WebSphere. HUi\ElE

WebSphere Business Integration

Server Foundation V5.1
Handbook

Process Choreography with WebSphere
Studio Integration Edition V5.1

Runtime and development of
BPEL4WS with sample code

~ J2EE Programming Model
Extensions

Peter Kovari
Lisa Boardman
Giles Dring
Richard Johnson
Hirotake Kitabayashi
Salman Moghal
Raphael Mueller
Sudhakar Nagarajan
Yu Zeng

ibm.com/redbooks Red h OOkS

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

International Technical Support Organization

WebSphere Business Integrator Server Foundation
V5.1 Handbook

November 2004

SG24-6318-00

Note: Before using this information and the product it supports, read the information in
“Notices” on page Xxiii.

First Edition (November 2004)

This edition applies to WebSphere Business Integration Server Foundation V5.1 on Microsoft
Windows 2000 Server, IBM AIX 5.2, Red Hat Linux; WebSphere Studio Application Developer
Integration Edition V5.1 on Microsoft Windows 2000 Professional, Microsoft Windows XP Pro.

© Copyright International Business Machines Corporation 2004. All rights reserved.
Note to U.S. Government Users Restricted Rights -- Use, duplication or disclosure restricted by GSA ADP
Schedule Contract with IBM Corp.

Contents

Notices Xiii
Trademarks e Xiv
Preface XV
The team that wrote thisredbook. XVi
Become a publishedauthor Xix
Comments Welcome. e Xix
Part 1. Architecting a WebSphere Enterprise solution 1
Chapter 1. Positioning WebSphere Enterprise. 3
1.1 Businesschallenges 4
1.1.1 IT systems and processes must enable change. 5
1.1.2 New applications must exploit existingassets 6
1.1.3 IT products must generate an increasing return on investment 9
Chapter 2. Productoverview it 11
2.1 Products e 12
2.1.1 WebSphere Business Integration Server Foundation V5.1........ 12
2.1.2 IBM WebSphere Studio Application Developer Integration
Edition V5.1 .. 13
2.2 Keytechnologies. 15
221 Webservices. 15
222 J2EEconcepts 16
223 PMES. ... 16
224 BPELAWS 18
2.2.5 WebSphere Process Choreographer 19
Chapter 3. Scenarios. e 21
3.1 Scenario 1: Service composition. i i 22
3.2 Scenario 2: Process state management. 24
3.3 Scenario 3: Humaninteraction 26
Part 2. Settinguptheenvironment 29
Chapter 4. Runtimeenvironment. 31
4.1 Architecture 32
4.1.1 WebSphere Application Server base components 33
4.1.2 Business Process Executioncontainer. 35
4.1.3 Programming Model Extensions. 35

© Copyright IBM Corp. 2004. All rights reserved. iii

4.2 Basicconfiguration 36

421 Planning e 36
4.2.2 Softwarerequirements 36
423 Installation. 36
4.2.4 Configuration. 40
4.3 Distributed configuration 45
4.3.1 Planning 45
4.3.2 Softwarerequirements 46
433 Installation. 48
4.3.4 Configuration. e 54
4.4 Configuring for scalability 69
441 Planningo e 69
4.4.2 Softwarerequirements i 74
443 Installation. 74
4.4.4 Configuration. 77
4.5 Configuring for high availability 83
Chapter 5. Developmentenvironment. 85
5.1 Introduction 86
5.2 WebSphere Studio Application Developer Integration Edition V5.1 89
5.2.1 WebSphere Studio Application Developer Integration Edition V5.1 at a
glance 89

5.2.2 WebSphere Studio Application Developer Integration Edition
Workbench 91
5.2.3 Integration Editiontooling 94
5.2.4 Development with WebSphere Studio Application Developer Integration
Edition. 96
5.3 WebSphere Test Environment 102
5.3.1 WebSphere Test Environment benefits 103
5.3.2 WebSphere Test Environment overview. 104
5.3.3 Supported software components 108
5.4 Remotetestserver e 111
5.4.1 AgentController 111
5.4.2 Supported remote server testing scenarios 113
5.4.3 Configuring the IBM WebSphere Test Environment for the remote test
== T 116
Part 3. Implementing WebSphere Enterprise solutions 119
Chapter 6. Process choreographer: introduction 121
B.1 CONCEPIS . . oo e e 122
6.1.1 Processlanguages 122
6.1.2 Non-interruptible and interruptible processes 123
6.1.3 Transactionalbehavior 124

iv WebSphere Business Integrator Server Foundation V5.1 Handbook

6.1.4 Sequencesandflows i 125

6.1.5 Partsof abusinessprocess 125
6.2 Development tooling support. 129
6.2.1 BPELEdtor. 129
6.2.2 TheWebclient 130
6.3 Runtime environment 130
6.3.1 Business Process Execution container architecture 131

Chapter 7. Process choreographer: developing a simple process 135

7.1 Sample scenario 136
7.1.1 Interactions between involved partners. 137
7.1.2 Input messages and outputmessages 137

7.2 Activitiesinthesample 139
721 Receiveactivity. 139
722 Replyactivity. 141
723 Invoke activity 143
7.2.4 Assignactivity 148
725 Javasnippet 151
7.2.6 Preparingtodeveloptheprocess.............. 153
7.2.7 Developing a NEW ProCeSSo vt v vttt e 156
7.2.8 Deploying and testing a process in the IBM WebSphere Test

Environment 177
7.2.9 Debugging a process in WebSphere Test Environment. 183
7.2.10 Deploying a process to WebSphere Business Integration Server

Foundation 192
7.2.11 Debugging a process on WebSphere Business Integration Server

Foundation 194
7.2.12 ProCess Versioningo 197
7.2.13 Uninstalling deployed processes., 198

Chapter 8. Process choreographer: developing a complex process . . . 203

8.1 Introduction e 204

8.2 Preparation 205
8.2.1 Importing the prepared Nicedourney. 206
8.2.2 Creating the prepared NiceJourney step-by-step.............. 206

8.3 Validation implementation. 212
8.3.1 Preparation 214
8.3.2 Sequence activity 214
8.3.3 Invoke - Java Class synchronous invocation 215
8.3.4 ASSIgN . . . 216
8.3.5 FaultHandler. 217
8.3.6 Javasnippet 220
8.3.7 Terminate e 221

Contents v

Vi

8.4 Reserve Flightimplementation 222

8.4.1 Preparation e 223
8.4.2 Sequence activity 223
8.4.3 Invoke - Java class synchronous invocation. 224
B.4.4 ASSIgN . .. 225
8.5 Reserve Carimplementation. 226
8.5.1 Preparation 228
8.5.2 BPEL process partner.cui i 229
8.5.3 Sequence activity 233
8.5.4 Invoke - BPEL Asynchronous invocation 233
8.5.5 ASSIgN e 234
8.5.6 Pickactivity 235
8.5.7 Correlation sets. 239
8.5.8 Reply - BPEL Asynchronous invocation 244
8.5.9 ASSIgN . . 245
8.5.10 Conditional link e 246
8.6 Reserve Hotel implementation 249
8.6.1 Preparation e 250
8.6.2 Sequence activity e 251
8.6.3 Staffactivity. 251
8.6.4 Transformer Service activity 254
8.7 Bill Customerimplementation.............. 259
8.7.1 Preparation 261
8.7.2 SwitCh 261
8.7.3 Import the Payment Processing Services. 263
8.7.4 Creatingthepartnerlinks 264
875 CreditCardcase.ccvviiin e 264
8.7.6 DebitCardcaseouiiiii i, 265
8.7.7 Unknown Card Otherwisecase............................ 266
8.7.8 Faulthandling 269
8.7.9 Compensation. i e 281
8.8 Testing. 282
8.9 Problem determinationandtips.................. 283
8.9.1 How to delete generated deploymentcode. 283
8.9.2 Forgetting to create tables and datasources. 284
8.9.3 Type mapping - primitive and complextypes 284
Chapter 9. Process choreographer:clients 287
9.1 Standaloneclient. e 288
9.1.1 Invoking a business process using the Process
Choreographer APL. 288

9.1.2 Invoking a business process using the generated facade EJBs. . . 289
9.1.3 Invoking a business process as a Web service using the generated

WebSphere Business Integrator Server Foundation V5.1 Handbook

9.2 Webclient e 298
9.2.1 Customizing ProCeSS PAGES . . .« vt vttt 298
9.2.2 Staffactivity. 300
9.2.3 More information about Web Client customization 307

Chapter 10. Common Event Infrastructure. 309

10.1 Introduction 310

10.2 Sample SCeNArio it e 312

10.3 Development. 313
10.3.1 Setting up the development environment 314
10.3.2 Configuring a processtoreportevents..................... 315
10.3.3 Creating custom events usingthe Java API 317

10.4 Configuration. e 321
10.4.1 Configuring CEl in WebSphere Business Integration Server

Foundation 321

105 Testing. . ..o oo e 325

10.6 More information.......... i 329

Chapter 11. BusinessRuleBeans............................... 331

11.1 Prerequisites i e 332

11.2 Sample scenariot e 332

11.3 Development. e 333
11.3.1 Development environmentsetup 333
11.3.2 Developing the rule implementor 336
11.3.3 Creating and configuring the rule using the Rule Management

Application 337
11.3.4 Creatingtheruleclient 342
11.3.5 Using Business Rule Beans in Process Choreographer. 344

11.4 Unittest. 347

11.5 Deployment. 349

Chapter 12. Extended messaging 353

12.1 Prerequisites e 354

12.2 Sample SCeNariot e 354

12.3 Development. 356
12.3.1 Creating an Extended Messagingbean 356
12.3.2 Using Extended Messaging with Process Choreographer 361

124 Unittest. 363
12.4.1 Creating and configuringaserver............... 363
12.4.2 Testing the LogSenderinisolation 367
12.4.3 Testing the Sender bean in the simple process 369

12.5 Assembly. ... e 370

12.6 Deployment 371

Contents vii

viii

Chapter 13. Startupbeans 375

13.1 Prerequisites e 377
13.2 Sample SCeNariot 377
13.3 Development. 378
13.3.1 Additional development considerations. 382
13.4 Unittest. 383
13.5 Assembly. ... e 385
13.5.1 Priorities when using multiple Startupbeans 386
13.6 Runtime environment 387
13.6.1 Scalability 389
13.7 Problem determination 390
Chapter 14. Schedulerservice.............. 391
14.1 Prerequisites i e 393
14.2 Sample sCenariot e 393
14.3 Development. 395
14.3.1 Steps for using the Scheduler APl 396
14.3.2 Using Scheduler with Process Choreographer............... 398
14.3.3 Notificationbean....... i 401
14.4 Unittest. 407
14.5 Assembly. ... o 410
14.6 Configuration. e 411
14.7 More information 411
14.7.1 Problem determination 411
14.7.2 Security considerations. i i i 411
14.7.3 Clusteringot e 412
14.7.4 Performance considerations 412
14.7.5 Futuredirection. 413
Chapter 15. Asynchronousbeans............................... 415
15.1 Prerequisites e 417
15,2 DESIgN . . ottt 417
15.3 Sample scenariot e 419
15.3.1 Understanding the sample application 420
15.4 Development. e 421
15.5 Testenvironment. 425
15.6 Assembly. e 430
15.7 Configuration. 431
15.8 Deployment 433
Chapter 16. Container Managed Persistence over Anything 435
16.1 Container Managed Persistence over Anything architecture 436
16.2 Sample sCenariottt e 437
16.2.1 CMP over a database stored procedure 438

WebSphere Business Integrator Server Foundation V5.1 Handbook

Chapter 17. Application profiling. 449

17.1 Prerequisites e 450
17.2 OVEBIVIEW . . o oo e e 450
17.3 Planning 456
17.3.1 AccessIntentPolicies. 457
17.3.2 Predefined Access Intent Policies. 463
17.3.3 Isolation Levels and AccessIntents 464
17.3.4 AccessIntentDecision L. 465
17.3.5 Switching Access Intents within a Single Transaction 467
17.4 Assembly. e 469
Chapter 18. Shared Work Areaservice........................... 479
18.1 Prerequisites 480
18.1.1 Work area pattitionservice 480
18.1.2 Distributed Work Areas. 482
18.2 Managing Work Area partitions. 483
18.3 Sample scenario e 485
18.4 Development. e 486
18.5 Testing. . ..o oo e 491
Chapter 19. DynamicQuery 495
19.1 Prerequisites e 496
19.2 Sample scenario . ..o e 497
19.3 Development. e 499
19.3.1 Dynamic Query ServiCe. 500
19.3.2 Design concerns and recommendations. 501
19.3.3 Dynamic Query Bean APl i 502
19.3.4 Development environmentsetup 504
19.3.5 Development of Dynamic Query sample. 506
19.4 Unittest. 514
19.4.1 Configuring the application server......................... 514
19.4.2 Running the sample application 515
19.5 Configuration. e 516
19.5.1 Installingquery.ear 516
19.5.2 Application class loader policy configuration. 516
19.6 Moreinformation 517
19.6.1 Performance considerations 517
19.6.2 Security considerations. i 520
Chapter 20. Objectpools i 523
20.1 Prerequisites e 524
20.2 Sample SCeNAriOttt e e 525
20.3 Development. 526
20.3.1 Object Pools API. 526

Contents ix

20.3.2 Coding with Objectpools 527

20.4 Unittest. e 532
20.5 Runtime environment 535
20.5.1 Configurationinruntime 536
20.6 Problem determination and troubleshooting 538
Chapter 21. Internationalization (i18n) 539
211 Prerequisiteso 541
21.2 Sample SCENANO ottt it e 541
21.3 Development e 542
21.4 Unittest. e 554
21.5 Assembly. 556
21.6 Runtime environment 556
Part 4. AppPendiXes 559
Appendix A. Additional sample application configurations 561
Project Interchange archive import/export 562
HelloWorld process application 562
Integration Server V5.1 test environmentsetup. 563
Adding the process to the testserver, 564
External service for the simpleprocess 565

X

Building a stored procedure in DB2 for the CMP over Anything sample 568

Appendix B. Additional configurationhelp........................ 577
WebSphere MQ setup instructions. i 578
DB2 Enterprise Server Edition V8.1 installation. 579
Tivoli Directory Server V5.2 installation 580
IBM HTTP Server, IBM HTTP Web server plug-in, and Tivoli Performance Viewer
installation. 582
Creatinga WebSpherecluster. i 583
Appendix C. Additional material 591
Locating the Web material i 591
Usingthe Webmaterial i 592
System requirements for downloading the Web material 592
How to use the Web material 592
Abbreviations and acronymso 593
Related publications 595
IBM RedbOOKS e 595
ONliNE rESOUICES . . . o ottt e e e e e e e 595
Howtoget IBM Redbooks 598

WebSphere Business Integrator Server Foundation V5.1 Handbook

Contents

Xi

Xii WebSphere Business Integrator Server Foundation V5.1 Handbook

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult
your local IBM representative for information on the products and services currently available in your area.
Any reference to an IBM product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product, program, or service that
does not infringe any IBM intellectual property right may be used instead. However, it is the user's
responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document.
The furnishing of this document does not give you any license to these patents. You can send license
inquiries, in writing, to:

IBM Director of Licensing, IBM Corporation, North Castle Drive Armonk, NY 10504-1785 U.S.A.

The following paragraph does not apply to the United Kingdom or any other country where such provisions
are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES
THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer
of express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made
to the information herein; these changes will be incorporated in new editions of the publication. IBM may
make improvements and/or changes in the product(s) and/or the program(s) described in this publication at
any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in any
manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of the
materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Information concerning non-IBM products was obtained from the suppliers of those products, their published
announcements or other publicly available sources. IBM has not tested those products and cannot confirm
the accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on
the capabilities of non-IBM products should be addressed to the suppliers of those products.

This information contains examples of data and reports used in daily business operations. To illustrate them
as completely as possible, the examples include the names of individuals, companies, brands, and products.
All of these names are fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrates programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs in
any form without payment to IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating platform for which the
sample programs are written. These examples have not been thoroughly tested under all conditions. IBM,
therefore, cannot guarantee or imply reliability, serviceability, or function of these programs. You may copy,
modify, and distribute these sample programs in any form without payment to IBM for the purposes of
developing, using, marketing, or distributing application programs conforming to IBM's application
programming interfaces.

© Copyright IBM Corp. 2004. All rights reserved. Xiii

Trademarks

The following terms are trademarks of the International Business Machines Corporation in the United States,
other countries, or both:

@server® Cloudscape™ Notes®
@server® CICS® PartnerLink®
Redbooks (logo) (@@ ™ DB2® Redbooks™
developerWorks® Extended Services® Tivoli®
e-business on demand™ ETE™ TME®
ibm.com® HACMP™ VisualAge®
pSeries® Informix® WebSphere®
xSeries® IBM®

AIX® Lotus®

The following terms are trademarks of other companies:

Java and all Java-based trademarks and logos are trademarks or registered trademarks of Sun
Microsystems, Inc. in the United States, other countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the
United States, other countries, or both.

Intel, Intel Inside (logos), MMX, and Pentium are trademarks of Intel Corporation in the United States, other
countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.
Linux is a trademark of Linus Torvalds in the United States, other countries, or both.

Other company, product, and service names may be trademarks or service marks of others.

Xiv WebSphere Business Integrator Server Foundation V5.1 Handbook

Preface

This IBM® Redbook describes the technical details of WebSphere Business
Integration Server Foundation and discusses using WebSphere Studio
Application Developer Integration Edition for application development. It provides
valuable information for system administrators, developers and architects about
the products covered. The book specifically focuses on WebSphere® Process
Choreographer and on solutions implementing it.

Part 1, “Architecting a WebSphere Enterprise solution” on page 1 contains
high-level details about WebSphere solutions using WebSphere Business
Integration Server Foundation.

Part 2, “Setting up the environment” on page 29 provides step-by-step details for
installing the runtime and development environments.

Part 3, “Implementing WebSphere Enterprise solutions” on page 119 provides
details about the J2EE Programming Model Extensions and functions in
WebSphere Business Integration Server Foundation. You can learn how to
design, develop, assemble, deploy and administer applications in the
WebSphere Business Integration Server Foundation environment.

The “Appendixes” on page 559 provide additional information about the sample
application.

© Copyright IBM Corp. 2004. All rights reserved. XV

The team that wrote this redbook

This redbook was produced by a team of specialists from around the world
working at the International Technical Support Organization, Raleigh Center.

l'z., f‘*l ieos 21

/"_"._;‘ rv“’

- . | -

o) A i

1] ;I
{ il
: } (/
|

The Team (left to right): Salman Moghal, Raphael Mueller, Lisa Boardman, Richard Johnson,
Hirotake Kitabayashi, Giles Dring, Peter Kovari

i

8-
=
X

Peter Kovari is a WebSphere Specialist at the International Technical Support
Organization, Raleigh Center. He writes extensively about all areas of
WebSphere. His areas of expertise include e-business, e-commerce, security,
Internet technologies and mobile computing. Before joining the ITSO, he worked
as an IT Specialist for IBM in Hungary.

Lisa Boardman is an IT Specialist at IBM Global Services Australia. Her areas
of expertise include Web application development, Web Services and Internet
technologies. She has two years of experience at IBM and holds a Bachelor of
Computer and Information Science and a Bachelor of Arts(Multimedia Studies)
from the University of South Australia.

Giles Dring is an IT Architect in IBM Global Services based in the UK. He works
with large UK-based companies to create solutions to their business problems.
Lately, he has been spending much of his time helping a UK government
department realize its vision of an integration infrastructure. He is also a teacher
within the IBM Architectural Methods curriculum and has a keen interest in
solution performance. He earned a Masters degree in Electronic and Computer
Engineering from the University of Leeds.

XVi WebSphere Business Integrator Server Foundation V5.1 Handbook

Richard Johnson is an Advisory IT Specialist for the IBM Software Services for
WebSphere consultancy, based at IBM Hursley Park, UK. In this role, he works
as an expert on WebSphere and J2EE, designing and implementing solutions
for IBM clients and business partners across EMEA and worldwide. Richard's
areas of specialization include Process Choreographer, Web Services and
WebSphere to CICS® integration. He has three years of consulting experience
and two previous years within CICS Transaction Server development. He holds a
Masters degree in Chemistry from the University of Oxford.

Hirotake Kitabayashi is a System Engineer for Hitachi Software Engineering in
Tokyo, Japan. Currently, he is working at the IBM WebSphere Performance Lab
in Rochester as a trainee. He has four years of experience in Web and J2EE
technologies. His areas of expertise include Java™ programming, J2EE
performance, Web Services and e-commerce solutions.

Salman Moghal is a Senior IT Specialist for the IBM Software Services for
WebSphere group based in IBM Toronto Lab, Canada. He is a technical lead
and application architect for WebSphere products, with over eleven years of
combined software development experience in Web technologies since 1993.
His areas of expertise include WebSphere and J2EE design, WebSphere
performance and migration, and e-business technologies. Salman's key focus is
on WebSphere Process Choreographer, Web Services, Business Integration,
and emerging open-source technologies. He holds a Bachelor of Engineering
degree in Computer Science from Mississippi State University.

Raphael Mueller works as an IT Specialist within the WebSphere Lab-based
Services department in the development laboratory of Boeblingen, Germany. He
has been working with IBM for more than four years as a Software Engineer in
the development team for DB2® Performance Expert. His areas of expertise
include DB2, WebSphere Application Server, WebSphere Process
Choreographer, J2EE technologies, and computer graphics. He holds a
Diplom-Ingenieur degree in Computer Science from the University of Applied
Sciences Bingen, Germany.

Sudhakar Nagarajan is an IBM WebSphere Certified Specialist, presently team
leader for the WebSphere Globalization testing team under the Software group at
RTP. Prior to joining the Software group, he was an IT specialist under Global
Services, working with various clients. His background includes over ten years of
application design, development and project management on both
mainframe-based and distributed systems across a wide variety of industries and
platforms. He holds a Master's degree in Manufacturing Engineering from REC
Tiruchy, India.

Yu Zeng is a Senior I/T Specialist and certified administrator of WebSphere
Application Server in the AP South Product Introduction Center. Yu Zeng has
over six years of J2EE experience in the IT industry. In addition, he has in-depth

Preface xvii

xviii

industry experience in Utility involving architecture design and J2EE
implementation. He has worked in many WebSphere-related (WebSphere
Application Server/WebSphere Portal Server/WebSphere Everyplace Access)
beta projects in the Product Introduction Center and gained the know-how of
sophisticated technology implementation, especially in J2EE and Java
programming. He has coached many ISV/BPs in China to enable the
development of many solutions based on IBM platforms.

Thanks to the following people for their contributions to this project:

Margaret Ticknor
Jeanne Tucker
Carla Sadtler
Martin Keen
Linda Robinson
Cecilia Bardy

International Technical Support Organization, Raleigh Center

Kent Below

Thomas Bernhardt
Jiirgen Bénsch
Bernd Breier
Russell Butek
Mandy Chessell
Logan Colby
Alexander Dietzsch
Eric Herness

Joshy Joseph
Thomas Kasemir
Matthias Kloppmann
Alexander Koutsoumbos
Wolfgang Kulhanek
Kurt Lind

Fintan McElroy
Frank Neumann

Dr. Hans-Joachim Novak
Gerhard Pfau
Laurent Rieu

Stefan Ruettinger
Ruth Schilling
Joseph Sharpe

Jeff Stratford

Gerd Watmann
Gunnar Wilmsmann

WebSphere Business Integrator Server Foundation V5.1 Handbook

Special thanks for their invaluable contribution to the redbook go to:

Hermann Akermann
Gunnar Wilmsmann

Become a published author

Join us for a two- to six-week residency program! Help write an IBM Redbook
dealing with specific products or solutions, while getting hands-on experience
with leading-edge technologies. You'll team with IBM technical professionals,
Business Partners and/or customers.

Your efforts will help increase product acceptance and customer satisfaction. As
a bonus, you'll develop a network of contacts in IBM development labs, and
increase your productivity and marketability.

Find out more about the residency program, browse the residency index, and
apply online at:

ibm.com/redbooks/residencies.html

Comments welcome

Your comments are important to us!
We want our Redbooks™ to be as helpful as possible. Send us your comments
about this or other Redbooks in one of the following ways:
» Use the online Contact us review redbook form found at:
ibm.com/redbooks
» Send your comments in an Internet note to:
redbook@us. ibm.com
» Mail your comments to:

IBM Corporation, International Technical Support Organization
Dept. HZ8 Building 662

P.O. Box 12195

Research Triangle Park, NC 27709-2195

Preface Xix

http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/contacts.html

XX WebSphere Business Integrator Server Foundation V5.1 Handbook

Part 1

Architecting a
WebSphere
Enterprise
solution

2 WebSphere Business Integrator Server Foundation V5.1 Handbook

Positioning WebSphere
Enterprise

This chapter is a high-level overview of the WebSphere Business Integration
Server Foundation V5.1 product. It also positions the product in the IBM software

palette.

© Copyright IBM Corp. 2004. All rights reserved.

1.1 Business challenges

Computer systems made their business debut in a supporting role, running
administrative systems such as payroll. Over time, IT moved center-stage to
underpin auxiliary processes such as stock control or production planning. This
gradual movement experienced a big shift upon the emergence of the
e-business boom of the mid-nineties, when many organizations went to market
with a business model which placed IT systems firmly in the spotlight. Some of
these pure-play businesses are still with us today, and many traditional
businesses have transformed themselves in part or in whole into e-businesses.

Today, businesses of all sizes continue to increase their reliance on complex IT
systems for their mainstream business functions. This trend is set to continue as
the on demand world places more emphasis on rapid reconfiguration of the
business processes to meet the changing demands of customers and increasing
interdependencies between partner organizations.

In this business environment, those responsible for planning, developing and
managing IT systems face a number of challenges.

» IT systems and processes must enable change

The rapid pace of change is required by the changes in customer
expectations and the business environment. IT systems should be responsive
to these changes, not form a bottleneck in the process.

» New applications must exploit existing assets

Organizations have invested significant amounts in their existing applications.
This leaves a legacy of heterogeneous systems providing islands of function
and data. The challenge is to integrate these islands to provide high-value
business processes greater than the sum of their parts.

» IT projects must generate an increasing return on investment

IT can influence the bottom line by providing significant benefits to core
business processes. Coupling this value with a reduction in development and
support costs dramatically increases the return on any IT investment. The
challenge is to increase the efficiency of development projects without
compromising quality.

WebSphere Business Integration Server Foundation V5.1 and WebSphere
Studio Application Developer Integration Edition V5.1 provide an enterprise
strength build and runtime environment. These products build on the industry
leading WebSphere Application Server and WebSphere Studio Application
Developer products, respectively, adding a number of features which enhance
the capability of IT support organizations to meet the challenges.

4 WebSphere Business Integrator Server Foundation V5.1 Handbook

In the following section, each of the challenges is discussed in turn, outlining the
ways in which the WebSphere Business Integration Server Foundation and
WebSphere Studio Application Developer Integration Edition products can
enhance IT system delivery.

1.1.1 IT systems and processes must enable change

The on demand world requires that businesses react rapidly to a changing
environment. This change may mean re-engineering business processes to take
advantage of increased capabilities provided by partners or to improve the
service provided to customers. The key theme is that IT organizations need to
understand and mirror the requirements of the business.

This cannot be achieved in environments where dependencies between IT
systems are so tightly coupled and business logic exists in so many places that
changes in a component supporting one part of the enterprise cause knock-on
effects in other components. In this situation, developing and testing a seemingly
trivial change snowballs into a considerable effort, and IT processes frustrate the
necessary business change.

Service oriented architecture

Service oriented architectures (SOA) enable flexible, modular applications to be
constructed from heterogeneous systems. The key to this flexibility is the
creation of coarse-grained building blocks known as services. These
self-describing groupings of data and/or function can be combined and
recombined in multiple configurations as business requirements change. The
standard abstractions used within an SOA mean that the underlying
programming language, operating system, geographical location and
organizational ownership are not important. Web services are an example of an
SOA.

The key interaction in a SOA is the binding of a service requester to a service
provider. This may be supported by publication of the service description to a

directory by the service provider, and a discovery of the service by the service
requester.

WebSphere Application Server provides excellent support for Web services.
WebSphere Business Integration Server Foundation adds to this capability by
providing the powerful service composition and dynamic invocation capabilities
of WebSphere Process Choreographer. This can be used as a service integrator
to combine a series of diverse existing services as a single service which is of
use in the modernized systems.

WebSphere Studio Application Developer Integration Edition provides visual
tools to create business processes. This allows business users and developers

Chapter 1. Positioning WebSphere Enterprise 5

to collaborate when creating business processes, enabling rapid prototyping,
development and deployment of code that fits the needs of the business.

More details can be found in:
» Chapter 6, “Process choreographer: introduction” on page 121

» Chapter 7, “Process choreographer: developing a simple process” on
page 135

» Chapter 8, “Process choreographer: developing a complex process” on
page 203

Simplifying code maintenance

One of the most common reasons for changing code is to update the business
logic that it encapsulates, rather than the supporting business flow. Poorly
structured code which does not distinguish between logic and control can
significantly increase the time required to develop and test application changes.
This can also lead to inconsistent application of business logic, where updates
are made to only one part of the codebase.

WebSphere Enterprise provides a number of features which support
management of business logic in a single place within the infrastructure. These
not only impose a structure on the application but mean that maintenance
becomes a configuration rather than a coding activity. Further, this configuration
can be dynamically imported into a live application, reducing the need for
extended outages to implement the code.

More details can be found in:

» Chapter 11, “Business Rule Beans” on page 331
» Chapter 19, “Dynamic Query” on page 495

1.1.2 New applications must exploit existing assets

6

A key trend in the last few years has been the continuing integration of systems
within organizations. There is also a move to increase integration between
partner organizations. In an ideal world, all of these platforms would be planned
and designed with interoperability in mind. Unfortunately, systems have grown by
adding functionality organically. The environment to be integrated may include
functions provided by mainframe transaction handlers, packaged EPR systems,
Web servers and even text-based consoles. To further complicate matters, each
of these platforms may be owned and managed by different groups within
organization or its partners.

WebSphere Business Integrator Server Foundation V5.1 Handbook

An integration platform is required which handles the complexity of this task,
offering a standard mechanism for connecting to and integrating the
heterogeneous environment.

WebSphere Business Integration

WebSphere Business Integration is IBM’s software platform for delivering
integration solutions. The product suite currently includes the following process
engines:

» WebSphere MQ Workflow

Provides development, runtime and monitoring capabilities to manage
long-running workflows which interact with systems and people.

» WebSphere InterChange Server

Provides capabilities to construct business processes which combine existing
function and data from other applications, including common ERP, CRM and
financial packages.

» WebSphere Business Integration Message Broker

Provides transformation and enrichment for in-flight messages, acting as an
intermediary between applications which use different message structures
and formats.

Each of these engines has its own particular strength. The engines can be
combined with one another to cover the full range of business integration
functionality.

WebSphere Business Integration Server Foundation V5.1 is the first release of
the WebSphere Application Server which is named as part of the WebSphere
Business Integration product suite. This reflects the advanced integration
capabilities provided by such capabilities as WebSphere Process
Choreographer.

WebSphere Process Choreographer adds a fourth engine to the product suite. At

first glance, it appears to share capabilities with each of the three other engines:

» It supports long-running processes with staff interaction.

» |t enables composite processes to be created and executed.

» It can operate on the content of messages.

» It can interoperate with the other three engines through the Web services
interface.

Why then would it be selected as part of an architecture? A few arguments for
using WebSphere Process Choreographer are given next.

Chapter 1. Positioning WebSphere Enterprise 7

» Built-in support for service orientation

As discussed previously, the WebSphere Application Server base of
WebSphere Process Choreographer provides native support for Web
services. Any processes created in the tool can be exposed as services for
consumption by service requesters. In addition, the dynamic invocation
capabilities of the product mean that services can be invoked after locating
the service during runtime.

» Fits naturally with J2EE environment

Given that the process engine is based on a J2EE platform, it is an excellent
fit for organizations that have invested in creating J2EE applications and now
wish to deploy visually modeled business processes. WebSphere Process
Choreographer adds a series of workflow capabilities which can dramatically
improve developer productivity and application quality. The visual process
editor means that business users can easily see the processes that are being
created.

» Aligns to WebSphere Business Integration strategy

WebSphere Process Choreographer is developed by the same team that
creates the WebSphere MQ Workflow product. As such, it capitalizes on the
strengths of both this product and WebSphere Application Server. It will also
form a key element of the suite when the WebSphere Business Integration
products move to a common architecture in the near future.

For more details, see also:
» Chapter 6, “Process choreographer: introduction” on page 121

» Chapter 7, “Process choreographer: developing a simple process” on
page 135

» Chapter 8, “Process choreographer: developing a complex process” on
page 203

You can also refer to the following Web site for more information:

http://www.ibm.com/websphere/integration

Application connectivity

As mentioned earlier, the heterogeneous nature of the environments means that
significant time and effort could be required to connect them to a single
integration server. Integration products use the concept of adapters to interface
to applications and technologies. WebSphere Business Integration Adapters
support a wide range of ERP, HR, CRM and supply chain systems, as well as
technology adapters to many popular RDBMS, transaction handlers and
operating systems.

8 WebSphere Business Integrator Server Foundation V5.1 Handbook

http://www.ibm.com/websphere/integration

WebSphere Business Integration Server Foundation provides support for these
adapters. It also includes advances transactional capabilities to overcome
shortcomings in the interfaces exposed by these services.

For more details, see also:

http://www.ibm.com/websphere/integration/wbiadapters/

1.1.3 IT products must generate an increasing return on investment

The challenge of providing higher-value applications is compounded by the drive
to deliver them more cheaply and faster without compromising quality. To
achieve this, the skills of highly trained developers should be applied to real
business problems, rather than to creating common reusable components.

WebSphere Business Integration Server Foundation and WebSphere Studio
Application Developer Integration Edition provide a number of advanced
capabilities to enable IT organizations to be more efficient while continuing to
deliver benefits.

Increasing development productivity

Delivery time is a prime concern for many IT organizations. One way to improve
developer productivity is to capitalize on the advanced capabilities of modern
middleware platforms. This is a double gain, as not only does the development
team spend more time on the business problem but the costly and
time-consuming ongoing maintenance of handcrafted solutions is also
eliminated.

WebSphere Business Integration Server Foundation and WebSphere Studio
Application Developer Integration Edition were designed to enhance the
capabilities of development teams. These extensions to the underlying
technology provide powerful yet simple capabilities to add value to applications.

Refer to the following chapters for further details of these capabilities:

v

Chapter 10, “Common Event Infrastructure” on page 309
Chapter 12, “Extended messaging” on page 353
Chapter 18, “Shared Work Area service” on page 479
Chapter 21, “Internationalization (i18n)” on page 539

vYyy

Advanced middleware

While most applications can be delivered within the constraints of
standards-based development frameworks, there are always situations that call
for an extra degree of control over the runtime behavior of the system. The
developer of such systems is faced with the decision of compromising the design

Chapter 1. Positioning WebSphere Enterprise 9

http://www.ibm.com/websphere/integration/wbiadapters/

10

by adhering to the standard or diverging from the standard to create bespoke
solutions which are not guaranteed to work under future versions.

The products provide support for advanced capabilities that build on concepts
within the current version of the framework and are actively being promoted
within the standards community. These provide an exceptional degree of
flexibility to the developer, with the knowledge that they will be supported for
future versions of the platform.

For further details, please refer to:

Chapter 13, “Startup beans” on page 375

Chapter 14, “Scheduler service” on page 391

Chapter 15, “Asynchronous beans” on page 415

Chapter 16, “Container Managed Persistence over Anything” on page 435

vyvyyy

Performance optimization

Application efficiency can have a real impact on the cost of the runtime
environment. While there is no replacement for good design and coding
practices, WebSphere Business Integration Server Foundation does provide a
number of capabilities to enhance the performance of the runtime environment.

For further details, refer to:

» Chapter 17, “Application profiling” on page 449
» Chapter 20, “Object pools” on page 523

WebSphere Business Integrator Server Foundation V5.1 Handbook

Product overview

WebSphere Business Integration Server Foundation V5.1 and WebSphere
Studio Application Developer Integration Edition V5.1 help companies to reduce
IT complexity, reuse existing resources, and automate business processes
through a powerful but simplified build-to-integrate framework.

This chapter will focus on these two products and provide definitions of the key
technologies these products support. This chapter will discuss:

Web services

J2EE concepts

Programming Model Extensions (PMEs)

Business Process Execution Language for Web Services (BPEL4WS)
Process Choreographer

vyvyyvyyvyy

© Copyright IBM Corp. 2004. All rights reserved. 11

2.1 Products

When IBM WebSphere Business Integration Server Foundation V5.1 is used in
conjunction with WebSphere Studio Application Developer Integration Edition
V5.1 for development, it can deliver a next-generation integration platform
optimized for building and deploying composite applications that extend and
integrate your existing IT assets.

This section will discuss the features of WebSphere Business Integration
Foundation Server V5.1and WebSphere Studio Application Developer
Integration Edition V5.1.

2.1.1 WebSphere Business Integration Server Foundation V5.1

WebSphere Business Integration Server Foundation V5.1 builds on the
WebSphere Application Server to provide a premier Java 2 Enterprise Edition
(J2EE) and Web Services technology-based application platform for deploying
enterprise Web Services solutions for dynamic e-business on demand™.

It represents IBM’s approach to building and deploying SOA-based applications
that can adapt quickly and easily to change. It is designed to support the creation
of reusable services (either new ones or those based on existing services,
back-end systems, Java assets, and packaged applications). Services can then
be combined to form both composite applications and business processes, which
can further leverage business rules to make these applications and business
processes adaptable.

WebSphere Business Integration Server Foundation V5.1 includes all of the
features available in WebSphere Application Server Network Deployment V5.1,

including:

» J2EE 1.3 support (support for some features planned for J2EE 1.4)
» Full XML support

» Full Web services support

» Support for private UDDI registries

» Web Services Gateway

» Database Connectivity

» Embedded HTTP server

» Web server plug-ins

» Authentication and authorization for secure access to Web resources
» Single sign-on and support for LDAP

» Java Message Service (JMS) support

» Dynamic caching

» IBM Tivoli® Performance Viewer

» Integration with third-party performance management tools

12 WebSphere Business Integrator Server Foundation V5.1 Handbook

Browser-based administration and workload management
Intelligent workload distribution across a cluster

Failure bypass

Clustering support

Migration support

vVvyyvyvyy

Platforms

» Windows® 2000, 2003

Solaris

Linux® (Red Hat, Suse, United, etc.)
HP-UX

AIX®

vvyyy

For complete information on system requirements, see:

http://www-306.1ibm.com/software/integration/wbisf/requirements/

2.1.2 IBM WebSphere Studio Application Developer Integration
Edition V5.1

WebSphere Studio Application Developer Integration Edition V5.1 provides the
tools you need to create, develop, test, and manage all of the resources involved
in building Web and enterprise-scale J2EE and Web services applications.
WebSphere Studio Application Developer offers creation tools, editors, wizards,
templates, and code generators that help you rapidly develop J2EE resources
such as HTML files, JSP pages, Java classes and servlets, EJB beans, and XML
deployment descriptors. You can organize these resources into projects that
correspond to modules defined in the J2EE specification. Once the resources
have been created, you can easily test and debug them within the development
environment, or export and test them on a remote server.

A major focus of this product is improving developer efficiency, as reflected in its
existing functionality as well as new features introduced as part of V5.1. The
product allows users to visually develop business processes and V5.1 updates
this capability with a new business process designer and debugger that support
the creation of process flows to conform to the BPEL 1.1 standard. V5.1 also
includes a new editor for the Web Services Description Language (WSDL) that
simplifies user interaction with the product and adds visual clarity to how the
various components interact.

Chapter 2. Product overview 13

http://www-306.ibm.com/software/integration/wbisf/requirements/

In summary, the major new features in WebSphere Studio Application Developer
Integration Edition V5.1 are as follows:

»

Business process designer for creating Business Process Execution
Language for Web Services 1.1 (BPEL4WS) process flows

Integrated visual BPEL debugger

Enhanced performance for installing and debugging, including support for J9
Hot Swap

New visual condition builder to direct the execution of BPEL processes

Automated migration of process flows from Flow Definition Markup Language
(FDML) to BPEL4WS

WebSphere Studio Application Developer Integration Edition also includes the
following Programming Model Extensions (PMEs) that build on Java™ 2
Enterprise Edition (J2EE) standards to accelerate large-scale application
development:

YVVYVYYYVYYVYYYVYVYVYVYYVYYY

Asynchronous beans

Startup beans

Last participant support
Internationalization service
Work areas

Scheduler service

Activity session services
Dynamic query service

WSGW Filters

Object pools

Container Managed Messaging
Distributed Map

Container Managed Persistence over anything
Application profiling

Back-up Cluster Support

Platforms

v

vyvyy

Windows XP

Windows 2000

Windows NT®

Linux (RedHat, Suse, etc.)

For complete information on system requirements, see:

http://www-306.1ibm.com/software/integration/wsadie/requirements/

14 WebSphere Business Integrator Server Foundation V5.1 Handbook

http://www-306.ibm.com/software/integration/wsadie/requirements/

2.2 Key technologies

The following technologies are supported by WebSphere Business Integration
Server Foundation and WebSphere Studio Application Developer Integration
Edition V5.1 and are related to service oriented architectures.

2.2.1 Web services

Web services are a relatively new technology that has received wide acceptance
as an important implementation of service oriented architecture. This is because
Web services provide a distributed computing approach for integrating extremely
heterogeneous applications over the Internet. The Web service specifications are
completely independent of programming language, operating system, and
hardware to promote loose coupling between the service consumer and provider.
The technology is based on open technologies such as:

v

eXtensible Markup Language (XML)

Simple Object Access Protocol (SOAP)

Universal Description, Discovery and Integration (UDDI)
Web Services Description Language (WSDL)

vyvyy

Web services are described by WSDL files which contain:

» Interface information: the interface is described by a combination of port
type, operations supported by the port type and input, output and error
message structures.

» Binding information: the interface may be mapped to one or more concrete
implementations in technologies such as EJB, Java, SOAP or JMS. The
binding information describes the instantiation of the interface.

» Service information: each binding must be associated with a physical
location where the implementation described in the binding executes.
Examples include the location of an EJB, a Java class, an RPC router or JMS
destination.

Note that there are more bindings possible than the combination of SOAP over
HTTP that is usually associated with Web services. The flexibility of WSDL can
be fully exploited in an SOA.

However, the different combinations of bindings and implementations could
prove a significant challenge if the desired result is a flexible application. The
Java API for XML-based Remote Procedure Call (JAX-RPC) and Web Services
Invocation Framework (WSIF) standards were created to address this
challenge. Each of these provides a standard API for invoking Web services from
Java, although JAX-RPC does not specify how services can be invoked over

Chapter 2. Product overview 15

anything other than SOAP over HTTP. Multiprotocol JAX-RPC adds this support
from WebSphere Application Server V5.1.1.

Both Multiprotocol JAX-RPC and WSIF are supported by the WebSphere
Application Server base. WSIF is deprecated from V5.1.1, so Multiprotocol
JAX-RPC should be used for new applications.

A detailed discussion of service oriented architectures and Web services
standards is outside the scope of this book.

2.2.2 J2EE concepts

J2EE defines the standard for developing multi-tier enterprise applications in
Java. J2EE simplifies enterprise applications by basing them on standardized
modular components, by providing a complete set of services to those
components, and by handling many details of application behavior automatically
without complex programming.

WebSphere implements the J2EE platform and provides additional
functionalities. WebSphere also adds new APls and implements additional
services for the J2EE platform in order to provide broader functionality or to bring
future extensions into the product earlier.

The base WebSphere architecture gives flexibility to the system architecture
level, not addressed in the J2EE specification, by separating the managed
processes and implementing an overall administration system.

The J2EE application model divides enterprise applications into three
fundamental parts: components, containers and connectors.

Components are the key functional elements developed for certain applications,
containers are provided by system vendors, while connectors conceal complexity
and promote portability.

2.2.3 PMEs

WebSphere Enterprise brings several Programming Model Extensions (PMEs) to
the application server. The extensions are delivered in different forms, including
services, APls, wizards for development, and deployment extensions.

This book discusses how Programming Model Extensions can be used and
provides sample scenarios to demonstrate how PMEs can be designed,
implemented and maintained in an application. A brief description of each PME is
shown in Table 2-1 on page 17.

16 WebSphere Business Integrator Server Foundation V5.1 Handbook

Table 2-1 WebSphere Programming Model Extensions

Enterprise enablements Description

Activity Session Offers long-running transactions semantics without requiring
XA support for all the resources involved in the unit of work, but
without data integrity. You can keep EJBs active through
multiple transactions and have them passivated at the end of
the activity session.

Application Profiling, Access Intent Allows you to define different Access Intents depending on the
EJB client that is accessing a certain Entity EJB,

allowing much more flexibility in the way you can tune data
access. See Chapter 17, “Application profiling” on page 449 for
more information.

Asynchronous beans Allows J2EE applications (EJBs) to start other threads and
transfer their J2EE context to those threads. See Chapter 15,
“Asynchronous beans” on page 415 for more information.

Business Rule Beans (BRB) Extends the scope of the WebSphere Application Server to
support business applications that externalize their business
rules. See Chapter 11, “Business Rule Beans” on page 331 for
more information.

Common Event Infrastructure (CEI) The Common Event Infrastructure provides the runtime
environment to persistently store and retrieve events from
many different programming environments. See Chapter 10,
“Common Event Infrastructure” on page 309 for more
information.

Container Managed Persistence over Expands container-managed persistence to include the
Anything (CMP/A) capability of persisting data to any back-end. CMP allows
mapping CMP EJBs to back-ends beyond the traditional
relational database. See Chapter 16, “Container Managed
Persistence over Anything” on page 435 for more information.

Dynamic query Extends J2EE EJB QL. You can formulate queries at runtime,
select multiple EJB attributes out of a CMP EJB in a single
SELECT clause, support for GROUP BY. See Chapter 19,
“Dynamic Query” on page 495 for more information.

Extended Messaging (EMS) Enhances standard J2EE Messaging by providing support for
all types of messaging patterns, container support for these
patterns, and code simplification. See Chapter 12, “Extended
messaging” on page 353 for more information.

Chapter 2. Product overview 17

Enterprise enablements

Description

Internationalization (118N)

Allows you to automatically recognize the calling client's time
zone and location information so your application can act
appropriately. This technology allows you to deliver to each
user, around the world, the right date and time information, the
appropriate currencies and languages, and the correct date and
decimal formats. See Chapter 21, “Internationalization (i18n)”
on page 539 for more information.

Last Participant Support

Allows J2EE application to have a single-phase resource (only
one per transaction) in a transaction.

Object pools

Enables an application to avoid creating new Java objects
repeatedly. See Chapter 20, “Object pools” on page 523 for
more information.

Scheduler service

Allows a J2EE application to schedule the execution of tasks in
the future. See Chapter 14, “Scheduler service” on page 391 for
more information.

Shared work area (SWA)

Shared Work Areas provide a solution to pass and propagate
contextual information between application components. For

detailed information, refer to Chapter 18, “Shared Work Area
service” on page 479.

Startup beans

A special kind of EJBs that are executed automatically when an
application starts up or shuts down. See Chapter 13, “Startup
beans” on page 375 for more information.

2.2.4 BPEL4AWS

Business Process Execution Language for Web Services (BPEL4WS) is used to
implement all business processes in WebSphere Business Integration Server
Foundation V5.1. BPEL was originally proposed by IBM (in conjunction with BEA
and Microsoft®) in July 2002 and combined ideas from IBM’s Web Services Flow
Language (WSFL) and Microsoft's XLANG. A technical committee within OASIS
was formed in April 2003, giving BPEL a stronger standards “backbone.” The
language (which may be more accurately described as a “meta language”) is
used to define business process models by enabling the description of Web
services operations, their relationships, and order of execution. It is intended to
support the activities of system architects and software developers who are
increasingly concentrating on taking the Web services created during an earlier
phase of their SOA adoption and linking them together to construct workflows.

18 WebSphere Business Integrator Server Foundation V5.1 Handbook

2.2.5 WebSphere Process Choreographer

WebSphere Process Choreographer provides support for business-process
applications within the WebSphere Application Server. Process Choreographer
supports service composition as specified by Business Process Execution
Language for Web Services (BPEL4WS or abbreviated to BPEL) and enables
developers to define the structure and behavior of a set of Web Services that
jointly implement a business process.

Process Choreographer, also known as the business process container, is the
process engine of WebSphere Application Server Enterprise. It allows
developers to create processes using a visual tool which in turn helps to speed
up application development.

The business processes that are implemented in an enterprise typically require a
mixture of human and IT resources and these processes are supported by
Process Choreographer. A process is a directed graph that starts with an Input
node and ends with an Output node. A process itself is described in WSDL. lts
input and output are described as WSDL messages.

A process can contain many activities. An activity can be the invocation of an
EJB, a Java class, a service or another process. A process can also be
event-driven. For example, it can be paused, waiting for an event, and then
resumed when a message arrives.

Chapter 2. Product overview 19

20 WebSphere Business Integrator Server Foundation V5.1 Handbook

Scenarios

This section outlines a number of ways that WebSphere Business Integration
Server Foundation can be used within an IT solution. In each case, problems,
solutions and benefits are outlined. Of course, the fictitious scenarios used here
are far simpler than the potential regirements seen in the real world.

For further detailed information of potential patterns of usage, please refer to the

redbook Patterns: Serial and Parallel Processes for Process Choreography and
Workflow, SG24-6306.

© Copyright IBM Corp. 2004. All rights reserved. 21

3.1 Scenario 1: Service composition

An insurance company has a significant legacy estate comprising stovepipe
applications, each of which supports a different insurance product. This IT
environment presents a number of issues.

» Highly skilled staff is required

Company staff uses separate applications to work with each product and
requires training in each of them. Some of the applications have highly
specialized interfaces which require experienced staff to be allocated solely to
their support.

The company wishes to begin to consolidate these into a single application
offering a simple user interface. This will free up the experienced staff for
business development.

» Product development is a slow process

Development of new insurance products composed from elements of existing
products takes a long time. This affects the company’s responsiveness to
changes in the market. The company’s market share position is threatened
because its competitors are able to release products much faster.

The company wishes to improve the ability of its business development team
to create innovative products and release them to the market more quickly.

» Customers have limited choices to purchase the products

At present, the only way of accessing the full range of the company’s products
is through the call center or insurance resellers. The reseller staff needs to
attend a series of courses and install specific software to access the
company’s systems. A limited range of products are available on the Web.

The company wishes to improve the customer experience by offering a full
range of products through the Web and simplified integration options services
to partners.

Solution

To achieve these aims, the company has invested in a service oriented
architecture, which is shown in Figure 3-1 on page 23. The key points of the
architecture are as follows.

» Back-end applications are wrapped as Web services

These product-related services use WebSphere Business Integration
Adapters and the CICS transaction gateway to expose functions and data
from the existing systems.

22 WebSphere Business Integrator Server Foundation V5.1 Handbook

»

Business services are constructed using these services

These business services are short-lived, supporting simple processes such
as getting quotes, viewing customer insurance products and submitting
insurance claims. The processes defined in WebSphere Business Integration
Server Foundation contain the logic to route the data to the relevant systems.

New applications and channels use the business services

The company invests in its call center and Web infrastructures to capitalize on
the new services. It also offers these services to insurance resellers for
inclusion in their systems.

Call .Cen.ter Web Channel Insurance
Application Reseller

Mﬂ

WebSphere Business Iniegration
Server Foundatioln

Process A Process B Process C

o‘/\g/\o

~

Life Home Motor
Assurance Insurance Insurance
System System System

Figure 3-1 Service composition

Benefits
This approach offers a number of benefits:

>

Common interface to multiple back-end services

The technical complexities of the back-end implementations are hidden from
the front-end applications.

Functions and data are offered as services based on Web standards, and so
should be supported by a wide range of packaged solutions.

Chapter 3. Scenarios 23

» Isolation of layers in the architecture

The insurance applications can be replaced with new applications which offer
similar functionality without affecting the applications which consume the
services.

Similarly, new channels can be added to the front end without reworking the
services.

» Rapid prototyping of new services

New products can be offered by using the back-end services in different
combinations.

Visual editing of processes means that business users can assist with
development of the services.

3.2 Scenario 2: Process state management

A telecommunications company is implementing a new order process for
customers taking out a cellular phone contract. The company’s requirements are
outlined below.

» The process must be flexible
The business process takes place using three distinct steps:

a. The customer requests a quote and is provided with a quote reference
number.

b. The customer decides to proceed with the order on the basis of the quote.
Contract documentation is printed and sent to customer.

c. The customer returns a signed contract and payment details.

The customer must be able to pause the process at any of these stages.
There are, however, time limits beyond which the order is invalidated and the
customer must request a new quote.

» The process must be accessible from multiple channels

Part of the company’s desire to implement the new process is to give the
customer more ordering options. The company’s channels include stores, a
Web site and call centers. Customers should be able to start the order
process from any of these channels and continue with the same order on
another channel with little delay.

» The system must enforce statutory requirements

The company is required to have a signed copy of the contract and payment
details before proceeding to the setup of the customer’s account. The

24 WebSphere Business Integrator Server Foundation V5.1 Handbook

process must wait for this information to be received before completing the
order.

Solution

The company has implemented a process engine as shown in Figure 3-2. The
key points of the architecture are as follows.

» The process is defined in BPEL4WS

A WebSphere Process Choreographer interruptible process is used to
manage the state of the order. This allows the order state to be stored and
retreived at a later date.

» Front-end applications all access the same process

Once an order process has been started by a customer, the process instance
can be accessed by the different channels. The process offers
message-based interfaces to retrieve the process status and continue the
process.

Contract Contract

WebSphere Business Inteération)
Server Foundation

% First Contact % Proceed with Return Signed

Phone Ordering Process

Quote Proceed’7 Mompletez
M &« N
9 0 0

)
I]
-
Contract Customer Billing
System Letter System System
\\

Figure 3-2 Process state management

Chapter 3. Scenarios 25

Benefits
A number of additional benefits are provided with this solution.

» The process is defined once

The channel applications do not contain any details of the implementation of
the process, only the interfaces through which they need to pass data. This
separation of process and user interface greatly aids future flexibility by
allowing the process to change and new channels to be added.

» Multiple channels can access the same process instance

The active process instances all reside in the same component. This means
that any channel can retrieve and update the state of the process. In addition,
it becomes possible to monitor the progress of the processes and, potentially,
to produce statistics of interest to business users, such as percentage of
quotes converted to orders.

» Business-defined time-outs are enforced

Certain stages in the process have an associated time-out. As an example, a
quote is valid for 30 days form the point that it is raised. WebSphere Business
Integration Server Foundation provides capabilities to implement this time-out
at the points in the process where an incoming message is awaited.

3.3 Scenario 3: Human interaction

26

A company operates a requisiton process to enable its staff to obtain a range of
office supplies from pens and paper up to printers and photocopiers. This
presents a number of challenges.

» High-value items require management approval

Orders over a certain limit require approval from management. Delays in this
process can reduce the productivity of the staff.

» Received goods are often misplaced in the busy postroom

The company wishes to improve the quality of its post-receipt processes.
Each received item should be associated with an order and dispatched to the
correct department immediately. This process should also trigger the
payment process.

Solution

The overal flow of the process is similar to that of the scenario outlined in 3.2,
“Scenario 2: Process state management” on page 24. In this instance, however,
the work is allocated to humans at two points in the process. This contrasts with
the previous case, where the process waited for incoming messages.

WebSphere Business Integrator Server Foundation V5.1 Handbook

» Order approval

Management approval is required at this stage in the process. A WebSphere
Process Choreographer Staff activity is used to assign this approval to
appropriate members of the staff. Interaction is through a portal which links
directly to the WebSphere Business Integration Server Foundation
application.

» Order receipt

The postroom staff is required to mark orders as received within the process.
This is done through another portal, in which all outstanding orders are listed,
allowing postroom staff to select the order and update the status.

Catalog % Approver % Postroom
Application Portal Portal
N A A
WebSphere Businesg Integration h
Server Foundation

Office Supply Reqwsmon Process

Approval'? Complete

N
N\ Q Qe)

Office Supply Financial
System System

Figure 3-3 Human interaction

Benefits

The benefits in this instance are similar to those of the previous scenario outlined
in 3.2, “Scenario 2: Process state management” on page 24, namely, tracking of
orders, with potential management information extraction.

» Humans can contribute to the process

The inclusion of staff activities in the process allows more complex decisions
to be handled while still keeping overall state under the control of the process
engine. The decisions that the humans handle in the process would be
extremely difficult to codify, because they rely on management discretion.

Chapter 3. Scenarios 27

28 WebSphere Business Integrator Server Foundation V5.1 Handbook

Part 2

Setting up the
environment

30 WebSphere Business Integrator Server Foundation V5.1 Handbook

Runtime environment

This chapter provides an overview of the runtime architecture of WebSphere
Business Integration Server Foundation. The features of the product are
described.

This chapter also provides an explanation of the procedures for installing,
configuring, and verifying WebSphere Business Integration Server Foundation

V5.1.

Additionally, the chapter concentrates on the decisions and tasks associated with
WebSphere Business Integration Server Foundation V5.1 from the operational
and administration points of view.

© Copyright IBM Corp. 2004. All rights reserved. 31

4.1 Architecture

Figure 4-1 shows the basic architecture of WebSphere Business Integration
Server Foundation.

s N
NOde Node
e Agent
Application Server
Web HTTP Server Web Container Web
Browser || T —— Sand
. WebSphere > mbedde ervices
Client Plugp-in » HTTP Serverl Engine
Y = [l
Admin Oi ! .E'% i BPE Container :
Ul 1 HE S| 1
O: ; 3! , »| Supporting
! : < ! i Database
L l :| Business ||:<<
Client Container j] 1| Process i
EJB'I Conta?ner i A : -g
1 .
Java Client Oi O: O !_ __________ /\<;: E Re(:)or;f.;%
T 1 7 (7] > osiory
l | N c (File)
J20, Container =
1
Scripting !_ __Q__: O -g
Client |] | e————————————— 4 <
| Name Server (JNDI) :I
| Security Server :I
Supporting
Application Server Services F » Database
PME Modules |[_|[_][] \ -
N\ | Messaging !
| JMS Provider , Server
1
N\

)-7 (Optional) !

Figure 4-1 WebSphere Business Integration Server Foundation V5.1 architecture

WebSphere Business Integration Server Foundation is based on the capabilities
provided by WebSphere Application Server base and Network Deployment
editions. These capabilities are summarized in the next section, with subsequent
sections covering the specific components provided by WebSphere Business
Integration Server Foundation.

32 WebSphere Business Integrator Server Foundation V5.1 Handbook

4.1.1 WebSphere Application Server base components

This section summarizes the components provided by the WebSphere
Application Server base and Network Deployment editions. For a detailed
discussion of these topics, please refer to the redbook /IBM WebSphere
Application Server V5.1 System Management and Configuration WebSphere
Handbook Series, SG24-6195.

Node and node agent

A node is a logical grouping of WebSphere-managed server processes that
share common configuration and operational control. A node is generally
associated with one physical installation of WebSphere Application Server.

Under the more advanced configurations of WebSphere Application Server,
multiple nodes can be managed from a single administration server and the
nodes can collaborate to share the workload amongst themselves. In these
centralized management configurations, each node has a node agent that works
with a Deployment Manager to manage administration processes.

Servers

Servers perform the actual code execution. There are several types of servers,
depending on the configuration. Each server runs in its own JVM.

» Application servers

The application server is the primary runtime component in all configurations.
This is where the application actually executes. All WebSphere Application
Server configurations can have one or more application servers. In the
Network Deployment configuration which WebSphere Business Integration
Server Foundation can build on, multiple application servers are maintained
from a central administration point. In addition, application servers can be
clustered for workload distribution.

» JMS servers

WebSphere Application Server provides an embedded JMS server for
messaging support. In the Base configuration, the JMS server functions are
integrated into the application server. In the Network Deployment and
WebSphere Business Integration Server Foundation configurations, the JMS
server runs in a separate JVM. There is one JMS server per node.

The JMS server can be replaced by another JMS provider, such as
WebSphere MQ.

Chapter 4. Runtime environment 33

34

Containers

The J2EE 1.3 specification defines the concept of containers to provide runtime
support for applications. There are two containers in the application server
implementation:

» Web container

The Web container processes servlets, JSP files and other types of
server-side includes. Each application server runtime has one logical Web
container, which can be modified, but not created or removed.

The Web container provides an embedded HTTP server, although it is
unlikely that this would be used to handle incoming requests in a real
implementation.

» EJB container

The EJB container provides all the runtime services needed to deploy and
manage enterprise beans. It is a server process that handles requests for
both session and entity beans.

EJBs do not communicate directly with the server, instead using the
interfaces provided by the EJB container. The container provides capabilities
such as threading, transaction support and data management.

In addition, there is an application client container which can run on the client
machine.

» J2C container

This container provides services enabling the use of J2EE Connector
Architecture. This allows applications executing in WebSphere Application
Server to communicate with existing systems such as CICS and popular ERP
systems via a simplified API.

HTTP server with WebSphere plug-in

Although the Web container has an embedded HTTP server, a more likely
scenario is that an external Web server will be used to receive client requests.
The Web server can serve requests that do not require any dynamic content, for
example, HTML pages. However, when a request requires dynamic content
(JSP/servlet processing), it must be forwarded to WebSphere Application Server
for handling.

This is achieved using the Web server plug-in. The plug-in is included with the
WebSphere Application Server package for installation on a Web server. The
plug-in can use HTTP or HTTPs to transmit the request from the HTTP server to
the WebSphere Application Server Web container.

WebSphere Business Integrator Server Foundation V5.1 Handbook

Application server services

WebSphere Business Integration Server Foundation provides a number of
application services to assist with creating enterprise-strength applications.

Transaction service

WebSphere applications can use transactions to coordinate multiple updates to
resources as one unit of work such that all or none of the updates are made
permanent. Transactions are started and ended by applications or the container
in which the applications are deployed.

WebSphere Application Server is a transaction manager that supports
coordination of resource managers through their XAResource interface and
participates in distributed global transactions with other OTS 1.2 compliant
transaction managers (for example, J2EE 1.3 application servers).

JNDI

Each application server hosts a name service that provides a Java Naming and
Directory Interface (JNDI) name space. The service is used to register resources
hosted by the application server.

Security service

Each application server JVM hosts a security service that uses the security
settings held in the configuration repository to provide authentication and
authorization functionality.

4.1.2 Business Process Execution container

The Business Process Execution container is a specialized J2EE application
which executes business processes and flows. It handles the lifecycle of a
process, from instantiation of a process template to final deletion of the
completed process.

It relies on a database to manage state and on a JMS provider for transitions
between activities. This means that to make a fully scalable, available installation
of WebSphere Process Choreographer, the characteristics of the underlying
infrastructure must also be considered.

4.1.3 Programming Model Extensions

WebSphere Business Integration Server Foundation provides a number of
valuable extensions to the J2EE specification. These are delivered in many
different forms, including services, APls and tooling extensions. The remainder
of the book is dedicated in a large part to these Programming Model Extensions
(PMEs).

Chapter 4. Runtime environment 35

4.2 Basic configuration

The following section outlines the method for configuring WebSphere Business
Integration Server Foundation on a single Microsoft Windows server.

4.2.1 Planning

The products that will be installed on the single-server implementation are:

» IBM HTTP Server V1.3

WebSphere Business Integration Server Foundation V5.1
DB2 Enterprise Server Edition V8.1

WebSphere MQ V5.3, in a central configuration

»
»
»
» Tivoli Directory Server V5.2

To enable support for WebSphere Process Choreographer, the following
WebSphere Business Integration Server Foundation components must be
configured:

» WebSphere MQ Adapter for BPE
» DB2 Enterprise Server Edition
» (Optional) Staff plug-in. Required if staff interaction is to be employed.

The WebSphere Application Server Network Deployment components will not be
configured in the basic configuration. This component is not required because
the node is not part of a distributed configuration.

4.2.2 Software requirements

Review the operating system requirements for further details:

http://www.ibm.com/software/integration/wbisf/reqirements/

Our operating system installation was Microsoft Windows 2000 Server with SP4.

4.2.3 Installation

The order of installation of the WebSphere components is as follows:

1. WebSphere MQ V5.3
2. DB2 Enterprise Server Edition V8.1
3. Tivoli Directory Server V5.2

36 WebSphere Business Integrator Server Foundation V5.1 Handbook

http://www.ibm.com/software/integration/wbisf/reqirements/

Supporting components

Installation details are given in Appendix B, “Additional configuration help” on
page 577. Refer to the following topics for instructions.

» “WebSphere MQ setup instructions” on page 578
» “DB2 Enterprise Server Edition V8.1 installation” on page 579
» “Tivoli Directory Server V5.2 installation” on page 580

Note: When installing Tivoli Directory Server on the same machine as
WebSphere Business Integration Server Foundation V5.1, do not install
the Embedded WebSphere Application Server V5.0 Express server.

In the new version of Tivoli Directory Server, the administration is done via
a thin client application that must be run from WebSphere Application
Server. Since we already have WebSphere Business Integration Server
Foundation installed on the single-server machine, we don’t need an extra
Express V5.0 installation.

The J2EE application called IDSWebApp.war, which is located in Tivoli
Directory Server install_home, must be installed in WebSphere Business
Integration Server Foundation.

WebSphere Business Integration Server Foundation

Once the prerequisites have been installed, continue with the installation of
WebSphere Business Integration Server Foundation. The WebSphere Business
Integration Server Foundation Installer performs the following tasks.

1. Check prerequisites.
2. Search for WebSphere Application Server family products, V4.x and V5.0.x.

3. Install WebSphere Application Server V5.1 base if not already installed, or
add required features to an existing WebSphere Application Server base
V5.1.0.

4. Install cumulative fix 5.1.0.2 to a base or Network Deployment node.

5. Install 5.1.0 cumulative fix 1 for the Java SDK that V5.1.0.x WebSphere
Application Server products use.

6. Install WebSphere Business Integration Server Foundation product
extensions.

The steps to install WebSphere Business Integration Server Foundation are

given below:

1. Use launchpad.bat to start the installer.

Chapter 4. Runtime environment 37

38

Click Install the product to start the WebSphere Business Integration Server
Foundation V5.1 installation.

3. Accept the license agreement.

4. The tool starts the prerequisite checker. This tool is built into the installer

program. Verify that all prerequisites are met.

Note: The prerequisite checker creates log files in the C:\Document and
Settings\Administrator\Local Settings\Temp\1 folder, which can be used to
troubleshoot installation prerequisite failures.

Once the prerequisite checker has completed, continue by selecting a
Custom installation.

Select all components, including CEI. Deselect Samples for all components.
Also uncheck CORBA C++ SDK support, Javadocs, and Embedded
messaging.

7. Install the product in the directory C:\WebSphere\AppServer.

8. Accept the default node name and the hostname.

9. Run the application server as a service. For this, you will be required to

provide an administrator’s user ID and password.

10.Review the summary and start the installation.

Although the Web container provides an embedded HTTP server, robust Web
applications generally require a separate Web server component. The default
installation of WebSphere Business Integration Server Foundation does not
include IBM HTTP Server or the Web server plug-in. Additionally, Tivoli
Performance and Analysis tools are useful tools to install. Follow the instructions
in “IBM HTTP Server, IBM HTTP Web server plug-in, and Tivoli Performance
Viewer installation” on page 582 to install these components.

Verifying the installation

We will run the Installation Verification tool and some other tests to ensure that
the application server has been installed successfully.

1.
2.

Run the FirstStep.bat utility

Click Verify Installation. This step should automatically launch the server
process. Check that there are no errors in the output, that the message
Installation Verification Complete is shown and that all status are
marked as PASSED.

Click Start the Server and check to see if there are any errors in the log.

4. Click Stop the Server and check to see if there are any errors in the log.

WebSphere Business Integrator Server Foundation V5.1 Handbook

5.

Click Administrative Console to connect to the admin console and log in as
admin to verify admin console functionality.

Installing Cumulative Fix 3 and interim fixes

At the time of writing, Cumulative Fix 3 was the latest available for WebSphere
Business Integration Server Foundation V5.1. It is recommended that this fix and
any other interim fixes be applied, since they address several key issues.

Fixes are available from the WebSphere Business Integration Server Foundation
support site:

© N o o

http://www.ibm.com/software/integration/wbhisf/support/

. Open the WebSphere Business Integration Server Foundation support site

above; navigate to Recommended Updates and open WAS Base/ND 5.1.0.3
Cumulative Fix.

Download the Windows - base package. The file is called
was510_cf3_win.zip.

On the command prompt, set the JAVA_HOME variable to point to the
<WBISF_root>/java folder.

Extract this file into a separate folder. It will create the was510_cf3_win folder.

Note: Cumulative Fix 3 also includes the updatelnstaller listed on the Web
site, so this does not need to be downloaded separately.

Run updateWizard.bat from the was510_cf3_win folder.

Follow the on-screen instructions to install the FixPack.

Select install fixpack. Accept the default location for the FixPack folder.
Follow the remaining instructions to finish installing Cumulative Fix 3.

A number of interim fixes are also available from the WebSphere Business
Integration Server Foundation support site. These are named PQnnnn.

1.

Open the WebSphere Business Integration Server Foundation support site
and navigate to Recommended Updates.

2. Download all interim fixes.

3. Extract the interim fixes into the was510_cf3_win folder. This will create the

efixes directory.

On the command prompt, set the JAVA_HOME variable to point to the
<WBISF_root>\java folder.

Run updateWizard.bat.

Chapter 4. Runtime environment 39

http://www.ibm.com/software/integration/wbisf/support/

6. Accept the default language (English).

7. Follow the on-screen instructions, making sure that IBM WebSphere
Application Server V5.1.0.3 is selected and that the correct application
server installation directory is selected.

8. Select Install Fixes in the next window. This is an efix install, rather than a
FixPack install.

9. Select the directory where efixes were copied above.

10.The wizard will scan for the efixes in the given folder. Select all all listed fixes,
checking that the wizard lists all the fixes that were downloaded.

11.Review the summary and click Finish to install the fixes.

4.2.4 Configuration

The tasks included in this section entail having different components of
WebSphere Business Integration Server Foundation V5.1 configured and
working properly. This section focuses on the product configuration and
integration. These WebSphere Business Integration Server Foundation
components include:

1. IBM HTTP Server
2. BPE components:

a. WebSphere MQ configuration

b. DB2 configuration

c. Tivoli Directory Server Server for Staff plug-in and Global Security
3. BPE container configuration

IBM HTTP Server

In order to configure IBM HTTP Server, verify that the following WebSphere
Business Integration Server Foundation plug-in information is available in the
IBM HTTP Server configuration file.

1. Edit <IHS_root>/conf/httpd.conf.
2. Search for for the ServerName directive and verify that it is set properly.
3. Go to the end of the file and verify that it contains the following lines.

Example 4-1 httpd configuration

LoadModule ibm_app_server_http_module
"C:\WebSphere\AppServer\bin/mod_ibm app_server http.d11"
WebSpherePTuginConfig "C:\WebSphere\AppServer/config/cells/plugin-cfg.xml"

40 WebSphere Business Integrator Server Foundation V5.1 Handbook

BPE supporting components
Configuring BPE container involves several steps:

1. Set up WebSphere MQ Queue Managers and appropriate queues.
2. Set up the DB2 database for BPE container.
3. (Optional) Configure the Staff plug-in to utilize Tivoli Directory Server.

The high-level task plan for configuring the BPE container is given in the
following InfoCenter topic; click WebSphere Business Integration Server
Foundation —» Administering —» Applications — Process
choreographer — Configuring the business process container.

WebSphere MQ

Refer to the InfoCenter for configuration of WebSphere MQ. Navigate to
WebSphere Business Integration Server Foundation — Administering —
Applications — Process choreographer — Configuring the business
process container — Creating the queue manager and queues for the
business process container. At a high level, the following steps must be
completed as documented in the InfoCenter:

1. Create Queue Manager.

Important: During tests, we used WBISFQM1 and ran into the following
MQJMS exception:

MQJMS2005: failed to create MQQueueManager for ‘<queue manager>’

Make sure you have a TCP Listener and a Server Connection Channel; if
either of these is missing, create it.

2. Create WebSphere MQ Cluster as needed (optional).
3. Create the queues.

4. Add the listener for the Queue Manager (optional).

IBM DB2 setup

The database must be configured prior to using the Business Process container.
In the InfoCenter, navigate to WebSphere Business Integration Server
Foundation — Administering — Applications — Process

choreographer — Configuring the business process container — Creating
the database for the business process container. A summary of the tasks that
must be performed to configure DB2 is as follows:

1. Ensure that DB2 is set up and installed properly as per DB2 Installation
Guidelines in the DB2 product documentation

2. In order to avoid deadlocks, make sure db2set DB2 RR_TO RS=YES is set.

Chapter 4. Runtime environment 41

3. Verify that a default DB2 instance is created, db2inst1.

4. Create a new database called BPEDB for Business Process Container, and
the schema for the database. This can be done using the
createDatabaseDb2.ddl script.

5. Verify there are no errors from the script, then bind certain CLI packages to
the database as follows.

Example 4-2 Bindings for the database

db2 connect to BPEDB
db2 bind %DB2PATH%\bnd\@db2c1i.1st blocking all grant public

Note: Note that createDatabaseDb2.ddI creates a database and sample
tables as needed. This script should be used only for creating test and
development databases. For production BPE setup, it is recommended that
you relocate the tables into different table spaces using the
createSchemaDb2.ddl script. Also, adjusting DB2 tuning parameters always
helps from the performance standpoint.

Tivoli Directory Server setup for Staff plug-in

Tivoli Directory Server must be configured before the WebSphere Process
Choreographer Staff plug-in can be used. Review the contents of the Tivoli
Directory Server installation guide prior to proceeding with the Staff plug-in
configuration.

The Tivoli Directory Server must be installed and configured properly with an
appropriate base DN. In our tests, we used ou=itso, o=ibm, c=us.

Important: By default, Tivoli Directory Server installs an instance of
Embedded WebSphere Application Server Express V5.0.2 to provide
administrative support. The Tivoli Directory Server administration application
will not run on the WebSphere Business Integration Server Foundation V5.1
application server.

If the Embedded WebSphere Application Server V5.0.2 and WebSphere
Business Integration Server Foundation V5.1 must coexist on the same
machine, conflicts between TCP/IP ports must be resolved.

Detailed configuration steps can be found in “Tivoli Directory Server V5.2
installation” on page 580.

42 WebSphere Business Integrator Server Foundation V5.1 Handbook

BPE container

The next task is to install and configure the BPE container in WebSphere
Business Integration Server Foundation V5.1.

Installing Business Process Container

The BPE container will be set up to communicate with the WebSphere MQ and
DB2 Enterprise Server Edition components. Tivoli Directory Server is optionally
configured for Staff plug-in support in the BPE container.

Review the instructions in the appropriate InfoCenter topic by clicking
WebSphere Business Integration Server Foundation — Administering —
Applications — Process Choreographer — Configuring the business
process container — Using the Install Wizard to configure the business
process container.

A high-level overview of the guidelines is given below.

1. Log in as Administrator and start WebSphere Business Integration Server
Foundation V5.1 application server.

2. Open the Administrative Console.

3. Define environment variables under Environment — Manage WebSphere
Variables.

Table 4-1 Environment variables

Variable name Variable value
MQ_INSTALL_ROOT C:\WebSphere\WMQ
DB2_JDBC_DRIVER_PATH C:\WebSphere\SQLLIB\java
DB2UNIVERSAL_JDBC_DRIVER_PATH [C:\WebSphere\SQLLIB\java

4. For WebSphere MQ JMS Provider, use the following settings as documented
in Table 4-2.

Table 4-2 JMS Provider settings

Setting Value

JMS Providers WebSphere MQ JMS Provider
Queue Manager QM1

JMS Security Role Administrators

JMS API User ID Administrator

JMS API Password password

Chapter 4. Runtime environment 43

5. JMS Resoruces should be created from scratch as per documented
instructions.

6. Select the check box Check this box to install the Web client.

7. Review summary information and click Finish to install the Business Process
container.

Configuring Staff service for Process Choreographer

Process choreographer uses Staff plug-ins to determine who can start a process
or claim an activity. Your business processes can also use the Staff plug-in
services to resolve staff queries. Each type of directory service requires a
different staff plug-in. You can register multiple staff plug-ins. The user registry
and system plug-ins are already installed and can be used without any
configuration. To configure a Staff Plugin Provider, consult the following
InfoCenter topic; click WebSphere Business Integration Server

Foundation —» Administering —» Applications —» Process

choreographer — Configuring the staff service for process choreographer.

A J2C Authentication alias must be defined first in WebSphere Business
Integration Server Foundation V5.1 Security section. Navigate to Security —
JAAS Configuration — J2C Authentication Data. and click New to define a
new authentication alias, as follows. If this alias is not set, an anonymous logon
to the LDAP server is used.

Table 4-3 J2C authentication alias

Setting Value

Alias <hostname>/tds

User ID cn=root

Password tdsadmin

Description TDS Authentication Alias

Define a new Staff plug-in configuration as in the InfoCenter item mentioned
above.

Configure the Staff plug-in at the node level. Configure the customer properties
for the Staff Plugin Provider as given in Table 4-4 on page 45.

44 WebSphere Business Integrator Server Foundation V5.1 Handbook

Table 4-4 Staff plug-in configuration parameters

Setting Value

AuthenticationAlias <hostname>/tds
AuthenticationType <optional>

BaseDN cu=itso,o=ibm,c=us
ContextFactory com.sun.jndi.ldap.LdapCtxFactory
ProviderURL Idap://<hostname>:389
SearchScope subtreeScope

4.3 Distributed configuration

The purpose of this section is to show how to configure WebSphere Business
Integration Server Foundation components in a multi-tier environment. All
components will be installed on separate machines. However, this section will
not address any WLM and HA issues. Procedures for testing the configurations
using sample applications are also not covered in this chapter. However, in a
production environment, it is imperative to test the distributed, high availability
workload management architecture with a sample application.

4.3.1 Planning

It is assumed that the following components are already installed on separate
physical nodes

» IBM DB2 UDB V8.1 Enterprise Server Edition
» WebSphere MQ V5.3 Server
» Tivoli Directory Server V5.2

The highlighted components will be installed and configured in this section.

Chapter 4. Runtime environment 45

IBM
HTTP
Server

WBI SF v5.1

WAS
Plug-in

Node Agent

DB2
Client

App Server

MQ
Client

TN
o A

Tivoli
Directory
Server
~

Y
o

DB2

EEETN YRRy

-

Database

N~

oy

WebSphere
MQ Server

Figure 4-2 The distributed configuration infrastructure

Components installed in the distributed configuration will include:

vyvyyy

4.3.2 Software requirements

46

The installation depends on the software listed below.

Operating system software requirements
This section outlines the requirements for the operating system.

WebSphere Business Integration Server Foundation
IBM HTTP Server
IBM DB2 Client

WebSphere MQ Client

1. Ensure that the Operating system is at the correct level.

Table 4-5 outlines the hardware and operating system configuration used in

setting up the distributed environment.

Table 4-5 Product - machine mapping

Components

WebSphere Business
Integration Server Foundation

Machine Type

OS Level

WebSphere Business Integration
Server Foundation Node 1

pSeries® 44P 170

AIX 5.2 PTF ML5200-02

Deployment

WebSphere Business Integration
Server Foundation Network

pSeries 43P 150

AIX 5.2 PTF ML5200-02

WebSphere Business Integrator Server Foundation V5.1 Handbook

WebSphere Business
Integration Server Foundation
Components

Machine Type

OS Level

IBM DB2 V8.1 ESE

pSeries 44P 170

AIX 5.2 PTF ML5200-02

WebSphere MQ

pSeries 43P 150

AIX 5.2 PTF ML5200-02

Tivoli Directory Server

xSeries® NF5100

Windows 2k Server SP4

In addition to the PTF ML5200-02, the following critical AlX fixes were
applied: U488962, U488959, U488958, U488923, U488917. Table 4-6 lists all
the updates that must be installed on all physical nodes of the distributed

enviornment.

Table 4-6 AlX package updates

AIX Package Package Level
bos.mp 5.2.0.15
bos.mp64 5.2.0.15
bos.up 5.2.0.15
devices.chrp.base.rte 5.2.0.14
devices.common.|BM.ethernet.rte 5.2.0.14
X11.fnt.ucs.ttf_KR 5.2.0.0
X11.fnt.ucs.ttf_TW 5.2.0.0
X11.fnt.ucs.ttf_CN 5.2.0.0
X11.fnt.ucs.itf 5.2.0.0

2. Check that sufficient disk space is available in various file systems:

— Jusr:4 GB
— Jvar: 1 GB
— /tmp: 2 GB

You may also like to create logical volumes mounted under these locations to
contain the WebSphere Business Integration Server Foundation installation.

3. You must install the xIC.rte 6.0 run-time code, which is a prerequisite of
GSKit7. This is a prerequisite for WebSphere Business Integration Server

Foundation installation.

4. Download the latest AlX fixes for AIX 5.2 from the Fix Central Web site:

https://techsupport.services.ibm.com/server/aix.fdc

Chapter 4. Runtime environment 47

https://techsupport.services.ibm.com/server/aix.fdc

5. Verify that there is DNS name resolution configured on the operating system.
All nodes should be reachable from each other using both short and fully
qualified hostnames. A good test to perform is to ping both short and FQHN
for all nodes.

WebSphere MQ
A WebSphere MQ server installation is required to support the BPE container.

For more information about software requirements for WebSphere MQ V5.3 on
AlX, refer to:

http://www.ibm.com/software/integration/mqfamily/platforms/supported/
wsmq_for_aix_5_3.htm]

For other platforms and products, refer to:

http://www.ibm.com/software/integration/websphere/mgplatforms/
supported.html

IBM DB2 ESE Server
A database server is required to support the BPE container.

For more information about software requirements for IBM DB2 UDB ESE, refer
to:
http://www-306.1bm.com/software/data/db2/udb/sysreqgs.html

Tivoli Directory Server

For more information about software requirements for Tivoli Directory Server,
refer to:

http://www.ibm.com/software/tivoli/products/directory-server/platforms.html

4.3.3 Installation

This section details the installation instructions for WebSphere Business
Integration Server Foundation V5.1 on the AIX platform.

WebSphere MQ Client

Installation instructions for WebSphere MQ are provided in the platform-specific
manual at the following Web site:

http://www.ibm.com/software/ts/mgseries/1library/manualsa/index.htm

48 WebSphere Business Integrator Server Foundation V5.1 Handbook

http://www.ibm.com/software/integration/mqfamily/platforms/supported/wsmq_for_aix_5_3.html
http://www.ibm.com/software/integration/websphere/mqplatforms/supported.html
http://www.ibm.com/software/tivoli/products/directory-server/platforms.html
http://www-306.ibm.com/software/data/db2/udb/sysreqs.html
http://www.ibm.com/software/ts/mqseries/library/manualsa/index.htm

A summary of the instructions for installing the WebSphere MQ Client on AlX is
given below:

1.

Log in as an administrator user (root).

2. Insert the WebSphere MQ Client software CD.
3.
4. Specify the CD mount point where WebSphere MQ Client software is located

Run the smitty install_latest command to install the software.

and follow the on-screen instructions.

5. Select the components mgm.base, mgm.client, and mgm.java.

. Verify that Accept new license agreements is set to yes and Preview new

license agreement is set to no.

CSD05
The CSDO05 FixPack must be installed for the WebSphere MQ client.

1.

Download WebSphere MQ CSD5 from the WebSphere MQ Support site and
extract it to a temporary folder.

Use smitty to install CSDO05: smitty update_all. Specify the temporary
directory where CDO05 was extracted in the previous step.

Verify that Accept new license agreements is set to yes and Preview new
Licensen agreement is set to no.

IBM DB2 UDB Client
For more information about IBM DB2 UDB, refer to:

http://publib.boulder.ibm.com/infocenter/db2help/index.jsp

The instructions below are provided as a guideline. You must refer to the DB2
InfoCenter above for detailed instructions.

1.

o 0~ 0Db

Log in using an administrator user ID (root).

Insert the DB2 Software CD.

Locate the db2setup script and execute ./db2setup.
Select Install Products.

In the next window, select DB2 Administration Client.

The DB2 setup wizard will start. Accept the license, then select Custom
installation method.

7. Verify that Install DB2 Administration Client on this computer is selected.

8. In the Features window, accept the detaults.

Chapter 4. Runtime environment 49

http://publib.boulder.ibm.com/infocenter/db2help/index.jsp

9. In the Languages window, accept the defaults (if there is a need, install any
additional languages).

10.In the DB2 setup instance window, be sure to select Create a DB2 instance.

11.Be sure to select New user, and set the DB2 instance owner to the same
value as the DB2 server. For our tests, the DB2 server instance owner was
set to db2admin.

12.Review the summary information and click Finish to install the DB2 client.

13.At the end of the setup, verify that the report contains all SUCCESS status.

14.1f there is a problem with the installation, uninstall DB2 client using
db2_deinstall and re-install.

FixPack 5
FixPack 5 must also be installed on this node.

1. Log in as an administrator user (root).

2. Download the FixPack from the DB2 support site, and extract to a temporary
folder.

3. Change to the temporary folder where DB2 FixPack was extracted.

4. Set the execute permission on the installFixPack script using the following
command:

chmod a+x installFixPackexecute

5. Verify that the script displays a SUCCESS status for all installed DB2 client
components.

WebSphere Business Integration Server Foundation

This topic describes how to install WebSphere Business Integration Server
Foundation as the root user on an AIX operating system platform. Detailed
instructions on how to set up WebSphere Business Integration Server
Foundation V5.1 are given in the following InfoCenter topic. Click WebSphere
Business Integration Server Foundation — Installing —» Getting started —
Installing the product — Installing the Integration Server on AIX platforms.

The following guidelines should be used in addition to the above instructions:

1. Mount CD1, which contains the WebSphere Business Integration Server
Foundation installation image.

2. Change to the mounted CD-ROM directory.
3. Issue launchpad.sh to bring up the installation wizard.

4. Click the Install the product to start the WebSphere Business Integration
Server Foundation V5.1 installation.

50 WebSphere Business Integrator Server Foundation V5.1 Handbook

5. Accept the license agreement.

6. The tool starts the prerequisite checker. This tool is built in to the installer
program. Verify that all prerequisites are met.

7. Choose a Custom installation.

8. Select all components, including CEI. Deselect Samples for all compoenents.
Also uncheck CORBA C++ SDK support, Javadocs, and Embedded
messaging.

9. Install under /usr/WebSphere/AppServer.
10.Accept the default node name and the hostname.
11.Review the summary and start the installation.

Note: The InfoCenter lists four installation methods. Method 1 is
recommended; Method 4 proved problematic during tests.

12.1f the Install Verification utility starts automatically after the WebSphere
Business Integration Server Foundation installation finishes, close the
window and exit the Product Installation window as well. We will be
addressing the IVT and configuration in 4.3.4, “Configuration” on page 54.

Installing Cumulative Fix 3 and interim fixes

At the time of writing, Cumulative Fix 3 was the latest available for WebSphere
Business Integration Server Foundation V5.1. It is recommended that this fix and
any other interim fixes be applied since they address several key issues.

Fixes are available from the WebSphere Business Integration Server Foundation
support site:
http://www.ibm.com/software/integration/wbisf/support/

1. Open the WebSphere Business Integration Server Foundation support site,
then navigate to Recommended Updates and click WAS Base/ND 5.1.0.3
Cumulative Fix.

2. Download the AIX - base package. The file is called was510_cf3_aix.zip.

3. On the command prompt, set the JAVA_HOME variable to point to the
<WBISF_root>/java folder.
4. Extract the fix file into the was510_cf3_aix folder.

Note: Extracting this file also creates files necessary to run the
updatelnstaller wizard.

5. Run updateWizard.sh from the was512_cf3_aix folder.

Chapter 4. Runtime environment 51

http://www.ibm.com/software/integration/wbisf/support/

6. Accept the default language (English).

7. Follow the on-screen instructions, making sure that IBM WebSphere
Application Server V5.1.0.2 is selected and that the correct application
server installation directory is also selected.

8. Select Install FixPack in the next window. Accept the default location for the
FixPack folder.

9. Follow the remaining on-screen instructions to finish installing Cumulative Fix
3.

A number of interim fixes are also available from the WebSphere Business

Integration Server Foundation support site. These are named PQnnnn.

1. Open the WebSphere Business Integration Server Foundation support site
and click Recommended Updates.

2. Download all interim fixes.
3. Copy these interim fixes in the efixes directory of the was512_cf3_aix folder.

4. On the command prompt, set the JAVA_HOME variable to point to the
<WBISF_root>/java folder.

5. From the same command prompt, change the updatelnstaller directory, and
run updateWizard. sh.

6. Accept the default language (English).

7. Follow the on-screen instructions, making sure that IBM WebSphere
Application Server V5.1.0.2 is selected and that the correct application
server installation directory is also selected.

8. Select Install Fixes in the next window. We are not doing a FixPack install,
but efixes instead.

9. Select the directory where efixes were copied above.

10.The wizard will scan for the efixes in the given folder. Select all listed fixes,
checking that the wizard lists all the fixes that were downloaded.

11.Review the summary and click Finish to install the fixes.

IBM HTTP Server

There are two versions of IBM HTTP Server that can be used for this setup. In
our test scenarios, we used IBM HTTP Server V2.0.

Important: IBM HTTP Server V2.0 should be installed on a separate machine
as shown in Figure 4-2 on page 46. Please refer to this figure for the location
of the WebSphere Business Integration Server Foundation V5.1 components.

52 WebSphere Business Integrator Server Foundation V5.1 Handbook

IBM HTTP Server V1.3.x
IBM HTTP Server V1.3.x ships with the WebSphere Business Integration Server

Foundation V5.1 CDs.
In order to install IBM HTTP Server V1.3, follow these instructions:
1. Change to the following directory on Disk 1: /cdrom/aix/WAS/ihs.

2. Run instal1IHS.sh and follow the on-screen instructions.

IBM HTTP Server V2.0

IBM HTTP Server V2.0 is packaged together with WebSphere Business
Integration Server Foundation V5.1 and is available for download from the IBM
external Web site.

The following guidelines can be used to install IBM HTTP Server V2.0:

1. Extract the downloaded IBM HTTP Server V2.0 archive into a temporary
directory.

2. Locate and run instal1IHS.sh script to start the installation.
3. Follow on-screen instructions to finish installing IBM HTTP Server V2.0.

WebSphere Application Server Plug-in

WebSphere Application Server V5.1 Plug-in must be installed on the same
machine as IBM HTTP Server. The IBM HTTP Server V2.0 installation described
above does not include WebSphere Application Server V5.1 Plug-in. The plug-in
must be installed separately from WebSphere Business Integration Server
Foundation V5.1 installation disks.

The following guidelines illustrate how to install WebSphere Application Server
V5.1 Plug-in:
1. Mount WebSphere Business Integration Server Foundation V5.1 Disk 1.

2. Change to the aix/WAS folder. This represents the WebSphere Application
Server V5.1 base folder.

3. Run the install script to bring up the Installation Wizard.
4. Accept the license.

5. Wait for the prerequisite checks to finish. Verify that no AlX system packages
or patches are missing. If there is a missing package warning, refer to 4.3.2,
“Software requirements” on page 46 where the required AlX system
packages are listed.

6. Choose a Custom installation.

Chapter 4. Runtime environment 53

7. Click Web Server Plug-in and select the Plug-in for IBM HTTP Server V2.0
plug-in. Make sure the remaining options are unchecked.

8. Accept the default installation folder.

9. Follow on-screen instructions to complete the WebSphere Application Server
V5.1 Plug-in installation.

Installing Cumulative Fix 3

Cumulative Fix 3 should also be applied to the machine hosting IBM HTTP
Server and the WebSphere Application Server V5.1 plug-in. To do this, follow the
instructions given in “Installing Cumulative Fix 3 and interim fixes” on page 51.
Interim fixes do not need to be installed.

Note: The level of WebSphere Application Server that is selected will differ,
since Cumulative Fix 2 will not have been installed on the WebSphere
Application Server V5.1 Plug-in. The version will be V5.1.0.

4.3.4 Configuration

This section focuses on integrating various software components of WebSphere
Business Integration Server Foundation V5.1. These components include:

» WebSphere Business Integration Server Foundation installation verification
IBM HTTP Server

WebSphere MQ

IBM DB2 UDB

Tivoli Directory Server (for Staff plug-in and Global Security)

BPE container configuration

vVvyyvyyvyy

Configuration tasks for the distributed environment are not significantly different
from those of the single-server environment above. There are, however, a few
subtle differences which are outlined in the following sections.

Installation verification

Before proceeding with the configuration of the above components, WebSphere
Business Integration Server Foundation V5.1 installation verification should be
performed. This process will ensure that there are no problems starting the
server. Sometimes there are port conflicts with existing AIX V5.2 ports. These
are highlighted and workarounds are documented as follows.

Disabling AIX port 9090

AIX V5.2 ships with a Web based system manager utility called wsmserver. The
wsmserver command is used to control the server processes used by the Web

54 WebSphere Business Integrator Server Foundation V5.1 Handbook

based System Manager. The servers are used to enable applet and client-server
modes of execution. This server utility runs on port 9090 by default.

In order to successfully run WebSphere Business Integration Server Foundation
V5.1, wsmserver port 9090 must be disabled. The following instructions illustrate
how to disable the port.

1.
2.

Log in as root.

Edit the /etc/services file and locate and comment out the following line (by
putting a # in front of it):

#wsmserver 9090/tcp
Edit the /etc/inetd.conf file. Locate and comment out the following line:
#wsmserver stream tcp nowait root /usr/websm/bin/wsmserver wsmserver -start

Restart the inetd process. This will make the inetd process re-read inetd and
services configuration files. Issue the following command to restart inetd.

ki1l -HUP “ps -ef | grep inetd | awk '{print $2}"

Install verification

1.

Start the install verification utility using the ivt.sh command.

This starts up the command line install verification test utility. There is no
interactive interface.

Note that all the statuses are marked Passed or Succeeded.

3. Start the Administrative Console and log in as admin to verify admin console

functionality. The URL for the Administrative Console is
http://<hostname>:9090/admin.

IBM HTTP Server
In order to configure IBM HTTP Server, do the following.

1.

Verify the location of plug-in files. Change to the
/usr/WebSphere/AppServer/bin directory and verify that following files exist:

— mod_app_server_http.so
— mod_app_server_http_eapi.so
— mod_ibm_app_server_http.so
— mod_was_ap20_http.so

2. Edit <IHS_root>/conf/httpd.conf.
3. Search for the ServerName directive and verify that it is set properly.
4. Go to the end of the file and verify that it contains the following lines:

Chapter 4. Runtime environment 55

Example 4-3 httpd configuration

LoadModule ibm_app_server_http module "/usr/WebSphere/AppServer/bin/mod_was_ap20 http.so
WebSpherePTuginConfig "/usr/WebSphere/AppServer/config/cells/plugin-cfg.xml"

BPE supporting components

Configuring the BPE container in a distributed environment is similar to
configuring in a single-server environment. The key difference is that the
products are installed on separate machines.

As in the single-server environment, setting up the BPE container consists of
configuring:

» WebSphere MQ Queue Managers and appropriate queues
» The DB2 database for the BPE container
» The Staff plug-in that utilizes Tivoli Directory Server

The high-evel task plan for configuring the BPE container is given in the
InfoCenter in the topic brought up by clicking WebSphere Business Integration
Server Foundation — Administering — Applications — Process
Choreographer — Configuring the business process container.

WebSphere MQ

Refer to the InfoCenter topic Creating the queue manager and queues for the
business process container under the page listed above. In summary, the
following steps must be completed:

1. Log in as root.
2. Switch user to mgm.

3. Run the /usr/mgm/bin/setmqcap 1 command to set the number of processor
to 1.

4. Run the createQueues.sh script and provide it with a Queue Manager name.
In our tests, we used: QM1

5. Start the queue manager:
/usr/mgm/bin/strmgm QM1

6. Run the listener for the queue manager:
Jusr/mgm/bin/runmglsr -t tcp -p 1414 -m QM1 &

56 WebSphere Business Integrator Server Foundation V5.1 Handbook

Tip: During tests, we used WBISFQM1 and ran into the following MQJMS
exception:

MQJMS2005: failed to create MQQueueManager for ‘<queue manager>’

Creating a new Queue manager called QM1 later on and re-configuring
WebSphere MQ queue connection factories to communicate with
WebSphere MQ solved the problem.

DB2 Enterprise Server Edition setup

The database must be configured prior to using the Business Process container.
Review the material in the InfoCenter topic Creating the database for the
business process container for configuration steps.

This configuration differs from the procedure followed in the single-server
environment since the database is located on a remote server. The remote
database server must be cataloged locally on the WebSphere Business
Integration Server Foundation V5.1 box, then the BPE database should be
created.

The following high-level tasks should be followed to finish DB2 configurations.

Perform the following steps on DB2 Server machine:

1. Ensure that DB2 is installed properly on the DB2 server machine as per the
guidelines in DB2 InfoCenter and WebSphere Business Integration Server
Foundation V5.1 InfoCenter.

2. In order to avoid deadlocks, issue the following command as the db2admin
user on the server machine:

db2set DB2_RR_TO_RS=YES
The WebSphere Business Integration Server Foundation machine does not have

the full database installed, only the client. All data sources defined in WebSphere
Business Integration Server Foundation access databases through this client.

Perform the following configuration as the root user on the WebSphere Business
Integration Server Foundation V5.1 server machine.

1. Add the following lines in the .profile file of the WebSphere Business
Integration Server Foundation instance owner.

./home/db2admin/sq11ib/db2profile

Chapter 4. Runtime environment 57

Perform the following steps on the WebSphere Business Integration Server
Foundation V5.1 server machine as the db2admin user.

1. Log in as db2admin.
2. Catalog the remote DB2 node as follows:
db2 catalog tcpip node <remote node> remote <FQHN> server 50000

3. Attach to the remote node and verify that the catalog operation was
successful.

db2 attach to <remote node> user db2admin using db2admin

4. Create a new database called BPEDB for Business Process Container, and
the schema for the database.

db2 create database BPEDB using codeset UTF-8 territory en-us

5. Change to the /usr/WebSphere/AppServer/ProcessChoreographer/ directory
and edit the createTablespaceDb2.ddl script.

Note: For distributed environments which will be used for production or
system tests, BPE tables should be separated into different tablespaces.
BPE tables are grouped as indicated in the createSchemaDB2.sh script.
Create the tablespaces first using createTablespaceDb2.ddl and then
populate the schema using createSchemaDB2.sh.

Change the @location@ tag as per your Database environment. For our test,
we used the following script.

Example 4-4 createTablespaceDb2.ddl

CREATE TABLESPACE STAFFQRY MANAGED BY SYSTEM USING('STAFFQRY');
CREATE TABLESPACE INSTANCE MANAGED BY SYSTEM USING('INSTANCE');
CREATE TABLESPACE AUDITLOG MANAGED BY SYSTEM USING('AUDITLOG');
CREATE TABLESPACE WORKITEM MANAGED BY SYSTEM USING('WORKITEM');
CREATE TABLESPACE COMP MANAGED BY SYSTEM USING('COMP');

CREATE TABLESPACE TEMPLATE MANAGED BY SYSTEM USING('TEMPLATE');
-- start import scheduler DDL: createTablespaceDB2.dd]1

CREATE TABLESPACE SCHEDTS MANAGED BY SYSTEM USING('SCHEDTS');
-- end import scheduler DDL: createTablespaceDB2.dd]1

6. Connect to the BPEDB database created above.
db2 connect to BPEDB user db2admin using db2admin

7. Run the createTablespaceDb2.ddI script :
db2 -tf createTablespaceDb2.dd]

8. Populate the BPEDB schema by running the createSchemaDb2.ddI script:
db2 -tf createSchemaDb2.dd]1

58 WebSphere Business Integrator Server Foundation V5.1 Handbook

Perform the following step on the DB2 Server machine:
» Bind the required CLI packages to the database:
db2 connect to BPEDB user db2admin using db2admin
db2 bind /home/db2admin/sql11ib/bnd/@db2c1i.1st blocking all grant public

Tivoli Directory Server setup for Staff plug-in

Refer to “Tivoli Directory Server setup for Staff plug-in” on page 42 for
instructions.

BPE container
The next task is to configure the BPE container in WebSphere Business
Integration Server Foundation V5.1.

Installing Business Process Container

The BPE container will be set up to communicate with the WebSphere MQ and
DB2 Enterprise Server Edition components. Tivoli Directory Server is optionally

configured for Staff plug-in support in the BPE container.

Review the instructions in the InfoCenter topic found by clicking WebSphere
Business Integration Server Foundation — Administering —
Applications — Process Choreographer — Configuring the business

process container — Using the Install Wizard to configure the business

process container.

A high-level overview of the guidelines is given below.

1. Log in as root and start WebSphere Business Integration Server Foundation

V5.1 application server.
2. Connect to the Administrative Console.

3. Define environment variables under Environment — Manage WebSphere

Variables at the node level, as shown in Figure 4-3 on page 60.

Chapter 4. Runtime environment

59

User ID: admin

m108§3a7f

Servers

Applications

Resources

Security

B Environmert
Update Web Server Plugin
Wirtual Hosts

Manage WebSphere Yariables
Shared Libraries
Matming

=

System Administration
Troubleshooting

WebSphere Variables

Substitution variables allow specifying & level of indirection for values defined in the system, such as filesystem roots. Variables
can be defined at the server, node, or cell level. When variables in different scopes have the same name, the arder of resolution
iz server variables, then node variables, then cell variables. [i

Total: 29 Page: 1, Total Pages: 2 = Previous

B Scope: Cel=m1083a?f, Mode=m1083a7f

et =

0 cal

m1083a7f Use scope settings to limit the svailabilty of resources to a particular cell, node, or
server.

% spode MI083a7S When nevy items are created in this view, they will be created within the current scope.

 Sepyer SErverl

Apply

Figure 4-3 Environment Variable Definition at Node level

4. Define the following variables. Figure 4-4 on page 61 shows the output.

Table 4-7 Environment Variables

WebSphere Environment Variable

Variable Value

MQ_INSTALL_ROOT

Jusr/mgm

MQJMS_LIB_ROOT

${MQ_INSTALL_ROOT}/java/lib

DB2_JDBC_DRIVER_PATH

/home/db2admin/sqllib/java

DB2UNIVERSAL_JDBC_DRIVER_PATH

/home/db2admin/sqllib/java

60

WebSphere Business Integrator Server Foundation V5.1 Handbook

User ID: admin

m108§3a7f
Servers
Applications
Resources
Security
B Environmert
Update Web Server Plugin
Wirtual Hosts
Manage WebSphere Yariables
Shared Libraries
Matming
System Administration
Troubleshooting

[|&PP_INSTALL ROOT F{USER_INSTALL_ROOT Minstalledpps
[~ |CLOUDSCAPE JDBC DRIVER PATH FOMAS_INSTALL_ROOT Moloudscapedib
[~ |COMMECTJDBEC JDBC DRIVER PATH

[~ |COMMECTOR INSTALL ROOT F{USER_INSTALL _ROOT MinstalledConnectors
[~ |DB2390 JDBC DRIVER PATH

[~ |DE2UNIYERSAL JDBC DRIVER PATH thomesdbZadminizglibgaa

[~ |DB2_.JDBC DRIVER PATH thomesdbZadminizglibgaa

I |pEPLOY TOOL ROOT FOMAS_INSTALL_ROOT Ydeploytoolity
I~ |DRIVER PATH FOMAS_INSTALL_ROOT}

[~ |MEORMI JDBC DRIVER PATH

] Ja8 8 HOME JusrivehSphere/dppServerfava

I |LoG RooT H{USER_INSTALL_ROOT Mogs

I |Meums LB RoOT FMA_INSTALL_ROOT Havadin

[T |Me INSTALL ROOT Justimom

Figure 4-4 WebSphere Business Integration Server Foundation V5.1 Environment

Variables

5. Run Process Choreographer Install Wizard by navigating to Serve —
Applications Servers — <server_name> — Business Process
Container — Business Process Container Install Wizard.

6. Select DB2 UDB 8.1 Universal JDBC Driver Provider XA. All the
appropriate variable settings are selected automatically. Set the datasource

user name to db2admin and the password to db2admin (or as appropriate to

your environment). Click Next. Figure 4-5 on page 62 indicates this setting.

Chapter 4. Runtime environment

61

—+5Step 1: Select the Database Configuration for the Busil Process Contail
Select the desired JOBC Provider. & new X4 datasource will be crested for this provider. [i
JoBC " " "
Providers IDEI2 DB 8.1 (DB2 Universal JOBC Driver Provider (XA LI H|
ritation p - - .
. Icom.|bm.db2.jc:c:.DEI2}{ADataSourc:e [i The Java classname of the JOBC driver implementstion.
[& list of paths ar JAR file names which together farm the
F{DB2UMNVERSAL _JDBC_DRI |~ location for the resource provider classes. Classpath entries are
VER_PATHYdbZjoe jar separated by using the ENTER key and must not contain path
Clazspath F{UMMERSAL _JDBC_DRIVER_ separator characters (such as ' or ©"). Classpaths may contain
PATHYdbZjc_license_cu jar vatiahle (symbolic) names which can be substituted using a
F{0B2UMNERSAL _JDBC_DRI Iz‘ variahle map. Check your drivers installation notes for specific
JAR file names which are recuired.
B:t:rsl\ol::nc: Idb2admin [[Uzer name used to access the datasource
E:;ass\sz:;e I*********| [l Password used to access the datasource
databasehlame=EPEDE B
Custom 22::;:52;:2 [consutt the help for more information on specific properties that
Properties orthumber=50000 may be required by the selected JDBC Provider.
description=DataSource for Iz‘

Figure 4-5 Business Process Container Install Wizard : Step 1

7. In the Step 2 window, enter the JMS Provider settings as shown in Table 4-8.

Table 4-8 JMS settings

JMS Settings Values

Queue Manager QM1

Security Role Mapping magm

JMS API User ID mgm

JMS API| Password mgmadmin [this must be set prior to
configuring MQ]

Note: The JMS API User ID is the operating system user ID under which
WebSphere MQ Client/Server is installed. It can be any operating system
user ID that has administrative authority to perform operations against
WebSphere MQ Server/Client. The user ID should be part of the
WebSphere MQ group.

Figure 4-6 on page 63 shows the settings used in Step 2.

62 WebSphere Business Integrator Server Foundation V5.1 Handbook

JMS Providers

[[a s provider enables asynchronous messaging based on the
Java M ing Service (JMS). | provides J2EE connection factories

;Tos\'fiders IWebSphere MG WS Provider LI to creste connections for specific JMS gueue or topic destinations.
JMS provider administrative objects are used to manage JMS
rezources for the associsted JMS provider..

Glueue [i The name of the external JMS provider's queue manager to use for

Jant = "

Manager this Business Process container.

[& list of paths or JAR file names which together form the location
I:‘ for the resource provider classes. Classpath entries are separated
by using the ENTER key and must not contain path separstor

Clazspath characters (such as ' or). Clazspaths may contain variable
[=ymbalic) names which can be substituted using a variable map.

I:‘ Check your drivers installation notes for specific JAR file names
wehich are required.

JMS User I [i] The queve connection factory uses this user 1D to establish &

[1o] connection to the queue.

JMS

Pazsword I [i] The password for the user ID entered shove

Scheduler I [i] The: JHDI Fiame of the scheduler UserCalendar to ke used by this

Calendar container.

B Process Contai Security Configuration

Security Role

Mapping Imqm

[i The user or group from the domain's user registry that is
azzociated with the Business Process Administrator role.

JMS &PI User D [mam

[i] The user ID thit the Business Process container MOB will use
when processing asynchronous AP calls.

JMS AP

Iaaaaaaaaal
Pazsword

[[The password for the user ID entered above

Figure 4-6 Business Process Container Install Wizard : Step 2

8.

In Step 3, select the Create new JMS resources using default values. Also
set Check this box to install Web client checkbox. Figure 4-7 on page 64

shows these settings.

Chapter 4. Runtime environment

63

— Step 3 Select JMS Resources and Web Client

Select the desired JMS Resources and whether the Process Choreographer YWeh Client should be installed. [i
Select the desired JMS Resources.

* Create neww JMS resources using default values [i

[Select existing JMS resources [i

[ila gueue connection factory is used to create connections
Connection Factary I VI to the associsted JMS provider of JMS gueue destinations, for
point-to-point messaging.

Irternal Gueue I ,l E;ﬂ: Business Process container's internal processing
ernal Regue Ij & input guele for the Business Process container's
Exi | R =t = [i] The input for the Busi P rtzinet's JMS

Processing Gueue AP
Hold Queus I 'l [l The Business Process cortainer's hold queus (used

internally by the container).

E [l The Business Process cortainer's retertion queus (Used

Eetentionloneus internally by the container).

Install the Process Choreographer Web Client.

I~ Check this box to install the web client. [i

Figure 4-7 Business Process Container Install Wizard: Step 3

9. Review the summary information and click Finish to install the Business
Process container. The summary is shown in Figure 4-8.

i
JMS Providers ‘WehSphere MG JMS Provider
JMS AP User ID mom

JME AP Pazsward E

Process Choreographer Web Client
The web client will be installed.

Reminder
You must create the database and the tables yourself. After the Business Process container is installed, you can use
the files in iusrivebSphereffppServerProcessChoreographer

Reminder

The following environment variables need to be set. On the left panel, select Environment --= Manage WebSphere
Wariahles to configure each of the following:

DBEZUNYERSAL _JDBC_DRIVER_PATH

MG_INSTALL_ROOT

UMVERSAL _JDBC_DRIVER_PATH

Reminder

Since you are using an external JMS provider, the following resources must be crested through your external JMS
Provider's interface

Gueue Manager GIn1

Internal Glueue BPEIntGusue

External Request Processing Gueus BPE&ARIGUELE
Retertion Glueue BPERetGusue
Hold Giueue BPEHIdCILEUE

Previous | Finish| Cancel|

Figure 4-8 Business Process Container Install Wizard: Step 4, Summary

64 WebSphere Business Integrator Server Foundation V5.1 Handbook

1

0.Upon successful completion, you will be prompted to Save to Master
Configuration. Save the configuration for WebSphere.

Configuring WebSphere MQ JMS Provider
The next task is to configure the WebSphere MQ JMS Provider.

1.

2
3.
4

Navigate to Resources — WebSphere MQ JMS Provider.
. Set the scope to Server.
Click WebSphere MQ Queue Connection Factories.

. Select a Queue Connection factory and use the values in Table 4-9 to set up
the properties. Accept the default values for unlisted properties. Repeat this
task for both BPECF and BPECFC connection factories.

Table 4-9 WebSphere MQ JMS Provider Settings

Property Value

Queue Manager QM1

Host <mq server hostname>
Port 1414

Transport Type CLIENT

Figure 4-9 on page 66 indicates the settings used in the WebSphere MQ JMS
Provider settings.

Chapter 4. Runtime environment 65

Container-managed Authertication Alias I(none) LI [ilreferences authertication
data for container-managed
signon to the resource.

Mapping-Configuration Alias IDefaunPrincipaIMapping vl [l select a sutable JAAS login

configuration from the security-
JaAS configuration panel to
map the user identity and
credentials to & resource
principal and credentials that is
recuired to open & connection to
the back-end server.

Gueue Manager Gt [i The name of the WehSphere
MG gueus manager for this
connection factory. Connections
created by thiz factory connect
to that queus manager.

Host |m1 Ocka01d [i] The riame of the host on

wehich the WebhSphere MG
gueue manager runs, for client
connection only.

Port |1 414 [i The TCPAP port number used

for connection to the
‘WehSphere MG queus manager,
for client connection anly.

Channel I [i] The riame of the channe!

uzed for connection to the
‘WehSphere MG queus manager,
for client connection anly.

Tranzport Type ICLIENT vl [[winether WebSphere MQ
client TCPAP connection or inter-

process bindings connection is

Figure 4-9 WebSphere MQ JMS Provider settings

Save the master configuration.
In order for the changes to take effect, stop and start the server.

Review the contents of SystemOut.log to see if any errors or exceptions are
thrown by the BPE container.

Configuring Staff service for Process Choreographer

Process choreographer uses Staff plug-ins to determine who can start a process
or claim an activity. Your business processes can also use the Staff plug-in
services to resolve staff queries. Each type of directory service requires a
different Staff plug-in. You can register multiple Staff plug-ins. The user registry
and system plug-ins are already installed and can be used without any
configuration. To configure a Staff Plugin Provider, consult the following
InfoCenter topic. Click WebSphere Business Integration Server

Foundation —» Administering —» Applications — Process

choreographer — Configuring the staff service for process choreographer.

A J2C Authentication alias must be defined first in the WebSphere Business
Integration Server Foundation V5.1 Security section. Navigate to Security —
JAAS Configuration — J2C Authentication Data. Click New to define a new
authentication alias as follows. If this alias is not set, an anonymous logon to the
LDAP server is used.

66 WebSphere Business Integrator Server Foundation V5.1 Handbook

Table 4-10 J2C Authentication Alias

Property Value

Alias <hostname>/tds

User ID cn=root

Password tdsadmin

Description TDS Authentication Alias

Now configure the Staff plug-in using the following high-level guidelines.

1.

Configure the Staff plug-in at the node level. Navigate to Resources — Staff
Plugin Provider. Make sure the scope is set to Node Level.

2. Select LDAP Staff Plugin Provider.

3. Select Staff Plugin Configuration. Define a new Staff plug-in configuration.

Import the /usr/WebSphere/AppServer/ProcessChoreographer/Staff/
LDAPTransformation.xsl file and click Next. This is shown in the figure below.

XSL Transform File

File name, including the absolute path, of the XSL transformation file.

Path: Broweze the local machine or a remote server:
{~ Local path:
I Browse. .. |
(& Server path:

I'.E.‘taff.ﬂ_DAPTransformation.xsl|

Cancel

Figure 4-10 Staff plug-in path

4. The next section defines the general properties for the new Staff Plugin

Provider. Use the settings as indicated in the table below. Figure 4-11 on
page 68 shows the settings in effect.

Make sure to click Apply because in the next step, we define the Custom
Properties for the new Staff plug-in. Clicking the OK button will take you back
to the Administrative Console main screen.

Chapter 4. Runtime environment 67

Table 4-11 New Staff Plugin Provider properties

Property Value

Name tds

Description <optional>

JNDI Name bpe/staff/ldapserver1

Staff Plugin Provider >
New
A Staff Plugin Configuration is defined for a Staff Plugin Provider. & Staff Plugin Provider may have multiple Staff Plugin

Configurations. The configuration contains the JMDI name and the values for the properties specified in the plugin's configuration
file. More information may be found in the WebSphere documentstion. [i

Configuration

Maime * Ims [[The required display name for the
resource.

Description I [[an optional description far the
resource.

JMDI Mame * Ibpe.l’staff.ﬂdapserver1 [The JNDI name for the resource.

HSL Transform File * L DAPTransformation xs! [iFile name, including the absolute
path, of the XSL transformation file.

Apply I QK| Reset | Cancel |

Figure 4-11 New Staff Plugin Provider properties

5. Configure the custom properties for the Staff Plugin Provider, created in the
previous step, as given in the table below.

Table 4-12 Staff plug-in configuration parameters

Property Value

AuthenticationAlias <hostname>/tds
AuthenticationType <optional>

BaseDN cu=itso,o=ibm,c=us
ContextFactory com.sun.jndi.ldap.LdapCtxFactory
ProviderURL Idap://<hostname>:389
SearchScope subtreeScope

The figure below shows these settings in effect.

WebSphere Business Integrator Server Foundation V5.1 Handbook

1) 3|
J File Edit Wiew Favorites Tools Help |J Address Ig‘] http: ffm1083a7F itso.ral.ibm.com: 9090/ admin/secureflogon.do j Pao |
J - - i lle NE= I | E-S =t |J Links @] Search the Web with Lycos &]18M Business Transformation & |I6M Internal Help o
P
EDSPNEre App (] ‘%‘
Home | Save | Preferences | Logout | Help | B
— Tuan 1o
User ID: admin = =
Preferences
m1083arf Hame = Value @ Description) Required 2
FERYGES Autherticationslias ml0&3a7 fAds When not set, anonymous logon to | false
Applications the LDAP server iz used. This
O Resources property represents the =
authertication alias used to connect
JDBC Providers to LDAP, The aliss must be already
Generic JMS Providers defln.ed in Securrt - AT o
K Configuration-=J2C Authertication
WighSphere JMS Provider Data. The name of the alias must be
WiebSphere MG JWMS Provide ertered here. Sample:
Wil Providers mycompLterhdy LDAP Alias'.
Resource Environmert Provi AutherticationType By default the logan will be falze
f anonymous if the
LRERrividers Sutherticationalias is not set, and L
Resource Sdapters gimple atherwise.
Cache Instances Baszelhl ou=itzo o=ibm c=us Default base dn for LDAP search |true
Extended Messaging Providy operations. Sample: ‘o=acme c=us'.
Ohject Pools ContesdFactory com.sun.jndi ldap LdapCtxFactary | The name of the JMDI true
. 2 ritedFactory Java class. Sample:
Scheduler Configuration T e o
‘com.zun jndi ldap | dapCtxFactory’.
Staff Pludin Provicer
ProviderUIRL Icdap: 2 3 267 3. 359 The provider URL of the LDAPARDI | true
Whiark Manager server to connect to. Sample:
WebSphere Busingss Inteqr Idap: iMocalhost: 389",
Common Event Infrastructur SearchScope subtreeScope Defautt search scope for LDAP true
Security L zearch operations. Allowed values
. are: ‘obiectScope’, ‘onelevelScope
Enwviranmert and 'subtresScope’. Sample:
? Syvstem oo n'gizaTnn ‘subtreeScope’. =]
A =
[&]) Internet v

Figure 4-12 Staff Plugin Provider settings

6. Make sure to save the master configuration after making the above changes.

7. To activate the plug-in, stop and start the server.

4.4 Configuring for scalability

This section builds on the distributed configuration to add scalability.

4.4.1 Planning

A scalable WebSphere Business Integration Server Foundation installation
requires multiple application server instances to be configured and work together

to process the workload. There are two ways in which applications can be
scaled:

Chapter 4. Runtime environment

69

» Vertical scalability

An application is said to scale vertically if it can take full advantage of a larger
server. To make use of this additional power, it is often neccesary to configure
additional instances of an application. The eventual scale is limited by the
maximum configuration of the machine and its ability to run additional copies
of the software.

» Horizontal scalability

An application is said to scale horizontally if more servers can be added to the
group hosting the application. There may be multiple application server
instances running on each of the nodes in the cluster to make the best use of
the size of the machine. The eventual scale is limited only by the ability of the
infrastructure to manage additional machines.

In either of the scenarios listed above, the capabilities of WebSphere Application
Server Network Deployment are required to provide clustering and workload
balancing. The steps required to configure a cluster are given later in this
chapter.

Refer to IBM WebSphere V5.1 Performance, Scalability, and High Availability
WebSphere Handbook Series, SG24-6198 for further details of scalable
configurations of WebSphere Application Server.

Horizontal scalability

When horizontal scalability is employed, multiple copies of an application run on
multiple servers. Using a WebSphere Application Server cluster allows the
servers to be managed as a single entity. This allows a higher throughput to be
handled by adding more physical capacity to the insfrastructure.

Figure 4-13 on page 71 shows an example of a horizontally scaled environment.

70 WebSphere Business Integrator Server Foundation V5.1 Handbook

WAS Cluster

Y
o

Tivoli
Directory
Server

Y
'

DB2
Database

N~

WBISF Node 1
WBI SF v5.1 DB2
,,,,,,,,,,,,,,,,,,,,,,,,,, N Client
(¢ \ Node Agent
F ‘ IBM
i WAS MQ
! vsAND || HTTP 7] || Ap Server Client
r Server
e i
% WAS
W——p> | ;
a Plugin (WBISF Node 2
: DB2 MQ WBI SF v5.1 DB2
Client Client \ Node Agent Client
MQ
N App Server Client
\
N NS

WebSphere
MQ Server

Figure 4-13 Horizontally scalable environment

The diagram shows:

» Two WebSphere Business Integration Server Foundation nodes, each of
which has an application server and a node agent. These nodes are
configured as a cluster. Additionally, the DB2 client and WebSphere MQ client

are installed on these nodes.

» One node which hosts the IBM HTTP Server with the WebSphere plug-in and
WebSphere Application Server Network Deployment. This is responsible for
managing the servers in the cluster.

» Three additional servers which host Tivoli Directory Server, DB2 Enterprise
Server Edition and WebSphere MQ required to support the BPE container.

The configuration is horizontally scaled since the Application Servers could be
configured to host the same applications.

The additional nodes in this configuration are highlighted in the diagram. The
remainder of this chapter will outline the steps required to install the additional

servers.

This configuration adds a second WebSphere Business Integration Server
Foundation node and a WebSphere Application Server Network Deployment
server. The second WebSphere Business Integration Server Foundation node
will be installed on a separate computer and the WebSphere Application Server

Chapter 4. Runtime environment

Network Deployment server will be installed on the same node as the IBM HTTP
Server.

Vertical scalability

Running multiple copies of an application on a single computer allows the full
capacity of a large machine to be realized. The same principle of creating copies
of applications is used as in the horizontal scaling scenario. The difference in
configuration is that new application servers are created on nodes which already
host application servers.

A vertically scaled environment is shown in Figure 4-14.

N WBISF Node 1
DB2 MQ
Chent Chent
D
WBI SF v5.1 > > ||z] —
3 3 © Tivoli
[T > | || Node Agent 3 ¢ @ D;rectory
T 4 § § 5 erver
F WAS IBM HTTP - N z
| v5.1 ND Server
r T
I
e » e
w i ;’;/AS WAS Cluster
‘ ugin
a [DB2
! L \ WBISF Node 2 Database
| DB2 | ! MQ
Client i Client WBI SF v5.1 = = ~
© © ©
i © S °©
“““““ Node Agent @ o b
2 2 2
e 9 e
- N z WebSphere
| 7| MQ Server
BB2 e
Client Client
N

Figure 4-14 Vertically scalable environment

The diagram shows multiple copies of an application server on each node in the
cluster. Each of these application servers could host an instance of the BPE
container.

Planning for a scalable BPE container

As we have seen in previous sections, using scalable WebSphere Business
Integration Server Foundation topologies can allow the BPE container to support
higher workloads.

72 WebSphere Business Integrator Server Foundation V5.1 Handbook

However, it is important to remember that the BPE container relies on the JMS
provider, database and LDAP server. This means that scaling the core
WebSphere Business Integration Server Foundation installation on its own is not
sufficient. Each of these components could also become a bottleneck, limiting
the ability of the application to handle the required throughput. For this reason,
the sizing of the other components must also be taken into account. The
eventual scale of the application may also mean that the configuration of the
other components needs to be altered, for instance by introducing WebSphere
MQ clustering. This is shown in Figure 4-15.

an WAS Cluster —
WBISF Node 1 Tivoli
Directory
WBI SF v5.1 DB2 Server
77777777777777777777 N Client
! Node Agent
I
. WAS || IBM HTTP A | | g server Ma 4>
| v5.1 ND Server PP Client
; ; DB2
a i WAS Database
w i Plugin WBISF Node 2
a L.
[
' DB2 MQ WBI SF v5.1 DB2
! Client Client Client
\ Node Agent WebSphere
MQ Server
i MQ
[> App Server Client
™ | WebSphere
MQ Clust MQ Server
_/ ustdr

Figure 4-15 Topology using an MQ cluster

The topology is similar to the WebSphere Application Server environments set
out in the previous sections. In this instance, however, the WebSphere MQ JMS
provider is a clustered toplogy.

Refer to the following links for further information about WebSphere MQ
clustering in WebSphere Application Server environments.

» InfoCenter topic found by clicking WebSphere Business Integration Server
Foundation —» Administering — Task overviews — Using process
choreographer — Process choreographer scenarios for clustering.

» The IBM Redbook WebSphere Application Server and WebSphere MQ
Family Integration, SG24-6878

Chapter 4. Runtime environment 73

» Queue Manager Clusters, WebSphere MQ documentation:
http://publibfp.boulder.ibm.com/epubs/html/csqzah06/csqzah06tfrm.htm

» WebSphere Application Server V5: Using WebSphere and WebSphere MQ
clustering, Redbook TechNote:

http://publib-b.boulder.ibm.com/Redbooks.nsf/RedbookAbstracts/tips0224.html
?0pen

4.4.2 Software requirements

Refer to 4.3.2, “Software requirements” on page 46 for details on this topic.

4.4.3 Installation

74

This section details the installation instructions for the second WebSphere
Business Integration Server Foundation V5.1 on the AlX platform.

WebSphere MQ Client
Refer to “WebSphere MQ Client” on page 48 for installation instructions.

IBM DB2 Client
Refer to “IBM DB2 UDB Client” on page 49 for installation instructions.

WebSphere Business Integration Server Foundation

Refer to “WebSphere Business Integration Server Foundation” on page 50 for
installation instructions.

WebSphere Application Server V5.1 Network Deployment

This topic describes how to install WebSphere Application Server V5.1 Network
Deployment as the root user on a AlX platform.

Note that Network Deployment component will be installed on the same machine
as the Web server, as described in the topology and planning section above.

Refer to the InfoCenter for details on installing WebSphere Application Server

V5.1 Network Deployment:
http://publib.boulder.ibm.com/infocenter/ws51lhelp/topic/com.ibm.websphere.
nd.doc/info/ae/ae/tins_install.html

The following which contains the WebSphere Application Server V5. Network

Deployment image.

1. Change to the mounted CDROM directory.

WebSphere Business Integrator Server Foundation V5.1 Handbook

http://publib.boulder.ibm.com/infocenter/ws51help/topic/com.ibm.websphere.nd.doc/info/ae/ae/tins_install.html
http://publib-b.boulder.ibm.com/Redbooks.nsf/RedbookAbstracts/tips0224.html?Open
http://publibfp.boulder.ibm.com/epubs/html/csqzah06/csqzah06tfrm.htm

2. Issue the Taunchpad.sh command to bring up the installation wizard.

3. Click Install the product to start WebSphere Application Server V5.1
Network Deployment installation.

4. Accept the license agreement.

5. The tool starts the prerequisite checker. This tool is built into the installer
program. Verify that all prerequisites are met.

Note: If you are prompted to reconfigure the WebSphere product to
coexists with othe version on the Network Deployment, skip this step. Keep
in mind that Network Deployment Machine has an installation of the
WebSphere Application Server 5.1 Plugin component. The prerequisite
checker utility detects that and assumes that it is a full version of a
WebSphere V5.1 installation.

Select all components except Embedded messaging client and click Next.
Install under /usr/WebSphere/DeploymentManager and click Next.
Accept the default node name, hostname and cell name. Click Next.

© © N o

Review the summary and start the installation.

Note: The InfoCenter lists four installation methods at WebSphere Business
Integration Server Foundation — Installing — Getting Started —
Installing the product — Installing the Integration Server on AIX
platforms. We recommend Method 1, because Method 4 proved problematic
during tests.

If the Install Verification utility starts automatically after the WebSphere
Application Server V5.1 Network Deployment installation finishes, close the
window and exit from the Product Installation window as well. We will be doing
the IVT and configuration in 4.4.4, “Configuration” on page 77.

Installing Integration Server Administrative Extensions

Before WebSphere Application Server Network Deployment can be used to
administer WebSphere Business Integration Server Foundation V5.1 servers,
the WebSphere Business Integration Server Foundation administrative
extensions must be installed. Refer to the InfoCenter below for further
information. Open the InfoCenter and navigate to WebSphere Business
Integration Server Foundation — Installing — Installing the product. Read
the section entitled Why and when to perform this task in this topic.

Chapter 4. Runtime environment 75

The following guidelines provide an overview of the process of installing the
administrative extentions on the WebSphere Application Server Network
Deployment node.

1. Mount CD1 which contains the WebSphere Business Integration Server
Foundation V5.1 image.

. Change to the mounted CD-ROM directory aix.

Issue the install utility to bring up the installation wizard.

. Accept the license agreement.

. The tool starts the prerequisite checker. Verify that all prerequisites are met.

o O A ® N

. The following window is displayed. Choose Add to the existing copy of
WebSphere Application Server Network Deployment V5.1. The directory
should be set to /usr/WebSphere/DeploymentManager. Click Next.

i, Installation Wizard _lolx

The Installation Wizard detected the following installations on swour
camputer. You can add Integration Server features to the existing copy ar
install a new copy.

LELEIETCE software Add to the existing copy of WebSphere Application Server
i Metwork, Deplovment W5, 1

JusrfwebSphere/DeplovmentManager

- Add to the existing copy of WebSphere Application Senver
Y51

~ Install in a new directary

Installshield

<Back | MNext> | Cancel

Figure 4-16 Installing Integration Server Administrative Extensions
7. In the next window, when prompted to enter WebSphere Business Integration
Server Foundation Disk 2, insert and mount Disk 2. Click Next.

8. Insert and mount WebSphere Business Integration Server Foundation Disk 1
when prompted.

9. Review the summary. Click Next.

10.Install under /ust/WebSphere/DeploymentManager and click Next
11.Accpet the default node name, hostname and cell name. Click Next.
12.Review the summary and start the installation.

76 WebSphere Business Integrator Server Foundation V5.1 Handbook

Installing Cumulative Fix 3 and interim fixes
At the time of writing, Cumulative Fix 3 was the latest available for WebSphere

Application Server Network Deployment V5.1. It is recommended that this fix and

any other interim fixes be applied since they address several key issues.

Fixes are available from the WebSphere Application Server support site:
http://www.ibm.com/software/webservers/appserv/was/support/

1. Open the WebSphere Application Server support site and navigate to
WebSphere Application Server 5.1 Cumulative Fix 3 (5.1.0.3).

2. Download the AIX - ND package. The file is called was510_nd_cf3_aix.zip.

3. At the command prompt, set the JAVA_HOME variable to point to the
<WBISF_root>/java folder.

4. Extract the fix file into the was510_nd_cf3_aix folder.

Note: Extracting this file also creates files necessary to run the
updatelnstaller wizard.

5. Run updateWizard.sh from the was512_nd_cf3_aix folder.
6. Accept the default language (English).

7. Follow the on-screen instructions, making sure that IBM WebSphere
Network Deployment V5.1.0 is selected and that the correct application
server installation directory is also selected.

8. Select install FixPack in the next window. Accept the default location for the
FixPack folder.

9. Follow the remaining on-screen instructions to finish installing Cumulative Fix
3.

There are currently no interim fixes specifically aimed at WebSphere Application
Server Network Deployment.

4.4.4 Configuration

This section describes how to set up WebSphere Business Integration Server
Foundation V5.1 on the second node. The procedure differs from the simple
distributed environment configuration, because the clustering enabled by the
Network Deployment server requires some additional activities to be carried out.
The differences in scalable configuration are outlined in the following sections.

Chapter 4. Runtime environment 77

http://www.ibm.com/software/webservers/appserv/was/support/

This section focuses on how to integrate various software components of
WebSphere Business Integration Server Foundation V5.1. These components
include:

» WebSphere Application Server Network Deployment V5.1

WebSphere Business Integration Server Foundation Installation Verification
IBM HTTP Server

WebSphere MQ

IBM DB2 UDB

Tivoli Directory Server (for Staff plug-in and Global Security)

BPE container configuration

vVvyyvyvyYyvyy

Installation verification
Please refer to “Installation verification” on page 54 for instructions.

BPE supporting components

The WebSphere Business Integration Server Foundation specific elements from
“BPE supporting components” on page 56 need to be configured. The
instructions are outlined below.

IBM DB2 UDB Client setup

Perform the following steps on the WebSphere Business Integration Server
Foundation V5.1 server machine.

1. WebSphere Application Server machine only has a V8.1 client installed, and
all DB2 data sources defined in WebSphere Application Server access DB2
databases through this client, the source being the db2profile file in the login
profile of your V5.x instance owner.

2. Log in as root, and add the following line to the .profile file.
. /home/db2admin/sq11ib/db2profile
Perform the following steps on the WebSphere Business Integration Server
Foundation V5.1 server machine as the db2admin user.
1. Log in as db2admin.
2. Catalog remote DB2 node as follows:
db2 catalog tcpip node <remote node> remote FQHN server 50000
3. Attach to the remote node and verify that catalog operation was successful.
db2 attach to <remote node> user db2admin using db2admin

4. Catalog the remote database in WebSphere Business Integration Server
Foundation V5.1 node 2 as follows.

db2 catalog database <database name> as <alias> at node <node name>

78 WebSphere Business Integrator Server Foundation V5.1 Handbook

5. Test the connection to the cataloged database using the following command:

db2 connect to <database name> user db2admin using db2admin

Tivoli Directory Server setup for Staff plug-in

Refer to “Tivoli Directory Server setup for Staff plug-in” on page 42 for
instructions.

Creating a WebSphere cluster

This additional configuration step results in the installed WebSphere Business
Integration Server Foundation nodes becoming members of a cluster.

The first step in configuring Business Process Container in a clustered
environment is to set up the WebSphere Application Server cluster and cluster
members. A cluster member is an instance of WebSphere Application Server or
WebSphere Business Integration Server Foundation.

Refer to “Creating a WebSphere cluster” on page 583 for further details.

Note: If you are creating a vertical scalability environment, then all servers in
the cluster will be on the same node.

Scalable BPE container configuration

An overview of the process of configuring the BPE container in a WebSphere
Application Server cluster is given in the InfoCenter topic found by clicking
WebSphere Business Integration Server Foundation. — Administering —
Applications — Process Choreographer — Configuring the business
process container —» Configuring the business process container on a
cluster.

It is assumed that the steps mentioned in “Creating a WebSphere cluster” on

page 79 have been followed to federate the WebSphere Business Integration

Server Foundation V5.1 nodes into a cell and to create the cluster and cluster
members by using the administrative console.

The tasks for configuring the Business Process Container are as follows:

1. Install Business Process Container using the wizard.
2. Configure WebSphere MQ JMS settings for Queue Connection Factories.
3. Configure Staff plug-in for Business Process Container.

Each task is discussed in detail below.

Chapter 4. Runtime environment 79

80

Configuring the BPE container in the cluster

In order to configure the Business Process Container in a clustered configuraton,
follow the instructions given in the InfoCenter topic Configuring the business
process container on a cluster.

There is essentially no difference between configuring Business Process
Container in a distributed and scalable configuration. The high-level tasks are
given below.

The first step is to configure the environment variables.

1. Log on to the Administrative Console running on the Deployment Manager
machine as admin.

2. Define environment variables listed in Step 4 in “BPE container” on page 59.
Navigate to Environment — Manage WebSphere Variables to define the
listed variables. It is important to note that these variables must be defined at
the Deployment Manager node level, and for all nodes that are part of the
cluster.

Figure 4-17 indicates the list of variables that must be updated at each node.

[|Hame = Value = Scope S

[~ |ARPE INSTALL ROOT F{USER_INSTALL _ROOT Minstalled&pps cells:mi 0cfS6Metwork: nodes: m1 Odf4
[~ |CLOUDSCAPE JDBC DRIVER PATH FOMAS_INSTALL_ROOT Moloudscapedib cells:mi 0cfS6Metwork: nodes: m1 Odf4
[~ |COMMECTJDBEC JDBC DRIVER PATH cells:mi 0cfS6Metwork: nodes: m1 Odf4
] COMMECTOR INSTALL ROOT F{USER_INSTALL _ROOT MinstalledConnectors | cells:m 0dfS6Metwork: nodes: m1 Odf4
[~ |DB2390 JDBC DRIVER PATH cells:mi 0cfS6Metwork: nodes: m1 Odf4
] DE2UNMNERSAL JDBC DRIVER PATH Shomesdb2admin/zalibgaya cellz:ml 0dfS6fMetwork: nodes:m1 Odf4
] DE2 JOBC DRYER PATH Shomesdb2admin/zalibgaya cellz:ml 0dfS6fMetwork: nodes:m1 Odf4
[~ |DEPLOY TOOL ROOT FOMAS INSTALL_ROOT Mdeploytoolitp cells:mi 0cfS6Metwork: nodes: m1 Odf4
[~ |DRIVER PATH FOMAS INSTALL_ROOT} cells:mi 0cfS6Metwork: nodes: m1 Odf4
[~ |MEORMI JDBC DRIVER PATH cells:mi 0cfS6Metwork: nodes: m1 Odf4
] Ja8 8 HOME JusrivehSphere/dppServerfava cellzml 0dfs6fMetwork: nodes: m1 Odf4
] LG ROOT F{USER_INSTALL _ROOT Mogs cellzml 0dfs6fMetwork: nodes: m1 Odf4
| | MeLMS LB ROOT FIMG_INSTALL_ROOT Mavadib cells:mi OcfSEfMetwork: nodes: m1 Ocf4
Il MG IMSTALL ROOT Jusrimom cellz:ml 0dfs6fMetvwork: nodes:m1 Odf4

Figure 4-17 Environment Variable Changes

3. Once variables are defined at all nodes, save the changes and make sure to

set synchronization with the nodes.

The next step is to configure the BPE container.

WebSphere Business Integrator Server Foundation V5.1 Handbook

Install BPE container as per the instructions listed above in the Distributed
environment section. Refer to “BPE container” on page 59. Repeat Steps 5 to 10
from this section. Log in to the Administrative Console running on the
Deployment Manager machine.

Important: Use the Business Process Container Install Wizard on the
Deployment Manager machine to install and configure the business process
containers in the cluster. This action causes the Business Process Container
to be installed and configured on all the other application servers in the cluster.

To achieve this, select any server that is part of a cluster and use the Business
Process Container Install Wizard for the installation. Once the installation is
done and you are asked to save the master configuration, make sure that
changes are sychronized with the nodes. Synchronizing changes will federate
the business process container application among all cluster members.

Once installed, Business Process Container can be activated by starting the
cluster. Look for any exceptions in the SystemOut.log on individual application
servers running on each node.

Configuring WebSphere MQ Resources

The WebSphere MQ JMS configuration to support the BPE container requires
that Queue Connection Factories to be set up on individual application servers.

Refer to “Configuring WebSphere MQ JMS Provider” on page 65 for instructions
on how to set up WebSphere MQ JMS parameters at the server level. Use the
values provided in Table 4-9 on page 65 for WebSphere MQ JMS settings.

These guidelines are also available in the WebSphere Business Integration
Server Foundation InfoCenter.

Important: In the basic configuration scenario outlined in 4.2, “Basic
configuration” on page 36, a BINDING transport type could be used to
establish a IPC-based connection to the WebSphere MQ Server process. In a
distributed and scalable environment, the WebSphere MQ Server process
runs on a separate machine, hence a CLIENT-based TCP/IP connection must
be established. As a result, when configuring the Queue Connection
Factories, BPECF and BPECFC under WebSphere MQ JMS Provider, both
the TCP/IP host and port must be specified. In addition, the Transport Type
should be set to CLIENT.

Chapter 4. Runtime environment 81

Configuring Staff Plug-in

In order to configure the staff plug-in, follow the steps in “Configuring Staff
service for Process Choreographer” on page 66.

There are, however, two differences when configuring the Staff plug-in in a
scalable environment. Review the following important points before proceeding
with configuring a Staff plug-in in a scalable environment.

1. J2C Authentication aliases are used by the Staff Plugin Provider. In a scalable
environment, J2C authentication aliases are defined at the individual node
level, similiar to the Staff Plugin Provider. The Staff Plugin Provider uses
these node-level authentication aliases to authenticate against the Tivoli
Directory Server server.

— Make sure there are no authentication aliases defined from the previous
distributed configuration. The key is to configure the authentication alias
that is defined at the node level. The format of this alias looks like
<dmgrhostManager>/<node>/tds.

— Two J2C aliases must be defined for each node. This is shown in the
figure below.

J2C Authentication Data Entries

Specifies a list of userid and password for use by Java 2 Connector security. [i

Total: 4

Fitter

Preferences

M Delete

[| Alias = User ID = Description S

[~ |BREALthDatasliasDb2 cluster0l dhZadmin BP Datasource Auth Data
[~ |BREALthDataMliazDb? m1083a71 server! |db2admin BP Datasource Auth Data
[~ |mldfSEfananerin 05357 thds cn=root

[|ml0dfSEfananerind Odfdffids cn=root

Figure 4-18 J2C Authentication Alias in a Scalable Environment

2. In order to browse to the appropriate node, use the Scope property sheet as
shown in Figure 4-18.

Important: Staff Plugin Provider for Business Process Container is only
defined at the node level. In order to make the Staff plug-in functional in a
clustered Business Process Container, each node must be configured
individually for the Staff Plugin Provider.

82 WebSphere Business Integrator Server Foundation V5.1 Handbook

Staff Plugin Provider

Staff Plugins are responsible for the retrieval of user information. Staff Plugins are basically query factories. Each Staff Plugin Provider iz
redistered with the rurtime by specifying & name and a jar containing the plugin. & configuration file in the jar defines the class name
wehich represents the plugin as well as the properties for the plugin. More information may be found in the WebSphere documentation. [i

B Scope: Cel=m10df56fHetwork, Mode=m1083a7f

Cell m1 DcfSEfMetwark To specify cell scope, clear the node and server
fields and click Apply.

=+ Mo |m1 0&83a7f Browwse Modes To select & node scope, type in or browese for a

node, then clear the server field and click Spply.
Server I Browse Servers To select § server scope, select & node SC.DpE first,
then type in or browese for & server, and click Spply.
‘When nevy items are created in this viewe, they will be
Apply created within the current scope.

Total: 3
Fitter

Preferences

MNew | Delete

[|Hame = Description S

] LOAP Staff Plugin Provider This staff plugin provider can be used for LDAP based staff
queries.

] System Staff Plugin Provider This staff plugin provider may be used for System based staff
queries.

] User Redistry Staff Pludin Provider This staff plugin provider can be used for User Registry based
staff gueries.

Figure 4-19 Staff Plugin Provider scope at the node level

Important: While configuring the Staff plug-in at the node level, make sure to
use the appropriate J2C authentication aliases that are specific to the node
the Staff plug-in is being configured for.

4.5 Configuring for high availability

A high availability configuration builds on the scalable topologies discussed in
the previous section, adding protection from outages. In some cases, this could
be as simple as adding a number of nodes to the WebSphere Business
Integration Server Foundation cluster to allow the application to continue
executing if one of the nodes fails.

It is also important to consider the supporting components such as the JMS
provider, database server and LDAP server. These will need to be protected from
availability. If WebSphere MQ is the JMS provider, it will probably require a
clustered environment using persistent queues, with some form of takeover of
transitional data. An RDBMS is likely to be either hot standby or a parallel server
environment. LDAP will also need to be configured in a highly available mode.

Chapter 4. Runtime environment 83

A possible high availability topology is shown in Figure 4-20.

OS or Hardware Cluster: Hot Standby

WAS WAS
v5.1 ND v5.1 ND
/2
DB2 MQ DB2 MQ
Client | Client Client | Client
. OS or Hardware Cluster: Hot Standby
WAS Cluster !
WBISF Node 1
Tivoli Tivoli
IBM HTTP WBI SF v5.1 DB2 i Directory Directory
Server Client : Server Server
E Node Agent i
i Edge | —7 7] i
"l s WAS H
r erver Plugin App Server MQ
o g / Client DB2 HACMP
w
; Ty D
| WBISF Node 2 BER BER
Edge IBM HTTP WBI SF v5.1 DB2 Database Database
Server S Client
erver Node Agent
Edge Cluster WAS MQ
Plugin App Server ;
Client WebSphere
MQ Server
~ WebSph
ebSphere
MQ Cluster MQ Server

Figure 4-20 High availability environment

Some of the features of this environment are listed below:

» High availability for the WebSphere Business Integration Server Foundation
is provided by the WebSphere Application Server cluster mechanism. This,
however, depends on the other components in the infrastructure.

» The WebSphere Application Server Network Deployment server has a hot
standby, since there can be only one active Network Deployment server in the
environment.

» The WebSphere MQ JMS provider is configured in a clustered environment.

» The Data stores, DB2 Enterprise Server Edition and Tivoli Directory Server
have a redundant node topology, configured with data replication so that
operation can transfer to the hot standby in the event of an outage.

84 WebSphere Business Integrator Server Foundation V5.1 Handbook

Development environment

This chapter introduces the WebSphere Business Integration Server Foundation
development environment. We also include a brief discussion of what makes up
an ideal WebSphere environment.

This chapter also describes features available in WebSphere Studio Application
Developer Integration Edition that aid in the development of Business Processes,
along with features that are part of the new version, V5.1

Finally, the WebSphere Test Environment is described, where Business
Processes can be debugged and tested. To support development and testing of
Business Processes, a remote test server is described. The discussion covers
the options included and the pros and cons associated with each remote test
server configuration.

© Copyright IBM Corp. 2004. All rights reserved. 85

5.1 Introduction

System architects, application architects, system administrators and developers
are often faced with the challenge of creating a coherent development, system
testing, and production environment. The challenge is to have identical system
testing and production environments, and, more importantly, to be able to test
applications in a similar system and integration test environment to the
production environment.

When architecting an environment for application development and system
testing, much consideration and planning is required. A successful development
environment may involve rigorous software engineering, strong architecture,
detailed design, quality staffing, careful planning, risk management, and other
aspects.

WebSphere Studio Application Developer Integration Edition V5.1 is the
application development environment for WebSphere Business Integration
Server Foundation V5.1. It can be used to create everything from personal Web
pages to Web sites that serve as front ends for e-business applications.
WebSphere Studio can be integrated with other content development tools, and
with complex applications that interact with enterprise information systems (EIS).

WebSphere Studio Application Developer Integration Edition allows for
developing, testing, deploying, and managing applications. It is designed to be
used in a wide variety of development roles such as Web developer, Java
developer, enterprise programmer, business analyst, and system architect. A
rich set of utilities and wizards helps simplify common tasks so that developers
can concentrate on providing true business value and on rapidly getting robust
applications into production.

In addition to a full Java 2 Platform, Enterprise Edition (J2EE) development
environment, WebSphere Studio Application Developer Integration Edition V5.1
provides easy-to-use tools for creating reusable services out of a variety of
back-end systems and for choreographing the interactions between those
services using Business Process Execution Language for Web Services
(BPEL4WS).

The WebSphere environment

Figure 5-1 on page 87 shows an "ideal" WebSphere environment. It takes into
account all the necessary steps in a software development process and can be
considered a first-class rigorous environment. Every individual sub-environment
is a complete environment in itself to achieve a necessary task in a software
development, testing, and deployment process.

86 WebSphere Business Integrator Server Foundation V5.1 Handbook

Development Integration Performance and Stress
Development Environment Test Environment Test Environment

M

HTTR. ‘ ‘ :

= = = 7:>
Development Development Development —
WSADIE WSADIE WSADIE

WBISF WBISF

U) E {}
5 == System Test Environment
Integration Workstation
WSADIE

WBISF WBISF WBISF

=

e M

Production Environment

Legends:

+ WSADIE: WebSphere
Studio Application
Developer Integration
Edition

* SCM: Source Control
Management

* HTTP: HTTP Server

o i i T * WBISF: WebSphere

Integration Server

i] Foundation
WBISF__ WBISF__ WBISF __ WBISF WBISF__ WBISF_weISF__waisF_| | " WES:

Figure 5-1 WebSphere Business Integration Server Foundation development environment

The illustrated environment requires considerable investment in terms of both
time and money by an organization. It also depends on the organization as to the
amount of risk it is willing to accept when development, testing, and deploying
the application. At a minimum, any major software development project has a
development, system test, and production environment. Organizations
developing simpler applications or that are willing to assume increased risk may
scale down some aspects of this ideal environment.

Chapter 5. Development environment 87

This redbook advocates the use of separate environments for software
development, development integration, system testing, stress testing,
pre-production and production.

Development environment

The development environment typically serves as the testing ground for new
code, applications, and alterations of the WebSphere environment. This is where
developers live and work every day. Thus, they need the best tools and the
fewest barriers to progress.

There is generally a code integration environment in the development
environment, which is dedicated to code integration and testing. The team or
development lead should load the code onto the integration workstation and run
the entire suite of unit tests.

Development integration test environment

The development integration test environment is the environment that most
closely resembles the production environment, though still at the smallest
possible scale. When new code is developed in the development environment
and deemed ready for testing, it is moved into the test environment, where it
undergoes a rigorous test plan. Testing in this environment involves uncovering
issues related to subtle differences between the development and production
systems as well as testing the deployment procedures. This may include such
things as use of various operating system services, WebSphere Application
Server security, back-end systems, and others. Developers use this environment
to perform integration tests among all system components. This environment is
also used to test installation and operational procedures which are often
operating system specific.

system test environment

The system test environment is a carefully controlled formal test environment. A
system test environment mirrors the production environment more closely than
does a development integration environment, at the smallest possible scale. A
key aspect of the system test environment is formality. The purpose of this
environment is to ensure that the application will truly deploy and run as required
in production. Thus, the system test team is responsible for testing all aspects of
the application, including both functional and non-functional requirements.

Performance and stress test environment

Performance and load testing is performed to find load-related problems in
applications. This testing requires highly specialized skills and equipment in
order to be optimally performed. Hence, this is a dedicated environment and
team. Like the system test environment, the performance test environment is a

88 WebSphere Business Integrator Server Foundation V5.1 Handbook

carefully controlled formal test environment. Development teams run their
applications on this environment on an even less frequent basis. A performance
test environment mirrors the production environment in complexity, but it does so
on the smallest possible scale.

Pre-production environment
This environment serves three purposes:

1. It gives the operations team a final place to familiarize itself with the
application and its procedures.

2. It provides the opportunity to test unrelated applications running together.
This is crucial when dealing with shared deployment environments. Prior to
this point, the applications have been tested and built independently.

3. It provides the operations team with a chance to test their operational
procedures (back-up, failover, problem resolution, etc.).

Production environment

This is where the application actually runs. The key point is that if you have
carefully followed procedures up to this point, the actual roll into production will
be comfortably predictable, since everything will already have been tested.

The following sections discuss WebSphere Studio Application Developer
Integration Edition as the IBM preferred development environment for developing
business processes and applications.

5.2 WebSphere Studio Application Developer
Integration Edition V5.1

WebSphere Studio Application Developer Integration Edition V5.1, optimized for
developing applications that deploy to WebSphere Business Integration Server
Foundation V5.1, delivers an application development environment for building
service oriented applications that extend and integrate your existing IT assets.

5.2.1 WebSphere Studio Application Developer Integration Edition
V5.1 at a glance

WebSphere Studio Application Developer Integration Edition, at its core,
provides easy-to-use tools for creating reusable services out of a variety of
back-end systems and for choreographing the interactions between those

Chapter 5. Development environment 89

services using Business Process Execution Language for Web Services
(BPEL4WS).

The following are the core differences between WebSphere Studio Application
Developer and WebSphere Studio Application Developer Integration Edition.

Services

At the heart of the Integration Edition programming model are business services,
which are used to model different kinds of service providers consistently.
Services are the business functions of your enterprise, or of your business
partners. Use the integration tools to develop various types of services, including
Web services, processes, EIS (J2EE Connector) services, JMS services, and so
on. Web Services Descriptor Language (WSDL) is used as the model for
describing any kind of service.

Business process

A business process is a service implementation that represents a part of your
business operations. It can be completely automated or may require human
interaction at certain points. WebSphere Studio Application Developer
Integration Edition provides a model that allows you to implement these
processes in a very efficient, graphical way.

Human workflow support

Human workflow support expands the reach of BPEL to include activities
requiring human interaction as steps in an automated business process.
Business processes involving human interaction are interruptible and persistent
(a person may take a long time to complete the task) and resume when the
person completes the task.

Business rule beans

Business rule beans offer a powerful real-time framework for defining, executing,
and managing business rules that encapsulate business policies that vary based
on changes in the business environment. For example, a simple business rule
might be, "If a customer’s shopping cart is greater than $X, then offer a Y%
discount."

Programming Model Extensions

WebSphere Business Integration Server Foundation V5.1 and WebSphere
Studio Application Developer Integration Edition V5.1 help accelerate large-scale
application development by allowing the user leverage the latest innovations that
build on today's J2EE standards including extended messaging, Dynamic Query
service, internationalization service, application profiling, asynchronous beans,

90 WebSphere Business Integrator Server Foundation V5.1 Handbook

Object pools, Startup beans, scheduler service, work area service, activity
session service, and last participant support.

Additional new features in V5.1

WebSphere Studio Application Developer Integration Edition V5.1, as compared
to V5.0, includes the following new features:

» Business process designer for creating Business Process Execution
Language for Web Services 1.1 (BPEL4WS) process flows.

» Integrated visual BPEL4WS debugger.

» Enhanced performance for installing and debugging, including support for J9
Hot Swap.

» New visual condition builder to direct the execution of BPEL processes.

» Automated migration of process flows from Flow Definition Markup Language
(FDML) to BPEL4WS.

» Unit test environment for WebSphere Business Integration Server Foundation
5.1

» Full support for all the features included in WebSphere Studio Application
Developer Integration Edition V5.1.1 including support for Workbench V2.1.2,
support for building Web Services Interoperability (WS-I) compliant Web
services, and support for Java development kit (JDK) 1.4.1

» Programming Model Extensions for a distributed map. This PME offers an
interface to enable J2EE applications and system components to cache and
share Java objects by storing a reference to the object in the cache in order to
improve performance

» Another Programming Model Extension is Container Manager Persistence
over Anything. It extends the Container Managed Persistence (CMP)
framework to support any back-end system or service that supports create,
retrieve, update, and delete (CRUD) methods.

5.2.2 WebSphere Studio Application Developer Integration Edition
Workbench

WebSphere Studio configurations are all built on the WebSphere Studio
Workbench that extends the open-source Eclipse platform and provides an open,
extensible plug-in architecture. Numerous plug-ins are available from partners
and the open source community, or, using the included plug-in development
environment, you can create your own plug-ins for specific needs.

Figure 5-2 on page 93 highlights some of the features in WebSphere Studio
Application Developer Integration Edition workbench. Studio Integration Edition

Chapter 5. Development environment 91

workbench includes Business Integration perspective. This is the default
perspective for development enterprise services. Business Integration
perspective is highlighted in Figure 5-2 on page 93.

Business Integration perspective includes a process editor for composing and
editing BPEL-based processes. This view is complemented by a set of tools that
aids in the development of BPEL-based processes. Studio Integration Edition
workbench include Business Process based views, that is, the Outline view
shows components that are necessary for Business Process creation.

The Business Integration perspective BPEL Editor and the tooling are further
discussed in Chapter 6, “Process choreographer: introduction” on page 121.

92 WebSphere Business Integrator Server Foundation V5.1 Handbook

/ Business Integration perspective

Task Bar

Process Editor (BPEL)

tﬁ: Business Integration - NiceJourney.bpel - WebSphere Studio Application Develope’ Integration Editza 5 |EI|1|
File Edit Mavigate &S€arch Project Run Window Help
[& o])

Service Projects
e Referenced_Partner
E com. bookyourflight

= ﬁ WPC_Simple_Process

E com, bookyourflight . FlightBookingSystes
E com. example. wiww, processa 7437324, |
corm. nicejourney

: @ MiceJourney_travelarrangement Ty
42, Micelourney.bpel

@] MicelourneyInterface wsdl

[@] NiceJourneyPublicInterface. wsdl
E com. nicejourney MiceJourneyPublicInte
E com. nicejourney , Mice JourneyPublicInte
[=-{=% Deployable Services

=2 WPC_Simple_ProcessEJE

-1z WPC_Simple_Processieb

d

.
MiceJourney
. .

.| Partner Links ==

travelarrangementType ||

&] flightBooking |
L
= | Receive
[| Variables == o
’ ” Pt travelRequest
=
__J > Assign travelResponse
|
| e flightRequest
J ii flightResponse
L Javasnippet
|
R Correlation Sets ss o
Invoke
|
b
Ol 3
a Reply
2. MiceJourney =fim
Description Display Mame: | MiceJourney | ﬂ
Client
sl Mame: | MiceJourney |
Documentatian LI
a=

% Tasks (5 items)

o (:{::DV x

I J’I H | Description

| Resource | In Folder | Location

B

TWAEDD34W EJB link element ejbfcompensationy...
TWAEDD34W EJB link element ejbfcompensationy. ..
IWAEDD34W EJB link element eibfcompensation;...

WPC_Simple_ProcessEAR.
WPC_Simple_ProcessEAR.
WPC Simple ProcessEAR

| of

21

= N

/

asks]Server Cw | SErvers |C0nsole |Pr0perties)
—

Views

Figure 5-2 WebSphere Studio Application Developer Integration Edition V5.1 Business Integration
perspective

The context-menu in the Services view of Business Integration perspective is
shown below. Items in this menu are discussed further in next section.

Chapter 5. Development environment

93

ﬂ Project...

1% Service Project

:% Business Process
j Service built From, .
I_—a- Empty Service

EdY Service Interface
I—__-‘} Transformer Service
I—__% Build From Service. ..
(5] #ML Schema

@ Class

& Package

ﬂ Other,..

Figure 5-3 Business Integration perspective Services context menu

5.2.3 Integration Edition tooling

WebSphere Studio Application Developer Integration Edition V5.1 has
complementary tools for aiding in the development of Services and Business
Processes.

Getting Started

Users can start working with WebSphere Studio Application Developer
Integration Edition immediately. A welcome page provides links to key concepts.
Cheat sheets are a useful way of quickly building a service. Topology diagrams
provide a map of the kind of service being developed.

Business Integration perspective
This is the default perspective for the Integration Edition. It puts together all the
tools, services, and processes used to develop enterprise services.

Service Project

This is the center of Integration Edition as it manages the development of
services and processes. This also manages the files associated with the project.
The files are WSDL files, Java, and process files.

Integration Application
An integration application is an application created from a set of services.

94 WebSphere Business Integrator Server Foundation V5.1 Handbook

Service Definition

A service definition is a WSDL document. Effectively, this is a set of three files
that collectively conform to the WSDL specification of a service definition.

Integration Edition provides a wizard to help build the WSDL document. There is
an Empty Service wizard that generates a WSDL interface with only a definition
name and target namespace. Once a service definition is created, Integration
Edition provides an editor for modifying it from several viewpoints.

Services Based on existing assets

Services are usually based on existing applications that have been tested and
represent considerable investment. Basing a service on an application is
considered a bottom-up approach. Integration Edition provides a Service built
from wizard, to base a service on a Java application, a stateless session bean, or
on one of the resource adapters. It is possible to use a custom resource adapter
using the JCA plug-in tool.

There are importer wizards for using existing applications. You can import C files,
COBOL copybook files, HOD 3270 terminal files, Java files, or MFS files. In
addition, the JCA plug-in can also be used to import RAR files to the Integration
Edition development environment.

Processes

A process is a form of service implementation. In the implementation, you can
use existing services arranged in a sequence to create another service.
Integration Edition provides a Process editor that arranges and links services into
a process; a Process debugger that visually debugs errors in a process; and a
Process Web client to test a process.

Transformer Editor

Messages define the input and output data for an operation in a WSDL file. They
also define the content of a variable in a process. The transformer editor
transforms a message by mapping it to another message. Transforming
messages with this editor is often done when building a process.

Services Based on implementing Service interfaces

A service based on implementing a service interface is a top-down approach to
development, unlike a service based on an existing asset. To achieve this,
Integration Edition provides the Build from service wizard. Generally, this editor is
used when a service interface file exists but there is no implementation of it. It
allows you to develop an implementation for the WSDL file.

Chapter 5. Development environment 95

Generate Deploy Code wizard

The Generate Deploy Code wizard generates the deploy code for the services
you want to offer. The deploy code gets generated into modules in the Enterprise
Archive (EAR) file to become your integration application on deployment to a
production server.

Service Proxy wizard

The Service Proxy wizard creates a file to represent your service on a client. An
application can interact with it as if it were just another Java module in the
application. The application simply invokes the proxy's methods, and the proxy
transparently handles getting the data from service at the server.

5.2.4 Development with WebSphere Studio Application Developer
Integration Edition

This section provides details about development-related topics in WebSphere
Studio Application Developer Integration Edition.

Server targeting support

WebSphere Studio Application Developer Integration Edition V5.1 is the primary
development environment for WebSphere Business Integration Server
Foundation V5.1. It not only supports the Integration Server test environment, but
also supports the extensions to develop J2EE applications.

In order to enable the support for the J2EE extensions, you have to enable the
server targeting support in WebSphere Studio Application Developer Integration
Edition.

Important: The server targeting support is not enabled by default. If you
develop for WebSphere Business Integration Server Foundation, you may
want to enable this feature as the very first step.

Server targeting support is stored in the workspace preferences (workspace
scope), as every other Eclipse preference.

To enable, select Window — Preferences from the menu, then select J2EE
from the list on the left side. On the panel, shown in Figure 5-4 on page 97, check
the Enable server targeting support, then click OK.

96 WebSphere Business Integrator Server Foundation V5.1 Handbook

@reierences

£

fen W= = e W]

- -

- -

-Waorkbench

- Agent Controller

£ Ant

- Build Crder

Business Integration
Component Test
Data

Debug

Help

- InstallUpdate

- Internet

H- Java

- Logging

+- LPEX Editor

- Plug-In Development
|- Profiling and Logging
2}
2}

s

-RAD

- Server

- Spell Check

- Symptom Database
t- Team

7- UML Visualization
- Validation

/- WAS Debug

- Web and XML Files
- Web Browser

=]
| J2EE
[V Display WebSphere extensions within the J2EE editors
[V Display WebSphere bindings within the J2EE editors
Highest J2EE version used for development: [1.3 j

—EJE Client JARs
[~ Create EJB dient JAR projects for new EJB projects
Java JAR Dependencies for references to EJB JARs:
% Use EIB JAR

All referendng modules and JARs depend on the EJB JAR., This is compatible with
WebSphere 4.x, 5.x, and most application servers,

" Use EJB Client JAR, if it exists
All referencing modules and JARs depend on the EJB dient JAR. This is best

practice, but is only compatibile with WebSphere 5.1 and any application servers
that support EJB dient JAR deployment.

—Server Targeting Support

‘You can specify target servers for 12EE projects. For example, you can target
WebSphere Application Server v5. 1 and take advantage of the features in JDK
1.4, Project dasspaths are modified appropriately when a specified target server is
selected,

" Disable server targeting support

Mote: J2EE projects that are created will be compatible with earlier versions of this
product.

% Enable server targeting support;

[#- Web Services Mote: J2EE projects that are created with a target server will not be compatible
- Web Tools with earlier versions of this product.
[XML
Restore Defaults | Apply
Import... | Export... | O I Cancel

Figure 5-4 Preferences

Once you have server targeting support enabled, you can create J2EE
applications and import J2EE applications with the support for extensions.

When you create a new Enterprise Application Project, you can select the target
server on the wizard panel.

Chapter 5. Development environment

97

tﬁ: New Enterprise Application Project [ﬂ

Enterprise Application Project
Create an Enterprise Application project containing one or more module projects. %

Project name: I SampleWBISFProject

Project location: | C:\J2EEProject Browse... |

Target server: |Integration Server v5.1

[» L«

WebSphere Application Server v5.1
WebSphere Application Server EE v5.0

WebSphere Application Server Express v5.1
[Integratio 5,
WebSphere Application Server v5.0 X

< Back | Next > | Einish I Cancel

Figure 5-5 New Enterprise Application project

When importing an EAR file, you get a window similar to Figure 5-5, where you
can select the targeting server.

If you already have a J2EE project on your workspace that has no server
targeting support, you can change the project to enable it in the project
properties panel. Right-click the EAR project folder, then select Properties,
select J2EE on the panel, then change the Target Server to Integration Server
V5.1, as show below.

4p Properties for HelloWorldProcessEAR 10l =l

-~ Info J2EE
- External Tools Builders

-12EE JZEE Level: 1.3

-Links Validation/Refactoring Description:

-Project Refel

rCIEeneEs J2EE 1.3 indudes Connector Architecture Specification level 1.0, Servlet -

i-- Server Preference

Specification level 2.3, J5P Specdification level 1.2, and EJB Specification level 2.0,
Applications developed for this J2EE level typically target a 5.0 version Websphere
Application Server,

- Validation

L= 8- a- Sl fintegration Server v

V¥ Update EAR modules and utility projects to the selected target server

Restore Defaults | Apply |

oK I Cancel |

Figure 5-6 J2EE application properties

98 WebSphere Business Integrator Server Foundation V5.1 Handbook

Important: You have to have server targeting support enabled in WebSphere
Studio Application Developer Integration Edition in order to select or change
the server target to Integration Server v5.1. Otherwise, the option is not
enabled.

The differences that enabling server targeting makes can be seen in the
deployment descriptors, for example in the application descriptor.

[Application Di
Extended Services i

Configure application profiles and last particpant support

x]

Last participant support Application profiling
Select to enable Configure application profiling for a 12EE application

D Last participant support

Overview |Module | Security lExhended Services]Souroe

Figure 5-7 Extended services in the application.xml

Another difference is in the EJB deployment description.

Chapter 5. Development environment 99

Pushdown entities

x|
Backend type:
EJBToRAAdapter class: |
Push-down methods
Method name: | Preflush (data ... | Back-end Met... |

Remaove

| Add... ||Generate... || Remoye |

Overview | Beans |Assemb|y Descriptor |ReFerer1ces | Access |Exhended Messaging |Inhernationalizaticn | ActivitySession |Extended Access lPushdown IScurce

Figure 5-8 Extensions in the ejb-jar.xm|

100

Note the Extended Messaging, Internationalization, ActivitySession, Extended
Access and Pushdown tabs on the editor.

BPEL Editor

The BPEL Editor is a visual graphical user interface (GUI) for developing
BPEL4WS processes. Since the editor is a brand new component in WebSphere
Studio Application Developer Integration Edition and it is quite a complex one,
you may encounter some unexpected behavior. The following list is a series of
recommendations to avoid problems in the future using the BPEL Editor.

» Make sure you save your work regularly in the BPEL Editor. On the other

hand, do not make it an automatic process, because you may overwrite your
work after an unexpected change in the editor.

When the diagram does not refresh in the editor, the only option might be to
save the work, close the file, then open the file again in the editor.

Some of the components can be moved around, opened/closed or
expanded/collapsed. The hot areas, where the pointer becomes active when
you click, might be very small and can be at unexpected locations. Be patient
and try to find the right spot for your actions (click).

When you are working with large processes, build your processes using
embedded flows and sequences. With this method, you can collapse and
expand parts of your process so you can see it and handle it better.

WebSphere Business Integrator Server Foundation V5.1 Handbook

Unfortunately, some functions of the visual design need further advancement,
including the zoom, the automatic arrangement and component positioning. Be
patient and accept the fact that you may have to do some extra work just to
arrange your components and move them where you can see or edit them.

Enterprise services

Enterprise services offer access over the Internet to applications in a
platform-neutral and language-neutral fashion. They offer access to enterprise
information systems (EIS) and message queues and can be used in a
client/server configuration without the Internet. Enterprise services can access
applications and data on a variety of platforms and in a variety of formats.

An enterprise service wraps a software component in a common services
interface. The software component is typically a Java class, EJB, or J2C
resource adapter for an EIS. In services terminology, this software component is
known as the implementation.

WebSphere Studio Application Developer Integration Edition offers two
approaches for building enterprise services:

» Bottom-up approach
» Top-down approach

Bottom-up approach

Use the bottom-up approach when building an enterprise service from existing
assets. In the bottom-up approach, you start with an existing implementation and
then add the description for implementation in WSDL. The WSDL is generated
by the tools in the Integration Edition.

You can generate enterprise services for Java classes and EJBs. Integration
Edition can also generate enterprise services that support J2C resource
adapters to access EISs.

The main steps to create and install an enterprise service are as follows.

Create a service project.

Develop or import the implementation into the service project.
Generate the service.

Generate the deployed code.

Deploy the enterprise service as an EAR file to an application server.

o0~

Top-down approach

Use the top-down approach to create an implementation from an interface WSDL
file. In the top-down approach, you create the service definitions first and then
generate the implementation for the service from the service definition.

Chapter 5. Development environment 101

If you already have a WSDL file that contains the service interface definitions
(port types, messages and operations), you can then follow these steps to add
bindings and port definitions for the service and generate either a Java or EJB
skeleton for the implementation of the service:

1. Create a service project.
2. Import the interface files (WSDL).

3. Create an EJB project if an EJB skeleton should be generated (this step is not
necessary when creating a Java skeleton).

4. Generate the service skeleton using the New Service Skeleton wizard.
5. Implement the business logic in the skeleton.
6. Deploy the enterprise service as an EAR file to an application server.

More information

Developing enterprise services is beyond the scope of this redbook. For detailed
information about development, refer the IBM Redbook: Exploring WebSphere
Studio Application Developer Integration Edition V5, SG24-6200.

You can also find details about enterprise services in the WebSphere Studio
Application Developer Integration Edition help at WebSphere Studio —
Developing — Enterprise services.

5.3 WebSphere Test Environment

102

WebSphere Studio Application Developer Integration Edition V5.1 provides
runtime environments that allows for testing JSP files, servlets, HTML files,
enterprise beans, Java classes, and enterprise services including BPEL and
FDML based processes. A universal test client (UTC) is provided to test EJB
modules, Web services and BPEL4WS processes. WebSphere Test
Environment also provides the capability to configure other local or remote
servers for integrated testing and debugging J2EE applications.

The server tools allow you to test applications in different local or remote runtime
environments. You can also use the tools to publish to these environments. The
following two options are provided by the server tooling for publishing J2EE
applications:

» WebSphere Studio Application Developer Integration Edition V5.1 includes
WebSphere Business Integration Server Foundation V5.1 runtime
environment, which can be used to test applications directly from the
development environment. Each test environment provides all the function of
the full runtime environment, but eliminates dependencies on network
connections.

WebSphere Business Integrator Server Foundation V5.1 Handbook

» Itis also possible to publish to one or more separately installed versions of
WebSphere Business Integration Server Foundation V5.1 application servers
that reside either locally or on a remote machine. If the test server is remote,
Agent Controller must be installed on the remote machine.

In WebSphere Studio Application Developer Integration Edition, the server tools
contain the complete runtime environment of the WebSphere Application Server
including WebSphere Business Integration Server Foundation V5.1. This
environment is called the WebSphere Test Environment. The test environment
includes a local copy of the full WebSphere Business Integration Server
Foundation V5.1 and various WebSphere Application Server V5 runtime
envirnments. Optionally, during installation of WebSphere Studio Application
Developer Integration Edition V5.1, you can install WebSphere Application
Server V4 test environments.

5.3.1 WebSphere Test Environment benefits

WebSphere Test Environment provides the following benefits:
» Standalone all-in-one testing
» No dependency on WebSphere Application Server installation or availability

» No dependency on an external database even when entity bean support is
required

» Supports hot-code replace

» Provides the ability to debug live server-side code at full speed

» Supports configuring multiple Web applications

» Supports multiple servers that can be configured and run at the same time
» Provides access to the profiling feature

» Provides the ability to version server configurations

» Provides a Universal Test Client where you can test your enterprise beans
and Java classes

» Provides access to the WebSphere Application Server Administration
Console

» Provides the ability to automatically create tables and data sources for testing
CMP beans

» Supports sharing servers with multiple development clients

The following table summarizes the supported runtime environments in
WebSphere Studio Application Developer Integration Edition V5.1.

Chapter 5. Development environment 103

Table 5-1 WebSphere Application Server types

Version

Types

WebSphere Application Server V5.1

- WebSphere Business Integration Server
Foundation

- WebSphere Business Integration Server
Foundation [remote]

- Express Server [remote]

- V5.1 Server [remote]

WebSphere Application Server V5.0

- Express [remote]
- EE Remote Server [remote]
- V5.0 Server [remote]

WebSphere Application Server V4.0

- V4.0.7 Server [remote]

Apache Tomcat V4.1

Local Server
Test Environment

Apache Tomcat V4.0 Local Server
Test Environment
Apache Tomcat V3.2 Local Server
Test Environment
Other - Application Server Attach

- J2EE Publishing Server
- Static Web Publishing Server
- TCP/IP Monitoring Server

The WebSphere Application Server V4 test environment is based on WebSphere
WebSphere Application Server V4.0.7. The WebSphere Application Server V5
test environment is based on WebSphere WebSphere Application Server V5.0.2.
The WebSphere Application Server V5.1 test environment is based on
WebSphere Application Server V5.1. When you migrate from a previous version
of WebSphere Studio, any e-fixes to the WebSphere Test Environment will be
removed and you must reinstall them manually.

5.3.2 WebSphere Test Environment overview

Components that make up the WebSphere Test Environment are illustrated in
Figure 5-9 on page 105. These components are dicussed briefly in the following

sections.

104 WebSphere Business Integrator Server Foundation V5.1 Handbook

Server Perspective /Server Project Server Configuration
| /
: B ebSphere dio Application Develope eq' ation Editio 15 _|EI|1|
File Edit Mavigate Search PBfoject Run Window Help
3 & - - J 'E?E
: Server

Tz WPC_Simple_Process = S {7

ﬁ WPC_Simple_ProcessEAR. NEEL3RtNgsl gl the Sarer.,

12 WPC_Simple_ProcessEJE Server namg' [wBL 57
-1z WPC_Simple_Processieb Agent Copftroller port: | 10002

O Egfable Javascript debugging
nable hot method replace in debug mode
7 Server]Configu... |Emwiran... |Web |Data so... | Parts |Variables | Trace | Security |EJE | J2C | M3 |Applica... |Extend... |Object I
Server Configuration) v X |-
4L Servers) 0 E x

EH:B P Server | Stakus | Server State |

ﬁ \WEL SF ﬁWBI H* Stopped The server should be republished

Servers] Conso\e
%
‘Writable
\Server View

Figure 5-9 WebSphere Test Environment

Server perspective

WebSphere Studio provides a server perspective that allows you to manage
servers and server configurations. A Server Configuration view allows you to
create or delete servers and server configurations. The Servers view gives you
the ability to stop, start, and restart servers; launch a server in debug or profiling
mode; and publish. The Console view allows you to monitor runtime messages.

Server definition

The server tools use servers and configurations to test and publish projects.
Servers are definitions that identify where you want to test projects. Server
configurations contain setup information. You can either have the development

Chapter 5. Development environment 105

environment create the servers and configurations automatically for you, or you
can create them using a wizard.

Types of servers

Theserver tools support the following types of servers. This lists summaries
different types of servers that are supported by WebSphere Studio Application
Developer Integration Edition V5.1:

v

WebSphere test environment
WebSphere local server
WebSphere remote server
Tomcat test environment
Tomcat local server

J2EE publishing server
Static Web publishing server
Remote server attach
TCP/IP monitoring server
Application server attach

vVVYyVYyYVYVYVYVYYVYY

Integration Server View tools

In addition to the tooling provided in WebSphere Studio Application Developer
Integration Edition V5.1 Server View context menu, WebSphere Business
Integration Server Foundation V5.1 Server View context menu provides
addtional tooling for Editing Business Container Deployment Descriptor, listing
the deployed processes and for launching the Web client. This is indicated in
Figure 5-10 on page 107.

106 WebSphere Business Integrator Server Foundation V5.1 Handbook

Tt 3
Open

Delete

ﬁ Dehbug
F Start

Qi Profile
(é) Restark

@ ctop

L Discommect

A5 Publish

Switch Configuration 4

Restart Project 4

% Add and remove projects. ..

R universal test client
Restart universal kest client
Rur administrative consals

3] Create tables and data sources

g";.. Show Ackivity Log. .
Edit BPEContainer Deployment Descriptar
oo Connect To Database
B" Disconnect: From Database
~# Show Deployed Processes
Launch Business Process Web Client

Figure 5-10 Server context-sensitive menu

Relationship between server resources

For each server, you can specify the server configuration that should be used for
that server. A server can only point to one server configuration. However, a
server configuration can be pointed to from one or more servers.

A relationship between a server configuration and a project, for example an EAR
project, is created when a project is added to the server configuration. A server

can point to one or more projects. A project can be pointed to from one or more

server configurations.

The following figure illustrates the possible relationship between the server tools
resources resources

Chapter 5. Development environment 107

Server 1 Project 1
Server
Configuration
j 1 1
Server 2 Project 2
Server
j Configuration
2| |
Server 3 Project 3
Each box represents a resource that
contains setup information or pointer.

Figure 5-11 Relationship between Server Resources

5.3.3 Supported software components

WebSphere Studio ships two JMS providers for testing Business Processes.

» WebSphere MQ Simulator for Java Developers
» WebSphere MQ Embedded Messaging

The following figure shows the supported JMS Providers in WebSphere Test
Environment.

108 WebSphere Business Integrator Server Foundation V5.1 Handbook

Server Settings

Marne:

Descripkion:
Mumber of Threads:
Queue Mames:

Haost:
Port:

Edit the M5 Provider settings

IMS Server Properties

Internal M5 Server

Inkernal WehSphere M3 Server

1

BREApICQUEUE_serverl
BPEHIdQueus_serverl
BREIntQueue_serverl

BPERetQuUeLe_serverl
DECFTIWFEDN

Remowve

LI B0

localhost

5557

IS Provider
O Disable

@ M3 Simulator for Java Developers
) Embedded Messaging

Figure 5-12 Supported JMS Providers

In addition, the following databases are supported by the WebSphere Test

Environment:
IBM DB2

Informix®
Sybase
Oracle

YyVyVYyVYVvYYy

Cloudescape

MS SQL Server

Figure 5-13 on page 110 indicates the supported databases in WebSphere Test
Environment. However, it is important to note that only Cloudescape is supported
for testing in both local and remote WebSphere Test Environments. This point is
further discussed in the following sections and in 5.4, “Remote test server” on

page 111.

Chapter 5. Development environment

109

dE Create a JDBC Provider

Create a JDBC Provider
Select the type of JDBC provider to create.

Database type:

Q Cloudscape
Q Infarmix
Q Swbase

QOracle
ﬁ RAS ST S e

JDEC provider type: £D82 Universal JDBC Driver Provider

QDEE Universal JDBC Driver Pravider (%a)
QDBZ Legacy CLI-based Type 2 IDBC Driver
£D82 Legacy CLI-based Tyvpe 2 JDBC Driver {nA)
0 0z J0BC Pravider

A ren e Renidoe 8

.
B sl e ‘FD b

Description:

= Back [Ext = | Eimish I Cancel |

Figure 5-13 Supported Databases in WebSphere Test Environment

Embedded MQ

WebSphere MQ Embedded Messaging allows you to fully test and publish your
applications within a JMS runtime environment. When you install the product,
you can choose to install MQ Embedded Messaging and once installed, it is set
up as the default messaging support for the WebSphere Test Environment.

MQ Simulator for Java Developer

WebSphere MQ Simulator for Java Developers implements Sun's Java Message
Service specifications. The JMS provider works with the WebSphere Integration
Test Environment so that you can test JMS services that you create with the
WebSphere Studio business integration tools.

WebSphere MQ Simulator for Java Developers is an in-process JMS server. It
can be used to easily unit test JMS applications within the development
environment. It does not support persistence or communication between
processes. No configuration is required; it is ready to run in the WebSphere
Studio's Test Environment.

WebSphere MQ Simulator for Java Developers is installed with the WebSphere
Studio product. WebSphere MQ Embedded Messaging requires separate
installation from the WebSphere Studio CD. When MQ Embedded Messaging is
installed, it becomes the default JMS provider that will be used by the

110 WebSphere Business Integrator Server Foundation V5.1 Handbook

WebSphere Test Environment. However, you can switch between these two
JMS providers for the Test Environment.

Restriction: At the time of writing this book, WebSphere MQ was not tested
with Business Process container as a JMS provider in WebSphere Test
Environment.

Cloudscape™

Process choreographer only supports the embedded Cloudscape, which does
not allow remote access. Cloudscape Network Server is not supported because
it has no XA support.

Restriction: Currently, you must use a Cloudscape database if you want to
test FDML or BPEL business processes using either a WebSphere remote
server or test environment server in the WebSphere test environment of
WebSphere Studio.

IBM DB2 UDB

Using IBM DB2 UDB in the WebSphere Test Environment together with the
Integration server V5.1 is not supported. You can still use DB2 for application
data together with other applications.

5.4 Remote test server

For more information about how to set up a single server for remote testing refer
to 4.2, “Basic configuration” on page 36.

5.4.1 Agent Controller

The Agent Controller is a daemon process that enables client applications to
launch host processes and interact with agents that coexist within host
processes. A single configuration file is used to manage the extent of its
behavior.

The Agent Controller provides a means for extending application behavior so
that information regarding the application's execution can be externalized and
then collected either locally or remotely. The Agent Controller interacts with the
following components:

Chapter 5. Development environment 111

112

Host process
This is the process that contains the application under test.

Agent

A reusable binary file that provides services to the host process, and more
importantly, provides a portal by which application data can be forwarded to
attached clients. A host process can have one or more agents currently running
within it. Even if the host process does not contain an agent initially, some
processing condition can result in the creation of an agent at some point during
the life cycle of the process.

Client

A local or remote application that is the terminal destination of host process data
that is externalized by an agent. A single client can be attached to many agents
at once. However, a client does not always have to be attached to an agent.

Agent Controller

A daemon process that resides on each deployment host and provides the
mechanism by which client applications can either launch new host processes,
or attach to agents that coexist within existing host processes. The client can
reside on the same host as the Agent Controller, or it can be remote. The Agent
Controller can only interact with host processes on the same node.

The Agent Controller's deployment model consists of multiple development hosts
that use the test client to interact with multiple applications that reside on many
different hosts on the network. A simple deployment diagram is illustrated in
Figure 5-14 on page 113.

WebSphere Business Integrator Server Foundation V5.1 Handbook

Deployment Hosts

Development Hosts

Application Application
Process

Process

> WSADIE Plug-ins

Agent Agent

Test Client

IBM Agent Controller

J - JDK
Services

Figure 5-14 Agent Controller deployment model

Each application process can have zero or more agents running within it. Each
host also has services that are provided by the Agent Controller. The Agent
Controller handles all communication meaning that the test client does not
interact with either the services or the agents directly. Instead, the client sends all
of its requests to the Agent Controller on the host that contains the application. It
is on the deployment hosts that these requests are authenticated and routed to
the target agent or service. Commands and data that are generated by the
agents and services must also be routed to the Agent Controller, from where they
are then transmitted to the test client.

Note: WebSphere workbench plug-ins can leverage the test client and
provide an interface for the developer to interact with the Agent Controller on
the deployment machines. An example of this is the Profiling perspective

5.4.2 Supported remote server testing scenarios

There are several options available for deploying and debugging a process on a
remote server. The following scenarios were tested for the both Process
deployment and debugging

WebSphere Studio Application Developer Integration Edition development
machine configured with Remote Integration Server (WebSphere Business

Chapter 5. Development environment 113

Integration Server Foundation) that communicates with Agent Controller running
on WebSphere Business Integration Server Foundation machine

WebSphere Studio Application Developer Integration Edition development
machine directly communicating with the Business Process Engine for process
debugging.

Scenario 1
Advantages:

» Gives the benefit of allowing Profiling, Administration, Configuration through
WebSphere Test Environment.

» Debugging is also performed through Debug perspective. Debugging
command line can be customized to pass in BPE specific performance
enhancements like -Xj9.

» Allows for installation, deployment of processes through WebSphere Test
Environment.

Disadvantages:

» Only Cloudscape and Embedded MQ supported on remote machine.

» Itis not a true representation of the System Test or Production environment.

» Software components may not exactly match the production and system test
environment, (WebSphere MQ and DB2).

114 WebSphere Business Integrator Server Foundation V5.1 Handbook

Remote Integration & System Test Host

WBISF Cloudscape
T

IBM Agent Controller

Services]

Development
WSADIE

Development
WSADIE

N/

Development
WSADIE

Figure 5-15 Scenario 1

Scenario 2
Advantages:

» Full support of DB2, WebSphere MQ and Tivoli Directory Server

» Development environment much closely resembles the system test and
production environment.

» Full debugging support through the debug perspective.

Disadvantages:

» The connectivity is established through WebSphere Studio Application
Developer Integration Edition debug perspective by directly attaching to a
remote WebSphere Business Integration Server Foundation running process.

» No administration, configuration features are available in WebSphere Test
Environment.

» Must have the Java code available in the local workspace for the specified
Process being debugged.

» Debugging may not work if deployed process is not exactly the same as the
one available in the workspace.

Chapter 5. Development environment 115

» Remote Application server must be restarted in debug mode and for adding
customized debug parameters, that is, -Xj9, Administrative Console has to be
used via a Web browser prior to debugging the process.

» No support is available for installation and deployment of processes through
WebSphere Test Environment.

Remote Integration & System Test Host

WBISF
DB2 ESE
PE
Development N
WSADIE Process 1
B WebSphere
Process 2
N MQ
a DS
Development
WSADIE

Development
WSADIE

Figure 5-16 Scenario 2

Key:

WSADIE: WebSphere Studio Application Developer Integration Edition
TDS: Tivoli Directory Server

WBISF: WebSphere Business Integration Server Foundation

PE: Process Engine

yVvyVvVyyYy

5.4.3 Configuring the IBM WebSphere Test Environment for the
remote test server
Before you can deploy a process to a remote test server from WebSphere
Studio, you need to ensure that you have met the following requirements

» WebSphere Business Integration Server Foundation V5.1 (Integration Server)
is installed with the Embedded Messaging feature.

116 WebSphere Business Integrator Server Foundation V5.1 Handbook

Ensure that the Cloudscape database BPEDB exists in
%WAS_HOME%\ProcessChoreographer.

IBM Agent Controller is installed and running. Agent Controller is available as
a separate install option on the WebSphere Studio CD.

Chapter 5. Development environment 117

118 WebSphere Business Integrator Server Foundation V5.1 Handbook

Part 3

Implementing
WebSphere
Enterprise
solutions

120 WebSphere Business Integrator Server Foundation V5.1 Handbook

Process choreographer:
introduction

This chapter introduces WebSphere Process Choreographer, the Business
Process Engine and the process description language BPEL4WS. It also
provides an overview of the business process related terms, the different process
types and some considerations. It provides a list of the different activities and the
process editor where you can use these activities to build a process.

© Copyright IBM Corp. 2004. All rights reserved. 121

6.1 Concepts

It is important to have an understanding of the concepts and terminology used
within WebSphere Process Choreographer before going into the details of
creating business processes. This chapter introduces the key concepts used
when talking about business processes.

The latest versions of WebSphere Business Integration Server Foundation and
WebSphere Studio Application Developer Integration Edition include several
significant features not provided in previous versions, so even if you are familiar
with the V5.0 products, you should read this chapter to familiarize yourself with
these changes.

The InfoCenter contains a more detailed overview of these and other concepts.
To access this, select Help — Help Contents from the WebSphere Studio
Application Developer Integration Edition menus, then navigate to WebSphere
Studio — Developing — Processes — The Process editor (BPEL) in the
help file.

6.1.1 Process languages

WebSphere Business Integration Server Foundation V5.1 introduces Business
Process Execution Language for Web Services (BPEL4WS, which is often
abbreviated as BPEL) as a replacement process language to the FDML-based
flows. BPEL4WS provides a more flexible standards-based approach to defining
and executing business processes.

FDML flows can still be developed and executed although their use is
deprecated. WebSphere Studio Application Developer Integration Edition
provides a wizard to migrate FDML flows to BPEL4WS. Although BPEL4WS
processes and FDML flows can both be used in a single application, it is not
possible to develop and store both types of process in the same WebSphere
Studio Application Developer Integration Edition Service project.

The implementation of the business process engine includes some added
capabilities which extend the basic BPEL4WS specification. These add support
for staff-related activities and embedding of Java code as Java snippets which
increase the power and productivity of the tool.

BPEL4WS processes will be used exclusively throughout the rest of this book.
For details about FDML, refer to the InfoCenter or to the IBM Redbook Exploring
WebSphere Studio Application Developer Integration Edition V5, SG24-6200.

122 WebSphere Business Integrator Server Foundation V5.1 Handbook

6.1.2 Non-interruptible and interruptible processes

Processes may be interruptible or non-interruptible. As the names suggest,
interruptible processes can be suspended and resumed, whereas
non-interruptible processes stay active from the time they start to the time they
complete.

Note: In the product documentation:

>

Interruptible processes are sometimes called long-running processes or
macroflows. The macroflow name is no longer used to describe
interruptible processes.

Non-interruptible processes are sometimes called short-running processes
or microflows. The microflow name is no longer used to describe
non-interruptible processes.

The key differences between the two modes of operation are:

»

State and status persistence

Interruptible processes persist their state and status to disk between
activities. This contrasts with non-interruptible processes which manage state
and status in memory.

Transactionality

Interruptible processes may contain multiple transactions. In contrast,
non-interruptible processes execute within a single transaction.

If a process is likely to execute for an extended period of time, it is recommended
that the process be interruptible, therefore persisting state and status. This
enables system resources to be released for other processes active in the
process container. It also allows the BPE container to be shut down and
restarted without losing the state and status of the process.

However, the overhead associated with storing the state to disk means that
interruptible processes are not so well suited to high throughput applications. In
this case, non-interruptible processes should be used.

Chapter 6. Process choreographer: introduction 123

Tip: Here are a few other general comments about interruptible and
non-interruptible processes:

» Asynchronous activity

A process must be interruptible if it contains an asynchronous activity such
as pick or staff. Otherwise, it will result in an error being raised.

» Configuring a process to be interruptible

Processes can be configured to be interruptible by selecting the Process
is long-running checkbox on the Server tab of the process details area.

» Binding of interruptible processes

Interruptible processes cannot bind to a synchronous port type such as
EJB, but must be bound to asynchronous port types such as JMS.

» Threading behavior

The activities of an interruptible process are queued internally before they
are executed by the process container. Hence, they may be executed in
different threads. In contrast, non-interruptible processes are always
executed in a single thread within the process container. This means that
even if a non-interruptible process contains parallel activities, these will be
executed sequentially.

There are potentially more serious implications for processes which invoke
other processes directly via a BPEL Partner Link. If the invoked process is
also non-interruptible, it will run in the same thread as the parent process
and any time-out set on the parent process Invoke activity will not trigger
even though it takes longer than the time-out setting.

6.1.3 Transactional behavior

124

Transactional behavior depends on the interruptibility of the process.
Non-interruptible processes execute within a single transaction. In contrast, each
activity within an interruptible process can have its transactional behavior set to
one of four states:

» Commit before
Pending transactions are committed before the activity starts.
» Commit after

The activity continues the existing transaction, committing the transaction
once it has completed.

» Participates
The activity continues the transaction.

WebSphere Business Integrator Server Foundation V5.1 Handbook

» Requires own

The activity commits pending transactions before it starts and commits its
own transaction once it completes.

In either case, if a failure is detected, the current uncommitted transaction is
rolled back and any pending compensation activities are applied. The result of
this is that the system is returned to a balanced state.

Compensation is a separate, WDSL-described service which balances the action
if an Invoke activity is used. A compensation service is applied to an Invoke
activity on the compensation tab on the process details area.

6.1.4 Sequences and flows

BPEL4WS provides flow and sequence structures which allow nesting.
Processes can include combinations of sequences and flows contained within
one another. The features of each structure are outlined below.

» Flow

Activities within a flow execute concurrently. The addition of /inks and their
associated conditions provides additional control over order of execution. The
end of a Flow activity is a synchronization point: all activities must complete
before the process continues.

» Sequence
Activities in a sequence execute sequentially. The order of execution is
defined by the positioning within the block.

Either a sequence or a flow can be used as a starting point for development. The
process has exactly the same characteristics and capabilities. The decision is
thus largely a matter of personal preference.

6.1.5 Parts of a business process

This section introduces the major building blocks of a process. Further details on
these concepts can be found in the BPEL4WS specification.

Partner links

The parties that will interact with the business process are defined as partner
links. Partners may be one of a number of types: WSDL service, BPEL, EJB
Java Class or Transform Service. Transform services are defined in WSDL.

For WSDL-based partner links a partner link type enables the role of the partner
and/or the process to be defined. There may be one or two roles defined within a

Chapter 6. Process choreographer: introduction 125

partner link type, depending on the requirements of the process. Roles are
assigned to participants in the partner link definition. Each role is associated with
a port type derived from a WSDL file. This defines the operations that the role
supports.

Note: In the following discussion, the terms synchronous and asynchronous
refer to the style of interface in the context of the process, and whether or not
a response is expected to a request before the process continues. A
synchronous interface could be provided by an asynchronous transport such
as JMS.

» One role is used for synchronous style interfaces.
Some examples of use of partner link types with one role are given below:

— If a process invokes a synchronous WSDL service, a partner link type with
one role is used. In this case, the partner role is defined and the process
role is blank.

— A synchronous interface offered by a process also uses a partner link type
with one role. In this case, the process role is defined and the partner role
is blank.

» Two roles are used for asynchronous style interfaces.
The overall flow of the interaction is outlined below:

a. A process invokes a service asynchronously and continues with
processing.

b. At some later time, the invoked service responds via an interface that the
process provides.

Both request and response are attached to a single partner link, the request
using the partner role and the response using the process role.

Tip: This is a rule of thumb for working out which roles need to be defined
within a partner link. If the process

» provides a service, the partner link must contain a process role
» consumes a service, the partner link must contain a partner role

These rules are not mutually exclusive: a process may both provide and
consume a service via a single partner link.

Variables

WebSphere Process Choreographer uses the concept of variables to pass data
between steps in the process. The type of each variable is described by a

126 WebSphere Business Integrator Server Foundation V5.1 Handbook

message comprising one or more message parts. The message is defined in
WDSL.

Activities
An overview of the available BPEL4WS process activities is given in Table 6-1.
For more detailed descriptions and examples, refer to the InfoCenter.

Table 6-1 WebSphere Process Choreographer activities

Activity Description
The Invoke activity performs an operation. The operation is defined by
= a partner link and may be synchronous or asynchronous.
Invoke
The Receive activity waits for an external input to the process before
| continuing. The operation supported by the Receive activity is defined
Recig by a partner link.
The Reply activity sends a message to the partner defined by a partner
< link. This is typically used in processes which need to return a message
Reply to the partner which instigated the process.

The Pick activity waits for an incoming message and selects a path
o appropriate to the first message received. A time-based path can be

Pick configured to manage situations where no message is received. A
partner link is associated with each message path.
. The Staff activity delegates a task within the process to a human. The
o user interface in this case is either a custom application based on the
S process choreographer API or the Web client provided that comes with
WebSphere Business Integration Server Foundation.
The Transformer activity maps the contents of one or more message
J‘_u types to the contents of another.
Transform
, The Assign activity copies information from one part of the process to
= another.
Assign
The Switch activity evaluates the conditions on a series of control paths
7 and follows the first one which matches.
Switch
) The While activity repeats the activities which it contains as long as a
ﬂﬁ/ condition is met.
II."' iE

Chapter 6. Process choreographer: introduction 127

128

Activity

Description

"
&Y
Wait

The wait activity stops the process until a point in time has occurred or
a time interval has elapsed.

=

Sequence

The sequence activity defines a serial control path within a process.
See 6.1.4, “Sequences and flows” on page 125 for further details.

Flow

The flow activity defines a potentially parallel control path within a
process. See 6.1.4, “Sequences and flows” on page 125 for further
details.

i

Terminate

The terminate activity stops the process immediately without
performing any compensation or fault handling. The behavior of this
activity depends on the location within the process.

The throw activity signals that an error has occurred. This is typically
handled by a Fault Handler element associated with a higher level of
process structure.

The empty element does nothing. It can be used as a placeholder
during process design, and then changed to the appropriate activity
when the process is implemented.

JavaSnippet

Java code can be embedded into the process using the JavaSnippet
activity. While it is possible to embed business logic into this type of
activity it is not advisable, as it removes the clarity of the process
modeling. Snippets are designed to perform lightweight utility activities
such as data mapping.

Tip: The activity type can be changed by right-clicking the activity in the
process editor and selecting the Change Type menu item. Use this facility
with caution; changing the type of a structured activity such as sequence or
flow will delete the contents of that block.

Correlation sets

Correlation sets identify the participants in a process by reference to some
unique information contained in the messages that are passed. This allows the
business process container to decide whether an incoming message should
launch a new process or use an existing instance. Correlation sets can be
associated with service activities such as receive, reply and invoke as well as
with pick activities.

WebSphere Business Integrator Server Foundation V5.1 Handbook

6.2 Development tooling support

WebSphere Studio Application Developer Integration Edition provides support
for creating processes based on BPEL4WS. This section describes the editor
that is provided.

6.2.1 BPEL Editor

The BPEL Editor (also referred to as the BPEL process editor) is a graphical
programming environment that is used to visually create and manipulate
business processes. Figure 6-1shows the BPEL Editor.

x|
| Partner Links == o0
boakate Interface]
Variables == o
= L boaokseller 3
Inputariable ‘dl}
P Outputyariable Recolg
B l iea-20
4 Interimvariable > r \’/
&
° Invoke
Jat T
] Carrelation 58 s o ¢
e 6
cJ Reply
Ol
(=)
=5
o Invoke 7]
Description
& Business Relevant
Implementation
Compensation Transactional Behavior:) Commit Before &) Commit After O Participates O Requires Cwn
Expiration Continue On Error

Documentation
Join Behaviour
Correlation
Server

Figure 6-1 The BPEL Editor

Processes are constructed in the process area (3) of the canvas (6) by dragging
activities from the palette (1). Definitions of variables, partner links and
correlation sets are held in separate areas (2, 5, 8) on the canvas.

Selecting any activity brings up the action bar (4) which contains a series of
icons related to the activity, including adding Fault Handlers. The details area (7)
below the canvas provides the means for configuring the currently selected
activity.

Chapter 6. Process choreographer: introduction 129

Cha |

Javasnippet Catch Catch Al
Handler1 Handlerz

Figure 6-2 A Fault Handler

A small exclamation point in the top right corner of any activity means that a
Fault Handler is defined for that activity. Figure 6-2 shows a Fault Handler block
in the BPEL Editor. The Fault Handler can be opened and closed either by
double-clicking the exclamation point or by right-clicking the activity and selecting
the Show Fault Handler menu item. Catch elements can then be added to the
Fault Handler.

Tip: Always close the Fault Handler block when you have finished editing it.
There appears to be an intermittent bug in the BPEL Editor which causes the
process canvas to be cleared if a Fault Handler block is left open while
navigating around the canvas.

6.2.2 The Web client

The Web client provides access to a running process. Although it can be used as
a general purpose user client, it is quite likely that a specialized application will
be created for end users of the system. The Web client is useful during process
development and testing to instantiate a process with a certain set of input
parameters.

The Web client is described in more detail in a number of articles available at:

http://www.ibm.com/developerworks/websphere/zones/was/wpc.html

6.3 Runtime environment

This section contains an overview of the BPE container. Further details can be
found either in the WebSphere Business Integration Server Foundation
InfoCenter or in the white paper WebSphere Application Server Enterprise
Process Choreographer: Concepts and Architecture, which is available from:

http://www.ibm.com/developerworks/websphere/zones/was/wpc.html

130 WebSphere Business Integrator Server Foundation V5.1 Handbook

http://www.ibm.com/developerworks/websphere/zones/was/wpc.html
http://www.ibm.com/developerworks/websphere/zones/was/wpc.html

6.3.1 Business Process Execution container architecture

WebSphere Business Integration Server Foundation provides the runtime
environment for WebSphere Process Choreographer. This is the Business
Process Execution (BPE) container. Figure 6-3 shows the components of the
container. It is implemented as a J2EE application that uses the underlying
WebSphere Application Server runtime services and resources.

Business Process Engine

External I/F Internal I/F Process Navigation

' N aYa N

Data

Session Navigator Invocation Observer

Handling
EJB- Request Compensation .
Based Dispatch Process, Variables Java, Audit
API Activity : WSIF Trail

Conditions

Business
E Process
External Queue Internal Queue People Interaction Factory DB
é) é ' AV 4 AY4
Message Staff Persistent
- a -
Driven 'gfe”&:' Work Queries Authorization Storage Handler
Bean- Item
Based H’?/IrgilBer Manager User Reg, W%rk Ite(zjm- .
APl LDAP ase Transient

Storage Handler

Figure 6-3 Business process execution container architecture

The key components of the BPE container are:

» Process navigation
Factory

People interaction
Internal interface
External interface

vvyyy

Each of these will be discussed briefly in the remainder of this section.

Process navigation

The process navigation component consists of the navigator and some plug-in
components.

Navigator

The navigator is the heart of the BPE container. It manages the state of all
process instances and the activities that they contain.

Chapter 6. Process choreographer: introduction 131

The life of a process instance begins with a start request. This creates the
instance based on a process template and puts it into a running state. When all
its contained activities have reached an end state, the process instance is
marked finished. The instance remains in this state until it is deleted, either
implicitly or via an explicit API call.

The process instance might encounter a fault that was not processed as part of
the process logic. In this case, it waits for the completion of the active activities
before putting the process into its failed state. Compensation is then invoked if it
was defined for the process.

A process instance can also be terminated by a process administrator. In this
case, after completion of the active activities, the process instance is put into its
terminated state.

Plug-ins for process navigation
The core capabilities of the navigator are extended using plug-ins. These provide

future flexibility and extensibility for the product.
Plug-ins are provided for:
» Invocation of activity implementations

There are currently two plug-ins that support invocation: the invocation of
external processes via WSIF and the invocation of Java snippets.

» The handling of data in the process, such as evaluating conditions

The process engine has a plug-in that understands conditions written in Java
against WSDL messages.

» The logging of events in an audit trail

The process engine has a plug-in that writes data to the audit trail table of the
process engine's database.

Factory
The factory component is responsible for state data that the process engine
deals with. It allows data to be stored in one of the following forms:

» Transiently in memory
This is used to support the efficient execution of non-interruptible processes
» Persistently in a database

This is used to provide durability to interruptible processes. Many popular
databases are supported, including DB2 Enterprise Server Edition.

132 WebSphere Business Integrator Server Foundation V5.1 Handbook

Human interaction

Note: WebSphere Process Choreographer supports business processes with
people interaction only when WebSphere Application Server security is
enabled. This is because the user needs to be authenticated to determine the
appropriate work items.

The main components involved in interaction with people are:
» Web client or other client

It is possible to interact with the process instances via the Web client
described in 6.2.2, “The Web client” on page 130. This can be tailored to the
requirements of the business application.

Alternatively, the WebSphere Process Choreographer API can be used to
create a custom client.

» Work item manager

Work items are created when the BPE container encounters a Staff activity.
The work item manager component is responsible for handling work items.
This entails:

— Creating and deleting work items

— Resolving queries from process participants
— Coordinating staff queries

— Authorizing activity on process instances

This ensures that participants only gain access to process instances for
which they have a valid work item.

The work item manager has a number of performance-related features,
notably an internal cache for resolved staff queries.

» Staff support service, staff resolution plug-ins and staff repositories

The staff support service manages staff resolution requests on behalf of the
work item manager. It actually delegates execution to the staff resolution
plug-ins. These plug-ins work with the staff repositories to fulfil requests.
There are operating system repositories, user registries or LDAP registries.

For more details about staff resolution, see the document WebSphere
Application Server Enterprise Process Choreographer: Staff Resolution
Architecture available at:

http://www.ibm.com/developerworks/websphere/zones/was/wpc.html

Chapter 6. Process choreographer: introduction 133

http://www.ibm.com/developerworks/websphere/zones/was/wpc.html

Internal interface

Interruptible processes use a JMS queue between activities to provide durability.
In most production environments, this should be based on a robust external JMS
provider, such as WebSphere MQ.

External interface

The interface to the container is via a facade. This is provided both
asynchronously as a Message-Driven bean and synchronously as a session
EJB.

134 WebSphere Business Integrator Server Foundation V5.1 Handbook

Process choreographer:
developing a simple process

This chapter shows how to implement a simple business process using the BPEL
Editor of WebSphere Studio Application Developer Integration Edition.

From a technical point of view, implementing a business process consists of the
steps to develop and deploy (and perhaps debug) this business process. These
steps will be shown in this chapter.

© Copyright IBM Corp. 2004. All rights reserved. 135

7.1 Sample scenario

A fictional travel agency called NiceJourney will provide its travel arrangement
service over the Internet as a Web Service to its customers. To do this, the
Nicedourney travel agency has to communicate with an external partner, in order
to reserve flights for its customers. Therefore, the external partner is a Flight
Booking System which is also exposed as a Web Service. The customers
communicate with the NiceJourney Web Service via a Web Service client.

Hence, this scenario uses both the Business to Customer (B2C) and Business to
Business (B2B) model.

Currently, when a customer requests a travel arrangement, the NiceJourney
Web service requires the following information:

» Customer details
» Travel details
» Booking options
— Flight
— Car
— Hotel
» Price limit
— Complete journey
» Payment details

To simplify the example in this chapter, not all of the information shown above
will be used by the NiceJourney Web Service and the Flight Booking System
Web Service. However, in the complex scenario in Chapter 8, “Process
choreographer: developing a complex process” on page 203, all the provided
information will be utilized and the business logic will be more meaningful and
realistic.

The outline of the NicedJourney Web Service is as follows:

1. Receive customer information

2. Send travel information to the Flight Booking System

3. Receive a reservation ID from the Flight Booking System
4. Reply to the customer with the reservation 1D

For the purpose of illustrating the basic functionality of WebSphere Process
Choreographer, no erroneous paths have been included in this scenario. For a
more complex business scenario, refer to Chapter 8, “Process choreographer:
developing a complex process” on page 203.

136 WebSphere Business Integrator Server Foundation V5.1 Handbook

7.1.1 Interactions between involved partners

» The customer might be any Web Service client that can communicate via

WSDL. Refer to Chapter 9, “Process choreographer: clients” on page 287 to
learn how to implement such a client. In this chapter, we will use the Business
Process Web Client, which comes with WebSphere Studio Application
Developer Integration Edition.

The NiceJourney Web Service will be implemented as a BPEL process; for
further information on the BPEL process, refer to 6.1.1, “Process languages”
on page 122.

This Web Service is offered by the operation travelArrangement on a WSDL
port Type called travelArrangementType. The operation is of type
request/response, hence it is used to receive customer details and travel
details and in response to this, it will reply with the reservation ID.

The Flight Booking System will be a Java class exposed as a Web Service.

To make a flight reservation, the operation getReservation is offered on
WSDL port type FlightBookingSystem. This operation is of type
request/response so it is used to receive travel details and in response to this,
it will reply with a reservation ID.

The following figure shows the scenario for the simple process. The customer
interacts with the NicedJourney Web Service and the NiceJourney Web
Service itself interacts with a third party, the Flight Booking System, to make
an appropriate flight reservation. The reservation ID generated by the Flight
Booking System is returned to the NiceJourney Web Service. To simplify the
scenario, this reservation ID is also returned to the customer by the
Nicedourney Web Service without any changes.

Customer

Web Services
Client

NiceJourney Flight Booking System
Web Service Web Service
request request
travelArrangement getReservation
(operation on WSDL port type) (operation on WSDL port type)
response response

Figure 7-1 The simple process scenario

7.1.2 Input messages and output messages

This section will discuss the input and output messages required for the
Nicedourney and Flight Booking System Web Services.

Chapter 7. Process choreographer: developing a simple process 137

Interface to NiceJourney Web Service

The input and output messages required for the NiceJourney Web Service are
defined in NiceJourneyPublicinterface.wsdl. The WSDL files containing the
binding and service information for the NiceJourney Web Service will be
generated by WebSphere Studio Application Developer Integration Edition.

» Operation: travelArrangement
Receives the message travelAgencyln from the customer, which consists of:

— [complextype: customer]

* firstName xsd:string
¢ lastName xsd:string
¢ address xsd:string
e city xsd:string
e Zzipcode xsd:nonNegativelnteger
e state xsd:string

— [complexType:travel]

e cityFrom xsd:string
e cityTo xsd:string
e dateDeparture xsd:dateTime
¢ dateReturn xsd:dateTime

Replies with the message travelAgencyOut to the customer:

e reservationlD xsd:long

Interface to the Flight Booking System
The input and output messages required for the Flight Booking System are
defined in FlightBookingSystem.wsdl.

» Operation: getReservation

This needs to receive the message getReservationRequest that contains
these simple types:

e cityFrom xsd:string
e cityTo xsd:string
e dateDeparture xsd:dateTime
¢ dateReturn xsd:dateTime

It replies with the message getReservationResponse:
e result xsd:long
Note: The partial result of the message getReservationResponse shown

above is the reservation ID generated by the Flight Booking System. Since the
WSDL files were generated from a Java class, this name was generated.

138 WebSphere Business Integrator Server Foundation V5.1 Handbook

7.2 Activities in the sample

The activities defined in BPEL4WS are divided into basic activities and
structured activities.

The basic activities within a business process are used to define tasks; the
structured activities are used to manage the complexity of the business process.
Hence, a basic activity can be compared to be a step while a structured activity
is a programming construct in the business process.

In addition to the BPEL4WS activities, there are additional activities defined in
the BPEL Extensions to enhance WebSphere Process Choreographer.

7.2.1 Receive activity
The Receive activity is a basic activity in the definition of BPEL4WS.

It has a blocking runtime behavior, waiting for an external input message to the
process. This input message is covered by an operation of a WSDL port type that
is associated with a certain role of a partner link.

The following figure shows the implementation view for the Receive activity. This
view is located in the details area of the BPEL Editor.

| Receive -od

Description Partrer Link: |travelArrangementPL |Z||| MEw, .. Reguest: travelRequest |Z||| Mewt |
Client

e — Port Type: traveltrrangement Type
Dacumentation Operation; travelfrrangement |Z|

Join Behaviour

Carrelation Create a new Process instance if one does not already exist

Server
Staff

Figure 7-2 Implementation view of the Receive activity

Once the message has arrived, the process will continue or a new process
instance will be created, depending on the setting of the check box (see

Figure 7-2). The arrived message is mapped to a variable to make it accessible
within the complete process.

Select the Receive activity to see the related partner link and the highlighted
variable to which the input message is mapped (there will be a bold border
around the variable name).

Chapter 7. Process choreographer: developing a simple process 139

| Partrer Links == o

MiceJourney travelarrangementPL |
- - flightBooking |
._pl
Receive ™ :
= " Variables wm o

trawvelRequest

Figure 7-3 Receive activity associated with Partner link and mapped to variable

If the input message is sent to a certain process instance, a correlation has to be
defined on the Receive activity, identifying this process instance uniquely. Refer
to 6.1.5, “Parts of a business process” on page 125 to learn more about the
correlation set.

The Receive activity can be used to implement a Synchronous Interface (see

also “Synchronous interface” on page 145). For this, a matching Reply activity
(see also 7.2.2, “Reply activity” on page 141) has to be placed in the process,
associated with the same partner link as the Receive activity.

The following figure shows how this can be implemented in the BPEL Editor; the
definition of the WSDL port type is shown below.

.| Partner Links == o
- [
MiceJourney N travelarrangementPL |
T]
_J travelRequest
Receive |4 Variables == o / File: MiceJourneyPublicInterface wad|
\[ll |~ travelRequest Message: traveldgencyIn |2||
L) ' travelResponse \
MiceJourneySteps - _J travelResponse
N 17
3 > R C File: MiceJourneyPublicInterface wad|
P = | n o
Reply |~ Message: travelfgencyout |z||

Figure 7-4 implementation of a synchronous interface in the BPEL Editor

WebSphere Business Integrator Server Foundation V5.1 Handbook

Note: The arrows in Figure 7-4 show the relation between the components.
The input message of the Receive activity is related to the travelRequest
variable. The output message of the Reply activity is related to the
travelResponse variable. Both variables are related and defined to map to the
travelAgencyln and travelAgencyOut messages from the
NiceJourneyPublicinterface.wsdl interface definition.

The red arrows are not part of the BPEL Editor.

The WSDL port type that is associated with this shared partner link,
travelArrangementPL, has to define the synchronous request/response
operation, as shown in Example 7-1.

Example 7-1 WSDL port type to implement a synchronous interface, defined in
NicedourneyPublicinterface.wsadl

<portType name="travelArrangementType">
<operation name="travelArrangement">
<input message="tns:travelAgencyIn" name="travelArrangementIn"/>
<output message="tns:travelAgencyOut" name="travelArrangementOut"/>
</operation>
</portType>

An Asynchronous Interface can be implemented using the Receive activity
without a matching Reply activity (refer to “Asynchronous interface” on
page 146). For this, the operation of the WSDL port type has to consist of a
one-way operation only.

7.2.2 Reply activity
The Reply activity is a basic activity in the definition of BPEL4WS.

It is always used in response to an input message that previously arrived in the
process. The output message to be sent is covered by an operation of a WSDL
port type that is associated with a certain partner link role.

Figure 7-5 on page 142 shows the implementation view for the Reply activity for
a normal reply type. This view is located in the details area of the BPEL Editor.

Chapter 7. Process choreographer: developing a simple process 141

142

Description
Client
Implementation
Documentation
Join Behaviour

Correlation

Server

o | Reply

Partner Link:
Port Type:
Operation:

|travel.¢\rrangementPL |Z||| New... |

traveldrrangement Type
travelarrangement |E|

Reply Type:

Response:

® Tarmal (0] Fault

-o0d

| travelResponse |Z|| |

Hew...

Figure 7-5 Implementation view of the Reply activity for a normal reply type

The output message of the Reply activity is gained from a variable of the

process.
.| Partner Links == o
MiceJourney ; travelarrangementrL] _J travelResponse
flightBooking | File: MiceJourneyPublicInterface. wsdl
Receive : Message: travelfgencyout |z||
| Variables ==
!
= travelRequest
=
Assign travelResponse
\Jul flightRequest
/
= 7 flightResponse
Javasnippet s
1 7
~
o 7
i s/
Irvioke ,
| s
W V
<
Reply | 7
. .

Figure 7-6 Reply activity associated with Partner link and mapped to variable

The output variable has to cover an output message that is defined in the same
WSDL port type as the input message for which this is the response; it is shown
in the following example.

WebSphere Business Integrator Server Foundation V5.1 Handbook

Example 7-2 WSDL port type with output message and with two fault messages f

<portType name="travelArrangementType">
<operation name="travelArrangement">
<input message="tns:travelAgencyIn" name="travelArrangementIn"/>
<output message="tns:travelAgencyOut" name="travelArrangementOut"/>
<fault message="tns:travelAgencyError"
name="travelArrangementErrorFlight"/>
<fault message="tns:travelAgencyError"
name="travelArrangementErrorCar"/>
</operation>
</portType>

The example above also shows the definition of two fault messages which can
be used for a fault reply type. The Reply activity can return either an output
message, as shown in Figure 7-5 on page 142, or a fault message to its
associated WSDL port type. Since an operation of a WSDL port type might have
several fault messages defined (see above), one of these has to be selected as
the fault target of the Reply activity.

The following figure shows the implementation view for the Reply activity for a
fault reply type.

¢ | Reply -o0
DS e Partner Link: | travelarrangementPL |2|| | Mew, .. Reply Type: (o] Mormal ® Fault
Client
e Port Type: | travelarrangement Type | Fault Mame: | travelarrangementErrorFlight |z||
Documentation Operation: | travelarrangement |z“ Fault Data: | travelResponse |z“ | Mew. .. |
Join Behaviour
Correlation
Server

Figure 7-7 implementation view of the Reply activity for a fault reply type

In contrast to the Receive activity, the Reply activity cannot be used to implement
an Asynchronous Interface. It is only available as the response to a synchronous
request, as shown in Figure 7-4 on page 140. Therefore, each Reply activity
must have a corresponding Receive or Pick activity.

7.2.3 Invoke activity
The Invoke activity is a basic activity in the definition of BPEL4WS.

The general purpose of this activity is to invoke an operation offered by a partner,
by exchanging messages. Technically, this is done by invoking an operation on a
WSDL port type that is associated with a certain role of a partner link. Depending

Chapter 7. Process choreographer: developing a simple process 143

144

on the definition of this WSDL port type, the Invoke activity can by used to
implement a request/response or a one-way operation.

The following figure shows the implementation view for the Invoke activity for a
request/response operation. This view is located in the details area of the BPEL

Editor.
o Invoke =0
Description Partner Link: |flightBooking IZH | Newi... Reguest: | FlightRequest Iz“ | Hew... |
Implementation
= i [FightResponse
Compensation Port Type RightBookngsystem IRESEER | 1 P E| | Lo |
Expiration Cperation: getReservation E

Dacurnenkation
Join Behaviour

Correlation

Server

Figure 7-8 Implementation view of the Invoke activity for a request/response operation

The messages, sent to or received from the referenced WSDL port type, must be
defined in the same namespace as the WSDL port type itself. It is important to
emphasize that it will not be enough for the data type(s) of the part(s) of

exchanged messages to be the same.

The following figure shows the Invoke activity and its associated partner link; the
variables associated with the Invoke activity are also shown. The output
message to be sent to the partner is gained from the variable named
flightRequest; the input message received from the referenced partner will be
mapped to the variable named flightResponse.

MiceJourney

Receive

)
=

Assign
|
RV
o]
Javasnippet

|

A

|| Partner Links w=

travelarrangementPL |

flightBooking

Variables == o
travelRequest
travelResponse
flightRequest

flightResponse

1

Figure 7-9 Invoke activity associated with Partner link and mapped to variables

WebSphere Business Integrator Server Foundation V5.1 Handbook

By changing the type of the partner link (right-click the partner link then select
Change Type) that is wired with the Invoke activity, it is possible to invoke:

» WSDL service

vvyyy

BPEL process
EJB

Java class
Transform service

According to the chosen type, the generation of appropriate WSDL files is more
or less implicitly done by WebSphere Studio Application Developer Integration

Edition. Finally, a partner will always be called over an operation on a WSDL port
type, regardless of the previous chosen type.

Synchronous interface

The Invoke activity can be used to implement a synchronous interface. The

activity has to be associated with a WSDL port type containing a
request/response operation; see Port Type B-PT in the following figure.

Service Requester

2
Partner Link B-L W
partnerRole="b”

k4

Invoke

o O

Service Provider

=

Partner Link Type

Port Type B-PT

Request-Response
Operation

Receive

Partner Link A-L
myRole="b"

Figure 7-10 Synchronous Interface

Chapter 7. Process choreographer: developing a simple process

145

146

The use case to invoke a partner (service provider) in a synchronous manner the
service requester can not go on with the process execution without the result
delivered from the service provider.

#1 inFigure 7-10: Process A invokes process B and waits for the result. Once the
result from process B has arrived, process A can go on with its execution in #2.

In the implementation, the partner link type has to consist of one role only. This
role is associated with a WSDL port type that covers a request/response
operation in the namespace of the service provider.

The service requester implements the partner link type in its partner link to refer
to the service provider. Since the service requester expects a service from its
referenced partner, its partner link defines only a role for the partner; see Partner
Link B-L in Figure 7-10.

The service provider has to implement the same partner link type as the service
requester. The fact that the service provider is the invoker in this scenario is
reflected in the implementation of the partner link type; the partner link defines
that process B owns the role “b”, see Partner Link A-L in Figure 7-10.

Asynchronous interface

A common way to invoke a partner without waiting for the response is to use a
Invoke activity associated with a WSDL port type that consists of an one
way-operation only.

In an asynchronous interface, there are two partners and each of them are
performing an one way-operation to its partner where both partners implement
the same partner link type. See Figure 7-11 on page 147 for more details.

WebSphere Business Integrator Server Foundation V5.1 Handbook

Service Requester Service Provider
Q

)

LA | T
/—;:e: Link Type

Partner Link B-L | _~

myRole="a" Role a
Port Type A-PT

.| Partner Link A-L
myRole="b”
partnerRole="a”

partnerRole="b”

Port Type B-PT

One-Way
Operation

One-Way
Operation

\@6

Figure 7-11 Asynchronous interface

The use case for an asynchronous interface is if a service requester invokes a
partner (service provider) to get a result for later usage and the service requester
can go on with the process execution (do several other steps), before the result
requested from the partner becomes necessary.

#1 in Figure 7-11: Process A invokes Process B and goes on with the process
execution, going through further steps for which the requested result is not
necessary. Process B gets this request and processes it. At this point in time,
both processes may be running in parallel; see #2 and #3. In a certain execution
state of Process A, the previous requested result of the service provider will be
necessary. To get this result, Process A will do a blocking wait using a Receive
activity, (#4). If this result is determined by Process B, it will be delivered to
Process A, using an Invoke activity (#5). Once the result has arrived to Process
A, it can go on with the process execution, using the result delivered from
Process B.

Chapter 7. Process choreographer: developing a simple process 147

To implement an asynchronous interface, the partner link type has to define two
roles. Each of it associated with a WSDL port type which consists of an one-way
operation in the namespace of that partner to which the message should be
delivered. See figure above, WSDL port type B-PT has to be defined in the
namespace of the service provider, WSDL port type A-PT has to be defined in
the namespace of the service requester.

The service requester implements the partner link type in its partner link to refer
to the service provider, see partnerRole="b” in Partner Link B-L. Due to the
definition of myRole="a” in the same partner link, the service requester knows
the port type to which the service provider will respond.

The service provider has to implement the partner link type in its partner link in
the same manner as the service requester, but with swapped roles. See Partner
Link A-L; the service provider has the definition of myRole="b” which means the
service requester will communicate with it over the WSDL port type associated
with role “b”. Due to the definition of the partnerRole="a”, the service provider
knows the WSDL port type to send the response to the service requester.

7.2.4 Assign activity
The Assign activity is a basic activity in the definition of BPEL4WS.

A common task in business processes is to copy the content of variables. Using
the Assign activity, the content of type-compatible variables (see Figure 7-12)
can be copied from a source to a destination. Source and destination are named
as From and To in the following figure. It shows the implementation view of the
Assign activity. This view is located in the details area of the BPEL Editor.

= Assign — =1
Implementation
T E—— Fram: | Vatiable or Part lz‘l Ta: | Variable or Part E”
Join Behaviour (=) travelRequesk = E| o flightRequest _A_!
ety B travelagencyIn -] getReservationRequest
: El__] customerDiata @ custamer 1 e __] cityFrom @ string
B travelData : travel] eityTo s string
__] cityFrom : string . __] dateDeparture : Calendar
] ibyTa ¢ string ;] o __] dateReturn : Calendar
Query: |,|'cityFr0m | () PlightRespanse |

Figure 7-12 Implementation view of Assign activity

148 WebSphere Business Integrator Server Foundation V5.1 Handbook

For the From and To, shown in the figure above, the following kinds of
assignments are available in the drop-down list:

» Variable or Part
— Copy the complete content of the From-variable to the To-variable.
Both variables must cover the same message in the same namespace.

— Copy a part of the message covered by the From-variable to a part of the
message covered by the To-variable.

The parts must be type-compatible according to their XML Schema
definition, also known as xsd.

» Property of a Variable

Copy the message type of the From-variable to the To-variable, not the
content.

This is not completely supported by WebSphere Studio Application Developer
Integration Edition V5.1.

» Partner Link Reference

Copy an endpoint references to and from partner links.
The query field, as shown in Figure 7-12, can be used to specify how to find the
data in a selected part with the usage of an XPath query. If an element of a

complex type is selected in the From pane, the query field suggests an XPath
query to use.

For the From, shown in Figure 7-12, the following additional kind of assignment is
available in the drop-down list:
» Fixed Value
Define a fix value, valid xsd type, in the pane below From and assign it to a
type-compatible part of a message shown in the pane below 7o.

The following figure shows an example of how to assign a fixed value to a
variable part.

Chapter 7. Process choreographer: developing a simple process 149

= Assign - o0

Copy: 3of3 | = | | MNew | | Delete |
Implementation
Documentation Fram: Fixed Yalue =] 1o Wariable or Part [+ |

Jain Behaviour Type: xsdilong =] -1) travelRequest

Server 1234 ;I |;|J travelResponse
=] travelbgencyout
by __] reservationID | lang
B FlightRequest
LI #-(J flightResponse

Description

Figure 7-13 Assign a fixed value to a part

Within one Assign activity, several assigns can be implemented; by clicking the
New button, as shown in Figure 7-13, an additional assign can be added. When
you have multiple assign definitions, use the < and > buttons to navigate between
them. Hence, the implementation of a multiple assign can be visualized as

follows.

) Assign S
variable_1 variable_3
part_ 1 —1_ | part_1
part—z\ \4 part_2
part_3 N~ -

- PR

) EEEEEE———]
variab|e7g/ \~V2rr[[at1)le_4
part_1 part_

rt 2 part_2

L/ part_3

|

Figure 7-14 Visualization of a multiple assigns within one Assign activity

Assigning values to variables can also be done within Java snippets, but this is
not recommended in general. To assign values to complex types, Java snippets
might be necessary if those values have to be converted beforehand. Refer to
section 7.2.7, “Developing a new process” on page 156 for more details.

150 WebSphere Business Integrator Server Foundation V5.1 Handbook

7.2.5 Java snippet

The Java snippet is not a part of the BPEL4WS definition; it is a basic activity in
the definition of BPEL Extensions to enhance WebSphere Process
Choreographer.

To invoke an inline snippet of Java code, this activity can be added to a business
process. It may contain any valid Java code as of Java V1.4.

The following figure shows the implementation view of a Java snippet. It is
basically an in-line Java code in the process.

| Jawvasnippet -o0
IS fftype in any Java code here =
Implementation
Documentation ffget wariasble travelResponse for update of part reservationlD

Join Behaviour getTravelResponse (true) .setReservationlD (1234) ;

Server —
ffget wvariable travelBRequest, get travellata (complex type) get cityFrom

Jtring cityFrom = getTrawvelRequest () .getTravellatal() .getCityFromi) 7 -

Figure 7-15 Implementation view a Java snippet

Every Java snippet is added as a method to a Java class which is generated for
the BPEL business process. This class also provides access to the variables
defined in the BPEL business process. For each variable, several getter and
setter methods are available, each of which is a wrapper for the message of this
variable. For each message, a Java class is generated by WebSphere Studio
Application Developer Integration Edition. This will be explained in detail next.
Example 7-3 shows the definition of two messages:

» travelAgenyln

A complex element of type tns:travel is defined in the types section of the
WSDL definition.

» travelAgencyOut
A simple type of xsd:long is primitive; no further definition is necessary.

Example 7-3 WSDL messages, one with a simple part, one with a complex part

<types>
<xsd:schema xmins:xsd="http://www.w3.0rg/2001/XMLSchema"
elementFormDefault="qualified"
argetNamespace="http://nicejourney.com/NiceJourneyPublicInterface">
<xsd:element name="travel">
<xsd:complexType>
<xsd:sequence>

Chapter 7. Process choreographer: developing a simple process 151

<xsd:element name="cityFrom" type="xsd:string"/>
<xsd:element name="cityTo" type="xsd:string"/>
</xsd:sequence>
</xsd:complexType>
</xsd:element>
</xsd:schema>
</types>
<message name="travelAgencyIn">
<part name="travelData" element="tns:travel" />
</message>
<message name="travelAgencyOQut">
<part name="reservationID" type="xsd:long"/>
</message>

In the BPEL Editor, two variables are defined; each covers a message, as shown
in Figure 7-16.

» travelRequest - covers message travelAgencyln
» travelResponse - covers message travelAgencyOut

152

.| Partner Links == o
MiceJaurney : travelarrangementPL |
. - _J travelRequest
ReceTve = Wariables = / File: MiceJourneyPublicInterface wad|
\[I/ |~ B wavelRequest Message: travelagencyIn |z||
N L) ’ travelResponse \
NICEJUUFTEYS'IEDS -) travelResponse
I\.Ij P E T File: MiceJourneyPublicInterface wad|
Reply |~ Message: traveldgencyout |z||

Figure 7-16 Variables defined in BPEL Editor

For each variable, getter and setter methods are generated by WebSphere
Studio Application Developer Integration Edition.

» travelRequest

— getTravelRequest()

— getTravelRequest(boolean forUpdate)
— setTravelRequest(TravelAgencylnMessage message)

WebSphere Business Integrator Server Foundation V5.1 Handbook

» travelResponse

— getTravelResponse()
— getTravelResponse(boolean forUpdate)
— setTravelResponse(TravelAgencyOutMessage message)

Now that we have everything together, how can we access the data of the parts
of the messages? This is shown in Example 7-4; the comment line shows what

we want to do and the code line(s) below shows how to do it. Look at Figure 7-3
on page 151 to compare it with the parts.

Example 7-4 Usage of variables in a Java snippet to access the data of message parts

//get variable travelResponse for update of part reservationID
getTravelResponse(true).setReservationID(1234);

//get variable travelRequest, get travelData (complex type) get part cityFrom
String cityFrom = getTravelRequest().getTravelData().getCityFrom();

//create a new instance of message travelAgencyOut

TravelAgencyOutMessage myMessage = new TravelAgencyOutMessage();

//set a value to this new created instance of message travelAgencyOut
myMessage.setReservationID(5678);

//set the new instance of message travelAgencyOut to variable travelResponse
setTravelResponse(myMessage);

Important: To get a variable for update purposes, it is necessary to use the
getter with a parameter boolean of value true, as shown in Figure 7-15 on
page 151.0therwise, the value set to a part of the message may be lost.

Java snippets can be used to:

» Add custom logic to a business process

» Update variables which cannot be updated using the Assign activity, for
example, because of complex types.

These may be done in preparation for the activity following the Java snippet or to
reflect the result(s) of the activity prior to the Java snippet.

7.2.6 Preparing to develop the process

Before we start developing the process, there are some additional tasks we need
to perform. In a real-life situation, when developing a process, a collection of
services and code is already available for use in the process. In our case, we do
not have any code or service we can use, so we need to create a simple code, a
Java class, that we can use as an external service.

Chapter 7. Process choreographer: developing a simple process 153

154

There are two options in this book to implement the external service:

» The simplest one is to create an application with the service, consume the
service locally and run it on the same test server where the process is
running. It is easier to develop this solution but less realistic. This chapter is
going to follow this path.

» The other option is to have a more realistic scenario and make the external
service really external. In this case, the service is running on a separate test
server in the same test environment (this requires two test servers). This
scenario is a bit more complex and requires more memory and a better
processor to run the development, but it is more realistic. If you want to follow
this path, skip this section and refer to “External service for the simple
process” on page 565, then continue with 7.2.7, “Developing a new process”
on page 156 from this chapter.

The following steps describe how to develop the external service for the same
test environment where the process is running.

We will create an Java class called FlightBookingSystem that will be called by
the NiceJourney Web Service to reserve a flight.

1. Start WebSphere Studio Application Developer Integration Edition with a new
workspace, make sure you enable the server targeting for the workspace
under Preferences — J2EE.

2. Switch to the Business Integration perspective and open the Services view.

3. Create a new service project in the Business Integration perspective by
selecting File — New — Service Project. Name the service project
Referenced Partner and click the Finish button.

4. Go to File - New — Class and fill out the details as per Figure 7-17.

WebSphere Business Integrator Server Foundation V5.1 Handbook

dp New Java Class

Java Class

Create a new Java class,

Source Folder: I Referenced_Partner Browse. ..

Package: I com, bookyourflight Browse. ..

(e}

" Enclosing type: I Erawse,..

Mame: I FlightBookingSystem
Modifiers: % public " default € private | protected
[T abstract [final [~ static
Superclass: I java.lang. Object] Browse. ..
Interfaces: add

Femayve

|

‘which method stubs would vou like to create?
™ public static void main(Stringl] args)
™ Constructars from superclass
¥ Inherited abstrack methods

Finish I Cancel

Figure 7-17 New Java class

Click Finish.

5. Double-click FlightBookingSystem.java in the Package Explorer view of the
Business Integration perspective to open the file. Select all (Ctrl-A) and press
the Delete key.

6. Copy the code below into the FlightBookingSystem.java file.

Example 7-5 External service implementation

package com.bookyourflight;

import java.util.Calendar;
public class FlightBookingSystem {

public FlightBookingSystem() {
super();

}

public long getReservation(String cityFrom, String cityTo,
Calendar dateDeparture, Calendar dateReturn) {
long reservationID;

Chapter 7. Process choreographer: developing a simple process 155

System.out.printIn (M =-mm e s e e e e e e "),
System.out.printin(getClass().getName()+" reservation done for: ");
System.out.printin(" cityFrom= "+cityFrom);

System.out.printIn(" cityTo= "+cityTo);

System.out.printin(" dateDeparture= "+dateDeparture.getTime().toString());
System.out.printin(" dateReturn= "+dateReturn.getTime().toString());
reservationID = System.currentTimeMillis();

System.out.printin(" reservation ID= "+reservationID);

System.out.printIn (M =-mm-mm e e oo e e ")

return reservationlD;

7. Save and close the file.

8. Right-click FlightBookingSystem.java and select New — Service built
from. Select Java and click the Next button. Select the check box next to
FlightBookingSystem and click the Finish button.

The “external” service, FlightBookingSystem, is ready for use. We will use this
service from the simple process introduced in this chapter.

7.2.7 Developing a new process

This section describes how to use the BPEL Editor in WebSphere Studio
Application Developer Integration Edition V5.1 to implement a solution for the
Nicedourney business scenario.

To design the process for NiceJourney Travel, you will perform the following
tasks:

Create service projects

Create the WSDL file for the business process
Create the business process

Add variables to the business process

Define PartnerLinks for the business process
Add the activities

vyVyVYyVvYyYVvYyyYy

Creating projects for NiceJourney and Flight Booking Service

Important: When developing a process, you should always start with defining
the interfaces for the process before you start implementing it.

Generating the interface from the process (bottom-up) is not the
recommended method.

156 WebSphere Business Integrator Server Foundation V5.1 Handbook

1. Switch to the Business Integration perspective and open the Services view.

Business processes are stored in service projects. Create a new service
project in the Business Integration perspective by selecting File —» New —
Service Project. Name the service project WPC_Simple_Process and click the
Finish button. This project will contain all of your code for the NiceJourney
Web service.

Right-click the service project WPC_Simple_Process and select New —
Package and enter com.nicejourney in the Name field.

Creating the NicedJourneyPublicinterface WSDL file

In this example, we will create the NiceJourneyPublicinterface.wsdl file to
demonstrate how to use the visual process editor to create a WSDL file and
define a WSDL port type.

1.

In the Package Explorer view, right-click the com.nicejourney package (in
the WPC_Simple_Process project) and select New — Empty Service.

Type NicedourneyPublicInterface in the File name field and click the Finish
button.

Double-click NiceJourneyPublicinterface.wsdl so that it is active. Select the
Graph tab in the WSDL Editor.

In the next few steps, we are going to show how to use the visual editor to
define an interface. Because it is a lengthy process, we are not going to
provide all the steps to create the whole interface. We are only going to
perform one sample step.

Right-click the Types box. Select Add Child — schema and click OK.

Right-click the Port Types box. Select Add Child — portType and type
travelArrangementType for the Name, then click OK.

Definition

Irnports Types
= @ http: f{nicejourney . com/MiceJourneyPublicInterface

Services Bindings Port Types Messages

EA travelarrangement Type

Figure 7-18 Port Types box

Save your file (Crtl-S or File — Save).

6. Click the Source tab in the WSDL Editor to view the generated WSDL code.

Chapter 7. Process choreographer: developing a simple process 157

7. Before you insert the actual XML code for the interface, you have to delete
the code you have just created as a sample.

Delete the existing code. Select All (Ctrl-A) and press the Delete key.
8. Copy the code below and paste it into the NiceJourneyPublicinterface.wsdl.

<?xml version="1.0" encoding="UTF-8"?>
<definitions name="NicedourneyPublicInterface"
targetNamespace="http://nicejourney.com/NiceJourneyPublicInterface"
xmins="http://schemas.xmlsoap.org/wsdl/"
xmins:tns="http://nicejourney.com/NicedourneyPublicInterface"
xmins:xsd="http://www.w3.0rg/2001/XMLSchema">
<types>
<xsd:schema xmins:xsd="http://www.w3.0rg/2001/XMLSchema" elementFormDefault="qualified"
targetNamespace="http://nicejourney.com/NiceJourneyPublicInterface">
<xsd:element name="customer">
<xsd:complexType>
<xsd:sequence>
<xsd:element minOccurs="0" name="firstName" type="xsd:string"/>

<xsd:element name="lastName" type="xsd:string"/>
<xsd:element name="address" type="xsd:string"/>
<xsd:element name="city" type="xsd:string"/>

<xsd:element name="zipcode" type="xsd:nonNegativelnteger"/>

<xsd:element minOccurs="0" name="state" type="xsd:string"/>
</xsd:sequence>
</xsd:complexType>
</xsd:element>
<xsd:element name="travel">
<xsd:complexType>
<xsd:sequence>

<xsd:element name="cityFrom" type="xsd:string"/>
<xsd:element name="cityTo" type="xsd:string"/>
<xsd:element name="dateDeparture" type="xsd:dateTime"/>
<xsd:element name="dateReturn" type="xsd:dateTime"/>

</xsd:sequence>
</xsd:complexType>
</xsd:element>
</xsd:schema>
</types>
<message name="travelAgencyIn">
<part element="tns:customer" name="customerData"/>
<part element="tns:travel" name="travelData"/>
</message>
<message name="travelAgencyOQut">
<part name="reservationID" type="xsd:long"/>
</message>
<portType name="travelArrangementType">
<operation name="travelArrangement">

158 WebSphere Business Integrator Server Foundation V5.1 Handbook

<input message="tns:travelAgencyIn" name="travelArrangementIn"/>
<output message="tns:travelAgencyOut" name="travelArrangementOut"/>
</operation>
</portType>
</definitions>

9. Save and close the NiceJourneyPubliclnterface.wsdl file.

Creating the business process for NiceJourney

Now we have defined the WSDL file for the NiceJourney Web service, we will
create the business process for NiceJourney Travel using the BPEL Editor. This
file will be named NiceJourney.bpel.

1. Right-click the com.nicejourney package and select New — Business
Process; type NiceJourney in the File name field and click the Next button.

zl
Business Process
Fg_ ™
Specify the destination and name for a new business process, E
b4

Specify a file name for the new process:

Source Folder: I JWRC_Simple_Process Browse. .. |
Package: I corm. nicejourney Browse. ., |
File name: I MiceJourney

= Back | Mexk = | Finish I Cancel |

Figure 7-19 New business process - naming details

2. Verify that the Flow-based BPEL flow radio button is selected and click the
Finish button. For further information on Flow- versus Sequence-based
processes, see 6.1.4, “Sequences and flows” on page 125.

Chapter 7. Process choreographer: developing a simple process 159

zl

Choose Process Type

Specify the bype of business process you would like to create, E
Nl

& Flow-based BPEL Process

The control Flow of the process is described by wiring
control links between activity nodes, Users of flow-based
tools may find this mode more Farniliar,

" Sequence-based BPEL Process

The control Flowvs of the process is expressed using

a variety of explicit control structures, Users

Familiar with traditional structured programming languages
may prefer this mode,

7 WSAD-IE v5.0 Business Process

This will create a flow-based business process similar
to those in WSAD-IE ¥5.0.

< Back | Mlexk = | Finish I Cancel |

Figure 7-20 New business process - flow type

Adding variables to the NiceJourney process

Now we will add two variables called travelRequest and travelResponse to the
BPEL process.

These variables are used as the input and output, respectively, to the
travelArrangement operation as defined in NiceJourneyPublicInterface.wsdl.
Also, any redundant variables or PartnerLinks will be deleted in this section.

1. Double-click NicedJourney.bpel in the Package Explorer window to make it
active.

2. Click the + graphic on the Variables table to add a variable and name it
travelRequest.

160 WebSphere Business Integrator Server Foundation V5.1 Handbook

Wariables = e
Inputvariable

travelRequest

Correlation Sets wa o

| Partner Links

MiceJournesy PartnerLink

W
Receive

m e

o

Figure 7-21 Current process design

3. While the travelRequest variable is selected, click the Message tab in the
Detail Area and click the Browse button.

4. Navigate to com.nicejourney.NiceJourneyPublicnterface.wsdl and select
travelAgencyin from the drop-down list. Then click the OK button.

x4
Select a Message in a WSDL File
ﬁ- SimpleProcessSample |

- WPC_Simple_Process
. B3 com
--@ example
E@ nicejourney

@) Micedourney.wsdl J

@) MicelourneyInterf

------ [Z1] ice JourneyPublic
28 caruar i
3
ItravelAgencyIn j
[8]4 I Cancel |

Figure 7-22 Selecting the WSDL for the message

5. Add the variable travelResponse and select travelAgencyOut from the

drop-down list (using the same process used in Steps 2 on page 160, 3 on
page 161 and 4 on page 161).

6. Right-click InputVariable and select Delete since this variable is not used.
7. Right-click PartnerLink® and select Delete.

Chapter 7. Process choreographer: developing a simple process

161

Note: Ignore any errors (red crosses); they will be fixed later.

8. Save the NiceJourney.bpel file.

Defining a PartnerLink for NiceJourney

Now we will define the PartnerLink for the NiceJourney BPEL process. Here we
will drag and drop the NicedourneyPublicinterface.wsdl file onto the canvas and
then define the roles and operations for the NiceJourney Web service.

Then we will define the messages for the Receive and Reply activities for the
travelArrangement operation.

1. Select the NicedJourneyPublicinterface.wsdl file from the Package Explorer
window and drag it onto the canvas.

2. In the pop-up box, you can see that travelArrangementType has been
selected. Click OK.

; | Partner Links = o
Yarigbles e o Nice Journey
travelR equest
travelResponse [=
Receive 4p select Service x|
|
e
o
Reply ’TI Cancel |
Correlation Sets wa o

Figure 7-23 Drag and drop the service description WSDL

3. While the travelArrangementType partner link is selected, Inspect the Detail
Area under the Implementation tab and click the arrows (<-->) button to
switch the roles to those shown in Figure 7-24.

162 WebSphere Business Integrator Server Foundation V5.1 Handbook

Note: Switching the roles is necessary, because when we drop a WSDL file
on the canvas, WebSphere Studio Application Developer Integration Edition
assumes that a partner link should be generated to invoke a partner to this
NiceJourney Web service. Hence, it defines a partner's Role Name and no
Process Role Name, as shown in Figure 7-24.

In our example, we want to define a partner link with a role that can be used to
invoke the NicedJourney Web service. For this, one role is enough and has to
be the role of the process, because the NicedJourney Web service does not
expect any Web service from the partner which invokes it. For more details
about partner links, refer also to 6.1.5, “Parts of a business process” on

page 125.
| travelArrangementType - oOd

Description File: Nice Journey wsdl
Implementation
Server Partner Link Type: traveldrrangementTypel T |Z|| | Mew. .. | | Edit

Partnet's Rols Name: Process Role Mame:

[Mone -- | - [travelarrangementTypeRole |

LY
Partner's Port Type: Process Port Type:
| -- Mone -- | | travelarrangementType |

Figure 7-24 Switching the roles for the process

4. Right-click the Receive activity and select Set Partner Link from the menu.
Click the partner link travelArrangementType to associate it with the
Receive activity. This enables the Receive activity to receive a request via the
travelArrangement operation.

5. Click the Receive activity and click the Implementation tab in the Detail
Area. From the Operation drop-down list, select travelArrangement and
from the Request drop-down, ensure travelRequest is selected (this variable
covers the right message which is required as input for the travelArrangement
operation). Also, verify that the Create a new Process Instance if one does
not already exist check box is selected.

Note: In the simple process, we have only one Receive activity. If a
message arrives to it, a new instance of our simple process should be
created, therefore the check box has to be selected (see Figure 7-25).

Chapter 7. Process choreographer: developing a simple process 163

Note: Assuming that we have two Receive activities in a process, each is
able to create a new instance for this process, if both have the check box
ticked and both are allowed to create an instance according to the
definition on the Correlation tab, as shown in Figure 7-25. The Receive
activity which receives the message first will create the instance. The
process instances are identified by a Correlation which is mandatory if we
have more than one Receive activity in a process. So, the Correlation is
also used to check whether or not an instance already exists, to avoid the
unnecessary creation of another one. For more details about Correlation,
see also 6.1.5, “Parts of a business process” on page 125 and 8.5.7,
“Correlation sets” on page 239.

Correlation

| Receive -o0
Description Partner Link: |traveIArrangementType |2|| | Mew, .. Request: travellequest lz“ | Mew...
Client
o Port Type: | traveldrrangement Type |
Docurmenkation Operation: | travelarrangement |2||

Join Behaviour

Create a new Process instance if one does not already exist

Server
Staff

Figure 7-25 Setting the receive partner link

6.

Right-click the Reply activity and select Set Partner Link. Click the partner
link travelArrangementType to associate it with the Reply activity to send a
response using the travelArrangement operation.

Click the Reply activity and click the Implementation tab in the Detail Area.
From the Operation drop-down list, select the travelArrangement operation.
From the Request drop-down menu, ensure travelResponse is selected.

Description
Client
Implementation
Documentation
Join Behaviour
Correlation
Server

o | Reply
Partner Link:
Port Type:
Operation:

-o0d

| travelarrangement Type |2|| | Mew, .. Reply Type: ® Mormal O Fault
[travelarrangement Type | Response: | travelResponse E| | Mew...

| travelarrangement |z“

Figure 7-26 Setting the reply partner link

8.

Save your file. The errors (red crosses on the Receive and Reply activities)
should disappear from the Task view.

164 WebSphere Business Integrator Server Foundation V5.1 Handbook

Cleaning up the namespace of the process (optional)
This section addresses clean-up of the namespace of our recently created
process. If you wish, you can skip this section and go on to the next section
“Creating the variables for the Flight Booking Service” on page 166.

Note: If you cannot find the files described in this section, open the Resources
perspective to find them.

Because of certain issues related to the workspace, you may see this error in
WebSphere Studio Application Developer Integration Edition.

1. Open the Nicedourney.bpel editor if it is not already open and find the top
point of the process, labeled Nicedourney. Click this and then open the Server
tab at the bottom of the BPEL Editor.

This is where you set properties related to the process itself as opposed to
individual activities.

2. Change the target namespace to http://nicejourney.com/Nicedourney.
3. Save and close the .bpel file.

4. Switch to the Package Explorer view and open NiceJourney.wsdl from the
WPC_Simple_Process/com/nicejourney folder. This will open the file in the
WSDL editor. Switch to the Graph view, rather than the Source code view, if it
did not open automatically.

5. In the bottom left of the editor is the Definitions section. Click the Edit
Namespaces... button.

Tip: If you do not see the Edit Namespaces... button then you may have
selected one of the import types, services, bindings, port types or
messages. You may have to click an area of white space in the top section
to deselect all of these, at which point the Edit Namespaces... button
should appear.

6. Change the Target Namespace value to
http://nicejourney.com/Nicedourney and click OK.

7. In the top half of the editor, right-click the import for
Nicedourneylnterface.wsdl and click Delete. This removes the import for the
default namespace. This import will be correctly regenerated later with the
updated namespace when we update the process partner link.

8. Save and close the file. Ignore the errors that may appear in the Tasks view at
this point.

Chapter 7. Process choreographer: developing a simple process 165

9. Now open the NiceJourneyPubliclnterface.wsdl file and click the Edit
Namespaces... button in the same way. Change the Target Namespace
value, this time using http://nicejourney.com/NiceJourney/interface to
indicate that this is the namespace for the process interface.

10.Select the item under Types, then change the URI under the Schemes to
http://nicejourney.com/Nicedourney/interface. Click Apply on this view.

11.Save and close all files.

12.Optionally, delete the WPC_Simple_Process/com/example folder and its
contents from the Navigator view in the Resource perspective (this view
allows you to work with the underlying file system directly). This will remove
the remaining unwanted entries, produced by default from the old namespace
values that were set by creating a new business process.

Creating the variables for the Flight Booking Service
We are going to define the variables required for the Flight Booking Service.

1. Open the Nicedourney.bp el if it is not already open.

2. Create two new variables called f1ightRequest and fl1ightResponse (see
“Adding variables to the NiceJourney process” on page 160 for how to do
this).

Note: The messages covered by these variables are described in
FlightBookingSystem.wsdl, where flightRequest covers
getReservationRequest and flightResponse covers getReservationResponse.

Wariables s o
travelRequest
travelResponse
flightRequest

flightResponse

Figure 7-27 List of variables

3. Select the flightRequest variable and in the Message tab under the Detail
Area, click the Browse button. Navigate to FlightBookingSystem.wsdl, select
the getreservationRequest at the bottom and click the OK button.

166 WebSphere Business Integrator Server Foundation V5.1 Handbook

x

Select a Message in a WSDL File

@&

158 ObjectPtestEAR

[=-{@# Referenced_Partner

. Bz com

: E@ biookyourflight
[N FliohtEooki nwsdl

@ FlightBookingSystemlavaBinding wsd|

1

b @ FlightBookingSystemlavaservice wsd|
12 SimpleProcessSample
[T WPC_Simple_Process

A i

P =

e

Ll

IgetReservationRequest

Ok I Cancel |

Figure 7-28 Selecting the message from the WSDL

4. You will see that the getReservationRequest message is now displayed in the
Message tab in the Detail Area.

) flightRequest —oOd

(DB e File: ElightBookingaystenm. wsdl
Message
8 L tionF k
Server Message getReservationReques |z||
Parts: < cityFrom @ string

“JcityTa ¢ skring
“|dateDeparture : Calendar
“JdateReturn : Calendar

Figure 7-29 flightRequest message

Repeat Steps 3 on page 166 and 4 on page 167 and select
getReservationReponse from the drop-down list. The Parts box now
contains a result, which is the Reservation ID returned from the Flight

Booking System to NiceJourney Travel.

_J flightResponse —_oOd

(DB e File: ElightBookingaystenm. wsdl

Message
8 R kionR
Server Message getReservationResponse lz“

Parts: “result : long

Figure 7-30 flightResponse message

Chapter 7. Process choreographer: developing a simple process 167

168

5. Save the file.

Creating a PartnerLink for the Flight Booking Service

At this point, you have to use the external service to define your partner link. If
you chose to use a separate server for a more realistic scenario, then this is the
time to get the service description from the external server. If you chose to use
the external service locally, running on the same test server, then skip the next
six steps and start with the first step under “Using the external service in the
partner link” on page 168.

1. Create a new simple project called Referenced_Partner, and create a new
folder structure: com/bookyourflight.

Open a Web browser (outside WebSphere Studio Application Developer
Integration Edition) and access the URL:

http://localhost:9087/bookyourflight.comWeb/wsd1/com/bookyourflight/
F1ightBookingSystem.wsd]l

2. Save the file to a temporary directory, for example: C:\temp.

3. Right-click the com/bookyourflight folder, then select Import. Select File
System, then click Next.

4. Browse for the directory: C:\temp, select the file:
FlightBookingSystem.wsdlI.

5. Click Finish.

Using the external service in the partner link
1. Create a new Partner Link named f1ightBooking by clicking the + graphic.

| Partner Links w= o
travelArrangementTyvpe ||
w bl

flightBooking
L o]

Figure 7-31 List of Partner Links
2. In the Detail Area, on the Implementation tab, click the Browse button,
navigate to NiceJourney.wsdl and click the OK button.

3. Inthe Detail Area, on the Implementation tab, click the New button next to the
PartnerLinkType box.

4. Fill out the dialog box as shown below.

a. For File, select Browse and navigate to
WPC_Simple_Process/com/bookyourflight/NiceJourney.wsdl.

b. Verify that the One Role radio button is selected.

WebSphere Business Integrator Server Foundation V5.1 Handbook

Name the First role: f1ightBooker.

d. For Port Type File, select Browse and navigate to
Referenced_Partner/com/bookyourflight/FlightBookingSystem.wsdl.

e. For Port Type, select FlightBookingSystem from the drop-down list.

f. The dialog box should look like the screen capture below (now we have
only the role of a service requester). Click OK.

4 New Partner Link Type x|

Create a new Partner Link Type with the given properties,

File: MiceJourney, wsdl Mew... | Browse... |

Partner Link Type: I flightBookingPLT

Murber of Roles: % OneRole Two Roles

First Role: I flightBooker

Port Type File: FlightBookingSystem.wsd|
Port Type: IFIightBookingSystem j

Second Role: I

Fart: Type File; — Mane — Erowse, ., |
Fart Tvpe: I-- Mone -- LI

Ok | Cancel |

Figure 7-32 New partner link type

5. Select the link between the Receive and Reply activities and press the Delete
key.

Note: Since it is not possible to reassign a link to another activity, we have
to delete it and set a new link between involved activities. Deatils regarding
setting the new link will follow later on.

Chapter 7. Process choreographer: developing a simple process 169

Note: Links indicate the flow of the process at runtime, from the source to
the target of the link. A link is evaluated if the previous activity has finished.
For a link, a condition on which the link evaluates to true, can be defined.
On a selected link, the Condition tab can be used to define this. In the
combo box of the Condition tab, one of the following conditions can be
selected:

» Visual Expression - for visual building of branches on existing variables
and fixed values, to define the true condition.

» Expression - Java Code can be defined, as of Java snippets, to define
the true condition.

» True - fixed value of true, this is the default value for a new link.

» False - fixed value of false.

» Otherwise - relevant for an activity with several outgoing links, to ensure
that this link evaluates to true if all others have evaluated to false.

The result of a link is used in the target activity of it, on the Join Behavior
tab in the Detail area.

Adding the Invoke activity
In this section, we will add an Invoke activity to the NiceJourney BPEL process
that will invoke the getReservation operation on the Flight Booking Web Service.

1. Click the Invoke activity on the Palette (graphic with the two arrows) and click
the flow again to drop it onto the canvas.

Wariables w= e

MiceJourney
travelRequest
travelResponse J
Recizive
flightRequest
]
flightResponse | e
Inwoke
Reply

Correlation Sets s= o

Figure 7-33 Current process design

170 WebSphere Business Integrator Server Foundation V5.1 Handbook

2. Now we will create a link between the Invoke and Reply activities.

Right-click the Invoke activity on the canvas and select Set link between
flow activities. Then click the Reply activity to link the activities together.

Tip: To align the activities and links, right-click the flow activity and select
Arrange Flow Contents.

3. Next, we will create a link between the Invoke activity and the Flight Booking
System PartnerLink so NiceJourney Travel can organize flight reservations.
Select the Invoke activity on the flow. On the Implementation tab in the Detalil
Area, fill out the fields as shown in the next figure.

%
!

SL/Eec

o

Description
Implementation
Compensation
Expiration
Documentation
Join Behaviour
Correlation
Server

Variables == o

Correlation Sets s o

.| Partner Links == o
Nicelourney, 1 travelarrangementType |
travelRequest T T s) LY
i - > g flightBooking |
travelResponse - A
- Receive Invoke
flightRequest —y
i e
flightResponse J
Reply
o Invoke DliE
Partrer Link: |FIightBooking |ZH | Mew. .. Request: |F|ightRequest |z|| | New. .. |
Port Type: | FlightEookingSystem | Response: | flightResponse E| | Mew, .. |
Operation: | getReservation |2||

Figure 7-34 Setting up the PartnerLink

4. Save the .bpel file.

Chapter 7. Process choreographer: developing a simple process 171

Adding an Assign activity

In this section, we need to assign the values of the parts in travelRequest and
travelResponse to the same (and currently empty) parts in the flightRequest and
flightResponse variables.

Note: The Assign activity is required because the travelRequest variable
contains more parts than are needed for the getReservation operation. Hence,
we will assign the values from the original Request to a new variable
flightRequest that we can send successfully to the getReservation operation
for the Flight Booking Service.

Even if the travelRequest contained only those parts which are required by the
flightRequest, it would not be possible to use them directly, because the
messages are defined in different namespaces.

1. From the Palette, select the Assign activity and click the flow activity again to
drop it onto the canvas.

2. Create a link between the Assign and Receive activities. Right-click the
Receive activity and select Set link between flow activities. Then click the
Assign activity.

3. Click the Assign activity and then the Implementation tab in the Detail Area.
Select the values from the drop-down list and box to match the figure shown

below.
= Assign)
Implementation i
Eoen o Fram: | Yariable or Part |L,1| To: | Yariable or Part !3|
Jain Behaviour - J travelRequest H-(g travelRequest
Server i ___] traveldgencyIn [+ g travelResponse
-] customerData ¢ customer =1+ flightRequest

"ﬂ_J travelData @ travel

----- __J cityFrom @ string

__] cityTo @ skring

; __J dateDeparture : dateTime

= __] getReservationRequest
__] cityFrom : string
__] cityTo : skring
__] dateDeparture : Calendar

] dateReturn : Calendar
- g FlightResponse

| travelResponse
- o flightRequest
() FlightResponse

Iy

I+

Qery! | JcibyFrom |

Figure 7-35 Variable mapping in the Assign activity

4. Click New in the Detail Area to assign the value travelData — cityTo to
flightRequest — cityTo.

172 WebSphere Business Integrator Server Foundation V5.1 Handbook

5. You should have a figure similar to the one below in your BPEL Editor.

Variables ==
travelRequest
travelResponse
flightRequest

flightResponse

Correlation Sets == o

|| Partner Links == o
NiCEJDLII’hEy’ travelArrangement]
flightBooking

Receive

Assign

Figure 7-36

BPEL Editor

6. Save the .bpel file.

Adding a Java snippet activity

Due to a complication whereby complex xsd types are not always converted to
appropriate Java classes, we need to define a Java snippet where we will add
some code to perform this conversion manually.

From the variable travelRequest, we will assign the parts dateDepature and
dateReturn, both of type xsd:dateTime, to the variable flightRequest parts

dateDeparture and dateReturn, both of type java.util.Calendar.

Chapter 7. Process choreographer: developing a simple process

173

174

Note: The variable flightRequest contains the parts dateDeparture and
dateReturn. Both are defined in the file FlightBookingSystem.wsdl of type
xsd1:Calendar, as follows:

<types>

<schema ... targetNamespace="http://util.java/" ...
<complexType name="Calendar">
<all>

<element name="firstDayOfWeek" type="int"/>
<element name="time" nillable="true" type="dateTime"/>
<element name="lenient" type="boolean"/>
<element name="minimalDaysInFirstWeek" type="int"/>
<element name="timeZone" nillable="true" type="xsd2:TimeZone"/>
</all>
</complexType>
</schema>
</types>
<message name="getReservationRequest">
<part name="dateDeparture" type="xsdl:Calendar"/>
<part name="dateReturn" type="xsdl:Calendar"/>
</message>

The final mapping to java.util.Calendar is defined in the file
FlightBookingSystemJavaBinding.wsdl, as follows:

<format:typeMap formatType="java.util.Calendar"
typeName="xsd1:Calendar"/>

This cannot be done using the Assign activity, because the xsd:dateTime is
converted to a java.util.Date by WebSphere Studio Application Developer
Integration Edition, which cannot be directly assigned to java.util.Calendar. The
following example shows how to perform this conversion within a Java snippet
for the dateDeparture parts of travelRequest and flightRequest.

Example 7-6 Conversion java.util.Date (results from xsd:dateTime) to java.util.Calendar

//assign travelRequest part to filghtRequest part

//to do this a conversion is necessary

Calendar calDeparture = Calendar.getInstance();

calDeparture.setTime(getTravelRequest().getTravelData().getDateDeparture());
getFlightRequest(true).setDateDeparture(calDeparture);

WebSphere Business Integrator Server Foundation V5.1 Handbook

Note: It would make more sense if the xsd:dateTime were converted to a
java.util.Calendar by WebSphere Studio Application Developer Integration
Edition, because of the support of java.util. TimeZone and java.util.Locale.

Here are the steps to add the Java snippet to the NicedJourney process.

1. Select a Java snippet activity from the Palette and drop it onto the flow
activity.

2. Create a link from the Assign activity to the Java snippet activity (right-click
and select Set flow between activities).

3. Create a link from the Java snippet activity to the Invoke activity (right-click
and select Set flow between activities).

4. Since this is now the final flow structure, right-click the flow activity and select
Arrange Flow Contents to order the activities as shown below.

MiceJourney

J
Receive

I [y
e e

=

Assign
hUd
o]
Javasnippet

¢

Rephy

Figure 7-37 Current process design

5. Select the Java snippet activity and select the Implementation tab in the
Detail Area. Remove all the code from the implementation, if there is any.

6. Copy and paste the following code into the Java snippet.

Example 7-7 Implementation of the Java snippet of simple process

//assign travelRequest parts to filghtRequest parts
//to do this a conversion is necessary
Calendar calDeparture = Calendar.getInstance();

Chapter 7. Process choreographer: developing a simple process 175

calDeparture.setTime(getTravelRequest().getTravelData().getDateDeparture()
getFlightRequest(true).setDateDeparture(calDeparture);

Calendar calReturn = Calendar.getInstance();
calReturn.setTime(getTravelRequest().getTravelData().getDateReturn());
getFlightRequest(true).setDateReturn(calReturn);

//only for controlling purpose
System.out.printin("travelRequest.customer.firstname:
"+getTravelRequest().getCustomerData().getFirstName());
System.out.printin("travelRequest.customer.lastname:
"+getTravelRequest().getCustomerData().getLastName());
System.out.printin("travelRequest.customer.adress:
"+getTravelRequest().getCustomerData().getAddress());
System.out.printin("travelRequest.customer.city:
"+getTravelRequest().getCustomerData().getCity());
System.out.printin("travelRequest.customer.state:
"+getTravelRequest().getCustomerData().getState());
System.out.printin("travelRequest.travel.cityFrom:
"+getTravelRequest().getTravelData().getCityFrom());
System.out.printin("travelRequest.travel.cityTo:
"+getTravelRequest().getTravelData().getCityTo());
System.out.printin("travelRequest.travel.dateDeparture:
"+getTravelRequest().getTravelData().getDateDeparture().toString());
System.out.printin("travelRequest.travel.dateReturn:
"+getTravelRequest().getTravelData().getDateReturn().toString());

)s

7. If you save your file and look at this code, the Calendar object will have a red

line beneath it indicating an error in the Java snippet. To fix this error, we need
to import the Calendar class.

Select the Nicedourney heading on the canvas, then select the Imports tab

and type:

import java.util.Calendar;

If you refer to the Java snippet now, the error will have disappeared.

Changing the condition of a link

The last step is to assign the response from the FlightBookingSystem to be the
response of the NicedJourney Web service. For this, the travelResponse will be

taken from the flightResponse.

Note: The response of the FlightBookingSystem cannot be directly passed to
be the response of the NiceJourney Web Service, because of different

namespaces; see NiceJourneyPubliclnterface.wsdl and
FlightBookingSystem.wsdl.

176 WebSphere Business Integrator Server Foundation V5.1 Handbook

To do this, there are a number of options, including using an assign or Java
snippet activity. To demonstrate another way to perform this task, we will add
Java code on the condition of a link.

1. Click the link between the Invoke and Reply activities.

JIJ
Inwoke
L]
1
\l..r
3

Reply

Figure 7-38 Selecting the link

2. Click the Condition tab in the Detail Area and select Expression from the
drop-down list.

3. Type the following line above return true; in the text box:
getTravelResponse(true).setReservationID(getFlightResponse().getResult());

This will set the Reservationld in the travelResponse variable to the value of
the result from the FlightReponse variable and is the final step in the design
process.

4. Save and close the file. Make sure there are no errors in the process.

7.2.8 Deploying and testing a process in the IBM WebSphere Test
Environment

A process can run in WebSphere Test Environment within the WebSphere Studio
Application Developer Integration Edition V5.1 environment if these tasks are
peformed:

1. Generate deploy code for the process to create an enterprise application.
2. Create a test server, configure it and add the process to the server.

3. Start the server and use the process Web client to start and stop instances of
the process.

Generating deploy code

You must generate deploy code for a process so that it can be run on an
application server. The Generate Deploy Code wizard creates an enterprise
application that can be deployed to WebSphere Business Integration Server
Foundation V5.1. With enterprise services, you can generate deploy code with
one of three inbound bindings:

Chapter 7. Process choreographer: developing a simple process 177

» EJB binding
» SOAP binding
» JMS binding

To generate deploy code for NiceJourney process, perform the following steps:

1. In the Services view of the Business Integration perspective, expand
WPC_Simple_Process — com.nicejourney — NicedJourney.bpel.

2. Right-click NicedJourney.bpel and select Enterprise Services — Generate
Deploy Code.

3. Select the flightBooking Partner Link in this dialog and click the Browse
button. Select Referenced_Partner — com — bookyourflight —
FlightBookingJavaService.wsdl. Your screen should look like Figure 7-39.
Click the OK button to generate the deploy code.

4k Generate BPEL Deploy Code o] 4
El-{= Interfaces for Partners Partner: flightBooking (flightBooker)
i = traveldrrangementType
i AL A~ . " 8 . : " .
i@, =EJB binding Port Type: FlightBookingSystem{http: {{bookyourflight. comFlightBookingSystem
EE’ Referced Partners File: Jfcombooksyourflight /FlightBookingSystemlavaser vice wsdl Browse. .. |
o =flightBooking
e 2, »Process Settings Service: |FIightBookingSystemService-{http:,I',l'hookyourflight.com,l'FIightBookjngSystemJavaService,l'}- ;I
Port: | FlightBooking3vstemlavaPart ;I
K I Cancel |

Figure 7-39 Generating the BPEL deployed code

The following projects are generated, containing the deploy code.

» WPC_Simple_ProcessEAR
» WPC_Simple_ProcessEJB
» WPC_Simple_ProcessWeb

Regenerating deploy code

If you have made changes in the BPEL Editor on your process, it is necessary to
regenerate the deploy code.

Before you generate the deploy code again, it is recommended that you
completely delete the previously generated deploy code. In this way, you can
make sure that everything is generated anew and that no artifacts from the
previous generated code are left, causing problems when the code is
regenerated.

178 WebSphere Business Integrator Server Foundation V5.1 Handbook

To delete the previously generated deploy code of the NiceJourney Web Service,
perform the follow steps:

1. Select the generated projects WPC_Simple_ProcessEAR,
WPC_Simple_ProcessEJB and WPC_Simple_ProcessWeb.

This can be done by holding down the Ctrl key and left-clicking each of the
above mentioned projects.

2. Press the Delete key.
3. In the upcoming confirmation dialog, select Also delete contents in the file
system and click Yes.

Now you can perform the steps described in “Generating deploy code” on
page 177 to built the deploy code again.

Deploying a process to the WebSphere Test Environment
To run a process, you need to:

» Create a server and service instance of the WebSphere Application Server
(or reuse an existing one).

» Add the process (and any other enterprise application used by the process) to
the server configuration.

» Deploy the process to the server.

To deploy the Nicedourney process to a server, perform the following steps:

1. Select the Server perspective. Right-click Servers and select New — Server
and Server Configuration.

2. Name the server NiceJourneyServer, verify that Integration Test
Environment is checked and click the Finish button.

Chapter 7. Process choreographer: developing a simple process 179

tﬁ: Create a New Server and Server Configuration ﬂ

Create a new server and server configuration

Choose the properties For the new server, %

Server name: I MicelourneyServer
Falder: I server j
Server bype: £-Lg WebSphere version 5.1 -

@ Integration Server

@ Integration Test Environment

@ Express Server

@ Server

Express Server Attach

B Server Attach

g wehsphere version 5.0

g. WebSphere version 4.0 LI

Description: Runs J2EE projects out of the workspace on the local test environment.,

Server configuration bype: ﬁ Integration Server ¥5.1 Configuration

Description: A server configuration For Integration Server version 5.1,

= Back | Mexk = | Finish I Caneel |

Figure 7-40 Creating the WebSphere Test Environment

3. Right-click NicedJourneyServer and select Add or Remove Projects. Select
WPC_Simple_ProcessEAR and click the Add button. Click the Finish
button.

4. The Server Configuration should now look like Figure 7-41.

% Server Configuration - X

B Servers
E&H Micelourney3eryer
Eg’j WPC_Simple_ProcessEAR
@' WP _Siniple_Process\Weh
(E_ﬁ WPC_Simple_ProcessEJE
{?ub WPC_Sinple_Process
: {?ub Referenced_Partner

Figure 7-41 Server configuration view

180 WebSphere Business Integrator Server Foundation V5.1 Handbook

Using the process Web client

The following steps show you how to use the process Web client with your new
process.

1. Right-click NiceJourneyServer and select Start to start the server.

2. When the server has started (the text on the Console has stopped scrolling),
switch to the Servers view, right-click the NicedJourneyServer and select
Launch Business Process Web Client.

3. Click the My Template link in the Web client and select the check box next to
NicedJourney. Click the Start Instance button.

WebSphere. Business Integration Process choreographer
Server Foundation

Help UserlD UMAUTHENTICATED Logout

‘Work ltemn Lists
My Templates

B bty Ta Das
& Define Work tem
List
Use this page to view process templates on which you can Wurk_m
Process Instance Lists Ryalahle Achinns

fcass e ¥ [ew] [strtinstance |

B tdministered By Me
B Undo Actionz in

il [~ Template Hame Valid From Can Run Interrupted Delete on Completion State Description
& Defing Process : =
Instance List [Micedourney 1203102 7:00:00 PM EY

Process Template Lists

B bty Templates
Define Template List

Administration

B Manage Work tems
for Process

Figure 7-42 Process Web client - My Templates view

4. Fill out the details in the Process Input Message section.

Important: Ensure the integer and dateTime fields have valid values; see
the example in Figure 7-43.

Chapter 7. Process choreographer: developing a simple process 181

Process Input Message

customerData address |1 3 Flowers St Estring)
customerData city IRaIeigh Estring)
customerData firsthiame I.James Estring)
customerData lasthame ISm'rth Estring)
customerData state [Horth Carolina Cstring)
customerData zipoode IQ??54 finteger)
travelData cityFrom IRaIeigh Estring)
travelData cityTo INBW Yark Estring)
travelData dateDeparture ISI?IEM 416 pm My bomm &)
travelData. dateReturn |51 0104 4:16 pm Chiclfyy homm &)

Figure 7-43 Process input messages

5. Click the Start Instance button to run the NiceJourney Web service.

WebSphere | Business Integration Process choreographer
Server Foundation

Help UserlD UMNAUTHENTICATED Logout

Work temn Lists
Process Input Message

B bty Ta Das
& Detine Wiork tem
List
Usze this page to change the input message before you complete the actions to start the business process_m
Process Instance Lists Available Actions

Bl Created By be
B Start Instance

B tdministered By Me
Bl Undo Actions in

Error Process Template Description
petine Process
Instance List Documentation - “alicl From 12031402 7:00:00 PR
Description - Delete on Completion =
Template Mame MiceJourne: =
Process Template Lists I a’: " 4104 8_4?_&'05 M Can(uniinterUptad
reste LA Can Run Synchronously 98
Bl my Templates
& Define Template List
Service
Administration
B tanage Work tems Name Receive
for Process Description -
Instances PortType traveldrrancement Type
B Manage Activities Operation traveldrrangement
for Process
Instances

Figure 7-44 Starting the instance for the process

182 WebSphere Business Integrator Server Foundation V5.1 Handbook

6. You will receive output from the NiceJourney Web service, a reservation ID.
This was generated by the FlightBookingSystem which is referenced via
partner link flightBooking.

WebSphere Business Integration Process choreographer
Server Foundation

Help

‘Work tem Lists
Process Cutput Message

Bl bty To Dos
Define Wiork tem
List
Use this page to view the results of & business process that you started [1]
Process Instance Lists Process Template Description
Bl Crested By Mz
B adrministered By he Dacumeritation Cresated 544104 5 4705 S
Bl Undo £ction= in Description) Walid From) 1243102 7:00:00 PM
Error Template Mame MiceJournesy Delete on Completion =
Define Process Wersion Can Run Interrupted =
Instance List Zan Run Synchronously e

Process Template Lists

Process Qutput Message
Bl ity Templates ® g

& Define Template List

reservationlD 1083650245415

Administration

B Manage Work tems
for Process
Instances

Bl Manage Activities
for Process
Instances

Figure 7-45 Output messages from the process
The simple NicedJourney Web service has now run successfully.

Refer to the Console of the WebSphere Test Environment to see the trace

messages from the NiceJourney Web Service and from its reference partner, the
FlightBookingSystem.

7.2.9 Debugging a process in WebSphere Test Environment

Once a business process is developed and deployed, it might be necessary to
debug it to solve certain problems. WebSphere Studio Application Developer
Integration Edition provides a Process Debugger to debug a business process at
its logical level, which is more practical than to debug at the code level.

Process debugging components

For debugging purposes, there are two different components, the Process
Debugger and the Process Engine.

Chapter 7. Process choreographer: developing a simple process 183

» Process Debugger

The Process Debugger is a component of WebSphere Studio Application
Developer Integration Edition. It is used to set breakpoints in a business
process on activities and on links. Once an instance of a process template
with defined breakpoints is created, the Process Debugger comes up if the
process flow reaches the first breakpoint. It can be used for several tasks on a
process instance such as stepping through the process, viewing the value of
process variables, stepping into source code, terminatng the process
instance and so on. The Process Debugger is available in the Debug view of
WebSphere Studio Application Developer Integration Edition.

» Process Engine

The Process Engine always runs in an application server. This can be a
WebSphere Test Environment of WebSphere Studio Application Developer
Integration Edition, or WebSphere Business Integration Server Foundation. It
executes the activities of the business process.

The Process Debugger and Process Engine can work together for debugging
purposes, even if they reside on different machines; for details, refer to 7.2.11,
“Debugging a process on WebSphere Business Integration Server Foundation”
on page 194. For debugging purposes, at development time, they may reside on
the same machine. This is detailed in the rest of this chapter.

Setting and removing breakpoints

Setting breakpoints on the activities of a business process can be done in the
BPEL Editor. A breakpoint is indicated by one of the following symbols.

Symbaol De=scription

* The breakpoint iz uninstalled, enabled, and restricted
to one or more instances of the process

2 The breskpoint iz installed, enakled, and restricted to
one of more instances of the process

o The breakpoint iz uninstalled and enabled in all
instances of the process

o The breakpoint iz installed and enabled in all

instances of the process
The breakpoint iz uninstalled and dizabled.
-~ The breakpoint iz installed and dizabled.

Figure 7-46 Symbols to indicate different states of a breakpoint

On each activity, a breakpoint can be set at the entry of the activity and/or at the
exit of the activity, which means giving the control flow to the Process Debugger

184 WebSphere Business Integrator Server Foundation V5.1 Handbook

just before the activity is executed by the Process Engine, or just after the activity
has been executed.

Setting breakpoints for a certain activity can be done by right-clicking it and
selecting the according breakpoint to be set from the pop-up menu, as shown in
Figure 7-47.

Receive
|
L \I/] L
=3
Hssign
L] - ey
JI l—\L Set Link between Flow activities
hU4
J] ~|#Add Fault Handler
Javasnipm o
] ' Zoom In
) e}
_':, -1'7.; Zoam ok
=
Irvvoke #dd Entry Breakpaint
L Aidd Exit Breakpoint
i

Figure 7-47 Setting a breakpoint for an activity

In the case of a Java snippet, breakpoints can additionally be set for every line of
code of the snippet, by double-clicking the grey area in front of the corresponding
line of code, as shown in Figure 7-48.

Descripkion
Implementation
Documentation
Join Behaviour
Server

| Javasnippet —oOd
calleparture,.setTime [getTravelRequest () .getTravellbata () .getDateleparture (1 1; ;I
getFlightRequest (true) .setDateleparture | calleparture]

4

Calendar calReturn = Calendar.getInstance|):
calBeturn.setTime | getTravelRequest () .getTravellata() .gethateRecurni) |}
getFlightRegquest (true) .setlateReturn| calReturn) ;2

//only for controlling purpose _ILI
3

Figure 7-48 Adding a breakpoint to a line of code in a Java snippet

On a link, breakpoints can only be set if the condition of the link is an expression
type. Setting breakpoints to a link can be done in the same way as for a Java
snippet.

Removing breakpoints from a certain activity can be done by right-clicking it and
selecting the according breakpoint to be removed from the pop-up menu.

Chapter 7. Process choreographer: developing a simple process 185

186

Breakpoints in Java snippets or in links can be removed by double-clicking the
breakpoint to be removed.

Process debugging views

For the purpose of debugging a business process, WebSphere Studio
Application Developer Integration Edition provides the Debug Perspective, which
can be added to your workspace by clicking Window — Open Perspective —
Other..., then selecting Debug from the dialog and clicking OK.

The Debug Perspective contains the following views:
» Breakpoints view

The Breakpoints view shows all the breakpoints which have been assigned to
the business process. When you right-click a breakpoint, a pop-up menu
appears which can be used to change certain properties of the breakpoint or
to disable/enable it. Furthermore, it is possible in this view to restrict a
breakpoint so that it only applies to a specific process instance and is ignored
by other process instances.

B8 Breakpoints = G | i v x
@ NMiceJourney: Invake [entry]

© MiceJourney: Invoke [exit]
@ NMicedourney:Linkl [transition] line:3

MiceJourney: Javasnippet [code] line: ¥
== Go ko File

Add Breakpoint ¥
Edit Ereakpaint. ..

1l Suspend YM

o2 Hit Count

Select Al

W Eratlz

[Disable
=1 Remove

= Remove Al

Propetties. ..

ariahles IBreakpoints IExpressinns |Reqisters | Storage |Storage M... | Manitors |Modules |Display

Figure 7-49 Breakpoint view in Debug Perspective

» Debug view

The Debug view displays information about the currently running threads and
process instances on the application server to which it is attached. It also
shows the name of the activity which causes a suspension on a thread,

WebSphere Business Integrator Server Foundation V5.1 Handbook

E|

because of a breakpoint. From this view, the debugging tasks (see also
“Debugging tasks for a process” on page 188) can be performed by using the
tool bar shown in Figure 7-50.

&

I- WEI 5F (WeBSphere v5.1) at lacalhost: 7777

E ‘. MiceJourney at localhost: 7777 _PL: 100300, 7570cF5d, 5254d5F6, 1140000
LB @“ Thread[0] {Suspended at <Micelourney: JavasSnippet [code] line:10=)
= Nicelourney:JavaSnippet [code] line:10

; = NiceJourney:Javasnippet [entry]
----- &E WEL SF (WebSphere v5.1)

Debug J SErvers

Figure 7-50 Debug view in Debug Perspective

» Variable view

The Variable view shows all process variables, partner links, and their current
values. The content shown in the Variable view is always associated with the
selected activity in the Debug view and the activity which causes the block of
the thread. It is also possible to change the value of a variable at debugging
time by right-clicking the according value.

£|[E~ x

@ travelRequest

@ travelResponse

G flightRequest

[P dateReturn = java.util. GreqorianCalendar[time=105837 22400000, areFigldsSet=true, aredlFieldsSet=False, lenient=true, zone=;j
[P citvTo = Mew Yaork

[P dateDeparture = java,util.GregaorianCalendar[tine=1031065440000, areFieldsSet=true, aredllFizldsSet=False, lenient=true, zone
[P citvFrom = Raleigh

“ FlightResponse

l

{3tring name = flightEBooking, 3tring port name = FlightBooking3ystemJawvaPort, 3trings

| »

Variables JBreakpnints |Expressians | Registers | Storage | Storage Mapping | Manitors |Modules |Display

Figure 7-51 Variables view in Debug Perspective

The three views are refreshed when a debugging task is performed; this is
described in the next section.

Chapter 7. Process choreographer: developing a simple process 187

Debugging tasks for a process

Once a breakpoint is reached in a process instance, the Debug view of the
Debug Perspective can be used to step through the process instance. The
Debug view may be used in combination with the Variable view to learn about the
flow in the process instance and the values of the variables as the flow
continues.

The debugging tasks are available from the Run menu of the Debug Perspective
as well as in the toolbar of the Debug view, shown below.

,@ im = | T 2 4 q!é\\

Figure 7-52 Debug view with toolbar to perform debugging tasks

vX"

The following table shows a subset of the available debugging tasks, the most
frequently used to debug a process instance.

Table 7-1 Debugging Tasks available for a process instance

Symbol | Name function | Description
key
Resume F8 Resume the execution of the processes instance,
1B after it has been interrupted by a breakpoint. It
can be used to jump to the next breakpoint.
Terminat n/a Terminate the process instance. To do this, select
L e the activity which causes the block, because of

the breakpoint, and click the terminate button.

Step Into F5 Step into a Java snippet or into a link which has
2 an expression condition type.
- Step Over | F6 Step over an activity, to the next.
63k
Step F7 Step to the return of a Java snippet or to return of
- Return a link which has an expression condition type.

At this point, we have everything prepared to start debugging a process instance.

Debugging a local process instance

In section 7.2.7, “Developing a new process” on page 156, we developed a new
process which then was deployed to a local server in section 7.2.8, “Deploying
and testing a process in the IBM WebSphere Test Environment” on page 177. In

188 WebSphere Business Integrator Server Foundation V5.1 Handbook

this section, we discovered how to add breakpoints and how to work with the
Debug Perspective of WebSphere Studio Application Developer Integration
Edition.

In the NicedJourney process, we have set the following breakpoints.

MiceJournery

A Breakpoints = | | iy - x
@ Nicelourney:Invoke [entry]

@ NiceJourney:Invoke [exit]

@ NiceJourney:Linkl [transition] line:3

i @ Nicelourney: JavaSnippet [code] line: 10

W
Receive

Assign ‘ariables lBreakpoints]Expressions |Reqisters | Storage | Storage Mapping | Monitors |M0dules | Display

e
Javasnippet
1
A4
o &
@ Invoke

g

¢

Reply

Figure 7-53 Breakpoints set to NiceJourney process, shown in BPEL Editor and in Breakpoint view
All we have to do now to debug a process in the WebSphere Test Environment is
to start NiceJourneyServer in Debug mode.
1. If the NiceJourneyServer is still running, stop it.

2. Start the NiceJourneyServer in Debug mode. Right-click it and select Debug
from the pop-up menu.

3. If the following messages appears, click Yes.

x|

The BPE Web client might not work properly if the current timeout value is too
small. Do you wantk to increase the timeout value?

Figure 7-54 Message that occurs when debugging is done first time in workspace

4. Watch the Servers view (either in Debug Perspective or in Business
Integration Perspective) and wait until the NicedJourneyServer has started (the
Status column will show Started in debug mode).

Chapter 7. Process choreographer: developing a simple process 189

190

(621

9.

. Right-click NiceJourneyServer and select Launch Business Process Web

Client.

Use the NicedJourney Template to create a process instance; this is shown in
“Using the process Web client” on page 181.

When a new instance is created using the Start Instance button in the
Process Web client, the Debug Perspective should come to the front; if not,
switch manually to it by clicking Window — Open Perspective — Debug.

When the first breakpoint is reached in the process instance, the Debug view
shows the activity (in our case the Java snippet) on which this breakpoint is
set. Switch to the Debug view and scroll down to the Java snippet.

Switch to the Variable view to see the current content.

10.Click the Step Into button of the Debug view’s toolbar to step into the Java

snippet.

11.Click the Step Over button of the Debug view’s toolbar to step over some

lines of code in the Java snippet.

12.Click the Step Return button of the Debug view’s toolbar to step to the return

of the Java snippet.

13.Use the Resume button of the Debug view’s toolbar to get to the next

breakpoint, the Invoke activity.

After resizing and closing some views, your window should be similar to the
following figure.

WebSphere Business Integrator Server Foundation V5.1 Handbook

¢§= Debug - NiceJourney.bpel - WebSphere Studio Application Developer Integration Edi

=10l x|
Fil= Edit Mavigate Search Project Rum Profile Window Help
s-daa|gls-x--||KR-||®v]lvce-9-
ﬁ ﬁDebug o 00 W L7 | T A & @ | | Y, w x || e variables ﬁ#l_‘,|| v 2
% E:k} MiceJourneyServer [Server] " flightBooking
-- MiceJourneyServer (WebSphere v5,1) at localhost: 7777 & travelRequest
g o3 - & travelResponse
E% Thread[0] (Suspended at <Micelourney: Invake [entry]=) & flightRequest
L= Nicedaurney:Irvoks [enkry] o FlightResponse
a{ MiceJourneyserver (WebSphere v5.1) .
iy e i
Debug‘Servers \-'ariables‘Breakp... |Expres... |Registers |Storage (Storag... 4 b
X | i Process Web client
h | Partner Links == o |~
Yarigbles s o -
MiceJourney traveldrrangement Type |
\ travelRequest
& i y , flightBooking]
travelResponse W
« |1* Receive
flightRequest
"1 J
flightResponse » =
J » Assign
s
ﬂ Javasnippet
N
Correlation Sets == e &
@ Invoke
[# .
hUd
ol &
Reply —
ol =
o Invoke i aE|
Description Partner Link: |FIightBooking E“ | Hew... | Reguest: |FIightRequest E|| | M2 | 3
Implementation | e - | P
: n : : i esponse
e Part Type FlightEookingSystem Response | g P EH Mew |:|

Figure 7-55 Debugging a process instance in the Debug Perspective

While stepping through the process instance, the current position of the flow is
indicated in the BPEL Editor with the symbol (& . This symbol is also used to
indicate that the process is paused at a breakpoint that is installed and enabled.

The symbol _J indicates that the link on which the symbol resides was followed,
since the transition condition evaluated as true.

Chapter 7. Process choreographer: developing a simple process

191

Note: You may get errors on the Console view during debugging. These
errors do not show when you run the test in normal mode.

The reason is that the debugger tries to evaluate every variable and partner
link at the breakpoints, even before they are available.

Refer to the WebSphere Studio Application Developer Integration Edition help to
read about several other symbols that are used to indicate the status of a
breakpoint and whether a link was followed.

7.2.10 Deploying a process to WebSphere Business Integration
Server Foundation

192

For the deployment task on the WebSphere Business Integration Server
Foundation, we will need the deployable package of the application.

1. Start the WebSphere Business Integration Server Foundation application
server and bring up the Administrative Console
(http://<server_name>:9090/admin).

2. Navigate to Servers — Application Servers, then select server1.

3. Select Business Process Container at the end of the Additional Properties
(right-hand pane).

4. Make a note of the data source. This is the JNDI name for the data source
that the Business Process Container is using. The default name is
jdbc/BPEDB, if you are using the default container.

5. Navigate to Applications — Install New Application.

6. Select Browse then select the WPC_Simple_Process.ear; this is the
enterprise application that holds the processes. Click Next.

7. Step through the installation steps of the process application, as if it were a
normal enterprise archive (EAR).

8. When you get to the step where you must provide a default data source
mapping for modules containing 2.0 entity beans, you will have to make some
changes.

Important: The Resource JNDI name and the Business Process
Container Resource JNDI name must be the same.

a. Open the Apply Multiple Mappings section with the + (plus) symbol next to
it.

WebSphere Business Integrator Server Foundation V5.1 Handbook

b. Select the correct Resource JNDI name from the drop-down list. There are

multiple items on the list; the one you need has a name very similar to the
data source JNDI name. It should have the eis/ prefix and the _CMP
extension, so the full name should look like: eis/datasourceJNDI_CMP.
The resource JNDI name for the default data source is
eis/jdbc/BPEDB_CMP.

In a Network Deployment environment, the JNDI name looks like
eis/datasourceJNDI clustername_CMP.

c. Check the box next to the EJB module, where the processes are stored.

d. Click the Apply button below Specify existing Resource JNDI name.

9. When you deploy an interruptible process, you get the following question (see

Figure 7-56). Check the Enable box, then click Next.

—+5Step 12: Automatically create database tables for Business Process entity beans

Specify if you want the databaze tables for husiness process entity beans to be crested automatically .

Buziness Process Options Enable
Creste takles I~
Frevious | Mext | Cancel |

Figure 7-56 Automatically generate database tables

Note: Interruptible processes need a database for persistence. The
process state is persisted in a database by entity beans (EJB).

By selecting this option, the necessary tables will be generated during
deployment in the database configured for the business process container.

10.At the end of the deployment steps, click Finish.

11.Save the configuration for the application server.

Once the process has been deployed, you can start the application.

1.
2.

Navigate to Applications — Enterprise Applications.

Check the box next to the recently installed application, the one that includes
the business processes; then click Start at the top of the page.

Wait until the application starts; you should get a message at the top of the
page, stating that the application was successfully started.

Log out from the Administrative Console.

Chapter 7. Process choreographer: developing a simple process 193

You can run a quick test to make sure that the process has been deployed and
started.

1. Open a Web browser at the http://<server_name>:9080/bpe location.
2. Select a template, one that you have just installed with the application.
3. Run the process to see if it works.

For more information, refer to the WebSphere Business Integration Server
Foundation InfoCenter at
http://publib.boulder.ibm.com/infocenter/ws51help/index.jsp, then
navigate to WebSphere Business Integration Server Foundation —
Deploying — Applications — Process Choreographer; you can find more
details under this node in several documents.

7.2.11 Debugging a process on WebSphere Business Integration
Server Foundation

194

To debug a process instance on WebSphere Business Integration Server
Foundation, the Process Debugger can be attached to the Process Engine; see
also “Process debugging components” on page 183.

It does not matter whether or not both components reside on the same machine
or on different machines. In this chapter, we will show how to attach a Process
Debugger component of WebSphere Studio Application Developer Integration
Edition to a Process Engine, component of WebSphere Business Integration
Server Foundation residing on a different machine.

For this chapter, we assume that we have a BPEL process with defined
breakpoints (refer to 7.2.9, “Debugging a process in WebSphere Test
Environment” on page 183), and that the EAR file of this process is already
deployed to the WebSphere Business Integration Server Foundation (refer to
7.2.8, “Deploying and testing a process in the IBM WebSphere Test
Environment” on page 177).

Preparing for remote debugging

Before we can debug a process instance on WebSphere Business Integration
Server Foundation, we have to prepare in the following way.

1. Prepare WebSphere Studio Application Developer Integration Edition

To attach the Process Engine, we do not need a server configuration in
WebSphere Studio Application Developer Integration Edition, but we have to
enable the server targeting support.

a. Select Window — Preferences.

WebSphere Business Integrator Server Foundation V5.1 Handbook

http://publib.boulder.ibm.com/infocenter/ws51help/index.jsp

h.

In the navigation tree on the left, select J2EE.

In the pane on the right, select the radio button Enable server targeting
support.

Click Apply.

Since debugging a process instance on a remote server takes time, the
Debugger time-out and the Launch time-out should be increased
appropriately.

Expand Java in the navigation tree of the still open preference dialog.
Select Debug.

In the pane on the right, change the Debugger time-out to 300000 and the
Launch time-out to 200000.

In the preference dialog, click OK.

. Prepare WebSphere Business Integration Server Foundation.

To debug a business process on WebSphere Business Integration Server
Foundation, the Debug mode must be enabled. The default port for
debugging purposes is 7777. To speed up debugging, the JVM debug
argument -Xj9 should be used. Since debugging may take extra time, for
looking at variables, it is necessary to disable the transaction time-out, which
is done by setting a value of 0 for the client and server. All of this can be done
by performing the following steps.

a.
b.

Start the application server.

Open the Administrative Console of the WebSphere Business Integration
Server Foundation on which the deployed EAR file of our business
process resides and which you are going to debug.

c. Navigate to Servers — Application Servers, then select server1i.

d. Select Debugging Service in the upper half of the Additional Properties

> a -

(right-hand pane).

. Check the Startup check box and verify that the JVM debug port is set to

77717.

Add the argument -Xj9 to the JVM debug arguments.

Click OK.

Back in the Additional Properties, select Transaction Service.
Change the Total transaction lifetime time-out to 0 (zero).
Change the Client inactivity time-out to 0 (zero).

Click OK.

Log out of the Administrative Console.

Chapter 7. Process choreographer: developing a simple process 195

m. Restart the application server.

Now we are ready to debug a process instance remotely.

Debugging a remote process instance

From the WebSphere Studio Application Developer Integration Edition where the
process with defined breakpoints resides, it is now possible to debug a remote
process instance on WebSphere Business Integration Server Foundation. To do
this, perform the following steps.

1. Switch to the Debug perspective.
2. Select Run — Debug....

3. In the navigation tree of the just opened Debug dialog, select WebSphere
Application Server Debug and click New.

4. In the Name field (right hand side), type RemoteDebugNiceJourney.

5. Click the Browse button and select the service project
WPC_Simple_Process.

6. Inthe input field Host name, type in the Name or IP of the host where the
WebSphere Business Integration Server Foundation is running in Debug
mode.

7. Verify that the JVM Debug Port is 7777.
8. Click Apply, then click Debug.

The Process Debugger will attach to the Process Engine, waiting for a process
instance to debug. To generate such a process instance, open an external Web
browser and type in the following URL:

http://<IP_of RemoteHost>:9080/bpe/webclient
where <IP_of_RemoteHost> is the IP or name of your remote host.

From here on out, you can perform the same steps as those described in 7.2.9,
“Debugging a process in WebSphere Test Environment” on page 183 to debug a
local process instance.

Finishing remote debugging

Since only one Process Debugger can be attached at the same time to the
Process Engine, this should be detached once debugging is complete.
Therefore, all debugged process instances should be terminated, whether by
finishing them normally, or by clicking the Terminate button of the Debug view.
To detach the Process Debugger from the Process Engine, switch to the Debug
view and right-click the connection instance j9[<IPofRemoteHost>:7777]. In the
pop-up menu, select Disconnect.

196 WebSphere Business Integrator Server Foundation V5.1 Handbook

7.2.12 Process versioning

WebSphere Process Choreographer allows for multiple versions of your
business process to exist in your application server. You may install a newer
version of your process while preserving any running instances of the previous
template.

Versions of your process are determined by the validFrom timestamp in the
BPEL code, for example:

wpc:validFrom="2003-01-01T00:00:00”

This can be specified in WebSphere Studio Application Developer Integration
Edition on the Server tab of the process properties, as shown in Figure 7-57.

Walid From:

[3an] ¢ [[] ¢ [z003]
[0] ¢ [we] ¢ oo]

Figure 7-57 Valid From fields in the BPEL Editor

If multiple versions of a process are installed and running, starting an instance of
that process will always result in the latest valid template being executed.

In order for multiple versions of a process to exist on your application server, they
must occupy separate install roots on the server. To accomplish this, you will
need to ensure that your process retains the same name across versions, but
has a different enterprise application name for each. There are a few ways that
the application name can be specified:

» In WebSphere Studio Application Developer Integration Edition, your
enterprise application name is set to the name of the Service Project where
your business process exists.

» In your project's application.xml file, you may change the <display-name>
field, which defines your application's name.

» Upon installing the application to your server, you can specify the application
name. This is under Step 1 of the application installation procedure if you are
using the Administrative Console, or the appname parameter if you are using
the wsadmin script client.

Chapter 7. Process choreographer: developing a simple process 197

7.2.13 Uninstalling deployed processes

As you have already seen, business processes (BPEL4WS) are deployed as
simple enterprise applications (EAR). The process itself is part of the EJB
module, therefore it is managed under the EJB module.

There are differences between interruptible and non-interruptible processes from
the management point of view. Interruptible processes leave footprints as they
run and once they finish. Each time a process starts, a new instance is created
from the process template. The instances are persisted in a database configured
for the business process engine. A process cannot be removed until instances of
the process appear in the database, be they running or finished instances.

Before you can remove a business process from the business process container,
you have to:

1. Finish or terminate the running processes.
2. Delete the finished processes.

Once all the instances are removed, you can start removing the process
application. This entails two separate steps:

1. Stop the running process template.
2. Uninstall the process application.

There could be problems during the process described above. If a process
application cannot be uninstalled, you can be sure that there are instances of the
process running somewhere.

Terminating a process

Terminating a process works as a hard stop for the process. When terminating
the process, the instance stops running and never returns to the running state.
You can consider it a lost instance.

Terminating a process is not recommended under any circumstances. The
process does not perform any compensation or any rollback when terminated. A
terminated process can have a harmful impact on the business. The
recommended way of stopping a process is to finish the process as expected.
Administrators can manage the process instances and perform the necessary
activities to stop the processes.

If you really need to terminate a process, follow the steps below:

1. If you are running the process in a Network Deployment environment, make
sure that all the application servers are running.

198 WebSphere Business Integrator Server Foundation V5.1 Handbook

2. Start the business process Web client and open a Web browser with the
following URL: http://<server_name>/bpe or
http://<application_server name>:9080/bpe (to access the application
server directly).

3. Select Process Instance Lists — Administered By Me.
4. Check the box next to the process(es) you want to terminate.

Note: You can terminate more than one process at a time.

You can select all the processes at the same time by checking the box at
the head of the process list.

Work ttemn Lists

2N Administered By Me

& Define Work trem
List

Use this page to display information sbout process instances that you can administer and to perform actions on these

process instances._m

Process Instance Lists

B Crested By Me Available Actions

B sdministered By Me Ve 3 Compensate Terminate | DElete | Monitor | Repair Compensation

Bl Unda &ctions in
Errar

Define Process [~ Process et State Process Starter Reason
Instance List Hame Started

v _PLI00300fC. 71eai2es 48550516 1h3e00cE CustomerBiling Running 5/10/04 UNALTHENTICATED Administrator
1003532
Phd

Figure 7-58 Terminating a process

5. Click Terminate.
6. Once the process is terminated, the state changes to Terminated.

Deleting a process instance
Before you can remove the business process applications, you have to remove
all existing process instances.

1. Start the business process Web client if it is not running.
2. Select Process Instance Lists —» Administered By Me.

3. Check the box next to the process(es) you want to delete; you may want to
select all of them by checking the box in the header.

Chapter 7. Process choreographer: developing a simple process 199

Work ttemn Lists

By To Das
& Define Work trem
List

Process Instance Lists

Bl Crested By Me

B pdministered By e

Bl Unda &ctions in
Errar

Define Process
Instance List

Created By Me

Use this page to display information sbout each process that vou start and to select s process on which to Work_m

Available Actions

:;9 Compensate

Terminate: | Delete| Maonitar | Repair Compensation |

u Process Template Hame State Started Reason
I~ PLA00300fC 71 eas2es 4555056 1h9e00cs CustomerBilling Terminated 51004 10:35:32 PM Starter

Administrator

Figure 7-59 Deleting the process

200

4.

5.

Click Delete to delete the process(es).
The process(es) should disappear from the list.
You can close the business process Web client.

Stopping the process template
Before you can remove the business process applications, you have to stop the
process template(s).

1.

© N o o &~ W

If you are running the process in a Network Deployment environment, make
sure that all application servers are running.

Open the Administrative Console in a Web browser at
http://<application_server_name>:9090/admin.

Navigate to Applications — Enterprise Applications.

Select the application link that runs the business process.

Select EJB Modules at the bottom of the page, under Related ltems.
Select the JAR file that holds the business process.

Select Business Processes at the very bottom of the page.

Check the box at the head of the business process templates list. It will select
all the processes; then click Stop. It stops all the business process templates
for the application.

WebSphere Business Integrator Server Foundation V5.1 Handbook

User ID: admin

w2ksrvemiHode
Servers
B Applications
Erterprize Applications

Install Mews Application
Resources

Enterprise Applications > CustomerEAR > EJB Modules > CustomerEJB.jar >

Business Processes

This panel is used to start and stop business processes, where a business process is the definition of a
weorkflovy using BPEL. Generally, configuration changes take effect after you restart the server, but this
panel updates both the configuration and the status of the business process on each running server

weithout having to restart the servers. Each server and cluster which has thiz business process installed
must be running.]

Security
Tatal: 1

Ervvironmert =
[# Fitk

System Administration 8] (F

. Preferences

Troubleshooting
Stop
¥ |Hame $ Valid from Time + Status -
I~ CustomerBilling 2003 January .01, 00:00:00 Started

Figure 7-60 Stopping a Business Process

9. Save the configuration for WebSphere.

Uninstalling the business process application

Uninstalling a business process application is the same as uninstalling any other
EAR file.

1.

Check the box next to the enterprise application.

2. Click Stop to stop the running application.
Important: This is a critical step; you will only be able to uninstall the
application if it is stopped. It will not stop unless all the process instances
are removed.

3. Once the application is stopped, check the box next to the enterprise

application you want to remove, then click Uninstall.

4. When the application is uninstalled, save the configuration for WebSphere.

5. Log off of the Administrative Console.

At this point, you are ready to redeploy your new or revised business process

application.

Chapter 7. Process choreographer: developing a simple process

201

202 WebSphere Business Integrator Server Foundation V5.1 Handbook

Process choreographer:
developing a complex
process

In this chapter, we show how you can create a process that utilizes more of the
advanced capabilities provided by WebSphere Process Choreographer. We use
a travel agency scenario and gradually extend the capability of our travel agent
by making use of additional functionality in our process. You will see how to
model complex interactions with partners, how to implement advanced
sequencing logic, detailed fault handling and more. Each section can be read
individually in order to understand how to use a specific capability, or the chapter
can be read as a whole to understand how to model and build a complex
process. As a prerequisite, it is recommended that you read Chapter 7, “Process
choreographer: developing a simple process” on page 135, which demonstrates
how to build a simple process. This will familiarize you with the development
environment; this knowledge is assumed throughout this chapter.

© Copyright IBM Corp. 2004. All rights reserved. 203

8.1 Introduction

This chapter demonstrates the more advanced features of WebSphere Process
Choreographer which you did not see in the previous chapter when creating a
basic process. WebSphere Process Choreographer is capable of modeling and
implementing complex business processes that contain features such as:

Alternate execution paths based upon business factors

Human Interaction

Advanced partner interactions, both synchronous and asynchronous
Error handling

Complex sequencing

Interruptible processes potentially lasting for days, weeks or months

yVyVYyVvYYVvYyYy

We show you how WebSphere Process Choreographer can be used to achieve
all of these advanced behaviors.

Our chosen scenario is that of a travel agency which is responsible for taking a
customer’s travel request and making the relevant arrangements. We begin with
a basic outline of the business model so that you can become familiar with the
overall requirements for the example business process. Each section of the
chapter then adds detail to a specific part of the process to extend the
functionality and to improve its robustness. Where possible, sections are created
separately in order to avoid prerequisites between them. This will allow you to
look at individual sections or combine them to gain more of the full process
function.

The overall intention of the business process is to model a fictional travel
agency’s booking process, which we call the Nicedourney process. The basic
capability of the process is shown in Figure 8-1, which illustrates the functionality
we want to achieve but includes none of the implementation details at this point.

MiceJourney

Receive Customer's Request

|

N

Book Cuskomer's Travel

]
-

&)

Reply To Customer

Figure 8-1 Basic function of the NicedJourney process

204 WebSphere Business Integrator Server Foundation V5.1 Handbook

The process must receive some input from the customer, book some travel
arrangements for them and then reply back to the customer. In this outline, the
Book Customer’s Travel activity is an Empty type activity; this is a useful way of
putting an activity into a process without knowing what its implementation will be.
By the end of this chapter, we will have replaced the empty Book Customer’s
Travel with many activities that will perform the required actions for booking the
customer’s travel.

The basic outline shown in Figure 8-2 provides an additional level of detail about
the process that we will create. It shows how the booking breaks down into
booking three separate reservations that together comprise a customer’s trip - a
car, a flight and a hotel. We will be implementing each part using WebSphere
Process Choreographer activities in our process.

MiceJourney

Receive Micelourney
I

sl
Validate
s \!/ RV
Reserve Flight Reserve Car Reserve Hotel

N

Eill Customer
|

e

Reply Micelourney

Figure 8-2 Basic Outline of the NiceJourney process implementation

8.2 Preparation

Before beginning to implement the individual parts of the complex process, you
need to perform some basic steps to prepare the workspace. These will create
the initial outline of the process and any one-time steps that are required to
configure the execution of the NiceJourney process.

If you want to skip the step-by-step instructions in this section, you can simply
import the completed outcome by using the Project Interchange feature
described in “Project Interchange archive import/export” on page 562. The steps
to import the solution are described in the following section.

Chapter 8. Process choreographer: developing a complex process 205

Note that if you do not import the completed preparation project, however, you
will need to follow each of the manual steps.

8.2.1 Importing the prepared NiceJourney

The following instructions will enable you to create a workspace with the basic
outline of NiceJourney already completed.

1. Ensure that you have installed the Project Interchange plug-in as described in
“Project Interchange archive import/export” on page 562.

2. Start WebSphere Studio Application Developer Integration Edition with a new
workspace location.

3. Choose File — Import... and select Project Interchange from the menu
system. If you do not see this option then the Project Interchange feature
needs to be installed.

4. Browse to the additional directory and select the
ComplexNiceJourneyPreparationSolution.ic.zip file from the
ComplexProcess subdirectory.

5. Select the Nicedourney box to import this project into your workspace.
6. Click Finish.

8.2.2 Creating the prepared NicedJourney step-by-step

206

If you want to see the steps required to create the basic outline of the
Nicedourney process then follow the procedure described in this section.

Creating the NicedJourney business process
1. Create a new service project called NicedJourney.

2. Create a new flow-based BPEL business process called NiceJourney in the
package com.nicejourney.

3. Open the Nicedourney.bpel editor if it is not already open and find the top
point of the process, labeled Nicedourney. Click this and then open the server
properties at the bottom of the BPEL Editor.

This is where you set properties relating to the process itself as opposed to
individual activities.

4. Check the Process is long running option.

WebSphere Business Integrator Server Foundation V5.1 Handbook

Configuring namespaces

WSDL and BPEL are both XML-based description languages. XML uses a
concept called namespaces to give a degree of organization to the many tags that
are used. A detailed understanding of XML namespaces is not a requirement for
using WebSphere Process Choreographer or WebSphere Studio Application
Developer Integration Edition.

Note: You can think of namespaces as a folder structure with each
namespace value being a different folder. Any given XML tag used in the
BPEL and WSDL documents can come from one of the namespaces.
Because a business process will likely consume many services, there will be
many XML documents and tags that are referenced directly or indirectly by the
process. The namespace structure helps simplify this. It is similar to Java
packaging.

One further point to be aware of is that although a namespace value looks like
a URL, it is not actually intended to point to a real location and is just a unique
identifier string.

The default namespaces are generated names of the form
http://www.example.com/processXXXXXX. We want to edit these for our process
because it is good practice to use your own naming systems. In some cases, the
automatically created names can be used for speed and convenience.

1. Open the Nicedourney.bpel editor if it is not already open and find the top
point of the process, labeled NiceJourney. Click this and then open the Server
properties at the bottom of the BPEL Editor.

This is where you set properties relating to the process itself as opposed to
individual activities.

2. Change the target namespace to http://nicejourney.com/NiceJourney.
Save and close the file.

3. Switch to the Package Explorer view and open NiceJourney.wsdl from the
NiceJourney/com/nicejourney folder. This will open the file in the WSDL
editor. Switch to the Graph view, rather than the Source code view, if it did not
open automatically.

4. At the bottom left of the editor is the Definitions section. Click the Edit
Namespaces... button.

Chapter 8. Process choreographer: developing a complex process 207

Tip: If you do not see the Edit Namespaces... button then you may have
selected one of the imports, types, services, bindings, port types or
messages. You may have to click an area of white space in the top section
to deselect all of these, at which point the Edit Namespaces... button
should appear.

5. Change the Target Namespace value to
http://nicejourney.com/Nicedourney and click OK.

6. In the top half of the editor, right-click the import for
NicedJourneylnterface.wsdl and click Delete. This removes the import for the
default namespace. This import will be correctly regenerated later with the
updated namespace when we update the process partner link.

7. Save and close the file. Ignore the errors that may appear in the Tasks view
at this point.

8. Now open the Nicedourneylnterface.wsdl file and click the Edit
Namespaces... button. Change the Target Namespace value, this time using
http://nicejourney.com/Nicedourney/interface to indicate that this is the
namespace for the process interface.

9. Optionally, delete the NiceJourney/com/example folder and its contents from
the Navigator view in the Resource perspective (this view allows you to work
with the underlying file system directly). This will remove the remaining
unwanted entries, produced by default from the old namespace values that
were set by creating a new business process.

Defining the NiceJourney Process Interface

Now we will define the interface for our process by specifying the operations and
messages that it will use. We will modify the default operation and messages to
create the interface we want before building the process to implement this
interface. This is a top-down development style where the interface is defined
before the implementation is done.

1. Ifitis not already open, open Nicedourneyinterface.wsdl in the WSDL editor.
2. Rename the default port type from ProcessPortType to Nicedourney.

3. Rename the default operation from InputOperation to
NiceJourneyOperation.

4. Rename the default message from InputMessage to NicedourneyInput.

5. Right-click the single part that belongs to the NiceJourneylnput message and
choose Delete to remove it.

6. Right-click the Nicedourneylnput message and select Add Child — part.
Name the part firstName and click OK.

208 WebSphere Business Integrator Server Foundation V5.1 Handbook

7. Add the following additional parts to NiceJourneylnput in the same way:

— lastName

— address

— city

— zipcode

— state

— cityFrom

— cityTo

— dateTimeDeparture
— dateTimeReturn
— cardType

— cardNumber

8. Select the zipcode part and change its type to xsd:int.

9. Create a new message by right-clicking in the messages section of the editor
and selecting Add Child — message from the pop-up menu. Name the
message NicedourneyQutput and click OK.

10.Add a part to the message called reservationID and set its type to xsd: Tong.

11.Expand NicedJourneyOperation and click the input node. Change the value
of the associated message from tns: InputMessage to tns:NicedourneyInput.

12.Do the same for the output node, this time choosing tns:NiceJourneyOutput.

13.Right-click the NiceJourneyOperation and choose Add Child — Faulit.
Name the fault NiceJourneyFault.

14.Right-click NicedJourneyFault and select Set Message....
15.Choose to Create a new message and name it NiceJourneyException.

16.Right-click the NiceJourneyException message and select Add Child —
part. Add the following parts, each of type xsd:string:

— firstName
— lastName
— reason

The completed definition of the interface is shown in Figure 8-3 on page 210.

Chapter 8. Process choreographer: developing a complex process 209

Part Types Messages

= MiceJourney = [Mice JourneyInpuk =l
B 8 hice JourneywOperation P firsthame {xsd:string)
[P lastMame (xsd:string)
<11 output P address (xsd:string)
[g@ MiceJourneyFault P city (xsd:string)

P zipcode (xsd:ink)
P state (xsd:string)
P cityFram (xsd:skring)
P cityTo (xsd:string) =
[P dateTimeDeparture (xsd:skring)
[P dateTimeReturn (xsd:string)
P cardType (xsd:string)
[P cardhumber (xsdistring)

Bl] MiceJourney Oukpuk
P reservatinonTl Mesd:lnnm

Figure 8-3 Defining the NicedJourney interface in NiceJourneylnteface.wsdl

-

17.Save and close the file.

Creating the process outline
1. Return to the NicedJourney.bpel editor, select the partner link PartnerLink and
rename it to Nicedourney.

2. Open the implementation properties for the partner link and click New to
create a new partner link type called NiceJourneyPLT. Make sure that the file
is set to NicedJourneyInterface.wsdl and that there is only one role.

Click Browse... to locate the Port Type File and locate
NiceJourney/com/nicejourney/NiceJourneylnterface.wsdl. Choose the
NiceJourney port type. This is the port type we just defined when creating
our interface. Click OK to accept this.

3. The completed Partner Link Type dialog should look as shown in Figure 8-4
on page 211. Click OK.

210 WebSphere Business Integrator Server Foundation V5.1 Handbook

Mew Partner Link Type

Create a new Partner Link Tvpe with the given properties.

File: MicelourneyInterface wsdl Mewa, .. | Browse...

Partner Link Tvpe: | MiceJourneyPLT

MNumber of Roles: * OneRole © Two Roles

First Rale: | MiceJourneyProcessRaole
Port Type File: MicelourneyInterface wsdl
Poark Type: |NiceJDurney

oK | Zancel |

Figure 8-4 Completed Partner Link Type

4. The partner link type we just created contains the role that our process
interface is to fulfill. On the NiceJourney partner link implementation
properties, click the <--> arrow to switch the NiceJourneyProcessRole to the
Process Role Name to the right of the editor. This indicates that the partner
link role is being played by the process, not by a partner that the process will
invoke.

5. Delete the default process variable named InputVariable.

6. Select the Receive activity, rename it to Receive Nicedourney and change
the implementation settings to:

— Partner Link: NiceJourney
— Operation: NicedourneyOperation

7. Click New... to the right of Request to create a new variable and name it
NicedourneylInput. Because you set the Partner Link and Operation already,
this variable will be created with the correct message type automatically.

8. Select the Reply activity, rename it to Reply Nicedourney and change the
implementation settings to:

— Partner Link: NiceJourney
— Operation: NicedourneyOperation

Chapter 8. Process choreographer: developing a complex process 211

9. Click New... to the right of Response to create a new variable and name it
NicedourneyOutput. Because you set the Partner Link and Operation already,
this variable will be created with the correct message type automatically.

10.Save the Nicedourney.bpel file. There should be no errors in the Tasks view
and one warning that the deployment code must be generated.

11.0Optionally, delete the NicedJourney/com/example folder and its contents from
the Navigator view in the Resource perspective (this view allows you to work
with the underlying file system directly). This will remove the remaining
unwanted entries that were created by default when you created a new
business process.

12.Switch back to the Business Integration perspective.

13.Add empty activities and create control links so that your process is as shown
in Figure 8-2 on page 205. Be sure to rename all the activities using the same
names we used.

Tip: You may find it easier to arrange items on the process if you make use
of the auto-arrange functionality. Right-click the process or the flow and
select whether to arrange or align the process or flow. Selecting the
automatic option causes the editor to re-arrange the flow as you work.

14.Save the Nicedourney.bpel process and close the editor.

At this point, the process skeleton is in place and is ready for you to begin
implementing one of its pieces.

8.3 Validation implementation

This part of the process is used to validate the input data that initiated the
process. We will check the content of some of the data and terminate the
process if any of the values are invalid.

We could create a more advanced validation that would look at the supplied
values and reply back to the calling partner requesting additional input instead of
terminating. However, this would depend upon the intelligence of the client to
receive our response asking for additional information. The client to our process
could easily be another computer system rather than a person operator. In many
cases, a process will be invoked automatically from elsewhere and we will not
want to reply when the data is invalid.

This also gives us an ideal opportunity to demonstrate one of the simplest activity
types, the Terminate activity. This is used to end a process abruptly when a

212 WebSphere Business Integrator Server Foundation V5.1 Handbook

failure scenario has occurred. In our case, the validation will determine that we
do not have the necessary information to complete the process and therefore we

will terminate.

Our implementation demonstrates the following activity types:

Sequence
Assign
Invoke

Java snippet
Terminate

vVvyyvyyvyy

In addition, it shows the following features of BPEL processes:

» Synchronous Invocation of a Java service
» Fault Handlers

We will start with the outline process shown in Figure 8-2 on page 205 and then
replace the empty Validate activity with the set of activities shown in Figure 8-5.

MiceJourney

Receive Micelourney
|
b
|
validate

ValidateException

= Jj
pren Yalidate Details Audit Yalidation Failure
<

1‘-‘/ —J
validate Details ‘alidation Failed

sk e

Reserve Car Reserve Flight Re:

l I
LU

Bill Cuskomer
|

e

Reply Micelourney

Figure 8-5 Completed Validation section of the NiceJourney process

Chapter 8. Process choreographer: developing a complex process

213

A completed solution for this section can also be imported into a fresh workspace
by using the Project Interchange Zip format to import
ComplexNiceJourneyProcessValidationSolution.ic.zip. See “Project Interchange
archive import/export” on page 562 for details about how to import this zip file.

8.3.1 Preparation

We show how to implement this part of the process in isolation. Therefore, you
do not need to have completed any of the other implementation sections to be
able to follow these steps.

However, as a minimum requirement, you do need to have the workspace
prepared with the basic outline of the process. You can do this by either following
the steps described in 8.2, “Preparation” on page 205 or by building upon your
solution from another section. If you follow the instructions in 8.2, “Preparation”
on page 205, you can choose to import a prepared solution and begin working on
this section immediately.

If you intend to build upon another section then you can continue to use the
same workspace that you used then. In this case, we suggest that you back up
your projects at this point by exporting the NicedJourney project as a Project
Interchange Zip file. For more information about Project Interchange Zips, see
“Project Interchange archive import/export” on page 562.

Once you have either prepared the workspace with the basic outline or taken
your own workspace from the previous section, you are ready to complete the
Validation implementation.

8.3.2 Sequence activity

The validation will be implemented by multiple steps to be performed
sequentially. We will not need any conditional flow logic to model this so we will
use a sequence activity to contain this set of steps. Although we could continue
to use a flow activity, with a simple control link between each step, a sequence is
simpler to work with in the editor because the flow logic is provided for us by the
structured activity. We start the implementation of the validation part of the
process by creating this sequence:

1. Open the Nicedourney.bpel process in the editor.
2. Right-click the Validate activity and select Change Type — Sequence.

This will create a sequence within which we will place the necessary activities to
complete the validation.

214 WebSphere Business Integrator Server Foundation V5.1 Handbook

8.3.3 Invoke - Java Class synchronous invocation

Invoke activities are used to invoke some kind of service that a process needs to
fulfill its requirements. The invoked service can be implemented in many different
ways and the process does not need to know the details of this. As long as the
service can be described using WSDL then we can invoke it from our process.
Section 7.2.6, “Preparing to develop the process” on page 153showed how to
use WebSphere Studio Application Developer Integration Edition to automatically
create a WSDL-described service from a Java program.

In this section, we used a slightly different technique for invoking a service that is
implemented as a Java program. In the previous chapter, a service interface was
generated for the Java program and then this service was added to the process.
This time, we will add the Java program directly to the process.

Note: When you add a Java class to the process editor directly, WebSphere
Studio Application Developer Integration Edition will automatically create the
service interface. This makes it very similar to creating the service interface

yourself manually and then adding the service to the process.

This can be useful when it does not make sense to expose the Java code as a
reusable service for other clients, perhaps because it is only used by other Java
applications running locally and does not need a full service interface.

The following steps describe how to create and configure the Invoke activity.

1. Add an Invoke activity inside the Validate sequence and rename it to Invoke
Validation Partner.

This activity will call the external partner to our process that will perform the
validation for us. The definition of external can mean anything from another
piece of Java code executing within the same server environment as our
process, to a service implemented outside our fictional NiceJourney
company.

2. Create a new Service project called ValidatorPartner that will contain the
validation implementation.

3. Import Validator.java and ValidatorException.java from the ComplexProcess
directory from the additional material into the folder
ValidatorPartner/com/nicejourney/partners.

These are the Java classes that implement the Validation service. These
could just as well be any implementation that is callable as a service
(describable using WSDL).

4. Drag and drop the Validator.java file from the services view onto the
NiceJourney.bpel editor canvas.

Chapter 8. Process choreographer: developing a complex process 215

Notice that a special type of partner link is created with the Java symbol used
as the icon. This indicates that this is a partner implemented as a Java
program. Select this partner link and note that the implementation is the Java
class, in this case Validator. Locate the generated WSDL definition of the
partner in
NiceJourney/com/nicejourney/comnicejourneypartnersValidatorNiceJourneyb
pel.wsdl.

5. Select the Invoke Validation Partner activity and go to the implementation
editor. Set the Partner Link to Validator and the operation to validate.

6. Create new Request and Response variables using the New... buttons to
ensure that the variable types are set automatically. Name them
ValidateDetailsRequest and ValidateDetailsResponse respectively.

Note: Although the validate method of the Java class is defined as returning
void, we found that it was necessary to supply a response variable.

When the Validator.java file was dropped onto the canvas, a new service
definition of the validate method was automatically created. The WSDL file
that describes this is found in the NiceJourney/com/nicejourney package and
is called comnicejourneypartnersValidatorNiceJourneybpel. wsdl.

Exploring this file will reveal that the generated operation is defined as having
both input and output. For this reason, we must supply a variable for both
request and response when configuring the Invoke activity. We will not use the
empty response variable.

The Invoke Validation Partner activity has now been successfully configured to
call the validate method of the Validator class, using the process variables
ValidateDetailsRequest and ValidateDetailsResponse.

8.3.4 Assign

Refer to 7.2.4, “Assign activity” on page 148 for additional instructions on how to
use the Assign activity.

We need to use an Assign activity to set the values on the
ValidateDetailsRequest variable before we invoke the Validator Java service.
This assign will take the relevant values that were passed in to the process in the
process request variable NiceJourneylnput. The following steps show how to
copy these values from NicedJourneylnput to ValidateDetailsRequest.

1. Add an Assign activity inside the Validate sequence, before the Validate
Details Invoke activity. Rename it to prep Validate Details.

216 WebSphere Business Integrator Server Foundation V5.1 Handbook

2. Open the implementation for the Assign and configure copies between the
following parts, using NiceJourneylnput in all cases as the From variable and
ValidateDetailsRequest as the To variable for each copy. See Figure 8-6 for
an example.

— firstName to firstName

— lastName to lastName

— address to address

— city to city

— zipcode to zipcode

— state to state

— cityFrom to from

— cityTo to to

— dateTimeDeparture to departDate
— dateTimeReturn to returnDate

= prep Yalidate Details e
Copy! I:l 1of 10 | = | | ew | | Delete |
Fram: | ariable or Part - | Ta: | Variable ar Part -
= ___] MiceJourneyInpuk -~ = WalidateDetailsRequest ”~
__] FirstMarme @ string =] walidaterequest
__] lastMame @ string __] firskharne : skring
__] address : string __] lastMame : string
__] city & string __] address : string

Figure 8-6 prep Validate Details Assign activity

8.3.5 Fault Handler

The Validate Details service that we invoke will fail when the required details are
not provided (if any of the values is an empty string, or if the zip code is
negative). In these cases, an exception will be thrown. We want to capture that
error in our business process and terminate the process.

We can see that an error can occur by either inspecting the implementation
class, or better still, by looking at the generated service interface for it. The
implementation of the com.nicejourney.partners.Validator class shows that it
throws a ValidateException if invalid data is passed to it. You can see this if you
look at the imported class.

The generated service definition of this Java class is in
NiceJourney/com/nicejourney/comnicejourneypartnersValidatorNiceJourney
bpel. wsdl and this interface is shown in Figure 8-7 on page 218. You can see the
ValidateException fault that is defined on the validate operation.

Chapter 8. Process choreographer: developing a complex process 217

Port Types Messages

= E validatorPortType [>] walidateRequest
= & validate [walidateResponse
[input (1 -] ValidateException
P detail {xsdl:validateException)

ogs = reason

Figure 8-7 Generated service interface to the Validator class

This is the fault that we want to handle in our process. The following steps show
how we add a Fault Handler that will catch this fault.

1. Open Nicedourney.bpel and click the icon for the sequence activity called
Validate.

2. Right-click the activity and click Add Fault Handler.

Tip: Instead of right-clicking, you can hover the pointer over the activity.
Doing this with any activity causes options to appear in a speech bubble
above the activity. With a sequence, one of the shortcut options is to add
the Fault Handler, as shown in Figure 8-8.

! 2 .
g
walidate | [add Fault Handler

Figure 8-8 Adding Fault Handler graphically

At this point, there is a Fault Handler associated with this activity. You can see
whether there is a Fault Handler associated with an activity by looking for the
orange exclamation mark at the top right of the activity icon.

Fault handlers do not appear on the canvas by default. You have to choose to
show the Fault Handler for any given activity. In addition, only one Fault
Handler is shown at a time. Opening one will close all other Fault Handlers.

A Fault Handler can be added at any level of the process. For example, we
could have specified a Fault Handler on the individual activity of the Invoke.
Instead, we added it to the Validate sequence because logically it is
associated with a failure at that level. You can add at whatever level is
appropriate to your design. When an exception occurs, the runtime will
search for a Fault Handler on the failing activity. If none is found then it will
look for a Fault Handler at the next containing level. If none is found here then

218 WebSphere Business Integrator Server Foundation V5.1 Handbook

the next level is tried. This continues until the final level of the process. If no
Fault Handler exists on the process as a whole then the process will end in
failure.

Itis important to try and keep Fault Handlers free from implementation details.
At the business process level, failures should be modeled as Reservation
failure rather than Failed to get DB2 database connection. A technical
failure should ideally be wrappered into a business level failure. This means
that a future change in database implementation, for example, would not
impact the business process.

. View the Fault Handler that was just created by right-clicking the activity and
choosing Show Fault Handler from the pop-up menu. This will open a small
box to the right of the sequence; this is the empty Fault Handler. As an
alternative, you can also double-click the small orange exclamation mark in
the top right corner of the activity.

Next, we need to add a catch to the Fault Handler so that we can begin to use
it to catch exception scenarios. It is possible to catch all faults or to catch
specific types of faults. In this situation, we want to catch the type of fault that
is thrown by the Validator service.

. Click the Fault Handler and then hover the pointer over it until the speech
bubble of options appears, then click the Add Catch icon, as shown in
Figure 8-9. Alternatively, right-click the Fault Handler and select Add Catch
from the pop-up menu.

validate

=

J
=

prep vWalidate Details

i
‘alidate Details

Figure 8-9 Adding a catch to a Fault Handler

5. Select the Catch and change the fault details to:

— Fault type: User-defined
Namespace:
http://nicejourney.com/comnicejourneypartnersValidatorNiceJourneybpel/

— Fault Name: ValidateException

Chapter 8. Process choreographer: developing a complex process 219

Tip: The Namespace and Fault Name values here are important and must
match those that define the service fault. When the Validator class was
dropped onto the canvas, the
comnicejourneypartnersValidatorNiceJourneybpel.wsdl file was created to
describe the Validator class as a service. The namespace value specified
in the fault here must match the namespace of that WSDL file. The Fault
Name specified here must also match. You can check these values by
looking at the WSDL file.

In general, a catch must specify the correct namespace and fault name in
order to catch the fault. A common error is to specify these incorrecily,
which will result in the catch not triggering. A catch all would normally
trigger instead, if one was specified (we have not created a catch all for this
Fault Handler).

6. Click New... to create a new Fault Variable and name it ValidateException.

The variable is created with a default message type. We need to change this
to indicate that it matches the type of the ValidateException fault, as defined
in the WSDL definition of the Validator class.

7. Select the newly created ValidateException variable on the process editor
and change the message properties by browsing to the file
NicedJourney/com/nicejourney/comnicejourneypartnersValidatorNiceJourney
bpel.wsdl and selecting the validateException message as shown in
Figure 8-10.

) validateException

peseripion File: comniceiourneypartner sy alidatoriceJournevbpel, wadl
Message — .
Server Message: |'u'a| akeException

Parts: “Jdetail : ValidateException

Figure 8-10 Specifying the message type for the ValidateException variable

8. Save the process file.

This completes the creation of the Fault Handler. However, there are no
actions inside the Fault Handler at the moment so we need to add some
behavior.

8.3.6 Java snippet

We want to provide some basic auditing of processes that fail validation. In order
to do this, we will make use of a Java snippet to simply write an informative

220 WebSphere Business Integrator Server Foundation V5.1 Handbook

message to the server console. In a production application, you would likely have
a much more sophisticated audit mechanism and not use the server standard
output. However, this simple method demonstrates the type of behavior that may
be modeled inside a Fault Handler.

We will use a Java snippet activity with some simple code to output the values of
the data that was passed to the process. This Java snippet could be a place
holder for a future upgrade where it would be replaced with a database write, for
example.

1. Add a new Java snippet inside the ValidateException Fault Handler that you
just created.

2. Rename itto Audit Validation Failure.
3. Add the following code for its implementation:

System.out.printin("Validate failed because of :" +

getValidateException().getDetail().getReason());

Note: This code first gets the ValidateException variable. It then gets the
part of this exception object called Detail which is a complex type.
Therefore, it is then necessary to get the Reason element of the complex

type.

You can work out the structure of the message by looking at the
ValidateException message definition in the WSDL that was automatically
generated to describe the Validator Java class. This file is:
NiceJourney/com/nicejourney/comnicejourneypartnersValidatorNice
Journeybpel.wsdl.

You can also compare the message type with the Java equivalent by
opening the ValidateException class that you imported earlier.

4. Save the file.

8.3.7 Terminate

The Terminate activity will halt execution immediately without triggering any
further fault handling or compensation in the process. We will use this to end our
process when invalid input is encountered.

1. Add a Terminate activity inside the Fault Handler and after the Java snippet.
Rename it to Validation Failed.

2. Atthis point, it will be obvious that the default structure for the Fault Handler is
a flow, not a sequence. Because of this, you will need to add a control link
between the Java snippet and the Terminate activity.

Chapter 8. Process choreographer: developing a complex process 221

Important: A Terminate activity is designed to stop processing but it does not
necessarily stop the entire process. There are different contexts in which the
activity might be used and these will influence the behavior. In this case, we
have used the Terminate inside a Fault Handler. Our process design means
that only this Fault Handler will be executing and no parallel activity is
happening in the process. A Terminate activity inside a Fault Handler stops all
activities that are currently active within it.

For further information about the different effects of a Terminate activity within
different contexts, see The terminate activity in the Help for WebSphere
Studio Application Developer Integration Edition.

At this point, the implementation of the Validation part of NiceJourney is complete
and should look like Figure 8-5 on page 213.

8.4 Reserve Flight implementation

This part of the process is used to reserve the flight in accordance with the
request that initiated the Nicedourney process. We are not so interested in the
implementation of the service so this will be a simple Java class that reports a
successful booking. The focus will be on how to model this interaction with a
service partner within the business process.

We will invoke the flight booking partner as a synchronous interaction where our
business process will block and wait for a reply. This can be compared with the
asynchronous style interaction with a partner that we modeled in 8.5, “Reserve
Car implementation” on page 226.

Our implementation demonstrates the following activity types:

» Sequence

» Assign

» Invoke

In addition, it will show the following feature of BPEL processes:

» Synchronous invocation of a Java service

We will start with the outline process shown in Figure 8-2 on page 205 and then

replace the empty Reserve Flight activity with the set of activities shown in
Figure 8-11 on page 223.

222 WebSphere Business Integrator Server Foundation V5.1 Handbook

-
]
Reserve Flight

¥
=

prep Flight Partner

o
Irvake Flight Partner

Figure 8-11 Completed Reserve Flight section of the NiceJourney process

A completed solution to this section can also be imported into a fresh workspace
by using the Project Interchange Zip format to import
ComplexNicedJourneyReserveFlightSolution.ic.zip. See “Project Interchange
archive import/export” on page 562 for details about how to import this zip file.

8.4.1 Preparation

We show how to implement this part of the process in isolation. Therefore, you
do not need to have completed any of the other implementation sections to be
able to follow these steps.

However, as a minimum requirement, you do need to have the workspace
prepared with the basic outline of the process. You can do this by either following
the steps described in 8.2, “Preparation” on page 205 or by building upon your
solution from another section. If you follow the instructions in 8.2, “Preparation”
on page 205, you can choose to import a prepared solution and begin working on
this section immediately.

If you intend to build upon another section then you can continue to use the
same workspace that you used then. In this case, we suggest that you back up
your projects at this point by exporting the NicedJourney project as a Project
Interchange Zip file. For more information about Project Interchange Zips, see
“Project Interchange archive import/export” on page 562.

Once you have either prepared the workspace with the basic outline, or taken
your own workspace from the previous section, you are ready to complete the
Reserve Flight implementation.

8.4.2 Sequence activity

The flight reservation will be implemented by multiple steps to be performed
sequentially. We will not need any conditional flow logic to model this so we will

Chapter 8. Process choreographer: developing a complex process 223

use a sequence activity to contain this set of steps. Although we could continue
to use a flow activity, with a simple control link between each step, a sequence is
simpler to work with in the editor because the flow logic is provided for us by the
structured activity. We start the implementation of the Reserve Flight part of the
process by creating this sequence:

1. Open the Nicedourney.bpel process in the editor.
2. Right-click the Reserve Flight activity and select Change Type —
Sequence.

This will create a sequence within which we will place the necessary activities to
complete the flight reservation.

8.4.3 Invoke - Java class synchronous invocation

224

For further information about how to add a Java class to a process and invoke it
as a service, refer to 8.3.3, “Invoke - Java Class synchronous invocation” on
page 215.

The following steps describe how to create and configure the Invoke activity.

1. Add an Invoke activity inside the Reserve Flight sequence and rename it to
Invoke Flight Partner.

This activity will call the external partner to our process that will perform the
flight booking for us. The definition of external can be anything from another
piece of Java code executing withing the same server environment as our
process to a service implemented outside our fictional NiceJourney company
on a non-Java platform.

2. Create a new Service project called FlightPartner that will contain the flight
booking implementation.

3. Import FlightBookingSystem.java and FlightReservation.java into the folder
FlightPartner/com/bookyourflight.

These are the Java classes that implements the Flight Booking service.
Instead of a Java class, the implementation could be any implementation that
is callable as a service (describable using WSDL).

4. Drag and drop the FlightBookingSystem.java file onto the NiceJourney.bpel
editor canvas.

Notice that a special type of partner link is created with the Java symbol used
as the icon to indicate that this is a partner implemented as a Java program.
Select this partner link and note that the implementation is a Java class.

5. Select the Invoke Flight Partner activity and go to the implementation
properties. Set the Partner Link to FlightBookingSystem and the operation
to makeReservation.

WebSphere Business Integrator Server Foundation V5.1 Handbook

6. Create new Request and Response variables using the New... buttons to
ensure that the variable types are set automatically. Name them
FlightBookingRequest and F1lightBookingResponse respectively.

7. Save the file.

Look at the Message properties for the two variables to see how they are
typed by the auto-generated WSDL file that defines the FlightBookingSystem
Java class.

Tip: We found that you need to close and re-open the Nicedourney.bpel editor
to see the correct values in the message properties part of the new variables.

The Invoke Flight Partner activity has now been successfully configured to call
the makeReservation method of the FlightBookingSystem class, using the
process variables FlightBookingRequest and FlightBookingResponse.

8.4.4 Assign

Refer to 7.2.4, “Assign activity” on page 148 for additional instructions on how to
use the Assign activity.

We need to use an Assign activity to set the values on the FlightBookingRequest
variable before we invoke the FlightBooking Java service. This assign will take
the relevant values that were passed in to the process in the process request
variable, Nicedourneylnput. The following steps show how to copy these values
from Nicedourneylnput to FlightBookingRequest.

1. Add an Assign activity inside the Reserve Flight sequence, before the Invoke
Flight Partner activity. Rename it to prep Flight Partner.

2. Open the implementation for the Assign and configure copies between the
following parts, using NicedJourneylnput in all cases as the From variable and
FlightBookingRequest as the To variable for each copy. See Figure 8-12 on
page 226 for an example.

cityFromto cityFrom

cityToto cityTo

dateTimeDeparture to dateTimeDeparture
dateTimeReturn to dateTimeReturn

vvyyy

Chapter 8. Process choreographer: developing a complex process 225

= prep Flight Partrer Zimiie
Copy: I:l 16 4 | : | | Mew | | Delets |
From: | Wariable or Part - | To: | ‘tariable or Part -
=1 g MiceJourneyInput s +-{ g MiceJourneyInput
-] MiceJourneyInput | +1-{ g MiceJourney Qutput
__'] firsthame : skring - g FlightBookingRequest
] lastiame : string -] makeReservationRequest
__'] address : skring | __] cityFrom ; skring
__'] city : string __] cCityTo ¢ skring
__'] zipcode :ink __] dateTimeleparture © skring
__'] state @ string __] dateTimeReturn : string
__'] citbwFrom : string w +-|_ FlightBookingResponse
Query: | |

Figure 8-12 prep Flight Partner Assign activity

At this point, the implementation of the Reserve Flight part of NiceJourney is
complete and should look like Figure 8-11 on page 223.

8.5 Reserve Car implementation

226

This section describes how we implemented the Reserve Car section of the
NiceJourney process.

In order to reserve a car, we will use a fictional brokerage company called
BookCar that takes a customer request and finds a suitable car. The BookCar
broker will then reply with a car booking that can be from either of two rental
companies. The interaction will be modeled as an asynchronous interaction with
a business partner that can reply in two possible ways.

In order to do this, we will use the Invoke activity to make a one-way call to the
brokerage company. We will then use a Pick activity to wait for one of the two
possible replies from the brokerage.

In addition, we will implement the BookCar broker using another BPEL process.
This allows us to show you how to invoke a business process from another
business process.

Our implementation demonstrates the following activity types:

Sequence
Invoke
Pick
Assign

vyvyyvyy

WebSphere Business Integrator Server Foundation V5.1 Handbook

In addition, it will show the following features of BPEL processes:

» Asynchronous invocation of another BPEL process

Correlation

vYvyy

Conditional links
Asynchronous interaction pattern

We will start with the outline process shown in Figure 8-2 on page 205 and then

replace the empty Reserve Car activity with the set of activities shown in

Figure 8-13.

-l
Reserve Car

)

=

prep Car Partner
el

Invoke Car Partner

Pick Car Rental Reply

WYZ Car Reply

J]
WYZ Car Received

ABC Car Reply

L)
ABC Car Received

Figure 8-13 Completed Reserve Car section of the NiceJourney process

In addition, the BookCar broker implementation is shown in Figure 8-14 on

page 228.

Chapter 8. Process choreographer: developing a complex process

227

BookiZar

W
Receive BookZar
|

b R4
= =
prep ABC Reply prep BYZ Reply
| |
N N
o o
AEC Car Reply WWE Car Reply

Figure 8-14 Completed BookCar process

A completed solution to this section can also be imported into a fresh workspace
by using the Project Interchange Zip format to import
ComplexNiceJourneyReserveCarSolution.ic.zip. See “Project Interchange
archive import/export” on page 562 for details about how to import this zip file.

8.5.1 Preparation

We show how to implement this part of the process in isolation. Therefore, you
do not need to have completed any of the other implementation sections to be
able to follow these steps.

However, as a minimum requirement, you do need to have the workspace
prepared with the basic outline of the process. You can do this either by following
the steps described in “Preparation” on page 205 or by building upon your
solution from another section. If you follow the Preparation instructions you can
choose to import a prepared solution and begin working on this section
immediately.

If you intend to build upon another section then you can continue to use the
same workspace that you used then. In this case, we suggest that you back up
your projects at this point by exporting the NiceJourney project as a Project
Interchange Zip file. For more information about Project Interchange Zips see ,
“Project Interchange archive import/export” on page 562.

Once you have either prepared the workspace with the basic outline, or taken
your own workspace from the previous section, you are ready to complete the
Reserve Car implementation.

228 WebSphere Business Integrator Server Foundation V5.1 Handbook

8.5.2 BPEL process partner

We will create the secondary process that simulates the function of a car rental
brokerage company. Once this process is complete then we can then invoke it
from the Nicedourney process in an asynchronous interaction.

Creating the BookCar process

1. Create a new BPEL flow-based process called BookCar in package
com.bookyourcar in the NiceJourney project.

Tip: We found that it was necessary to have the partner BPEL process in the
same service project as the client BPEL process. This meant that we had to
create BookCar.bpel in the same project as NiceJourney.bpel.

2. Open the BookCar.bpel editor if it is not already open and find the top point of
the process, labeled BookCar. Click this and then open the server properties
at the bottom of the BPEL Editor.

This is where you set properties relating to the process itself as opposed to
individual activities.

3. Check the process is long running option.
4. Save and close the process.

Configuring Namespaces

WebSphere Process Choreographer creates default namespaces to speed up
the development of a process and for convenience. In many cases it is worth
creating your own specific namespaces as this makes it easier to keep track of
them by using memorable, meaningful names. We will change the namespaces
to make them more relevant:

1. Open the BookCar.bpel editor if it is not already open and find the top point of
the process, labeled BookCar. Click this and then open the server properties
at the bottom of the BPEL Editor.

This is where you set properties relating to the process itself as opposed to
individual activities.

2. Change the target namespace to http://bookyourcar.com/BookCar. Save
and close the file.

3. Switch to the Package Explorer view and open BookCar.wsdl from the
Nicedourney/com/bookyourcar folder. This will open the file in the WSDL
editor. Switch to the Graph view, rather than the source code view, if it did not
open automatically.

Chapter 8. Process choreographer: developing a complex process 229

230

9.

In the bottom left of the editor is the Definitions section. Click the Edit
Namespaces... button.

Tip: If you do not see the Edit Namespaces... button then you may have
selected one of the imports, types, services, bindings, port types or
messages. You may have to click an area of whitespace in the top section
to deselect all of these, at which point the Edit Namespaces... button
should appear.

Change the Target Namespace value to http://bookyourcar.com/BookCar
and click OK.

In the top half of the editor, right-click the import for BookCarlInterface.wsdl
and click Delete. This removes the import for the default namespace. This
import will be correctly re-generated later with the updated namespace when
we update the process partner link.

. Save and close the file. Ignore the errors that may appear in the Tasks view at

this point.

Now open the BookCarlnterface.wsdl file and click the Edit Namespaces...
button in the same way. Change the Target Namespace value, this time using
http://bookyourcar.com/BookCar/interface to indicate that this is the
namespace for the process interface.

Save and close the file.

10.Optionally, delete the NicedJourney/com/example folder and its contents from

the Navigator view in the Resource perspective (this view allows you to work
with the underlying file system directly). This will remove the remaining
unwanted entries, produced by default from the old namespace values that
were set by creating a new business process.

Defining the BookCar interface

1

o & b

. Open BookCarlnterface.wsdl using the WSDL editor and switch to the Graph

view.

Change the name of the port type from ProcessPortType to BookCar.
Change the operation name from InputOperation to BookCarOperation.
Change the name of the message from InputMessage to BookCarRequest.

Remove the contents part of the BookCarRequest message by right-clicking it
and selecting Delete.

Right-click BookCarRequest to add new parts by clicking Add Child — part.
Add the following parts:

WebSphere Business Integrator Server Foundation V5.1 Handbook

— startDate
— endDate
— firstName
— lastName
— location

Right-click the input node of the BookCarOperation and select Set
Message.... Choose Select an existing message and select the
tns:BookCarRequest entry. Click Finish.

. Right-click the output node under the BookCarOperation and select Delete.

Note: There is no output operation because this process will be invoked in
a fire and forget style.

The result should look as shown in Figure 8-15. Save the file and close the
editor.

Pork Types Messages
= 1 BookCar = -] BookZarRequest
B 8 BookCarOperation P startDate (xsd:string)

P endDate {xsd:string)
[P firstMame {xsd:string)
[P lasthame (xsd:string)
P location {xsd:string)

Figure 8-15 Completed BookCar WSDL interface

Using the BookCar process interface

1.

Return to the BookCar.bpel editor and select the partner link PartnerLink and
rename it to BookCar.

Open the implementation properties for the partner link and click New ... to
create a new partner link type called BookCarPLT. Make sure that the File is
set to BookCarlnterface.wsdl and that there is only one role.

Type BookCarProcessRole for the name of the first role.

Click Browse... to locate the Port Type file and locate
NiceJourney/com/bookyourcar/BookCarlnterface.wsdl. Choose the BookCar
port type. This is the port type we just defined when creating our interface.
Click OK to accept this. Click OK again to complete the Partner Link Type
definition.

The partner link type we just created contains the role that our process
interface is to fulfill. On the BookCar partner link implementation properties,
click the <--> arrow to switch the BookCarProcessRole into the Process Role

Chapter 8. Process choreographer: developing a complex process 231

Name to the right of the editor. This indicates that the partner link role is being
played by the process, not by a partner that the process will invoke.

6. Delete the default process variable named InputVariable.

7. Select the Receive activity, rename it to Receive BookCar and change the
implementation settings to:

— Partner Link: BookCar
— Operation: BookCarOperation

8. Click New... to the right of Request to create a new variable and name it
BookCarInput. Because you set the Partner Link and Operation already this
variable will be created with the correct message type automatically.

9. Delete the Reply activity.

Because this process is invoked asynchronously with a fire-and-forget there
is no reply. Instead we will reply back to the calling NiceJourney process by
sending a message back to the instance of the Nicedourney process that
called us.

10.Save the BookCar.bpel file and verify that the Tasks view contains no errors
related to the BookCar process and only two warnings about the need to
generate deployment code.

Implementing the BookCar process

1. Add activities to the process, rename them and then link them together as
shown in Figure 8-16.

BookCar

Receive BookCar
|

b R4
= =
. prep ABC Rephy prep #¥Z Reply | =
I I
e e
uj‘/ J-J.'j
ABC Car Reply #YZ Car Reply

Figure 8-16 BookCar process activities

232 WebSphere Business Integrator Server Foundation V5.1 Handbook

Tip: You may find it easier to arrange items on the process if you make use
of the auto-arrange functionality. Right-click the process or the flow and
select whether to arrange or align the process or flow. Selecting the
automatic option causes the editor to re-arrange the flow as you work.

2. Save the file. You will see eight errors because the two invoke activities are
still waiting to have their input variables, operations, port type and partners
defined. The two warnings about generating deployment code from earlier will
still be in the Tasks view.

The initial preparation of the BookCar process is now complete but you will
notice that the ABC and XYZ Car Reply activities have no implementation yet.
These reply activities will be sending a response back to the NiceJourney
process that originally called them. However, the NiceJourney process is
currently not able to accept these replies so we cannot configure the BookCar to
send its replies yet. We first need to extend the NiceJourney process to accept
these replies. Then we can complete the BookCar process as described in
“Reply - BPEL Asynchronous invocation” on page 244.

8.5.3 Sequence activity

Our car reservation will be implemented by multiple steps to be performed
sequentially within the Nicedourney process. We will not need any conditional
flow logic to model this so we use a sequence activity to contain this set of steps.
Although we could continue to use a flow activity with a simple control link
between each step, a sequence is simpler to work with in the editor because the
flow logic is provided for us by the sequence structure. We start the
implementation of the Reserve Car part of the process by creating this sequence:

1. Open the NicedJourney.bpel process in the editor.
2. Right-click the Reserve Car empty activity and select Change Type —
Sequence.

This will create a sequence within which we will place the necessary activities to
complete the car reservation.

8.5.4 Invoke - BPEL Asynchronous invocation

Now that the second process, BookCar, is available to be called as a partner, we
will add a call to it from the NicedJourney process. We also need to set up points
in the NiceJourney process where a reply can be received from the BookCar
process.

Chapter 8. Process choreographer: developing a complex process 233

. Drag and drop the BookCar.bpel process onto the NicedJourney.bpel

canvas in the editor. This will create the special partner link to a BPEL
process.

Tip: When adding a BPEL partner link to your process the secondary
BPEL process must exist within the same project as the primary one.

Click the BookCar partner link and notice how the implementation is the
BookCar.bpel file and specifically the BookCar partner link.

Add an Invoke activity inside the Reserve Car sequence and name it Invoke
Car Partner.

Open the implementation properties for this activity and set the values to:

— Partner Link: BookCar
— Port Type: BookCar
— Operation: BookCarOperation

Tip: Instead of opening the implementation properties to set the partner
link, try hovering the pointer over the activity until the ‘speech bubble’
appears at the top right. Click the first icon to set the partner link as shown
in Figure 8-17 and you will then be able to connect the arrow that appears
to the BookCar partner link in the top right of the process editor. Note that
you will still have to set the operation manually in this case.

=

Reserve Car

. T w99 0

Invoke Car Partnels o partner Linkl

Figure 8-17 Setting a partner link using the graphical editor

5.

8.5.5 Assign

Click New... to the right of Request to create a new variable and name it
BookCarRequest. Because you set the Partner Link and Operation already this
variable will be created with the correct message type automatically.

Refer to “Assign activity” on page 148 for additional instructions on how to use
the Assign activity.

234 WebSphere Business Integrator Server Foundation V5.1 Handbook

1. Add an Assign activity in front of the Invoke Car Partner activity, inside the
Reserve Car sequence, and rename it to prep Car Partner. This will be used
to set the input variables for the Book Car Request.

2. Open the implementation for the Assign and configure five copies between
the following parts, using Nicedourneylnput as the ‘From’ variable and
BookCarRequest as the ‘To’ variable for each copy. See Figure 8-18 for an
example.

— firstName to firstName

— lastName to TastName

— cityToto location

— datetimeDeparture to startDate
— dateTimeReturn to endDate

= prep Car Partner — =

Descripkion %opy: l:l 1of 1 l:l
Implementation
B, From: | ‘ariable or Part - | To: | ‘ariable or Part -
Jain Behaviour = __] MiceJourneyInput ~ +- g MiceJourneyOutput A
Server __]F p =) BookCarRequest

A | -] BookCarRequest

__J address : string | _J startDate : string

__J city : skring _J endDate : string

] zipcode : int] Firstiame : string

__J skate : string ¥ _J lastMame : string

7] lacation : string
Query: |

Figure 8-18 Creating the Assign activity
3. Save the process and close the editor.

There should be no errors related to the NiceJourney process and one warning
about the deployment code. The eight errors for the BookCar process will still
exist and we will fix them soon.

8.5.6 Pick activity

The BookCar partner is invoked asynchronously and will subsequently respond
by sending a reply back to the NiceJourney process. It can reply in two possible
ways - an ‘ABC Car Reply’ or an ‘XYZ Car Reply’ which represent two different
types of car rental agreements that the BookCar broker could provide us. Our
Nicedourney process needs to receive either one of these two replies and then
pick how to proceed based upon which reply is received. We can model this
using the Pick activity.

A Pick activity will wait for one of a number of possible replies to occur and then

proceed based upon which one was received. This is exactly the behavior we
need.

Chapter 8. Process choreographer: developing a complex process 235

236

In addition to creating the Pick activity we need to create the extra receive
capability so that our process can be replied to from the BookCar process. We
will do this by adding the additional operations to our process interface. These
receive operations will be used to accept replies from BookCar.

Adding Reply operations to the NiceJourney interface

The BookCar process will reply to the NicedJourney process by invoking some
operation that is available on the NiceJourney process interface. We need to add
operations that allow BookCar to reply with either an ABC or an XYZ car rental.

1. Open Nicedourneylnterface.wsdl from the folder
NiceJourney/com/nicejourney.

2. Use the graphical WSDL editor to add the following items. The steps are
similar to those used when editing the BookCarlnterface WSDL in “Defining
the BookCar interface” on page 230.

Port Type: XYZCarRental with Operation: XYZCarRental
Port Type: ABCCarRental with Operation: ABCCarRental
Message: XYZCarRentalReply
Message: ABCCarRentalReply

3. Add an input node to the XYZCarRental and ABCCarRental operations.

4. Set the Message on each input node to either XYZCarRentalReply or
ABCCarRentalReply as appropriate.

5. Add the following parts to the XYZCarRentalReply message, ensuring that
you change the type from xsd:string where appropriate:

— firstName (xsd:string)
— lastName (xsd:string)
— price (xsd:long)

— carType (xsd:long)

6. Now add these parts to the ABCCarRentalReply message, again ensuring
that you change the type from xsd:string where appropriate:
— class (xsd:string)
— price (xsd:int)
— name1 (xsd:string)
— name2 (xsd:string)
— termsandconditions (xsd:string)

7. The final configuration should look as shown in Figure 8-19.

WebSphere Business Integrator Server Foundation V5.1 Handbook

Part Types Messages

A MiceJournesy [54] MiceJourneyInput
= i #¥ZCarRental [54] MiceJourneyoukput
B 8 wvZCarRental = 4] m¥ZCarRentalReply
W—L, [P firstMame {xsd:string)
= [ABCCarRental P lastMame {xsd:skring)
= 48 ABCCarRental P price {xsd:long)
[input P carType (xsd:long)

B 4] ABCCarFentalreply
[P class {xsd:string)
[P price {xsd:int)
[P namel {xsd:string)
[P namez {xsd:string)
[P termsandconditions (xsd:string)

Figure 8-19 Adding the car rental reply operations to the NiceJourney interface

Notice that there are two different messages, one for each reply type. You will
see these used shortly in the Pick activity.

8. Save the file and close it.

Adding the Pick activity to the NiceJourney process

Now that the process interface changes are complete we have two extra
operations that can be performed on our process. We will use these operations
to receive replies from the BookCar process. It will reply by invoking these one
way operations on our NiceJourney process. It could invoke either one of
XYZCarRental or ABCCarRental. A Pick activity will handle what to do if either
one of these operations is called.

1. Open Nicedourney.bpel in the BPEL Editor.

2. Add a Pick activity after the Invoke Car Partner activity and rename it to Pick
Car Rental Reply.

3. Right-click the Pick activity and choose Add OnMessage.

4. Select the OnMessage and set its Display Name to XYZ Car Reply on the
Description tab.

5. Add another OnMessage in the same way and name it ABC Car Reply.

6. Drag and drop Nicedourneyinterface.wsdl onto the NiceJourney.bpel
editor canvas. Select the XYZCarRental operation and click OK.

NicedJourneylnterface.wsdl is where we defined the operations so we need to
add it as a Partner Link.

7. Repeat the drag and drop but this time select ABCCarRental for the
operation.

Chapter 8. Process choreographer: developing a complex process 237

This creates additional partner links for the XYZCarRental and ABCCarRental
operations. We need these when configuring the Pick activity.

8. Select the XYZCarRental partner link and switch to the implementation tab.
Click the <--> arrow to switch the roles and indicate that this is an operation
available on the process, not an operation that the process will call.

9. Do the same for the ABCCarRental partner link

10.Select the XYZ Car Reply onMessage section of the Pick activity and set the
following implementation values:

— Partner Link: XYZCarRental
— Port Type: XYZCarRental
— Operation: XYZCarRental

11.Click New... to the right of Request to create a new variable and name it
XYZCarRentalReply. Because you set the Partner Link and Operation
already this variable will be created with the correct message type
automatically.

12.Select the ABC Car Reply onMessage section of the Pick activity and set
the following implementation values:

— Partner Link: ABCCarRental
— Port Type: ABCCarRental
— Operation: ABCCarRental

13.Click New... to the right of Request to create a new variable and name it
ABCCarRentalReply. Because you set the Partner Link and Operation
already this variable will be created with the correct message type
automatically.

14.Save the process.

You should see three errors regarding the NiceJourney process (and still
eight others regarding BookCar.bpel) and one warning to generate the
deployment code. The errors relate to correlation and we will fix them soon.

Customizing the Pick behavior

The OnMessage structures allow you to add behavior that you want to execute
upon receipt of a given incoming message. We will add different behavior to each
one to indicate what kind of car rental we received.

1. Add a Java snippet to the XYZ Car Reply onMessage block and rename it to
XYZ Car Received. Add the following code to its implementation:

System.out.printIn(*“XYZ Car Rental will be used”);

238 WebSphere Business Integrator Server Foundation V5.1 Handbook

2. Add another Java snippet, this time to the ABC Car Reply onMessage block
and rename it to ABC Car Received. Add the following code to its
implementation:

System.out.printIn(“ABC Car Rental will be used”);

The code in these Java snippets performs no business function but it allows
us to illustrate the effect of the Pick activity more clearly by printing a
message in the server console on receipt of one of the two Car Rental
messages.

In a real world scenario, it is likely that some additional business processing
of the results from the car rental would be required.

3. Save the NicedJourney.bpel file

8.5.7 Correlation sets

There are two types of messages that a process can receive at runtime:
1. Initiation messages

These messages start a new process. They are not passed to a process that
is already executing but instead start a new one.

2. Input messages

These messages are passed to a process instance. This means that they
provide input to an already executing process instance, at some point within
the process.

In our process, the initial Receive activity (hamed Receive NicedJourney) is an
initiation point. When the WebSphere Process Choreographer runtime receives a
message of the type defined on this activity (NicedJourneylnput) then it will initiate
an instance of the NiceJourney process.

In contrast to this Receive activity, the onMessage sections for the Pick activity
are designed to accept messages to the process while it is running. These are
points within the process where messages arrive that target a particular instance
of Nicedourney that is already running. There could be many NiceJourney
processes executing within the runtime - how do we match up an incoming
message with a specific active instance of NiceJourney?

The answer is to use correlation sets. A correlation set enables us to match
incoming messages with specific process instances. We want to correlate an
incoming XYZCarReply or ABCCarReply (from BookCar process) with the
particular NiceJourney instance that originally invoked the BookCar instance that
is replying. We need some piece of identifier information that will be used
between the two processes to provide the link.

Chapter 8. Process choreographer: developing a complex process 239

In our scenario we will use a correlation set that uses the customer name as the
unique identifier information. We will use both the first name and second name
parts to build our unique identifier. The correlation set will then be initialized when
the first request comes in to initiate a NicedJourney process. After this, the
correlation set will be passed between the NiceJourney and BookCar process
instances so that they can specifically communicate with each other.

Note: Using the customer name alone is not a perfect correlation set choice
because there is no guarantee of uniqueness. It is conceivable that two
customers could share the same name. A more sophisticated choice could
involve adding a timestamp value or some other unique identifier.

Configure the correlation set as follows:

1. Locate the CorrelationSet list on the Nicedourney.bpel canvas. Typically this
is to the left of the process. Click the + symbol to add a new correlation set.

2. Rename the new correlation set to CustomerName.
3. Click the Properties tab of the correlation set.

A correlation set can have multiple properties, each defined by either a
primitive type or as a type or element in an XSD file. In our example we want
a firstName part and a lastName part of primitive type xsd:string.

4. Click New... to create a new property named firstname and of built-in type
xsd:string. Refer to Figure 8-20 on page 241. Ignore the aliases section for
now - we will come back and fill in this information later.

Tip: Notice that the New property dialog asks you for a file name to create
the correlation property in. This always defaults to
<ProcessName>Interface.wsdl (NiceJourneylnterface.wsdl) in our case.
This is the default file that is used for partner links as well and we have
used it to define our processes interface and operations. However, if you
decide to use another filename then make sure that you alter the file name
here to match your chosen interface filename before creating the property.

5. Repeat the above step to create a property called Tastname, also of type
xsd:string.

240 WebSphere Business Integrator Server Foundation V5.1 Handbook

Create Message Property

Create a new property

File: MNicelourneyInterface wsdl Mew... | EBrowse...

Mame: | lastnarne

{+ Built-in Type

Tupe: |xsd:string -

" Type From File

Aliases Me, , | | |

Message Tvpe Park |

oK | Zancel

Figure 8-20 Adding properties to a correlation set

Now that we have the correlation set defined and we know the properties (a
firstname and a lastname) of the set, we need to consider how those
properties are set and where they are used. When operations are called on
the process (for example an XYZ or ABC car reply will call one of the
operations we defined in the WSDL earlier) they are called by passing a
message. What we must do is associate each correlation set property with
specific parts within each of the possible messages.

For example, the input to our process is a NicedJourneylnput message. It has
many parts but one of these is to be associated with the firstname property of
the correlation set. In the same way, another part of the NiceJourneylnput
message must be associated with the lastName part of the correlation set.

In the Reserve Car activity we then need to invoke the BookCar process and
at this point we need to pass this correlation set information. However, the
message type (and associated parts) that we call BookCar with are different
than we used to call Nicedourney. The message type is now a
BookCarRequest instead of a NicedJourneylnput. That means we need to
associate the correct parts of the BookCarRequest message with the
correlation properties as well.

Chapter 8. Process choreographer: developing a complex process 241

242

This is why there is the concept of aliases. They are used to indicate which
parts of a given message matches which property of the correlation set.
Different messages will have the correlation set property information held in
different parts.

6. Select the firsthame property and click Edit...
7. Click New... to create a new alias

8. Browse to NiceJourney/com/nicejourney/NiceJourneylnterface.wsdl and
select the NicedJourneylnput nessage. This indicates that we will find an
alias for the firstname property in the NiceJourneylnput message.

9. Select the firstName part of the message and click OK.
10.Click New... again to create another alias.

11.This time, browse to NiceJourney/com/bookyourcar/BookCarlinterface.wsdl
and this time select BookCarRequest. Select the firstName part and click
OK.

12.Click New... to create another alias and this time select the
XYZCarRentalReply message, found in file
Nicedourney/com/nicejourney/NiceJourneylinterface.wsdl

13.Select the firstName part and click OK.

14.Finally, create another alias using the namel part from the
ABCCarRentalReply message in
NiceJourney/com/nicejourney/NiceJourneylnterface.wsdl.

15.Click OK to complete editing the firstName message property.

16.Repeat steps 6 through 15 but using the appropriate parts for the lasthame
correlation set property instead of firstName, taking them from the same
messages, in the same WSDL files that the firstname parts were obtained
from.

17.You should end up with a correlation set called CustomerName with two
properties, each with four aliases taken from the messages
Nicedourneylnput, BookCarRequest, XYZCarRentalReply and
ABCCarRentalReply.

18.Save the process. There should be one extra item in the Tasks view - an
information entry to tell us that our correlation set is not used at present which
causes a validation failure.

Now that all the aliases are in place we need to specify on the relevant
individual activites that they need to use our correlation set.

19.Select the first activity, Receive NiceJourney and locate the Correlation
settings tab.

20.Click Add to add a new correlation to this activity.

WebSphere Business Integrator Server Foundation V5.1 Handbook

Tip: When you have added the correlation it can appear as if the values
are permanently set and that they have been chosen correctly by the
product. Be wary that this is not the case. In this example there is only one
correlation set so we have been presented with the correct one but this
would often not be the case. Also note that each value can be changed by
selecting the item and opening the drop-down selection box.

21.Set the direction to Receive, Initiation to Yes and Correlation Set to
CustomerName. You can change values by clicking them and then using the
drop-down box.

Here we are indicating that on the receive direction (the only direction for a
Receive activity, unlike an invoke) this correlation set should be initiated. The
correlation set properties will then remain set for the lifetime of the process
(they cannot be changed). They will be set from the parts of the
NiceJourneyInput message that is received by this activity, in accordance
with the aliases we defined for the correlation set properties.

22.Now select the activity Invoke Car Partner.

23.0n the correlation tab, click Add to add the correlation set and check that it is
set to:

— Direction: Send

— Initiation: No

— Correlation Set: CustomerName

We are not initiating the correlation set this time, instead we are using the

values that we initiated when the process was started by a NiceJourneylnput
message.

24.Select the XYZ Car Reply onMessage section for the Pick activity and add a
new correlation with these properties:

— Direction: Receive
— Initiation: No
— Correlation Set: CustomerName

25.Repeat the previous step for the ABC Car Reply onMessage section of the
Pick activity.

26.Save the process.

There should be no errors associated with the NiceJourney process and only
one warning to generate the deploy code. The BookCar process still has eight
errors that we will now resolve.

27.Close the file.

Chapter 8. Process choreographer: developing a complex process 243

8.5.8 Reply - BPEL Asynchronous invocation

We need to return to the BookCar process and complete its implementation now
that the Nicedourney process is ready to accept replies through its Pick activity.

1. Open the BookCar.bpel file in the BPEL Editor

2. Drag and drop the Nicedourney.bpel file onto the canvas to create a partner
link to the Nicedourney process.

3. Select the partner link, which defaulted to being called NiceJourney, and
rename it to ABCCarReply.

4. Select its implementation tab and change the partner link to ABCCarRental.

5. Drag and drop the Nicedourney.bpel file onto the BookCar canvas once
again.

6. Select the partner link which again defaulted to being called NiceJourney and
rename it XYZCarReply.

7. Set its implementation partner link value to XYZCarRental.

We now have partner links back to the NicedJourney process that invoke its
two receive points that the pick chooses between. Next we must associate
the invoke activities with the correct partner link.

8. Select the ABC Car Reply Invoke activity and change its implementation
values to:

— Partner Link: ABCCarReply
— Port Type: ABCCarRental
— Operation: ABCCarRental

9. Click New... to the right of Request to create a new variable and name it
ABCCarReply. Because you set the Partner Link and Operation already this
variable will be created with the correct message type automatically.

10.Select the XYZ Car Reply Invoke activity and change its implementation
values to:

— Partner Link: XYZCarReply
— Port Type: XYZCarRental
— Operation: XYZCarRental

11.Click New... to the right of Request to create a new variable and name it
XYZCarReply. Because you set the Partner Link and Operation already this
variable will be created with the correct message type automatically.

12.Save the file.

There should be no errors in the Tasks view at this point and only two
warnings that we still haven’t generated any deploy code.

244 WebSphere Business Integrator Server Foundation V5.1 Handbook

8.5.9 Assign

We want to provide some output data from the broker, BookCar. Again we are

not too concerned with the implementation business logic and are focussing
instead on the integration logic. Therefore, we will use simple assigns to
determine the output data from the brokerage. In reality there would likely be
some kind of complex algorithm for determining an appropriate response.

Refer to “Assign activity” on page 148 for additional instructions on how to use
the Assign activity.

1. Select the prep ABC Reply Assign activity and configure it to copy the
following parts between the BookCarlnput and ABCCarReply variables

firstName and name1
lastName and name2

2. In addition, use the Assign implementation editor to set these fixed values to

variables in ABCCarReply. See Figure 8-21 on page 246 for an example.

From: Fixed Value
Type: xsd:string
Value: Driver must be over 25
To: termsandconditions
From: Fixed Value
Type: xsd:string
Value: B

To: class

From: Fixed Value
Type: xsd:int

Value: 2000

To: price

Chapter 8. Process choreographer: developing a complex process

245

= prep ABC Reply e |

Copy: 3ofs | = | | Mew | | Delete |
From; | Fixed value - | To: | Wariable ar Part -
Twpe: |xsd:string - | +- g BookCarInput e

I) BBCCarReply
-] ABCCarRentalreply
] class ¢ skring
__] price & ink
__] namel : string
__] namez : string

] termsandconditions ¢ string
+ 3 YW FarRenly

Driver musk be over 25

b

Figure 8-21 Assigning fixed values to BookCar reply parts

3. Select the prep XYZ Reply Assign activity and configure it to copy the
following parts between the BookCarlnput and XYZCarReply variables.
— firstName and firstName
— lastName and lastName

4. In addition, use the Assign implementation editor to set these fixed values to
variables in ABCCarReply. See Figure 8-21 for an example.

— From: Fixed Value
Type: xsd:Tlong
Value: 2
To: carType

— From: Fixed Value
Type: xsd:Tlong
Value: 500
To: price

5. Save and close the file.

8.5.10 Conditional link

Although the process is now free from errors, the BookCar process is not quite
complete. We want this process to have some kind of intelligence and to choose
which of the two car type replies to send, based upon the input that this
simulated brokerage received.

In this chapter, we are focused on the choreography of individual services, not
the implementation of each service itself. Although BookCar is a special type of

246 WebSphere Business Integrator Server Foundation V5.1 Handbook

service in that it is a process itself, we still do not need to put much functionality
into it in order to demonstrate the points. Therefore, we will demonstrate the use
of a conditional link to hold some simple business logic only.

1. Open the BookCar.bpel process in the BPEL Editor.

2. Select the control link that joins the Receive BookCar Receive activity and the
prep ABC Reply Assign activity.

3. Switch to the Condition tab for this activity and choose Visual Expression
for the Value. This will open the Visual Expression editor as shown in
Figure 8-22.

Tip: Visual Expression is a way of visually composing expressions for
comparing variables and values, without writing Java code. If you like, you
can optionally convert your visual expression to its pure Java
representation if you like. To do this, first build the visual expression and
then change the Value selection to Expression instead of Visual
Expression.

alue: Wisual Expressio

i3 Condition...

A condition is defined using variable names and operators {e.g.
myWariable,x = 45), To start vour own expression click on
Condition....

Figure 8-22 The Visual Expression editor

4. Click the Condition ... and you will see the list of variables to the right of the
expression editor. Expand the BookCarlnput and click the location part.
This will start the expression with the phrase BookCarlnput.location.

5. Click the Method or Field option to specify a method and click the
equalslgnoreCase(anotherString) method as shown in Figure 8-23 on
page 248. This will allow us to make a case-insensitive comparison to a string
value.

Chapter 8. Process choreographer: developing a complex process 247

Yalue: Visual Expression - |

3 BookCar Input. location. SontentEqualsish) — I
sequalsIgnore_aselanotherstring) :
compareTofanotherString) 'E
compareTolo) s

compareTolgnoreCaselstr)
regioniatches{toffset, other, ooffset
regioniatches{ignoreCase, toffset, o 4

£ >

Figure 8-23 Creating the Visual Expression

6.

Note: You may be wondering why we did not choose the ‘==" operator and
instead selected the equalsignoreCase(anotherString) method. This is
because the comparison will be made in Java. Java uses the ‘==" operator
to compare two objects to see if they are the same. Two strings that have
the same content may not be the same object - they are just two objects
with the same properties. In this case a ‘==" comparison will return false.
What we want to do is compare the string contents, not the objects
themselves. Therefore, we use the equalsignoreCase(anotherString)
method instead of ‘==" to check this.

At this point you will see that the expression is
BookCarlInput.location.equalsIgnoreCase(anotherString)

The cursor (blue arrow pointing down) will be positioned after this string.
However, we want to enter a value for ‘anotherString’.

Click the anotherString text and this will open up the list of variables and
other items to choose from on the right. We are going to hardcode our
comparison string as this is a simple piece of demonstration business logic.
You could however compare against the contents of another variable for
example.

Click String at the bottom of the right hand list and enter New York into the
box as shown in Figure 8-24. Select Return.

+

+

J ABCCarReply : ABCCarRentalReply
J ¥NZCarReply | ¥¥VZCarRentalReply
T3 Skring
s Characker
3 Mumber Type a skring:

o Lrue Mew York|

U False

Figure 8-24 Setting the value for the String comparison

248 WebSphere Business Integrator Server Foundation V5.1 Handbook

9. This completes the Visual Condition which should now read:
BookCarInput.location.equalsIgnoreCase("New York")

A control link will only be followed if its condition evaluates to true. This Visual
Expression will ensure that this link is only followed when the car booking
location is New York. This means that our broker will only return an ABC Car
Reply for New York rentals.

We want to complete the business logic by saying that in all other cases the
broker should send an XYZ Car Reply. We can do this by saying that the
alternative control link path has a condition of ‘otherwise’. This means that if
all other control link options evaluate to false then this link should be followed.
So if our check for a location of New York results in false then instead we
follow the alternative link to an XYZ Car Reply.

10.Select the control link between Receive BookCar and prep XYZ Reply
activities. Set the condition value to Otherwise.

11.Save the process.

The Book Car part of the process has now been completed. We modeled this as
a partnership with a brokerage company that asynchronously finds a suitable car
for our travel requirements and then sends it back to us some time later.

We used another BPEL process to provide an implementation of the brokerage
and demonstrated how to invoke it from the first process. We used a one way fire
and forget to invoke the second process then used a Pick activity to wait for
possible responses. In the second process we chose which type of reply to send
and then called back to the first process so that the Pick activity could proceed.

At this point the implementation of the Reserve Car part of NiceJourney is
complete and should look like Figure 8-13 on page 227. The BookCar process
should be as shown in Figure 8-14 on page 228.

8.6 Reserve Hotel implementation

This section describes how we implemented the Reserve Hotel section of the
Nicedourney process.

In order to reserve a hotel we will use a manual step that requires a real person
to organise the hotel arrangement. This is a powerful option provided by
WebSphere Process Choreographer and there is extensive support for
incorporating human interactions into a process. We will show how a team of
agents could complete the hotel bookings as they arise and provide the details of
the reservation back to the NiceJourney process in order that processing may
continue.

Chapter 8. Process choreographer: developing a complex process 249

In order to do this, we will use the Staff activity to create a work item that can be
claimed by an agent. The agent can make the hotel booking, probably by calling
or faxing a suitable hotel, and then complete the work item and pass the
reservation details back to the process.

We will also make use of the Transformer activity which allows us to do more
advanced message mappings and variable manipulation that is possible with an
assign.

Our implementation demonstrates the following activity types:

» Sequence
» Staff
» Transformer

We will start with the outline process shown in Figure 8-2 on page 205 and then
replace the empty Reserve Car activity with the set of activities shown in
Figure 8-25.

-
|

Reserve Hotel

4
-
Map Custamer Mame

’]

T
Manual Hotel Booking

Figure 8-25 Completed Reserve Hotel section of the NiceJourney process

8.6.1 Preparation

As with the other implementations, we again show how to implement this part of
the process in isolation. Therefore, you do not need to have completed any of the
other implementation sections to be able to follow these steps.

However, as a minimum requirement you do need to have the workspace
prepared with the basic outline of the process. You can do this by either following
the steps described in “Preparation” on page 205 or by building upon your
solution from another section. If you follow the Preparation instructions you can
choose to import a prepared solution and begin working on this section
immediately.

If you intend to build upon another section then you can continue to use the
same workspace that you used then. In this case, we suggest that you back up

250 WebSphere Business Integrator Server Foundation V5.1 Handbook

your projects at this point by exporting the NicedJourney project as a Project
Interchange Zip file. For more information about Project Interchange Zips see,
“Project Interchange archive import/export” on page 562.

Once you have either prepared the workspace with the basic outline, or taken
your own workspace from the previous section, you are ready to complete the
Reserve Hotel implementation.

8.6.2 Sequence activity

The hotel reservation will be implemented by multiple steps to be performed
sequentially. We will not need any conditional flow logic to model this so we will
use a sequence activity to contain this set of steps. Although we could continue
to use a flow activity, with a simple control link between each step, a sequence is
simpler to work with in the editor because the flow logic is provided for us by the
structured activity. We start the implementation of the Reserve Hotel part of the
process by creating this sequence:

1. Open the NiceJourney.bpel process in the editor.
2. Right-click the Reserve Hotel activity and select Change Type — Sequence.
3. Save the process.

This will create a sequence within which we will place the necessary activities to
complete the hotel reservation.

8.6.3 Staff activity

The Staff activity is used to represent the point in the process at which human
involvement is required to proceed. The Staff activity is defined by an operation
that has associated input and output messages. This operation and these
messages are defined in a WSDL file, typically on the interface to the process.

The process is then defined to have two variables with message types that
match the input and output for the operation associated with the Staff activity. In
addition, during development the persons who are allowed to perform the staff
activities are defined in an abstract manner. At this point, although the developer
indicates what kind of person can perform the activity, they do not know about
the technology that will be used to implment the security enforcement.

At runtime, when the Staff activity is reached, the WebSphere Process
Choreographer runtime engine creates a work item that can be claimed by any
staff who are potential owners of the work item. The runtime is pre-configured
with the necessary security registry implementation. The WebSphere Process
Choreographer container maps the abstract security role that the developer
specified to a real query against the security registry implementation. This

Chapter 8. Process choreographer: developing a complex process 251

252

mechanism allows the runtime to determine who is a potential owner and then
enforces this policy.

Once the work item is claimed by an eligible operator, the request variable and its
contents are passed to that person who then uses this information to decide how
to populate the response variable. The person enters this data and then
completes the work item, passing this response variable and its contents back to
the process which can then continue execution.

The most likely method of interaction between a person and their work items will
be through the Process Web Client. This supplied application enables a person
to log in and then interact with running processes in accordance with the
configured security. For example, a person qualified to be a hotel booking
operator would log in and see all processes that needed a hotel booking to be
completed. They could then claim one of these processes which would mark that
processes instance as claimed. It would then be unavailable for claim by other
qualified hotel booking operators. Once claimed, the person then has
responsibility to complete the Staff activity by providing the data to pass back to
the process instance to allow execution to continue.

In our case, we will provide the hotel booking operators with the customer name,
location required, checkin and checkout dates. The hotel operator would then
claim this activity and make a manual hotel booking based upon this information.
The reply from our Staff activity will be defined as requiring a reservation ID and
a price so the hotel booking operator must provide these values and then
complete the Staff activity. The operation that defines this request and response
(input and output) must first be added to the Nicedourney process.

Defining the HotelBooking operation

First we must extend the process interface to create the operation that will be

used by the Staff activity. This operation defines the input and output messages
that will be used by the Staff activity. We will define the operation and messages
in the same interface WSDL that we have used for the process interface already.

1. Open Nicedourneylnterface.wsdl from folder NiceJourney/com/nicejourney in
the WSDL editor.

Add a new Port Type called StaffHotelReservation.

Add an operation to it called StaffHotelReservationOperation.
Add an input node to this operation.

Add an output node to this operation.

Right-click the input node and choose Set Message...

N o o~ b

Select the Create a new message option and name it StaffHotelRequest.

WebSphere Business Integrator Server Foundation V5.1 Handbook

8. Click Finish.

9. Right-click the output node and choose Set Message....

10.Select the Create a new message option and name it StaffHotelResponse.
11.Click Finish.

12.Add the following parts to the StaffHotelRequest message (each should be of
type xsd:string):

— location

— checkinDate
— checkoutDate
— customerName

13.Add the following parts to the StaffHotelResponse message:

— reservationID
— price

14.Change the type of both parts from xsd:string to xsd:long.
15.The completed interface changes should look as shown in Figure 8-26.

Pork Types Messages
[Micelourney [54] MicelourneyInput
= B StaffHotelReservation [54] NiceJourneyQukput
[l & StaffHotelReservationOperation El] StaffHotelRequest
24 input P location (xsdistring)

] oukput P checkinDate (xsd:string)
P checkoutDate (xsd:string)
P customerhame (xsdistring)
=l] StaffHotelResponse
P reservationID (xsd:long)

P price (xsd:long)

Figure 8-26 Adding StaffHotelReservation to the NiceJourneyinterface.wsdl

16.Save and close the NiceJourneylInterface.wsdl file.

Adding the Staff activity
1. Open Nicedourney.bpel in the BPEL Editor.

2. Add a Staff activity inside the Reserve Hotel sequence and rename it to
Manual Hotel Booking.

Chapter 8. Process choreographer: developing a complex process 253

3. Open the implementation properties and click Browse... to locate the
Nicedourneylinterface.wsdl file in folder NiceJourney/com/nicejourney.
Choose the StaffHotelReservation port type and click OK.

Tip: If the StaffHotelReservation port type does not appear then you may
find that closing the NicedJourney.bpel file and then re-opening it will refresh
the list of Port Types.

4. The Port Type and Operation values should automaticallly be set. Check that
they are StaffHotelReservation and StaffHotelReservationOperation.

5. Click New... to the right of Request to create a new variable and name it
StaffHotelRequest. Because you set the Partner Link and Operation already
this variable will be created with the correct message type automatically.

6. Click New... to the right of Response to create a new variable and name it
StaffHotelResponse. Because you set the Partner Link and Operation
already this variable will be created with the correct message type
automatically.

7. Save the process.

At this point there should be no errors in the workspace and one warning to
remind you to generate the deployment code.

8.6.4 Transformer Service activity

You may have noticed that the interface to the Staff activity defined the
StaffHotelRequest message and that this message has a part called
customerName. This part needs to be populated with the customer’s full name,
in other words a concatenation of the first and seconds names.

In the NiceJourney process we have created a variable called StaffHotelRequest
that we will pass as the request variable for the Staff activity. This variable must
be populated with the correct data. The customer’s name can be taken from the
Nicedourneylnput variable but this has it split across two parts - firstName and
lastName.

An Assign activity is frequently used for copying the value of variable parts
between variables. In this case we want to copy two parts of one message into
one part of another message. This requires a more advanced message
transformation.

We can use a Transformer service to perform such advanced message
manipulation. A Transformer service is also a re-usable service that we describe
in WSDL and it can therefore be used in multiple places within a process or even

254 WebSphere Business Integrator Server Foundation V5.1 Handbook

in another process. You should be careful to use Assign if possible however
because it is likely to perform better than a Transformer.

A Transformer also allows you to do much more complicated mappings, for
example combining multiple parts from multiple messages. Transformers use
XPath and eXtensible Style Language (XSL) transforms. Because the data
variables are defined by XML documents, XSL transformations allow you to
make any conversion between data variables

We show how to create a new Transformer service and place a transformer
activity in the process to call it:

1. Add a Transformer activity just before the Manual Hotel Booking Staff activity,
inside the Reserve Hotel sequence, and rename it to Map Customer Name.

2. Switch to the implementation tab for the transformer activity and select the
following values from the drop-down selection boxes:

— Request: NicedourneyInput
— Response: StaffHotelRequest

3. Now that you have specified the input and output messages, note that the
New... button becomes enabled. Click this to launch the new transform
wizard, which will automatically know that you want to map between parts of
NiceJourneylnput, in order to set the parts fo StaffHotelRequest. Complete
the values as shown in Figure 8-27 on page 256. Click OK when you have
completed the dialog.

Chapter 8. Process choreographer: developing a complex process 255

Create a new transform

Creake a new mapping service to assign one variable to another,

Meva Partmer Link name

| MapCustornerMarme

TransForm File name

| MapiCustomertameTransformer

Target namespace

| http: finicejourney . com Transformer

Part Type name

| mapCustomerMame

Operation name

| mapCustornerMarme

oK, | Cancel

Figure 8-27 Creating a new transform

4. The new transformer file, MapCustomerNameTransformer.wsdl is opened in
the transformer editor, a special editor for WSDL files that describe transform
services.

Take a look around the editor. See on the left hand side is the input message,
in this case Nicedourneylnput, and on the right hand side is the output, in this
case StaffHotelRequest. It is possible to add additional input messages that
can be aggregated together to create the output message. You could add
more input messages by using the Transformer Editor — Add Input
Message option from the menu system. However, all of the input information
that we need in this case can be found in the single message,
Nicedourneylnput.

5. Drag the firstName part of NicedJourneylnput from the left of the editor and
drop it onto the customerName part of StaffHotelRequest.

256 WebSphere Business Integrator Server Foundation V5.1 Handbook

*iceJourney.bpel 5 MapCustomerMameTransformer wsdl - X

4 | Input Message w* | output Message

P4 o 1 4 B«

= r message StaffHotelRequest
part location : string

part checkinDate @ string
part checkoutDate | string
park custornerMarne : skring

F p a
part lastMame : string
part address | string
part city : string

part zipcode @ ink

[P part state : string

LR L

Figure 8-28 Creating the mapCustomerName transform

6. The editor will show the mapping in the bottom section as shown in
Figure 8-29. Notice that the output message is on the left in this section with
the input in the middle. On the right is an XPath Expression to show how the
firstName part is located within the input message using XPath.

b—d Crverviem ! M| -

Cubput Message | Input Message | ¥Path Expression

—-[] message StaffHotelReq... 1 message MiceJourneyInput [MicelourneyInput
[P part customerMame ... P part firstMame : string IMiceJourneyInputifirstMame

Figure 8-29 Basic XPath expression

7. Perform similar drag and drops to map:
— Nicedourneylnput.city to StaffHotelRequest.location
— Nicedourneylnput.dateTimeDeparture to StaffHotelRequest.checkinDate
— Nicedourneylnput.dateTimeReturn to StaffHotelRequest.checkoutDate

8. At this point we still need to combine the NiceJourneyRequest.lastName part
with the first name. Drag and Drop the lastName part onto
StaffHotelRequest.customerName. Now, both first and last names are
being dropped onto customerName.

You will notice that the XPath Expression for the
StaffHotelRequest.customerName is now empty. This is because the editor
can no longer assume a simple copy of the data value between the input and
output parts. How should the two input parts provided be combined to create
this output part? We need to provide this information.

9. Click in the empty XPath Expression box for the part customerName until
you see the ... button appear as shown in Figure 8-30 on page 258. You may
have to click at least twice.

Chapter 8. Process choreographer: developing a complex process 257

Cutput Message | Input Message | ¥Path Expression
=41 message StaffHotelRequest] message MiceJourneyInput IMice Journey Input
P part location @ string P part city : string Ihice Journey Input foity
P part checkinDate : string P part dateTimeDeparture : string IMiceJourneyInputfdateTimeDeparture
P part checkoutDate : string P part dateTimeReturn : string IMiceJourneyInputfdateTimeReturn
P part customerMame : string P part firstName : string, part lasthMame : string | _|

Figure 8-30 Customizing the MapCustomerName transformer

10.Click the ... button to open the details of the transformation.

Note that you can click any of the values in the Input Message or XPath
Expression columns of the editor and then alter their settings from here.

You will see the transformation details and notice that the default action has
been to perform a join between the two input variables. We want to pass the
customer name in the format “lastname, firsthame”. This means we need to
join them with a “, “ delimeter.

11.Click /NiceJourneylnput/lastName and then click the up arrow to move the
lastName to the beginning.

12.Click the Delimeter field to the right of /NiceJourneylnput/lastName and
enter “, “ without the quotation marks. Then click away from the entry field.
The results are shown in Figure 8-31. Notice that there is an Example which

shows how the two parts are to be joined, using their XPath references. Click
Finish.

* Join

Combing inputs by appending a delimiter after them,

Prefi: |
Mapping Inputs:

Inputs Delimiter |
ifMiceJourneyInputflasthame]

1
MiceJourneyInputFirsthame Merve

Example:

IMiceJourneyInputflasthame, [MiceJourneyInputifirstMame

Figure 8-31 Creating the join transform

13.1n the transformer editor you will now see the join expression. Review the
other XPath Expressions to see examples of a ‘Move’ expression which
makes a simple copy of a parts value.

258 WebSphere Business Integrator Server Foundation V5.1 Handbook

Tip: We found that if you did not set every part of the output message
when using the Transformer then an exception would be thrown at runtime.
You should ensure that every part of the output message is set to some
value by your transformer in order to avoid this problem.

14.Save the MapCustomerNameTransformer.wsdl file and close the transformer
editor

15.Save the NiceJourney.bpel file and close the file.

The Reserve Hotel part of the process has now been completed. We modeled
this as a manual step that required a person to take the hotel requirements,
manually make a booking, and then respond to the business process. We saw
how simple it was to add such an interaction to the process.

We also used a Transformer service to perform some message mapping
intelligence above and beyond the capabilities offered by an Assign activity. This
was important because the Staff activity interface used a different format for the
customer name - a single part instead of two separate ones for first and last
names.

8.7 Bill Customer implementation

This section describes how we implemented the Bill Customer section of the
Nicedourney process.

In order to bill the customer, we will first determine the type of card that the
customer supplied, allowing either a credit or debit card type. We will use a
Switch activity to switch behavior depending upon the card type and will call a
different payment service for each type of card that was used. The payment
services will then validate the card number and debit the account, creating errors
if there is a problem with this step.

In fact, there are a number of possible errors within the Bill Customer section so
we will build more comprehensive error handling logic than that used in 8.3,
“Validation implementation” on page 212.

As a result of an error, the process may be unable to bill the customer
successfully. This would constitue a failure of the overall NiceJourney booking
process and in this scenario, we will reverse the booking of the hotel, car and
flight because they will not be required if payment fails.

In order to reverse the booking procedures we will use a feature of WebSphere
Process Choreographer known as Compensation. A service invocation can be

Chapter 8. Process choreographer: developing a complex process 259

defined to have an associated compensating service. This compensating service
can then be used to reverse the work done when the service was originally
invoked, In some scenarios, the compensating action might not be a reversal of
the forward process but may be some alternative action that compensates for
what was done. For this reason, the term Compensation is more appropriate and
will be used instead of reverse in the remainder of this chapter. An example
would be the mailing of a letter to a customer. This cannot be reversed but it can
be compensated for by mailing a subsequent letter advising to ignore the first
one.

Our implementation demonstrates the following activity types:

» Switch
» Assign
» Invoke
» Throw

We will replace the empty Bill Customer activity from Figure 8-2 on page 205,
with the set of activities shown in Figure 8-32. However, unlike for the other
sections, we cannot start implementing Bill Customer from this basic outline
because it does not have Reserve Hotel, Reserve Flight or Reserve Car
implemented and we need these to be complete so that we can configure
compensation for them.

=
Bill Customer

Payment Method

Credit Card

3
=
prep CreditCard Payment
|
NS
g

¢
Credit Card Payment

Debit Card

=
prep DebitCa-d Payment
1

e
]
¥

¢
Debit Card Payment

Otherwise

JJ
@/ Audit Unknown Card
|
s
=1
prep Unknown EBiling Exception

|
N

i
Unknown EBiling Exception

Figure 8-32 Completed Bill Customer section of the NiceJourney process

WebSphere Business Integrator Server Foundation V5.1 Handbook

8.7.1 Preparation

Because we will be using compensation in this section of the chapter we need to
have the forward processing implementations for Reserve Hotel, Reserve Car
and Reserve Flight already completed. We will then configure the compensating
actions necessary to reverse these reservations when a billing failure occurs.

Therefore, we did not start the Bill Customer implementation with the outline
process shown in Figure 8-2 on page 205. Instead, we first implemented the
three reservation sections as described in 8.4, “Reserve Flight implementation”
on page 222, 8.5, “Reserve Car implementation” on page 226 and 8.6, “Reserve
Hotel implementation” on page 249.

You can either:

» Follow each of these sections and implement them sequentially, building your
Nicedourney process until all three implementations are added.

» Import our solution that contains all three implementations already.

If you intend to build each implementation section sequentially then we suggest
that you back up your projects as you progress by exporting the NicedJourney
project as a Project Interchange Zip file. For more information about Project
Interchange Zips see , “Project Interchange archive import/export” on page 562.

If you choose to start with our prepared solution, import the Project Interchange
zip, ComplexNiceJourneyReserveFlightCarHotelSolution.ic.zip

Once you have either prepared the workspace yourself, or imported our solution
workspace, you are ready to complete the Bill Customer implementation.

8.7.2 Switch

The payment can be made by two types of card, credit or debit. We want to
perform different steps in the process depending upon which card is used so that
we can invoke a different payment system partner for each type of card. The
ideal activity type is the Switch. This activity enables choosing one of a number
of different possible paths in the process.

A Switch activity is similar to a case statement in many programming language.
In fact, when you configure a Switch activity, you use the Add Case option to
create different possible paths. A Switch activity will execute one, and only one,
of these possible paths.

We want to choose different paths based upon the card type that was specified.
The following steps show how to add the Switch to the process and then how to

Chapter 8. Process choreographer: developing a complex process 261

specify the conditional logic that will determine which of the different cases is
followed.

Note: A final subtlety with the Switch activity is that when more than one case
evaluates to true, the first one will be chosen and the other(s) will not be
executed.

1. Open the NiceJourney.bpel process in the editor.
2. Right-click the Bill Customer activity and select Change Type — Switch.
3. Right-click the Switch activity and choose Add Case

This creates the first case. Each case has its own flow to specify what
processing to perform if that case is the one that executes. Therefore, the
container for the new case is a flow.

4. Select the new case and change its display name in the Description
properties to Credit Card.

5. Add another case to Bill Customer switch and change its display name to
Debit Card.

6. Right-click the Bill Customer Switch activity again but this time choose Add
Otherwise.

We are using the otherwise case for when the card type is neither credit or
debit. We will treat this as an error case and configure it to reflect this.

Now that we have the two cases for the different card types, we have to set
the condition for when each case will evaluate to true.

7. Select the Credit Card case flow and change to the Condition properties.
Select Visual Expression.

8. Use the Visual Expression editor in a similar way to that described in
“Conditional link” on page 246 to build the following condition:

NicedourneyInput.cardType.equalsIgnoreCase("credit")

9. Select the Debit Card case flow and change its condition, again using the
Visual Expression builder but this time specifying:

NiceJourneyInput.cardType.equalsIgnoreCase("debit")

10.Save the process. The completed Switch should look as shown in Figure 8-33
on page 263.

262 WebSphere Business Integrator Server Foundation V5.1 Handbook

. 4
Bill Customer

Credit Card Debit Card Otherwise

Figure 8-33 Completed Bill Customer Switch activity

At this point we have set up the Switch activity framework for billing the customer
but now we need to perform the correct processing for each different type of
card. We need to invoke a different payment processing service for each card
type and also handle any errors that may be thrown by those services.

Tip: We found it useful to collapse the sequences for Reserve Car, Reserve
Flight and Reserve Hotel while implementing Bill Customer so as to reduce
the amount of busy canvas space in the BPEL Editor at one time. You can do
this by clicking the - (minus) sign at the root of any sequence structured
activity.

8.7.3 Import the Payment Processing Services

We created some simple services that simulate the processing of a card
payment. These services must be imported into the workspace before they can
be configured as partner links and then invoked from within the NiceJourney
process.

These services are supplied in a Project Interchange Zip file. For more
information about Project Interchange Zips see , “Project Interchange archive
import/export” on page 562.

1. Import the Project Interchange zip, BillCustomerPaymentPartners.ic.zip.
2. Check that the Payment Partners project now exists in the workspace.

Chapter 8. Process choreographer: developing a complex process 263

- = PaymentPartners

= @ com.nicejourney . payments, cradit
+ @ CreditCardException. java
+- (0] CreditCardPayment.java

=] @ com.nicejourney. payments. debit
+- [J] DebitCardException. java
+- [J] DebitCardPaymert.java

Figure 8-34 Payment Partner Services Implemenations project

Explore the implementation of the credit and debit card processing services.
They are simple Java classes but we also created them to return exceptions
when the payment processing was invalid. We will need to deal with these
exceptions from within the process when we invoke the services.

8.7.4 Creating the partner links

Now that the services are available in the workspace we will create partner links
in Nicedournet.bpel to invoke them. We will add the Java files directly and have
WebSphere Studio Application Developer Integration Edition therefore
auto-generate the Web services definition of the them.

1.

Drag and drop the CreditCardPayment.java file from
PaymentPartners/com/nicejourney/payments/credit onto the
Nicedourney.bpel canvas. After a few seconds of processing the
CreditCardPayment partner link will appear.

Repeat the above step but this time drag and drop DebitCardPayment.java
from its package location to create the DebitCardPayment partner link.

3. Save the process.

8.7.5 Credit Card case

Now we will create the processing logic for the Credit Card case of the Bill
Customer Switch activity.

264

Invoke

1.

Add an Invoke activity inside the Credit Card case flow and rename it to
Credit Card Payment.

. Set the Partner Link in its Implementation properties to CreditCardPayment.

The Port Type and Operation will automatically be selected.

Click New... to the right of Request to create a new variable and name it
CreditCardPaymentRequest. Because you set the Partner Link and Operation
already this variable will be created with the correct message type
automatically.

WebSphere Business Integrator Server Foundation V5.1 Handbook

Click New... to the right of Response to create a new variable and name it
CreditCardPaymentResponse. Because you set the Partner Link and
Operation already this variable will be created with the correct message type
automatically.

Assign

1.

Insert an Assign activity before the new Invoke activity and rename it to prep
Credit Card Payment.

2. Be sure to create the necessary control link from the Assign to the Invoke.

3. Use the Assign activity to assign the following parts from the

NiceJourneylnput variable to the CreditCardPaymentRequest variable:

— cardNumber to cardNumber
— firstName to firstName
— lastName to lastName

Save the process. This completes the Credit Card payment case which
should look as shown in Figure 8-35.

Credit Card

]
=3

prep Credit Card Payment

I
LU
o
a

Credit Card Payment

Figure 8-35 Completed Credit Card Case

8.7.6 Debit Card case

Now we will create the processing logic for the Debit Card case of the Bill
Customer Switch activity. It is very similar to the Credit Card case.

Invoke

1.

Add an Invoke activity inside the Debit Card case flow and rename it to Debit
Card Payment.

. Set the Partner Link in its Implementation properties to DebitCardPayment.

The Port Type and Operation will automatically be selected.

Chapter 8. Process choreographer: developing a complex process 265

Click New... to the right of Request to create a new variable and name it
DebitCardPaymentRequest. Because you set the Partner Link and Operation
already this variable will be created with the correct message type
automatically.

Click New... to the right of Response to create a new variable and name it
DebitCardPaymentResponse. Because you set the Partner Link and Operation
already this variable will be created with the correct message type
automatically.

Assign

1.

Insert an Assign activity before the new Invoke activity and rename it to prep
Debit Card Payment.

2. Be sure to create the necessary control link from the Assign to the Invoke.

3. Use the Assign activity to assign the following parts from the

NiceJourneylnput variable to the DebitCardPaymentRequest variable:

— cardNumber to cardNumber
— firstName to firstName
— lastName to lastName

Save the process. This completes the Debit Card payment case which should
look as shown in Figure 8-36.

Debit: Card

=
prep Dehbit Card Payment

|
N

-
Dehit Card Payment

Figure 8-36 Completed Debit Card Case

8.7.7 Unknown Card Otherwise case

When an unknown card type is encountered we will not be able to process the
payment for the NiceJourney booking that we have made and this will therefore
result in a failure. It would be more realistic to have checked the card type prior to

266

WebSphere Business Integrator Server Foundation V5.1 Handbook

making the reservations but we will use it here to illustrate a possible failure in
payment processing.

We will configure an unknown card type to throw a fault within the process. Later
we will configure the error handling to deal with this scenario.

We also want to audit any failures due to an unknown card type. We will use a
simple Java snippet activity to do this but the auditing could be implemented as a
separate invokable service if necessary.

Audit

1. Add a Java snippet inside the Otherwise case and rename it to Audit Unknown
Card.

2. Add the following Java code to its Implementation properties:

System.out.printin("Unknown Card Type Passed To Billing. Card Type: "+
getNiceJourneyInput().getCardType());
System.out.printin("PAYMENT FAILED ");

3. Save and close the NiceJourney.bpel file.

Throw

We are going to throw a fault that will indicate that an exception has happened in
the billing. We will define this fault ourself and must therefore define its message
format.

In this way, you create your own user-defined faults and then throw and catch
them as appropriate in your process.
1. Open Nicedourneylnterface.wsdl in the WSDL editor.

2. Use the Graph view of the WSDL editor to create a new message named
BillingException with a single part named detail, of type xsd:string. See
Figure 8-37.

H EiiIIiru;E::-::::Epti|:|r|
P detail (xsd:string)

Figure 8-37 Definition of the BillingException message

3. Save and close NiceJourneylnterface.wsdl.
4. Open Nicedourney.bpel in the BPEL Editor again.

Now that the message type has been defined we will add a Throw activity and
use our message type for the fault variable that the Throw will use.

Chapter 8. Process choreographer: developing a complex process 267

5. Add a Throw activity to the Otherwise case of the Bill Customer Switch
activity. Rename it to Unknown Billing Exception. Do not create any control
links at this point.

6. Switch to the Fault properties for the Throw activity and select User-defined.
7. Enter BillingException for the Fault name.
8. Click New... to create a new variable called UnknownBi11ingException.

Note: Any fault variable that you define in this way will automatically be
created. When creating it the BPEL Editor needs to decide what message
definition to use for the variable.

Because you are free to define your own fault message definitions (as we
have just done), the editor does not know what message definition to use.
Therefore, a default supplied definition is used, called bpelFault. This fault
is used for errors specific to the execution of a BPEL process, not your own
processes. If you want to work with potential errors that might happen in
the BPEL runtime environment, consider using the bpelFault message

type.

More typically, you will want to provide your own error information, often
with business relevant information. In this example, we are going to alter
the default message type that UnknownBillingException has been created
with, and instead use our own definition.

9. Select the newly created UnknownBillingException variable at the bottom
of the variables list (in the top left of the canvas).

10.Switch to its Message properties and notice that it is defined by a bpelFault
message - a supplied built-in type that carries information about process
execution errors. We want to use our own message definition instead.

11.Click Browse ... and locate
NiceJourney/com/nicejourney/NiceJourneyinterface.wsdl and then choose
the BillingException message in the drop-down selection. Click OK.

12.Finally add a control link between the Audit Java snippet activity and the
Throw activity as shown in Figure 8-38 on page 269.

268 WebSphere Business Integrator Server Foundation V5.1 Handbook

Otherwise

Audit Unknown Card

(&= <-_ = |_

Unknowwn Billing Exception

Figure 8-38 Completed Unknown Card Case

13.Save and close the NiceJourney.bpel process.

8.7.8 Fault handling

In this section we will be creating Fault Handlers that will control what happens in
the events of faults occuring in the process execution. We have already
deliberately created our own Throw activity and we will use a Fault Handler to
catch this fault.

In addition, faults can come directly from an activity without being explicitly
thrown by a deliberate Throw activity. For example, the credit and debit card
payment partners can both throw a fault if payment processing fails.

Fault handlers are associated with activities within the process and are defined to
handle certain faults. A given Fault Handler will be invoked whenever a matching
fault type occurs within the activity it is associated with.

Because many activities are actually containers for other activities (for example a
flow, sequence, pick or switch) then the Fault Handler applies to all activites
contained within the container. The term scope is useful when describing what
set of activities a Fault Handler applies to. For example, a Fault Handler defined
on a Switch activity has a scope which contains all activities within that switch
construct.

Scopes are also nested. Whenever a fault occurs in an activity, the WebSphere
Process Choreographer runtime checks to see if there is a Fault Handler for that
scope. If there isn’t then it will pass it up to the next enclosing scope, which itself
may or may not have a Fault Handler. This proceduce is then repeated all the
way up to the scope of the process itself.

Chapter 8. Process choreographer: developing a complex process 269

270

We will use Fault Handlers with different scopes to catch the faults we are
interested in. We will even apply a Fault Handler to the entire process so that we
can catch any fault condition that occurs in any of the enclosed scopes.

Credit card

The Java implementation of the Credit Card Payment system uses a method
called processPayment. The method signature for this method shows that it can
throw a Java exception called CreditCardException.

WebSphere Process Choreographer is based upon Web services and uses XML
to define its variables. These variables are used for input and output when
invoking services. In addition, services can return errors using faults - the name
given to special return messages that represent an error scenario. The data type
of a fault is defined in the same way as the input and output - by using XML
message definitions within a WSDL file.

The Java credit card payment partner was added by dragging and dropping the
Java class onto the canvas. This is a quick way of firstly exposing the Java class
as a Web service and secondly adding it to the process canvas. WebSphere
Studio Application Developer Integration Edition has automatically created a
WSDL definition that is equivalent to the Java class but has made it easier by
doing this automatically.

If we want we can inspect the Web service definition that was created by looking
at the generated WSDL file that represents the service. For the credit card
payment we would see that the service defines an input, an output, but also a
fault. This fault is the WSDL representation for what is represented in Java as the
CreditCardException class.

What this means is that when we invoke the credit card payment partner, we
might receive a fault message reply instead of the successful output. We will add
a Fault Handler that is designed to catch such a fault and to take action on it.

Adding the Fault Handler

1. Select the Credit Card section of the Bill Customer switch and click the Add
Fault Handler icon as shown in Figure 8-39 on page 271. Be sure to select
the complete flow and not one of the individual activities that are part of it.

WebSphere Business Integrator Server Foundation V5.1 Handbook

Credit Car!
, R
=3

prep Credi Cord Dol dd Fault Handler
|
e
o

. Credit Card Payment .

Figure 8-39 Adding a Fault Handler to the Credit Card section

This causes a Fault Handler to be associated with the Credit Card section
and the Fault Handler is indicated by a small orange exclamation mark icon in
the top right corner of the flow. By default, the Fault Handler itself is not
actually shown on the canvas when it is first created.

Important: In fact, it is only possible to display one Fault Handler at a time
on the canvas. If you try to show a Fault Handler when another one is
already displayed, the first one will automatically close when the new one
is displayed.

2. We want to edit the Fault Handler so first we need to display it. There are two
ways of doing this. Either double-click the small icon in the top right corner of
the Credit Card case or alternatively right-click the whole flow and select
Show Fault Handler. The Fault Handler is displayed as an empty structure
as shown in Figure 8-40.

Credit Card
: ®
- |

prep Credit Card Payment

s

Figure 8-40 Fault Handler (circled to the right) and Fault Handler icon (circled left)

3. Select the Fault Handler and then use the speech bubble icons to select Add
Catch. Alternatively, right-click and select it from the pop-up menu instead.

Chapter 8. Process choreographer: developing a complex process 271

This creates a catch that can be configured to catch certain types of fault
occuring within the Fault Handler’s scope. Alternatively you can add Catch All
to catch all faults within the scope, irrespective of the actual type of the fault.

Note: Once a Catch has been created it is necessary to define the Fault
which you are trying to catch. There are lots of acceptable combinations for
defining a catch:

» faulthame and no variable
» typed faultVariable but no faultName
» fully specified with faultName and faultVariable

When a fault occurs, it will be matched by the Catch which most
specifically matches it. The more qualified a Catch, the more you will know
why it has been thrown. If no match is found then it will go to the Catch All
of the Fault Handler.

Of particular importance is the Namespace definition which must be
correctly set to the namespace of the fault message type. Incorrectly
setting the Namespace is a frequently encountered problem that leads to
the Catch All being executed, rather than the intended Catch that has been
incorrectly specified.

4. Select the new Catch block and complete the information :
Fault type: User-defined

Namespace:
http://nicejourney.com/comnicejourneypaymentscreditCreditCardPayment
Nicedourneybpel/

Fault Name: CreditCardException
5. Click New ... to create a fault variable and name it CreditCardException.

Note: We want to catch the specfic fault that is thrown by the Credit Card
payment system. Therefore we specify the exact same namespace that is
used to define the fault on the credit card system. This was auto-generated
when we dragged and dropped the Java class onto the canvas. We must
also set the fault name to match that defined in the same WSDL file.

6. Select the new CreditCardException variable from the variables list at the
top left of the canvas.

7. On its message properties page, click Browse ... and locate the WSDL file
that was generated for the Java credit card payment system. This file is
located at

272 WebSphere Business Integrator Server Foundation V5.1 Handbook

Nicedourney/com/nicejourney/comnicejourneypaymentscreditCreditCardPa
ymentNicedourneybpel.wsdl . Select the CreditCardException message
definition shown in Figure 8-41. Click OK.

Browse

Select a Message in a WDl File

- T Micelourney -~
=-{= com
+-[= bookyaurcar
(= bookyaurflight
== nicejourney
@) MapCustomerharneTransformer wsdl
+-{=F MiceJourney
@) Micelourney.wsdl
@) NicelourneyInterface.wsdl
@) Micelourney_ABCCarRental M3 wsdl
@) Micelourney_Micedourney _JMS,wsdl
@) Micelourney_xzvZCarRental_IMS,wsdl
+-[== MiceJourney_msg
@) combookyourflightFlightBookingSystemiceJourneybpel.wsdl
+-[== combookyourflightFlightBookingZystemMiceJourneybpel_msg
@) comnicejourneypaymentscreditCreditCardPaymentiiceJourneybpel wsdl [

CreditCardException LJ

processPavmentRequest
processPavmentResponse
CredibCardException

FH

oK | Cancel

Figure 8-41 Changing the CreditCardException variable type

Completing the Fault Handler

We will use the Fault Handler to audit that a credit card payment has failed and
then we will throw a new fault. This new fault will indicate that a more generic
failure has occured - the billing process as a whole has failed. (We have already
used this technique when dealing with the unknown card type). This fault will
then be handled by another Fault Handler that we will create later on the
enclosing Bill Customer scope.

1. Add a Java snippet inside the Fault Handler, naming it Audit CreditCard
Exception and adding the following code for its Implementation:

Chapter 8. Process choreographer: developing a complex process 273

274

System.out.printin("Credit Card Payment Failure: " +
getNiceJourneyInput().getCardType() + " " +
getNicedourneylInput().getCardNumber());

This will write the invalid card details to the system log for auditing purposes.

2. Add a Throw activity and rename it to Credit Billing Exception.
3. Change its Fault properties to:

Fault type: User-defined
Namespace: http://nicejourney.com/Nicedourney
Fault Name: BillingException

. Click New ... and name the new variable CreditBillingException.

We can re-use the message type that we used when we threw an exception
earlier for an unknown card. However, we must create another variable for
this specific Throw activity, even though the variable will share the message
definition with the UnknownBillingException variable we created earlier.

. Select the new CreditBillingException variable from the variables list and

Browse to change its Message definition to BillingException as defined in
Nicedourney/com/nicejourney/NiceJourneylnterface.wsdl. Click OK.

. Return to the Fault Handler and add an Assign activity and rename it to prep

CreditCard Exception. Use it to copy the reason part of the
CreditCardException variable to the detail part of the
CreditBillingException as shown in Figure 8-42.

= prep CreditCard Exception

e [e e)]
From: | ‘ariable or Part - | To: ‘ariable or Part

=) CreditCardException o) DebitCardPaymentResponse
= __] CreditCardException) BillingException
= __] detail : CreditCardException o) CreditCardException
__] reason | string o) CreditBilingException
+- g CreditBilingException w = __] BillingException
7] detail : string

1] [F-

Query: | Ireason |

Figure 8-42 Assigning the data from CreditCardException to CreditBillingException

7. Finally add control links so that the Java snippet connects to the Assign which

then connects to the Throw as shown in Figure 8-43 on page 275.

WebSphere Business Integrator Server Foundation V5.1 Handbook

CreditCardE xception

]
Audit CreditCard Exception

3

prep CreditCard Exception

|
h'd

!
Credit Biling Exception

Figure 8-43 Completed Fault Handler for faults occuring in the Credit Card scope

8. Save and close the NiceJourney.bpel process.

We have now completed a Fault Handler that will catch any faults that are thrown
by failures in the Credit Card payment partner. The Fault Handler will log the
credit card failure and credit card details before throwing a more generic fault to
indicate that billing has failed. At a higher scope we will handle all billing failures
(credit card problem, debit card problem or unknown card) using a shared fault
message type and Fault Handler.

Debit Card

We will create a very similar Fault Handler for the debit card payment as we used
for the credit card payment. Therefore the description of the steps we took will be
briefer in this section than the previous one.

Adding the Fault Handler
1. Open Nicedourney.bpel in the BPEL Editor.

2. Select the Debit Card section of the Bi11 Customer switch and click the Add
Fault Handler. Be sure to select the complete flow and not one of the
individual activities that are part of it.

3. Right-click the whole flow and select Show Fault Handler.

4. Select the Fault Handler and then use the speech bubble icons to select Add
Catch. Alternatively, right-click and select it from the pop-up menu instead.

5. Select the new Catch block and complete the information :

Fault type: User-defined

Chapter 8. Process choreographer: developing a complex process 275

Namespace:
http://nicejourney.com/comnicejourneypaymentsdebitDebitCardPaymentNi
cedourneybpel/

Fault Name: DebitCardException
6. Click New ... to create a fault variable and name it DebitCardException.

7. Select the new DebitCardException variable from the variables list at the top
left of the canvas.

8. On its Message properties page, click Browse ... and locate the WSDL file
that was generated for the Java debit card payment system. This file is
located at
NicedJourney/com/nicejourney/comnicejourneypaymentsdebitDebitCardPaym
entNiceJourneybpel.wsdl . Select the DebitCardException message
definition and click OK.

Completing the Fault Handler

The content of the Fault Handler will be very similar to that used for the Fault
Handler on the Credit Card payments scope.

1. Add a Java snippet inside the Fault Handler, naming it Audit DebitCard
Exception and adding the following code for its Implementation:

System.out.printin("Debit Card Payment Failure: " +
getNiceJourneyInput().getCardType() + " " +
getNicedourneyInput().getCardNumber());

This will write the invalid card details to the system log for auditing purposes.
2. Add a Throw activity and rename it to Debit Billing Exception.
3. Change its Fault properties to:

Fault type: User-defined

Namespace: http://nicejourney.com/NiceJourney

Fault Name: BillingException
4. Click New ... and name the new variable DebitBi11lingException.

Again, we can reuse the message type that we used when we threw an
exception earlier for an unknown card. However, we must create another
variable for this specific Throw activity, even though the variable will share the
message definition with the UnknownBi11ingException and
CreditBillingException variables we created earlier.

5. Select the new DebitBillingException variable from the variables list and
Browse to change its Message definition to BillingException as defined in
NicedJourney/com/nicejourney/NiceJourneylnterface.wsdl. Click OK.

276 WebSphere Business Integrator Server Foundation V5.1 Handbook

6. Return to the Fault Handler and add an Assign activity and rename it to prep
DebitCard Exception. Use it to copy the reason part of the
DebitCardException variable to the derail part of the DebitBi11ingException.

7. Finally add control links so that the Java snippet connects to the Assign which
then connects to the Throw as shown in Figure 8-44.

DebitC ardException

o)
Audit DebitCard Exception

I

i
=

prep DebitCard Exception
I
e
J
4

Dehit Billing Exception

Figure 8-44 Completed Fault Handler for faults occuring in the Debit Card scope

8. Save and close the NiceJourney.bpel process.

Bill Customer
There are now Throw activities in three places within the Bill Customer Switch
activity:

» Fault Handler for the Credit Card
» Fault Handler for the Debit Card
» Otherwise case of Bill Customer

Each one of these throw activites throws a fault of message type:
BillingException, although each one has its own fault variable of this type. We
will now create a Fault Handler on the Bill Customer activity to catch all of these
faults and handle the scenario of a billing failure in general.

Adding the Fault Handler
1. Select the Bill Customer activity and add a Fault Handler to it.

2. Display the Fault Handler and select Add Catch.

Chapter 8. Process choreographer: developing a complex process 277

Note: The Fault Handler appears to the right of the activity and may
therefore be hidden from view. Scroll to the right of the canvas to see it.

3. Set the fault properties for the Catch as follows:
Fault type: User-defined
Namespace: http://nicejourney.com/NiceJourney
Fault Name: BillingException
4. Click New ... and name the new variable GeneralBillingException.

5. Select the new GeneralBillingException variable from the variables list and
Browse to change its Message definition to BillingException as defined in
NiceJourney/com/nicejourney/NiceJourneylnterface.wsdl. Click OK.

Completing the Fault Handler

We will use a very similar style Fault Handler to the ones already created. Firstly
we will audit the failure using a simple Java snippet and then we will throw the
exception to a higher scope. It could be possible that the Fault Handler would
have the ability to handle the error and allow the process to continue. However,
in our process a Billing Exception is regarded as a fatal error and so must be
re-thrown as a process failure fault.

We will then use this fault later in the process development to trigger automatic
compensation which will undo all of the work that had already been committed
when the failure occured.

1. Add a Java snippet inside the Fault Handler, naming it Audit Billing
Exception and adding the following code for its Implementation:

System.out.printIn("BILLING EXCEPTION");
This will log the billing exception for auditing purposes.
2. Add a Throw activity and rename it to Nicedourney Failure.
3. Change its Fault properties to:
Fault type: User-defined
Namespace: http://nicejourney.com/Nicedourney
Fault Name: NiceJourneyFailure
4. Click New ... and name the new variable NiceJourneyException.

5. Select the new NicedJourneyException variable from the variables list and
Browse to change its Message definition to NiceJourneyException as
defined in NiceJourney/com/nicejourney/NiceJourneylinterface.wsdl. Click
OK.

278 WebSphere Business Integrator Server Foundation V5.1 Handbook

6. Return to the Fault Handler and add an Assign activity and rename it to prep
Nicedourney Exception. Use it to make the following three copies between
parts of variables:

GeneralBillingException: detail — NiceJourneyException: reason
NiceJourneylnput: firstName — NiceJourneyException: firstName
Nicedourneylnput: lastName — NiceJourneyException: lastName

7. Finally add control links so that the Java snippet connects to the Assign which
then connects to the throw activity as shown in Figure 8-45.

BillingException

o)
Audit Billing Exception

N
+
=
prep MiceJourney Exceplion
I
N

¥

4
MiceJourney Failure

Figure 8-45 Completed Fault Handler for Bill Customer scope

8. Save and close the NiceJourney.bpel process.

NicedJourney process

There is one throw activity inside the Fault Handler for the Bill Customer Switch
activity. We want to catch this fault when it is thrown. Currently there are no Fault
Handlers defined that will catch it so we need to create one at a higher scope.
We will use the top level Fault Handler for the entire process to do this.

Adding the Fault Handler

1. Select the root of the entire process which is labeled NiceJourney and add a
Fault Handler to it, either using the icon or the pop-up menu as before.

2. Display the Fault Handler and select Add Catch.
3. Set the fault properties for the Catch as follows:
Fault type: User-defined

Namespace: http://nicejourney.com/NiceJourney

Chapter 8. Process choreographer: developing a complex process 279

Fault Name: NicedourneyFailure
4. Click New ... and name the new variable NiceJourneyFailed.

5. Select the new NicedourneyFailed variable from the variables list and
Browse to change its Message definition to NiceJourneyException as
defined in NiceJourney/com/nicejourney/NicedJourneylnterface.wsdl. Click
OK.

Completing the Fault Handler

If a fault reaches the top level of the process then we need to consider what the
final action should be. Because the NicedJourney process is an interruptible one,
if a failure occurs then it is likely that some work will already have been
committed. In this scenario we want to use compensation to undo those
changes.

We will configure compensation in the next section but before doing this we must
add a manual compensation for the hotel booking. This is because the hotel
booking was done through a Staff activity and compensation does not support
staff activities.

We will use this Fault Handler to manually undo the hotel booking. The Fault
Handler will not do anything else and therefore the fault will exit the handler and
cause the complete process to end in a fault. This will be the trigger for the
compensation of all the other steps.

1. Firstimport the implementation of the compensating service. In our case we
used a very simple Java class to demonstrate the functionality.

2. Import Compensator.java from the ComplexProcess directory of the
additional material and into folder NiceJourney/com/nicejourney/

3. Drag and drop the Compensator.java file from the services view onto the
Nicedourney.bpel editor canvas.

Notice that a special type of partner link is created with the Java symbol used
as the icon. This indicates that this is a partner implemented as a Java
program. Select this partner link and note that the implementation is the Java
class, in this case Compensator. Locate the generated WSDL definition of the
partner in
NiceJourney/com/nicejourney/comnicejourneyCompensatorNiceJourneybpel.
wsdl.

4. Add an Invoke activity inside the new Fault Handler and rename it to Cancel
Hotel.

5. Select the Cancel Hotel activity and go to the implementation editor. Set the
Partner Link to Compensator and the operation to cancelHotel.

280 WebSphere Business Integrator Server Foundation V5.1 Handbook

6. From the drop-down selection box, set the request variable to
StaffHotelReponse - we will use the reply from the booking invocation as the
input to the cancellation service. This variable contains the reservation ID so
will be enough information to cancel the hotel.

7. Create a new Response variable using the New... button to ensure that the
variable type is set automatically. Name it CancelHotelResponse. The Fault
Handler is now complete and should look like that shown in Figure 8-46.

MiceJourneyFailure

e

Cancel Hotel

Figure 8-46 Completed Fault Handler for NiceJourney process scope

8. Save and close the NicedJourney.bpel process.

8.7.9 Compensation

The process is now configured so that a payment failure will be handled, logged
and then re-thrown to the parent scope for the whole process. The Fault Handler
at this point will cancel the hotel booking.

Inside this Fault Handler we do not do anything to end the process gracefully so
the fault propogates through, resulting in failure of the overall process. This will
trigger any compensation we have configured.

If the payment failure has caused us to end the process in failure then we will
want to cancel both the flight and the car (as well as the hotel we already
cancelled). In this section we show how to configure the compensation of these
two services.

Compensation allows us to select another WSDL described service that is
associated with an activity. If that activity has already completed when the
process ends in failure, the associated compensation service will be called.

Chapter 8. Process choreographer: developing a complex process 281

In our case, if the payment fails then the flight and car services will be called in
the forward direction already. Compensation will automatically call the associated
compensating services to cause a reversal of this work.

Flight compensation
We will configure a simple Java service to perform the flight cancellation that gets
triggered by compensation.

1. Locate the Reserve F1ight sequence and then find the Invoke Flight
Partner activity inside the sequence.

2. Select the activity and switch to its Compensation properties.

3. Change the Partner Link to FlightBookingSystem, the operation to
cancelReservation, and select FlightBookingRequest from the drop-down
list of input variables.

The compensation is now set to call the service that is implemented by the Flight
Booking System Java class, using method cancelReservation.

Car compensation

The cancellation of the car booking is also implemented by a simple Java class
that writes to the system log. In a production system this would probably remove
some entry from a database.

1. Locate the Reserve Car sequence and then find the Invoke Car Partner
activity inside the sequence.

2. Select the activity and switch to its Compensation properties.

3. Change the Partner Link to Compensator, the operation to cancelCar, and
select BookCarRequest from the drop-down list of input variables.

4. Save and close the process.

8.8 Testing

We have now completed a travel agency process that processes an incoming
request and books a hotel, car and flight. It then calls payment services that
simulate the payment from a debit or credit card. If a failure occurs in the process
then this is audited and the compensation and fault handling ensures that all of
the bookings are cancelled.

You can test the process by generating the deployment code for
NicedJourney.bpel and BookCar.bpel. Then use the business process Web client
to initiate the process and interact with the Book Hotel Staff activity.

282 WebSphere Business Integrator Server Foundation V5.1 Handbook

You may wish to import the final solution directly by using our completed
workspace, supplied as a project interchange zip file called
NicedJourneyComplete.zip.

8.9 Problem determination and tips

While working with WebSphere Studio Application Developer Integration Edition
you may find the following tips and problem determination aids useful.

8.9.1 How to delete generated deployment code

Sometimes you will want to completely delete the generated deployment code
for a process. If you have made major changes since the previous generation of
deployment code then this can be a good idea because some of old generated
code will not be removed upon re-generation.

There are two useful techniques for achieving this quickly. Either

» Delete the entire generated EAR project and its modules, taking care to
exclude your services project from the deletion

» Delete each individual generated module project except your services project

Deleting EAR project but preserve services projects

If the generated EAR project only contains deployment code in support of the
process then you can delete this entire project and the supporting Web and EJB
modules that it contains. You must be careful however to not delete the services
projects that contain your business processes.

1. Switch to the J2EE Hierarchy view and expand Enterprise Applications to
display the EAR project.

It will be called <ServiceProjectName>EAR where <ServiceProjectName> is
the name of the service project that was used to create this generated code.

2. Select this project and press Delete.

3. Select the Also delete module and utility Java projects option and make
sure both of the options are checked.

4. Click the Details >> button to display the list of projects.

5. Carefully de-select the projects that contain your processes. Leave the
generated projects checked.

6. Click OK.

7. Choose to also delete the contents from the file system to complete the
deletion.

Chapter 8. Process choreographer: developing a complex process 283

8. Re-generate your code as necessary.

Deleting each individual generated project

An alternative method is to delete each of the module projects and EAR project
separately. In this method, you have to opt to include each project in your
deletion, rather than to exclude each one from a deletion. The end result is the
same:

1. Switch to the package explorer.

2. Select (multi-select if you like) each generated project and then click Delete
for each one (or all in one go).

The generated projects will be called <ServiceProjectName>Web,
<ServiceProjectName>EJB, <ServiceProjectName>EAR where
<ServiceProjectName> is the name of the service project that was used
when generating the code.

3. For each deletion, also select to delete the contents from the file system.

8.9.2 Forgetting to create tables and datasources

When testing the process, it is important to remember to select the Create
Tables and Datasources option before starting the server. Failure to do this will
result in an exception when attempting to execute the process. The console log
will show lots of errors about missing tables.

Fix this by stopping the server and choosing the Create Tables and Datasources
option (it can only be done with the server stopped). This might fail the first time
because the tables will be corrupted by the previous attempt to use the server. If
the message is not free of errors, simply repeat the Create Tables and
Datasources step. On the second attempt there should be no errors. You can
now start the server and test your process.

8.9.3 Type mapping - primitive and complex types

284

Because WebSphere Process Choreographer uses XML to describe all variable
types (either in a separate XSD file or embedded within a WSDL file) then it is
important to consider mapping data to and from XML.

Web services development is easier when done ‘top-down’ which means
creating the interface first, including the data type definitions in XML. The service
is then implemented. When developed bottom up, the implementation is already
done and a corresponding Web services interface must be generated to describe
it. This means describing the XML data types to represent the implementation.
For example, if the implementation is some kind of Java service then it will be

WebSphere Business Integrator Server Foundation V5.1 Handbook

necessary to define the service’s method signature in XML types that are
equivalent to the Java types.

For a top-down development (XML first) it is necessary to map the XML data
types you define into Java types. For a bottom-up approach to developing each
service, the Java types must be mapped to XML types.

WebSphere Process Choreographer uses the Web Services Invocation
Framework (WSIF) to invoke Web services at runtime. WSIF defines mappings
between Java and XML types and these mappings should be used when
developing the services.

We recommend to be aware of round-tripping issues. Round-tripping refers to
mapping a Java type to its XML type and then back to Java (or XML to Java to
XML). For some mappings, the end result is not the same as the start point and
we recommend that you avoid using any XML or Java types that do not have
round-tripping.

Note: For further information about round-tripping refer to the following series
of developerWorks® articles:

http://www-106.1bm.com/developerworks/webservices/library/ws-tip-roundtri
pl.html
http://www-106.1bm.com/developerworks/webservices/library/ws-tip-roundtri
p2.html
http://www-106.1bm.com/developerworks/webservices/library/ws-tip-roundtri
p3.html

We also recommend that you avoid mappings that are different in WSIF than in
the emerging JAX-RPC technology. You can refer to the Help in WebSphere
Studio Application Developer Integration Edition for information about type
mapping issues with WSIF.

A complicated interface to a Web service can require XML complex types which
may require particularly sophisticated mappings and care should be taken to try
to minimise the complex type usage. As well as potential difficulties in mapping
between types, some areas of WebSphere Studio Application Developer
Integration Edition do not support complex types in full. For example, a variable
that is defined by a message using complex types cannot be fully manipulated by
an Assign activity. It also cannot be used within a Correlation Set alias.

Chapter 8. Process choreographer: developing a complex process 285

http://www-106.ibm.com/developerworks/webservices/library/ws-tip-roundtrip1.html
http://www-106.ibm.com/developerworks/webservices/library/ws-tip-roundtrip2.html
http://www-106.ibm.com/developerworks/webservices/library/ws-tip-roundtrip2.html
http://www-106.ibm.com/developerworks/webservices/library/ws-tip-roundtrip3.html
http://www-106.ibm.com/developerworks/webservices/library/ws-tip-roundtrip3.html
http://www-106.ibm.com/developerworks/webservices/library/ws-tip-roundtrip2.html
http://www-106.ibm.com/developerworks/webservices/library/ws-tip-roundtrip2.html

286 WebSphere Business Integrator Server Foundation V5.1 Handbook

Process choreographer:
clients

There are several ways to start/access a process instance in WebSphere
Process Choreographer. Depending on the type of client you want to interact
with a process instance, you have two choices:

» Developing a standalone client which uses the BPE, J2EE- or SOA API to
interact with the process instance.

» Using the business process Web client shipped with WebSphere Studio
Application Developer Integration Edition and customizing its look and feel.

© Copyright IBM Corp. 2004. All rights reserved. 287

9.1 Standalone client
Implementing a standalone client is the most flexible way to access a process
instance; furthermore, it provides the highest degree of independence regarding
the GUI of your client.

Figure 9-1 shows the different layers involved in accessing/starting a process

instance.
,_-_..t<—> [WSDL Interface @
| - \\ J
Facade EJB/JMS S
Process
Check
. Availability
Generic
Process . Yes_| Process
Choreographer Order Order
API No
Check Customer Cancel
o Credit Order
| PAN J

Figure 9-1 Interacting with the business process

Each layer has a different level of abstraction. The most abstract one is the
WSDL layer; the Generic Process Choreographer API layer has the lowest level
of abstraction. A layer with a higer level of abstraction uses a layer with a lower
level of abstraction to interact with the process instance.

A standalone client can also directly use one of these layers to access a process

instance.

9.1.1 Invoking a business process using the Process
Choreographer API

The Process Choreographer API, also known as BPE API, is the most direct way

to interact with a process. As a result of this, clients built on this API have to be
changed if the business process is changed, even if the change is a minor one.

288 WebSphere Business Integrator Server Foundation V5.1 Handbook

The APl is public but propriatery, which means that it is not commonly known by
J2EE developers; furthermore, once you start using the API, you also need to be
familiar with the WSIF API.

The BPE API provides a session bean, called the BusinessProcess bean. This
session bean exposes several methods that can be used to query the BPE
database. You call methods on this session bean to invoke the process with the
appropriate message. Note that you have to compose the message (instantiate
the WSIFMessage object) programmatically prior to invoking the BPE API. A
WSIFMessage object can consist of multiple parts. It is complicated to compose
the message parts programmatically, but this method of invoking processes
provides very tight coupling with the BPE API and much more control. This may
or may not be necessary when invoking a Business Process.

Because the BPE API is the most direct way to interact with the process
instance, it provides calls which cannot be performed from the more abstract
layers above. The documentation (Javadoc) of the BPE API can be found at the
WebSphere InfoCenter at:

http://publib.boulder.ibm.com/infocenter/ws5lhelp/index.jsp

From there, navigate to WebSphere Business Integration Server
Foundation — Reference — Javadoc — Enterprise Extensions API.

9.1.2 Invoking a business process using the generated facade EJBs

When the deployed code is generated for the business process, as discussed in
“Generating deploy code” on page 177, facade Enterprise Java Beans are
generated depending on the chosen binding. These facade Enterprise Java
Beans can be used to invoke a process in a common J2EE manner.

Similar to the BPE API, facade Enterprise Java Beans are also a very direct way
to interact with a process instance, so the invoker and the business process are
tightly coupled. It might be meaningful in some cases to choose this way of
invocation to avoid the creation of an internal object model, which takes place
using the WSDL layer for invocation. This internal object model, used by WSIF,
may result in a performance overhead. Since there is no external access to the
process instance, it might be better to call the fagade Enterprise Java Beans
directly, instead of exposing them as Web services and using the WSDL for the
process invocation.

There is a relationship between the type of business process (short running or
long running) and the available bindings when generating deploy code.
According to the chosen binding, the facade Enterprise Java Beans are
generated. These issues are covered in the following sections.

Chapter 9. Process choreographer: clients 289

http://publib.boulder.ibm.com/infocenter/ws51help/index.jsp

290

EJB binding for deployed business processes
The EJB binding is the default binding type for short running business processes,
but it can also be used for long running business processes.

For this binding type, the facade is implemented as a Session Enterprise Java
Bean, available in a J2EE EJB 2.0 project in the workspace of WebSphere
Studio Application Developer Integration Edition.

After you have generated the deployment code for the business process using
the EJB facade, you should find the Session EJB for your process as shown in
Figure 9-2 on page 290, for the Nicedourney process.

-3 Application Client Madules
21, Connector Modules

- Web Modules

=-£§ EJB Modules

EI@ WPC_Simple_ProcessEJE

o ® g
E{ @ MicelourneyBean
----- J} MiceJourneyHame

----- m Micelourney

----- E,L" MiceJourneyLocalHome

----- |1||‘ MiceJourneyLocal

----- E,a MicelourneyBean

----- ';P EjbLocalRef ejb/compensation/CoordinatorHome

----- ';P EjbLocalRef ejb/compensation/standardExecutorHome
----- ';P EjbLocalRef ejb/compensation/RunProcletHome

----- ;Q ResourceRef jdbc/EPEDE

----- ;Q ResourceRef jmsBPECFC

----- ;Q ResourceRef jmsBPECF

~m# ResourceEnvyRef partnerlinkftravelarrangement Type/myRole
—m ResourceEnvRef partnerlinkiflightBooking/partnerRole
----- & Entity Beans

% Message-Driven Beans

----- IMaps

- Databases

-] servers

Services |F‘ackage Explorer lJZEE Higrarchy J

Figure 9-2 J2EE Hierarchy view

Note: If the refresh function (menu) is not working properly in the J2EE
Hierarchy view, close the view and reopen it again to see the session bean.

For each receive or Pick activity in the business process, a wrapper method is
added to the fagade Session Enterprise Java Bean, wrapping all calls to the

WebSphere Business Integrator Server Foundation V5.1 Handbook

business process. It can be accessed directly from other J2EE clients such as
other Session Enterprise Java Beans, servlets or J2EE application clients in a
common J2EE manner, JNDI lookup and so on.

To test the invocation of the business process over the Session Enterprise Java
Bean, the Universal Test Client can be used. It allows the use of the Session
Enterprise Java Bean which then interacts with the business process. To start the
Universal Test Client, follow the steps below.

1. Add the generated deploy code to an Integration Test Server Environment; for
details, refer to “Deploying a process to the WebSphere Test Environment” on
page 179.

2. Make sure that on the Configuration tab of the Integration Test Server, the
checkbox Enable universal test client is selected; this is the default for a
new generated Integration Test Server Environment.

3. Start the Integration Test Server Environment.

4. Start the Universal Test Client; right-click the started Integration Test Server
from the pop-up menu and select the item Run universal test client. For
more information about how to use the Universal Test Client, refer to the
WebSphere Studio Application Developer Integration Edition help by clicking
WebSphere Studio — Testing — Testing the enterprise service and its
deploy code — Testing the session bean with the IBM Universal Test
Client.

SOAP binding for deployed business processes
The SOAP binding type is only available for short running business processes.

As for the EJB binding type, for this binding type the facade is implemented as a
Session Enterprise Java Bean, available in a J2EE EJB 2.0 project in the
workspace of WebSphere Studio Application Developer Integration Edition, as
shown in Figure 9-2 on page 290. In addition, a WSDL file is generated
containing binding and service information to provide access to the business
process by any SOAP compatible client.

Chapter 9. Process choreographer: clients 291

|E] Package Exp | o v x
T Referenced Partner
F-Ta WPC_Simple_Process
'{3 WPC_Simple_ProcessEAR.
128 WPC_Simple_ProcessEJB
S8 WPC_Simple_ProcesswWeh
-2 JavaSource
E{Er WwebZankent
-z META-INF
{5 WEE-THF
Bl wsdl
E{Er com
E{B example

Services IPackage Explorer JJ2EE Hierarchy

Figure 9-3 Package Explorer view

In fact, a client using the above-mentioned WSDL file will access the fagade
Session Enterprise Java Bean (through a generic Web Services Router Servlet)
which, finally, interacts with the business process. This is the best deploy option
to allow non-Java clients to interact with the business process.

To test the invocation of the business process using the SOAP binding, the Web
Services Explorer can be used, as follows:

1. Add the generated deploy code to an Integration Test Server Environment, as
discussed in “Deploying a process to the WebSphere Test Environment” on
page 179.

2. Start the Integration Test Server Environment.

3. Right-click the WSDL file that contains the SOAP binding and service
information; see also Figure 9-3 on page 292.

4. In the pop-up menu, select Web Services — Test with Web Services
Explorer.

The Web Services Explorer can now be used to send SOAP messages to the
business process, as shown in Figure 9-4.

292 WebSphere Business Integrator Server Foundation V5.1 Handbook

‘wieh Services Explorer

« = BEEE

4

25! Mavigator &5 4| | [P Actions
5 WSDL Main =
E@ file: fC: fPrograrns / IBM WishiSpheraeStudioworkspace fsimpleProcessComy city string

=l MiceJourneytravelArrangement TypeHT TPService
-8, MiceJourneytravelsrrangerment TypeHT TPServicePortSoapBinding
travelArrangement

zipcode nonMegativelntager
55

~ state string Add Remove

- T

> travel

cityFrom string
cityTo string

dateDeparture dateTime

Browse...

dateReturn dateTime

Erowse. ..

ﬂ Reset .
| i | _'|d

Figure 9-4 Web Services Explorer

JMS binding for deployed business processes