOK database is ready for the sample application.

19.3.5 Development of Dynamic Query sample
Dynamic Query sample application, described in section 19.2, “Sample scenario”
on page 497 and illustrated in Figure 19-1 on page 497, consists of Enterprise
Beans, both Entity and Session beans to serve as back-end business logic, a
servlet that controls the data flow between the back-end business logic tier and
the user interface, and HTML form that servers as the user interface for
interacting with the back-end business tier.

The application contains the following J2EE components:

� Catalog Entity Bean
� Orders Entity Bean
� Customers Entity Bean
� DQSFacade Session Bean (Stateless)
� DQSServlet servlet

This section does not concentrate on the development of Entity Beans. Entity
Beans included in sample application have been previously developed and are

Note: Note that the use of JSP is recommended for User Interface design and
tier. Usage of JSPs is a best practices for MVC-II design as it relates to Web
application. Moreover, servlets should be used to control data flow and should
contain minimal logic for data manipulation or for user interface presentation.

The sample application does not use JSPs for User Interface tier. The sample
application is only meant for Dynamic Query usage illustration purposes only.
506 WebSphere Business Integrator Server Foundation V5.1 Handbook

only used in this sample application for illustration purposes. However, the
section discusses how to invoke Dynamic Queries on the Entity Beans. For this
purpose, a stateless Session Bean is developed, along with a servlet and HTML
form.

DQSFacade Session Bean
The session bean is used to invoke QueryBean using pre-defined and custom
Dynamic Queries, which in turn invoke appropriate Entity Beans. This Session
bean includes two methods that are part of the remote interface

� executeDQ(string) invokes pre-defined Dynamic Queries based on method
argument passed. This method first performs preliminary checks on the input
arguments and throws appropriate exceptions. Then, depending on the input
argument, the method invoke one of the three private methods,
executeQuery1(), executeQuery2() or executeQuery3(). These methods
specifically call the three different types of Dynamic Queries by invoking
QueryBean’s executeQuery() method.

� executeDQ(string, string) invokes free-form Dynamic Queries. This method
has two arguments. First step in this method, is to perform checks on the
input arguments; the method then invokes a private method
executeFreeFormQuery() that invokes QueryBean’s executeQuery() method.

Example 19-1 shows DQSFacade Bean code. Take a note of executeQuery1()
method below to see how the initial lookup is performed on QueryBean’s home
interface; EJB reference is used instead of QueryBean’s default JNDI name.
Note that for performance reasons, QueryHome is defined as a static variable
such that it is instantiated only once, hence performing the JNDI lookup once.

Example 19-1 DQSFacadeBean Java code

//...
public class DQSFacadeBean implements javax.ejb.SessionBean {
 private static QueryHome qHome;
 private String dqsQuery = null;
 private javax.ejb.SessionContext mySessionCtx;
//...
 public Collection executeDQ(String queryType) throws DQSException {
 if (queryType == null)
 throw new DQSException("DQSFacadeBean.executeDQ(String): Invalid
Querty Type Argument, queryType. Check JSP/HTML Form.");

Note: For space constraint, the entire code for DQSFacadeBean.java is not
shown in Example 19-1 on page 507. Refer to the Dynamic Query sample
application code that ships with redbook for details.
 Chapter 19. Dynamic Query 507

 System.out.println("DQSFacadeBean.executeDQ(): queryType is '" +
queryType + "'");
 if (queryType.equals("q1")) { return executeQuery1(); }
 else if (queryType.equals("q2")) { return executeQuery2(); }
 else if (queryType.equals("q3")) { return executeQuery3(); }
 // Default Query type is QUERY_TYPE1
 return executeQuery1();
 }

 public Collection executeDQ(String queryType, String queryInput) throws
DQSException {
 if (queryType == null)
 throw new DQSException("DQSFacadeBean.executeDQ(String, String):
Invalid Querty Type Argument, queryType. Check JSP/HTML Form.");
 if (queryInput == null)
 throw new DQSException("DQSFacadeBean.executeDQ(String, String):
Invalid Querty Type Argument, queryInput. Check JSP/HTML Form.");
 System.out.println("DQSFacadeBean.executeDQ(): queryType is '" +
queryType + "'");
 return executeFreeFormQuery(queryInput);
 }
 private Collection executeQuery1() throws DQSException {
 try{
 dqsQuery = DQSConstants.QUERY_TYPE1;
 System.out.println("DQSFacadeBean.executeQuery1(): Executing " +
dqsQuery);
 if (qHome == null){
 InitialContext ic = new InitialContext();
 qHome = (QueryHome) ic.lookup("java:comp/env/ejb/Query");
 }
 Query query = qHome.create();
 //Execute QUERY_TYPE1 Dynamic Query:
 //SELECT cat.cname, cat.cprice FROM Catalog cat WHERE cat.cid = '1'
 Object[] params = { new String("1") };
 QueryIterator it = query.executeQuery(dqsQuery, params, null, 0,
50);
 ArrayList arrl = new ArrayList();
 int rows = 0;
 while (it.hasNext()) {
 ArrayList ar = new ArrayList();
 System.out.println("DQSFacadeBean.executeQuery1(): Number of
fields: "+ it.getFieldsCount());
 IQueryTuple tuple = (IQueryTuple) it.next();
 String name = (String) tuple.getObject(1);
 Double price = (Double) tuple.getObject(2);
 System.out.println("DQSFacadeBean.executeQuery1(): Column1: " +
name);
 System.out.println("DQSFacadeBean.executeQuery1(): Column2: " +
price);
508 WebSphere Business Integrator Server Foundation V5.1 Handbook

 ar.add(name);
 ar.add(price);
 arrl.add(ar);
 rows += 1;
 }
 System.out.println("DQSFacadeBean.executeQuery1(): Query returned
rows " + rows);
 // Insert the size of Resultset at element 0 in ArrayList.
 // This Arraylist is passed to the servlet for rendering purposes.
 arrl.add(0, new Integer(rows));
 return arrl;
 }
 catch (QueryException e){
 e.printStackTrace(System.out);
 throw new DQSException("DQSFacadeBean.executeQuery1(): " +
e.getMessage());
 }
 catch (NamingException e) {
 e.printStackTrace(System.out);
 return null;
 }
 catch (CreateException e) {
 e.printStackTrace(System.out);
 return null;
 }
 catch (RemoteException e) {
 e.printStackTrace(System.out);
 return null;
 }
 }
 private Collection executeQuery2() throws DQSException {
//...
 }
 private Collection executeQuery3() throws DQSException {
//...
 }
 private Collection executeFreeFormQuery(String queryInput) throws
DQSException {
//...
 }
}

DQSServlet servlet
In MVC design, the role of a servlet, as discussed above, is to serve as a
controller for redirecting requests to the business tier and forwarding the
response to a JSP, which in turn lays out the response according to the user’s
 Chapter 19. Dynamic Query 509

client application specifications, for example a Web browser, a mobile browser,
etc.

For the Dynamic Query sample application, the servlet was used not only to
redirect the requests to the business tier, but it was also used to display the user
response in HTML format, assuming that the client application is a HTML
compliant Web browser.

DQSServlet contains two private methods:

� performTask() method provides the logic for checking the HTML data
submitted as POST operation to the servlet. Based on the input, it invokes the
appropriate remote methods, executeDQ() and the overloaded executeDQ()
of DQSFacade Session Bean. It then invokes the formatOutput() method
before sending the response back to the client.

� formatOutput() method is a private method that formats the results from
DQSFacade method calls based on the type of query submitted. This method
assumes four output style formats:

– Three predefined dynamic queries

– One free-form Dynamic Query

– Any other query types, based on malformed input from user’s HTML form,
are ignored and displayed as error on the servlet’s result page

Example 19-2 shows the DQSServlet code. Take a note of performTask() method
below to see how the initial lookup is performed for the DQSFacade home; EJB
reference is used instead of DQSFacade JNDI name. For performance reasons,
DQSFacadeHome is defined as a static variable such that it is instantiated only
once, hence performing the JNDI lookup once.

Example 19-2 DQSServlet Java code

public class DQSServlet extends HttpServlet implements Servlet {
 private static DQSFacadeHome dqsFacadeHome;
//...
 public void performTask(HttpServletRequest req, HttpServletResponse resp)

Tip: For production and robust Web application, a Struts like framework
should be used instead that provides a better implementation of MVC-2
architecture.

Note: For space constraint, the entire code for DQSServlet.java is not shown
in Example 19-2. Refer to the Dynamic Query sample application code that
ships with redbook for details.
510 WebSphere Business Integrator Server Foundation V5.1 Handbook

 throws ServletException, IOException {
 PrintWriter out = resp.getWriter();
 StringBuffer outBuf = new StringBuffer();
 try{
 outBuf.append(DQSConstants.HTML_PAGE_HEADER);
 outBuf.append(DQSConstants.HTML_DQS_RESULT_HEADER);
 String qType = req.getParameter("queryType");
 if (qType == null){
 outBuf.append("ERROR: 'queryType' parameter not
found.
\n</BODY></HTML>\n");
 out.print(outBuf.toString());
 return;
 }
 System.out.println("DQServlet.performTask(): "+qType);
 if (dqsFacadeHome == null){
 InitialContext ic = new InitialContext();
 dqsFacadeHome = (DQSFacadeHome) ic.lookup("ejb/DQSFacade");
 outBuf.append("Looked up home.

\n");
 }
 DQSFacade dqsf = dqsFacadeHome.create();
 Collection co = null;
 if (qType.equals("q0")) {
 String qInput = req.getParameter("queryInput");
 if (qInput == null) {
 outBuf.append("ERROR: 'queryInput' parameter not
found.
\n</BODY></HTML>\n");
 out.print(outBuf.toString());
 return;
 }
 // free-form dynamic query
 co = dqsf.executeDQ(qType, qInput);

 } else {
 // pre-defined dynamic query
 co = dqsf.executeDQ(qType);
 }
 outBuf.append(formatOutput(qType, co));
 outBuf.append(DQSConstants.HTML_PAGE_FOOTER);
 }
 catch (Exception e) {
 e.printStackTrace(System.out);
 outBuf.append(e.getMessage());
 }
 finally {
 out.println(outBuf.toString());
 }
 }

 private StringBuffer formatOutput(String queryType, Collection co) {
 Chapter 19. Dynamic Query 511

 StringBuffer s = new StringBuffer();
 /*
 * Format of Collection (ArrayList) object is as follows
 * ArrayList[0] contains Integer object indicating # of rows returned
in resultset
 * ArrayList[1..n] contains an ArrayList object. This ArrayList object
represents
 * columns returned as part of the resultset.
 */
 ArrayList arrl = (ArrayList) co;
 Integer rows = (Integer) arrl.get(0);
 if (rows.intValue() <= 0) {
 s.append("No rows returned
");
 return s;
 }
 if (queryType.equals("q1")) {
//...
 } else if (queryType.equals("q2")) {
//...
 } else if (queryType.equals("q3")) {
//...
 } else if (queryType.equals("q0")) {
//...
 }
 // All other queryType values, anything other than q0, q1, q2, q3,
 // are invalid and are not supported by the servet.
 else {
 s.append("<p>Non-supported Argument</p>");
 }
 return s;
 }
}

DQSForm HTML form
The HTML form serves as a user interface for the sample Dynamic Query
application. The form is shown in the Figure 19-4 on page 513.
512 WebSphere Business Integrator Server Foundation V5.1 Handbook

Figure 19-4 DQSForm HTML Form
 Chapter 19. Dynamic Query 513

19.4 Unit test
Dynamic Query sample application should be unit tested in WebSphere Studio
Application Developer Integration Edition using the WebSphere Test
Environment. The following sections discuss how to set up WebSphere Test
Environment for the sample Dynamic Query application.

In order to unit test the sample application, the QueryBean session bean,
packaged in query.ear, must be installed on the WebSphere Test Environment.
This application, query.ear, should be automatically installed when application
server is created in WebSphere Test Environment in the Server Perspective.
However, it can be manually installed at any time using the Administrative
Console within the WebSphere Test Environment. You must enable “Enable
administration console” under the sample WebSphere Business Integration
Server Foundation application server’s Configuration tab.

19.4.1 Configuring the application server
This section will show you how to configure the application server in the test
environment.

1. Switch to the Server perspective, in the Server Configuration view. Create a
Integration Test Environment V5.1, with the name: DQ server.

2. Open the server configuration for the test server, select the Configuration
tab. Verify that Application class loader policy is set to MULTIPLE. This is
required if a remote client is used for Dynamic Query.

3. Make the following additional changes for the server configuration:

a. On Security tab, create a new JAAS Authentication Alias: dqsAuth. Assign
your DB2 user name and password to this alias.

b. On Datasources tab:

i. Define a new JDBC Provider DB2 Universal JDBC Driver Provider
(XA).

ii. Define a WebSphere V5 datasource for the new JDBC provider. Set
the JNDI name for this datasource as jdbc/redbookDS. Select the
Component and Container managed authentication alias: dqsAuth.

iii. Edit the properties shown for the datasource, set the databaseName to
REDBOOK, then remove all the other properties.

Note: In the runtime/production environment, QueryBean EAR query.ear, is
automatically installed on the default server during the WebSphere Business
Integration Server Foundation installation.
514 WebSphere Business Integrator Server Foundation V5.1 Handbook

c. On Variables tab, change the variables: DB2_JDBC_DRIVER_PATH,
DB2UNIVERSAL_JDBC_DRIVER_PATH to reflect the java directory in the
DB2 install path, for example: C:\IBM\SQLLIB\java.

d. On Configuration tab, you might want to enable Administration Console.
You should have the Universal Test Client enabled for testing purposes.

4. Add the ACompanyDQS enterprise application to the test server.

5. Start the test server, make sure the server starts without any problem.

19.4.2 Running the sample application
The following steps show how to run the sample Dynamic Query application:

1. Make sure that the application server is running and the ACompanyWeb and
ACompanyEJB modules have started properly

2. Using a Web browser, open the following URL:
http://localhost:9080/acompany/DQSForm.html

3. Select one of three predefined Dynamic Queries, or write your own Dynamic
Query. This page needs a little bit more souping up as I left the interface quite
simple. It will help to describe what each Dynamic Query does (I have
documented this in detail in DQSServlet.java file):

Tip: If you encounter problems with BPEDB (specifically an error message
about upgrading your BPEDB by setting upgrade=true on your connection),
use the attached script. This script must be executing using the JRE of your
WBISF application server,

set JAVA_HOME=C:\WebSphere\WSADIE51\runtimes\ee_v51\java[should point to
the location of your WSADIE v5.1 installation]
set PATH=%PATH%;%JAVA_HOME%\bin
java -Djava.ext.dirs=%WBISF_V51_HOME%\cloudscape\lib
-Dij.protocol=jdbc:db2j: com.ibm.db2j.tools.ij
upgradeDatabaseCloudscape.ddl [make sure to update the path to your BPEDB
inside this script]

Refer to the code that ships with the redbook for information on
upgradeDatabaseCloudscape.ddl. This script is bundled with the redbook
code.

Important: Do not add a “query” EAR to the server. This is because query
EAR is automatically installed in WebSphere Test Environment when the
server is first created in WebSphere Test Environment.
 Chapter 19. Dynamic Query 515

– The first query shows that Dynamic Query can be used to retrieve multiple
columns (standard finder methods only allows for 1)

– The second query shows the usage of SUM aggregate method that is only
part of WebSphere Dynamic Query

– The third query shows how to invoke a business method defined on an
Entity bean (Orders in this case). This method is part of the remote / local
interface of the entity

– Additionally, free-form Dynamic Queries can be executed.

19.5 Configuration
The system administrator might need to install the query.ear application into the
application server, if a new server is being created, since the WebSphere product
install does this only for the default server. In the case of our sample, we are
using a new server ACompanyServer, thus we need to install query.ear on
ACompanyServer.

19.5.1 Installing query.ear
Since the WebSphere Business Integration Server Foundation installation only
provides the Dynamic Query service with the default server (server1), if
additional application servers are created, Dynamic Query service EAR must be
installed on the new servers. To do that, you need to start the WebSphere
Administrative Console, and choose to install a new application. You will need to
point to the query.ear file available in <WBISF_root>/installableApps/.

Follow the steps to install the query.ear, but note the following:

1. Assign a new name to the application, since the name query is already
available in the repository with the server1

2. Install this application on the new application server (and not server1).

3. After you finish the installation, you need to save your configuration.

After saving, the new application will be ready for deployment of applications that
use the Dynamic Query service.

19.5.2 Application class loader policy configuration
In our sample application we are using the remote interface of the query bean. In
order to use the remote interface of the query bean, you must configure your
server to use Application Classloader Policy = MULTIPLE.
516 WebSphere Business Integrator Server Foundation V5.1 Handbook

To configure WebSphere Business Integration Server Foundation runtime
application server, select Servers → Application Servers → <Server>. This will
open the editor for configuring the server’s general properties. For the
Application class loader policy, select the value MULTIPLE from the available
drop-down list, and click OK. You will need to save the updated server
configuration and restart the application server.

19.6 More information
The following section details additional information that should be kept in mind
when developing applications using the Dynamic Query service.

19.6.1 Performance considerations
As mentioned in this chapter, dynamic queries can be performed on EJB objects
and on CMP fields. The following section discusses some performance
considerations regarding performing queries on objects and on fields.

Transactions and Dynamic Query
By default Dynamic Query makes calls against the database with the lowest level
of locking possible. Using Dynamic Query, one can either select CMP fields or
can select EJB objects. In cases when CMP fields are selected, there is no
locking of the data selected. So in this case, you should be aware that the data
you are selecting is volatile. Currently there is no way to enforce locking for the
records when you are selecting CMP fields. This means that the use of Dynamic
Query can be dangerous in some instances. Let’s say you want to make a
transaction based on information returned in the data set. Example 19-3 runs a
query that returns all the account balances. The customers pay interest based on
the account balance. However, this example is not safe. The reason is that the
value of balance can change between the time when we run the query and the
time when we assign a new balance. Moreover, the account might be deleted
between running the query and looking up the account to set the balance. This is
because the back-end rows are not locked when a data query runs.

Example 19-3 Selecting CMP fields

Select a.id, a.balance from Account a
For (x in resultset)

if (a.balance > 1000 && a.balance < 5000) {

Important: Using a value of SINGLE may result in your application being
unable to find the remote interface for the query bean home.
 Chapter 19. Dynamic Query 517

 Account A = findByPrimaryKey(a.id);
 A.setBalance(a.balance*1.01);

}
if (a.balance > 5000) {

 Account A = findByPrimaryKey(a.id);
 A.setBalance(a.balance*1.02);

}

Therefore, the code for the balance update may be rewritten as Example 19-4 to
overcome the problem of the possibility of account deletion. After the data is
selected, findByPrimaryKey() method is invoked, and if the account has been
deleted between running the query and the findByPrimaryKey(),
AccountNotFoundException will be thrown. If the account still exists, the
findByPrimaryKey() method has the side effect of locking the account for the
transaction. The level of locking is based on the object’s Access Intent. So there
is still a possibility that the account balance will change during iterations, if the
Account Bean Access Intent is optimistic.

Example 19-4 Selecting CMP fields with exception handling

Select a.id, a.balance from Account a
For (x in resultset)
try {

Account A = findByPrimaryKey(a.id);
} catch (AccountNotFoundException e) {

}
if (A.getBalance() > 1000 && A.getBalance() < 5000) {

A.setBalance(A.getBalance()*1.01);
}
if (A.getBalance() > 5000) {

A.setBalance(A.getBalance()*1.02);
}

The only way to lock a piece of information is to return the instance that relates to
it. The only way to implement Example 19-3 on page 517 safely is to select EJB
objects instead of selecting CMP fields, and then perform the update, as shown
in Example 19-5 on page 519.
518 WebSphere Business Integrator Server Foundation V5.1 Handbook

Example 19-5 Selecting EJB instances

Select object(a) from Account a
For(x in resultset)

If (a.getBalance() > 1000 && a.getBalance < 5000){
a.setBalance(a.getBalance()*1.01);

and so on..

The side effect of selecting the EJB object instead of selecting the data fields is
that all of the resulting instances are instantiated. This makes the performance
much slower because it must return and lock each and every instance of
Account. We will use an enormous amount of back-end resources. All work with
Account will wait for this transaction to complete. If you have 10000 accounts to
update their balances, you will end up instantiating 10000 objects in your
runtime, which will bring the system performance down. Moreover, while all this
is going on, you will have all these records blocked. The optimal use of query in
this case would be to set a lock on the data that prevents updating but allow
others to read.

A possible workaround to reduce the number of instances available in memory
during runtime is to use the Query bean remote interface. The executeQuery
method in the remote interface allows you to divide the result set into groups, by
specifying the cursor position skipRows arguments, and the maxRows argument.
But remember that you need to commit after each transaction to be able to
release the lock on the selected objects.

One more issue worth noticing when using Dynamic Query is the possibility of
using one the bean’s method in the query where clause. Let’s say we need to
retrieve accounts whose balance is greater than 10000. In Example 19-6 the first
query selects an Account object, which gets instantiated and used to retrieve the
account balance. The second query selects data only. The Account bean is
instantiated to evaluate getBalance() in the where clause, so you get a lock on
the object based on the Account bean’s default Access Intent. But since you are
selecting CMP fields, the lock is released at the end of the transaction, not at the
end of the query. The problem in this situation is in cases when the Access Intent
is optimistic. The getBalance method will get invoked indicating that the balance
is greater than 10000, then a moment later that balance might get changed by
another user reducing the balance.

Example 19-6 Selecting objects with condition

select object(a) from Account a where a.getBalance()>10000
or
select a.id, a.balance from Account a where a.getBalance()>10000
 Chapter 19. Dynamic Query 519

19.6.2 Security considerations
As discussed earlier the Query session bean is responsible for executing queries
on entity beans, and on CMP/CMR fields, through the use of its executeQuery()
method. Security can be controlled on the use of this bean. That is you can
control the use of the Dynamic Query service through granting or denying access
to the Query bean. If you want to deny somebody the ability to perform queries,
this is done by denying this user access to the Query session bean and its
method. Once a user has access to the Query bean and the executeQuery()
method, then the user can perform any query. You can control who is permitted
access to the remote query bean and the local query bean, but once authorized a
user can execute any valid query and return any data in the server. If you need
security control over which queries a user can execute, you need to define the
queries as finder or select methods and use EJB method authorization. The
Dynamic Query service does not have fine-grain security control at this time.

A user may submit a query in which an object is being selected, or data array
query. Access to a certain bean information can be controlled by
granting/denying access to the bean and its methods. So if is an object query
and the user does not have access to the bean, then the user won’t be able to
retrieve the desired data. For example, let’s say the user submits a query such
as:

SELECT OBJECT(e) FROM Employee e

If the user running the query doesn’t have access to the Employee bean, then
the user won’t be able to execute this query, since this query requires
instantiating the Employee bean.

Unfortunately WebSphere does not have security access control for CMP and
CMR fields. So let’s say that the user doesn’t have access to the Employee
bean, and submits a query such as:

SELECT e.name, e.salary FROM Employee

Submitting such a query will return the desired results to the user, although this
user is not granted access to the Employee bean, since there is no security on
the fields level, and since in such a type of query the Employee bean is not
instantiated.

Another example that is worth watching for is a situation such as having two
EJBs: an Employee EJB, which a user is not allowed to access, and a
Department bean, which the user can access. Let’s say the user submits a query
such as :

SELECT e.name FROM Department d, IN (d.employees) as e WHERE d.deptNum = 10
520 WebSphere Business Integrator Server Foundation V5.1 Handbook

This user will be able to retrieve the list of employee names, although this user is
not allowed to access the Employee bean.

If the submitted query has a method call, then the user access privileges on that
method are checked first before the method is invoked and the query is
executed.
 Chapter 19. Dynamic Query 521

522 WebSphere Business Integrator Server Foundation V5.1 Handbook

Chapter 20. Object pools

The Object pools service can be used to improve the performance of
multi-threaded applications that frequently use a common complex object. To do
this, a Java application will have its own pool of objects that are already
instantiated and waiting to be used. When the application needs a new object, it
will simply fetch one from the pool and return the object to the pool when it is no
longer required (instead of being destroyed). This returned object can then be
later reused by another thread.

These Object pools are not intended for pooling Java Database Connectivity
(JDBC) connections or Java Messaging Service (JMS) connections and
sessions. The server tools provide specialized mechanisms for dealing with
those types of objects. These Object pools are designed for pooling
application-defined objects or Developer Kit types such as Vectors or HashMaps.

Java is a “memory-safe” language where the Java Virtual Machine (JVM)
handles the allocation and deallocation of memory in a way that is transparent to
the programmer. However, the instantiation and removal of objects can be
expensive in terms of time and processing.

The advantages of using WebSphere’s Object pool service are as follows:

� Administration

Object pools are managed by WebSphere’s administration mechanisms.

20
© Copyright IBM Corp. 2004. All rights reserved. 523

� Implementation level

Object pooling is already implemented within the J2EE application container
as an extension.

� Performance monitoring and tracing

WebSphere’s Performance Monitoring Infrastructure (PMI) and tracing
infrastructure means you can monitor what is happening to the Object pool in
the runtime environment.

� Variety

Two Object pool types are offered: synchronized and unsynchronized.
Definitions of these terms can be found in 20.5, “Runtime environment” on
page 535.

� Flexibility

If WebSphere’s Object pool service is not suitable for your application, you
can create your own Object pool implementation.

In Java Theory and Practice: Garbage Collection and Performance (IBM
developerWorks Web site), Object pooling is described as beneficial for the most
heavyweight objects on modern JVMs and recommended for special cases. To
determine whether your application will benefit from Object pooling, you can run
tests with simple code to determine how much time the JVM takes to instantiate
given object types and perform garbage collection.

When testing, consider the size and complexity of the given object types and
whether the object is frequently used. Using Object pools to manage simple
object types may actually slow down your application.

20.1 Prerequisites
Following are some useful resources that will help you get started with Object
pools:

� WebSphere Business Integration Server Foundation V5.1 InfoCenter

http://publib.boulder.ibm.com/infocenter/ws51help/index.jsp?topic=/com.ibm.
wasee.doc/info/welcome_ee.html

� WebSphere Studio Application Developer Integration Edition V5.1 help can
be found by clicking WebSphere Business Integration Server
Foundation → Highlights and Features → Object pools.

� IBM Redbook: WebSphere Application Server Enterprise V5 and
Programming Model Extensions, SG24-6932.
524 WebSphere Business Integrator Server Foundation V5.1 Handbook

http://publib.boulder.ibm.com/infocenter/ws51help/index.jsp?topic=/com.ibm.wasee.doc/info/welcome_ee.html

� The following article in IBM developerWorks:

Goetz, B., 2004: Java Theory and Practice: Garbage Collection and
Performance at

http://www-106.ibm.com/developerworks/java/library/j-jtp01274.html

20.2 Sample scenario
This sample application demonstrates how performance can be improved by
using Object pools. A specified number of job threads are created and the
application returns the total average execution time for objects managed with
and without Object pooling.

This application takes two parameters:

� Number of threads: the number of job threads it will create.
� Java class name: which Java class is being used.

Each job thread runs two different units of work several times and calculates the
execution time for both cases: the first unit of work is without Object pools while
the second unit uses Object pooling. A unit of work in JobThread is represented
by the doSomething() and doSomethingUseObjectPool() methods. These two
methods allocate an object of the specified class type, then put the thread to
randomly wait between 1 and 6 milliseconds. This represents doing some work
with the objects.

Migration
The Object pools feature in WebSphere Business Integration Server Foundation
is equivalent to the implementation in WebSphere Application Server Enterprise
V5.0; there are no specific migration steps for Object pools.

Development
The development of this Object pool example involves creating a client and a
JobThread class. The client will create multiple threads with or without pooling
and the results will be printed to the Console. We will also need to create a
reference to an Object Pool Manager which will be defined in “Unit test” on
page 526 and “Assembly” on page 526. For further details, refer to 20.3,
“Development” on page 526.

Note: The code for the sample application described here is available in the
additional material. You can import the code from the objectpool.pi.zip file
using the Project Interchange plug-in.
 Chapter 20. Object pools 525

http://www-106.ibm.com/developerworks/java/library/j-jtp01274.html

Unit test
To run the Object pool example in the WebSphere Test Environment, we need to
create an Object Pool Manager. For further details, refer to 20.4, “Unit test” on
page 532.

Assembly
No assembly tasks are required. They have already been performed during the
development process, specifically when we created a reference to an Object
Pool Manager.

Deployment
There are no specific deployment tasks for Object pools.

Testing and runtime
Information about the runtime environment (including choosing Object pool
types, sharing Object pools and workload management and failover capabilities)
are explained in 20.5, “Runtime environment” on page 535. Information
regarding how to configure an Object Pool Manager and custom Object pools
can be found in 20.5.1, “Configuration in runtime” on page 536.

20.3 Development
This section provides a short introduction to the Object Pools API and sample
code to show how to use the API.

20.3.1 Object Pools API
This section briefly describes the Object Pools API contained in the
com.ibm.websphere.asynchbeans.pool package.

Object Pool Manager
The Object Pool Manager interface describes the Object Pool Manager which is
a factory for Object pools. The Object Pool Manager interface defines two
methods:

� createFastPool(Class): this method returns an unsynchronized Object pool.
� getPool(Class): this method returns a synchronized Object pool.
526 WebSphere Business Integrator Server Foundation V5.1 Handbook

Object pool
The Object pool is a pool of reusable objects of the same type. Using
WebSphere’s default Object pool implementation, any Java object with a default
constructor can be pooled. The Object pool interface defines two methods:

� getObject(): retrieves an object from the Object pool.
� returnObject(Object): returns an object that is not needed to the Object pool.

Custom Object pool
You can use this interface to create your own Object pool implementation if
WebSphere’s Object pool implementation does not suit the needs of your
application. For instance, you may require notification when objects are taken
from and returned to the Object pool.

The custom ObjectPool interface extends the ObjectPool interface with these
additional methods:

� flushPool(): called when the system needs memory and removes any idle
objects from memory.

� setProperties(Map): called when the custom pool is constructed. Refer to
“Custom Object pool configuration” on page 537 for details.

Poolable object
When using WebSphere’s default Object pools implementation, you may require
some initialization or cleanup code in the object for when the object to taken from
or returned to the pool. The object needs to implement the PoolableObject
interface with these two methods:

� init(): Called when the object is taken from the pool

� returned(): Called when the object is returned to the pool.

20.3.2 Coding with Object pools
To develop this example that uses Object pools, you will:

� Create a new Project
� Create the ObjectTest application client
� Add a resource environment reference
� Change the main class of the ObjectTest application client
� Create a JobThread class

Note: As you may already determined from the Java API name, Object pools
are related to Asynchronous Beans. Asynchronous Beans (and the
Internationalization service) internally use Object pooling.
 Chapter 20. Object pools 527

Follow these steps to develop the code for the Object Pools example:

1. Start WebSphere Studio Application Developer Integration Edition.

a. Make sure you enable server targeting support.

b. Switch to the J2EE Perspective.

2. Create a new Project

a. In WebSphere Studio Application Developer Integration Edition, select
File → New → Application Client Project.

b. Select Create J2EE 1.3 Application Client project and type ObjectPool
in th Project field and ObjectPoolEAR in the EAR Project field, select
Integration Server v5.1 for the Target server. Click the Finish button.

3. Create the ObjectTest application client

a. In the Project Navigator view, right-click the ObjectPool project and select
New → Class. In the New Java Class window, enter
com.ibm.itso.sg246318.ObjectPool in the Package field, enter
ObjectTest in the Name field. Click the Finish button.

b. Copy the code as shown in Example 21-1 into ObjectTest.java.

In the code, you can see that the client finds the Object Pool Manager and
then creates a specified number of job threads and starts them.

Example 20-1 ObjectTest.java

package com.ibm.itso.sg246318.ObjectPool;

import javax.naming.InitialContext;
import com.ibm.websphere.asynchbeans.pool.ObjectPoolManager;

public class ObjectTest {

public static void main(String[] args) {
if (args.length < 2) System.out.println("usage:ObjectTest numberOfThreads className");
int numberOfThreads = Integer.parseInt(args[0]);
JobThread[] threads = new JobThread[numberOfThreads];
ObjectPoolManager opm = null;
String className = args[1];
InitialContext initalContext;
//Lookup for object pool manager
try {

System.out.println("ObjectTest: looking for ObjectPoolManager");
initalContext = new InitialContext();
opm = (ObjectPoolManager) initalContext.lookup("java:comp/env/ObjectPool");

} catch (Exception ex) {
ex.printStackTrace();

}

528 WebSphere Business Integrator Server Foundation V5.1 Handbook

for (int i = 0; i < numberOfThreads; i++) {
//Create a new JobThread thread
threads[i] = new JobThread("JobThread_" + i, opm, className);
System.out.println("ObjectTest: starting thread: " + threads[i].getName());
//Start the thread
threads[i].start();

}
}

}

c. Save and close the file.

4. Add a resource environment reference.

Since a local reference to Object pool is used in ObjectTest.java, we need to
add a resource environment reference to the application:

a. Open the Client Deployment Descriptor of the ObjectPool project.
Switch to the References tab and click the Add button.

b. Select Resource environment reference and click the Next button.

c. Enter ObjectPool in the Name field and enter
com.ibm.WebSphere.asynchbeans.pool.ObjectPoolManager in the Type
field. Click the Finish button.

Figure 20-1 Add Resource Environment Reference

Important: Ignore any errors at this point since they will be resolved
when JobThread Java class is created later in this chapter.
 Chapter 20. Object pools 529

d. Select the created resource environment reference and enter
ObjectPoolMgr in the JDNI name field.

e. Save and close the descriptor.

5. Change the main class of the application client.

The next step is to change the specified main class of the client so the J2EE
client container will know which class to run when starting the application.

a. Open the MANIFEST.MF file in appClientModule → META_INF in the
ObjectPool project.

b. On the Dependencies tab, enter
com.ibm.itso.sg246318.ObjectPool.ObjectTest in the Main Class field.

c. Save and close the file.

6. Create JobThread class.

The last step is to create a JobThread class.

a. Right-click the ObjectPool project and select New → Class.

b. In the New Java Class window, enter package
com.ibm.itso.sg246318.ObjectPool for Package, enter JobThread in the
Name field. Click the Finish button.

c. Copy the code in Example 20-2 into JobThread.java.

Example 20-2 JobThread.java

package com.ibm.itso.sg246318.ObjectPool;

import java.util.*;
import com.ibm.websphere.asynchbeans.pool.*;

public class JobThread extends Thread {
static Double averageExecutionTime = new Double(0);
static Double averageExecutionTimeUsingPool = new Double(0);
static Long totalNumberOfRepetitions = new Long(0);
Random rand = new Random(System.currentTimeMillis());
ObjectPool oPool = null;
ObjectPoolManager opm;
String className = new String();
Class customClass;

//Initialize
public JobThread(String name, ObjectPoolManager opm, String className) {

super.setName(name);
this.opm = opm;
this.className = className;

}

530 WebSphere Business Integrator Server Foundation V5.1 Handbook

public void run() {
// Wait between 1-100 milliseconds before start
synchronized (this) {

try {
this.wait(1 + rand.nextInt(100));

} catch (InterruptedException e) {};
}
try {

customClass = Class.forName(className);
//Get an object pool for specified class
oPool = opm.getPool(customClass);

} catch (Exception ex) {
ex.printStackTrace();

}
int repetitions = rand.nextInt(500);
synchronized (totalNumberOfRepetitions) {

totalNumberOfRepetitions = new Long(totalNumberOfRepetitions.longValue() +
repetitions);

}
//Do something using objects without object pooling
//Repeat the job 1-500 times
//Read the time before starting the job
long startTime = System.currentTimeMillis();
for (int i = 0; i < repetitions; i++) {

doSomething();
}
//Read the time after ending the job
long endTime = System.currentTimeMillis();
//Do something using objects WITH object pooling
//Repeat the job 1-500 times
long startTimeUsingObjectPool = System.currentTimeMillis();
for (int i = 0; i < repetitions; i++) {

doSomethingUseObjectPool();
}
long endTimeUsingObjectPool = System.currentTimeMillis();
//Calculate doSomething execution time and add it to the total value
synchronized (averageExecutionTime) {

averageExecutionTime = new Double(averageExecutionTime.doubleValue() + endTime -
startTime);

}
//Calculate doSomethingUseObjectPool execution time and add it to the total value
synchronized (averageExecutionTimeUsingPool) {
averageExecutionTimeUsingPool = new
Double(averageExecutionTimeUsingPool.doubleValue() + endTimeUsingObjectPool -
startTimeUsingObjectPool);

}
System.out.println("Exiting thread" + this.getName());
System.out.println("doSomething average execution time = " + (endTime - startTime) /

repetitions);
 Chapter 20. Object pools 531

System.out.println("doSomethingUseObjectPool average execution time = " +
(endTimeUsingObjectPool - startTimeUsingObjectPool) / repetitions);

System.out.println("Total average execution time = " + averageExecutionTime.doubleValue() /
totalNumberOfRepetitions.doubleValue());

System.out.println("Total average execution time using pool= " +
averageExecutionTimeUsingPool.doubleValue() / totalNumberOfRepetitions.doubleValue());

}

public void doSomething() {
try {

Object aL = customClass.newInstance(); //Create a new object
randomWait(1 + rand.nextInt(5)); //Wait between 1 and 6 miliseconds

} catch (Exception ex) {
ex.printStackTrace();

}
}

public void doSomethingUseObjectPool() {
Object obj = oPool.getObject(); //Get an object from the object pool
randomWait(1 + rand.nextInt(5));//Wait between 1 and 6 miliseconds
oPool.returnObject(obj);//Return the object to the object pool

}

synchronized private void randomWait(int miliseconds) {
try {

this.wait(miliseconds);
} catch (InterruptedException e) {}

}
}

7. Save and close the file. All the errors from the Task view should disappear.

20.4 Unit test
To run the code in the WebSphere Test Environment, you need to add an Object
Pool Manager to the Server Configuration.

1. Open the Server perspective and create a new Integration Test Server. If you
need help with creating a test server, refer to , “Integration Server V5.1 test
environment setup” on page 563.

2. Open the Server Configuration by double-clicking the test server you have
created.

3. On the Object Pools tab, click the Add button under Server Settings, next to
the Object Pool Managers. Enter AObjectPoolManager in the Name field and
ObjectPoolMgr in the JNDI Name field. Click the OK button.
532 WebSphere Business Integrator Server Foundation V5.1 Handbook

Figure 20-2 Creating an Object Pool Manager

4. Save the Server Configuration and right-click the Object Pool Server and
select the Start button.

5. Now we can create a client to run the Object Pools example.

a. Switch to the J2EE Perspective, Run → Run... from the menu.

b. Select WebSphere v5.1 Application Client and click the New button.

c. Enter Object Pool Client in the Name field.

d. Select WebSphere v5.1 EE for Server Type.

e. Select the Arguments tab and add the following parameter to the
Program arguments:

-CCverbose=true 500 java.util.ArrayList

Using these parameters, logging is turned on and 500 job threads are
going to be created that pool ArrayList Java objects.

f. Change all the base_v51 directory names to ee_v51 under the VM
arguments; there are eight occurences.

g. Click Apply.

h. Click Run to run the application client.

6. On the Console, you will see output similar to what is shown in Example 20-3.

Example 20-3 Output from Object Pools example

IBM WebSphere Application Server, Release 5.1
J2EE Application Client Tool
Copyright IBM Corp., 1997-2003
WSCL0012I: Processing command line arguments.
WSCL0001I: Command line, property file, and system property arguments resolved to:
 File to launch = C:/Documents and Settings/boardman/My
Documents/IBM/wsappdevie51/workspace/ObjectPoolEAR
 Chapter 20. Object pools 533

 CC Property File = null
 Client Jar File = ObjectPool.jar
 Alternate DD = null
 BootstrapHost = ka0klfc
 BootstrapPort = <default>
 Trace enabled = false
 Tracefile = null
 Init only = false
 Classpath Parameter = null
 Security Manager = disable
 Security Manager Class = Not used. -CCsecurityManager=disable
 Security Manager Policy = Not used. -CCsecurityManager=disable
 Exit VM = false
 Soap Connector Port = null
 Application Parameters = 500 java.util.ArrayList
 Provider URL = null
 Dump Java Name Space = null
 Admin Connector Host = null
 Admin Connector Port = null
 Admin Connector Type = null
 Admin Connector User = null
WSCL0013I: Initializing the J2EE Application Client Environment.
...
WSCL0035I: Initialization of the J2EE Application Client Environment has completed.
WSCL0014I: Invoking the Application Client class ObjectTest
ObjectTest: looking for ObjectPoolManager
ObjectTest: starting thread: JobThread_0
ObjectTest: starting thread: JobThread_1
ObjectTest: starting thread: JobThread_2
ObjectTest: starting thread: JobThread_3
ObjectTest: starting thread: JobThread_4
ObjectTest: starting thread: JobThread_5
...
Exiting threadJobThread_128
doSomething average execution time = 63
doSomethingUseObjectPool average execution time = 23
Total average execution time = 0.06144919781625436
Total average execution time using pool= 0.10548360936703147
...
Exiting threadJobThread_419
doSomething average execution time = 11
doSomethingUseObjectPool average execution time = 5
Total average execution time = 14.616670701202292
Total average execution time using pool= 8.448640361494393
534 WebSphere Business Integrator Server Foundation V5.1 Handbook

Results
We received the following test results on our system:

Total average execution time = 14.616670701202292
Total average execution time using pool= 8.448640361494393

The results can be interpreted as follows. When using 500 threads and the
java.util.ArrayList class, it took approximately 14 milliseconds on average per job
task when no Object pools were used. When Object pooling was used, it took
approximately 8 milliseconds on average per job task.

You can use the application to test the difference using your own classes. You
can also check how the JVM memory settings affect behavior.

20.5 Runtime environment
This section discusses Object pools in the runtime environment and
configuration settings.

Choosing Object pool types
Do not forget to select the correct pool type, whether is synchronized or
unsynchronized.

� A synchronized pool is useful where little contention exists for objects in the
pool. A synchronized pool is thread-safe, meaning it can also be shared
across threads. This way objects are used more efficiently as there are fewer
idle objects in the pool.

� An unsynchronized pool is useful if your application uses an Object pool in
one thread. An unsynchronized pool is not thread-safe meaning that
applications can only use them within one thread. Unsynchronized pools are
faster than synchronized pools.

Note: Obviously, test results depend on the capabilities of the test system.
Even with considering this fact, the performance difference, between using
Object pools or not using, is significant enough to accept the results as a good
indicator of performance.

Important: Although this sample application shows the performance gain for
Object pools, it is just a proof of concept. You cannot expect the same
performance gains with a “real” application because there are many factors
that have not been and cannot be calculated here.
 Chapter 20. Object pools 535

Sharing Object pools
If an application server shares an Object pool between applications, class loader
problems may occur between shared application objects. We recommend to not
share pools between applications when application objects (and not JDK
supplied objects such as java.util.HashMap) are being pooled.

Workload management and failover
The Object pool service does not have any special workload management or
failover capabilities since it is running within the scope of a JVM. When you
configure the Object pool configuration manager on the cell or on the node level,
every application server that belongs to the cell or node will have one with the
specified name registered, and they are not aware of each other. That is, if you
work with Object pools on one server and you lose it, your application can still
continue to run on another server. However, since it exists only in memory,
Object pools on the crashing server will be lost.

Programmatically, you can still return the objects obtained from the crashed
server pool to the new pool, but if the type of the pooled class is not the same,
you will get a ClassCastException exception.

20.5.1 Configuration in runtime
This section describes how to configure your Object Pool Manager and custom
Object pool using the Administrative Console. It also explains how to disable the
Object pools service.

Object Pool Manager configuration
Perform the following steps to configure the Object Pool Manager:

1. To enable the Administrative Console, doubleclick the server and mark the
Enable administrative console checkbox on the Configuration tab.

2. Start the server. When it has fully started up, rightclick the server and select
Run administrative console.

3. Select Resources → Object pools and click the New button to create a
Object Pool Manager.

4. In the Object Pool Manager configuration window, type AObjectPoolManager
in the Name field and ObjectPoolMgr in JNDI Name field.
536 WebSphere Business Integrator Server Foundation V5.1 Handbook

Figure 20-3 Creating an Object pool manager in the Administrative Console

5. Apply the changes and save the configuration for WebSphere.

Disabling the Object pool service
The Object pool service is enabled by default. It starts during the WebSphere
startup. If you want to disable the service, take the following steps:

1. Launch the Administrative Console and log in.

2. Select Servers → Application Servers. Select the application server that
has defined the Object pool service that you want to disable.

3. Under the Configuration tab, click Object Pool Service. In the Additional
Properties table, unmark the Startup property.

4. Apply the changes and save the configuration for WebSphere.

Custom Object pool configuration
When WebSphere’s Object pool implementation does not suit your application’s
needs, you can provide a customized Object pool implementation which
implements the CustomObjectPool interface. Every custom Object pool has to be
registered under an existing Object pool manager.

In order to define a custom Object pool on a given Object pool manager, click
Resources → Object Pools → <your_Object_Pool_Manager> and click
Object Pools.
 Chapter 20. Object pools 537

You can create a new custom Object pool, by clicking the New button. Specify
the type of class that is pooled in the Pool Class Name field and the class name
of your Object pool implementation in the PoolImpl Class Name field. Also, by
clicking the Custom Properties link, you can specify custom properties that will
be given to your pool implementation in runtime when the customer Object pool
is created.

20.6 Problem determination and troubleshooting
If you encounter problems using Object pool service and you suspect that the
problem source is somewhere within the service then you can additionally use
the following trace string to monitor what is happening in the execution time:

com.ibm.ws.asynchbeans.pool.*=all=enabled
538 WebSphere Business Integrator Server Foundation V5.1 Handbook

Chapter 21. Internationalization (i18n)

The internationalization (i18n) service adds APIs and tooling that enable J2EE
applications to manage the distribution of internationalization information via the
internationalization context.

The service itself provides the mechanism to transparently propagate locale and
time zone information from clients to servers and between server components.
This information can be used by server application components to customize the
results according to the client locale and time zone.

Why use the Internationalization service? In a distributed client/server
environment, application processes may run on different machines configured to
different locales corresponding to different culture conventions. They may also
be located across geographical boundaries. With the advent of Internet-based
business computational models, such as e-commerce, more and more clients
and servers will operate in different locales and geographical regions.

Internationalization techniques have traditionally been expensive and difficult to
implement, so they have been applied only to major development efforts.
However, given the rise in distributed computing and in the use of the World
Wide Web, application developers have been pressured to internationalize a

21

Note: The i18n name is derived from the first (i) and last (n) letter of the word
internationalization and the number of characters in between (18). It is simply
easier to write i18n than internationalization.
© Copyright IBM Corp. 2004. All rights reserved. 539

much wider variety of applications. This requires making internationalization
techniques much more accessible to application developers.
540 WebSphere Business Integrator Server Foundation V5.1 Handbook

21.1 Prerequisites
Learn more about the i18n service from the IBM redbook WebSphere Application
Server Enterprise V5 and Programming Model Extensions, SG24-6932.

You can also find detailed information about the i18n API and other WebSphere
Business Integration Server Foundation V5.1 related topic in the InfoCenter at:

http://publib.boulder.ibm.com/infocenter/ws51help/index.jsp

by clicking WebSphere Business Integration Server Foundation →
Highlights and Features and selecting Internationalization service.

You can learn about i18n basics at developerWorks using the following tutorial:

http://www-106.ibm.com/developerworks/java/edu/j-dw-javai18n-i.html

The article International calendars in Java at developerWorks at:

http://www-106.ibm.com/developerworks/java/library/j-javacal/

provides technical details about handling calendars in Java.

21.2 Sample scenario
In this chapter, we will not develop an application from scratch; instead, you will
find details of the application provided as additional material.

The sample application is a very simple Web application sending greetings to an
EJB application. The EJB application consists of two session EJBs, one to
receive the greetings and another to log the greetings.

Migration
There are no migration-specific tasks related to i18n. The i18n service is the
same as in WebSphere Enterprise V5.0.

Development
You can find details about the sample application in this section. In addition to the
programming details of the i18n API, you will see how to configure i18n for
application components.

There are two options for handling the i18n context in a component (for example,
EJB, servlet):

� Container managed internationalization
� Application managed internationalization
 Chapter 21. Internationalization (i18n) 541

http://publib.boulder.ibm.com/infocenter/ws51help/index.jsp
http://www-106.ibm.com/developerworks/java/edu/j-dw-javai18n-i.html
http://www-106.ibm.com/developerworks/java/library/j-javacal/

In both cases, the i18n context is available for the programmers. When the
container manages the context, you can set up the i18n features using the
deployment descriptor. Application management means that the programmer is
responsible for setting up the i18n attributes for the application programmatically.

Unit test
During the unit test, you can easily test your application using the i18n services.

Assembly
There are a few assembly tasks for enterprise applications and application
components, depending on the application design.

You can configure i18n attributes for EJBs and servlets.

Deployment
There are no specific tasks for deployment when using i18n services in
applications.

Runtime
There is only one task related to i18n in the runtime environment. Administrators
can enable or disable the i18n service for an application server.

21.3 Development
The application described in the previous section is distributed together with the
book as additional material.

1. Launch WebSphere Studio Application Developer Integration Edition with an
empty workspace. Make sure you enable the server target support.

2. Import the i18n.pi.zip archive using the Project Interchange plug-in.

You will find the i18nEAR enterprise application with a Web module (i18nWeb)
and an EJB module (i18nEJB).

There are three scenarios covered in this sample:

1. Servlet using i18n with container-managed i18n.

Important: The i18n service is not enabled by default; you have to enable it
before you can use it with any of your applications.

Enabling or disabling the i18n service requires restarting the server.
542 WebSphere Business Integrator Server Foundation V5.1 Handbook

2. EJB using i18n with application-managed i18n.

3. EJB using i18n with container-managed i18n. This one is very similar to the
first (servlet) scenario, except that in this case we are configuring the EJB
deployment descriptor, not the Web deployment descriptor.

i18n for servlets
This section shows how to set up i18n for a servlet and how to use the i18n API
to access i18n information from the context.

1. Open the Web deployment descriptor for the i18nWeb module.

2. Switch to the Extended Services® tab.

3. Select the SendGreeting servlet.

4. Check the Internationalization section for the servlet; you will find it already
configured.

Figure 21-1 i18n configuration for servlet

When you configure i18n for a servlet, perform the following steps:

1. Set the Internationalization type, Container managed or Application
managed.
 Chapter 21. Internationalization (i18n) 543

2. Set the Run as caller, server or specified.

a. If you select caller, then the i18n attributes are simply propagated from
the caller for the next invocation.

b. If server is selected then the server’s i18n settings will be used for the
servlet.

c. When specified is selected, you will need to configure one or more
attributes for i18n. Create a new specified item for the servlet, then click
New. You need to set up two fields for i18n: time zone and locale, where
locale normally consists of two fields: region (country) and language. Fill
out the details, as in Figure 21-2.

Figure 21-2 New specified settings for i18n

Add a new Locale to your settings, as shown in Figure 21-3 on page 545.
544 WebSphere Business Integrator Server Foundation V5.1 Handbook

Figure 21-3 New locale for i18n

3. Save the deployment descriptor.

Let’s take a look at the code details for the container-managed i18n. First, you
have to look up the i18n service context in your servlet from the JNDI.

Example 21-1 i18n in a servlet

//...
//necessary import statements
import com.ibm.websphere.i18n.context.*;
import com.ibm.ws.i18n.context.*;
import javax.naming.*;
import java.util.Locale;
//...
// class attributes for i18n
protected UserInternationalization userI18n = null;
protected Internationalization callerI18n = null;
protected InvocationInternationalization invI18n = null;
public static final String UserI18nUrl =

"java:comp/websphere/UserInternationalization";

// we put the i18n context lookup in the servlet’s init method
public void init() throws ServletException {

//getting the i18n context from the JNDI
Context initialContext=null;
try {

initialContext = new InitialContext();
userI18n = (UserInternationalization)initialContext.lookup(UserI18nUrl);
callerI18n = userI18n.getCallerInternationalization();
 Chapter 21. Internationalization (i18n) 545

invI18n = userI18n.getInvocationInternationalization();
} catch (NamingException ne) {

throw new ServletException("Cannot resolve UserInternationalization" +
ne);

} catch (IllegalStateException ise) {
throw new ServletException ("Error: UserInternationalization is not

available: " + ise);
}
//...

}
// servlet’s doPost method
public void doPost(HttpServletRequest req, HttpServletResponse resp)

throws ServletException, IOException {
//...
try {

// retrieving the caller locale
callerLocale = callerI18n.getLocale();
// retrieving the invocation locale
invocationLocale = invI18n.getLocale();

} catch (IllegalStateException ise) {
errorMsg="An anomaly occurred accessing I18N Invocation context: ";

}
// dump out the results
System.out.println("Sending greeting: "+greeting);
System.out.println(" caller locale: "+callerLocale);
System.out.println(" invocation locale: "+invocationLocale);
//...

}

Note that the JNDI name for the i18n context is
java:comp/websphere/UserInternationalization, and it has not been set up for
the application as a resource reference. This object is available once the i18n
service is enabled for the application server.

The i18n context lookup is coded in the servlet’s init() method. It is a process you
do not want to go through very often since it is costly from a performance point of
view.

Later in the doPost() method, you can see how the caller and invoker locales are
retrieved from the context. Once you have the locale, you can extract region and
language codes as well. Besides the locale, you can also retrieve the time zone
from the context. See the API documentation for details.

Note: i18n in servlets uses the accept-language HTTP header from the
browser’s request to determine the language for the locale.
546 WebSphere Business Integrator Server Foundation V5.1 Handbook

i18n for EJBs using container-managed internationalization
This section shows how to configure i18n for a session bean using
application-managed i18n; we then take a look at i18n fields programmatically.

1. Open the EJB deployment descriptor.

2. Switch to the Internationalization tab.

3. Check the Internationalization type, Beans configured for
application-managed internationalization section; the ReceiveGreeting is
configured here.

Figure 21-4 Application managed i18n

When you configure an EJB to use application-managed i18n, perform the
following steps:

1. Click Add... under Beans configured for application-managed
internationalization.

2. Select the EJB that you want to add to the application-managed i18n list.
 Chapter 21. Internationalization (i18n) 547

Figure 21-5 Adding EJB to application-managed i18n

3. Save the deployment descriptor.

When an EJB is enabled for application-managed i18n, the application server
manages the i18n context for the bean, but no attributes are set for the context
by default, nor from the deployment descriptor.

The following example shows how to use the i18n API in an EJB.

Example 21-2 i18n in an EJB

//...
//necessary import statements
import com.ibm.websphere.i18n.context.*;
import javax.naming.*;
import java.util.Locale;
//...

// attributes for i18n
protected UserInternationalization userI18n = null;
protected InvocationInternationalization invI18n = null;
public static final String UserI18NUrl =
"java:comp/websphere/UserInternationalization";
548 WebSphere Business Integrator Server Foundation V5.1 Handbook

public void ejbCreate() throws javax.ejb.CreateException {
//getting the i18n context from the JNDI
try {
 Context initialContext = new InitialContext();
 userI18n = (UserInternationalization)initialContext.lookup(UserI18NUrl);
 invI18n = userI18n.getInvocationInternationalization();
} catch (NamingException ne) {

ne.printStackTrace();
} catch (IllegalStateException ise) {

ise.printStackTrace();
}
//...

}

public void receiveGreeting(String greeting) {
Locale callLocale = null;
Locale invLocale = null;
try {

// retrieving the caller locale
callLocale = userI18n.getCallerInternationalization().getLocale();
// setting the invocation locale
invI18n.setLocale(new Locale("pt_BR"));
invLocale = invI18n.getLocale();

} catch (IllegalStateException ise) {
ise.printStackTrace();

}
// dump out the results
System.out.println("Received greeting: "+greeting);
System.out.println(" caller locale: "+callLocale);
System.out.println(" invocation locale: "+invLocale);
//...

}

Using i18n in the EJB is equivalent to the servlet version. There is no need to
configure any resource reference for the i18n context.

The context lookup from the JNDI is taken care of in the ejbCreate() method.

In the receiveGreeting() method, you can see how the i18n attributes are
retrieved and set. The caller attributes are available since they are propagated
from the servlet, but there is no configuration for the invocation attributes. The
invocation is set using the i18n API. You can set one or more locales in the i18n
context; this is also true of the time zone. See the API documentation for more
details.
 Chapter 21. Internationalization (i18n) 549

i18n for EJBs using application-managed internationalization
This section provides details about container-managed i18n for EJBs.

1. Open the EJB deployment descriptor.

2. Switch to the Internationalization tab.

3. Check the Internationalization attributes, Method-scoped policies configured
for container-managed internationalization beans; the logGreeting() method
is configured here.

Figure 21-6 Container-managed i18n for EJB methods

To create a new entry for container-managed i18n, follow the steps below:

1. Click Add... under Method-scoped policies configured for container-managed
internationalization beans.

2. Set Run as, for example: Specified. Click Next.
550 WebSphere Business Integrator Server Foundation V5.1 Handbook

Figure 21-7 Run as for i18n

3. On the next panel, set the time zone ID, for example: UTC. You can use the
drop-down list to select the value.

Provide a description if you like.

Click Add next to the locales.

4. In the Locale window, set the language and the country values, for example:
English, United States. You can use the drop-down list to select the values.
Click OK.
 Chapter 21. Internationalization (i18n) 551

Figure 21-8 Locale settings for i18n

en_US should appear as a new locale as in Figure 21-9 on page 553.
552 WebSphere Business Integrator Server Foundation V5.1 Handbook

Figure 21-9 Application managed i18n settings for EJBs

Click Next.

5. Select the EJB on the Enterprise Beans panel, for example: LogGreeting.
Click Next.

6. Select the method on the Method elements panel, for example: logGreeting()
method.
 Chapter 21. Internationalization (i18n) 553

Figure 21-10

7. Click Finish.

21.4 Unit test
Unit testing internationalization is as simple as any other unit testing with
WebSphere. You need to have an Integration Test server for your application
and the application must be deployed.

What is difficult is that internationalization deals with different regions, languages
and time zones. If you want to run proper testing, you have to change the time
zone and locale settings for your client and for your server(s).
554 WebSphere Business Integrator Server Foundation V5.1 Handbook

The Internationalization service is not enabled by default. There are two ways to
enable the i18n service in WebSphere Studio Application Developer Integration
Edition.

� Enable the Administrative Console for the test server and follow the steps in
21.6, “Runtime environment” on page 556 to enable the service. In this case,
you have to start and stop the application server.

� The other option is to “hack” the server configuration file when the server is
stopped. This has the same effect as starting the server, enabling the i18n
service, then starting the server.

a. Open the server-pme.xml file for your test server. It is located at:
<your_server_folder> → <your_server_name.wsc> → cells →
localhost → nodes → localhost → servers → server1.

b. Edit the XML file with an XML editor and change the enable attribute to
true under: pmeserver:PMEServerExtension → i18nService.

c. Save and close the file.

d. Start the application server.

Once the server is running with i18n enabled, launch a Web browser and open
the location: http://localhost:9080/i18nWeb/GreetingInput.html. You can change
the greeting test if you like, then click Send on the page.

After a successful test, you should see results similar to the ones shown in
Example 21-3 on page 556.

Note: You can change the locale for the operating system; that locale is
propagated to the browser and then to the HTTP request. In this way, you can
mime another location.

For the application server, you need to set up two custom properties for the
process definition:

� user.language, for example: en
� user.region, for example: US

For a J2EE application client or a standalone Java application, you need to
use two Java directives in the command line, for example:

java -Duser.language=en -Duser.region=US ...
 Chapter 21. Internationalization (i18n) 555

Example 21-3 Console output

SystemOut O Sending greeting: Hello
SystemOut O caller locale: fi
SystemOut O invocation locale: hu_HU
SystemOut O Received greeting: Hello
SystemOut O caller locale: hu_HU
SystemOut O invocation locale: pt_br
SystemOut O Greeing is logged: Hello
SystemOut O caller locale: pt_br
SystemOut O invocation locale: en_US

The previous example output contains the following information. The browser
was running with the region set to Finland when it called the servlet. The servlet
made the call to the ReceiveGreeting EJB using the region Hungary and the
language Hungarian.

When the ReceiveGreeting EJB receives the call, the caller was using the region
Hungary, and the language Hungarian. The bean is going to use the region
Brazil, and the language Portuguese to call another bean.

The LogGreeting EJB receives the call using region Brazil and language
Portuguese. Even though the EJB is not going to call other components, the
invocation is set to region US, language: English.

21.5 Assembly
Refer to 21.3, “Development” on page 542 for assembly details for WebSphere
Studio Application Developer Integration Edition.

Assembly settings are available for the J2EE application components: servlets
and EJBs. In both cases, you can define either application-managed i18n or
container-managed i18n services.

21.6 Runtime environment
The Internationalization service is represented by a single flag in the runtime
environment, which is either enabled or disabled. No further configuration is
required.

The i18n service is not enabled by default; you have to enable it and restart the
server with i18n enabled before you can run your application using the i18n
service.
556 WebSphere Business Integrator Server Foundation V5.1 Handbook

1. Make sure the application server is running, then launch the Administrative
Console.

2. Navigate to Servers → server1 → Internationalization Service.

3. Change the Startup flag as needed; the i18n service is enabled if the
checkbox is selected.

4. Save the configuration for WebSphere.

5. Restart the application server.
 Chapter 21. Internationalization (i18n) 557

558 WebSphere Business Integrator Server Foundation V5.1 Handbook

Part 4 Appendixes

Part 4
© Copyright IBM Corp. 2004. All rights reserved. 559

560 WebSphere Business Integrator Server Foundation V5.1 Handbook

Appendix A. Additional sample
application configurations

This appendix provides additional help for the sample applications used in other
chapters of the book.

You will find additional setup, configuration and development steps for the
samples.

A

© Copyright IBM Corp. 2004. All rights reserved. 561

Project Interchange archive import/export
Throughout this redbook, you will find examples where we have provided sample
code or solutions that you can use to follow the steps. In order to share this code,
it is practical to make use of the Project Interchange plug-in, which enables quick
and simple sharing of WebSphere Studio projects. The plug-in allows us to
provide projects in a format that you can simply import into your own workspace.

Project Interchange is described in an IBM developerWorks WebSphere article
located at:

http://www-106.ibm.com/developerworks/websphere/library/techarticles/
0309_bergschacher/bergschacher.html#IDARTRDB

You can find the plug-in download and installation instructions there.

Once this plug-in is added to your WebSphere Studio Application Developer
Integration Edition, you will be able to make use of it through the File →
Import/Export → Project Interchange menu system.

We also use the convention of naming zip files that contain project interchanges
with the suffix .ic.zip.

HelloWorld process application
HelloWorld is a very simple business process (BPEL); it is only a supporting
component for sample scenarios. The HelloWorld sample process is used in the
Startup beans and Scheduler sample applications.

1. Open WebSphere Studio Application Developer Integration Edition with a
new workspace, for example: C:\HelloWorld.Proj.

2. Open the Business Integration perspective.

3. Import the entire HelloWorldProcess.zip file using the Project Interchange
plug-in.

4. Right-click the HelloWorld.bpel file under Service Projects →
HelloWorldProcess → com.helloworld.process, then select Enterprise
Services → Generate Deploy Code....

Tip: Note that for WebSphere Studio Application Developer Integration Edition
V5.1, the installation directory defaults to:

C:\Program Files\IBM\WebSphere Studio\Application Developer IE\v5.1
562 WebSphere Business Integrator Server Foundation V5.1 Handbook

http://www-106.ibm.com/developerworks/websphere/library/techarticles/0309_bergschacher/bergschacher.html#IDARTRDB

5. In the Generate BPEL Deploy Code window, click OK; it will generate the
service with EJB binding.

6. At the end of the code generation, you should only see three warnings listed
in the Task view.

Integration Server V5.1 test environment setup
This short section shows how to set up the WebSphere Business Integration
Server Foundation test environment in WebSphere Studio Application Developer
Integration Edition.

1. Open the Server perspective.

2. Select File → New → Server and Server Configuration... from the menu.

3. Set the Server name: HelloWorld server, select Integration Test
Environment, then click Finish.
 Appendix A. Additional sample application configurations 563

Figure A-1 Test Server configuration

The server is ready to start.

Adding the process to the test server
Once you have an Integration server, you can add a project to the server.

We are going to use the HelloWorld process application to add a process
application to the test server.

1. Open the Server perspective.

2. Right-click the test server, for example HelloWorld server, then select Add
and remove projects....
564 WebSphere Business Integrator Server Foundation V5.1 Handbook

3. Select the project that you want to add to the server on the left side, for
example: HelloWorldProcessEAR, then click Add >.

4. Click Finish.

5. The server is ready to start; select the Server view, right-click the server item
that you want to start, for example: HelloWorld server, then select Start.

6. Wait until you see the ... server is ready for e-business message.

External service for the simple process
The NiceJourney application requires an external service to invoke. This section
provides information about how to set up the external process in the test
environment.

1. Open the J2EE perspective.

2. Select File → Import from the menu.

3. Select the EAR file, then click Next.

4. Select the FlightBookingSystem.ear file from the C:\Dev\ directory. Set the
Project name to bookyourflight.com. Click Next.

5. Open the Server perspective.

6. Select File → New → Server and Server Configuration from the menu.

7. Set the server name to bookyourflight.com . Select the Server type by
clicking WebSphere version V5.1 → Server. We are going to use a simple
WebSphere Application Server V5.1 test server. Click Next.
 Appendix A. Additional sample application configurations 565

Figure A-2 Server wizard

8. On the WebSphere Server Configuration Settings panel, select Use
consecutive port numbers, then set the First port number to 9080. Click
Finish.
566 WebSphere Business Integrator Server Foundation V5.1 Handbook

9. On the Server configuration view, right-click the bookyourflight.com item,
then select Add and remove projects....

10.On the new panel, select the bookyourflight.com project and click Add to
add it to the server.

Figure A-3 Add project to the server

Note: By selecting the consecutive port numbers with the starting number
9080, the following port numbers (some of the most important for us) are
dedicated to the application server:

� SOAP connector: 9080

� RMI: 9084

� HTTP port: 9085

� HTTPS port: 9086

You can find out the port numbers by opening the server configuration view
for the bookyourflight.com server.
 Appendix A. Additional sample application configurations 567

Click Finish.

11.Start the server by selecting the bookyourflight.com item in the Server view,
then click the start icon (running man figure).

12.The Server view will change to the Console view automatically; wait until the
server is started and the ... open for e-business message appears on the
Console view.

Building a stored procedure in DB2 for the CMP over
Anything sample

The CMP over Anything sample in Chapter 16, “Container Managed Persistence
over Anything” on page 435 requires a stored procedure in a DB2 database and
some sample data in the tables. This section provides instructions about how to
set up the database and create the stored procedure for the sample.

Software requirements for the development are as follows:

� DB2 application development client on Database server
� DB2 supported C/C++ compiler

Steps for building the stored procedure
The two basic steps for building SQL stored procedure are as follows:

1. Configure DB2 to identify installed C/C++ compiler
2. Configure DB2 to use the compile command in the installed compiler.

The supported C/C++ compilers for IBM DB2 on different platforms are as
follows:

� AIX

– IBM C for AIX Version 3.6.6 (Version 3.6.6.3, 4.0, 5.0 for 64-bit)
– IBM C Set++ for AIX Version 3.6.6 (Version 3.6.6.3 for 64-bit)
– IBM VisualAge C++ Version 4.0, 5.0 (32-bit and 64-bit)

Important: DB2 supports VisualAge for Java C++ compiler and Microsoft
Visual C++ compiler. Since IBM stopped the development of the Visual Age
product line, the only option is to get the Microsoft Visual C++ compiler. The
Microsoft Visual C++ Toolkit 2003 is available as a free download from
Microsoft at the following URL:

http://msdn.microsoft.com/visualc/vctoolkit2003/
568 WebSphere Business Integrator Server Foundation V5.1 Handbook

http://msdn.microsoft.com/visualc/vctoolkit2003/
http://msdn.microsoft.com/visualc/vctoolkit2003/

� HP-UX

– HP C Compiler Sersion A.11.00.03
– HP aC++ Version A.03.25

� Linux

– GNU/Linux gcc version egcs-2.91.66 (egcs-1.1.2 release)
– GNU/Linux g++ version egcs-2.91.66 (egcs-1.1.2 release)

� Solaris

– Forte/Workshop Compiler C Versions 4.2 (for 32-bit) and 5.0, 6.0 and 6.1
(for 32-bit and 64-bit)

– Forte/Workshop Compiler C++ Version 4.2 (for 32-bit) and 5.0, 6.0 and 6.1
(for 32-bit and 64-bit)

� Windows

– Microsoft Visual C++ Version 5.0 and 6.0 and newer
– IBM VisualAge C++ for Windows Version 3.6.5, 4.2 and 5.0 7-8

Since we do not have IBM VisualAge® C++ for Windows, for this redbook we
used the Microsoft Visual C++ Toolkit 2003 (which is a freely available for
developers).

Microsoft Visual C++ Toolkit 2003 was installed under the C:\Program
Files\Microsoft Visual C++ Toolkit 2003 directory.

Configuring DB2 to detect the MS Visual C++ compiler
MS Visual C++ comes with environment file vcvars32.bat under the installed root
directory. When we tried to set up this file as “customized executable file for
installed compiler” due to the space in the directory name, we were not able to
set the compiler environment. So we copied vcvars32.bat to a different location
(C:\MSVC) and were then able to set the environment with the following
command in the DB2 command window:

db2set DB2_SQLROUTINE_COMPILER_PATH="c:\MSVC\vcvars32.bat"

Important: For the complete and latest list, refer to the IBM DB2 Web site at:

http://www-306.ibm.com/software/data/db2/

Note: You can also install MS Visual C++ under a different directory to avoid
future problems with the space in the directory name.
 Appendix A. Additional sample application configurations 569

http://www-306.ibm.com/software/data/db2/

Configuring DB2 to use the compile command in the installed
compiler

The following is the default compile command for MS Visual C++.

db2set DB2_SQLROUTINE_COMPILE_COMMAND= "cl -Od -W2 /TC -D_X86_=1
-I%DB2PATH%\include SQLROUTINE_FILENAME.c /link -dll
-def:SQLROUTINE_FILENAME.def /out:SQLROUTINE_FILENAME.dll
%DB2PATH%\lib\db2api.lib"

Once the C/C++ compiler has been installed and configured, you are ready to
create the SQL stored procedure for the application.

Creating an SQL stored procedure

1. Click Start → IBM DB2 → Development Tools → Development Center; this
will open the launch pad.

2. Click Create a Project.

3. Select the New tab and provide the Project Name: CMPAproject and Project
path: C:\Projects\CMPAproject. Click OK.

Important: The above configuration works with a Windows platform with
Microsoft Visual C++ compiler only. For other platforms and other C/C++
compilers, please refer to the IBM DB2 Web site.

Important: We need to create the database and the tables before creating the
SQL stored procedure. The database and tables can be created in many
ways. The simpliest way is to get the .ddl from the EJB project. Create a
database called ITSO_CMP, then run the command: db2 -tvf table.ddl.
570 WebSphere Business Integrator Server Foundation V5.1 Handbook

Figure A-4 Create a new DB2 project

4. Click Add Connection, then provide the details for the online connection
type, as shown in Figure A-8 on page 573.

Figure A-5 Connection details
 Appendix A. Additional sample application configurations 571

The connection can be validated by clicking the Test Connection button.

You can specify the SQL schema name, the package owner and build owner.
These can also be changed or set later.

When you are finished, click Finish.

5. Click Create Object to create a new stored procedure.

Select Stored Procedure and SQL for the object to be created.

Figure A-6 Object type settings

6. A new dialog opens. Provide the stored procedure name, which wil be called
from the push-down method later. The stored procedure name is
ITSO.ACCOUNT_SP.
572 WebSphere Business Integrator Server Foundation V5.1 Handbook

Figure A-7 Stored procedure name

Click Next. This will take you to the panel where you can define the SQL
statement.

7. Change the default SQL statement by clicking the ... button under the value.

Figure A-8 SQL definition

8. Click SQL Assist.
 Appendix A. Additional sample application configurations 573

Figure A-9 SQL statement editor

This will open the SQL Assist window where you can create an SQL stored
procedure. First, remove the default SQL statement by clicking Clear under
the SQL code panel.

In the outline section:

a. Select FROM (Source tables) under the SELECT statement. This will show
the tables available under the Details pane. Expand the ITSO_CMP table
and select EJB.ACCOUNT_CMP table. click the > button, so that the
selected source table will be added to the SQL statement.

b. Select SELECT (Result columns) and expand the EJB.ACCOUNT_CMP
table under the Details pane. Select BALANCE and click >. Click ... under
the Result columns next to the BALANCE item.

A new window appears; click Clear at the bottom. Double-click the SUM
function, then select ACCOUNT_CMP.BALANCE in the new panel. Click
OK. Click OK again to close the Expression builder window.

c. Select the WHERE (Row filter) item. Under the Details pane, select
EJB.ACCOUNT_CMP.CUSTNO; in the column, leave the operator as =
and select the value Host variable.... This will open the variable window.
Enter the variable name as CustNo. Click OK and add it to the SQL
statement by clicking >.

The SQL code window should have the code shown below:

SELECT SUM(ACCOUNT_CMP.BALANCE) FROM EJB.ACCOUNT_CMP AS ACCOUNT_CMP
WHERE ACCOUNT_CMP.CUSTNO = ACCOUNT_SP.CustNo

d. Click OK twice to get back to the Definition panel.
574 WebSphere Business Integrator Server Foundation V5.1 Handbook

e. Click Next.

f. Add an out parameter by clicking Add.

Figure A-10 Add an out parameter to the stored procedure

g. Click Finish to finish creating the SQL stored procedure.

9. The stored procedure is built and deployed automatically when you use the
wizard to generate the code for you. At this point in time, the code is not ready
yet, however.

10.Edit the stored procedure by right-clicking the ITSO.ACCOUNT_SP stored
procedure in the DB2 Development Center from the hierarchy then selecting
Edit. Insert the following line at the end of the source code after the SET
balance = balance_TMP; line.

FETCH cursor1 INTO balance;

The code will put the result value into the out variable.

11.Save the source under the Editor View and close the Editor View window.

12.Remove the previously deployed code from the database by right-clicking the
ITSO.ACCOUNT_SP stored procedure in the DB2 Development Center from
the hierarchy then selecting Drop From Database. Click Yes to drop the
procedure.
 Appendix A. Additional sample application configurations 575

13.Build the code again by right-clicking the ITSO.ACCOUNT_SP stored
procedure in the DB2 Development Center from the hierarchy then selecting
Build. The build also deploys the stored procedure automatically.

14.Test the stored procedure by right-clicking the ITSO.ACCOUNT_SP stored
procedure in the DB2 Development Center from the hierarchy then selecting
Run....

Set the CustNo value to 1, then click OK.

Check the output view for results; it should return 0 for an empty database.

15.You can close the DB2 Development Center; save the project when the
application asks for confirmation.

Note: You can fill up the account table with some data for testing purposes
using the following commands in a DB2 command window:

db2 CONNECT TO ITSO_CMP
db2 INSERT INTO EJB.ACCOUNT_CMP (ACCOUNT, CUSTNO, NAME, BALANCE)
VALUES (11, 1, 'John Doe', 10)
db2 INSERT INTO EJB.ACCOUNT_CMP (ACCOUNT, CUSTNO, NAME, BALANCE)
VALUES (12, 1, 'John Doe', 20)
db2 INSERT INTO EJB.ACCOUNT_CMP (ACCOUNT, CUSTNO, NAME, BALANCE)
VALUES (13, 1, 'John Doe', 30)
db2 INSERT INTO EJB.ACCOUNT_CMP (ACCOUNT, CUSTNO, NAME, BALANCE)
VALUES (21, 2, 'Mary Jane', 40)
db2 DISCONNECT CURRENT

If you run the test on the stored procedure again, it should show the result
60.
576 WebSphere Business Integrator Server Foundation V5.1 Handbook

Appendix B. Additional configuration
help

This appendix provides additional information for Chapter 4, “Runtime
environment” on page 31. While the runtime environment chapter only focuses
on WebSphere Business Integration Server Foundation installation and
configuration, this appendix provides additional information to set up and
configure the following additional components.

� “WebSphere MQ setup instructions” on page 578

� “DB2 Enterprise Server Edition V8.1 installation” on page 579

� “Tivoli Directory Server V5.2 installation” on page 580

� “IBM HTTP Server, IBM HTTP Web server plug-in, and Tivoli Performance
Viewer installation” on page 582

� “Creating a WebSphere cluster” on page 583

B

© Copyright IBM Corp. 2004. All rights reserved. 577

WebSphere MQ setup instructions
The following section outlines instructions for installing WebSphere MQ on a
single node.

Installation
1. Run the Setup.exe under the MQ Server installation image directory.

2. In the menu that comes up, click Supported Java Runtime environment 1.3
or later.

3. Install the JDK provided on WebSphere MQ CD by clicking WebSphere MQ
CD.

– We chose to install JDK in C:\WebSphere\Java14.
– Choose custom installation and deselect Sources.
– Do not install this JDK as a System JVM.

4. Verify that all prerequisites have been met in the setup window. Pay special
attention to the Network Prerequisites. You may want to install MQ under a
user on the local machine that has administrator authority.

5. Under the WebSphere MQ Setup menu, click the Launch MQ Installer
button to start the installation process.

6. Install under C:\WebSphere\WMQ\.

7. Under the Features window, make sure all components are selected.

8. Review your selections and click the Install button to begin installation.

Configuration
1. When the configuration starts, under the Domain Controller window, select

No domain controller. You should verify that there is no domain controller in
your environment.

2. Next, skip Default Configuration to set up. This basically creates a queue
manager and makes it part of a cluster. We will create our own queue
manager and queues later on.

3. In the last page, deselect everything and close the configuration.

Fixpack installation
1. Download WMQ CSD5, file name U200202A.exe, from the WebSphere MQ

Support site.

2. Stop WebSphere MQ from the Windows Services. This ensures that all queue
managers are stopped.

3. Run the U200202A.exe, and specify C:\WebSphere\WMQCSD06.
578 WebSphere Business Integrator Server Foundation V5.1 Handbook

4. Change the default back-up folder to C:\WebSphere\WMQ_FPBK, and click
the Install button to proceed with Fixpack installation.

If you get an error window stating that WebSphere MQ files are in use, make
sure to stop all WebSphere MQ processes from the Windows services. Make
sure that you are not viewing the WebSphere MQ Help. Also verify that the
back-up directory is not under the WebSphere MQ installation folder.

DB2 Enterprise Server Edition V8.1 installation
DB2 must be set up prior to installing TDS because it requires/assumes the
existence of DB2 FP2. It is possible to install DB2 FP2 as part of installing TDS
but the decision was made to install DB2 and FP5 prior to installing TDS.NC

Installation
1. Download the DB2 Fixpack 5 binary from DB2 support site. The name of the

executable is FP5_WR21334_ESE.exe. This FP includes a full version of
DB2 that can be installed as part of the FP 5 installation. This is typical for
Windows platforms only. For a UNIX® installation, we will install DB2 8.1.

2. Run the executable and select DB2 8.1 Enterprise Edition.

3. Select Custom.

4. Under Feature, select all features. Change the directory location to
C:\WebSphere\SQLLIB.

5. Follow on-screen instructions to install DB2.

6. Only select the English language.

7. In the User window, leave db2admin as the user. Make sure no Domain is
specified. Choose db2admin as the password.

8. Under Administrative contact, select the defaults.

9. Make sure Create the DB2 instance is checked in the next window.

10.Under Configure DB2 instances, select the defaults.

11.Select Do not prepare any metadata.

12.Defer contact for health monitoring.

13.Request satellite information; select defer to later time.

14.Review the summary and click the Install button to proceed with DB2
installation.
 Appendix B. Additional configuration help 579

Fixpack installation
Fixpack 5 will be automatically installed as part of the setup instructions above.
This is unique to the Windows environment. For a UNIX setup, a separate
installation of FP5 is needed.

Tivoli Directory Server V5.2 installation
The following section discusses Tivoli Directory Server V5.2 setup instructions.

Installation
1. Make sure to check the PATH and CLASSPATH variables so as not to include

any references to a system-wide JDK.

2. Check the prerequisites and verify all the setup requirements. This
information is given in the ldapinst.html which should be located under the
Tivoli Directory Server installation folder.

3. Run ismp\setup.exe to start the installation.

4. Select the English language; the Tivoli Directory Server Welcome window
should appear.

5. Select English as the language.

6. Also select WebSphere Application Embedded server.

7. Review the summary and start the installation.

8. Wait for the machine to reboot.

Post-installation configurations
Tivoli Directory Server requires a supporting application server (WebSphere
Application Server V5 Express) to administer the LDAP server.

There might be cases when a second application server introduces problems in
the system configuration. One example is a single machine configuration for
WebSphere Business Integration Server Foundation; the LDAP application
server collides with the WebSphere Business Integration Server Foundation
application server.

This section provides additional information about how to configure the LDAP
application server manually, so there will be no port collision with the WebSphere
Business Integration Server Foundation application server.

We assume that Tivoli Directory Server has been installed with WebSphere
Application Server V5 Express and the Web management application.
580 WebSphere Business Integrator Server Foundation V5.1 Handbook

WebSphere Application Server V5 Express does not have the GUI version
Administrative Console, so we cannot use that to reconfigure the ports used by
the application server.

1. Open the serverindex.xml file in a text editor, from the
<TDS_root>\appsrv\config\cells\DefaultNode\nodes\DefaultNode directory.

Edit the file and replace the port numbers as listed below:

– BOOTSTRAP_ADDRESS: port=2810
– SOAP_CONNECTOR_ADDRESS: port=8881
– DRS_CLIENT_ADDRESS: port=0
– JMSSERVER_QUEUED_ADDRESS: port=0
– JMSSERVER_DIRECT_ADDRESS: port=0

2. Open the server.xml file in a text editor, from the
<TDS_root>\appsrv\config\cells\DefaultNode\nodes\DefaultNode\servers\ser
ver1 directory.

Edit the file and replace the port numbers as listed below:

– HTTPTransport_1: port=9081 (original value: 9080)
– HTTPTransport_2: port=9444 (original value: 9443)
– HTTPTransport_3: port=9091 (original value: 9090)
– HTTPTransport_4: port=9044 (original value: 9043)

3. Open the virtualhosts.xml file in a text editor, from the
<TDS_root>\appsrv\config\cells\DefaultNode directory.

Edit the file and replace the port numbers as listed below:

– HostAlias_1: port=9081
– HostAlias_3: port=9444
– HostAlias_4: port=9091
– HostAlias_5: port=9044

4. Open a command prompt (or terminal) window and go to the directory
<TDS_root>\appsrv\bin.

5. Issue the following command: startserver server1 or ./startServer.sh
server1

6. After a couple of minutes, depending on your system’s speed, you should see
a message stating that the server was started successfully.

7. If you have another application server installed, you may want to try to start it
also to make sure that it is running without any problems.
 Appendix B. Additional configuration help 581

Configuration
1. The IBM TDS Configuration Tool will appear when the computer restarts.

2. In the Tools window, on the right-hand menu, select an administrator DN, for
example: cn=root, and set the password, for example: tdsadmin.

3. Click Configure database on the right-hand menu, and select Create a new
database.

4. For the password, enter the administrator user ID and password; we used
db2admin for the user name and db2admin for the password.

5. Enter the name of the database as TDSDB.

6. Select the first option in the next window, Create a universal DB2 database
(UTF-8/UCS-2).

7. Select C: as the database location.

8. Review the summary and click Finish to create the database.

9. Once the creation of the database is complete, close the window.

IBM HTTP Server, IBM HTTP Web server plug-in, and
Tivoli Performance Viewer installation

Follow the steps outlined below to install IBM HTTP Server, the Web server
plug-in and the Tivoli Performance Viewer.

1. Change to the WebSphere Application Server directory under the WebSphere
Business Integration Server Foundation install image.

2. Run the install utility, setup.exe, and deselect the application server.

3. After accepting the license agreement, select Add features to the existing
copy in the next window. Make sure that the PATH points to an existing
WebSphere Business Integration Server Foundation installation.

4. Select only the following components:

– IBM HTTP Server V1.3
– Web server plug-ins for IBM HTTP Server V1.3
– Tivoli Performance Viewer
– Dynamic Cache Monitor
– Performance Servlet

Note that some components may already be installed and these components
will be grayed out.

5. Change the location of the IBM HTTP Server installation directory.
582 WebSphere Business Integrator Server Foundation V5.1 Handbook

6. Specify the Administrator password to run IBM HTTP Server as a background
Windows service.

7. Review the summary and click Finish to install the additional components.

Creating a WebSphere cluster
These instructions provide details of configuration steps required to create a
clustered WebSphere Application Server or WebSphere Business Integration
Server Foundation environment.

Federating nodes
This task entails adding the WebSphere Business Integration Server Foundation
V5.1 nodes to the WebSphere Application Server Network Deployment server.
Perform the following steps on each WebSphere Business Integration Server
Foundation V5.1 node:

1. Change to the /usr/WebSphere/AppServer/bin directory.

2. Issue the following command to federate WebSphere Business Integration
Server Foundation node to Deployment Manager.

./addNode.sh <dmgr_hostname>

The output from this command should look like the following example.

Example: B-1 addNode.sh output

./addNode.sh m10df56f
ADMU0116I: Tool information is being logged in file
 /usr/WebSphere/AppServer/logs/addNode.log
ADMU0001I: Begin federation of node m10df4ff with Deployment Manager at
 m10df56f:8879.
ADMU0009I: Successfully connected to Deployment Manager Server: m10df56f:8879
ADMU0505I: Servers found in configuration:
ADMU0506I: Server name: server1
ADMU2010I: Stopping all server processes for node m10df4ff
ADMU0512I: Server server1 cannot be reached. It appears to be stopped.
ADMU0024I: Deleting the old backup directory.
ADMU0015I: Backing up the original cell repository.
ADMU0012I: Creating Node Agent configuration for node: m10df4ff
ADMU0014I: Adding node m10df4ff configuration to cell: m10df56fNetwork
ADMU0016I: Synchronizing configuration between node and cell.
ADMU0018I: Launching Node Agent process for node: m10df4ff
ADMU0020I: Reading configuration for Node Agent process: nodeagent
ADMU0022I: Node Agent launched. Waiting for initialization status.
ADMU0030I: Node Agent initialization completed successfully. Process id is:
 11426
 Appendix B. Additional configuration help 583

ADMU0524I: WebSphere Embedded Messaging support not installed; Queue Manager
 not created
ADMU9990I:
ADMU0300I: Congratulations! Your node m10df4ff has been successfully
 incorporated into the m10df56fNetwork cell.
ADMU9990I:
ADMU0306I: Be aware:
ADMU0302I: Any cell-level documents from the standalone m10df4ff configuration
 have not been migrated to the new cell.
ADMU0307I: You might want to:
ADMU0303I: Update the configuration on the m10df56fNetwork Deployment Manager
 with values from the old cell-level documents.
ADMU9990I:
ADMU0306I: Be aware:
ADMU0304I: Because -includeapps was not specified, applications installed on
 the standalone node were not installed on the new cell.
ADMU0307I: You might want to:
ADMU0305I: Install applications onto the m10df56fNetwork cell using wsadmin
 $AdminApp or the Administrative Console.
ADMU9990I:
ADMU0003I: Node m10df4ff has been successfully federated.

Creating clusters and cluster members
The following guidelines demonstrate how to configure a business process
container in a cluster:

1. Log in to the WebSphere Application Server Administrative Console on the
Network Deployment machine.

2. Verify that all nodes are running and are in a synchronized state. Also verify
that all node agents are up and running. This is illustrated in Figure B-1 on
page 585 and Figure B-2 on page 585.
584 WebSphere Business Integrator Server Foundation V5.1 Handbook

Figure B-1 List of nodes and statuses

Figure B-2 List of node agents and statuses

3. Click Cluster and New to create a new cluster.

4. Specify the name of the cluster and add existing application servers to this
cluster. Application servers (or cluster members) will be created in the next
step. Verify that all the replication options are checked as indicated in
Figure B-3 on page 586. Click Next.

Note: No applications servers exist prior to creating the cluster. Application
servers will be created and deployed on individual nodes as part of cluster
creation.
 Appendix B. Additional configuration help 585

Figure B-3 Create a new cluster

5. In the next window (step 2), choose a name for the cluster member
(WebSphere Business Integration Server Foundation application server).
Also select a node where this server will be deployed as part of the cluster.
Accept defaults for the remaining options. Make sure to select Create
Replication Entry in this Server option. Select the default application
server1 template. Click Apply to create the cluster member. Do not click
Next yet, since we are going to add more cluster members.
586 WebSphere Business Integrator Server Foundation V5.1 Handbook

Figure B-4 Create New Clustered Servers

6. Create another cluster member by filling out appropriate entries as indicated.
Click Apply to create the new cluster member. The process is shown in
Figure B-5 on page 588.
 Appendix B. Additional configuration help 587

Figure B-5 Create New Clustered Serves

7. Once each node has a cluster member (application server), as indicated in
the figure below, click Next to go to Step 3.

Figure B-6 Cluster members

8. Review the summary information and click Finish to create the cluster and
the cluster members.
588 WebSphere Business Integrator Server Foundation V5.1 Handbook

Figure B-7 Create New Cluster summary

9. The cluster will be created and the status will be set to an unknown state, as
indicated in the figure below. Make sure to save the changes by clicking the
Save link at the top of the screen.

10.During the save operation, make sure to select the Synchronize changes
with Nodes option, as indicated in Figure B-8.

Figure B-8 Save WebSphere configuration with Synchronization enabled

11.Once the save operation finishes, the main Administrative Console window
will be displayed. Verify that all nodes are in the synchronized state by
navigating to System Administration → Nodes.

12.Verify that the cluster state is currently set to stop by navigating to Servers →
Clusters.
 Appendix B. Additional configuration help 589

This concludes the tasks necessary to create a WebSpher cluster and
WebSphere Business Integration Server Foundation cluster members.
590 WebSphere Business Integrator Server Foundation V5.1 Handbook

Appendix C. Additional material

This redbook refers to additional material that can be downloaded from the
Internet as described below.

Locating the Web material
The Web material associated with this redbook is available in softcopy on the
Internet from the IBM Redbooks Web server. Point your Web browser to:

ftp://www.redbooks.ibm.com/redbooks/SG246318.zip

Alternatively, you can go to the IBM Redbooks Web site at:

ibm.com/redbooks

Select the Additional materials and open the directory that corresponds with
the redbook form number, SG246318.

C

© Copyright IBM Corp. 2004. All rights reserved. 591

ftp://www.redbooks.ibm.com/redbooks/SG246318.zip
ftp://www.redbooks.ibm.com/redbooks/SG246318.zip
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

Using the Web material
The additional Web material that accompanies this redbook includes the
following files:

File name Description
SG246318.zip Zipped code samples

System requirements for downloading the Web material
The following system configuration is recommended:

Hard disk space: 20MB minimum
Operating System: Windows 2000 Server
Processor: Pentium® 4, 1GHz minimum
Memory: 512MB minimum

How to use the Web material
Create a directory on your workstation, for example: C:\redbooks\SG246318,
and unzip the contents of the Web material zip file into this folder.
592 WebSphere Business Integrator Server Foundation V5.1 Handbook

acronyms
1PC One-phase commit

2PC Two-phase commit

AAT Application Assembly Tool

ACID Atomicity, Consistency,
Isolation, Durability

AMC Application / Module /
Component

AMI Application Managed
Internationalization

API Application Programming
Interface

BMP Bean Managed Persistency

BPE Business Process Engine

BPEL4WS Business Process Execution
Language for Web Services

CEI Common Event Infrastructure

CMI Container Managed
Internationalization

CMP Container Managed
Persistency

CMR Container Managed
Relationship

CORBA Common Object Request
Broker Architecture

CPU Central Processing Unit

CSS Cascading Style Sheet

DD Deployment Descriptor

DMZ Demilitarized Zone

EAR Enterprise Archive

EIS Enterprise Information
Systems

EJB Enterprise JavaBeans

EJB QL EJB Query Language

EM Extended Messaging

Abbreviations and
© Copyright IBM Corp. 2004. All rights reserved.
FAR Flow Archive

FDML Flow Definition Markup
Language

FP FixPack

GMT Greenwich Mean Time

GUI Graphical User Interface

HA High Availability

HACMP™ High Availability Cluster
Multi-Processing

HTML Hypertext Markup Language

HTTP Hypertext Transfer Protocol

IBM International Business
Machines Corporation

IE Integration Edition
(WebSphere Studio)

ITSO International Technical
Support Organization

J2EE Java 2 Enterprise Edition

JAR Java Archive

JAX-RPC Java API for XML-based RPC

JCA Java Connector Architecture

JDBC Java Database Connection

JMS Java Message Service

JNDI Java Naming and Directory
Interface

JSP JavaServer Pages

JVM Java Virtual Machine

LDAP Lightweight Directory Access
Protocol

MDB Message-Driven Bean

MVC Model-View-Controller

ND Network Deployment

NLS National Language Support
 593

OASIS Organization for the
Advancement of Structured
Information Standards

ORB Object Request Broker

OS Operating System

PME Programming Model
Extension

PMI Performance Monitoring
Interface

QL Query Language

QoS Quality of Service

RDB Relational Database

RMI/IIOP Remote Method Invocation /
Internet Inter-ORB Protocol

RRA Relational Resource Adapter

SDK Software Development Kit

SOA Service Oriented Architecture

SOAP Simple Object Access
Protocol

SQL Structured Query
Language

SSS Staff Support Service

UDDI Universal Description,
Discovery and Integration

WAR Web Archive

WIM Work Item Manager

WSDL Web Services Description
Language

WSFL Web Services Flow Language

WSIF Web Services Invocation
Framework

XML Extended Markup Language

XSLT Extensible Stylesheet
Language Transformations
594 WebSphere Business Integrator Server Foundation V5.1 Handbook

Related publications

The publications listed in this section are considered particularly suitable for a
more detailed discussion of the topics covered in this redbook.

IBM Redbooks
For information on ordering these publications, see “How to get IBM Redbooks”
on page 598. Note that some of the documents referenced here may be available
in softcopy only.

� Patterns: Serial and Parallel Processes for Process Choreography and
Workflow, SG24-6306

� IBM WebSphere Application Server V5.1 System Management and
Configuration WebSphere Handbook Series, SG24-6195

� IBM WebSphere V5.1 Performance, Scalability, and High Availability
WebSphere Handbook Series, SG24-6198

� WebSphere Application Server and WebSphere MQ Family Integration,
SG24-6878

� Exploring WebSphere Studio Application Developer Integration Edition V5,
SG24-6200

� A Practical Guide to the IBM Autonomic Computing Toolkit, IBM Redbook,
SG24-6635

� WebSphere Application Server Enterprise V5 and Programming Model
Extensions, SG24-6932

Online resources
These Web sites and URLs are also relevant as further information sources:

� WebSphere Business Integration Web site

http://www.ibm.com/websphere/integration

� WebSphere Business Integration Adapters Web site

http://www.ibm.com/websphere/integration/wbiadapters/

� WebSphere Business Integration Server Foundation Web site

http://www-306.ibm.com/software/integration/wbisf/requirements/
© Copyright IBM Corp. 2004. All rights reserved. 595

http://www.ibm.com/websphere/integration
http://www.ibm.com/websphere/integration/wbiadapters/
http://www-306.ibm.com/software/integration/wbisf/requirements/

� WebSphere Studio Application Developer Integration Edition requirements

http://www-306.ibm.com/software/integration/wsadie/requirements/

� WebSphere Business Integration Server Foundation requirements

http://www.ibm.com/software/integration/wbisf/reqirements/

� WebSphere Business Integration Server Foundation support

http://www.ibm.com/software/integration/wbisf/support/

� IBM AIX Fix central

https://techsupport.services.ibm.com/server/aix.fdc

� WebSphere MQ supported platforms

http://www.ibm.com/software/integration/mqfamily/platforms/supported/
wsmq_for_aix_5_3.html

� WebSphere Business Integration products - platform support

http://www.ibm.com/software/integration/websphere/mqplatforms/
supported.html

� Tivoli Directory Server supported platforms

http://www.ibm.com/software/tivoli/products/directory-server/platforms.html

� IBM DB2 system requirements

http://www-306.ibm.com/software/data/db2/udb/sysreqs.html

� WebSphere MQ Books and Manuals

http://www.ibm.com/software/ts/mqseries/library/manualsa/index.htm

� IBM DB2 Information center

http://publib.boulder.ibm.com/infocenter/db2help/index.jsp

� WebSphere MQ Queue Manager Clusters documentation

http://publibfp.boulder.ibm.com/epubs/html/csqzah06/csqzah06tfrm.htm

� WebSphere Application Server V5: Using WebSphere and WebSphere MQ
clustering

http://publib-b.boulder.ibm.com/Redbooks.nsf/RedbookAbstracts/tips0224.html
?Open

� WebSphere Application Server Network Deployment Information Center

http://publib.boulder.ibm.com/infocenter/ws51help/topic/com.ibm.websphere.n
d.doc/info/ae/ae/tins_install.html

� WebSphere Application Server support

http://www.ibm.com/software/webservers/appserv/was/support/
596 WebSphere Business Integrator Server Foundation V5.1 Handbook

http://www-306.ibm.com/software/integration/wsadie/requirements/
http://www.ibm.com/software/integration/wbisf/reqirements/
http://www.ibm.com/software/integration/wbisf/support/
https://techsupport.services.ibm.com/server/aix.fdc
http://www.ibm.com/software/integration/mqfamily/platforms/supported/wsmq_for_aix_5_3.html
http://www.ibm.com/software/integration/websphere/mqplatforms/supported.html
http://www.ibm.com/software/tivoli/products/directory-server/platforms.html
http://www-306.ibm.com/software/data/db2/udb/sysreqs.html
http://www.ibm.com/software/ts/mqseries/library/manualsa/index.htm
http://publib.boulder.ibm.com/infocenter/db2help/index.jsp
http://publibfp.boulder.ibm.com/epubs/html/csqzah06/csqzah06tfrm.htm
http://publib-b.boulder.ibm.com/Redbooks.nsf/RedbookAbstracts/tips0224.html?Open
http://publib.boulder.ibm.com/infocenter/ws51help/topic/com.ibm.websphere.nd.doc/info/ae/ae/tins_install.html
http://www.ibm.com/software/webservers/appserv/was/support/

� WebSphere Business Integration Server Foundation Process Choreographer
library

http://www.ibm.com/developerworks/websphere/zones/was/wpc.html

� WebSphere Application Server V5.1 Information Center

http://publib.boulder.ibm.com/infocenter/ws51help/index.jsp

� IBM developerWorks: Web services programming tips and tricks: Roundtrip
issues, an introduction

http://www-106.ibm.com/developerworks/webservices/library/ws-tip-roundtrip1
.html

� IBM developerWorks: Customizing WebSphere Application Server Enterprise
Process Choreographer Web Client, Part 1: “Adapting the look and feel”

http://www-106.ibm.com/developerworks/websphere/library/techarticles/wasid/
WPC_Client1/WPC_Client1.html

� Specification: Common Base Event

http://www.ibm.com/developerworks/webservices/library/ws-cbe/

� IBM developerWorks: Autonomic computing

http://www.ibm.com/developerworks/autonomic/

� IBM developerWorks: On the road to self-healing computing systems:
Standardizing product logs

http://www.ibm.com/developerworks/rational/library/2084.html

� IBM WebSphere Developer Technical Journal: Creating Extended Messaging
Applications for WebSphere Application Server Enterprise, Version 5

http://www-106.ibm.com/developerworks/websphere/techjournal/0304_klinger/kl
inger.html

� IBM developerWorks: WebSphere V5 Extended Messaging Support

http://www-106.ibm.com/developerworks/websphere/library/techarticles/0302_w
adley/wadley.html

� IBM developerWorks: IBM WebSphere Developer Technical Journal: Simplify
Applications by Using WebSphere Extended Messaging

http://www-106.ibm.com/developerworks/websphere/techjournal/0303_green/gree
n.html

� IBM developerWorks: Introduction to container-managed persistence and
relationships, Part 3

http://www-106.ibm.com/developerworks/edu/ws-dw-wscomp3-i.html

� IBM developerWorks: Goetz, B. 2004: Java Theory and Practice: Garbage
Collection and Performance

http://www-106.ibm.com/developerworks/java/library/j-jtp01274.html
 Related publications 597

http://www.ibm.com/developerworks/rational/library/2084.html
http://www-106.ibm.com/developerworks/websphere/techjournal/0304_klinger/klinger.html
http://www-106.ibm.com/developerworks/websphere/library/techarticles/0302_wadley/wadley.html
http://www-106.ibm.com/developerworks/websphere/techjournal/0303_green/green.html
http://www.ibm.com/developerworks/websphere/zones/was/wpc.html
http://publib.boulder.ibm.com/infocenter/ws51help/index.jsp
http://www-106.ibm.com/developerworks/webservices/library/ws-tip-roundtrip1.html
http://www-106.ibm.com/developerworks/websphere/library/techarticles/wasid/WPC_Client1/WPC_Client1.html
http://www.ibm.com/developerworks/webservices/library/ws-cbe/
http://www.ibm.com/developerworks/autonomic/
http://www-106.ibm.com/developerworks/edu/ws-dw-wscomp3-i.html
http://www-106.ibm.com/developerworks/java/library/j-jtp01274.html

� IBM developerWorks: Java internationalization basics

http://www-106.ibm.com/developerworks/java/edu/j-dw-javai18n-i.html

� IBM developerWorks: International calendars in Java

http://www-106.ibm.com/developerworks/java/library/j-javacal/

� IBM developerWorks: Share and Share Alike - A New Project Interchange
Feature for Eclipse and WebSphere Studio

http://www-106.ibm.com/developerworks/websphere/library/techarticles/0309_b
ergschacher/bergschacher.html

� Microsoft Visual C Toolkit Web site

http://msdn.microsoft.com/visualc/vctoolkit2003/

How to get IBM Redbooks
You can search for, view, or download Redbooks, Redpapers, Hints and Tips,
draft publications and Additional materials, as well as order hardcopy Redbooks
or CD-ROMs, at this Web site:

ibm.com/redbooks

Help from IBM
IBM Support and downloads

ibm.com/support

IBM Global Services

ibm.com/services
598 WebSphere Business Integrator Server Foundation V5.1 Handbook

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.ibm.com/support/
http://www.ibm.com/support/
http://www.ibm.com/services/
http://www.ibm.com/services/
http://msdn.microsoft.com/visualc/vctoolkit2003/
http://www-106.ibm.com/developerworks/websphere/library/techarticles/0309_bergschacher/bergschacher.html
http://www-106.ibm.com/developerworks/java/library/j-javacal/
http://www-106.ibm.com/developerworks/java/edu/j-dw-javai18n-i.html

Index

Symbols
“push down” technology 500

Numerics
1PC 593
2PC 593

A
AAT 593
abstract method 441
Access intent 17, 449, 452

Bean level 453
Method level 454

Access Intent Decision 465
Access Intent Policy 452
Access tab 469
Access type 458

Update
Exclusive 459
No Collision 459
Weakest Lock at Load 459

ACID 593
action bar 129
Activities 127, 139
Activity

Invoke 143
Java snippet 151

ActivitySession 17, 100, 449
acwa.jar 486
Add Catch 219
Add Fault Handler 270
Administration 49, 103, 515, 523, 589
Administrative Console

Install 81
Administrative Extensions 75
Advanced partner interactions 204
Agent 112
Agent Controller 111–112
AIX

Install verification 55
AIX port 9090 54
Alarm 418
© Copyright IBM Corp. 2004. All rights reserved.
AlarmListener 418
AlarmManager 422
Alternate execution paths 204
AMC 593
AMI 593
AMT 469
API 593
AppBootstrapBean 420–421
Application / Module / Component 593
Application Assembly Tool 593
application client 489
Application Managed Internationalization 593
Application Profile 453
Application profiling 14, 17, 449, 452

API 456
Assembly 469
Decision algorithm 454
Isolation Levels 464
Overview 450
Planning 456
setup 456
tasks 452

Application Programming Interface 593
Application server 33, 35, 106, 388

services 35
Application shutdown 388
Application startup 387
application-managed internationalization 550
Application-Managed Tasks 469
AppStartUp 379
AppStartUpHome 379
Architecture 32, 130–131, 497
Assign activity 127, 172, 216, 225, 235, 245

Activity assign 148
Asynchronous activity 124
Asynchronous bean framework 415
Asynchronous Beans 388, 527

API 527
Application Profile 418
Assembly 430
Configuration 431
Deployment 433
Design 417
Development 421
 599

EJB cache code 422
Sample scenario 419
Security 418
Singleton code 421
Test environment 425
Transactions 417
types 418

Asynchronous beans 17, 415
Asynchronous interface 146
Asynchronous invocation 233, 244
asynchronous programming 375
AsynchScope 422
Atomicity, Consistency, Isolation, Durability 593
Automated migration 91

B
back-end services 23
base DN 42
basic activities 139
Basic configuration 36
Bean Managed Persistency 593
BeanTaskInfo 395
Bidirectional work area partitions 482
Binding information 15
BINDING transport type 81
BMP 593
bottom-up approach 101
BPE 593

Web client 130
BPE API 288
BPE container 35, 43, 59, 123, 130

cluster 80
scalability 72

BPE database 289
BPE Supporting Components 41, 56
BPEDB 58
BPEL 13, 90, 122, 135, 206, 294, 319, 345, 361,
377, 398, 562
BPEL Editor 100, 129
BPEL invocation 244
BPEL partner link 229
BPEL process 145
BPEL4WS 11, 14, 18, 25, 86, 90, 121–122, 139,
311, 362, 593
BPEL4WS debugger 91
BPEL4WS specification 122
bpelFault 268
BRBeansCloudscapeEJB 334

BRBeansDB2.jar 350
brbeansDefaultProperties 335
brbPropertiesFile 335
breakpoints 184
Breakpoints View 186
Business Integration 212
Business Integration perspective 92
Business logic 437, 487
Business process

development 90
Business Process Container 42, 192, 298, 392

database 57
install 43, 59
Install Wizard 61

Business Process Engine 593
Business Process Execution container 35
Business Process Execution container architec-
ture 131
Business Process Execution Language for Web
Services 11, 14, 18, 86, 122, 593
Business processes 90, 157
Business Relevant 315
Business Rule Beans 17, 331

Deployment 349
Development 333
Invoke activity 346
Partner Link 345
process 344
Rule 90
sample 332
Unit test 347

C
C/C++ compiler 568
Calendar 391
caller 544
Caller identity 453
canvas 129
Cascading Style Sheet 593
case statement 261
catch 219
Catch All 272
CBE 311
CBE Event browser 324
CEI 17, 309, 593

configuration 321
CEI application 322
CEI client 311
600 WebSphere Business Integrator Server Foundation V5.1 Handbook

CEI database 321
CEI server 311
Central Processing Unit 593
CICS transaction gateway 22
Class loader

policy 516
classification 339
Client 112
Client stub 296
Cloudscape 111
Cluster Memebers 584
CMI 593
CMM 353
CMP 435, 495, 593
CMP attributes 441
CMP Entity Bean 439
CMP over Anything 435

Architecture 436
deployment 445
resource adapter 446
Sample scenario 437
Stored procedure 438

CMR 459, 495, 593
CMT 469
Collection Increment 457, 462
Collection Scope 457

ActivitySession 461
Transaction 461

Collection scope 461
Command bean 296
Commit after 124
Commit before 124
Common Base Event 311
Common Event Infrastructure 17, 309, 593
Common Object Request Broker Architecture 593
Compensation 125, 259, 281

properties 282
Complex sequencing 204
Complex Types 284
Concurrency Control 457
Conditional Link 246
Configuration 40

CEI 321
Class loader policy 516
Dynamic Query 514, 516
Staff service 44
WebSphere 33, 105, 566

configuration
IBM HTTP Server 40

consecutive port numbers 567
Container Managed Internationalization 593
Container Managed internationalization 547
Container Managed Messaging 14, 353
Container Managed Persistence 435
Container Managed Persistence over Anything 17
Container Managed Persistency 593
Container Managed Relationship 459, 593
Container Manager Persistence over Anything 91
Container Task 457
Container-Managed Tasks 469
Containers 34
Controller 103, 438
CORBA 593
CORBA C++ SDK 38
correlation 140, 164, 243
Correlation sets 128, 239
CPU 593
Create a new Process Instance 163
Create Application Profile 456
Create Queue Manager 41
create tables and datasources 284
CRUD method 437
CSD05 49
CSS 593
Cumulative Fix 39
Cumulative Fix 3 51, 77
custom Access Intent policy 456
custom events 317
Custom installation 38
Custom Object pool 527
Customizing pick 238

D
daemon process 111
Data perspective 427
Database connection 427
Database Stored Procedure 438
DB2 439, 579
DB2 Enterprise Server Edition 57
DB2 FixPack 5 50
DB2_JDBC_DRIVER_PATH 43, 60, 349, 515
db2set 57
DB2UNIVERSAL_JDBC_DRIVER_PATH 43, 60
DbrbPropertiesFile 338
DD 593
Debug Perspective 186
Debug View 186
 Index 601

Debugging 114, 183
Debugging process 183
Default access intent 453
default namespaces 207
Defined Access Intent Policies 476
delete deployment code 283
Delete process 199
Delimeter 258
Demilitarized Zone 593
Deploy process 177
Deploying process 192
Deployment

Startup Beans 387
deployment code

delete 283
Deployment Descriptor 593
Deployment Manager node 80
details area 129
Development environment 87, 333
Development Integration Test Environment 88
dirty reads 464
disk space 47
distexcep.jar 486
Distributed configuration 45
distributed map 91
Distributed work areas 482
DMZ 593
Dynamic Query 17, 451, 495

Access Intent 453, 519
API 496, 502
Client implementation 503
Configuration 514, 516
Design 501
Design concerns 501
Development 496, 499
Import supporting application 504
Install query.ear 516
Java libraries 499
Local client programming model 503
Locking 517
Performance 501
Performance considerations 517
Remote client programming model 503
Sample scenario 497
Security 520
service 495
Transactions 517

Dynamic Query Bean 502
Dynamic Query service 500

Dynamically listen for JMS queues 416

E
EAR 593
efixes 39
EIS 90, 101, 593
EJB 13, 99, 124, 145, 283, 290, 333, 353, 415, 435,
450, 480, 563, 593
EJB binding 178
EJB binding proxy 294
EJB container 34, 451
EJB custom finder 424
EJB method authorization 502
EJB module 193, 336, 384, 398, 469, 486
EJB Module re-start 388
EJB QL 17, 424, 495, 593
EJB Query Language 593
EJB RDB mapping 425
EM 17, 593
Embedded HTTP server 12, 34
Embedded Messaging 108, 584
Embedded MQ 110
Embedded WebSphere Application Server 37
empty activity 128
Enterprise Archive 593
Enterprise Extensions 289, 496
Enterprise Information Systems 101, 593
Enterprise Java Beans 435, 593
Enterprise services 101
Environment Variable Definition 60
Error handling 204
Event 402
Event browser 324
event consumers 310
Event listener 419
event source 310
Event structure 311
EventListener 419
events-client.jar 314
events-consumer.jar 314
executePlan() method 502
executeQuery() method 502, 507
Export 350, 562
Expression 170, 247
Extended Access 100
Extended Access tab 469
Extended Markup Language 594
Extended Messaging 17, 593
602 WebSphere Business Integrator Server Foundation V5.1 Handbook

data mapping 358
Process Choreographer 361

Extended messaging 353
Assembly 370
Deployment 371
Development 356
Output Ports 365
Sample scenario 354
Trace 366
Unit test 363

Extended Messaging bean 356
Extended Messaging Provider 371
Extended Messaging Service 371
Extended Messaging tab 365
Extended Services tab 543
eXtensible Markup Language 15
eXtensible Style Language 255
Extensible Stylesheet Language Transformations
594
External interface 131, 134
External service 168, 565

F
Factory 131–132
failed state 132
FAR 593
Fault 220, 268
Fault Handler 130, 213, 217–218, 273, 278
Fault handling 269
fault reply 143
faults 270
FDML 14, 91, 122, 593

migration 122
findByPrimaryKey() method 459, 518
finished state 132
FirstStep 38
Fix Central Web site 47
Fixed Value 149
FixPack 593
Flow 125
flow activity 128
Flow Archive 593
Flow Definition Markup Language 593
flushPool() method 527
FP 593

G
Generate Deploy Code 177

Generate Deploy Code wizard 96
Generate Service Proxy 295
generated proxy 294
Generic Process Choreographer API 288
GMT 593
Graphical User Interface 593
Greenwich Mean Time 593
GSKit7 47
GUI 593

H
HA 593
HACMP 593
HelloWorld process 562
High Availability 83, 593
High Availability Cluster Multi-Processing 593
Horizontal scalability 70
Host Process 112
hot-code replace 103
HTML 593
HTML pages 34
HTTP 593
HTTP server 34, 582
Human interaction 26, 133, 204
Hypertext Markup Language 593
Hypertext Transfer Protocol 593

I
I18N 18
i18n 539
IBM Agent Controller 117
IBM DB2 41
IBM DB2 ESE Server 48
IBM DB2 UDB Client 49
IBM HTTP Server 38, 52, 583

configuration 40
install 55

IBM HTTP Server V1.3.x 53
IBM HTTP Server V2.0 53
IDSWebApp.war 37
IE 593
Implementation 139, 212, 340, 361, 381, 524
Import 67, 102, 168, 206, 332, 398, 425, 504, 562
Initialization parameters 340
Initiation messages 239
Input messages 239
input messages 137
Input Port 372
 Index 603

InputMessageJSP 301–302
Install 37, 321, 350, 516, 578

Administrative Console 81
Business Process Container 43
Network Deployment 37, 74
query.ear 516
Verify 49
WebSphere Business Integration Server Foun-
dation 37

Installation 36, 321, 578
Verify 38

Integration Application 94
Integration Edition (WebSphere Studio) 593
Integration Edition tooling 94
Integration Server Administrative Extensions 75
Integration Server v5.1 98
Integration Server View 106
Interactions 137
interface 7–8, 15, 22, 91, 126, 138, 208, 230, 294,
336, 486, 498, 526
interim fixes 39, 51, 77
Internal interface 131, 134
Internationalization 18, 100, 539

Application managed 543
Assembly 556
Container managed 543
Development 542
EJBs 547
Runtime environment 556
Sample scenario 541
servlets 543
Unit test 554

Internationalization context 415
Internationalization service 14, 527, 539
Internationalization tab 547
Internationalization type 543
interruptible process 123
Interruptible processes 123, 193, 204
Invoke activity 127, 143, 170, 265
invoke rule client 346
IPC-based connection 81

J
J2C 34, 101
J2C Authentication 446
J2C Authentication alias 44
J2EE 12, 16, 593

Asynchronous 353

J2EE Client Application 337
J2EE containers 34
JAR 593
Java 2 Enterprise Edition 12, 593
Java API for XML-based RPC 295, 593
Java Archive 593
Java class 145
Java Connector Architecture 593
Java Database Connection 593
Java Message Service 12, 110, 593
Java Naming and Directory Interface 35, 593
Java SDK 37
Java snippet 132, 220
Java snippet activity 151, 173
Java Virtual Machine 349, 412, 593
JavaServer Pages 593
JavaSnippet activity 128
JAX-RPC 15, 295, 298, 593
JCA 95, 593
JCA adapters 435
JDBC 593
JMS 12, 90, 124, 293, 353, 388, 416, 593
JMS API

User ID 62
JMS binding 178
JMS binding proxy 298
JMS Connection Factory 363
JMS server 33
JNDI 35, 192, 291, 318, 332, 376, 422, 446, 488,
498, 532, 593
JNDI Explorer 447
JSP 13, 34, 102, 300, 419, 500, 593
JVM 33, 195, 349, 412, 500, 578, 593
JVM debug port 195

L
Last Participant Support 18
launchClient 485
launchpad 37
layer 288
LDAP 593
LDAP Staff Plugin Provider 67
Lightweight Directory Access Protocol 593
link condition 176
local debugging 188
Locale 175, 544
lock conversion 459
lock escalation 459
604 WebSphere Business Integrator Server Foundation V5.1 Handbook

long-running processes 123
loose coupled 294
Lowest level of locking possible 517

M
Manage WebSphere Variables 43, 349
maxReceiveSize 485
maxSendSize 485
MDB 593
meet in the middle mapping 441
message manipulation 254
Message-Driven Bean 593
MessageMappingJSP 301, 304
MessageTaskInfo interface 396
Metadata 500
method signature 270
microflows 123
Microsoft Visual C++ Toolkit 2003 569
Model 14, 136, 311
Model-View-Controller 593
MQ Simulator for Java Developer 110
MQ_INSTALL_ROOT 43, 60
MQJMS_LIB_ROOT 60
multiple Startup Beans 386
Multiprotocol JAX-RPC 16
MVC 506, 593

N
Namespace 207, 220, 229
namespace 165
National Language Support 593
ND 593
Network Deployment 12, 32, 193, 583, 593

install 74
new process instance 139
new Web project 299
NLS 593
No response 358
Node 33, 426, 446
node agent 33, 583
Non-bidirectional work area partitions 482
non-interruptible process 123
Notification bean 401
NotificationSink 402

O
OASIS 18, 594

Object pool 527
Object Pool Manager 526
Object pool service

disable 537
Object pools 14, 18, 523

Coding 527
Development 526
Runtime environment 535
Sample scenario 525
synchronized pool 535
trace 538
Unit Test 532
unsynchronized pool 535

Object Pools API 526
Object query statement 500
Object Request Broker 594
one way-operation 146
One-phase commit 593
onMessage 239
Operating System 46, 594
Optimistic Access 458
Optimistic concurrency 458
Optimistic Concurrency Control Decision 466
ORB 594
Organization for the Advancement of Structured In-
formation Standards 594
OS 594
Otherwise 262, 266
output messages 137
Output Port 357, 373
Output port JNDI name 357
OutputMessageJSP 301, 303

P
palette 129
Participates 124
Partner Link 125, 144, 162, 168, 210, 212, 264

role 125
Partner Link Reference 149
Partner Link role 232
Partner Link type 125
People interaction 131
Performance monitoring 524
Performance Monitoring Interface 594
performance test environment 88
Persistence Manager 451
Persistently in a database 132
Pessimistic Access 457
 Index 605

Pessimistic Concurrency Control Decision 465
phantom read 464
Pick activity 127, 235
PME 16, 35, 90–91, 451, 594
PMEs 16
PMI 594
PoolableObject 527
Predefined Access Intent Policies 463
Preflush 444
prepareQuery() method 502
Pre-production environment 89
Primitive types 284
Problem Determination 283
process area 129
Process choreographer 11, 21, 31, 41, 85, 111,
121, 135, 203, 287, 309, 331, 353, 375, 391, 415,
435, 449, 479, 495, 523, 539

Using 73
Process Debugger 95, 184
Process debugging 183
Process deploy 177, 192
Process deployment 113
process editor 92
Process Engine 184
process instance 26
process interface 166, 208, 318
Process languages 122
Process navigation 131

plug-in 132
process outline 210
process pages 298
Process Partner 229
Process Role 211
Process state management 24
Process termination 198
Process uninstall 201
Process versioning 197
Process Web client 95, 130, 181
Product development 22
Production Environment 89
Profiling Levels 451
Profiling priorization 454
Programming Model Extension 16, 35, 90, 594
Project Interchange 562
Property of a Variable 149
push down method 436
Pushdown 100
push-down method 445

Q
QL 594
QoS 594
qryclient.jar 499
Quality of Service 594
Query bean 500
Query Engine 500
Query Language 594
query.ear 499, 516
query.jar 499
QueryBean 498–499, 502

R
rapid prototyping 24
RDB 594
Read access intent 458
Read Committed 464
Read-ahead 459
Receive activity 127, 232

Activity
receive 139

Redbooks Web site 591, 598
Contact us xix

Relational Database 594
Relational Resource Adapter 451, 594
remote debug 194
Remote Method Invocation / Internet Inter-ORB Pro-
tocol 594
remote process instance 196
Remote Server Testing 113
Removing breakpoints 185
Repeatable read 464
Repeated Read 464
Reply activity 127, 141
request/response operation 145
Requires own 125
Resource Manager 457

Prefetch Increment 462
Resume 188
return error 270
RMI/IIOP 594
role 125
roles 162
RRA 451, 594
Rule Browser 338
rule client 342
rule implementor 336
Rule Management Application 332, 337, 351
606 WebSphere Business Integrator Server Foundation V5.1 Handbook

RuleImplementor 336
RuleManagement 338
rulemgmt 351
running state 132

S
Sample

Database 506
Dynamic Query 497

Sample application 497
Sample scenario 136, 312, 332, 377, 419, 437,
485, 525, 541
Scalability 69–70, 389
scalable BPE container 72
Scheduler API 396
Scheduler database 397
Scheduler service 14, 18, 375, 391

Assembly 410
Clustering 412
Configuration 411
Development 395
JNDI 395
Performance considerations 412
Process Choreographer 398
Sample Scenario 393
Security considerations 411
trace 411
Unit test 407

scope 269
SDK 594
Security

Dynamic Query 520
executeQuery() 520

Security context 376, 415
Security service 35
Sender bean 357, 369
Sender bean test 369
Sequence 125
Sequence Activity 214, 233
Sequence activity 128, 224
serializable transaction 464
server 544
Server Configuration 105
Server definition 105
Server perspective 105
server resources 107
Server targeting support 96
Servers 33

Service composition 22
Service Definition 95
Service information 15
Service interfaces 95
Service Oriented Architecture 5, 22, 594
Service project 94, 215, 283
Service Proxy wizard 96
Services

development 90
Services view 93
Servlet 292, 510, 582
Session bean time-out 383
SessionFaçade 486
Set link 172
setProperties() method 527
Setting breakpoints 185
Shared Work Area 18, 479

Bidirectional propagation 481
Deferred attribute serialization 481
Development 486
Sample scenario 485
Testing 491
Tracing 493

Shared Work Area service 479
Sharing Object pools 536
short-running processes 123
Simple Object Access Protocol 15, 594
Single Transaction 467
Skeleton 102
SOA 5, 12, 287, 594
SOAP 15, 291, 567, 594
SOAP binding 178
SOAP binding proxy 297
software components 108
Software Development Kit 594
Software requirements 36
SOP 311
specified 544
SQL 594
SQL statement 443, 463, 500, 573
SQLJ 501
SSS 594
staff 22
Staff activity 127, 250–251, 253, 300
Staff plug-in 42

configure 82
setup 59

Staff Plugin Provider 82
staff repositories 133
 Index 607

staff resolution plug-in 133
Staff service

Configuration 44
configure 66

Staff support 133
Staff Support Service 594
Standalone client 288
start() method 380
Startup Bean 375
Startup Beans 375, 404, 419

Assembly 385
Deployment 387
Development 378
JNDI considerations 386
priorities 385
Problem determination 390
Runtime Environment 387
runtime flow 387
Sample scenario 377
Scalability 389
Security considerations 382
Security identity 385
start() method 388
stop() method 376
trace 390
Transactional considerations 382
Unit Test 383

Startup beans 18
Startup Enterprise Bean 379
Startup service runtime flow 387
Startup session bean 379
State and status persistence 123
State Observer plug-in 311
stateful session bean 375
Step Into 188
Step Over 188
Step Return 188
stop() method 380
Stopping process 200
Stored procedure 435
stored procedure 568
stress test environment 88
structured activities 139
Structured Query Language 594
SWA 18, 479
Switch activity 127, 261
Synchronous interface 140, 145
Synchronous invocation 213
synchronous invocation 215, 224

system test environment 88

T
target namespace 165
Target Server 98, 336
Task 73, 164, 394, 396, 450, 496, 532, 563

status 403
task ID 406
Task session bean 396
TaskHandler 395–396
TaskInfo 396
Terminate 188
terminate activity 128, 221
Terminate process 198
terminated state 132
test environment 563
Test process,Process Test 177
Test server 407
Testing 88, 282, 291, 313, 348, 355, 377, 395, 428,
438, 488, 499, 526
Threading behavior 124
Throw activity 267
throw activity 128
TimeZone 174
Tivoli Directory Server 48, 580

installation 37
top-down approach 101
Topology 73, 94
Transaction isolation level 464
Transaction service 35
Transaction termination 503
Transactional behavior 124
Transactionality 123
Transactions

Dynamic Query 517
Transform Service 145
transformer activity 127
Transformer Editor 95
Transformer Service Activity 254
Transiently in memory 132
Two-phase commit 593
Type Mapping 284

U
UDDI 12, 15, 594
Uninstalling process 201
Universal Description, Discovery and Integration
15, 594
608 WebSphere Business Integrator Server Foundation V5.1 Handbook

Universal JDBC Driver 61
Universal Test Client 103, 291, 332, 347, 367, 438,
499
universal test client 102
Update access intent 458
updateWizard 39
user.language 555
user.region 555
User-defined fault 268
user-defined JSPs 305
UserDefinedPushDownMethodsImpl 436
UserInternationalization 546
UserWorkArea 480, 482
UTC 102, 447, 551

V
Variable or Part 149
Variable View 187
Variables 43, 126, 152, 160, 344–345, 515
Vertical scalability 70, 72
View 219, 321, 575
visual condition builder 91
Visual Expression 170, 247, 262

W
wait activity 128
WAR 594
wasStartupPriority 386
WeakestLockAtLoad 462
Web Archive 594
Web client 130, 133, 298

install 44
Web client customization 307
Web container 34
Web server plug-ins 12
Web services 15, 294, 435
Web Services Description Language 13, 594
Web Services Flow Language 594
Web Services Invocation Framework 15, 285, 295,
594
webclient.tld 299
WebSphere

Configuration 33, 105, 566
WebSphere Application Server 12
WebSphere Application Server Enterprise 19, 133,
354, 433

Architecture 133
WebSphere Application Server Plug-in 53

WebSphere Business Integration Adapters 22
WebSphere Business Integration Server Founda-
tion 12

features 12
install 37, 50
platforms 13

WebSphere cluster 79, 583
WebSphere environment 86
WebSphere MQ 7, 41, 48–49, 108, 356, 578

install 56
Messaging 108
messaging provider 372

WebSphere MQ Client 48
WebSphere MQ JMS Provider

configure 65
WebSphere MQ Resources 81
WebSphere plug-in 34
WebSphere Process Choreographer 19, 204
WebSphere Studio Application Developer Integra-
tion Edition 86

features 14
Platforms 14

WebSphere Test Environment 102, 179, 428
WebSphere Variables 59, 349
While activity 127
WIM 594
Work 14, 367, 418, 448, 451
Work Area

create 483
size 485

Work area partition service 480
Work Area Partitions

manage 483
Work Area service

enable 484
work item 252
Work Item Manager 133, 594
Work object 421
WorkArea context 481
WorkArea Partition 480
Workbench 91
Workflow 7, 21
workflow support 90
Workload management 536
WorkManager 418
WorkManager configuration 431
wpc

businessRelevant 316
wsadmin 197, 322, 584
 Index 609

WSDL 13, 90, 101–102, 125, 137, 207, 251, 288,
345, 594

port type 139
WSDL Editor 157
WSDL Service 145
WSFL 18, 594
WSIF 15, 132, 285, 298
WSIFMessage 289
wsOptimisticRead 463
wsOptimisticUpdate 463
wsPessimisticRead 463
wsPessimisticUpdate 463
wsPessimisticUpdate-Exclusive 463
wsPessimisticUpdate-noCollision 463
wsWeakestLockAtLoad 463

X
XAResource 35
XML 15, 594
XPath 255
XPath Expression 257
XSL 255
XSLT 594
610 WebSphere Business Integrator Server Foundation V5.1 Handbook

(1.0” spine)
0.875”<->

1.498”
460 <->

 788 pages

W
ebSphere Business Integrator

Server Foundation V5.1 Handbook

®

SG24-6318-00 ISBN 0738490857

INTERNATIONAL
TECHNICAL
SUPPORT
ORGANIZATION

BUILDING TECHNICAL
INFORMATION BASED ON
PRACTICAL EXPERIENCE

IBM Redbooks are developed by
the IBM International Technical
Support Organization. Experts
from IBM, Customers and
Partners from around the world
create timely technical
information based on realistic
scenarios. Specific
recommendations are provided
to help you implement IT
solutions more effectively in
your environment.

For more information:
ibm.com/redbooks

WebSphere Business Integration
Server Foundation V5.1
Handbook

Process
Choreography with
WebSphere Studio
Integration Edition
V5.1

Runtime and
development of
BPEL4WS with
sample code

J2EE Programming
Model Extensions

This IBM Redbook describes the technical details of
WebSphere Business Integration Server Foundation and
discusses using WebSphere Studio Application Developer
Integration Edition for application development. It provides
valuable information for system administrators, developers
and architects about the products covered. This redbook
specifically focuses on WebSphere Process Choreographer
and on solutions implementing it.

Part 1, “Architecting a WebSphere Enterprise solution”
includes high-level details about WebSphere solutions using
WebSphere Business Integration Server Foundation.

Part 2, “Setting up the environment” provides step-by-step
details about installing the runtime and development
environments.

Part 3, “Implementing WebSphere Enterprise solutions”
provides details about the J2EE Programming Model
Extensions and functions in WebSphere Business Integration
Server Foundation. You can learn how to design, develop,
assemble, deploy and administer applications in the
WebSphere Business Integration Server Foundation
environment.

Back cover

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

	Front cover
	Contents
	Notices
	Trademarks

	Preface
	The team that wrote this redbook
	Become a published author
	Comments welcome

	Part 1 Architecting a WebSphere Enterprise solution
	Chapter 1. Positioning WebSphere Enterprise
	1.1 Business challenges
	1.1.1 IT systems and processes must enable change
	1.1.2 New applications must exploit existing assets
	1.1.3 IT products must generate an increasing return on investment

	Chapter 2. Product overview
	2.1 Products
	2.1.1 WebSphere Business Integration Server Foundation V5.1
	2.1.2 IBM WebSphere Studio Application Developer Integration Edition V5.1

	2.2 Key technologies
	2.2.1 Web services
	2.2.2 J2EE concepts
	2.2.3 PMEs
	2.2.4 BPEL4WS
	2.2.5 WebSphere Process Choreographer

	Chapter 3. Scenarios
	3.1 Scenario 1: Service composition
	3.2 Scenario 2: Process state management
	3.3 Scenario 3: Human interaction

	Part 2 Setting up the environment
	Chapter 4. Runtime environment
	4.1 Architecture
	4.1.1 WebSphere Application Server base components
	4.1.2 Business Process Execution container
	4.1.3 Programming Model Extensions

	4.2 Basic configuration
	4.2.1 Planning
	4.2.2 Software requirements
	4.2.3 Installation
	4.2.4 Configuration

	4.3 Distributed configuration
	4.3.1 Planning
	4.3.2 Software requirements
	4.3.3 Installation
	4.3.4 Configuration

	4.4 Configuring for scalability
	4.4.1 Planning
	4.4.2 Software requirements
	4.4.3 Installation
	4.4.4 Configuration

	4.5 Configuring for high availability

	Chapter 5. Development environment
	5.1 Introduction
	5.2 WebSphere Studio Application Developer Integration Edition V5.1
	5.2.1 WebSphere Studio Application Developer Integration Edition V5.1 at a glance
	5.2.2 WebSphere Studio Application Developer Integration Edition Workbench
	5.2.3 Integration Edition tooling
	5.2.4 Development with WebSphere Studio Application Developer Integration Edition

	5.3 WebSphere Test Environment
	5.3.1 WebSphere Test Environment benefits
	5.3.2 WebSphere Test Environment overview
	5.3.3 Supported software components

	5.4 Remote test server
	5.4.1 Agent Controller
	5.4.2 Supported remote server testing scenarios
	5.4.3 Configuring the IBM WebSphere Test Environment for the remote test server

	Part 3 Implementing WebSphere Enterprise solutions
	Chapter 6. Process choreographer: introduction
	6.1 Concepts
	6.1.1 Process languages
	6.1.2 Non-interruptible and interruptible processes
	6.1.3 Transactional behavior
	6.1.4 Sequences and flows
	6.1.5 Parts of a business process

	6.2 Development tooling support
	6.2.1 BPEL Editor
	6.2.2 The Web client

	6.3 Runtime environment
	6.3.1 Business Process Execution container architecture

	Chapter 7. Process choreographer: developing a simple process
	7.1 Sample scenario
	7.1.1 Interactions between involved partners
	7.1.2 Input messages and output messages

	7.2 Activities in the sample
	7.2.1 Receive activity
	7.2.2 Reply activity
	7.2.3 Invoke activity
	7.2.4 Assign activity
	7.2.5 Java snippet
	7.2.6 Preparing to develop the process
	7.2.7 Developing a new process
	7.2.8 Deploying and testing a process in the IBM WebSphere Test Environment
	7.2.9 Debugging a process in WebSphere Test Environment
	7.2.10 Deploying a process to WebSphere Business Integration Server Foundation
	7.2.11 Debugging a process on WebSphere Business Integration Server Foundation
	7.2.12 Process versioning
	7.2.13 Uninstalling deployed processes

	Chapter 8. Process choreographer: developing a complex process
	8.1 Introduction
	8.2 Preparation
	8.2.1 Importing the prepared NiceJourney
	8.2.2 Creating the prepared NiceJourney step-by-step

	8.3 Validation implementation
	8.3.1 Preparation
	8.3.2 Sequence activity
	8.3.3 Invoke - Java Class synchronous invocation
	8.3.4 Assign
	8.3.5 Fault Handler
	8.3.6 Java snippet
	8.3.7 Terminate

	8.4 Reserve Flight implementation
	8.4.1 Preparation
	8.4.2 Sequence activity
	8.4.3 Invoke - Java class synchronous invocation
	8.4.4 Assign

	8.5 Reserve Car implementation
	8.5.1 Preparation
	8.5.2 BPEL process partner
	8.5.3 Sequence activity
	8.5.4 Invoke - BPEL Asynchronous invocation
	8.5.5 Assign
	8.5.6 Pick activity
	8.5.7 Correlation sets
	8.5.8 Reply - BPEL Asynchronous invocation
	8.5.9 Assign
	8.5.10 Conditional link

	8.6 Reserve Hotel implementation
	8.6.1 Preparation
	8.6.2 Sequence activity
	8.6.3 Staff activity
	8.6.4 Transformer Service activity

	8.7 Bill Customer implementation
	8.7.1 Preparation
	8.7.2 Switch
	8.7.3 Import the Payment Processing Services
	8.7.4 Creating the partner links
	8.7.5 Credit Card case
	8.7.6 Debit Card case
	8.7.7 Unknown Card Otherwise case
	8.7.8 Fault handling
	8.7.9 Compensation

	8.8 Testing
	8.9 Problem determination and tips
	8.9.1 How to delete generated deployment code
	8.9.2 Forgetting to create tables and datasources
	8.9.3 Type mapping - primitive and complex types

	Chapter 9. Process choreographer: clients
	9.1 Standalone client
	9.1.1 Invoking a business process using the Process Choreographer API
	9.1.2 Invoking a business process using the generated façade EJBs
	9.1.3 Invoking a business process as a Web service using the generated proxy

	9.2 Web client
	9.2.1 Customizing process pages
	9.2.2 Staff activity
	9.2.3 More information about Web Client customization

	Chapter 10. Common Event Infrastructure
	10.1 Introduction
	10.2 Sample scenario
	10.3 Development
	10.3.1 Setting up the development environment
	10.3.2 Configuring a process to report events
	10.3.3 Creating custom events using the Java API

	10.4 Configuration
	10.4.1 Configuring CEI in WebSphere Business Integration Server Foundation

	10.5 Testing
	10.6 More information

	Chapter 11. Business Rule Beans
	11.1 Prerequisites
	11.2 Sample scenario
	11.3 Development
	11.3.1 Development environment setup
	11.3.2 Developing the rule implementor
	11.3.3 Creating and configuring the rule using the Rule Management Application
	11.3.4 Creating the rule client
	11.3.5 Using Business Rule Beans in Process Choreographer

	11.4 Unit test
	11.5 Deployment

	Chapter 12. Extended messaging
	12.1 Prerequisites
	12.2 Sample scenario
	12.3 Development
	12.3.1 Creating an Extended Messaging bean
	12.3.2 Using Extended Messaging with Process Choreographer

	12.4 Unit test
	12.4.1 Creating and configuring a server
	12.4.2 Testing the LogSender in isolation
	12.4.3 Testing the Sender bean in the simple process

	12.5 Assembly
	12.6 Deployment

	Chapter 13. Startup beans
	13.1 Prerequisites
	13.2 Sample scenario
	13.3 Development
	13.3.1 Additional development considerations

	13.4 Unit test
	13.5 Assembly
	13.5.1 Priorities when using multiple Startup beans

	13.6 Runtime environment
	13.6.1 Scalability

	13.7 Problem determination

	Chapter 14. Scheduler service
	14.1 Prerequisites
	14.2 Sample scenario
	14.3 Development
	14.3.1 Steps for using the Scheduler API
	14.3.2 Using Scheduler with Process Choreographer
	14.3.3 Notification bean

	14.4 Unit test
	14.5 Assembly
	14.6 Configuration
	14.7 More information
	14.7.1 Problem determination
	14.7.2 Security considerations
	14.7.3 Clustering
	14.7.4 Performance considerations
	14.7.5 Future direction

	Chapter 15. Asynchronous beans
	15.1 Prerequisites
	15.2 Design
	15.3 Sample scenario
	15.3.1 Understanding the sample application

	15.4 Development
	15.5 Test environment
	15.6 Assembly
	15.7 Configuration
	15.8 Deployment

	Chapter 16. Container Managed Persistence over Anything
	16.1 Container Managed Persistence over Anything architecture
	16.2 Sample scenario
	16.2.1 CMP over a database stored procedure

	Chapter 17. Application profiling
	17.1 Prerequisites
	17.2 Overview
	17.3 Planning
	17.3.1 Access Intent Policies
	17.3.2 Predefined Access Intent Policies
	17.3.3 Isolation Levels and Access Intents
	17.3.4 Access Intent Decision
	17.3.5 Switching Access Intents within a Single Transaction

	17.4 Assembly

	Chapter 18. Shared Work Area service
	18.1 Prerequisites
	18.1.1 Work area partition service
	18.1.2 Distributed Work Areas

	18.2 Managing Work Area partitions
	18.3 Sample scenario
	18.4 Development
	18.5 Testing

	Chapter 19. Dynamic Query
	19.1 Prerequisites
	19.2 Sample scenario
	19.3 Development
	19.3.1 Dynamic Query service
	19.3.2 Design concerns and recommendations
	19.3.3 Dynamic Query Bean API
	19.3.4 Development environment setup
	19.3.5 Development of Dynamic Query sample

	19.4 Unit test
	19.4.1 Configuring the application server
	19.4.2 Running the sample application

	19.5 Configuration
	19.5.1 Installing query.ear
	19.5.2 Application class loader policy configuration

	19.6 More information
	19.6.1 Performance considerations
	19.6.2 Security considerations

	Chapter 20. Object pools
	20.1 Prerequisites
	20.2 Sample scenario
	20.3 Development
	20.3.1 Object Pools API
	20.3.2 Coding with Object pools

	20.4 Unit test
	20.5 Runtime environment
	20.5.1 Configuration in runtime

	20.6 Problem determination and troubleshooting

	Chapter 21. Internationalization (i18n)
	21.1 Prerequisites
	21.2 Sample scenario
	21.3 Development
	21.4 Unit test
	21.5 Assembly
	21.6 Runtime environment

	Part 4 Appendixes
	Appendix A. Additional sample application configurations
	Project Interchange archive import/export
	HelloWorld process application
	Integration Server V5.1 test environment setup
	Adding the process to the test server

	External service for the simple process
	Building a stored procedure in DB2 for the CMP over Anything sample

	Appendix B. Additional configuration help
	WebSphere MQ setup instructions
	DB2 Enterprise Server Edition V8.1 installation
	Tivoli Directory Server V5.2 installation
	IBM HTTP Server, IBM HTTP Web server plug-in, and Tivoli Performance Viewer installation
	Creating a WebSphere cluster

	Appendix C. Additional material
	Locating the Web material
	Using the Web material
	System requirements for downloading the Web material
	How to use the Web material

	Abbreviations and acronyms
	Related publications
	IBM Redbooks
	Online resources
	How to get IBM Redbooks
	Help from IBM

	Index
	Back cover

