

ibm.com/redbooks

WebSphere Application Server
Enterprise V5 and Programming
Model Extensions
WebSphere Handbook Series

Peter Kovari
Daniel Cerecedo Diaz

Francisco C. H Fernandes
Deena Hassan

Kazuyuki Kawamura
David Leigh

Nay Lin
Denis Masic
Greg Wadley

Peter Xu

Programming Model Extensions in
WebSphere Enterprise V5

Sample application for each
PME

WebSphere Enterprise V5
Runtime

Front cover

WebSphere Application Server Enterprise V5 and
Programming Model Extensions WebSphere
Handbook Series

August 2003

International Technical Support Organization

SG24-6932-00

© Copyright International Business Machines Corporation 2003. All rights reserved.
Note to U.S. Government Users Restricted Rights -- Use, duplication or disclosure restricted by GSA ADP
Schedule Contract with IBM Corp.

First Edition (August 2003)

This edition applies to IBM WebSphere Application Server Enterprise V5.0 for use with Windows
2000, AIX 5.1; and IBM WebSphere Studio Application Developer Integration Edition V5.0 for use
with Windows 2000.

Note: Before using this information and the product it supports, read the information in
“Notices” on page xiii.

Contents

Notices . xiii
Trademarks . xiv

Preface . xv
The team that wrote this redbook. xv
Become a published author . xviii
Comments welcome. xix

Part 1. Introduction . 1

Chapter 1. Introduction . 3
1.1 WebSphere Application Server Enterprise . 4

1.1.1 Simplify build-to-integrate tasks . 4
1.1.2 Accelerate large-scale application development 7

1.2 How this book is organized . 11
1.2.1 Organization of the PME chapters . 12
1.2.2 End-to-end solution implementation . 13

Chapter 2. Planning. 15
2.1 Planning for WebSphere Enterprise . 16
2.2 Using WebSphere Enterprise . 16
2.3 Service oriented architecture. 16

2.3.1 Web services. 18
2.3.2 J2C . 19
2.3.3 Programming Model Extensions . 19
2.3.4 Combining PMEs . 23

Chapter 3. Sample scenario . 25
3.1 Business scenario . 26
3.2 Business drivers . 26
3.3 Use cases . 26
3.4 Business processes . 29

3.4.1 Catalog update business process . 29
3.4.2 Purchase Order (PO) business process . 30

Part 2. Programming Model Extensions . 33

Chapter 4. Process Choreographer development scenarios 35
4.1 Planning . 36

4.1.1 Business processes . 36
© Copyright IBM Corp. 2003. All rights reserved. iii

4.1.2 Why use Process Choreographer? . 38
4.1.3 Comparison with WebSphere MQ workflow 39
4.1.4 Business processes for J2EE programmers 42
4.1.5 Programming model . 44
4.1.6 J2EE programming model. 45

4.2 Design . 47
4.2.1 Elements of a process model . 48
4.2.2 Types of processes and transactions . 50
4.2.3 Life cycle of a process. 56
4.2.4 Undoing service activities: compensation . 56
4.2.5 Process modeling languages and standards 59
4.2.6 External programming interfaces . 60

4.3 Development . 64
4.3.1 Choreographer Web client . 64
4.3.2 Customizing the choreographer Web client 71

4.4 Testing and debugging . 148
4.4.1 Unit test environment . 149

4.5 Staff support . 158
4.6 Sample scenario . 169

Chapter 5. Process Choreographer runtime environment 171
5.1 Process container architecture . 172
5.2 Process container runtime topologies . 176

5.2.1 Stand-alone application server on a single machine (SA) 178
5.2.2 Application servers network deployed with no clustering (ND-noC) 179
5.2.3 Application server clusters in Network Deployment (ND-C) 180
5.2.4 Application server cluster with WebSphere MQ Clustering (MQ-C) 183
5.2.5 Application server cluster and high-availability configuration

(DB-C&MQ-C). 185
5.3 Installing the process container . 186

5.3.1 Resources required by a process container 186
5.3.2 Installing required software components. 188
5.3.3 Process container on a stand-alone topology (SA). 192
5.3.4 Installing process container in a cell topology (ND-noC) 202
5.3.5 Installing process container in topology (ND-C, ND-VS, ND-HS) . . 204

5.4 Staff plug-in provider configuration . 208
5.5 Security considerations . 213

5.5.1 Securing the Process Choreographer resources 213
5.5.2 Process security context . 214
5.5.3 Process Choreographer J2EE security roles 215

5.6 Managing business process applications . 216
5.6.1 Artifacts of a business process application 216
5.6.2 Installing business process applications . 218
iv WebSphere Application Server Enterprise V5

5.6.3 Versioning process models . 219
5.6.4 Starting and stopping process templates . 221
5.6.5 Uninstalling a business process application 222
5.6.6 Editing a business process application . 222
5.6.7 Managing process instances. 223

5.7 Problem determination and troubleshooting . 223
5.7.1 Error messages. 224
5.7.2 Tracing process container . 224
5.7.3 Process audit trail . 225

Chapter 6. Extended Messaging . 227
6.1 Planning . 228

6.1.1 Java Message Service . 228
6.1.2 Extended Messaging. 229
6.1.3 Why use Extended Messaging? . 229

6.2 Design . 230
6.2.1 Messaging patterns. 230
6.2.2 Programming considerations . 233

6.3 Development . 234
6.3.1 Sample scenario . 234
6.3.2 Creating the sample . 235

6.4 Unit test environment . 249
6.4.1 Configure Extended Messaging . 250
6.4.2 Test the sample. 254

6.5 Configuration . 258
6.5.1 Comparison of WebSphere MQ and Embedded Messaging 258
6.5.2 Configuration with JMS Embedded Messaging 259
6.5.3 Configuration with WebSphere MQ as the JMS provider 268

6.6 Deployment . 273
6.7 Transactions and workload management . 276
6.8 Handling late responses . 278

6.8.1 Late response description . 278
6.8.2 Configuration of late response . 280

6.9 Problem determination and troubleshooting . 284
6.10 Security considerations . 285

Chapter 7. Asynchronous Beans . 287
7.1 Planning . 288

7.1.1 What are Asynchronous Beans?. 289
7.1.2 Asynchronous Beans programming interfaces 289
7.1.3 Asynchronous Beans: simple Java objects or EJBs? 299
7.1.4 Asynchronous Beans: programming model 300
7.1.5 When to use Asynchronous Beans . 302
 Contents v

7.2 Design . 303
7.2.1 Base application overview. 304
7.2.2 Asynchronous patterns . 305

7.3 Development - base application . 306
7.3.1 Set up the base application. 306
7.3.2 Understand the base application. 307
7.3.3 Configure the base application . 310
7.3.4 Run the base application. 311

7.4 Development: “Asynchronize” the base application 312
7.4.1 Asynchronously initialize the cache using Work 313
7.4.2 Asynchronously keep cache updated using EventListener. 319
7.4.3 Asynchronously update database using AlarmListener 321
7.4.4 Set up the extended application . 325

7.5 Unit test environment . 325
7.6 Assembly. 328
7.7 Configure. 329
7.8 Deployment . 331
7.9 QoS (Quality of Service) considerations . 333

7.9.1 Multiple WorkManagers . 334
7.9.2 Dynamically tuning WorkManagers at runtime 334

7.10 Security considerations . 335
7.11 An additional sample . 335

7.11.1 Implementation details . 337
7.11.2 Configuration and requirements . 341

Chapter 8. Application Profiling and Access Intent 343
8.1 Overview . 344
8.2 Planning . 349
8.3 Performance report . 354
8.4 Assembly. 362

8.4.1 Creating an Access Intent Policy . 363
8.4.2 Creating an Access Intent . 366
8.4.3 Creating an Application Profile . 371
8.4.4 Creating a Dynamic Query Access Intent . 378
8.4.5 Application Profiling API . 379

8.5 Problem determination and troubleshooting . 381

Chapter 9. Transactional Services . 385
9.1 Transactions overview. 386
9.2 Last Participant Support . 389

9.2.1 Configuration. 390
9.2.2 Troubleshooting . 392

9.3 ActivitySession . 396
vi WebSphere Application Server Enterprise V5

9.3.1 Extended Local Transaction . 397
9.3.2 Extended EJB life cycle. 406
9.3.3 Usage scenarios . 410

9.4 Runtime . 410
9.4.1 Enable the ActivitySession service . 411
9.4.2 Troubleshooting . 411

9.5 JTA extensions . 412
9.6 Samples . 413

Chapter 10. Business Rule Beans . 419
10.1 Planning . 420
10.2 Design . 423

10.2.1 Business Rule Beans framework . 423
10.2.2 Architecture . 424

10.3 Development . 426
10.3.1 Development environment setup . 426
10.3.2 Creating the rule implementor . 435
10.3.3 Creating and configuring the rule . 436
10.3.4 Creating the rule client . 440
10.3.5 Integrating the sample application with the business rule 441

10.4 Unit test environment . 444
10.4.1 Rule unit testing . 444
10.4.2 Testing the sample application with the rule beans enabled. 446

10.5 Assembly. 447
10.6 Deployment . 448

10.6.1 Running the Rule Management Application 449
10.7 Problem determination and troubleshooting . 450
10.8 Performance considerations . 451

10.8.1 Client-side caching . 451
10.8.2 Rule firing location. 453
10.8.3 Creating database indexes . 454

10.9 Security considerations . 455

Chapter 11. Dynamic Query . 457
11.1 Planning . 458

11.1.1 Dynamic Query . 458
11.2 Design . 461
11.3 Development . 463

11.3.1 Dynamic Query Bean . 464
11.3.2 Development environment setup . 467
11.3.3 Development of Dynamic Query sample. 468
11.3.4 Integration of Dynamic Query with sample application 475

11.4 Unit test environment . 476
 Contents vii

11.4.1 Configure application server . 476
11.4.2 Running the sample application . 477

11.5 Assembly. 478
11.5.1 Projects export . 479
11.5.2 Configuring EJB Access Intent for Dynamic Query. 480
11.5.3 Incorporating bpeWebclient.war . 481

11.6 Configuration . 482
11.6.1 Installing query.ear . 482
11.6.2 Application class loader policy configuration. 483

11.7 Deployment . 483
11.8 Performance considerations . 484

11.8.1 Transactions and Dynamic Query. 484
11.9 Security considerations . 486

Chapter 12. Startup Bean . 489
12.1 Introduction . 490

12.1.1 Why use Startup Beans? . 490
12.2 Design . 490
12.3 Development . 491
12.4 Unit test environment . 493
12.5 Assembly. 493
12.6 Development . 496

12.6.1 Sample scenario . 496
12.7 Configuration . 502
12.8 Deployment . 502
12.9 Runtime environment . 502

12.9.1 Priorities when using multiple Startup Beans 504
12.9.2 Scalability . 506

12.10 Problem determination and troubleshooting . 506

Chapter 13. Scheduler service . 509
13.1 Introduction . 510
13.2 Design . 510
13.3 Development . 511

13.3.1 Scheduler API . 511
13.3.2 Steps for using the Scheduler service. 511

13.4 Unit test environment . 516
13.5 Assembly. 516
13.6 Building and tools . 517
13.7 Sample scenario . 517
13.8 Configuration . 527
13.9 Deployment . 531
13.10 Scheduler service runtime . 531
viii WebSphere Application Server Enterprise V5

13.11 Problem determination and troubleshooting . 532
13.12 Performance monitoring . 534
13.13 Security considerations . 536

Chapter 14. Object pools . 537
14.1 Planning . 538
14.2 Design . 539
14.3 Development . 539

14.3.1 Object Pools API . 540
14.3.2 Steps for using object pools . 542

14.4 Unit test environment . 543
14.5 Assembly. 543
14.6 Sample application . 544
14.7 Configuration . 552
14.8 Runtime environment . 554
14.9 Problem determination and troubleshooting . 555
14.10 Performance monitoring . 555

Chapter 15. Shared Work Area service . 559
15.1 Planning . 560
15.2 Design . 561
15.3 Development . 562

15.3.1 Work Area API . 563
15.3.2 Steps for using the Shared Work Area service 564

15.4 Unit test environment . 568
15.5 Sample application . 568
15.6 Configuration . 580

15.6.1 Shared Work Area service configuration. 581
15.6.2 Shared work area client properties . 581

15.7 Problem determination and troubleshooting . 582

Chapter 16. Internationalization (i18n) service . 583
16.1 Planning . 584

16.1.1 The traditional solutions and the limitations 585
16.1.2 The Internationalization service solution . 585

16.2 Design . 586
16.2.1 Internationalization context . 586
16.2.2 Internationalization type . 588

16.3 Development . 591
16.3.1 The internationalization context API . 591
16.3.2 Using the Internationalization service . 594
16.3.3 Enhanced Internationalization Service . 596

16.4 Unit test environment . 598
16.5 Assembly. 599
 Contents ix

16.5.1 Specify the internationalization type . 599
16.5.2 Specify the container internationalization attribute 601

16.6 Sample scenario for the EJB client . 605
16.6.1 Description . 605
16.6.2 Prerequisites . 606
16.6.3 Develop . 606

16.7 Sample scenario for the Web client. 618
16.7.1 Implementation details . 620
16.7.2 Configuration and requirements . 621

16.8 Configuration . 622
16.9 Deployment . 623
16.10 Problem determination and troubleshooting . 623
16.11 Install Enhanced Internationalization Service Technology Preview . . 624

Chapter 17. WebSphere Enterprise runtime . 627
17.1 Introduction . 628
17.2 Architecture . 628

17.2.1 WebSphere Application Server V5 base . 629
17.2.2 WebSphere Application Server Enterprise 634

17.3 Administration . 643
17.4 Workload management . 646

17.4.1 Scalability and high availability basics . 647
17.5 Where to find more information . 649

Part 3. Appendixes . 651

Appendix A. Installation and configuration . 653
Planning for installation . 654
Installations . 654

Install Enterprise and base at the same time . 655
Install Enterprise to the existing base . 658
Install Enterprise to the existing Network Deployment 661

Troubleshooting the installation . 663
Configuration . 664

Appendix B. Sample scenario . 665
Sample application . 666
User registry . 666
Database . 666
Development environment . 667

Importing the sample application . 667
Importing the extended sample application. 669
Configuring the test environment . 670
Additional configurations for the extended sample application 672
x WebSphere Application Server Enterprise V5

Running J2EE clients in WebSphere Studio . 674
Runtime environment . 675

Configuring the runtime environment . 675
Deploying the base sample application. 677
Uninstall the base sample . 679
Deploying the extended sample application . 679
Deploy the Universal Test Client (optional) . 681

Appendix C. Additional material . 683
Locating the Web material . 683
Using the Web material . 683

System requirements for downloading the Web material 684
How to use the Web material . 684

Abbreviations and acronyms . 685

Related publications . 687
IBM Redbooks . 687

Other resources . 687
Referenced Web sites . 688
How to get IBM Redbooks . 689

IBM Redbooks collections. 689

Index . 691
 Contents xi

xii WebSphere Application Server Enterprise V5

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult
your local IBM representative for information on the products and services currently available in your area.
Any reference to an IBM product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product, program, or service that
does not infringe any IBM intellectual property right may be used instead. However, it is the user's
responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document.
The furnishing of this document does not give you any license to these patents. You can send license
inquiries, in writing, to:
IBM Director of Licensing, IBM Corporation, North Castle Drive Armonk, NY 10504-1785 U.S.A.

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer
of express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made
to the information herein; these changes will be incorporated in new editions of the publication. IBM may
make improvements and/or changes in the product(s) and/or the program(s) described in this publication at
any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in any
manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of the
materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Information concerning non-IBM products was obtained from the suppliers of those products, their published
announcements or other publicly available sources. IBM has not tested those products and cannot confirm
the accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on
the capabilities of non-IBM products should be addressed to the suppliers of those products.

This information contains examples of data and reports used in daily business operations. To illustrate them
as completely as possible, the examples include the names of individuals, companies, brands, and products.
All of these names are fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:
This information contains sample application programs in source language, which illustrates programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs in
any form without payment to IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating platform for which the
sample programs are written. These examples have not been thoroughly tested under all conditions. IBM,
therefore, cannot guarantee or imply reliability, serviceability, or function of these programs. You may copy,
modify, and distribute these sample programs in any form without payment to IBM for the purposes of
developing, using, marketing, or distributing application programs conforming to IBM's application
programming interfaces.
© Copyright IBM Corp. 2003. All rights reserved. xiii

Trademarks
The following terms are trademarks of the International Business Machines Corporation in the United States,
other countries, or both:

Redbooks (logo)™
^™
e-business on demand™
ibm.com®
iSeries™
xSeries®
zSeries®
AIX®

Cloudscape™
CrossWorlds®
CICS®
Domino™
DB2 Universal Database™
DB2®
Holosofx®
Informix®

IBM®
IMS™
Lotus®
MQSeries®
Redbooks™
TCS®
TME®
WebSphere®

The following terms are trademarks of other companies:

Intel, Intel Inside (logos), MMX, and Pentium are trademarks of Intel Corporation in the United States, other
countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the
United States, other countries, or both.

Java and all Java-based trademarks and logos are trademarks or registered trademarks of Sun
Microsystems, Inc. in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

SET, SET Secure Electronic Transaction, and the SET Logo are trademarks owned by SET Secure
Electronic Transaction LLC.

Other company, product, and service names may be trademarks or service marks of others.
xiv WebSphere Application Server Enterprise V5

Preface

This IBM® Redbook provides system administrators, developers and architects
with the knowledge needed to implement WebSphere® Application Server V5.0
Enterprise runtime environment, to design, develop, assemble and deploy
enterprise applications, and to perform ongoing management of the WebSphere
environment.

Part 1, “Introduction” explains how the book is organized to cover the WebSphere
Enterprise product. It helps you to understand the product line for planning. This
part gives a broad description of the sample scenario used for the book on the
business requirements level.

Part 2, “Programming Model Extensions” is the major part of the book. It covers
all the Programming Model Extensions for WebSphere Application Server V5.0
Enterprise. Each extension is discussed in its own chapter starting with planning
and design, through development and deployment to the configuration and
administration. The book follows the J2EE roles and actions to be taken in an
end-to-end solution design.

The Appendixes give detailed steps for installing and configuring WebSphere
Application Server V5.0 Enterprise.There are also step-by-step instructions for
configuring and deploying the sample application that is shipped with the book.

The team that wrote this redbook
This redbook was produced by a team of specialists from around the world
working at the International Technical Support Organization, Raleigh Center.
© Copyright IBM Corp. 2003. All rights reserved. xv

The team who wrote the book (left to right), top line: Denis Masic, Nay Lin, Daniel Cerecedo Diaz, Greg
Wadley, Francisco C Fernandes, Kazuyuki Kawamura, bottom line: Deena Hassan, David Leigh, Peter
Kovari, Peter Xu

Peter Kovari is a WebSphere Specialist at the International Technical Support
Organization, Raleigh Center. He writes extensively about all areas of
WebSphere. His areas of expertise include e-business, e-commerce, security,
Internet technologies and mobile computing. Before joining the ITSO, he worked
as an IT Specialist for IBM in Hungary.

Daniel Cerecedo Diaz is an IT Architect working in IBM Global Services in
Madrid. He has four years of experience in J2EE development and Systems
Integration. He holds a Master’s degree in Computer Science and is a Sun
Certified Programmer for the Java™ 2 Platform. His areas of expertise include
J2EE architecture, object-oriented technologies and application design.

Francisco C. H Fernandes is a Senior IT Specialist in IBM Brasil. He has 28
years of experience in the IT industry. For the last 10 years he has worked with
object-oriented application development in OO languages such as C++,
SmallTalk, and Java. Currently he is working in the Technical Pre-sales Software
Group with WebSphere product.

Deena Hassan is a Software Engineer at the Cairo Technology Development
Center (CTDC), IBM Egypt. She is a member of the WBI Modeler development
team. She has experience in the design and development of enterprise
applications. She holds a Bachelor’s degree in Computer Science from the
American University in Cairo, and is about to receive her Master’s degree in the
field of Artificial Neural Networks. Her areas of expertise include object-oriented
design, Enterprise Java programming, e-commerce solutions, pervasive
xvi WebSphere Application Server Enterprise V5

computing, and WebSphere products. She also co-authored The XML Files:
Development of XML/XSL Applications using WebSphere Studio Version 5,
SG24-6586.

Kazuyuki Kawamura is a Software Engineer for Hitachi Software in Tokyo,
Japan. He has four years of experience in server-side Java and J2EE
technologies. His areas of expertise include Java, Web services and
WebSphere. Currently, he is working at the IBM WebSphere Enterprise Bringup
Lab in Rochester as a trainee. He holds a master's degree in Administration
Engineering from Keio University, Japan.

David Leigh is an Advisory Software Engineer in IBM Software Group's
WebSphere Platform System House organization, located in Research Triangle
Park, North Carolina. His areas of expertise include the Process
Choreographer, application and server security, high availability, monitoring, IBM
AIX®, and Linux.

Nay Lin is an Advisory Software Engineer on the IBM WebSphere Enablement
Team in the United States. He has three years of hands-on expertise in the
WebSphere software platform, having engaged in many pre-sales consulting
engagements, proofs of concept, and resolution of critical situations on
WebSphere Application Server on z/OS and distributed systems, WebSphere
Enterprise Programming Model Extensions, WebSphere application
development with WebSphere Studio Application Developer Integration Edition.
Before joining IBM in 2000, he had eight years of experience as a software
engineer involved in object-oriented analysis and design, embedded and
real-time software development, and management of software processes.

Denis Masic is an Advisory IT Specialist working in IBM Global Services
Slovenija as a member of the EMEA WebSphere Back Office team. Before
joining IBM two years ago, he worked as a C software developer. He is an IBM
certified system expert for WebSphere. He holds a BsC in Computer Science
from the University of Ljubljana. His computer career started 16 years ago. His
areas of expertise are computer reliability and optimization methods.

Greg Wadley is a Sr. Certified IT Specialist in Kennedale, TX. He provides
technical sales support for WebSphere Application Server, WebSphere Portal
Server, and WebSphere Studio Application Developer. Greg has worked with
IBM since 1986 in a variety of roles, including development, presales technical
support, and architecture.

Peter Xu is a Consulting I/T Specialist with IBM Software Services for the
WebSphere group, helping customers deploy IBM products into their
organizations. He provides consulting services, education, and mentoring on
J2EE technologies, and specifically WebSphere and WebSphere Studio
products to Fortune 500 clients. Peter is a certified WebSphere Enterprise
 Preface xvii

Developer and System Expert. He holds a Master’s degree in Computer Science
from the State University of New York.

Thanks to the following people for their contributions to this project:

Cecilia Bardy
Gail Christensen
Linda Robinson
Jeanne Tucker
Margaret Ticknor
International Technical Support Organization, Raleigh Center

William Alward
Logan Colby
Ryan Cox
Eric Erpenbach
Eric Herness
Chris D Johnson
Richard Johnson
Martin Keen
Alex Koutsoumbos
Yiu Cho Lau
Billy Newport
Steve Parsons
Ruth Schilling
Lin Sharpe
Jeff Stratford
Phil Wakelin
Sherri Wayne
Gunnar Wilmsmann

Special thanks to the WebSphere Enterprise Bringup Lab in Rochester for the
invaluable help during the project.

Become a published author
Join us for a two- to six-week residency program! Help write an IBM Redbook
dealing with specific products or solutions, while getting hands-on experience
with leading-edge technologies. You'll team with IBM technical professionals,
Business Partners and/or customers.

Your efforts will help increase product acceptance and customer satisfaction. As
a bonus, you'll develop a network of contacts in IBM development labs, and
increase your productivity and marketability.
xviii WebSphere Application Server Enterprise V5

Find out more about the residency program, browse the residency index, and
apply online at:

ibm.com/redbooks/residencies.html

Comments welcome
Your comments are important to us!

We want our Redbooks™ to be as helpful as possible. Send us your comments
about this or other Redbooks in one of the following ways:

� Use the online Contact us review redbook form found at:

ibm.com/redbooks

� Send your comments in an Internet note to:

redbook@us.ibm.com

� Mail your comments to:

IBM Corporation, International Technical Support Organization
Dept. HZ8 Building 662
P.O. Box 12195
Research Triangle Park, NC 27709-2195
 Preface xix

http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/
http://www.ibm.com/redbooks/
http://www.ibm.com/redbooks/
http://www.redbooks.ibm.com/contacts.html

xx WebSphere Application Server Enterprise V5

Part 1 Introduction

Part 1
© Copyright IBM Corp. 2003. All rights reserved. 1

2 WebSphere Application Server Enterprise V5

Chapter 1. Introduction

The first chapter of this book consists of two parts.

The first section is a high-level summary of the WebSphere Enterprise V5
product line, the WebSphere Application Server V5, and WebSphere Studio
Application Developer Integration Edition V5 integration, including the end-to-end
solution design, development, and runtime.

The second section tells how the book is organized, in order to give a better
understanding of what is discussed in subsequent chapters.

1

© Copyright IBM Corp. 2003. All rights reserved. 3

1.1 WebSphere Application Server Enterprise
Together, WebSphere Application Server Enterprise, Version 5 and WebSphere
Studio Application Developer Integration Edition for Linux and Windows®,
Version 5 deliver a next-generation application server and development
environment designed to deliver on demand e-business applications by offering
the following:

� Simplify build-to-integrate tasks: Help customers to reduce IT complexity,
reuse existing resources, and automate business processes through a
powerful but simplified build-to-integrate framework.

� Accelerate large-scale application development; Leverage the latest
innovations that build on today's Java™ 2 Platform, Enterprise Edition (J2EE)
standards to deploy a high performance e-business infrastructure designed to
cut costs, build customer loyalties, promote business agility, and gain a
competitive advantage.

� Enable real-time application flexibility: Take advantage of dynamic
application support that allows customers to build applications that can adapt
on demand to the ever-changing world of e-business.

1.1.1 Simplify build-to-integrate tasks
Companies today face a growing problem as they begin to explore new
e-business initiatives. The past 40 years of IT evolution have left them with an
enterprise-computing infrastructure that is heterogeneous, widely distributed,
and increasingly complex.

Business logic and application data are scattered throughout the organization
across multiple software assets. Much of the business logic resides in databases,
packaged applications (such as Enterprise Resource Planning (ERP) systems),
or in back-end systems (such as IBM CICS®) offering varying levels of
transaction support. Other business logic can be found in existing Java and J2EE
applications and Web services. Furthermore, companies face constant pressure
to create new applications in order to cut costs, build customer loyalties, and gain
a competitive advantage.

Instead of reinventing the wheel with every new application they build, companies
need a way to reuse their existing software assets and to leverage the power of
Web services in the development of new J2EE-based applications.

WebSphere Application Server Enterprise and WebSphere Studio Application
Developer Integration Edition help companies to reduce IT complexity, reuse
existing resources, and automate business processes through a powerful but
simplified build-to-integrate framework.
4 WebSphere Application Server Enterprise V5

� The service oriented architecture reduces the complexity of large-scale
application development and promotes reuse by offering a standard way of
representing and interacting with virtually all software assets.

� Integrated workflow increases development productivity and promotes
reuse by enabling developers to visually choreograph interactions between
software assets.

� Advanced transactional connectivity capabilities help developers avoid
custom coding by providing support for the many challenges related to
integrating existing software assets with a J2EE environment.

Service oriented architecture (SOA)
Building new applications that integrate business logic and application data
within the organization and with suppliers, partners, and customers is critical to
the success of today's organizations. However, this integration remains complex,
expensive, and risky.

A service oriented architecture leverages open standards to represent virtually
all software assets as services, including legacy applications, packaged
applications, J2EE components, or Web services. This approach provides
developers with a standard way of representing and interacting with software
assets without having to spend time working with unique interfaces and low-level
APIs. Furthermore, individual software assets become building blocks that can
be reused in developing other applications.

Using this new service-oriented approach to integration, WebSphere Application
Server Enterprise and WebSphere Studio Application Developer Integration
Edition help reduce the complexity, cost, and risk of integration by providing a
single, simple architectural framework based on Web services in which to build,
deploy, and manage application functionality.

Integrated J2EE-based workflow
Once a developer has created services out of an organization's software assets,
the next logical step is to use those assets as part of a business process.
Integrated J2EE workflow capabilities offer developers intuitive, flow-based
development tools to take existing software assets and quickly define how those
assets are used within a J2EE-based application.

For example, the visual workflow tools can be used to combine inventory
information from a packaged ERP application and J2EE components from a
previously built customer-facing application with new business logic to create a
new Web-based order entry application. The reach of the application can then be
extended by exposing it as a Web service for use by business partners or to allow
manual intervention for exception handling. The result is faster development of
 Chapter 1. Introduction 5

new applications, improved consistency, and lower costs through the reuse of
existing IT investments.

� Visual process editor (choreographer): Provides intuitive drag-and-drop
tools to easily compose and choreograph application interactions and
dynamic workflows among J2EE components, Web services, existing
applications, and human activities. Developers can quickly and easily build,
debug, and deploy complex applications using powerful workflow tools and
advanced messaging capabilities to streamline and automate business
processes. New services can be added, or existing services modified without
affecting the other components in the business process.

� Human interaction: Offers support for including activities that require a
person to perform a task as a step in an automated business process.
Specialized staff support allows the dynamic assignment of responsibilities
based on existing organizational definitions. Worklists can be created to let
the designated recipient know that their action is required.

� Event triggering: Offers support for including asynchronous events such as
Web services or human interactions to be included as part of business
processes. Events can be used to trigger the start of a business process, or a
business process can be configured to stop and wait for an external event to
occur before resuming the process.

� Compensation pairs: Provides transaction “rollback” support for
long-running, loosely coupled business processes that cannot be undone
automatically by the application server. For example, the compensating
transaction for an order that has already started manufacturing might be to
put the complete item into inventory (rather than disassembling the item).
Compensation pairs allow you to define, for each step in your business
process, the associated “undo” service.

� Flexible workflow design: Provides developers with the ability to design
workflows using a top-down, bottom-up, or meet-in-the-middle approach.
Using top-down, developers can create skeleton processes that choreograph
the sequence of events in a workflow without worrying about the underlying
implementation. Building from the bottom-up, developers first create the
individual components and then use them as building blocks to define a
workflow. Meet-in-the-middle offers the flexibility of using both approaches at
the same time.

Advanced transactional connectivity
Since its inception, the J2EE platform has made huge strides in providing
enterprise-level support for integration, including support for messaging, security,
and database access. The Java Connector Architecture (JCA) 1.0 standard
begins to offer support for integrating with packaged and legacy applications.
However, due to lack of adherence to data standards and limited transactional
6 WebSphere Application Server Enterprise V5

support, integrating with most back-end resources and legacy data is still
complex, expensive, and risky.

WebSphere Application Server Enterprise and WebSphere Studio Application
Developer Integration Edition offer advanced transactional capabilities to help
developers avoid custom coding by providing support for the many challenges
related to integrating existing software assets with a J2EE environment.

� Dynamic application adapter support: Offers the ability to build and deploy
rich, open standards-based application adapters for popular enterprise
information systems such as SAP and IBM CICS.

� Last Participant Support: Provides automated coordination for transactions
that include two-phase commit resources and a single one-phase commit
resource. This support eliminates hand coding in this scenario and allows you
to include one-phase commit resources, common for many legacy and
package applications, in real transactions.

� Activity session services: Provide the ability to extend the scope of, and
group, multiple local transactions. These local transactions can then be
committed based on deployment criteria or through explicit program logic.
This ability reduces the complexity of dealing with commitment rules and
limitations associated with one-phase commit resources.

� CORBA C++ Software Development Kit (SDK): Used for integrating various
C++ assets. This lets C++ clients invoke J2EE components using CORBA
technology and also lets WebSphere applications incorporate C++ assets
behind CORBA wrappers.

1.1.2 Accelerate large-scale application development
Companies today strive to respond with flexibility and speed to customer
demands, market opportunities, and external threats. However, for most
companies, the time, cost, and complexity of large-scale application development
make this goal extremely difficult to achieve.

WebSphere Application Server Enterprise and WebSphere Studio Application
Developer Integration Edition leverage the latest innovations that build on today's
J2EE standards to help customers deploy a high performance e-business
infrastructure designed to cut costs, build customer loyalties, promote business
agility, and gain a competitive advantage.

� Optimize application performance: Use powerful Application Profiling
techniques, sophisticated deployment management, and advanced support
for Web services to optimize performance and minimize downtime for
applications that require highly available, high volume, multi-server
environments.
 Chapter 1. Introduction 7

� Enable “next generation” development by leveraging the latest innovations
that build on today's J2EE standards to achieve greater control over
application development, execution, and performance than ever possible
before.

� Increase development productivity by taking advantage of supported,
pre-built, J2EE based solutions to many of today's biggest programming
challenges.

Optimize application performance
Increasingly, organizations are using Web applications both internally and
externally to incorporate customers, partners, and suppliers into their business
processes. For these mission-critical processes, application performance can
make the difference between competitive advantage and failure to compete.
WebSphere Application Server Enterprise and WebSphere Studio Application
Developer Integration Edition help you optimize performance and minimize
downtime for applications that require highly available, high volume, multi-server
environments through powerful Application Profiling techniques, sophisticated
deployment management, and advanced support for Web services.

� Application Profiling: Delivers powerful new capabilities that allow you to
carefully optimize the performance of applications without any impact on
source code. This capability offers a mechanism for specifying the Access
Intent of persistent Entity EJBs allowing them to interact with the runtime
infrastructure, such as a database, differently depending on the Access Intent
(for example read vs. update) of the application that calls it. The result is
unprecedented control in defining strategies that dynamically control
concurrency, prefetch, and read-ahead.

� Deployment manager: Addresses the needs of highly available, high
volume, multi-server environments through enhanced workload management
and dynamic caching, centralized security capabilities and performance
management tools that distribute workload across multiple servers through
sophisticated load balancing and clustering capabilities. The deployment
manager also enables isolation of application servers to avoid single points of
failure and provides first failure data capture to report and analyze problems
as they occur.

� Advanced Web services support: Offers advanced support for Web
services, including a UDDI Registry that acts as a repository that allows
storage of business units that describe basic Web services, and a Web
Services Gateway that enables Web services invocation by users from
outside the firewall with the benefit of robust security protection. Advanced
Web services support also extends the Web Services Gateway by providing a
programming model that allows you to use the gateway in large-scale Web
services implementations to serve as a bi-directional control point for critical
tasks such as validation, logging, transformation, auditing, and metering.
8 WebSphere Application Server Enterprise V5

Enables “next generation” development
Ironically, J2EE's main advantage, its specification, can also be its biggest
disadvantage for developers building applications that require them to have more
control over their applications than the J2EE specifications provides. For those
developers, WebSphere Application Server Enterprise and WebSphere Studio
Application Developer Integration Edition enable “next generation” development
by leveraging the latest innovations that build on today's J2EE standards to
provide greater control over application development, execution, and
performance than ever possible before.

� Asynchronous beans: Offer exceptional performance enhancements for
resource-intensive tasks by enabling a single request to be executed as
multiple tasks or threads processed in parallel within the J2EE environment.
Asynchronous scheduling facilities can also be used to process parallel
processing requests in “batch mode” at a designated time.

� Startup Beans: Allow business logic to be automatically executed when an
application starts or stops. For example, they might be used to pre-fill
application specific caches, initialize application level connection pools, or
perform other application-specific initialization and termination procedures.

� Scheduler service: Helps minimize IT costs and increase application speed
and responsiveness by maximizing utilization of existing computing
resources. The scheduler service provides the ability to process workloads
using parallel processing, set specific transactions as high priority, and
schedule less time-sensitive tasks to process during low traffic off-hours.

� Object pools: Increase application performance by allowing instances of
objects to be reused, reducing the overhead associated with the instantiating
and garbage collecting the objects. Creating an object pool allows an
application to obtain an instance of a Java object and return the instance to
the pool when it has finished using it.

Increase development productivity
The time required to roll out new applications is a key concern across all
industries. One way to vastly improve developer productivity is to reduce the
need for handcrafted solutions that can be time-consuming, costly, and difficult to
maintain. WebSphere Application Server Enterprise and WebSphere Studio
Application Developer Integration Edition were designed to improve developer
productivity by leveraging the latest innovations that build on today's J2EE
standards to provide supported, pre-built solutions to many of these biggest
challenges.

� Extended Messaging: Allows you to quickly create applications that integrate
with other systems through a messaging infrastructure. This extended
messaging capability offers automated support for outbound (as well as
inbound) messaging, allowing you to focus on business logic instead of
 Chapter 1. Introduction 9

complex messaging APIs. Handcrafted Java Message Service (JMS) code is
no longer required. WebSphere Application Server Enterprise includes
WebSphere MQ® and WebSphere MQ Event Broker to further extend your
messaging infrastructure to take advantage of both products' qualities of
service and to enable seamless integration with existing MQ infrastructures.

� Internationalization service: Allows you to automatically recognize the
calling client's time zone and location information so your application can act
appropriately. This technology allows you to deliver to each user, around the
world, the right date and time information, the appropriate currencies and
languages, and the correct date and decimal formats.

� Work areas: Provides a “global variable”-like ability to efficiently share
information across a distributed application. For example, you might want to
add profile information as each customer enters your application. By placing
this information in a work area, it will be available throughout your distributed
application and eliminate the need to hand-code a solution or to read and
write information to a database.

� Cheat sheets: Make new or complex tasks easy by providing a checklist for
common development patterns. The cheat sheet invokes each step in the
checklist and provides detailed online help for each step, as you need it.

� Best-in-class IDE: Included with WebSphere Studio Application Developer
Integration Edition is a fully integrated application development environment
for creating and maintaining J2EE applications and Web services. Built on
Eclipse V2 innovations and written to J2EE specifications, WebSphere
Application Developer Integration Edition helps optimize and simplify J2EE
application development with best practices, visual tools, templates, code
generation, and the most comprehensive development environment in its
class.

Enable real-time application flexibility
Maintaining competitive advantage in today's changing business environment
requires companies to respond quickly to customer demands, market
opportunities, and external threats. Very often this means making frequent
updates to e-business applications to reflect changes in market conditions or to
provide access to strategic information. Unfortunately, these updates usually take
a great deal of time: time to bring down the application, time to make
programming changes, time to test the new application, and time to redeploy.

To enable real-time application flexibility, WebSphere Application Server
Enterprise and WebSphere Studio Application Developer Integration Edition offer
dynamic application support to enable you to build applications that can easily
adapt to the ever-changing world of e-business on demand™.
10 WebSphere Application Server Enterprise V5

� Business rule beans: Offer a powerful real-time framework for defining,
executing, and managing business rules that encapsulate business policies
that vary based on changes in the business environment. For example, a
simple business rule might be, “If a customer's shopping cart is greater than
$X, then offer a Y% discount.” Once the business rule is defined, a developer
or a business analyst can update the business rule at runtime using a
straightforward user interface without the need to bringing the application or
server down.

� Dynamic Query service: Delivers unprecedented application flexibility by
allowing you to dynamically build and submit queries that select, sort, join,
and perform calculations on application data at runtime. Dynamic Query
service provides the ability to pass in and process Enterprise JavaBeans
query language (EJB QL) queries at runtime eliminating the need, as with
today's EJB 2.0 standards, to hard-code required queries into the Deployment
Descriptors during development.

1.2 How this book is organized
This book covers the WebSphere Application Server Enterprise V5 runtime
environment and Programming Model Extensions (PME). The book discusses
the runtime environment specific to WebSphere Enterprise. The base application
server is discussed in other books.

This book builds upon the following published Redbooks on WebSphere
Application Server runtime:

� IBM WebSphere Application Server V5.0 System Management and
Configuration: WebSphere Handbook Series, SG24-6195. This book has all
the information related to system management and configuration for the base
application server.

� WebSphere V5.0 Applications: Ensuring High Performance and Scalability,
SG24-6198. This book covers the performance and availability topics for the
base application server using the WebSphere Application Server V5 Network
Deployment (ND) package.

� IBM WebSphere V5.0 Security WebSphere Handbook Series, SG24-6573.
This book discusses the security-related topics for the base application
server.

A major part of the Enterprise application server are the Programming Model
Extensions (PME). These following steps in working with these extensions are
covered in detail in this book:

� Planning
� Design
 Chapter 1. Introduction 11

� Development, unit test
� Assembly
� Configuration
� Deployment
� Troubleshooting

The primary development environment for WebSphere Application Server
Enterprise V5 is the WebSphere Studio Application Developer Integration Edition
V5. WebSphere Studio IE provides the integrated development environment and
a test environment for the Enterprise application server. WebSphere Studio IE
also provides tool support for some of the PMEs. Although there is no tool
support for every one of the PMEs in WebSphere Studio IE, the WebSphere V4
Enterprise test environment is available, which makes the development for all the
PMEs available.

Since this book is focusing on the runtime and the Programming Model
Extensions for WebSphere Enterprise, there is another redbook that covers the
development environment: WebSphere Studio IE, see the details below.

This book builds upon the following published redbooks on application
development for WebSphere Application Server:

� Exploring WebSphere Studio Application Developer Integration Edition 5.0,
SG24-6200. The primary book for development in the WebSphere Studio IE
environment.

� WebSphere Version 5 Web Services Handbook, SG24-6891. Web Services is
a major part of WebSphere Application Server Enterprise, this books provides
an end-to-end coverage of Web Services.

� WebSphere Application Server Enterprise Edition 4.0: A Programmer's
Guide, SG24-6504. The previous version of WebSphere Application Server
Enterprise is documented in this book. Some of the PMEs have not changed
much since the last version. Therefore this book can still be a good source of
information.

1.2.1 Organization of the PME chapters
Each of the Programming Model Extensions (PMEs) is documented in a
separate chapter. The chapters are organized in two major parts:

� Design and development
� Runtime and maintenance
12 WebSphere Application Server Enterprise V5

The first part covers the following topics:

1. In the planning section you will find the answer to the question: What is this
PME good for? It helps to decide how to use a certain PME in a solution, and
how to find the solution using the PME for a certain business need.

2. The design section shows how the PME fits into the design. It also discusses
the design considerations related to the PME.

3. The development section discusses the development process using the PME
for the sample application. The development environment used for this part is
WebSphere Studio IE.

The unit test and the configuration of the unit test environment is an integral
part of the development section.

4. The assembly part shows how to use the Application Assembly Tool to make
minor changes to the application regarding the PMEs.

5. The configuration section walks through the runtime configuration steps for
the PME using the sample application.

6. The deployment section uses the sample application to show the deployment
procedure for the runtime.

7. The section on problem determination and troubleshooting lists the common
problems that can be avoided.

8. Sections on security and transaction considerations are included to certain
PMEs only where it makes sense.

1.2.2 End-to-end solution implementation
Figure 1-1 on page 14 is a representation of the WebSphere Enterprise
framework, including products and implementation steps. The figure has three
main object types:

� The blue rectangles represent the products.

� The yellow diamonds represent the actions you can take to implement the
solution.

� The magenta ovals represent the application as it goes through the
implementation.
 Chapter 1. Introduction 13

Figure 1-1 WebSphere Enterprise framework

WebSphere Studio Application
Developer Integration Edition
Integrated Development Environment
(IDE)

WebSphere V5 Enterprise
Test Environment

Tools

Process Choreographer

Extended messaging

Application

workspace

WebSphere Application Server
Enterprise
Runtime Environment

Enterprise extensions and
services

Application

Application Server

WebSphere Application Server
Network Deployment

Rational Tools

Application

Concept

Business/IT
needs

Application

Application

WebSphere Enterprise cell

deploy

test &
debug

remote
debug

develop

configure

planning

design

Application Assembly Tool

Application

assemble

deploy
export
14 WebSphere Application Server Enterprise V5

Chapter 2. Planning

This chapter provides information to help you plan your solution using
WebSphere Application Server Enterprise V5.

There are mainly two approaches to planning:

� No decision was made regarding the application server and information is
needed to find the right solution for the business and technical problems.

� A decision was made to use WebSphere Enterprise and information is
needed to plan the details of the solution.

This chapter takes the first approach and helps to find the answer to the business
and technical problems in the WebSphere Enterprise domain.

On the other hand, in the rest of the book you will find answers to the questions
that will arise when following the second approach.

2

© Copyright IBM Corp. 2003. All rights reserved. 15

2.1 Planning for WebSphere Enterprise
The WebSphere Enterprise application server is based on the base WebSphere
Application Server, which is J2EE 1.3 certified and implements the standard
specifications. WebSphere Enterprise adds new functions and services to the
Application Server. Some of the functions are simply Programming Model
Extensions that help to create better solutions.

On the other hand, some extensions are major changes to the Application
Server. These changes are outside of the J2EE specification, although some of
the extensions already exist as proposals or are under evaluation to extend the
J2EE specification.

J2EE is an open standard and as such is open to extensions. When one chooses
to use the enterprise extensions for an implementation, then the Application
Server does not strictly follow the standard. On the other hand, if the
implementation must adhere to the strict standards, the application server has to
be the base server without proprietary extensions.

2.2 Using WebSphere Enterprise
There are fundamental technologies in WebSphere Enterprise that enable the
application server to be used in a demanding enterprise environment where the
base application server and standard J2EE functions cannot fulfill the
requirements.

2.3 Service oriented architecture
Service oriented architecture (SOA) can be broadly described as a logical
collection of interacting services offering well-defined interfaces to potential
consumers. A service is generally defined as a course-grained, self-described
and discoverable software entity that exists as a single instance and interacts
with applications and other services through a loosely coupled (often
asynchronous), message-based communication model. Simply put, SOA allows
software assets to be presented as services regardless of their programming
language, operating system (OS) platform, or geographic or organizational
location.
16 WebSphere Application Server Enterprise V5

Figure 2-1 Web services architecture

Web services are a well-known example of such an architecture. Web services
are self-contained, self-describing, modular business applications that can be
published, located and invoked over a network, typically the Web. They are
based on the industry standards to describe, to publish and discover services,
and to communicate. This service oriented architecture enables applications to
interoperate across organizational boundaries in a manner independent of
platform and programming language. Web Services Description Language
(WSDL) provides an industry-standard way of describing Web services.

A WSDL description of a Web service has:

� Interface information: Port type, the operations that the port type supports,
and the structure (parts) of the input and output messages.

� Binding information: Binding interface to concrete implementations, that is,
mapping of operations to methods and message parts to data types of
various implementations (EJB, Java, SOAP or JMS).

� Service information: Map service name to the ports that implement the
bindings by which the port types and operations can be reached (location of
the EJB, Java class, RPC router, or JMS destinations and factories).

Note that while WSDL is well known in association with Web services
implemented with SOAP (Simple Object Access Protocol) over HTTP, it can be
extended to describe other types of service implementations and protocols, such
as RMI/IIOP to invoke Java and EJB services, and JMS to invoke asynchronous
service.
 Chapter 2. Planning 17

In order to provide a programming environment where we can easily incorporate
services into a business process, we need a form of service integration bus or an
invocation framework so that services can be invoked transparently. WebSphere
Application Server provides runtime environment based on the Web Services
Invocation Framework (WSIF) to invoke these services. The WSIF is a simple
Java API for invoking Web services independent of transport protocols or service
environments. It is an API that provides binding-independent access to any
WSDL described service. It allows stubless or completely dynamic invocation of
Web service, based upon examination of the metadata about the service from
WSDL at runtime. It also allows updated implementations of a binding to be
plugged into WSIF at runtime. It allows the calling service to choose a binding
deferred until runtime. In summary, WSDL described services based on SOA
together with the service integration bus. WSIF allows services to be
choreographed into processes.

 Process Choreographer implements dynamic invocation frameworks for services
and activities as plug-ins. Hence you can replace an IBM installed plug-ins with
those from third-party providers. WebSphere Studio IE provides GUI-based
wizards so that a programmer can develop business processes without dealing
with WSIF directly.

A discussion of service oriented architecture is outside the scope of this book.
For a detailed discussion of this topic, refer to the following IBM Redbooks:

� WebSphere Version 5 Web Services Handbook, SG24-6891

� Exploring WebSphere Studio Application Developer Integration Edition 5.0,
SG24-6200

2.3.1 Web services
Web services is an implementation of the service oriented architecture (SOA)
and it is the primary technology for solution implementation.

A discussion of Web services is outside the scope of this book. For a detailed
discussion of this topic, refer to the following IBM Redbooks:

� WebSphere Version 5 Web Services Handbook, SG24-6891

� Exploring WebSphere Studio Application Developer Integration Edition 5.0,
SG24-6200

Note: The WSIF source code, developed by IBM, has been donated to the
Apache XML project under the auspices of the Axis work. The code can be
browsed at http://cvs.apache.org/viewcvs.cgi/xylem-axis-wsif.
18 WebSphere Application Server Enterprise V5

http://cvs.apache.org/viewcvs.cgi/xylem-axis-wsif

2.3.2 J2C
Java 2 Connectors (J2C) is a fundamental technology that is responsible for
connecting J2EE applications to other non-J2EE applications or resources within
the enterprise.

A discussion of Java 2 Connectors is outside the scope of this book. For a
detailed discussion of this topic, refer to the following IBM Redbooks:

� Exploring WebSphere Studio Application Developer Integration Edition 5.0,
SG24-6200

� Java Connectors for CICS: Featuring the J2EE Connector Architecture,
SG24-6401

2.3.3 Programming Model Extensions
WebSphere Enterprise brings several Programming Model Extensions (PMEs) to
the application server. The extensions are delivered in different forms, including
services, APIs, wizards for development, and deployment extensions.

The extensions are in three major groups:

� Business Object Model extensions operate with business objects, for example
EJBs.

� Business Process Model extensions provide process, workflow functionality,
and services for the application server.

� Next Generation Applications include the rest of the extensions. They can be
used in enterprise applications where specific needs require these
extensions.

Figure 2-2 Application server functions and features in base and Enterprise

Business Object Model

Application Profiling

Dynamic Query Service

Extended EJB Lifecycle

Read-ahead, Prefetch, ...

EJB 2.0 (CMP, CMR, QL, ...)

Caching MechanismsB
as

e
E

n
te

rp
ri

se

Business Process Model

Business Process
Choreographer

Activity Sessions and Last
Participant Support

Business Rules Beans (*)

WebServices Support

Services Oriented
Architecture

Next Generation Apps

Extended Messaging
Support

Asynchronous Beans
Scheduler/Calendars

Startup Beans
Object Pooling

I18N (*)
WorkArea (*)

Base Application Server
 Chapter 2. Planning 19

The following sections provide basic planning information for each of the
Programming Model Extensions (PMEs). Each extension is discussed in detail in
separate chapters in this book. The chapters each have a planning section
together with the introduction where the extensions are explained.

 Process Choreographer, including staff services
 Process Choreographer is probably the most appealing extension in WebSphere
Enterprise. It provides workflow and process functionality for the application
server. It supports long-running and short-running processes, interruptible and
non-interruptible processes.

The processes are developed in WebSphere Studio Application Developer
Integration Edition using a visual editor to assemble the flow. The process
application is then deployed in the application server’s process container.

The runtime environment also provides a browser-based client application for
administrative purposes. The default client can be freely customized and
extended using the client API.

The Process Choreographer has an integral service called staff services, which
provides advanced staff and user handling functions beyond the base user
registry function.

Extended Messaging
Extended Messaging (EM) is major help in building messaging-based
applications. This extension provides an API built on top of JMS, but it would not
help much itself if it did not provide a development environment where building
messaging applications is just as easy as building from blocks.

Developers can use the WebSphere Studio Application Developer Integration
Edition Extended Messaging wizard to build messaging components for any
messaging patterns. Using the wizard minimizes the application coding
significantly.

For detailed information, refer to Chapter 6, “Extended Messaging” on page 227.

Asynchronous Beans
Asynchronous execution of processes in J2EE application servers was always a
big need and a big problem. It was almost impossible to develop event-driven
applications for application servers, not because of the technology but the lack of
support in the original specification and in the programming model.

WebSphere Enterprise solves this problem by providing full support for
asynchronous execution and invocation of threads and components within the
20 WebSphere Application Server Enterprise V5

application server. The application server provides an execution and security
context for the components, making them an integral part of the application.

For detailed information, refer to Chapter 7, “Asynchronous Beans” on page 287.

Application Profiling, Access Intent
Application Profiling and Access Intent provide a flexible method to fine-tune
application performance for EJBs. Different EJBs and even different methods in
one EJB can have their own intent to access resources. Profiling the components
based on their Access Intent increases performance in the runtime.

For detailed information, refer to Chapter 8, “Application Profiling and Access
Intent” on page 343.

Last Participant Support
Last Participant Support is an extension to the original J2EE transaction support
for applications. It allows developers to include several two-phase commit
resources and one, and only one, one-phase commit resource in one unit of
work.

For detailed information, refer to Chapter 9, “Transactional Services” on
page 385.

ActivitySession
ActivitySession provides further extensions to the J2EE session and transaction
services. It can extend session and transaction boundaries.

For detailed information, refer to Chapter 9, “Transactional Services” on
page 385.

Business Rule Beans
Business Rule Beans externalize the business rules in an application. Rules,
conditions, and decisions don’t have to be hardcoded or custom tailored into
applications. Business Rule Beans provide an API to look up and use the rules,
and provide an Administrative Console to manage application rules.

For detailed information, refer to Chapter 10, “Business Rule Beans” on
page 419.

Dynamic Query
Dynamic Query fixes a weakness in Enterprise JavaBeans by enabling the client
to run custom queries on EJBs in runtime. Until now, EJB’s lookups and field
mappings were implemented in development time and it required further
 Chapter 2. Planning 21

development to modify any of the query attributes. With Dynamic Query, the
client can assemble SQL statements in runtime and execute them on any EJB.
The quasars can result in not only objects and a list of objects but also aggregate
functions (for example SUM, COUNT).

For detailed information, refer to Chapter 11, “Dynamic Query” on page 457.

Startup Beans
Startup Beans solve the problem of running custom code during application
server startup. Start time initialization was a problem in most applications but it
has now been solved with this new function.

For detailed information, refer to Chapter 12, “Startup Bean” on page 489.

Scheduler service
The problem of scheduled execution was similar to Startup Beans and
asynchronous execution in the application server. The scheduler service enables
the application server to execute application code as scheduled in a timely
fashion.

For detailed information, refer to Chapter 13, “Scheduler service” on page 509.

Object pools
Application performance is essential in runtime. The most effective way to
improve performance is using object pools in applications. Object pools is a
simple programming practice but still requires programming of libraries from the
developer. WebSphere Enterprise has a built-in service that handles any Java
type of object pools and provides an API for the developer to use this service in
the application code. This service shortens the development time significantly
and standardizes object pooling in the application.

For detailed information, refer to Chapter 14, “Object pools” on page 537.

Shared Work Area
In the process of developing software applications, the need to pass data
between application components is often a fundamental requirement. Shared
Work Areas provide a solution to pass and propagate contextual information
between application components.

For detailed information, refer to Chapter 15, “Shared Work Area service” on
page 559.
22 WebSphere Application Server Enterprise V5

Internationalization (I18N) service
An application that can present information to users according to regional cultural
conventions is said to be internationalized. The application can be configured to
interact with users from different localities in culturally appropriate ways. The
Internationalization (I18N) service gives the ability to develop internationalized
applications in WebSphere.

For detailed information, refer to Chapter 16, “Internationalization (i18n) service”
on page 583.

CORBA C++ SDK
The CORBA C++ SDK is also part of the WebSphere Application Server
Enterprise V5 product, although this book does not discuss it. For more
information about the CORBA C++ SDK, refer to the redbook written for the
previous version of WebSphere Enterprise: WebSphere Application Server
Enterprise Edition 4.0: A Programmer's Guide, SG24-6504.

2.3.4 Combining PMEs
Each of the Programming Model Extensions has its own place and use in
applications. Most likely, not all the extensions are required for a specific solution.
Using one or two extensions can shorten development time, and can provide
additional functions or services to an application. On the other hand, combining
extensions and using them together in one solution is also an option to build
more complex solutions for specific needs.

Some of the Programming Model Extensions can be combined effectively into
one solution. Figure 2-2 on page 19 list the extensions under three different
groups. The extensions in one group can be easily combined in one particular
solution, since they aim to solve the same type of problem. Extensions from
different groups can be combined as well. For example, a workflow process can
invoke a messaging component using Extended Messaging.

The following is only a short list of examples illustrating the numerous
opportunities for combining different PMEs in one solution:

� Process Choreographer can combine most of the PMEs:

– Extended Messaging for messaging components
– Business Rule Beans to implement rules for the process
– Startup Beans to start a process
– Scheduler beans to start a process

� Extended Messaging fits nicely into a Process Choreographer business
process as a component. Extended Messaging can be also fired from a
Startup Bean or a scheduler bean.
 Chapter 2. Planning 23

� Object pool, Shared Work Area and Internationalization (I18N) services can
be combined with almost any of the PMEs. They are low-level APIs that can
be used in the implementation of the components.

� Asynchronous beans and Dynamic Query are also universal components and
can be tied to most of the PMEs.
24 WebSphere Application Server Enterprise V5

Chapter 3. Sample scenario

This chapter gives an overview of the sample scenario used in this book to show
the functions and features of WebSphere Enterprise V5.

The sample scenario is discussed on a business-case level, rather than getting
into much details on the technical and implementation level. The technical details
of the sample application that is based on this sample scenario can be found in
Appendix B, “Sample scenario” on page 665.

3

© Copyright IBM Corp. 2003. All rights reserved. 25

3.1 Business scenario
The business scenario is based on a fictional company called ACompany. This
section provides a background for the sample application and begins an
exploration of the business needs.

3.2 Business drivers
ACompany has a purchasing department that handles the company purchases
for office supplies and other employee needs.

The company has grown in size and the purchases have increased significantly.
Handling individual purchases and running the process on paper is not sufficient
anymore. The increased spending also needs to be controlled to save on
expenses.

The solution is to implement a process that can replace the existing paper-based
purchasing process. The application is available for every employee in the
company. It is controlled by the purchasing and financial department.

The purchases are initiated by the employee, based on a catalog that is
maintained and controlled within the company.

3.3 Use cases
Two use cases identified for the sample scenario will be implemented in the
sample application. The two use cases are:

� Purchase order
� Catalog update

Figure 3-1 on page 27 is a UML representation of the two use cases.
26 WebSphere Application Server Enterprise V5

Figure 3-1 Use cases for the sample application

The following are explanations of the terms shown in Figure 3-1:

� Actors

The list of actors involved in the business scenario, including the following:

– Catalog maintainer

The actor who maintains the catalog can submit an update request to the
system. Requester can update one catalog item or multiple catalog items,
where the item details for update are stored in an XML document.

The actors can be business users or employees. Application server
components can also invoke update asynchronously.

– Purchaser

The purchaser actor can submit purchase orders to the system. The
orders are very simple documents that may only have one item on them at
a time. Purchaser can initiate the PO from a Web client by providing the
details for the order.

Catalog UpdateCatalog Maintainer

Multiple item updateSingle item update

Purchaser Purchase Order Approver

Single item Purchase Order
 Chapter 3. Sample scenario 27

– Approver

Who may approve a PO is decided by the system based on the total price
of the order. The approver is responsible for providing an answer to the
system, whether the PO is approved or not.

Approvers may refer to helps built into the Web client when deciding
whether to approve the PO, including:

• Search capabilities to track previous POs in the system. The criteria
can be set dynamically for the search.

• Search capability to check multiple catalogs to find better prices for the
item on the order.

� Use cases

A list of use cases for the business scenario, including the following:

– Catalog update

Catalog update is one of the main use cases. It updates only the price for
catalog items. Catalog maintainers can initiate catalog updates in the
system. There may be two child use cases based on the number of
updated items.

• Single item update

The single item update use case is a descendant of the catalog update
use case. It updates the price for only one item in the catalog. This
method requires the item details for the update.

• Multiple items update

The multiple item update use case is a descendant of the catalog
update use case. It updates the price for multiple items in the catalog.
This method requires a URL for an XML document with the item
details.

The major difference between the two sub-use cases is the method of
invocation. The single item update is performed through a Web user
interface (UI), while the multiple item update is invoked internally from the
system.

– Purchase order (PO)

The PO use case is a business process, where the purchaser can submit
a PO to order a certain amount of an item from the catalog. Based on the
total price of the order, the PO may require approval from another
business user, for example someone from the financial department.

The PO can be submitted using a Web client. The request needs an item
number pointing to the item in the catalog and the quantity.
28 WebSphere Application Server Enterprise V5

– Single item Purchase Order

The sample application only handles orders with one single item. This
descendant use case is an implementation of the parent PO business
process.

3.4 Business processes
The implementation of such use cases is done using business processes. During
design, the business processes are realized using process flows in UML design.

The business processes can be implemented on an application level as workflow
or process flows. This is a subject for later discussion.

There are two business processes implemented in our sample application:

� Catalog update process
� Purchase Order (PO) process

The following two sections give detailed description of the two business
processes on the design level.

3.4.1 Catalog update business process
The catalog update is a fairly simple process. It is responsible for updating items
in the catalog that are the sources of items for the purchase orders.

Requirements:

� Catalog update can be initiated from a Web client.

� Update can be initiated in two forms:

– Updating one item providing the update details
– Mass update providing a document that has the details

� Process should return the number of updated items in the catalog.

Figure 3-2 on page 30 is the UML representation of the catalog business
process.

Note: We will not implement other functions related to catalog maintenance,
such as add item or remove item. We assume that there is a catalog already
existing in the company and the necessary functions are already implemented
or will be implemented.
 Chapter 3. Sample scenario 29

Figure 3-2 Catalog update process

3.4.2 Purchase Order (PO) business process
The purchase order (PO) process is a more complex process.

Requirements:

� Purchase order can be initiated from a Web client.

� Purchase order can be initiated by any employee.

� One purchase order includes one item from the catalog.

Initiate catalog
update

End of Update

Update one
item

Update mult iple
items

one i tem or
multiple

[URL==null] [otherwise]

We bSphe re se rv iceCatalog Maintainer

Note: From the implementation point of view, the PO process is very simple.
The objective of this book and this process is to show the runtime capabilities
of WebSphere Enterprise. If you want to learn more about the Process
Choreographer and its capabilities, refer to the IBM Redbook Exploring
WebSphere Studio Application Developer Integration Edition 5.0, SG24-6200,
or go to Chapter 4, “Process Choreographer development scenarios” on
page 35 in this book.
30 WebSphere Application Server Enterprise V5

� Process needs to be intelligent and capable of making a decision whether
approval is required for an order. The decision is made based on the total
value of the order.

� The approval is initiated from a Web browser.

� The result of the process is an order in the company’s back-end application.

� At the end of the process, the process originator gets a message about the
outcome of the process.

Figure 3-3 is the UML representation of the purchase order (PO) process.

Figure 3-3 Purchase Order (PO) process

Note: This requirement would not be necessary in a real application.
Again, the objective here is to show the runtime capabilities and make the
sample application as simple as it can be.

In a real application, one purchase order could have multiple items and it
would require more complex database structure and more application
components.

Submit PO

Receive
notification

Approval

Place Order

Approved

Is approval
required ?

Catal og Lookup

End of PO process

Send noti fi cation to
originator

Item not found

Rejected

[total price > APPROVAL_REQUIRED_AMOUNT]

[otherwise]

WebSphere serviceFinancial departmentPurchaser
 Chapter 3. Sample scenario 31

You can find more details about the implementation of the sample application in
later chapters.

For more information about the development and runtime environment for the
sample application, refer to Appendix B, “Sample scenario” on page 665.
32 WebSphere Application Server Enterprise V5

Part 2 Programming
Model
Extensions

Part 2
© Copyright IBM Corp. 2003. All rights reserved. 33

34 WebSphere Application Server Enterprise V5

Chapter 4. Process Choreographer
development scenarios

The WebSphere Enterprise Process Choreographer is a fairly large topic to
cover. Therefore the discussion of this extension (PME), unlike others in this
book, is split into two consecutive chapters. One covers development, while the
other describes the runtime environment.

This first chapter on Process Choreographer comprises the following topics:

� Planning and describing the Process Choreographer function
� Design
� Development
� Testing and debugging
� Using the staff support service
� Describing the deployment steps of the sample application

4

© Copyright IBM Corp. 2003. All rights reserved. 35

4.1 Planning
Today’s companies are changing very quickly, so they frequently have to change,
add, or rearrange their business processes, which in turn are reflected in
changes in their applications and databases assets, which are usually scattered
throughout the organization across multiples platforms and software assets, such
as databases, packaged applications (ERP, etc.), and back-end systems such as
IBM CICS, IBM IMS™, J2EE, .Net, etc. A good example of business change that
affected almost all companies worldwide was the advent of the Internet as a new
business channel. In responses to this new development, companies have made
lots of changes, new applications, adaptations and so on in their software and
hardware assets.

4.1.1 Business processes
There are many existing IBM products providing workflow technology for many
different situations, scenarios, customer skills, and implementations. IBM
provides this technology in many products such as WebSphere MQ Workflow for
people-based workflow, WebSphere MQ integrator for message flows, Lotus®
Domino™ Workflow for people-based workflow (tightly integrated with Domino),
but none of them are tightly integrated with WebSphere. Business Process
Choreographer brings flow support into the application server, allowing
customers to easily combine workflow technology with all other services offered
by J2EE, in addition to some of the new enablements of WebSphere Application
Server Enterprise V5 (see Table 4-1), tightly integrated within WebSphere. The
advantage of this tight implementation is that many features of WebSphere
Application Server, such as centralized management, workload management,
logging, debug and trace, can be used when executing a business process.

Table 4-1 WebSphere Enterprise extensions

Enterprise enablements Description

Extended Messaging Enhances standard J2EE Messaging by providing
support for all types of messaging patterns, container
support for these patterns, and code simplification. See
Chapter 6, “Extended Messaging” on page 227 for more
information.

Asynchronous Beans Allows J2EE applications (EJBs) to start other threads
and transfer their J2EE context to those threads. See
Chapter 7, “Asynchronous Beans” on page 287 for more
information.
36 WebSphere Application Server Enterprise V5

The support for Process Choreographer has been designed in such a way that
compliance with the BPEL (Business Process Execution Language) industry
standard can easily be met in the future. The Business Process Choreographer
is implemented in pure Java, which runs on the application server. It has been

Application Profiling Allows you to define different Access Intents depending
on the EJB client that is accessing a certain Entity EJB,
allowing a lot more flexibility in the way you can tune data
access. See Chapter 8, “Application Profiling and Access
Intent” on page 343 for more information.

Activity Session Offers long-running transactions semantics without
requiring XA support for all the resources involved in the
unit of work, but without data integrity. You can keep EJBs
active through multiple transactions and have them
passivated at the end of the activity session. See
Chapter 9, “Transactional Services” on page 385 for more
information.

Last Participant Support Allows J2EE application to have a single-phase resource
(only one per transaction) in a transaction. See
Chapter 9, “Transactional Services” on page 385 for more
information.

Business Rule Beans Extends the scope of the WebSphere Application Server
Enterprise to support business applications that
externalize their business rules. See Chapter 10,
“Business Rule Beans” on page 419 for more information.

Dynamic Query Extends J2EE EJB QL. You can formulate queries at
runtime, select multiple EJB attributes out of a CMP EJB
in a single SELECT clause, support for GROUP BY. See
Chapter 11, “Dynamic Query” on page 457 for more
information.

Startup Beans A special kind of EJBs that are executed automatically
when an application starts up or shuts down. See
Chapter 12, “Startup Bean” on page 489 for more
information.

Scheduler service Allows a J2EE application to schedule the execution of
tasks in the future. See Chapter 13, “Scheduler service”
on page 509 for more information.

Object pools Enables an application to avoid creating new Java objects
repeatedly. See for Chapter 14, “Object pools” on
page 537 more information.

Enterprise enablements Description
 Chapter 4. Process Choreographer development scenarios 37

designed with a flexible and extendable architecture to allow the support for
many different technologies while executing the business process.

4.1.2 Why use Process Choreographer?
Building applications using Process Choreographer architecture will reduce the
time and cost of building new or changing existing applications in the following
ways:

� Easily integrates services in heterogeneous environment. We can build a flow
compound of activities in .Net, and back-end systems such as CICS and Java
EJBs. You can reuse business logic of your back-end asset instead of
rewriting it.

� Easily add new activities in an existing application process. If a bank needs to
add a new level of approval in its loan process, they just have to add this new
activity to their loan application.

� Easily build new application flows using existing activities. If a bank builds a
new application that, for example, entails withdrawal of money from an
account, they can reuse an activity that they have in the ATM or cashier
application, instead of rewriting one. This is a high level of reuse, called
service reuse, that will be easier to achieve than a low level, such as classes
reuse.

Figure 4-1 on page 39 shows a process flow compound of five activities. As you
can see, activity 1 (a Java class or an EJB) has its output connected to activity 2
(a CICS application) and activity 3 (other process flow). At the end of activity 1,
both activities 2 and 3 could be executed in parallel or just one of them based on
the condition specified in the connections. Process flow will wait in activity 4 for a
human decision to go to activity5 (a .Net logic).
38 WebSphere Application Server Enterprise V5

Figure 4-1 Structure of a business process-based application

In our daily activities and businesses, we repeatedly perform sequences of
activities to achieve an objective. We model such well-defined and repeatable
patterns of activities as processes. A business process typically involves a
mixture of human activities and automated activities performed by software
applications, computers, and machines. Business enterprises have been making
great strides in productivity and profitability as they improve their ability to model,
implement, and automate efficient business processes.

4.1.3 Comparison with WebSphere MQ workflow
WebSphere Process Choreographer provide similar features for business
process support that has long been available in WebSphere MQ Workflow
product. In the following, we point out the differences in programming model and
supported features between the two products to assist in deciding how to employ
these two products based on an enterprise’s business process needs.

Process Engine

Process Flow

J2EE Other
Process

Back-End
System

Human
Interaction

Activity Implementations

Activity
1

Activity
2

Activity
3

Activity
4

Activity
5

 Chapter 4. Process Choreographer development scenarios 39

Table 4-2 Comparison of WebSphere MQ workflow and Process Choreographer

Feature Supported by
WebSphere MQ
Workflow?

Supported by Process
Choreographer?

Microflows No yes

Macroflows yes yes

Events yes-via WMQI yes

Timer yes yes

Compensation no yes

Audit and log yes yes

Plug-in of data, mapping,
staff

no yes

Synchronous process
invocation via.

API call façade EJB (API call)

Asynchronous process
invocation

XML message façade MDB(JMS,XML)

Synchronous activity
invocation

PEA (API) Web services, Java beans,
EJB, J2C

Asynchronous activity
invocation

UPES(XML) JMS(XML)

Programming interfaces C, C++, Java, ActiveX,
COBOL/390, MQ/XML,
JMS/XML

Java, JMS/XML, MQ/XML

Process testing/debugging runtime test environment within WebSphere Studio
IE V5

Process monitoring yes - via IBM Holosofx® not yet

Process modeling and
simulation

yes - via IBM Holosofx not yet -may use UML

Open process execution
language

yes - FDL not yet - BPEL4WS

Rapid deployment JSP generation from
model

no
40 WebSphere Application Server Enterprise V5

WebSphere MQ Workflow is a proven technology providing high performance,
scalability, reliability, and availability over the years. No J2EE skills are required
and there is little or no requirement for new application development. It offers a
tops-down approach to managed process-integration solutions including systems
and people and process monitoring via IBM Holosofx. MQ Workflow is available
with native implementation on the z/OS platform, exploiting z/OS features and
quality of service.

Process Choreographer is fully integrated into WebSphere Application Server
Enterprise and WebSphere Studio IE. It exploits WebSphere Application Server
features such as clustering and load balancing for scalability, availability, and
failover. WebSphere Studio IE provides a visual process editor fully integrated
into the WebSphere runtime environment. It also provides a visual process
debugger, in addition to a standard Java debugger. Based on full support of the
J2EE programming model and open architecture, it allows J2EE programmers to
create complex composite services and processes rapidly. It also provide
compensation services for long-running processes.

Process Choreographer simplifies the building of new Java-based applications
that must integrate with existing software assets.

CrossWorlds® connector yes no, workaround via JMS
and CrossWorlds
JMS/WebSphere MQ
connector

JSP/Servlet Web client yes yes

Native windows client yes no

Instance monitor yes no

External staff repository yes(3.4) yes

Notifications/escalations yes no

Expiration yes yes

Substitution rules yes no

Suspend/resume yes no

Work item transfer yes no

Process repair yes no

Feature Supported by
WebSphere MQ
Workflow?

Supported by Process
Choreographer?
 Chapter 4. Process Choreographer development scenarios 41

It offers a bottoms-up approach to developing composite applications that are
ready for integration.

You may use WebSphere MQ Workflow and WebSphere Enterprise together.
J2EE, JMS, and Web services standards connect WebSphere MQ Workflow and
WebSphere Enterprise. Future releases will enhance interoperability between
the two products.

4.1.4 Business processes for J2EE programmers
Business process modeling and analysis at the enterprise level are traditionally
done by business analysts. Process models designed and defined by business
analysts drive the requirements for business functions to implement the essential
steps of a business process. These requirements drive design and development
of services and applications, which are typically performed by people with
programming skills. We optimize business processes through feedbacks and
interactions between various levels of implementation, from administrators
monitoring the execution of business processes, to programmers, to business
analysts.

The Process Choreographer feature of WebSphere Enterprise enhances the
J2EE programming model by providing facilities to model, develop, test and
execute business processes. Based on service oriented architecture, Process
Choreographer allows you to present software components as services and
integrate these services into business processes. Business processes
themselves are exposed as services, allowing further integration. With
GUI-based support and wizards in WebSphere Studio IE, you can now develop
new services and processes and perform complex integration of new and
existing software assets into processes with very high productivity.

Process Choreographer delivers business process modeling and programming
capabilities, traditionally reserved for business analysts, to J2EE programmers in
a familiar and integrated environment. With Process Choreographer, you can
build J2EE components that implement business functions, then expose these
business functions as services described by open standards such as WSDL
(Web Services Description Language). You then choreograph these services into
business processes using a visual process editor provided by WebSphere Studio
IE.

These applications contain business process models called business
process-based applications or simply business process applications.

The Process Choreographer runtime environment is provided by a business
process engine (BPE) or process container. Business process applications offer
42 WebSphere Application Server Enterprise V5

advantages over traditional applications, because they have a number of
properties that are guaranteed by the business process engine.

These properties are:

� Concurrency.

If a process contains parallel branches, the middleware guarantees that the
branches are executed concurrently in parallel threads, possibly even on
different nodes in a cluster.

� Recoverability.

If the system crashes while executing a process-based application, the
execution of the application is continued where it left off. Steps that have
already been performed are not redone.

� Heterogeneous, distributed execution.

The execution of the individual functions of a business process (its steps) can
be distributed in a network, on heterogeneous operating systems and
hardware platforms.

� Range of quality of service.

The process engine supports non-interruptible processes (microflows),
interruptible processes (macroflows), and combinations of the two.

In addition to delivering the benefits of business process applications above to
business enterprises, Process Choreographer offers the following benefits:

� Flexible and powerful business integration capabilities.

� Ability to develop new services and processes with low cost and short
time-to-market, thus allowing you to quickly respond to changes in business
requirements.

� Open APIs and a service-oriented approach based on standards, which allow
you to customize business process applications to meet widely varying and
complex enterprise requirements.

� Efficient business-to-business interaction, because business processes call
business processes of partner businesses through standard interfaces such
as Web services.

The following sections present the details of how the Process Choreographer
development and runtime environment works to provide these benefits.
 Chapter 4. Process Choreographer development scenarios 43

4.1.5 Programming model
The programming model offered by Process Choreographer can be described as
four interacting models:

� Information model
� Organization model
� Services model
� Business process composition model

Figure 4-2 Conceptual view of business process-based programming model

The information model in business enterprises comprises business objects that
model entities such as customer accounts or purchase orders. These objects
may reside in Enterprise Information Systems (EIS) or database systems. In the
J2EE programming model, they are modeled into message types or entities such
as Enterprise Java Beans (EJB).

A services model involves programming necessary for business functions as
services. These services can be implemented as business methods of a session
EJB, Java bean methods, or JMS operations. Process Choreographer provide
capabilities to expose these business service methods of J2EE components into
operations and messages in service oriented architecture described in open
standards such as WSDL.

Organization Model

Business Partners End Users

Messages

Order

Order#

Supplier

Name

Address

Roles

Services ModelInformation Model

Composition Model

Business
Object Business

Entities

Business
Process

Business
Service
44 WebSphere Application Server Enterprise V5

An organization model deals with people in enterprises organized into groups
such as departments. People can be organized based on lines of business, lines
of products, locations, and business roles. For business applications, you can
organize people based on roles in running and accessing services and
processes. End users and business partners can be assigned roles for accessing
business services and processes offered by an enterprise. Organization models
are typically implemented through some form of user registries or directories.

The composition model or business process model involves choreographing
business services into a business process. It provides standard interfaces to a
business process for end users and business partners. If the process models
involve human activities (staff activities), the activities are assigned to people
based on organizational roles or groups in user registries.

4.1.6 J2EE programming model
The traditional J2EE programming model allows separation of back-end data and
application logic by introducing the concept of application servers. A typical
enterprise application consists of EJBs that handle business logic, and servlets
and JSPs to support the presentation layers. Application servers provide runtime
containers that provide services for transaction management, security, etc. It
utilizes the organization model through a user registry to manage access to its
components and services.
 Chapter 4. Process Choreographer development scenarios 45

Figure 4-3 Typical components of a J2EE programming model

Process Choreographer extends the traditional J2EE programming model by
adopting a service oriented architecture based on the Web services paradigm in
WebSphere Application Server Enterprise to allow composition of business
processes.

Figure 4-4 on page 47 illustrates the key components involved in implementing
the programming model. The following sections provide details about the
following components:

� Services and WSDL: service oriented architecture (SOA)
� Business process model
� Programming interfaces
� Process container architecture

Database
Systems

Application Server

Web Module

EJB Module

JDBC JMS Security

Messaging
Systems Legacy

Software

User Registry
Directory

WSDL

Web Service

Servlets/JSPs

Session EJB

MDB

Entity EJB

Connector
46 WebSphere Application Server Enterprise V5

Figure 4-4 Components of Process Choreographer programming model

4.2 Design
A business process is a set of parallel or sequential activities that can be
performed repeatedly to achieve business objectives. Activities can be performed
by machines, computer software and hardware, and human beings.

� A process template or process model describes the structure of a business
process in the real world. It defines all possible scenarios in a business
process, including various activities that may take place and the rules and
conditions that determine which paths within a business process should be
taken.

� The process model is a template from which each process is instantiated; that
is an instance of the process model is created.

Part of a process model that can be executed on a computer is called a workflow
model. The term workflow is often used interchangeably with the term business

BPE
External API

Database
Systems

Messaging
Systems

A1 A4 OutIn

Business Process

Service Implementations

Services
in WSDL

Business Process Engine (BPE)

Service Integration Bus or Invocation Framework

Staff Support
Service

A3

Legacy
Software

Process Specific
Façade

BPE Web Client
(Work-List Handler)

BPE Web Client
Framework

User Registry
Directory
 Chapter 4. Process Choreographer development scenarios 47

process. We will use either business process or process in our descriptions of
Process Choreographer.

4.2.1 Elements of a process model
The top-level construct of the business process model is the process itself. A
process is a multi-step operation. A graphical representation of a process is a
directed graph. The major constructs in this process graph are activities and
control connectors. The activities describe the tasks to be performed, and the
control connectors describe the potential sequence in which the activities are to
be carried out.

Types of activities
There are different types of activities for addressing different types of tasks.
Process Choreographer supports the following types of activities:

� Service activities
� Java snippets
� Staff activities
� Receive event activities
� Process activities
� Empty activities

Service activities
Service activities are used to invoke operations or services.

There are two supported styles:

1. Synchronous service activity, which invokes an operation or a method and
blocks until it returns. Examples are:

– Invoking an EJB method
– Invoking a Java bean method
– Calling a J2EE connector
– Calling a Web service

This category includes elemental activities that just fire and forget an
invocation. Examples are:

– Sending a JMS message without waiting for a response
– Sending e-mail

2. Asynchronous service activities, which send and commit a request. The
response is received and handled in a separate transaction. An example is a
48 WebSphere Application Server Enterprise V5

service activity with a JMS message binding that receives a response later in
a separate transaction.

A process engine will wait until the response with a correlation ID is received
in the reply-to queue (which is set to the process container’s input queue)
before proceeding to the next step.

Java snippets
Java snippets are synchronous activities that represent an inline invocation of a
snippet of Java code. They are usually used for mapping of data between
variables used between other types of activities. They run in a Java runtime
environment of the Process Choreographer and they have access to the
corresponding business process external APIs (BPE API in com.ibm.bpe).

Staff activities
Staff activities, also known as person activities, model tasks and interactions
performed by people in a process. They are asynchronous in nature. A staff
activity can be assigned to persons in three different roles: readers, editors, and
potential owners. When a staff activity is reached in a process, a work item is
created for a person or a group of persons assigned to the activity. Determining
the persons who can work on the work item from a registry of persons according
to the roles specified in the process model is called staff resolution. A person with
a particular role in an activity can check whether a work item has been created
for him or her. The person can perform tasks in his or her role by claiming the
work item. When the person completes the work item, the resulting data
becomes available to the workflow system and the process continues to the next
activity.

Receive event activities
Receive event activities allow the process to wait for external events. These can
be used for synchronization with external programs or processes. For example, a
process handshakes with another program (which may be a partner process),
sends off messages, continues with other activities, and then eventually waits for
an external event to continue its operation. Events are sent to a process using
the Process Choreographer API. A unique process ID may be used as a
correlation in selecting the correct message or event for the waiting process.

Process activities
Process activities are used for nesting processes. A process can call other
processes that call other processes, and so on. This construct allows you to
create hierarchical processes. It also allows you to reuse process logic by
factoring it out as a subprocess.
 Chapter 4. Process Choreographer development scenarios 49

Empty activities
Empty activities do not perform operations. Instead they act as explicit
synchronization points for parallel branches in a process, or to allow explicit join
or branch nodes.

Variables
Activities in a process manipulate data; input data is passed to a process and
output or fault data is returned by the process. Within the process, data is kept in
global variables. Mapping activities, implemented by Java snippets, can be used
to transform data. These mapping activities take their input from one or more
variables. The result is written to another set of variables. To invoke an activity
that requires an input message, variables are read. If the activity produces output
or fault data, then this data is mapped back to the same or another variable.

Blocks and loops
Blocks allow grouping a set of activities in a process. Loops are a special form of
block that allow the block to be traversed repeatedly until a loop exit condition is
met. Loops and blocks do not have an interface. Data does not flow into or out of
them, and activities within them have access to variables defined within the
top-level process.

4.2.2 Types of processes and transactions
Processes can be categorized into interruptible processes and non-interruptible
processes.

Process Choreographer does not implement any transaction service itself, but it
participates in the standard WebSphere transactions. For non-interruptible
processes (microflows), the transaction that is established by the client of the
process is used for the entire process and all service invocations performed on
its behalf. For interruptible processes (macroflows), there is an initial transaction
established by the client of the process, plus a number of chained transactions
established by JMS messages sent by the Process Choreographer engine to
itself or by requests from people participating in the process. Each one of these
transactions is a standard WebSphere transaction. In case of a failure, the
rollback will act only in the current transaction, not in the ones that have been
committed during the process. And there are some asynchronous activities that
cannot be rolled back. For example if the activity was mailing a letter, the best we
can do is to mail another. In this situation, Process Choreographer implements a
feature called compensation.
50 WebSphere Application Server Enterprise V5

Non-interruptible process (microflows)
Non-interruptible processes have the following characteristics:

� They are short-running.

� They run in one transaction T (see Figure 4-5 on page 52), created either by
the client of the process, or by WebSphere at the boundary of the Process
Choreographer engine (deploy descriptor with transaction attribute of
TX_REQUIRED).

� They can contain activities with transactional and non-transactional
implementations.

� They cannot have asynchronous activity implementations or activities that
involve human interaction. Asynchronous request-response operations
require that transaction commits for the request get delivered first, and then
the response of the request is processed in a new transaction.

� They can send notifications, because a response is not expected for
asynchronous notifications. Receive event activities require their own
transactions for receiving an event and therefore are not supported.

� All activities in a non-interruptible process are processed in a single thread,
so they all share the same thread context.

� All process states are maintained in memory during the execution.

When a transaction rollback occurs, the transaction manager rolls back all the
transactional activities of a non-interruptible process. Activities with an
implementation that is not transitional remain untouched.

Non-interruptible processes provide developers with the benefits of visual
modeling (using WebSphere Studio IE), easy maintenance, and graphical
debugging. They can be used in all cases where a developer needs to write code
for the interaction of enterprise beans, Java classes, J2C connectors, and Web
services.
 Chapter 4. Process Choreographer development scenarios 51

Figure 4-5 Non-interruptible microflow

Asynchronous request-response operations require that a transaction commits to
send the request. Processing the result of the request is then performed in a new
transaction. A response is not expected for asynchronous notifications.
Therefore, sending notifications is supported in non-interruptible processes.
Receive event activities require their own transaction for receiving an event and
therefore are not supported within non-interruptible processes. All activities in a
non-interruptible process are processed in a single thread. Therefore, all
activities share the same thread context.

The Process Choreographer in WebSphere Version 5.0 supports only
transactional non-interruptible processes. When a transaction rollback occurs,
the transaction manager rolls back all of the transactional activities of a
non-interruptible process. Activities with an implementation that is not
transactional remain untouched.

Interruptible processes (macroflows)
An interruptible process can navigate to an activity which, for example, requires
human interaction or a response from a remote service and wait for hours, days,
or even years until the expected event occurs.

An interruptible process consists of a set of stratified transactions. This means
that in a process that contains a set of activities, each navigation step is
performed in its own transaction.

A1 A4 OutIn

Transaction
Boundary

A3

A2

T

52 WebSphere Application Server Enterprise V5

Interruptible processes support all kinds of activities. The actions performed in
the transaction depend on the semantics of the respective activity type. To
reliably hold the navigation information of a process, the database stores the
persistent state of the process and the messaging system holds the persistent
navigation state, that is, the information about which activities in the flow will be
navigated to next. The database, the messaging system, and the transactional
resources used by an activity implementation all participate in a two-phase
commit protocol. Because the complete state of a running process is stored in
the database, a process is not dependent on a specific application server.
Interruptible processes have a much larger footprint than non-interruptible
processes because they use persistent storage and transactions.

When an interruptible process runs in a cluster, each process step can be
performed in parallel on any node. The load is automatically distributed over the
different servers.

Figure 4-6 Macroflow with synchronous and asynchronous service activities

Transaction boundaries of stratified transactions depends on the type of activity
invocation.

� Synchronous service invocation

The following actions occur when an activity that performs a synchronous
service invocation (for example, activity A1 in Figure 4-6) is processed:

a. Begin the transaction (T1).

In

CC

JMS
Continue Connector

CC

A1

CC CC

OutA3A2

ACAI

T0 T1 T2 T3 T4 T5

JMS Message
Activity Complete

JMS Message
Activity Invoke
 Chapter 4. Process Choreographer development scenarios 53

b. Get the message carrying the Boolean value of the connector from the
persistent process container internal message queue.

c. If all incoming connectors have fired, check the start condition:

• If true, start the activity A1, that is, invoke the synchronous service.
• If false, skip the activity.

d. Put a message for each outgoing control connector in the persistent
process-engine message queue.

e. Write the state changes to the database.

f. Commit the transaction (T1).

If an activity is non-transactional, that is, its activity implementation does not
participate in the two-phase commit protocol of the transaction,
compensation-based recovery can be used to undo changes performed by
the activity if a failure occurs.

� Continue control connector

In Figure 4-6 on page 53, T1 and T2 are connected by a “Continue control
connector” (CC) message. In this example, when following the control
connector between A1 and A2, the flow engine sends itself this message in
order to be able to commit T1 and guarantee continuation of the process with
T2.

� Asynchronous service invocation

Again in Figure 4-6 on page 53, A2 is implemented by a service invoked
asynchronously via an “Activity invoke” (AI) JMS message. Once this
message has been put into its destination queue, the flow engine must
commit T2 so that the message actually gets delivered. After the service
implementation has eventually processed the invocation message, it returns
with an associated reply, called “Activity complete” (AC) message in this
example. The receipt of this message triggers T3, which completes A2 and
continues navigation of the flow along the control connector to A3.

� Staff activity being acted upon by assigned people

A complex interruptible process with staff activities is given in Figure 4-7 on
page 55 with transaction demarcations. In this process, A1, A3, A7 and A8
are synchronous service activities invoking EJB methods. A2 and A5 are
asynchronous service activities with JMS invocations. A6 is an empty activity
with no operation used for synchronization. A4 is a staff activity.

At the fork after activity A2, the conditions for both outgoing control
connectors are evaluated to true; hence both branches (A2 to A4 and A3 to
A5) will be traversed. The activity A4 on an upper branch is completed before
A5 of the lower branch. The process will synchronize before continuing with
54 WebSphere Application Server Enterprise V5

activity A6 to make sure conditions for both incoming control connectors (from
A4 and from A5) are evaluated.

The staff activity A4 is to be implemented by a person with the role of a
potential owner. When the process reaches A4, the process engine creates a
work item with the activity input message and distributes it to the potential
owner for the activity (this step is shown as a “work item creation” (WC)
external message in the figure) before committing the transaction. Eventually,
the person checks to see the assigned work item, claims the associated
activity (hence becomes the owner of the activity). The works with the
associated data and documents and finally completes the activity by sending
an “activity complete” (AC) message through the process engine API. The
receipt of this message triggers the following transaction, which continues the
process.

Figure 4-7 Complex interruptible process with human activities

Interruptible processes are completely forward recoverable. If the application
server that is processing an interruptible process terminates unexpectedly, no
information is lost. The process either continues on another node in the cluster
or, in non-clustered applications, waits until the server comes up again.

In

CC

A1

A4

A5

ACAI

A7

A3

A2

ACAI ACWC

A6

A8

Out

API Call
Activity Complete

Work Item
Creation

CC

CC CC CC

CC

CC
 Chapter 4. Process Choreographer development scenarios 55

Interruptible process invoking microflows
We can have a long-running process that invokes several microflows as process
activities.

Microflow process with human exception handling
We can have a microflow process invoking macroflows to let people handle
exceptions. microflow processes and macroflow business process models can
have

4.2.3 Life cycle of a process
A process comes to life when a Process Choreographer API method that can
start a process is invoked. The supported API methods are call and initiate.

When initiate is invoked, a response is not returned to the caller when the
process finishes. However, by using people, an asynchronous or receive event
activities interaction takes place between a process and the process starter,
other people, or other services.

When a call is invoked, the process starter receives a response when the
process finishes. The response mechanism can be as simple as returning a
result from a synchronous non-interruptible process. Alternatively, a reply context
can be provided when the process is called. This context is used by the process
engine when the process ends to send back the response.

When a process is started, a process instance for an existing process model is
created and started. The process engine then starts navigating the business
process. That is, the process engine determines which of the activities of the
business process are activated and in which order. Regular navigation of a
process continues until all of its activities are in their end state. Valid end states
are finished, failed, expired, or terminated.

A process ends either when one of its fault terminals is navigated or when all
incoming control connectors of the process sink have been evaluated. If the
process was started using a call, a response is sent back to the caller of the
process.

4.2.4 Undoing service activities: compensation
Today's applications typically require transactional properties, in particular, the
guarantee that a complex request is executed either in its entirety or not at all.
For traditional transactions, this is described by the ACID properties: atomicity,
consistency, isolation, and durability. It is achieved by a transaction manager,
resource managers, and back-end systems working together according to the XA
56 WebSphere Application Server Enterprise V5

standard, or similar, protocol. This cooperation ensures that the operations
performed on behalf of a transaction are either all committed or all rolled back.

Often, however, a complex request cannot be run as an ACID transaction for a
number of reasons. Back-end systems or resource managers might not be able
to participate in the XA protocol. Updates to these systems are performed
immediately and do not participate in the overall transaction. If the transaction
fails, these updates are not undone; the processing of the complex request
results in an inconsistent state.

As long as a transaction has not been committed, none of the changes done on
its behalf are visible to the outside world. The isolation property guarantees that
they only become visible when the transaction's final state has been reached.
This works well for short-running processes that invoke synchronous operations.

However, when a process involves asynchronous steps, for example, steps
implemented by a back-end system driven by JMS messages or steps involving
human interaction, intermediate results of the process must be made visible. This
means that the JMS message must be sent out, the information about the step
the person has to work on (the work item) must be made available, and so on.
Therefore, the intermediate state of the process must be committed.

There are actions in a business process that are inherently non-transactional.
Sending a letter to a customer is such an operation - as soon as the letter has left
the sender, there is no way to undo the operation.

Activities in an interruptible process can be transactional or non-transactional.
Transactional activities run in their own transaction; however, in an interruptible
process there is no transaction that surrounds all the activities in the process.
Therefore, no locks are held to ensure the data integrity of the entire process. If
the process fails, compensation can be used to undo the changes that were
successfully done by the activities.

In all of these examples, intermediate results of the business process are made
available and they cannot be undone by simply rolling back an ACID transaction
with the help of the transaction manager. Instead another operation must be
done that explicitly reverses the original operation.

If a back-end system has been called to update data, for example, to increment a
value, the system must be called again, for example, to decrement the value.

If a letter has been sent in error to a customer, another letter must be sent to
apologize for the error. These operations might need to be cascaded if other
operations have already started that use the results that have been wrongly
made available.
 Chapter 4. Process Choreographer development scenarios 57

To help you to define undo operations and their automatic execution, you can
specify the steps of a process as compensation pairs. This means that in addition
to the standard forward operation, a backward operation is assigned to the
activity, as shown in Figure 4-8.

Figure 4-8 Logging of compensation pairs during forward process flow

The process runs using the forward operations. In addition, each invocation of a
forward operation is logged with its input and output data in a compensation list.
At any time during the execution of a process, you know which operations have
been invoked and with which data.

Process

Compensation
Sphere

Compensation
List

A1

A4

A3

A2
58 WebSphere Application Server Enterprise V5

If the process fails during its execution and has to be compensated, the
compensation list is used to drive the backward execution of the process to
re-establish the previous process state. For those operations that were
successfully executed during the forward execution of the process, the
associated undo operation is invoked, and the original data is passed. For
example, the undo operation might send a compensation letter to tell the
customer that a previous letter was in error and should be ignored.

Figure 4-9 shows the execution of the undo actions for the activities that were
performed during the forward execution of the process. For activities that have no
undo operations defined, and for activities that were not processed during the
process’ forward execution, nothing is done.

Figure 4-9 Execution of compensating services activities in reverse order in case of faults

4.2.5 Process modeling languages and standards
Process models are described in FDML (Flow definition markup language
FDML). It is the markup language based on the process-related aspects of
WSFL (Web Services Flow Language). WebSphere Studio IE provides

Process-1

Compensation
Sphere

Compensation
List

A1-1

A4-1

A2-1
 Chapter 4. Process Choreographer development scenarios 59

GUI-based wizards so that a programmer can develop business process
applications through graphical maps without ever touching FDML. Hence the use
of FDML as a modeling language is transparent to programmers.

Business Process Execution Language for Web Services (BPEL4WS) is
positioned to become the Web services standard for business process
composition. BPEL4WS provides a language for the formal specification of
business processes and business interaction protocols. It extends the Web
Services interaction model and enables it to support business transactions. It is
being authored by a group of major users, led by IBM Corporation. At the time of
this writing, the specification has officially been submitted as a standard
specification to the Organization for the Advancement of Structured Information
Standards (OASIS). Sun Microsystems Inc. and Novell have announced plans to
support the specification.

Currently FDML supports many of the BPEL requirements, but it does not
address the entire BPEL4WS standard, and vice versa. IBM plans to support
BPEL4WS in the next major release of WebSphere.

4.2.6 External programming interfaces
Process Choreographer provides both general programming interfaces and
programming interfaces specific to a process model. General programming
interfaces, also referred to as Business Process Engine (BPE) external
interfaces, provide programming interfaces independent of a specific process
model.

Process-specific programming interfaces are generated by WebSphere Studio IE
when you invoke the wizard by selecting Enterprise Services -> Generate
deployed code.
60 WebSphere Application Server Enterprise V5

Figure 4-10 General and process-specific programming interfaces

General programming interfaces
For the latest description of these interfaces, refer to the complete JavaDoc for
the BPE external interfaces in WebSphere Application Server InfoCenter. In the
InfoCenter:

1. Click Quick reference.

2. Expand the link javadoc.

3. Click Enterprise Extensions API.

The interfaces for the business process engine are described in the package
com.ibm.bpe.api. The interfaces are implemented by a core set of Java classes.

These general programming interfaces are made available in two forms:

� The complete set of functions and methods of the stateless session EJB that
is provided by the business process container.

This is the preferred method of interaction with the process engine from a
client program, such as the supplied Web client.

Process-Specific Interfaces
General Interfaces

MDB Façade EJB Façade

Input

Process
VariablesVariables

Services

J2EE
EJB/Java/J2C

Activity

Java Types

xsd Types

WSDL

Output W
ork-List H

andler G
U

I
(B

P
E

 W
eb C

lient)

B
P

E
 E

JB
-B

ased
E

xternal A
P

I

W
eb C

lient
F

ram
ew

ork

B
P

E
 M

D
B

-B
ased

E
xternal A

P
I

Business Process
Application

BPE and WAS
EE Runtime

User
Registry
 Chapter 4. Process Choreographer development scenarios 61

� The functions for starting new process instances and sending events to
running process instances are available via a message-driven bean (MDB).
This MDB accepts JMS messages that pass the input or event data in the
body of the message, and the additional information, such as the process
template name or the event name, in their JMS properties.

The process engine honors standard JMS properties, such as the
specification of a reply queue. A reply to the start process message is sent
upon completion of the process instance.

InfoCenter also includes an introduction to programming against the interfaces
with example snippets. The JavaDoc can also be found with application server
installation at <WebSphere_root>\Web\apidocs for Windows systems or
<WebSphere_root>/web/apidocs for UNIX systems.

The general programming interfaces may be categorized into the following.

� Programming interfaces to work with processes.
� Programming interfaces to work with activities.
� Programming interfaces to work with work items.

Programming interfaces to processes
These are interfaces that allow interaction with processes.

� Start processes

A new process instance can be started by specifying the name of the process
template and the input data to be used for the new instance. In addition, you
can associate the process instance with a user-defined ID. This ID can be
used later as a secondary key to retrieve the process instance. You can also
specify a callback that is invoked by the process engine when the process
instance completes. There are two interfaces to start a process:

– call, invoke process, pass inputs and receive result
– initiate, invoke process, pass inputs, no result

� Send asynchronous events to running processes

For processes instances containing receive event activities, the associated
events can be sent using the programming interfaces. The parameters that
have to be passed include the system-generated or user-defined ID of the
target process instance, the event name, and the event data. The interface is:

– sendEvent, pass asynchronous message into process instance
62 WebSphere Application Server Enterprise V5

� Perform administrative tasks

Programming interfaces are available to find out information about running
process instances, to terminate a running instance, and to repair activities
that have failed. The interface is:

– terminate, administrative action to terminate process instance

Programming interfaces to activities
These interfaces allow persons with different roles to work with activities. These
include programming interfaces to claim an activity for which a person received a
work item, and to complete claimed activity. Example interfaces are:

� claim, get exclusive access to work with activity
� complete, let process continue from a claimed activity
� cancelClaim, return activity to other potential owners
� forceRetry, forceComplete, repair actions in case of fault

Programming interfaces to work items
These interfaces can be used to query work assigned to a person and to retrieve
work items, using either SQL-like queries, or predefined worklists. Examples are:

� query, query work items, activities or processes
� getActivityInstance, retrieve activity associated with work item
� getProcessInstance, retrieve process associated with work item

The worklist handler GUI (BPE default Web client) is built on the BPE Web client
framework, and the BPE external API provides additional graphical interfaces to
administer and work on interruptible processes with events and staff activities.

The general programming interfaces apply mostly to macroflow or interruptible
processes. A microflow or non-interruptible process is invoked synchronously in
a single transaction. The only part of general programming interface that applies
to microflow process is the call method of the Business Process interface that
invokes a synchronous operation.

Process-specific programming interfaces (façades)
For each process model, you can use the WebSphere Studio IE tools to generate
an associated EJB (EJB façade) and an associated MDB (MDB façade) that
provide strongly typed interfaces for starting instances of the process and
sending events to running instances. These façades simplify the coding of
interactions with a specific process model.

A MDB façade allows clients to invoke the process or send an event to the
process upon arrival of a message in a queue being listened to by the MDB
through a listener port.
 Chapter 4. Process Choreographer development scenarios 63

A EJB façade allows clients to invoke the process or send an event to the
process by calling a corresponding business method in the EJB. While
generating the above two façades, WebSphere Studio IE also generates
corresponding WSDL files for these business methods.

The generated Web services interface invokes the process or send an event to
the process through the EJB façade.

4.3 Development
This section describes the development steps for the Process Choreographer.

Business process development using WebSphere Studio Application Developer
Integration Edition V5 is documented in the redbook Exploring WebSphere
Studio Application Developer Integration Edition 5.0, SG24-6200.

This section covers a topic not found in the above-mentioned book, the
Choreographer Web client.

4.3.1 Choreographer Web client
Business Process Choreographer provides a ready-to-use Web user interface
based on JSPs and servlets. This interface allows users to access business
processes that are relevant to them. This Web interface can be used as is,
without having to implement or change any code, or can be adapted to fit your
needs, or you can create a new client user interface from the ground up using the
Process Choreographer APIs.

Architecture overview
As you can see in Figure 4-11 on page 65, the Web client architecture is based
on the Model-View-Controller (MVC) pattern.

� Model: Executes the requested actions, such as starting new business
process, claiming activities, and so on. It is called by command
implementations and provides an abstracted interface between the
WorkflowController and the WorkflowView JSPs.

� View: A set of defaults JSPs (WorkflowView JSPs) that provides the HTML
response for a particular command implementation, such as displaying
activities or presenting results when claiming activities, etc.

� Controller: A servlet (WorkflowController) and a set of command
implementation classes. The servlet analyzes the command received and,
based on the configuration.xml file, dispatches the command implementation
class. On return of the command implementation class, based on the content
64 WebSphere Application Server Enterprise V5

of the return and the configuration.xml file, it select the JSP that shows the
result.

Figure 4-11 MVC architecture of Process Choreographer Web client

WorkflowController Servlet
This servlet handle all requests received from the browser to the Web client. With
the HTTP requests it receives commands and parameters as follows:

http://localhost/bpe/webclient?WF_Command=ListDisplay&WF_ListName=MyActivities

The servlet uses the configuration.xml file to determine if it is an action command
or a display command, and then executes the requested action.

� Display commands: The servlet uses the configuration.xml file to determine
the JSP that serves the command using the parameters received (see
Example 4-1). Then this JSP will render the information from ViewContext
objects.

Example 4-1 Fragment of configuration.xml file, some display commands

<wf:views>
<wf:definition>

<wf:parameter name="WF_Command">ListDisplay</wf:parameter>

Web
Browser

Command Impl.
Java ClassCommand Impl.
Java ClassCommand Impl.
Java ClassCommand Impl.
Java Class

API & Context

1. Request

2. Dispatch

3. Find & Modify

Acess Data

5. Response

4. Forward/
 Redirect

WorkflowView
JSPs WorkflowView
JSPs WorkflowView

JSPs WorkflowView
JSPs

ControllerController

ViewView
ModelModel

WorkflowController
(Servlet)
 Chapter 4. Process Choreographer development scenarios 65

<wf:parameter name="WF_Profile">WSWF 5.0 Default</wf:parameter>
<wf:parameter name="WF_ListName">MyActivities</wf:parameter>
<wf:parameter name="Command_Case">Success</wf:parameter>
<wf:setting attribute="Setting_Type">JSP</wf:setting>
<wf:setting attribute="Setting_Name">WorklistActivities.jsp</wf:setting>

</wf:definition>
<wf:definition>

<wf:parameter name="WF_Command">ListDisplay</wf:parameter>
<wf:parameter name="WF_Profile">WSWF 5.0 Default</wf:parameter>
<wf:parameter name="WF_ListName">Generic</wf:parameter>
<wf:parameter name="Command_Case">Success</wf:parameter>
<wf:setting attribute="Setting_Type">JSP</wf:setting>
<wf:setting attribute="Setting_Name">List.jsp</wf:setting>

</wf:definition>
<wf:definition>

<wf:parameter name="WF_Command">ListDisplay</wf:parameter>
<wf:parameter name="WF_Profile">WSWF 5.0 Default</wf:parameter>
<wf:parameter name="Command_Case">Error</wf:parameter>
<wf:setting attribute="Setting_Type">JSP</wf:setting>
<wf:setting attribute="Setting_Name">Error.jsp</wf:setting>

</wf:definition>
</wf:views>

� Action commands: The servlet uses the configuration.xml file to determine
the command-implementation class that serves the command using the
parameters received (see Figure 4-2). Then it calls the execute() method of
this class.

Example 4-2 Fragment of configuration.xml file, some action commands

<wf:commands>
<wf:definition>

<wf:parameter name="WF_Command">ActivityCancel</wf:parameter>
<wf:setting

attribute="Setting_Name">com.ibm.bpe.client.commands.wswf.ActivityCancel</wf:se
tting>

</wf:definition>
<wf:definition>

<wf:parameter name="WF_Command">ActivityClaim</wf:parameter>
<wf:setting

attribute="Setting_Name">com.ibm.bpe.client.commands.wswf.ActivityClaim</wf:set
ting>

</wf:definition>
<wf:definition>

<wf:parameter name="WF_Command">ActivityComplete</wf:parameter>
<wf:setting

attribute="Setting_Name">com.ibm.bpe.client.commands.wswf.ActivityComplete</wf:
setting>

</wf:definition>
66 WebSphere Application Server Enterprise V5

<wf:definition>
<wf:parameter name="WF_Command">ActivityForceRestart</wf:parameter>
<wf:setting

attribute="Setting_Name">com.ibm.bpe.client.commands.wswf.ActivityForceRestart<
/wf:setting>

</wf:definition>
<wf:definition>

<wf:parameter name="WF_Command">ActivityForceComplete</wf:parameter>
<wf:setting

attribute="Setting_Name">com.ibm.bpe.client.commands.wswf.ActivityForceComplete
</wf:setting>

</wf:definition>
<wf:commands>

Command implementations
Each action command has a command implementation class assigned to it. This
class accesses the Process Choreographer API either to receive data or to
perform an action. If data is received during the execution of a command
implementation, it is stored as a Java object in the page context where it can be
accessed by the JSP during the display command execution. A
com.ibm.bpe.api.QueryResultSet object is an example of data that is created by
the command implementation class and then accessed by a JSP.

Command implementation classes extend the abstract class
com.ibm.bpe.client.CommandBase and implement the execute() method
declared in the CommandBase. This method is used to implement the actions
that should be performed when the corresponding action command is received.
Any Process Choreographer API call can be made, such as executing queries,
starting/stopping/deleting process, claim activities, etc. For display command
implementations, the JSP corresponding to the command is determined and
called.

Configuration file
For each command, the configuration.xml file defines the action, the JSP that
shows the result of the action, and if cache is used for the command. A
configuration.xsd file describes the syntax of this configuration.xml file. In
WebSphere Application Server Enterprise, these files are located at
<WebSphere_root>\installedApps\<node_name>\BPEContainer_node_server.e
ar\bpewebclient.war\config (where <node_name> and node_server are your
installation names). In the WebSphere Studio IE they are located at
<WebSphere_Studio_IE_root>\runtimes\ee_v5\installedApps\localhost\BPECont
ainer_localhost_server1.ear\bpewebclient.war\config, or if you create an EE Test
Environment test server, you can locate these files at project bpewebclient in
/Web Content/config.
 Chapter 4. Process Choreographer development scenarios 67

Settings specific to a business process or a staff activity can overwrite the
settings defined in the configuration.xml. You can specify these settings when
you design a business process with WebSphere Studio IE:

� For the business process to add specific JSPs, open the business process
editor for the process, select the Client tab and in the Definition section click
Add.

� For the staff activity to add specifics JSPs, open the business process editor
for the process, select the Process tab, right-click the staff activity you want to
modify, and select Properties. In the Properties Approval window, select
Client and click Add.

If a business process uses complex message types that cannot be displayed with
the default JSPs, it is recommended that you write and add specifics JSPs for
these business processes.

There are three sections in the configuration.xml file:

� <wf:views> specifies the JSPs that are displayed after each command. If the
command is a display, the JSP is directly specified. For action commands, a
subsequent command is defined that, in turn, specifies the appropriate JSP.

� <wf:cacheSettings> defines whether the cache is used for a command and if
it should be cleared after the command finishes.

� <wf:commands> assigns a command implementation class to each action
command.

These sections contains several <definition> elements. Each definition element
is compound by <parameter> and <setting> elements.

Default JSPs
The default Web client that comes with Process Choreographer is implemented
with a set of JSPs and Java classes. The configuration.xml file of the Web client
contains a mapping between these JSPs and Java classes. However, process
and staff activity specific JSPs can be specified when a business process is
designed. These definitions override the settings in the configuration.xml.

The default JSPs provide the following functionality:

� Activities and process

– Display attributes of activities and process
– Enable users to modify attributes of activities and process
– Display all actions that can be called, for example, claim, complete, save
– Call these actions
68 WebSphere Application Server Enterprise V5

� Simple messages

– Display message attributes
– Enable users to modify message attributes

� Worklists

– Display a list of available worklists, including user-defined worklists
– Display a worklist (that is, display the result of the worklist query)
– Display a list of process templates that can be started

� Process templates

– Show process templates attributes
– Start a new process template from a process template

� Error

– Display error messages

The default JSPs are packaged in the bpewebclient.war Web application. In the
WebSphere Studio IE, these JSPs are in the bpewebclient project. However, this
project is loaded only if you have created an EE Test Environment test server.
That is a good place to go if you want to look at the JSP codes. In Table 4-3, you
can see a short description of each of the default JSPs.

Table 4-3 Defaults JSPs

JSP Description

Activity.jsp Displays the most important activity attributes, requires
user inputs and the input and output message of an
activity. Action buttons are displayed based on the
current user’s rights.

ActivityInformation.jsp Displays detailed information about an activity and the
activity’s process.

Error.jsp Shows error message and some context information
about the error.

Event.jsp Shows the details of the event that occurred in the
process.

Header.jsp Is always displayed, shows logos and link to help.

List.jsp Shows the result of a custom worklist query.
 Chapter 4. Process Choreographer development scenarios 69

Navigation.jsp and the Header.jsp are always visible, because other JSPs use
the <jsp:include page = Header.jsp> and <jsp:include page = Navigation.jsp> to
show them. Figure 4-12 on page 71 shows the layout of a displayed page. The
information shown in the content pane depends on the JSP that is used to
generate the page.

Navigation.jsp Like the Header.jsp, it is always displayed. Contains
links to the standard worklists and a drop-down list with
custom worklists and a button to view them.
Depending on the user’s rights, a drop-down list with
process template names and buttons to view
information about the process template, and start a
new process.

PageExpired.jsp Shows a message: Page has expired.

ProcessInformation.jsp Shows detailed information about a process, such as a
list of activities that belong to that process and some
attribute of those activities.

ProcessInputMessage.jsp Displays the most important process template
attributes. If the current user is authenticated to start
this process, the Start Process button is displayed.
Provides entry fields for the process input message.

ProcessOutputMessage.jsp Displays process template information and the
process output message.

ProcessTemplates.jsp Displays detailed process template attributes. If the
current user is authenticated to start this process, a
Start Process button is displayed.

Terminal.jsp Terminates the process.

WorklistActivities.jsp The default start page of the Web client. Shows a list
of all activities in state READY, CLAIMED or
STOPPED that the current user is allowed to see.

WorklistProcesses.jsp Shows a list of process. Depending on the context in
which it is called and the current user’s rights, it shows
different lists of processes.

JSP Description
70 WebSphere Application Server Enterprise V5

Figure 4-12 Layout of a Web client page

4.3.2 Customizing the choreographer Web client
In this section, we will start using our sample application to show how you can
implement the Web client, including how to install and start WebSphere
Application Server Enterprise, and install and start your business process
application. Start the Web client by typing:

http://<Host_Name>/bpe/webclient

In a browser the first Web client User interface (after a splash UI that only
remains a few seconds in the browser) will appear as shown in Figure 4-12, and
you can start playing with your business process application. In Figure 4-13 on
page 73 you can see the result of clicking the Start button in the Templates pane
for CatalogUpdate. In the Process Input Message at the bottom of the window,
type the information that the process needs to run, and click the Start Process
button to run the business process. After it has finished, the returned results will
be displayed. More information on this sample application can be found in
Chapter 3, “Sample scenario” on page 25. Now the Web client is ready to use,
but probably will need to change for many reasons:

� Its look and feel do not match your company standards; for example, see
colors, style, banner, and so on in Figure 4-13 on page 73.

Content

Header

N
av

ig
at

io
n

 Chapter 4. Process Choreographer development scenarios 71

� It can display information about the business process itself, such as activity
information, template information, process information, etc., but you may
need to navigate following a different sequence, suppress some information,
group information in different ways, and so on. For an example of how this
kind of information is displayed, see Available Actions and Process Template
Description in Figure 4-13 on page 73.

� It displays business process-specific information, that is the information that
you have passed (typed) to a specific business process or the information that
a business process returns (if any). Since it is designed to handle any
business process, it uses the name of the property (the part name for the
WSDL file) to name the information items in the UI. In the Process Input
Message pane in Figure 4-13 on page 73, you can see the results of this
approach. For example, in the catalogURL entry field, the comments of this
field (string) are probably unintelligible to the end user. This must be changed
before sending the application into production. Luckily, Web client can be
easily customized to fix this, by implementing user-defined JSP for each
business process.

� It displays staff activity-specific information, but it has the same issues of the
business process-specific information: the Web client displays this data using
part names and data types. We can have more than one staff activity in a
business process, and this data will appear in many places. The staff activity
is used for approval decisions by the managers, directors or presidents of
companies. This must be changed before sending the application into
production. Luckily, the Web client can be easily customized to fix this, by
implementing user-defined JSPs for each staff activity.

� You may also need to take some of the Web client functions away from human
users and put them into an application, such as starting a process passing its
initial parameters, or inquiring about the state of an activity, and so on. For
that you can use the business Process Choreographer API, the same API
used by the Web client.

Using this API you can, if you have budget and time, write your own Web
client from scratch, although it is not recommended.
72 WebSphere Application Server Enterprise V5

Figure 4-13 Default Web client started template for Catalog Update

Implementing business process-specific JSPs
Web client architecture allows you to enhance your presentation of business
process-specific data without any change in the Web client default JSPs. You just
have to code a JSP that shows the process-specific information in the way you
like it. During the development of the business processes, you must add the JSP
definitions where you want them in the business process, and at execution time
the business process will pass this information to the Web client, which will call
this JSP instead of using its default. We will show step by step how we
implemented this modification in the Catalog Update and PO process of our
sample application.

To implement user-defined JSPs, we will need a Web application to develop and
deploy the JSPs. In theory you can use any existing Web application, but since
you have to deploy it in every application server instance that the business
process is running, some restrictions will apply. To make maintenance easier, we
recommend that you have at least one Web application for each enterprise
application that holds business process applications, just for the user-defined
 Chapter 4. Process Choreographer development scenarios 73

JSPs. Therefore, when you deploy this EAR, everything you need to run your
business process is there. We will need to add at least two libraries to this Web
project: the bpe.jar and the wsfi.jar.

1. First, we will create the ACompanyProcessWeb Web project and add it to our
business process enterprise application ACompanyProcess.

To create a Web project in WebSphere Studio IE, select File from the menu,
select New -> Web Project. On the Create Web Project window, enter the
name in the Project name entry field, and click Next. In the Enterprise
application project, select the Existing radio button, browse for the name, and
select ACompanyProcess.

2. Right-click the project in the Web perspective, then select Properties.

3. On the Properties window, select Web. See the result in Figure 4-14 on
page 75. Note that Context Root and the project name are the same (this is
required).

Restriction: In this version of the product, the Context root of the Web project
for the user-defined JSPs must have the same name as the project created in
WebSphere Studio IE to hold the JSPs. Otherwise, when you run the
application you get the error:

[Servlet Error]-[JSP 1.2 Processor]: java.lang.NullPointerException

To make sure that the names are the same, in a Web perspective of the
WebSphere Studio IE right-click the Web project, select Properties. On the
Properties window, select Web and you will see the Context Root for this
project.

Tip: In the Process Choreographer, if you need to have a Web application for
the user-defined JSPs, at least in the production environment, with the
Context root different from the project name, you will have to change the
ABC.fdml file (where ABC is the name of the project). Search it for these
strings: MessageMapping, InputMessageJSP, OutputMessageJSP and make the
appropriate changes. You can find this file in the Enterprise application in the
XYZ.far (where XYZ is the name of your service project). This XYZ.far can be
opened with any unzip utility. In WebSphere Studio IE, you can find this file
(ABC.fdml) in the Service project. Use a Java perspective to see it, but
remember this file will be recreated each time you make a change and save
the business process graphic tool. This approach is not recommended
because it is very easy to make a mistake.
74 WebSphere Application Server Enterprise V5

Figure 4-14 Properties of the Web project.

4. Now we will add the two libraries in the Web project for user-defined JSPs. In
the Properties window (opened in previous steps), select the Java Build
Path.

5. In the right part of this window, select the Libraries tab. In the Libraries pane,
click the Add Variable button, and the New Variable Classpath Entry window
will open.

6. Scroll down the list until you find the variable named WAS_EE_V5 (see
Figure 4-15 on page 76). Select it and click Extend.

7. When the Variable Extension window opens, expand the lib folder. Scroll the
list and select bpe.jar, then click OK.
 Chapter 4. Process Choreographer development scenarios 75

Figure 4-15 New Variable Classpath Entry

8. Repeat steps 1 on page 74 to 7 on page 75 for the wsif.jar. After that, the Web
project will have two JARs in its Java Build Pass and Libraries. See
Figure 4-16 on page 77.
76 WebSphere Application Server Enterprise V5

Figure 4-16 Libraries of Web project after we added bpe.jar and wsif.jar

Before we start coding the application JSPs for the business process, let’s see
where in the Web client they can be defined.

For the business process, see Table 4-4 on page 78.
 Chapter 4. Process Choreographer development scenarios 77

Table 4-4 In the business process

For the staff activity, see Table 4-5 on page 79. Remember that if you have more
than one staff activity in a business process, you can define these JSPs for each
activity if they deal with different data. But if you have lots of staff activity in your
business process, it is better to build your data dictionary, which describes your
data representations, and build a common JSP. You still need to declare this JSP
in all staff activity, but at least the maintenance will be much easier with this
approach.

Render points User-defined JSP Observations

ProcessInformation
Display

Input Message JSP Displays process input data
information, usually when the
process is waiting for some
asynchronous activity to complete.

Output Message JSP Displays process output data
information, return data if any,
usually when the process is waiting
for some asynchronous activity to
complete.

ProcessInput
MessageDisplay

Input Message JSP Displays process input form, so the
user can type the process input data
needed to run the business process.

Message Mapping JSP Gets the data typed in the Input
Message JSP, wraps it in a WSIF
message, and forwards it to the flow.
Optionally, we can validate the typed
data before. The implementation is
mandatory, if we implement the Input
Message JSP.

ProcessOutput
MessageDisplay

Output Message JSP Displays process output data,
returned at the end of business
process, if any.
78 WebSphere Application Server Enterprise V5

Table 4-5 In staff activity

Overview the Catalog Update JSPs implementation points
Catalog Update process is non-interruptible (microflow), so the only user-defined
JSP that is relevant in this case are the processes shown in Table 4-4 on
page 78. Microflow does not have any asynchronous activity, so you just need to
implement the ProcessInputMessageDisplay and the
ProcessOutputMessageDisplay user-defined JSPs. In Figure 4-17 on page 80 in
the upper-right pane, you can see the graphic representation of the Catalog
Update process. In the upper-left pane, the two circled areas show the input and
the output message of this process, which are defined in the
CatalogUpdateInterface.wsdl file.

Render points User-defined JSP Observations

Activity Display Input Message JSP Displays activity input data
information, during all activity states
(claimed, pending, and so on.)

Output Message JSP Depending on the activity state, it just
displays information. If the state is
Claimed, it displays an input form so
data, such as approve/reject and
others needed to complete the
activity, can be typed.

Message Mapping JSP Gets the data typed in the Output
Message JSP, wraps it in a WSIF
message and forwards it to the flow.
Optionally we can validate the typed
data before. The implementation is
mandatory if we implement the
Output Message JSP.

Tip: To open the business process graphic design in WebSphere Studio IE, in
a Business Integration perspective, expand the Service Project
(ACompanyServices) then expand the package where the business process
have been created (com.acompany). Double-click the file
CatalogUpdate.process to open it and select the Process tab.
 Chapter 4. Process Choreographer development scenarios 79

Figure 4-17 Catalog Update business process design

This file defines two messages the CatalogUpdateRequest and the
CatalogUpdateResponse.

� The CatalogUpdateRequest message contains three parts, as shown in
Table 4-6.

Table 4-6 CatalogUpdateRequest message parts

Part name Type

itemID xsd:string

price xsd:double

catalogURL xsd:string

Tip: To find the message part types, double-click the file
CatalogUpdateInterface.wsdl in a Business Integration perspective, select
the Message tab, select the message and the part, and the type is displayed
in a pane below.
80 WebSphere Application Server Enterprise V5

The message CatalogUpdateRequest is used to implement the input of the
Catalog Update process (named RequestUpdate object in the process graphic
design). It maps the data that Catalog Update business process needs to be
executed.

� The CatalogUpdateResponse message contains just one part, as shown in
Table 4-7.

Table 4-7 CatalogUpdateResponse message parts

This message CatalogUpdateResponse is used to implement the output of the
Catalog Update process (named update object in the process graphic design). It
is the data the business process will return when it finishes.

Based on the information above, the Web client will build the presentation. In
Figure 4-18 on page 82, you can see the form generated by the Web client for
the process input data.

Tip: To discover which file is used to map the message and they parts, select
the visual object in the process graphic design, right-click RequestUpdate,
select Properties, and in the Properties window select Implementation. The
File entry field contains the location and name of the file. The Operation entry
field information allows you to find the message.

Part name Type

updated xsd:int
 Chapter 4. Process Choreographer development scenarios 81

Figure 4-18 Process input message generated by the default Web client

Figure 4-19 on page 83 and Figure 4-20 on page 83 shown the Process Output
Message.
82 WebSphere Application Server Enterprise V5

Figure 4-19 Successful process output message generated by the default Web client

Figure 4-20 Unsuccessful process output message generated by the default Web client

Implementing user-defined JSPs in the Catalog Update

To change the Process Input Message, we must provide to the Web client a new
form to use instead of its default rendering. The end user will type data into this
form. For every user-defined JSP implementation for which the end user enters
data, it is mandatory that we provide a JSP to pack the typed data into a format
that the business process engine will understand. We also can use this last JSP
to contain the typed data before wrapping it. In this case, we will need a third JSP
to show an error message to the end user if the same typed data is not
consistent. We will create three JSPs in the Web project ACompanyProcessWeb,
already created in “Implementing business process-specific JSPs” on page 73.
Their names are shown in Table 4-8 on page 84.
 Chapter 4. Process Choreographer development scenarios 83

Table 4-8 User-defined JSPs for Catalog Update

Example 4-3 shows the code of CatalogUpdateProcessInput.jsp. Note that we do
not have <html>, <head>, or <body> tags. User-defined JSPs are not
self-contained Web pages, but are only fragments of the Web client pages. In
addition, JavaScript functions cannot be invoked before a form that contains
user-defined JSPs is submitted. Since the <form> tag that encloses the input
fields of the user-defined JSP and its Submit button is an element of the standard
Web client, you cannot add attributes such as onSubmit=”return validate()” to
the form tag. Remember, you should do the validation in the message mapping
JSP, in this case the CatalogUpdateProcessInputMap.jsp. Our implementation is
quite simple: just an HTML table with two labels with a correlated input element
and a comment. The input element can have any name here, but in the
CatalogUpdateProcessInputMap.jsp you have to wrap this elements with the
names that the business process knows. See Table 4-7 on page 81 for the part
names. The message part catalogURL will be suppressed in the form, so that the
end user does not have to deal with it.

Example 4-3 Code of CatalogUpdateProcessInput.jsp

<%--***--%>
<%-- This JSP will be rendered to get the information needed for at the --%>
<%-- process start, in this case the "Catalog Update Process". That means, --%>
<%-- every time the Web client need to get the input information for to --%>
<%-- start this process it calls this JSP instead of using its default --%>
<%-- render.The data got here must be verified, packed into an --%>
<%-- ClientObjectWrapper and forward to the flow. This is done in a --%>
<%-- correspondent message mapping JSP, that in this case is the --%>
<%-- "CatalogUpdateProcessInputMap.jsp", where we will use the input (like --%>
<%-- names "itemID_Input") to get the typed value. --%>

JSP Names Comments

CatalogUpdateProcessInput.jsp To render the Process Input Message
form

CatalogUpdateProcessInputMap.jsp To contain the user data and wrap it for the
business process engine

error.jsp To display error messages to the end user
detected by the
CatalogUpdateProcessInputMap.jsp

Tip: To create the JSPs in the WebSphere Studio IE, right-click the Web
Content folder in the ACompanyProcessWeb, then select New and JSP File,
on the File Name of the New JSP File window enter the JSP name, then click
the Finish button.
84 WebSphere Application Server Enterprise V5

<%--**-->
<table>

<colgroup>
<col width="20%" span="2">
<col width="60%" span="1">

</colgroup>
<tr class="marked1">

<td class="fw_label">Part number</td>
<td> <input type="text" name="itemID_Input"> </td>
<td>Enter the part number you want to change the price.</td>

</tr>
<tr class="marked2">

<td class="fw_label">New price</td>
<td> <input type="text" name="price_Input"></td>
<td>Enter the new price you want to the part number.</td>

</tr>
</table>

Example 4-4 shows our CatalogUpdateProcessInputMap.jsp implementation
code. In the page directive, we declare the Error.jsp as the error page for this
JSP. Therefore, every time we raise ServletException (three times in the code)
the Error.jsp will be invoked to show the error message, and guide the user in
retrying the operation. Also, we must declare the Java packages that we need to
import. The following are some important details about the code:

1. String itemID_Input = request.getParameter("itemID_Input");

The name "itemID_Input" is the same used to name the input element in the
CatalogUpdateProcessInput.jsp.

2. message.setObjectPart("itemID", itemID_Input);

This line builds the input message (add the first part value).The "itemID" is
the name of the part that is defined in the input of the business process. See
Table 4-7 on page 81 and/or the upper-left pane of Figure 4-17 on page 80 for
the name of the input message parts.

3. message.setObjectPart("catalogURL", "");

This part will not be used now. As we said before, we will remove it from the
presentation, but it needs to be added to the message, even with no value.
Otherwise we will get a nullpointException.

Example 4-4 CatalogUpdateProcessInputMap.jsp

<%--**--%>
<%-- This is the map JSP for the "CatalogUpdateProcessInput.jsp" so here we--%>
<%-- parse the typed data if it is invalid throws a ServletException with a--%>
<%-- description of the error. In this case the "error.jsp" will be called,--%>
<%-- because we have it in the page directive of this JSP, to show the error-%>
 Chapter 4. Process Choreographer development scenarios 85

<%-- message and how to retry the operation. When all data is correct, we --%>
<%-- wraps it in ClientObjectWrapper and forward to the flow. --%>
<%--**--%
>
<%@ page

language="java"
contentType="text/html;charset=UTF-8"
errorPage="./Error.jsp"
import="java.util.*,

com.ibm.bpe.api.ClientObjectWrapper,
com.ibm.bpe.client.*,
org.apache.wsif.base.WSIFDefaultMessage"%>

<%
// Create an instance of WSFI message class
WSIFDefaultMessage message = new WSIFDefaultMessage();

// check part number input
String itemID_Input = request.getParameter("itemID_Input");
if (itemID_Input.equals("")) {

throw new ServletException("Please enter a Part number.");
}
//add the itemID data to the WSFI message
message.setObjectPart("itemID", itemID_Input);

// check new price input
String price_Input = request.getParameter("price_Input");
if (price_Input.equals("")) {

throw new ServletException("Please enter a New price.");
}
//check new price for a valid data, and if ok add to the WSFI message
try {

message.setDoublePart("price",
(Double.valueOf(price_Input).doubleValue()));
} catch (Exception ex) {

throw new ServletException("The New price '"+price_Input+"' is not valid.
");
}

// set catalogURL input to nothing,business process need it in the message
// (as it is one of input part) even if we will not use it for this operation.
message.setObjectPart("catalogURL", "");

//Wrap the WSFI message in the business process message wrap class
ClientObjectWrapper messageObject = new ClientObjectWrapper(message);

//Create an vector and add the request parameters to be excluded
Vector excludeRequestParameters = new Vector();
excludeRequestParameters.add("itemID_Input");
excludeRequestParameters.add("price_Input");
86 WebSphere Application Server Enterprise V5

//forward message with the user typed data to the flow
MessageUtilities.forwardMessageToController(request, response, messageObject,
null, excludeRequestParameters);
%>

Example 4-5 is a simple code for the Error.jsp. It just displays the error message
from the exception attribute. Note that it is a complete Web page; it includes the
necessary <html>, <body>, and so on... tags.

Example 4-5 Error.jsp

<%--***--%>
<%-- This JSP will show a error message in case of some exception in the -%>
<%-- Map JSP, CatalogUpdateProcessInputMap.jsp and the PoProcessInputMap.jsp-%>
<%-- so when we raise Servlet exceptions because of typing errors this JSP --%>
<%-- will show the message that we passed and instruct the user how do retry-%>
<%--***--%>
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<html>
<head>
<title>Error</title>
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">
</head>
<style type="text/css">
p,a,font {

font-family:Verdana, Arial, Helvetica, sans-serif;
font-size: 10pt;
}

</style>

<%@ page import="java.io.*"
isErrorPage="true"
contentType="text/html;charset=UTF-8"

%>

<body>
<p>An error occured while processing data:</p>

 <% out.println(exception.getMessage());%>

<H4>Please use the 'back' button of your browser to return to the previous page
and complete / correct your input data. </H4>

</body>
</html>
 Chapter 4. Process Choreographer development scenarios 87

The only thing missing now for the Catalog Update user-defined JSP to work is to
add them to the business process. To do that:

1. In the WebSphere Studio IE, switch to the Business Integration perspective,
then expand the ACompanyServices project.

2. Double-click the CatalogUpdate.process file under the com.acompany
package.

3. Select the Client tab.

At the end of these steps you should see something like Figure 4-21.

Figure 4-21 Catalog Update process client page

To add the CatalogUpdateProcessInput.jsp:

1. On the Client tab, click Add.

2. In the Add definition window, select ProcessInputMessageDisplay from the
Action list drop-down list.

3. In the JSP Page Settings, select the Value cell in front of Input Message JSP.

4. Click the button with three dots next to the cell.
88 WebSphere Application Server Enterprise V5

5. On the File Selection window, expand the ACompanyProcessWeb. Expand
the Web Content folder, select the CatalogUpdateProcessInput.jsp and
click the OK button.

To add the CatalogUpdateProcessInputMap.jsp:

1. In the JSP Page Settings, click Message Mapping JSP.

2. Click the button with three dots next to the cell.

3. On the File Selection window, expand the ACompanyProcessWeb, then
expand the Web Content, select the CatalogUpdateProcessInputMap.jsp
and click the OK button.

At the end it should look like Figure 4-22.

Figure 4-22 Catalog Update ProcessInputMessageDisplay configuration

4. To finish, click OK, then save the changes. Figure 4-23 on page 90 shows the
results of the implementation when we run the Web client with the
user-defined JSP for the process input message. Compare this with
Figure 4-18 on page 82, which shows the same Web client UI, but without the
user-defined JSP.
 Chapter 4. Process Choreographer development scenarios 89

Figure 4-23 Catalog Update Process Input Message with user-defined JSP

The next step is to implement the Catalog Update Process Output Message, to
provide to the Web client the new user-defined output JSP that it is going to use
instead of its default rendering. This JSP only displays data, so we do not need
the mapping. First let’s create a new JSP file named
CatalogUpdateProcessOutput.jsp in the Web Content folder of the
ACompanyProcessWeb project.

Example 4-6 shows the sample code for the CatalogUpdateProcessOutput.jsp.
As you can see it is very simple. We receive the output message in the request,
get the value of the output part, in this case updated (remember the name of the
message parts are defined in the output of the business process, as shown in
Table 4-8 on page 84 and the upper-left upper pane of Figure 4-17 on page 80
for the name of the message parts) and display information depending on its
value.

Example 4-6 CatalogUpdateProcessOutput.jsp

<%--**--%>
<%-- This is the JSP that will be rendered, at the end of Catalog Update --%>
90 WebSphere Application Server Enterprise V5

<%-- Process to show the returned results if any. That means every time the --%>
<%-- Web client need to show this information for this process it will --%>
<%-- call this JSP instead of using its default render --%>
<%--**--%>
<%@ page

language="java"
contentType="text/html;charset=UTF-8"
import="com.ibm.bpe.api.*,

com.ibm.bpe.client.*,
org.apache.wsif.base.WSIFDefaultMessage"%>

<%--Getting a reference to the output message --%>
<jsp:useBean id="outputMessage" class="java.lang.Object" scope="request"> </jsp:useBean>
<%
//Casting to the business process wrap class
ClientObjectWrapper cMsg = (ClientObjectWrapper)outputMessage;

//Extract the WSFI message from the wrap class
WSIFDefaultMessage outMsg = (WSIFDefaultMessage)cMsg.getObject();

//Testing the updated attribute to show the right information
if ((outMsg.getIntPart("updated")) == 1){%>
<H3 align="center">The part number price was successfully updated.</H3>
<%}
else {%>
<H3 align="center">The part number price was not updated.</H3>
<%}%>

Now you need to add it to the Catalog Update process, as we did for the Input
message. Open the CatalogUpdate.process in a Business Integration
perspective, and select the Client tab.

1. In the Client tab, click Add...

2. In the Add definition window, select the ProcessOutputMessageDisplay
from the Action drop-down list.

3. In the JSP Page Settings, click Output Message JSP.

4. Click the button with three dots next to the cell.

5. On the File Selection window, expand ACompanyProcessWeb, expand Web
Content, select CatalogUpdateProcessOutput.jsp, then click OK.

6. Click OK then save the changes.

Figure 4-23 on page 90 shows the results of the implementation, Compare this
with Figure 4-18 on page 82, which is the same UI without the user-defined JSP.
 Chapter 4. Process Choreographer development scenarios 91

We can see the result of this implementation when we run the Web client with the
process output user-defined JSP. Figure 4-24 shows a successful result and
Figure 4-25 an unsuccessful result. Compare with the Web client default
renderings in Figure 4-19 on page 83 and Figure 4-20 on page 83.

Figure 4-24 Successful process output message generated by the Web client with defined JSP

Figure 4-25 Unsuccessful process output message generated by the Web client with defined JSP

Overview of the PO JSPs implementation points
The PO business process is interruptible (macroflow). Since it has a staff activity
both the business process (see Table 4-4 on page 78) and the staff activity (see
Table 4-5 on page 79) user-defined JSPs are relevant for this business process.
But as this business process does not return any result, the
ProcessOutputMessageDisplay and the ProcessInformationDisplay - Output
Message JSP user-defined JSPs are not relevant (there will not be any message
92 WebSphere Application Server Enterprise V5

to show). In the upper-right pane of Figure 4-26, we can see the graphic
representation of PO business process. In the upper-left upper pane, starting
from the top down, the first and second circled areas show the input and output
message parts of the Approval staff activity. These definitions are in the
Messages.wsdl file. The third circled area shows the input message parts of the
PO business process. These definitions are in the POInterface.wsdl file.

Figure 4-26 PO business process graphic design

The POInterface.wsdl file defines the PORequest message that contains two
parts shown in Table 4-9 on page 94.

Tip: To open the business process graphic design in WebSphere Studio IE, in
a Business Integration perspective expand Service Project
(ACompanyServices) then expand the package where the business process
has been created (com.acompany), then double-click the file PO.process
and select the Process tab.
 Chapter 4. Process Choreographer development scenarios 93

Table 4-9 PORequest message parts

To find the message part types, double-click the file POInterface.wsdl in a
Business Integration perspective, select the Message tab, and select the
message and the part. The type is displayed in a pane below.

The PORequest message is used to implement the Input of the PO business
process (named PO object in the process graphic design). It maps the data that
PO business process needs to be executed.

The Messages.wsdl file defines two messages: the ApprovalRequest and the
ApprovalResponse.

The ApprovalRequest contains four parts, as listed in Table 4-10.

Table 4-10 ApprovalRequest message parts

This message ApprovalRequest is used to implement the input of the Approval
staff activity of the PO business process (named Approval object in the process
graphic design). It is the data the Approval staff activity will receive from the flow.

The ApprovalResponse contains two parts, as listed in Table 4-11 on page 95.

Part name Type

itemID xsd:string

qty xsd:int

Tip: To discover which file is used to map the message and the parts, select
the visual object in the process graphic design, right-click PO in this case,
select Properties, on the Properties window select Implementation. The File
entry field contains the location and name of the file. The Operation entry field
information allows you to find the message.

Part name Type

itemID xsd:string

name xsd:string

price xsd:double

qty xsd:int
94 WebSphere Application Server Enterprise V5

Table 4-11 ApprovalResponse message parts

The ApprovalResponse message is used to implement the output of the Approval
staff activity of the PO business process (named Approval object in the process
graphic design). It is the data the Approval staff activity will return to the flow
when it is completed.

Based on the information above, the Web client builds the presentation. Instead
of showing how the default Web client presentations looks now, we will first see
the implementation of the user-defined JSPs for the PO business process. Then
we show all the before and after presentations in sequence, so it will be easier for
you to see the improvements in the implementation.

Implementing user defines JSPs - Process page
For the process user-defined JSPs, we will implement the
ProcessInputMessageDisplay and the ProcessInformationDisplay -Input
Message JSP. Once the PO business process does not return any information,
there are no message for it to display for the ProcessOutputMessageDisplay or
ProcessInformationDisplay - Output Message JSP. The
ProcessInputMessageDisplay gets a data JSP; that means it renders a form so
the user can type the input data needed by the PO business process. Therefore,
we will need a correlated mapping JSP to validate the typed data and build a
WSIF message with this data. If a user types data that is not valid and we detect
it at the mapping JSP, we will use the Error.jsp that we created before for the
Catalog Update, to show the error information. We will create the JSP files shown
in Table 4-12 in the ACompanyProcessWeb.

Table 4-12 Process user-defined JSPs for PO

Example 4-7 on page 96 shows the implementation of the Process Input
Message JSP. It is a very simple HTML table with the fields we want the user to

Part name Type

isApproved xsd:boolean

comment xsd:string

JSP Names Comments

PoProcessInput.jsp To render the Process Input Message
form

PoProcessInputMap.jsp To consist the user data and wrap it for the
business process engine

PoProcessInfoInput.jsp To display the Process Input Message
 Chapter 4. Process Choreographer development scenarios 95

enter as process input data. For more details and some restrictions, see this
implementation for the Catalog Update in Example 4-3 on page 84.

Example 4-7 PO Process Input user-defined JSP (PoProcessInput.jsp)

<%--***--%>
<%-- This JSP will be rendered to get the information needed for at the --%>
<%-- process start, in this case the "PO Process". That means, every --%>
<%-- time the Web client need to get the input information for to start --%>
<%-- this process it calls this JSP instead of using its default render.The--%>
<%-- data got here must be verified, packed into an ClientObjectWrapper and--%>
<%-- forward to the flow. This is done in a correspondent message mapping --%>
<%-- JSP, that in this case is the "PoProcessInputMap.jsp",where --%>
<%-- we will use the input (like names "itemID_Input")to get the typed value-%>
<%--***--%>
<table>

<colgroup>
<col width="20%" span="2">
<col width="60%" span="1">

</colgroup>
<tr class="marked1">

<td class="fw_label">Part number</td>
<td> <input type="text" name="itemID_Input"> </td>
<td>Enter the part number you want to order.</td>

</tr>
<tr class="marked2">

<td class="fw_label">Quantity</td>
<td> <input type="text" name="qty_Input"></td>
<td>Enter the quantity you want to order.</td>

</tr>
</table>

Example 4-8 shows our POProcessInputMap.jsp implementation code.
Remember that the Error.jsp in the page directive is the same created for Catalog
Update. This JSP will validate the information from the PoProcessInput.jsp. It will
pack the information using the part names defined in the business process (see
Table 4-9 on page 94 or Figure 4-26 on page 93) on a WSIF message, and
forward it to the flow. For more details, see this implementation for the Catalog
Update in Example 4-4 on page 85.

Example 4-8 PO Process Input mapping user-defined JSP (PoProcessInputMap.jsp)

<%--***--%>
<%-- This is the map JSP for the "PoProcessInput.jsp" so here we --%>
<%-- parse the typed data if it is invalid throws a ServletException with a--%>
<%-- description of the error. In this case the "error.jsp" will be called,--%>
<%-- because we have it in the page directive of this JSP, to show the error-%>
<%-- message and how to retry the operation. When all data is correct, we --%>
<%-- wraps it in ClientObjectWrapper and forward to the flow. --%>
96 WebSphere Application Server Enterprise V5

<%--***--%>
<%@ page

language="java"
contentType="text/html;charset=UTF-8"
errorPage="./Error.jsp"
import="java.util.*,

com.ibm.bpe.api.ClientObjectWrapper,
com.ibm.bpe.client.*,
org.apache.wsif.base.WSIFDefaultMessage"%>

<%
// Create an instance of WSFI message class and wrap it in
// the ClientObjectWrapper
WSIFDefaultMessage msg = new WSIFDefaultMessage();
ClientObjectWrapper wrapMsg = new ClientObjectWrapper(msg);

// check part number input
String itemID_Input = request.getParameter("itemID_Input");
if (itemID_Input.equals("")) {

throw new ServletException("Please entrer a part number.");
}
msg.setObjectPart("itemID", itemID_Input);

// check quantity input
String qty_Input = request.getParameter("qty_Input");
if (qty_Input.equals("")) {

throw new ServletException("Please enter a quantity.");

//check qty for a valid data, and if ok add to the WSFI message
}
try {

msg.setIntPart("qty", (Integer.valueOf(qty_Input).intValue()));
} catch (Exception ex) {

throw new ServletException("The quantity '"+qty_Input+"' is not valid. ");
}

//Wrap the WSFI message in the business process message wrap class

//Create an vector and add the request parameters to be excluded
Vector excludeRequestParameters = new Vector();
excludeRequestParameters.add("itemID_Input");
excludeRequestParameters.add("qty_Input");

//forward message with the user typed data to the flow.
MessageUtilities.forwardMessageToController(request, response, wrapMsg, null,
excludeRequestParameters);
%>
 Chapter 4. Process Choreographer development scenarios 97

The Web client will call the ProcessInformationDisplay - Input Message
user-defined JSP every time it needs to display (read only) the value of the input
parameters for a specific instance of the PO business process. You can see in
Example 4-9 the implementation code for this JSP, We do not receive the input
message in the request; instead we receive the process ID (PIDD) that identifies
this specific instance of the PO business process. We use the PIDD to get the
input message for this instance of the business process. For the name of the
parts of this message, see Table 4-9 on page 94.

Example 4-9 PO Process Input information user-defined JSP (PoProcessInfoInput.jsp)

<%--***--%>
<%-- This is the JSP that will render the input information of the process --%>
<%-- "PO Process" just for show (read-only). That means ever time the Web --%>
<%-- Client need to show this information for this process it calls this JSP-%>
<%-- instead of using its default render. --%>
<%--***--%>
<%@ page

language="java"
contentType="text/html;charset=UTF-8"
import="com.ibm.bpe.api.*,

com.ibm.bpe.client.*,
org.apache.wsif.base.WSIFDefaultMessage"%>

<%
//get the processor ID string
String pidd = request.getParameter(Constants.WF_PIID);

//get the local reference of the business process EJB
LocalBusinessProcess process = MessageUtilities.getProcess(request);

//get the business process wrapped message
ClientObjectWrapper cMsg = (ClientObjectWrapper)process.getInputMessage(pidd);

//Extract the WSFI message from the wrap class
WSIFDefaultMessage inMsg = (WSIFDefaultMessage)cMsg.getObject();

//as you can see in the HTML below the dynamic data is obtained from
//the input message - inMsg.getXxxxx("xxxxx")-
%>
<table width="100%">

<colgroup>
<col width="20%" span="2">
<col width="60%" span="1">

</colgroup>
<tr class="marked2">

<td class="fw_label" height="25pt">Part number</td>
<td><%= inMsg.getObjectPart("itemID")%></td>
<td>The part number of the ordered item.</td>

</tr>
98 WebSphere Application Server Enterprise V5

<tr class="marked1">
<td class="fw_label" height="25pt">Quantity</td>
<td><%= inMsg.getIntPart("qty")%></td>
<td>The number of ordered items.</td>

</tr>
</table>

To add this JSP to the PO business process, do as follows:

1. Open the PO.process in a Business Integration perspective and select the
Client tab.

2. To add the PoProcessInput.jsp, on the Client tab, click Add.

3. In the Add Definition window, select ProcessInputMessageDisplay from the
Action drop-down list.

4. From the JSP Page Settings, select Input Message JSP.

5. Click the button with three dots next to the cell.

6. On the File Selection window, expand ACompanyProcessWeb, expand Web
Content, select PoProcessInput.jsp and click OK.

7. Add the PoProcessInputMap.jsp. In the JSP Page Settings, select Message
Mapping JSP.

8. Click the button with three dots next to the cell.

9. On the File Selection window, expand ACompanyProcessWeb, expand Web
Content, select POProcessInputMap.jsp and click OK.

10.To add the PoProcessInfoInput.jsp, on the Client tab pane click Add.

11.In the Add Definition window, select ProcessInformationDisplay from the
Action drop-down list.

12.In the JSP Page Settings, select Input Message JSP.

13.Click the button with three dots next to the cell.

14.On the File Selection window, expand ACompanyProcessWeb, expand Web
Content, select PoProcessInfoInput.jsp and click OK.

15.At the end, click OK and save the changes.

Implementing user defines JSPs - Activity page
To implement the user-defined JSPs for the Approval staff activity, we need to
create three new JSP files in the project ACompanyProcessWeb, as listed in
Table 4-13 on page 100.
 Chapter 4. Process Choreographer development scenarios 99

Table 4-13 Process user-defined JSPs for PO

The Web client will invoke the staff activity input JSP every time it needs to
display (read only) the data that this activity received when it started. This
information is very important for the owner of that activity. Based on this data, the
process owner will take action before completing the activity (in our case approve
or reject an order). Example 4-10 shows the implementation code of this
user-defined JSP. It is very simple. The input message is received in the request,
so we just need to get the data we want to show using the input message part
names. See Table 4-10 on page 94. To help the user make a decision, we also
add in the presentation a new entry that shows the total price. In the input
message, we have the unit price and the number of items. A snippet of this code
is as follows:

<td class="fw_label" height="25pt">Total price</td>
<td><%= ((inMsg.getDoublePart("price"))*(inMsg.getIntPart("qty")))%></td>
<td>The total cost in US$.</td>

We can add extra fields or remove fields, as we did in the Catalog Update
business process in Example 4-4 on page 85.

Example 4-10 PO Approval staff activity Input user-defined JSP (PoActivityInput.jsp)

<%--***--%>
<%-- This is the JSP that will render the input information of the --%>
<%-- "Approval" activity of the process "PO Process". That means every time--%>
<%-- the Web client need to show the information for this activity/process --%>
<%-- it calls this JSP instead of using its default render. --%>
<%--***--%>
<%@ page

language="java"
contentType="text/html;charset=UTF-8"
import="com.ibm.bpe.api.*,

com.ibm.bpe.client.*,
org.apache.wsif.base.WSIFDefaultMessage"%>

JSP Names Comments

PoActivityInput.jsp To display activity Input Message.

PoActivityOutput.jsp Depending on the activity state, it displays
information. If the state is Claimed, it
displays an input form so data such as
approve/reject, etc., needed to complete
the activity can be entered.

PoActivityOutputMap.jsp To contain the user data and wrap it for the
business process engine
100 WebSphere Application Server Enterprise V5

<jsp:useBean id="inputMessage" class="java.lang.Object" scope="request">
</jsp:useBean>

<%
//Casting to the business process wrap class
ClientObjectWrapper cMsg = (ClientObjectWrapper)inputMessage;

//Extract the WSFI message from the wrap class
WSIFDefaultMessage inMsg = (WSIFDefaultMessage)cMsg.getObject();

//as you can see in the HTML below the dynamic data is obtained from
//the input message - inMsg.getXxxxx("xxxxx")-
%>
<table width="100%">

<colgroup>
<col width="20%" span="2">
<col width="60%" span="1">

</colgroup>
<tr class="marked1">

<td class="fw_label" height="25pt">Name</td>
<td><%= inMsg.getObjectPart("name")%></td>
<td>The name of the order' request.</td>

</tr>
<tr class="marked2">

<td class="fw_label" height="25pt">Part number</td>
<td><%= inMsg.getObjectPart("itemID")%></td>
<td>The part number of the ordered item.</td>

</tr>
<tr class="marked1">

<td class="fw_label" height="25pt">Unit Price</td>
<td><%= inMsg.getDoublePart("price")%></td>
<td>The part number price in US$.</td>

</tr>
<tr class="marked1">

<td class="fw_label" height="25pt">Quantity</td>
<td><%= inMsg.getIntPart("qty")%></td>
<td>The number of ordered itens.</td>

</tr>
<tr class="marked2">

<td class="fw_label" height="25pt">Total price</td>
<td><%= ((inMsg.getDoublePart("price"))*(inMsg.getIntPart("qty"))

)%></td>
<td>The total cost in US$.</td>

</tr>
</table>
 Chapter 4. Process Choreographer development scenarios 101

Now let’s see the most complex implementation. The PoActivityOutput.jsp is a
user-defined JSP. This JSP builds different presentations based on the activity
states, which can be:

� Ready: The activity was just created, and is waiting for some authorized user
to claim it.

� Claimed: Some authorized user has already claimed it, but has not
completed it.

� Finished: The activity has been completed.

When the activity is in the Claimed state, it can have saved data or not. The
owner of the activity needs to leave the activity after entering data but before
completing it, he has the option to save the entered data by clicking the Save
button, and when he returns to this activity he will receive the form with the data
he had entered before. The implementation code in Example 4-11 shows how to
deal with the details. From the request we receive the activity ID (AIID), which
represent a specific instance of that activity. We use that to obtain the output
message to get saved data if any. See Table 4-11 on page 95 for the message
part names. Other objects that we need to receive in the request include the
ActivityInstanceData, which we use to check the state of the activity. The
following is an important line of this code:

if(activity.getExecutionState() == ActivityInstanceData.STATE_READY)

This line shows how you test the activity state (Ready in this line). Based on the
result you build the presentation. In this case, it just indicates that this order has
to be approved.

if (outMsg != null) {
commentInputValue = (String)outMsg.getObjectPart("comment");
approvalInputValue = outMsg.getBooleanPart("isApproved");}%>
...

This code runs when the activity is in a Claimed state. Here we test for saved
data (outMsg is not null), so if we have previous saved data, we load it in some
variables to show that in the form. These variables were loaded before with some
defaults. As you can see in the source code above, in this case we do not have
any saved data (outMsg is null).

Example 4-11 PO Approval staff activity Output user-defined JSP (PoActivityOutput.jsp)

<%--***--%>
<%-- This JSP will render output information of "Approval" activity of PO --%>
<%-- Process depending on the state of the activity. That means, every time--%>
<%-- the Web client needs to get or show output information for this --%>
<%-- activity/process it calls this JSP instead of using its default render.-%>
<%-- In case of getting data it must be verified, packed into an --%>
<%-- ClientObjectWrapper and forwarded to the flow. This is done in a --%>
102 WebSphere Application Server Enterprise V5

<%-- correspondent message mapping JSP, that in this case is the --%>
<%-- "PoActivityOutputMap.jsp",where we will use the input names to get the--%>
<%-- typed value. --%>
<%--**-->
<%@ page

language="java"
contentType="text/html;charset=UTF-8"
import="com.ibm.bpe.client.*,

java.util.*,
org.apache.wsif.base.WSIFDefaultMessage,
com.ibm.bpe.api.*"%>

<%--Getting a reference to the activity instance --%>
<jsp:useBean id="activity" class="com.ibm.bpe.api.ActivityInstanceData"
scope="request">
</jsp:useBean>

<%
//get the activity ID string
String aidd = request.getParameter(Constants.WF_AIID);

//get the local reference of the business process EJB
LocalBusinessProcess process = MessageUtilities.getProcess(request);

//get the business process wrapped message
ClientObjectWrapper wrapOutMsg =
(ClientObjectWrapper)process.getOutputMessage(aidd);

//Extract the WSFI message from the wrap class
WSIFDefaultMessage outMsg = (WSIFDefaultMessage)wrapOutMsg.getObject();

//show message for activity READY
if(activity.getExecutionState() == ActivityInstanceData.STATE_READY) {%>

<H4>This order has to be approved. </H4><%}

//show message for activity CLAIMED
if(activity.getExecutionState() == ActivityInstanceData.STATE_CLAIMED) {

//Set default value for activity output input data
boolean approvalInputValue = false;
String commentInputValue = "";

//Load value for activity output input data from an previous save, in case
//the data was saved before (save button in the Activity Available Actions

form)
if (outMsg != null) {

commentInputValue = (String)outMsg.getObjectPart("comment");
approvalInputValue = outMsg.getBooleanPart("isApproved");}%>
<H4>What do you want to do?</H4>
<blockquote>
<TABLE width="100%">
 Chapter 4. Process Choreographer development scenarios 103

<TBODY>
<TR class="marked1">

<P><LABEL> <INPUT type="radio" name="approval_Input"
value="true"<% if (approvalInputValue)

{%>checked<%}%>> Approve the order.</LABEL>

<LABEL> <INPUT type="radio" name="approval_Input" value="false"

<% if (!approvalInputValue)
{%>checked<%}%>> Reject the order.</LABEL></P>

</TR>
<TR class="marked1">

<TABLE>
<TR class="marked1">

<P>Enter your comments:</P>
</TR>
<TR class="marked1">

<TEXTAREA rows="4" cols="30" name="comment_Input"><%=
commentInputValue %></TEXTAREA>

</TR>
<TABLE>

</TR>
</TBODY>

</TABLE>
</blockquote>

 <%}

//show message for activity FINISHED
if(activity.getExecutionState() == ActivityInstanceData.STATE_FINISHED) {

if (outMsg.getBooleanPart("isApproved")) {%>
<H4>This order has been approved.</H4>
<H4>With this comments: <%= (String)outMsg.getObjectPart("comment")

%></H4> <%}
else {%>

<H4>This order has not been approved.</H4>
<H4>With this comments: <%= (String)outMsg.getObjectPart("comment")

%></H4><%} %>
<%} %>

Example 4-12 shows the implementation of the PoActivityOutputMap.jsp. The
only difference in this code is the test to see if we already have a WSIF
message object (be sure to save before). If so, we reuse it just to avoid
unnecessary instance creation.

Example 4-12 PO Approval staff activity Output user-defined JSP
(PoActivityOutputMap.jsp)

<%--***--%>
<%-- This is the map JSP for the "PoActivityOutput.jsp" so here we --%>
<%-- parse the typed data if it is invalid throws a ServletException with a--%>
<%-- description of the error. In this case the "error.jsp" will be called,--%>
104 WebSphere Application Server Enterprise V5

<%-- because we have it in the page directive of this JSP, to show the error-%>
<%-- message and how to retry the operation. When all data is correct, we --%>
<%-- wraps it in ClientObjectWrapper and forward to the flow. --%>
<%--***-->
<%@ page language="java"

contentType="text/html;charset=UTF-8"
import="java.util.*,

com.ibm.bpe.client.*,
com.ibm.bpe.api.*,
com.ibm.bpe.api.ClientObjectWrapper,
com.ibm.bpe.client.MessageUtilities,
org.apache.wsif.base.WSIFDefaultMessage"%>

<%
//get the activity ID string
String aidd = request.getParameter(Constants.WF_AIID);

//get the local reference of the business process EJB
LocalBusinessProcess process = MessageUtilities.getProcess(request);

//get the business process wrapped message
ClientObjectWrapper wrapOutMsg =
(ClientObjectWrapper)process.getOutputMessage(aidd);

//Extract the WSFI message from the wrap class
WSIFDefaultMessage outMsg = (WSIFDefaultMessage)wrapOutMsg.getObject();

//if we do not have an previous output message create one and wrap it in
// the ClientObjectWrapper
if (outMsg == null) {outMsg = new WSIFDefaultMessage();

wrapOutMsg = new ClientObjectWrapper(outMsg);}

//convert the string "true" or "false" to a Boolean type and add it to the
message
outMsg.setBooleanPart("isApproved", (new
Boolean(request.getParameter("approval_Input")).booleanValue()));

//add typed comment to the message
outMsg.setObjectPart("comment", (String)request.getParameter("comment_Input"));

//create an vector and add the request parameters to be excluded
Vector excludeRequestParameters = new Vector();
excludeRequestParameters.add("isApproved");
excludeRequestParameters.add("comment");
//forward message with the user typed data to the flow.
MessageUtilities.forwardMessageToController(request, response, wrapOutMsg,
null, excludeRequestParameters);
%>
 Chapter 4. Process Choreographer development scenarios 105

Now we that we have all the files, we will add them to the Approval staff activity in
the PO business process. In a Business Integration perspective of WebSphere
Studio IE:

1. Open the PO business process, the PO.process file, and select the Process
tab.

2. Right-click the Approval (staff activity) object and select Properties.

3. On the Properties for Approval window, select Client and click Add.

4. On the Add Definition window, select the action ActivityDisplay from the
drop-down action list.

5. Add the activity user-defined JSPs to the ActivityDisplay points as shown in
Figure 4-27, then click OK.

Figure 4-27 ActivityDisplay user-defined JSPs definition

6. Click OK on the Properties for Approval window and save the changes.

Now let’s see the differences in the presentations of the PO business process
with the user-defined JSPs.
106 WebSphere Application Server Enterprise V5

Figure 4-28 on page 108 and Figure 4-29 on page 109 show the difference made
by PoProcessInput.jsp. This JSP displays a better name for the data and
changes the type for an explanation of the data to be entered.

Important: You cannot use the ViewContext in your user-defined JSPs
without some lib changes. We did not need it in our sample because it is very
simple. However, if you need internationalizing in your user-defined JSPs, the
locale is in the context object. But because the ViewContext class is in the
library (bpewebclient.jar) located inside of the Web client application
bpewebclient (lib directory of the WAR), if you try to use it in the user-defined
JSPs, you will receive the error:

Class com.ibm.bpe.client.ViewContext not found

If you make a copy of this JAR to the lib dir of your user-defined JSP Web
project ACompanyProcessWeb, you will receive:

java.lang.ClassCastException: com.ibm.bpe.client.ViewContextImpl

If you really need to use this object, copy the bpewebclient.jar from the Web
client application lib to WebSphere Application Server Enterprise lib
(<WebSphere_root>\lib), or in WebSphere Studio IE test environment copy to
<Studio_root>\runtimes\ee_v5\lib. So both Web applications bpewebclient and
ACompanyProcessWeb will load it from a unique file system place.
 Chapter 4. Process Choreographer development scenarios 107

Figure 4-28 PO process input message without user-defined JSPs
108 WebSphere Application Server Enterprise V5

Figure 4-29 PO process input message without user-defined JSPs

Figure 4-30 on page 110 and Figure 4-31 on page 111 show the difference made
by PoProcessInfoInput.jsp. This JSP displays a better name for the data and
added an explanation of the data displayed.
 Chapter 4. Process Choreographer development scenarios 109

Figure 4-30 PO process input information without user-defined JSPs
110 WebSphere Application Server Enterprise V5

Figure 4-31 PO process input information with user-defined JSPs

Figure 4-32 on page 112 and Figure 4-33 on page 113 show the difference made
by PoActivityInput.jsp for the activity input message, and PoActivityOutput.jsp for
the activity output message for an ready activity.

The PoActivityInput.jsp JSP just displays a better name for the data and added
an explanation of the displayed data.

The PoActivityOutput.jsp shows the output part names with no value. Once the
activity is started, it shows a message saying that the other needs to be
approved.
 Chapter 4. Process Choreographer development scenarios 111

Figure 4-32 PO process ready Approval activity input/output message without user-defined JSPs
112 WebSphere Application Server Enterprise V5

Figure 4-33 PO process ready approval activity input/output message with user-defined JSPs

Figure 4-34 on page 114 and Figure 4-35 on page 115 show the difference made
by PoActivityInput.jsp for the activity input message, and
PoActivityOutput.jsp/PoActivityOutputMap.jsp for the activity output message for
a Claimed activity.

The PoActivityInput.jsp JSP displays a better name for the data and adds an
explanation of the displayed data.

The PoActivityOutput.jsp, instead of showing an output part named isApproved
and an entry field where the user should type true or false (a boolean field), it
shows a message reminding the user of what he wants to do and two radio
 Chapter 4. Process Choreographer development scenarios 113

buttons appear to approve or reject. By default, reject is always selected. In
addition, instead of one entry field for the comments there is a text box.

Figure 4-34 PO process claimed Approval activity input/output message without user-defined JSPs
114 WebSphere Application Server Enterprise V5

Figure 4-35 PO process claimed Approval activity input/output message with user-defined JSPs

Figure 4-36 on page 116 and Figure 4-37 on page 117 show the difference made
by PoActivityInput.jsp for the activity input message, and
PoActivityOutput.jsp/PoActivityOutputMap.jsp for the activity output message for
a finished activity.

The PoActivityInput.jsp JSP displays a better name for the data and adds an
explanation of the displayed data.
 Chapter 4. Process Choreographer development scenarios 115

The PoActivityOutput.jsp instead shows the output part names with their value. It
also shows a message saying that the other has been approved or rejected and
provides some comments.

Figure 4-36 PO process finished approval activity input/output message without user-defined JSPs
116 WebSphere Application Server Enterprise V5

Figure 4-37 PO process finished Approval activity input/output message with user-defined JSPs

Changing the look and feel
To make any change in the look and feel, other than implementing the
user-defined JSPs (see “Implementing business process-specific JSPs” on
page 73) will require changes in the Web client default JSPs (see Table 4-3 on
page 69), Cascading Style Sheets (dwc.css), configuration file
(Configuration.xml), etc. The best approach to avoid problems is to create a copy
of the Process Choreographer Web client application. We will create a new
project in the WebSphere Studio IE and bring all the definitions, codes, and
pages of the Web client (bpewebclient) to it.
 Chapter 4. Process Choreographer development scenarios 117

Creating a copy of the Web client project
First, create a new EE Test Environment Server in WebSphere Studio Application
Server Integration Edition.

During the creation of this server, the following projects of Process
Choreographer will be loaded so we can run and debug process business
applications:

� BPEContainer (EAR)
� bpecontainer_ejb (EJB)
� BPERemoteDeploy (EAR)
� bperemotedeploy_ejb (EJB)
� bpesoapclient (WEB)
� bpewebclient (WEB)
� compensate_ejb (EJB)

For more details, see 4.4, “Testing and debugging” on page 148.

To copy the entire Web client application to a new project:

1. In a Web perspective, right-click the Web project bpewebclient, then select
Copy.

2. Right-click again and select Paste.

3. On the Copy Project window, enter the name of the new project as
MyBpewebclient.

4. In the Enterprise application Project, select New and enter
MyBpewebclientEAR for project name.

Creating a new enterprise application for just the MyBpewebclient is a good
idea, as it will be common for all business process.

5. Enter a new context root so we don’t need to remove the default Web client
from the WebSphere Application Server Enterprise or from WebSphere
Studio IE.

6. Click OK.

Two new projects were created in our sample application: the Web
MyBpewebclient and the enterprise application MyBpewebclientEAR.

Important: Just remember that this new Web client project MyBpewebclient
must be deployed in all instances of WebSphere Application Server
Enterprise, because it uses local interfaces to access the business process
AIP (EJB).
118 WebSphere Application Server Enterprise V5

The MyBpewebclient gives a warning with the following description in the Task
list:

IWAE0034W EJB link element ejb/local/BusinessProcessHome is unresolvable
in......

Do not worry about this, because this reference will be solved in the runtime. This
message does not show in the BPEContainer.ear, because of a trick within the
project. Try to rebuild this project, and you will see that you are not allowed. The
trick will be discovered later in this section.

To finish with this project, we need to configure a security role:

1. Open the Deployment Descriptor of the MyBpewebclientEAR.

2. Select the Security tab and click Add.

3. Add the security role WebClientUser and click Finish.

4. On the Security tab, select the recently created WebClientUser.

5. On the WebSphere Bindings tab, check the All authenticated users box.

6. Save the changes and close the file.

We are finished with the MyBpewebclientEAR. Now let’s work with the
MyBpewebclient:

1. Select and delete the imported_classes folder.

2. The next steps will show how to remove a trick from the bpewebclient project
that comes with the copy. Just to show the problem in the MyBpewebclient
project, double-click the Activity.jsp in a Web perspective and select the
Source tab and find the following lines of code:

if (mode == null) {
mode = Constants.CONFIG_MODE_DISPLAY;

}

Move the cursor after Constants. (just after the dot) and press and hold the
Ctrl key and press the Space key (code assist). As you can see, code assist is
not working, or you would see a pop-up with the variables and methods
signatures of the Constants class. You can even type any wrong code and
save this file without seeing any error.

Lets fix it. Close WebSphere Studio IE and using Windows Explorer, go to the
WebSphere Studio IE repository where you build this project. Usually

Important: Make sure you do the steps below when you copy the
bpewebclient. Otherwise, this new project (MyBpewebclient) will miss the
code assist syntax check support. You will only detect errors at runtime.
 Chapter 4. Process Choreographer development scenarios 119

WebSphere Studio IE shows this directory in the startup. Select the directory
MyBpewebclient. In this directory, you should find a file named .project.

3. Now insert the lines that are boldfaced in Example 4-13.

Example 4-13 .project file of MyBpewebclient after the changes

<?xml version="1.0" encoding="UTF-8"?>
<projectDescription>

<name>MyBpewebclient</name>
<comment></comment>
<projects>
</projects>
<buildSpec>

<buildCommand>
<name>com.ibm.etools.webtools.LibDirBuilder</name>
<arguments>
</arguments>

</buildCommand>
<buildCommand>

<name>org.eclipse.jdt.core.javabuilder</name>
<arguments>
</arguments>

</buildCommand>
<buildCommand>

<name>com.ibm.etools.webtools.additions.linksbuilder</name>
<arguments>
</arguments>

</buildCommand>
<buildCommand>

<name>com.ibm.etools.validation.validationbuilder</name>
<arguments>
</arguments>

</buildCommand>
<buildCommand>

<name>com.ibm.etools.j2ee.LibCopyBuilder</name>
<arguments>
</arguments>

</buildCommand>
<buildCommand>

<name>com.ibm.etools.ctc.serviceprojectbuilder</name>
<arguments>
</arguments>

</buildCommand>
</buildSpec>
<natures>

<nature>com.ibm.etools.beaninfo.BeaninfoNature</nature>
<nature>com.ibm.etools.j2ee.WebNature</nature>
<nature>org.eclipse.jdt.core.javanature</nature>
<nature>com.ibm.etools.ctc.javaprojectnature</nature>
120 WebSphere Application Server Enterprise V5

</natures>
</projectDescription>

4. Restart WebSphere Studio IE again. In a Web perspective, right-click the
MyBpewebclient project and select Rebuild Project. After it finishes, you will
see lots of errors in this Task list. Almost all of them are unresolved
references. To fix them, you need to add the bpe.jar and the wsif.jar to the
project.

5. After you have added the libraries, you still have five errors and one warning.
To fix the errors, double-click them in the Task list one-by-one. The file with an
error opens. Then simply save it. The errors will disappear. This is caused by
a known refresh problem in WebSphere Studio IE.

6. The warning message is a limitation in page designing. It is complaining of a
broken link in the because it is looking only in its file
(Header.jsp) for that, but you can find it defined in other JSP files, for example
ActivityInformation.jsp.

Now our Web client is ready to run. To test it, add the MyBpewebclientEAR to
your server in the WebSphere Studio IE. In a browser, type:

http://localhost/mybpe/webclient

Going around the Web client Splash screen
The splash UI is hard-coded in the com.ibm.bpe.client.CommandHandler class in
the method showStatus(request, response, servlet). The only easy change is if
you want to change the GIF image. It is located in the images/startAnimation.gif
in the MyBpewebclient, but if you want a different layout or nothing at all, try the
JSP shown in Example 4-14. This JSP can show any HTML you want for the time
you set and bypass the default splash. The way it is set now, it will show a blank
page for 0 milliseconds.

Example 4-14 index.jsp

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<HTML>
<HEAD>
<%@ page
language="java"
contentType="text/html; charset=ISO-8859-1"
pageEncoding="ISO-8859-1"
%>
<META http-equiv="Content-Type" content="text/html; charset=ISO-8859-1">
<META name="GENERATOR" content="IBM WebSphere Studio">
<META http-equiv="Content-Style-Type" content="text/css">

Note: Note that the context root is mybpe this time.
 Chapter 4. Process Choreographer development scenarios 121

<TITLE>index.jsp</TITLE>
<%
String st = request.getContextPath() + "/webclient?WF_Command=ListDisplay";
%>
<SCRIPT language = "JavaScript">
function setClientTimeZone() {

var date = new Date();
var clientTimeZone = date.getTimezoneOffset();
document.CommandHandler.WF_ClientTimeZoneOffset.value=clientTimeZone;

<%--Line below last parameter 0 means wait for 0 mileseconds, if you want --%>
<%--to show some HTMLimage just put the time you want this message to stay--%>

window.setTimeout("document.CommandHandler.submit()",0);
}
</SCRIPT>
</HEAD>
<BODY onLoad= setClientTimeZone()>
<FORM name= CommandHandler method=post action=<%= st %>>
<INPUT type=hidden name=WF_ClientTimeZoneOffset value="">
</FORM>
<%-- Insert any HTML/Image you want here or live it blank --%>
</BODY>
</HTML>

You can also add the index.jsp to the Welcome Pages of the MyBpewebclient, so
you will only need to enter:

http://localhost/mybpe

Changing the Header
The header is generated by the Header.jsp. The image it shows is in the
images/banner.jsp, so you can easily change your company banner. But the
header.jsp also shows the Help menu, which points to the WebSphere
Application Server Enterprise control center on the Internet:

http://publib7b.boulder.ibm.com/webapp/wasinfo1/index.jsp?deployment=Enterprise
&file=wfclient/concepts/c7webclt

You may want to remove it or change to your own.

Changing layout
Figure 4-38 on page 123 is a fragment of HTML that builds the default Web client
layout. This fragment of HTML code is in almost all JSPs of the Web client. As
you can see, each page of the default Web client layout consists of one main
HTML table and the Header.jsp pane. The main table has just one row and one
column and also includes the Navigation.jsp pane. The provided table cell is
used to render the content, which can contain tables, forms, labels, inputs,
images, and user-defined JSPs, etc. Therefore, with the exception of the
122 WebSphere Application Server Enterprise V5

http://publib7b.boulder.ibm.com/webapp/wasinfo1/index.jsp?deployment=Enterprise&file=wfclient/concepts/c7webclt

Header.jsp that renders the Header pane and the Navigation.jsp that renders the
navigation bar pane, all other default JSPs (see Table 4-3 on page 69) render the
content pane for a specific content.

Figure 4-38 HTML template for Web client layout

Changing the content
One thing that we cannot change with the user-defined JSPs is the Process
Instance Name window. It is always there for interruptible processes such as the
PO process (see Figure 4-29 on page 109). If you enter it, the process instance
will have this name. If you do not enter it, Process Choreographer will build one
for the process instance; it must be unique. The problems, beside the pane
layout, are:

� Usually the default will be acceptable. This name will appear in the UI.

� For process that you need a name that usually will be related with the physical
process, like an document number that your company uses, or some
information generated in other system, the name Process Instance Name
probably will not better description for this information.

� As it is related to the process instance, even if it is not input data to this
process, it is more natural if it is grouped with the process input data.

We will change the default ProcessInputMessage.jsp of our Web client
application that we created in the project MyBpeWebClientWeb to change the
behavior. The change we will do will allow the ProcessInputMessage.jsp to

...

...
<BODY topmargin="0" leftmargin="0" marginwidth="0" marginheight="0">
<%-- Header --%>
<jsp:include page="Header.jsp" flush="true"/>
<%-- End of Header --%>
<%-- Navigation and content --%>
<TABLE class="fw">
 <TR class="fw_dtr">
 <%-- Navigation left --- --%>
 <jsp:include page="Navigation.jsp" flush="true"/>
 <%-- End of Navigation left --%>
 <%-- Content (Customize here) --- --%>
 <TD class="fw_content">
 .
 .
 </TD>
 </TR>
</TABLE>
<%-- End of Navigation and content --%>
</BODY>
...
...

Header

Content

Navigation
 Chapter 4. Process Choreographer development scenarios 123

behave like its default if you do not implement the ProcessInputMessage
user-defined JSP, but if you implement one, it will be your responsibility to get this
information for the Process Choreographer or not depending on your processing
need. Example 4-15 shows the changes we had made to the default
ProcessInputMessage.jsp (the changes are in bold). We can suppress the
Process Instance Name if there is a user-defined JSP for the process input
message:

if (inputMessageJSP == null) {

and set the process name and the message in the request so we can handle it in
the process input message user-defined JSP:

request.setAttribute("NOT_UNIQUE_MESSAGE", message);
request.setAttribute("PROCESSNAME", value);

Example 4-15 Changes in the default ProcessInputMessage.jsp to suppress the Process Instance Name
panel

<TABLE width="100%">
<% if (!processTemplate.getCanRunSynchronously()) { %>
<%-- Change to allows user-defined JSP, if any, to render the Process instance --%>
<%-- name, so you can give it name/format you want or even suppress it if it --%>
<%-- is not meaningful for your process and the Choreographer will generat the --%>
<%-- default unique name. --%>
<%String value = "";
String message = null;
if (context.getViewAttribute(Constants.NOT_UNIQUE_MESSAGE) != null) {

message = (String) context.getViewAttribute(Constants.NOT_UNIQUE_MESSAGE);
}
if (context.getViewAttribute(Constants.WF_PROCESSNAME) != null) {

value = (String) context.getViewAttribute(Constants.WF_PROCESSNAME);
value = new String (value.getBytes(request.getCharacterEncoding()),"UTF-8");

}
//Set this attribute so you can get them in the user-defined jsp ProcessInput
request.setAttribute("NOT_UNIQUE_MESSAGE", message);
request.setAttribute("PROCESSNAME", value);

if (inputMessageJSP == null) { %>
<TR>

<TD COLSPAN="3" ><%=dictionary.getString("PROCESS_NAME")%></TD>
</TR>
<TR>

<TD COLSPAN="3">
<hr noshade size="1">

</TD>
</TR>
<TR>

<TD class="fw_label"><%= dictionary.getString("PROCESS_NAME") %></TD>
124 WebSphere Application Server Enterprise V5

<TD><input name="<%= Constants.WF_PROCESSNAME %>" type="text" value="<%= value %>"
size="20"></TD>
<% if (message != null) { %>

<TD CLASS="fw_warning"><%= message %></TD>
<% } else { %>

<TD> </TD>
<% } %>

</TR>
<TR>

<TD COLSPAN="3"> </TD>
<TR>
<TR>

<TD COLSPAN="3"> </TD>
<TR>

<%} // end of if (inputMessageJSP != null) %>
<%-- end of process instance name change --%>
<%}; // end of if (!processTemplate.getCanRunSynchronously %>
<% if (((attributeInputMessageNames != null) && (attributeInputMessageNames.size() != 0)) ||
(inputMessageJSP != null)) { %>
...

After these changes, if you run the PO process without a ProcessInputMessage
user-defined JSP, you will see the same result rendered by the default Web client
(see Figure 4-28 on page 108). But if you run the PO process with our
ProcessInputMessage user-defined JSP PoProcessInput.jsp, the Process
Instance Name pane will be suppressed and the default name will be generated
for this instance (see Figure 4-39 on page 126).
 Chapter 4. Process Choreographer development scenarios 125

Figure 4-39 Process Instance Name suppressed with the new ProcessInputMessage.jsp.

Example 4-16 shows the new PO process input JSP that puts a new entry in the
form, named Order Number, where we can enter the name we want for the
process instance. We also check for non-unique names and receive a message if
there are any duplicate process instance names. Figure 4-40 on page 128 shows
the result of this new user-defined JSP, PoProcessWithOrderNumInput.jsp.

Example 4-16 PoProcessWithOrderNumInput.jsp new PO process input user-defined JSP

<%--**--%>
<%-- This JSP will be rendered to get the information needed for at the --%>
<%-- process start, and the process instance name called Order name in the --%>
<%-- form for the "PO Process". That means, every --%>
<%-- time the Web client need to get the input information for to start --%>
<%-- this process it calls this JSP instead of using its default render. The--%>
<%-- data got here must be verified, packed into an ClientObjectWrapper and --%>
<%-- forward to the flow. This is done in a correspondent message mapping --%>
126 WebSphere Application Server Enterprise V5

<%-- JSP, that in this case is the "PoProcessInputMap.jsp",where --%>
<%-- we will use the input (like names "itemID_Input")to get the typed value--%>
<%--**--%>
<%@ page

language="java"
contentType="text/html;charset=UTF-8"
import="com.ibm.bpe.client.*,

com.ibm.bpe.api.*"%>
<table>
<% //Test for duplicate Processor instance name error
if (request.getAttribute("NOT_UNIQUE_MESSAGE") != null) {

//Get the Process Choreographer defaul message
String msg = (String) request.getAttribute("NOT_UNIQUE_MESSAGE");
//Change generic part of the message, to better fit our Application
msg = "Order number "+msg.substring(msg.indexOf('\''));%>
<%-- Show the error message --%>
<tr CLASS="fw_warning"><td><%= msg %></td></TR>

</table>
<table> <%}
if (request.getAttribute("PROCESSNAME") != null) {%>

<colgroup>
<col width="20%" span="2">
<col width="60%" span="1">

</colgroup>
<tr class="marked1">

<td class="fw_label">Order Number</td>
<%-- The name of this input MUST BE Constants.WF_PROCESSNAME for the --%>
<%-- Process Choreographer process it right --%>

<td> <input type="text" name="<%= Constants.WF_PROCESSNAME %>" value="<%=
request.getAttribute("PROCESSNAME") %>"> </td>

<td>Enter Number for this order.</td>
</tr> <%}%>
<tr class="marked1">

<td class="fw_label">Part number</td>
<td> <input type="text" name="itemID_Input"> </td>
<td>Enter the part number you want to order.</td>

</tr>
<tr class="marked1">

<td class="fw_label">Quantity</td>
<td> <input type="text" name="qty_Input"></td>
<td>Enter the quantity you want to order.</td>

</tr>
</table>

Figure 4-40 on page 128 shows the new PO process input message window.
 Chapter 4. Process Choreographer development scenarios 127

Figure 4-40 Result of the new PO process input message user defines JSP
PoProcessWithOrderNumInput.jsp

Process Choreographer API
In this section, we will see how to call the business Process Choreographer API
from a Java application, to start a business process, make a query, and so on.
See Table 4-14 for more details about this API.

Table 4-14 Process Choreographer API function summary.

Api Functions Description

call Creates and executes a process instance from the
specified process template and synchronously waits for
the result
128 WebSphere Application Server Enterprise V5

callWithReplyContext Creates and executes a process instance from the
specified process template and asynchronously waits for
the result

cancelClaim Cancels the claim of an activity instance

claim Claims a ready activity instance for user processing

complete Completes a claimed activity instance

createMessage Creates a message defined by the specified process
template

delete Deletes the specified top-level process instance and its
subprocesses from the database

deleteWorkList Deletes the specified worklist from the database

executeWorkList Executes the query defined by the worklist and returns
the qualifying object properties

forceComplete Forces the completion of a stopped activity instance

forceRetry Forces the repetition of a stopped activity instance

forceTerminate Terminates the specified top-level process instance, its
subprocesses, and its running or claimed activities and
receive event

getActivityInstance Retrieves the specified activity instance

getCustomAttribute Retrieves the named custom attribute of the specified
activity instance

getEventNames Retrieves the receive event names of the specified
process instance

getFaultMessage Retrieves the specified fault message of the specified
activity instance

getFaultTerminalNames Retrieves the fault terminal names of the specified
activity instance

getInputMessage Retrieves the input message of the specified activity
instance

getOutputMessage Retrieves the output message of the specified activity
instance

getOutputTerminalNames Retrieves the output terminal names of the specified
activity instance

Api Functions Description
 Chapter 4. Process Choreographer development scenarios 129

getProcessInstance Retrieves the specified process instance

getProcessTemplate Retrieves the specified process template

getUISettings Retrieves user interface settings for the specified activity
instance

getUserInput Retrieves user input for the specified activity instance

getVariable Retrieves the specified variable of the specified process
instance

getWorkItems Retrieves work item assignments for the logged-on user
and the specified activity instance

getWorkList Retrieves the specified worklist definition from the
database

getWorkListNames Retrieves the names of worklists persistently stored in
the database

initiate Creates a process instance from the specified process
template, passes the specified input message, and
initiates processing of the process instance

newWorkList Creates a worklist and persistently stores it in the
database

query Retrieves selected object properties persistently stored
in the database

queryProcessTemplates Retrieves process templates persistently stored in the
database

sendEvent Sends the specified event to the specified process
instance

setCustomAttribute Stores custom-specific values for the specified activity
instance

setFaultMessage Stores the specified fault message for the specified
activity instance in the database

setOutputMessage Stores the output message of the specified activity
instance in the database

setUserInput Stores user input for the specified activity instance

Api Functions Description
130 WebSphere Application Server Enterprise V5

This API is based on a session EJB, as you can see in Figure 4-41, that
implements the remote interface:

� BusinessProcessHome
� BusinessProcess

and the local interface:

� LocalBusinessProcessHome
� LocalBusinessProcess

and the JNDI name:

� com/ibm/bpe/api/BusinessProcessHome.

Figure 4-41 Business Process Choreographer API interfaces

Process Choreographer Container

Process Choreographer EJB API
JNDI: com/ibm/bpe/api/BusinessProcessHome

LocalHome: LocalBusinessProcessHome
Local:Local BusinessProcess

RemoteHome: BusinessProcessHome
Remote: BusinessProcess

WebSphere App. Server 1 WebSphere App. Server 2

BPE API Application
(J2EE Client)

BPE API Application
(Servlet/EJB)

BPE API Application
(Servlet/EJB)

Remote/LocalRemote/Local
 Interface Interface

WebSphere Client

BPE API Application
(Java Thin Client)

Remote InterfaceRemote Interface
 Chapter 4. Process Choreographer development scenarios 131

The local interface is faster. That is why Process Choreographer Web client uses
the local interface, but an application can only use this interface when it runs in
the WebSphere Application Server Enterprise with the Process Choreographer
installed. In all other cases the remote interface must be used. As you can see in
Figure 4-41 on page 131, the difference between the J2EE client and the thin
client is just the environment it runs. For the J2EE client, we need to install the
WebSphere Client that came with WebSphere Application Server. The thin client
runs over an IBM JVM plus some JARs, as you will see.

We have two samples: one Java client using a remote interface that will call the
CatalogUpdate business process (using the call function off the API), and one
servlet using a local interface that will start the PO business process (using the
initiate function off the API). In the case of the Java client, we will show how to
test it under the WebSphere Studio IE, and how to deploy and run it in the
WebSphere Client and as a Java thin client.

Process Choreographer API remote interface Java client
This application is in the application client project named ACompanyClient. It has
two Java classes: the Client.java in the default package, and the
CatalogUpdateAPI.java in the ACompanyGUI package. You need to add two
libraries to our project: the bpe.jar and the wsif.jar.

Example 4-17 shows the Client.java. It has the main() method that creates an
instance of CatalogUpdateAPI class (our GUI implementation class). Add an
window event listener to it, so when it closes, the JVM is ended. After that, the
window appears.

Example 4-17 Client.java class

import ACompanyGUI.CatalogUpdateAPI;
public class Client {

public Client() {
super();

}
public static void main(String[] args) {
try {
 // Creates an instance of the GUI class
 CatalogUpdateAPI aCatalogUpdateAPI = new CatalogUpdateAPI();
 // Add a windowListener for the windowClosingEvent
 aCatalogUpdateAPI.addWindowListener(new java.awt.event.WindowListener() {

public void windowOpened(java.awt.event.WindowEvent e) {
}
public void windowClosing(java.awt.event.WindowEvent e) {
//Exit the JVM when the window closes

System.exit(0);
}
public void windowClosed(java.awt.event.WindowEvent e) {
132 WebSphere Application Server Enterprise V5

}
public void windowIconified(java.awt.event.WindowEvent e) {
}
public void windowDeiconified(java.awt.event.WindowEvent e) {
}
public void windowActivated(java.awt.event.WindowEvent e) {
}
public void windowDeactivated(java.awt.event.WindowEvent e) {
}

});
 //Turn the GUI (window) visible

 aCatalogUpdateAPI.setVisible(true);
 } catch (Throwable exception) {

System.err.println("Exception occurred in main() of aCatalogUpdateAPI");
exception.printStackTrace(System.out);

 }
}

}

We have to register the Client class as the main class. In a Java perspective,
expand the ACompanyClient project and its META-INF folder, and open the
MANIFEST.MF file. In the JAR Dependency Editor pane, select the
Dependencies tab, and in the Main-Class field, enter Client. Save the changes
and close the file.

The CatalogUpdateAPI was created using the WebSphere Studio IE Java Visual
Editor. With this tool you can create a Java visual class, with Swing or AWT
components, using drag-and-drop of components.

Building a Java GUI application is beyond the scope of this book. In Figure 4-42
on page 134, you can see the finished Swing GUI. Let’s add the code to access
the CatalogUpdate process.
 Chapter 4. Process Choreographer development scenarios 133

Figure 4-42 Visual Editor for class CatalogUpdateAPI

To understand the code of CatalogUpdateAPI callCatalogUpdateProcess()
method (Example 4-18 on page 135), we need to know the meaning of the
following GUI variables:

� jTextField: Instance of javax.swing.JTextField() for the part number.
� jTextField1: Instance of javax.swing.JTextField() for the new price.
� jLabel2: Instance of javax.swing.JLabel for the messages.

This code is called when you click the Update catalog button on the GUI
(ActionEvent).

1. Validate the entered data in the Swing GUI.

2. Get the initial context to do the JNDI lookup.

3. Do the lookup for the com/ibm/bpe/api/BusinessProcessHome, which is the
JNDI name of the Business Process API EJB.
134 WebSphere Application Server Enterprise V5

4. Narrow the returned object to the BusinessProcessHome, which is the Home
remote interface for the business process, and create an instance of
BusinessProcess Bean remote interface.

5. Create a message with the data entered in the Swing GUI.

6. Call the business process API for the CatalogUpdate process passing the
message created with the Swing GUI data. Since this is a synchronous
process, we have to wait for the response.

7. Test the response and set the right response message in the Swing GUI.

Example 4-18 Method callCatalogUpdateProcess() of CatalogUpdateAPI class

/**
 * This method calls the Remote Process Choreographer, as this client
 * will run outside the WebSphere Application Server, API to start
 * the CatalogUpdate process with GUI data for the input message
 */
 private void callCatalogUpdateProcess(){

 InitialContext context=null;
BusinessProcessHome processHome=null;
BusinessProcess processServ = null;

// Validate the typed data
try {

 // check new part number input
 if (jTextField.getText().equals("")){

 jLabel2.setText("Please enter a Part number.");
 return;}

 // check new price input
 if (jTextField1.getText().equals("")) {
 jLabel2.setText("Please enter a New price.");
 return;}

 //check new price for a valid data type
 try {
 Double.valueOf(jTextField1.getText()).doubleValue();}
 catch (Exception ex) {

 jLabel2.setText("The New price " + jTextField1.getText()+
 " is not valid.");

 return;}

 // Get properties for the JNDI initial context
 Properties p = new Properties();;

 //Supply the provider url of the server
 p.put(javax.naming.Context.PROVIDER_URL,"IIOP://localhost");
 Chapter 4. Process Choreographer development scenarios 135

 //Supply the initial context factory
 p.put(javax.naming.Context.INITIAL_CONTEXT_FACTORY,
 "com.ibm.websphere.naming.WsnInitialContextFactory");

 // Obtain the initial JNDI context
 context = new InitialContext(p);

 // Lookup the remote home interface of the BusinessProcess bean
 Object result = context.lookup("com/ibm/bpe/api/BusinessProcessHome");

 // Convert the lookup result to the proper type (IIOP cast)
 processHome = (BusinessProcessHome)
 javax.rmi.PortableRemoteObject.narrow(result,

 BusinessProcessHome.class);

// Create the BusinessProcess session bean's remote interface
processServ = processHome.create();

//Create a WSIF message
WSIFDefaultMessage aMessage = new WSIFDefaultMessage();

 //Add the typed part number to the process message
aMessage.setObjectPart("itemID", jTextField.getText());

 //Add the typed new price to the process message
aMessage.setDoublePart("price",
 (Double.valueOf(jTextField1.getText()).doubleValue()));
//Add the catalogURL to the process message, we do not need it now
//but as it is defined in the input it must be in the message
aMessage.setObjectPart("catalogURL", "");

 //Call the API to start the "CatalogUpdate" template with the as
//aMessage input data and wait for the return result in the resp
ClientObjectWrapper resp = processServ.call("CatalogUpdate",

 new ClientObjectWrapper(aMessage));
if (result != null)
 {
 //Unpack the message
 WSIFMessage rtnMsg = (WSIFMessage) resp.getObject();

 //Get the part name updated from the message
 java.lang.Integer rc = (java.lang.Integer)
 rtnMsg.getObjectPart("updated");

 //Test the return to set the right complition message in the gui
 if (rc.intValue() == 1) {

 jLabel2.setText("Successfully updated");}
 else {jLabel2.setText("not updated");}}}
136 WebSphere Application Server Enterprise V5

 catch (Exception e)
 { e.printStackTrace();

 jLabel2.setText(e.getMessage());}}
} // @jve:visual-info decl-index=0 visual-constraint="-4,-2"

Before you can test the client, you need to start the Test Environment server of
the sample application. Once the server is running, follow the steps below:

1. In a Java perspective, select Run -> Run... from the menu.

2. On the Launch Configurations window, right-click the WebSphere V5
Application Client and select New.

3. Enter a name, for example ACompanyClient.

4. Select WebSphere v5 EE for the server type.

5. Select ACompany for the enterprise application.

6. Click Apply then click Run.

7. The Catalog Update window should appear, as shown in Figure 4-43.

8. Enter 1 for the part number and 1.2 for the new price, then click Update
catalog.

9. In the login window, type a valid user name and password for the application
server.

Figure 4-43 Catalog Update GUI

10.After a successful update, a message appears, as shown in Figure 4-44 on
page 138.
 Chapter 4. Process Choreographer development scenarios 137

Figure 4-44 Catalog Update GUI after a successful update

Deploying the ACompanyClient in WebSphere Client
Install the WebSphere Client. Export the ACompany enterprise application as
EAR file to the file system, let’s say c:\acompany\ACompany.ear.

Before testing the client, we need to start the Test Environment server of our
sample application. After that, open a command prompt and change to the
<WebSphere_client_root>/bin directory. Start a WebSphere client for the
ACompany application with the following command:

launchclient c:\apompany\ACompany.ear -CCBootstrapHost=<AppServer_hostname>
-CCBootstrapPort=<AppServer_port>

If you do not specify the host name and a port number, the client will connect to
the localhost using the default port 2809.

After a little while the Catalog Update window should appear. See Figure 4-43 on
page 137.

Important: You need to copy two library files, bpe.jar and bpe137650.jar, from
<Studio_root>\runtimes\ee_v5\lib to <WebSphere_client_root>\lib.
138 WebSphere Application Server Enterprise V5

Deploying the ACompanyClient in WebSphere Client

Let’s create the directory structure to build our Java thin client for the
ACompanyClient application C:\acompanythin\libs.

Copy the following library files from <Studio_root>\runtimes\ee_v5\lib to
C:\acompanythin\libs:

� bpe.jar
� bpe137650.jar
� commons-logging-api.jar
� ecutils.jar
� ffdc.jar
� idl.jar
� iwsorb.jar
� j2ee.jar
� naming.jar
� namingclient.jar
� qname.jar
� ras.jar
� tx.jar
� txPrivate.jar
� utils.jar
� wsdl4j.jar
� wsexception.jar
� wsif.jar

Important: If you receive the following error:

java.io.InvalidClassException: javax.xml.namespace.QName; Local class not
compatible: stream classdesc serialVersionUID=-9120448754896609940 local
class serialVersionUID=1
 at
java.io.ObjectStreamClass.validateLocalClass(ObjectStreamClass.java:565)
 at java.io.ObjectStreamClass.setClass(ObjectStreamClass.java:609)
 at
java.io.ObjectInputStream.inputClassDescriptor(ObjectInputStream.java:981)

Copy the qname.jar library from <Studio_root>\runtimes\ee_v5\lib to the
<WebSphere_client_root>\lib.

Important: This procedure will work only if you use the IBM JDK.
 Chapter 4. Process Choreographer development scenarios 139

Copy the implfactory.properties file from
<WebSphere_Studio_IE_root>\runtimes\ee_v5\properties to the
c:\acompanythin, as follows:

1. In WebSphere Studio IE at the Java perspective, expand the
ACompanyClient project, right-click appClient Module and select Export.

2. On the Export window, select File system and click Next.

3. Browse for the directory and select c:\acompanythin.

4. Make sure that Create only selected directories is selected, and click
Finish.

Now you should have all classes, files, and library files that we need to run the
client. We create a catUudate.bat file in the c:\acompanythin (see Example 4-19)
to make it easy run the thin client. As you can see, we include in the Java
classpath the library files of c:\acompanythin\libs, the property file directory, and
the ACompanyClient classes directory. We also change to the
<WebSphere_root>\java\bin directory to use IBM JDK.

Example 4-19 .bat file to run the ACompanyClient as a Java thin client

SET MY_CLASSPATH=.;C:\acompanythin;C:\acompanythin\appClientModule;C:\acompanythin\libs\idl.jar
;C:\acompanythin\libs\naming.jar;C:\acompanythin\libs\ras.jar;C:\acompanythin\libs\wsexception.
jar;C:\acompanythin\libs\j2ee.jar;C:\acompanythin\libs\ffdc.jar;C:\acompanythin\libs\iwsorb.jar
;C:\acompanythin\libs\bpe137650.jar;C:\acompanythin\libs\bpe.jar;C:\acompanythin\libs\tx.jar;C:
\acompanythin\libs\utils.jar;C:\acompanythin\libs\txPrivate.jar;C:\acompanythin\libs\wsif.jar;C
:\acompanythin\libs\wsdl4j.jar;C:\acompanythin\libs\commons-logging-api.jar;C:\acompanythin\lib
s\qname.jar;C:\acompanythin\libs\namingclient.jar;C:\acompanythin\libs\ecutils.jar;
c:
cd “\Program Files\WebSphere\AppServer\java\bin”
java -classpath %MY_CLASSPATH% Client

Before testing the client, we need to start the Test Environment server of our
sample application. After that, open a command prompt, change to
c:\acompanythin directory, and run the catUpdate.bat file.

After a little while the Catalog Update window should appear, as shown in
Figure 4-43 on page 137.

Process Choreographer API Local interface servlet client
This application will start a PO process of our sample. Remember that the PO
process is an interruptible flow so it does not return. That means we just start it
and it goes asynchronous, and we are finished. For this application, we will have
one HTML file that will render a form to get and validate (JavaScript) the PO
process input data, and on the submit it will call a servlet that will invoke the
Process Choreographer API (local interface). If the servlet can start the PO
140 WebSphere Application Server Enterprise V5

process, it forwards a JSP and passes in the request an affirmative message. In
case of an exception, the same JSP is forwarded but with an error message.

Create the project ACompanyWeb in the ACompany enterprise application and
ACompany as context root. Since we will access the Process Choreographer
API, we need to add two library files to it: the bpe.jar and the wsif.jar. Let’s create
in the ACompanyWeb project two files:

� poInputData.html
� infoPage.jsp

In Example 4-20 is the code for poInputData.html file. As you can see, it is just a
form to get the part number and the quantity (PO process input data). We also
have a JavaScript (doSubmit()) called by using the Submit button. This
JavaScript validates the entered data and if the data is valid, it submits the form,
which will call the ProcessPoApi servlet. If the data is not valid, the JavaScript
sends an alert to the user with information about the error. When you save the
file, we will see a warning about a broken link. This is because the servlet
ProcessPoApi is not created yet.

Example 4-20 poInputData.HTML code

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<HTML>
<HEAD>
<META http-equiv="Content-Type" content="text/html; charset=ISO-8859-1">
<META name="GENERATOR" content="IBM WebSphere Studio">
<META http-equiv="Content-Style-Type" content="text/css">
<LINK href="theme/Master.css" rel="stylesheet" type="text/css">
<TITLE>PO Submit</TITLE>
</HEAD>
<SCRIPT language="JavaScript">
function doSubmit(pn,qty) {

if (pn.value == "") {
alert('Please enter a part number.');
return true;

} else {
if (qty.value == "") {

alert('Please entrer a quantity.');
return true;

} else {
if ((parseInt(qty.value) <= 0) || isNaN(qty.value)) {

alert('Please entrer a valid quantity.');
return true;

} else {
document.poInput.submit();

}
}

}

 Chapter 4. Process Choreographer development scenarios 141

}
</SCRIPT>
<BODY>
<FORM name=poInput action="/ACompany/ProcessPoApi">
<TABLE border="1">

<TBODY>
<TR>

<TD>
<table>

<colgroup>
<col width="20%" span="2">
<col width="60%" span="1">

</colgroup>
<tr class="marked1">

<td class="fw_label">Part number</td>
<td> <input type="text" name="itemID_Input" > </td>
<td>Enter the part number you want to order.</td>

</tr>
<tr class="marked2">

<td class="fw_label">Quantity</td>
<td> <input type="text" name="qty_Input" ></td>
<td>Enter the quantity you want to order.</td>

</tr>
</table>
</TD>

</TR>
<TR>

<TD></TD>
</TR>
<TR>

<TD align="center"><INPUT type="button" name="Submit" value="Submit"
onclick="doSubmit(itemID_Input,qty_Input)"></TD>

</TR>
</TBODY>

</TABLE>
</FORM>
</BODY>
</HTML>

In the Example 4-21 you see the code of the infoPage.jsp, which shows the
info attribute received in the request.

Example 4-21 infoPage.jsp

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<html>

<head>
<title>Information</title>
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">
142 WebSphere Application Server Enterprise V5

</head>
<style type="text/css">

p,a,font {
font-family:Verdana, Arial, Helvetica, sans-serif;
font-size: 10pt;
}

</style>
<%@ page import="java.io.*"

isErrorPage="true"
contentType="text/html;charset=UTF-8"

%>
<body>

<H3><% out.println(request.getAttribute("info"));%></H3>

</body>
</html>

To define the servlet ProcessPoApi:

1. In a Web perspective, expand the ACompanyWeb project and open the Web
Deployment Descriptor file.

2. Select the Servlet tab, and click New.

3. In the New Servlet window, enter poBusinessProcess for the package name,
ProcessPoApi for the Class Name, then click Finish.

At this point, the file ProcessPoApi.java is created and opened, so let’s add the
code in the servlet. First, we will add the method processRequest(req, resp), the
code for this method is in Example 4-22. The main difference from the remote
interfaces are:

� You have to do lookup using the java:comp/env. Therefore, we need to define
the reference name ejb/local/BusinessProcessHome in the EJB Local
reference in the Web Deployment Descriptor, as follows:

context.lookup("java:comp/env/ejb/local/BusinessProcessHome",...

� We just cast the lookup result to the local type. In the remote interface, we
need to narrow (IIOP) the new type to do this cast.

processHome = (LocalBusinessProcessHome)result

� As PO is an interruptible process. we do not wait for any response.

processServ.initiate("PO",new ClientObjectWrapper(aMessage))

Example 4-22 Method processRequest(req, resp)

/**
* This method calls the Local Process Choreographer API , as servlet will run
* in the WebSphere Application Server Enterprise , to start the
 Chapter 4. Process Choreographer development scenarios 143

* PO process with poInputData.html data for the input message
*/
public void processRequest(HttpServletRequest req,HttpServletResponse resp)

throws ServletException, IOException{

InitialContext context=null;
LocalBusinessProcessHome processHome=null;
LocalBusinessProcess processServ = null;

// get the Business Process EJB
try {

// Obtain the initial JNDI context
context = new InitialContext();

// Lookup the local home interface of the BusinessProcess bean
Object result =
context.lookup("java:comp/env/ejb/local/BusinessProcessHome");

// Convert the lookup result to the proper type
processHome = (LocalBusinessProcessHome)result;

// Access the BusinessProcess session bean's remote interface
processServ = processHome.create();

//Create a WSIF message
WSIFDefaultMessage aMessage = new WSIFDefaultMessage();

//Add the typed part number to the process message
aMessage.setObjectPart("itemID", req.getParameter("itemID_Input"));

//Add the typed quantity to the process message
aMessage.setIntPart("qty",
Integer.valueOf(req.getParameter("qty_Input")).intValue());

//Call the API to start the "PO" template with the aMessage as input
data

processServ.initiate("PO",new ClientObjectWrapper(aMessage));

//Send the complete message using the InfoPage.jsp
req.setAttribute("info", "PO Process has been started");
req.getRequestDispatcher("InfoPage.jsp").forward(req, resp);

} catch (Exception e) {
 //Print the error and the stack

System.out.println("--------- "+ e.getMessage()+
 "/"+e.fillInStackTrace());
//Send the error message using the InfoPage.jsp

 req.setAttribute("info",
 "An Exception occured when starting the PO process");
 req.getRequestDispatcher("InfoPage.jsp").forward(req, resp);
144 WebSphere Application Server Enterprise V5

}}

We need to add a call to the processRequest(req,resp) in the doPost(req,resp)
and doGet(req,resp) as follows:

public void doGet(HttpServletRequest req, HttpServletResponse resp) throws
ServletException, IOException {

processRequest(req, resp);
public void doPost(HttpServletRequest req, HttpServletResponse resp)

throws ServletException, IOException {
processRequest(req, resp);

1. To define the local EJB reference ejb/local/BusinessProcessHome, open the
Web Deployment Descriptor of ACompanyWeb:

2. Select the References tab and EJB Local (at the top of the pane).

3. Click Add, and override the New EJB Local Ref with
ejb/local/BusinessProcessHome.

4. Select session for the type.

5. Set the JNDI Name to com/ibm/bpe/api/BusinessProcessHome.

6. Now we have to enter the Local: and the Local home: values. But we are not
allowed to type in these fields, and the Browse only looks for local interfaces
defined in the WebSphere Studio IE projects. Since the interface we need to
define is in the library file bpe.jar, we do not see it using the Browse button. To
bypass this limitation, see the following restriction.
 Chapter 4. Process Choreographer development scenarios 145

To test the application, you have to publish it and start the Test Environment
server of the sample application. Open a browser with the following URL:

http://localhost:9080/ACompany/poInputData.html

You can see the result in Figure 4-45 on page 147. To test, enter 2 for the part
number and 6 for the quantity. You will receive a confirmation as shown in
Figure 4-46 on page 148.

Restriction: In the Web Deployment Descriptor Editor on the References tab
and EJB local, we can add local references, select its type (Session/Entity),
and enter the JNDI name, but it is not possible to add the Local home or the
Local interface names if these interfaces are not defined in any WebSphere
Studio IE project. To bypass this limitation, add the local EJB reference (with
its type and JNDI name), and save this in the Deployment Descriptor Editor
(press and hold the Ctrl key and press the s key). On the Source tab, your
local EJB definition should looks like this:

<ejb-local-ref>
<ejb-ref-name>ejb/local/BusinessProcessHome</ejb-ref-name>
<ejb-ref-type>Session</ejb-ref-type>
<local-home></local-home>
<local></local>

</ejb-local-ref>

Enter your local - home and local names in the file. You will see result below:

<ejb-local-ref>
<ejb-ref-name>ejb/local/BusinessProcessHome</ejb-ref-name>
<ejb-ref-type>Session</ejb-ref-type>
<local-home>com.ibm.bpe.client.api.LocalBusinessProcessHome</local-home>
<local>com.ibm.bpe.client.api.LocalBusinessProcess</local>

</ejb-local-ref>

Now if you return to the References tab, you can see the names there.

Once the descriptor is saved, WebSphere Studio IE will generate an ID for the
ejb-local-ref tag and will insert it as an attribute.
146 WebSphere Application Server Enterprise V5

Figure 4-45 PO process start form

Now if you start the Web client the order request we have created is waiting for
your approval.
 Chapter 4. Process Choreographer development scenarios 147

Figure 4-46 PO process started confirmation

4.4 Testing and debugging
Debugging problems in your business process logic can be difficult unless you
can choose to step through the code from the business process level, to identify
the business process component problem, step through the Java code to see
more details on the problem, and fix it. WebSphere Studio IE provides a process
debugger that can be used together with the normal Java debugger capabilities,
if needed, to make problem determination of your business process easier. The
three main components used to support business process debugging are:

� The process engine runs in the application server where the business
process is deployed. It can be a WebSphere Application Server Enterprise V5
or the EE Test Environment in the WebSphere Studio IE V5.

� The process debugger controls the execution of the process debugger and
runs in the WebSphere Studio IE V5 Process Debug perspective.

� IBM Agent Controller is responsible for the communication between the
process debugger and the process engine. It must be installed in the same
system as the process engine, and even if the process debugger and the
process engine are in the same system, such as when you use EE Test
Environment in the WebSphere Studio IE.
148 WebSphere Application Server Enterprise V5

4.4.1 Unit test environment
First you need to create a EE Test Environment server, configure it, and deploy
the sample. If you do not know how to do it, see “Development environment” on
page 667.

Running only the process debugger
If you do not need to debug through the Java code, just the business process,
follow this fast procedure. The process debugger allows you to set breakpoints in
the control links, so you can stop in any control link and step through the
business process. You can set a breakpoint by opening the .process file. Select
the Process tab in a Service perspective, then double-click the control link or
right-click the control link and select Add Breakpoint. A small ball appears in the
control link representing the breakpoint. Figure 4-47 on page 150 shows the
Catalog update process with two breakpoints:

� In the control link between the TransformRequest and CatalogItemUpdate.
� In the control link between the TransformResponse and Updated.

Now let’s run the catalog update process in the process debug mode to stop at
these breakpoints.
 Chapter 4. Process Choreographer development scenarios 149

Figure 4-47 Catalog Update process with two breakpoints

1. Start the EE Test Environment, right-click the server under the Servers tab of
a Server perspective, and select Start.

2. Wait until the following message appears in the Console tab of the Server
perspective:

WSVR0001I: Server server1 open for e-business

3. Open a Process Debug perspective and select Window -> Open
Perspective -> Process Debug from the menu bar. As you can see in
Figure 4-48 on page 151, in the Process Debug perspective you have buttons
to attach to the process. Step through the process flow and at the end detach
from the process.
150 WebSphere Application Server Enterprise V5

Figure 4-48 Process Debug perspective

4. To attach to the process you want to debug, click the Attach to Process
Engine icon in the menu bar. On the Attach to Process Engine window, select
localhost and click Next. Select Server1[xxxx] and click Finish. The default
Web client will start.

5. In the Web client browser, select the CatalogUpdate Template and click
Start. The Process Input Message window appears. Enter 1 for the part
number and 1.2 for the new price and click the Start process button.

6. The Catalog Update process starts and stops at the first breakpoint, as
shown in Figure 4-49 on page 152. In this figure, you can see and change the
 Chapter 4. Process Choreographer development scenarios 151

variables’ values. The breakpoint ball in the control link between the
TransformRequest and the CatalogItemUpdate now has two yellow arrows:

– The vertical means that you have a Java code in this control line. Now you
cannot step through the Java code because you started without Java
debug support.

– The horizontal means that you stopped in this point.

Figure 4-49 Catalog Update process stopped in the breakpoint.

If you click the Step Over icon (see Figure 4-48 on page 151), the code of the
next block (CatalogItemUpdate) will be executed, and will stop in the next
control line, as shown in Figure 4-50 on page 153. You also can see that now
we have the value returned from the CatalogItemUpdate output message.
152 WebSphere Application Server Enterprise V5

Figure 4-50 Catalog Update process stopped after the Step Over

If you want only to stop in the breakpoints, click the Resume Process
Execution icon instead of the Step Over.

7. After you finish the debug end the process debug, click the Detach from
Selected Process Engine icon. Stop the EE Test server in a server
perspective.

Running the process debugger with the Java Debugger
1. First let’s add a Java code breakpoint in the catalog update process. Open the

CatalogUpdate.process in a Business Integration perspective, select the
Process tab, select the TransformRequest Java snippet, and click Show
Java.
 Chapter 4. Process Choreographer development scenarios 153

2. In the code pane, double-click in the right gray bar in front of the line you want
to add the breakpoint. A small blue ball appears (see Figure 4-51).

Figure 4-51 Java breakpoint in the TransformRequest snippet of Catalog Update process

3. Now let’s start the EE Test server in debug mode. Select the Servers tab in a
Server perspective, right-click the EETest server, and select Debug. If the
Step by Step Debug window appears (see Figure 4-52 on page 155), check
the Disable step-by-step mode checkbox, and click OK.
154 WebSphere Application Server Enterprise V5

Figure 4-52 Step by step debug

4. On the Debugger Source Lookup window (see Figure 4-53), click OK.

Figure 4-53 Debugger Source Lookup window

5. Now you should be in a Java Debug perspective, select the Debug tab in the
Servers pane. Select the Suspended thread and click the Resume icon (see
Figure 4-54 on page 156).
 Chapter 4. Process Choreographer development scenarios 155

Figure 4-54 Java Debug perspective resume the suspended thread.

6. Wait until the following message appears in the Console tab of Server
perspective:

WSVR0001I: Server server1 open for e-business

Open the Process Debug perspective. As you can see in Figure 4-48 on
page 151, in the Process Debug perspective you have buttons to attach to the
process, step through the process flow, and at the end detach from the
process.

7. To attach to the process you want to debug, click the Attach to Process
Engine icon in the menu bar. On the Attach to Process Engine window, select
localhost and click Next. Select Server1[xxxx] and click Finish.

8. The default Web client starts. In the Web client browser, select the
CatalogUpdate template and click Start. The Process Input Message
156 WebSphere Application Server Enterprise V5

window appears. Enter 1 for the part number and 1.2 for the new price and
click Start process.

9. The Catalog Update process starts, and stops at the first breakpoint, which
now is a Java breakpoint (see Figure 4-55). You can step to this Java code
(javaSnippet_4 method) and look at or change the Java variables. When you
finish with Java debugging, you can click the Resume icon to proceed to the
next breakpoint. The perspective will change to the Process Debug (see
Figure 4-49 on page 152), and from now on you can step through the Process
Debug, which was covered in “Running only the process debugger” on
page 149, but now interacting with the Java Debug perspective.

Figure 4-55 Stopped at Java breakpoint
 Chapter 4. Process Choreographer development scenarios 157

Process debugger in the WebSphere Application Server
The procedure to run the process debugger with WebSphere Application Server
Enterprise is almost the same as the EE Test Environment. The only differences
are:

1. Deploy the sample application in the WebSphere Application Server
Enterprise. See “Development environment” on page 667.

2. Configure the WebSphere Application Server Enterprise:

3. Open an Administrative Console in a Web browser:

http://localhost:9090/admin

4. Select Servers -> Application Servers.

5. Select server1 and under Additional Properties, select Debugging Service.

6. In the Configuration tab, select the Startup box, which will cause the service
to be started in debug mode. Click OK.

7. Under Additional Properties, select Transaction Service. Change the Total
transaction lifetime timeout to 0, to disable the transaction timeouts. Change
the Client inactivity timeout to 0, and click OK.

8. Save the configuration for WebSphere.

9. Log out of the Administrative Console, and restart WebSphere Application
Server Enterprise.

10.Open the Process Debug perspective, shown in Figure 4-48 on page 151.

11.Attach to the process you want to debug by clicking the Attach to Process
Engine icon in the menu bar. On the Attach to Process Engine window, select
localhost (if the Application Server is running in the same system) and click
Next, select Server1[xxxx], and click Finish. From now on you can follow the
instructions provided in “Running only the process debugger” on page 149 to
step through the process flow.

4.5 Staff support
In reality, most business processes cannot be fully automated and therefore
require some kind of human interaction. For example:

� A Bank Manager must approve certain types of account transactions.
� A Customer must specify additional data to complete an order.

Human interaction in business processes is handled by staff activities. Any
number of staff activities can be added at any point within a business process.
Staff activities have various properties, including:
158 WebSphere Application Server Enterprise V5

� Role-based permissions, which specify the users who can interact with the
activity

� Input data, which is read-only information provided to users

� Output data that can be modified by a user

� A duration that indicates the amount of time before the staff activity expires.

When a running process instance encounters a staff activity, process execution is
suspended, and a work item is created. Work items can be viewed, updated, and
claimed by users, according to the role-based permissions assigned to the staff
activity that generated the work item. Claimed work items can be completed, at
which time the process instance execution is resumed.

The WebSphere process engine contains a component known as the Work Item
Manager, which controls the generation of work items and provides the
interfaces used to authorize, access, and claim work items.

Users can interact with the Work Item Manager either via the built-in business
process Web client, or through a custom interface using the APIs provided. The
business process Web client is a customizable Web application that allows users
to view, edit, claim, and complete work items.

Staff activity roles and staff queries
There are three different roles associated with staff activities. Table 4-15 shows
these roles and the actions permitted by members of these roles.

Table 4-15 Staff Activity Roles:

Users are assigned to staff activity roles indirectly, through the use of staff
queries. A staff query is a generic way of specifying users, which is independent
from a user registry until deploy time, and which provides much more
functionality than the standard J2EE security role mapping. For example, staff
queries provide the means to grant potential owner authority to the manager of a

Role Actions Permitted

Reader May view work item

Editor May view and update work item

Potential Owner May view, update, claim, and complete work item

Note: Staff activity roles, which apply to a particular staff activity, should not
be confused with process roles, which apply to the whole process. See
“Process-level staff roles” on page 162 for a discussion of process roles and
the actions permitted by process role members.
 Chapter 4. Process Choreographer development scenarios 159

user who claimed a previous staff activity. The staff query architecture also
provides developers with the ability to write custom queries, should they need to
do so. Additionally, the staff runtime can be configured to use a different user
registry than that which is used for WebSphere itself. See 5.4, “Staff plug-in
provider configuration” on page 208 for more information on configuring staff
plug-in providers.

Staff queries are specified by application developers using WebSphere Studio
Application Developer Integrated Edition. They are composed of a query verb
and associated parameters. A staff query verb is an abstract query template,
which is used at deploy time to define concrete staff queries against a user
registry. Staff query parameters are the values assigned to these verbs.

The queries associated with each staff activity in a process are stored in the
process’ FDML (flow description markup language) file, along with information
about the other process activities and the connections that link them together.
The format of the staff queries (query verbs and their assigned parameters) in
the FDML file is known as the parameterized verb format. At deploy time, the
parameterized verbs are translated into XML, which is specific to the staff
resolution plug-in being used by the process template. Each staff resolution
plug-in has its own transformation XSL file for this purpose. See 5.4, “Staff
plug-in provider configuration” on page 208 for more information on staff plug-ins.

The staff query verbs available by default are shown in Table 4-16.

Table 4-16 Default staff query verb set

Verb Parameter Values

Users User name

Users by User ID User ID of user

Group Members Group name

Department Members Department name

Role Members Role name

Manager of Employee User name of employee (not Manager)

Manager of Employee by user ID User ID of employee (not Manager)

Person Search Search for a person by specific attributes

Group Search Search for a group by specific attributes

Native Search Search with a specific search string

Everybody All users
160 WebSphere Application Server Enterprise V5

In addition to specifying staff query parameters as hard-coded string values, they
can also be specified using late binding values. These allow for very flexible and
dynamic queries, based on parameters that are deferred until runtime.

Table 4-17 Late binding values

The following example takes you through the steps required to assign a query to
a staff activity. In this example, we will grant potential owner authority to the
manager of the user who claimed a previous activity, called “Approval”.

1. Right-click the staff activity, and select Properties.

2. Click Staff on the left-hand side to view the staff properties.

3. Select the Potential Owner from the list of staff roles, and click Change.

4. Select Manager of Employee by user ID from the list of Verbs.

5. Enter %wf:activity(Approval).owner% in the Value box beside
EmployeeUserID. Leave the Domain field blank as shown in Figure 4-56 on
page 162, and click OK.

Nobody No Users

Important: Not all query verbs are supported by each staff plug-in. The actual
set of verbs available at runtime is therefore dependent on the staff plug-in that
is configured at deploy time.

Value Description

%wf:process.starter% User who started the current instance

%wf:process.readers% User(s) with the permission to read instances

%wf:process.administrators% User(s) with permission to administer instances

%wf:activity(activity_name)
.potentialOwners%

User(s) who could claim a previous staff activity

%wf:activity(activity_name)
.owner%

User who claimed a previous staff activity

%wf:activity(activity_name)
.editors%

User(s) who could edit a previous staff activity

%wf:activity(activity_name)
.readers%

User(s) who could read a previous staff activity

Verb Parameter Values
 Chapter 4. Process Choreographer development scenarios 161

Figure 4-56 Staff activity query configuration

6. Click OK to close the staff activity properties window.

Process-level staff roles
In contrast to the staff activity roles, which authorize users who may interact with
individual staff activities, process-level staff roles authorize users who may
interact with the process as a whole. The process-level roles are shown in
Table 4-18.

Table 4-18 Process-level staff roles

Assignment of staff queries to these roles is optional. If the Administrator role is
unassigned, the user ID that started the process is granted administrative
authority over the process instance. This is the same behavior as one would see
if the late binding value %wf:process.starter% were assigned to the
Administrator role.

Role Actions Permitted

Administrator May view, terminate, and delete instances; May edit and complete
work items

Reader May view instances

Starter May start process instances

Note: In most cases, it is recommended that a group of administrators be
assigned to the process Administrator role, in order to prevent administrative
authority to be automatically inherited by the process starter.
162 WebSphere Application Server Enterprise V5

If the Starter role is unassigned, then any authenticated user is allowed to start a
new process instance.

Assignment of staff queries to process-level staff roles is done in WebSphere
Studio Application Developer Integrated Edition as follows:

1. In the process editor, click the Staff tab.
2. Select one of the roles, and click Change.
3. Choose a query verb and assign parameters as desired, then click OK.

Creating custom staff query verbs
When the default set of Staff query verbs is insufficient, developers can modify
existing verbs and/or add new verbs by editing the VerbSet.xml file, located at
<install_dir>\runtimes\ee_v5\ProcessChoreographer\Staff\VerbSet.xml, where
install_dir is the directory where WebSphere Studio IE was installed.

When a new staff query verb is created, the transformation XSL file associated
with the staff plug-in used by the process must also be modified on the
application server.

The remainder of this section details the steps necessary to create a new staff
query verb, called “Manager of Employee by Email Address”, and to modify the
LDAP staff plug-in XSL file to support this new verb. This section will only
address the aspects of the staff plug-ins necessary to complete this task. A full
discussion of staff plug-ins can be found in 5.4, “Staff plug-in provider
configuration” on page 208.

In the VerbSet.xml file, verbs consist of a name used to identify the verb, a
description, which is displayed when the verb is selected in the Change Query
For Role window shown in Figure 4-56 on page 162, and a set of mandatory and
optional parameters that are specified when using the verb. Parameter

Note: The VerbSet.xml file can also be found on the WebSphere Application
Server Enterprise, at <install_dir>\ProcessChoreographer\Staff\VerbSet.xml.
However, this file is only used at development time. It is therefore not
necessary to update the VerbSet.xml file on the server when editing the file in
the development environment.

Note: Section 2.2 of the WebSphere Application Server Enterprise Process
Choreographer Staff Resolution Parameter Reference provides a complete
reference on the syntax of staff query verbs in the VerbSet.xml file. Appendix
A.1 of that document contains the staff query verb XML schema.
 Chapter 4. Process Choreographer development scenarios 163

descriptions consist of a name, a variable type, and a hint, which appears in the
drop-down box in the value column of the Change Query for Role window.

The new staff query verb, “Manager of Employee by Email Address”, is very
similar to the existing verb “Manager of Employee by user ID”, so we can use that
one as a model.

Example 4-23 shows the verb definition for the Manager of Employee by Email
Address. This should be added to the VerbSet.xml used by WebSphere Studio
IE.

Example 4-23 Staff query verb definition in VerbSet.xml

<vs:DefineVerb name="Manager of Employee by Email Address">
<vs:Description>Assigns the manager of an employee, given its Email

address. Supported by sample XSLT files for: - LDAP</vs:Description>
<vs:Mandatory>

<vs:Parameter>
<vs:Name>EmployeeEmailAddress</vs:Name>
<vs:Type>xsd:string</vs:Type>

</vs:Parameter>
</vs:Mandatory>
<vs:Optional>

<vs:Parameter>
<vs:Name>Domain</vs:Name>
<vs:Type>xsd:string</vs:Type>

</vs:Parameter>
</vs:Optional>

</vs:DefineVerb>

As you can see, verb definitions are quite simple. The magic is in how the verbs
are used in conjunction with the staff plug-ins. Since our new query verb relies on
organizational information (that is, the manager of the employee), the LDAP
plug-in is the only plug-in which will support this verb. Accordingly, the
LDAPTransformation.xsl is the only plug-in XSL file which we need to modify.

The plug-in XSL files can be found on the WebSphere Application Server
Enterprise at <install_dir>\ProcessChoreographer\Staff. Here are the steps
necessary to add support for “Manager of Employee by Email Address” to
LDAPTransformation.xsl:

1. Open <install_dir>\ProcessChoreographer\Staff\LDAPTransformation.xsl for
editing.

2. The following line should be added to the Global Variables section at the top.
If the “email” attribute in your LDAP schema is something other than email,
then modify this variable accordingly.

<xsl:variable name=”DefaultUserEmailAttribute”>email</xsl:variable>
164 WebSphere Application Server Enterprise V5

3. In the section under Global Dispatching, add the following “when” clause to
the <xsl:choose> element:

<xsl:when test=”$verb=’Manager of Employee by Email Address’”>
<xsl:call-template name=”Manager of Employee by Email Address”/>

</xsl:when>

4. At the bottom of the file, add the following template element:

<!-- Begin template Manager of Employee by Email Address-->
<xsl:template name="Manager of Employee by Email Address">

<sldap:staffQueries>
<xsl:attribute name="threshold">

<xsl:value-of select="$Threshold"/>
</xsl:attribute>

<sldap:intermediateResult>
<xsl:attribute name="name">manager</xsl:attribute>
<sldap:search>

<xsl:attribute name="filter">
<xsl:value-of

select="$DefaultUserEmailAttribute"/>=<xsl:value-of
select="staff:parameter[@id='EmployeeEmailAddress']"/>

</xsl:attribute>
<xsl:attribute name="searchScope">objectScope</xsl:attribute>
<xsl:attribute name="recursive">no</xsl:attribute>
<sldap:attribute>

<xsl:attribute name="name">
<xsl:value-of select="$DefaultManagerAttribute"/>

</xsl:attribute>
<xsl:attribute name="objectclass">

<xsl:value-of select="$DefaultPersonClass"/>
</xsl:attribute>
<xsl:attribute name="usage">simple</xsl:attribute>

</sldap:attribute>
</sldap:search>

</sldap:intermediateResult>

<sldap:user>
<xsl:attribute name="dn">%manager%</xsl:attribute>
<xsl:attribute name="attribute">

<xsl:value-of select="$DefaultUserIDAttribute"/>
</xsl:attribute>
<xsl:attribute name="objectclass">

<xsl:value-of select="$DefaultPersonClass"/>
</xsl:attribute>

</sldap:user>
</sldap:staffQueries>

</xsl:template>
<!-- End template Manager of Employee by Email Address-->
 Chapter 4. Process Choreographer development scenarios 165

5. Save and close the file.

At this point, the new query verb should be available for use within WebSphere
Studio Application Developer Integrated Edition, and should be usable on any
WebSphere Application Server Enterprise that has an LDAP staff plug-in that
uses the updated LDAPTransformation.xsl file.

Staff activity data
Like most other business process activities, staff activities have an input and
output terminals that can be assigned process variables. Variables assigned to a
staff activity’s input terminal are read-only, and are viewable by users who can
read, edit, or claim the corresponding work item. This input data can be used to
provide information to the users that may be needed to complete the business
process. Variables assigned to a staff activity’s output terminal can be modified
by users who can edit or claim the corresponding work item.

Staff activity duration
Whenever a business process requires human intervention, it is always a good
idea to design the process so that it can recover in the event that a work item is
never claimed by a user. In the case of a process that is waiting for approval from
a user, it might be appropriate to cancel the originating request after some
reasonable delay. Or, it might be required that a backup user be asked to approve
the request. To facilitate these types of scenarios, staff activities can have a
limited duration. If a work item is not claimed before the corresponding activity
expires, the process will resume. Using the Business Process Choreographer
API, it is possible to determine whether a staff activity was completed
successfully, or whether it expired.

The format of the string used to specify a staff activity duration is dependent on
the Scheduler Calendar JNDI name that is (optionally) specified when the
Business Process Container is installed. This is the JNDI name of a
UserCalendar session bean. For example,
com/ibm/websphere/scheduler/calendar/DefaultUserCalendarHome is the JNDI
name of the default UserCalendar session bean included in the
com.ibm.websphere.scheduler package. If no Scheduler Calendar JNDI name is
specified during the Business Process Container installation, then only the
SIMPLE calendar format is available. If a UserCalendar session bean JNDI name
is specified, then any calendar format supported by that UserCalendar can be
used when setting staff activity durations.

Note: In addition to providing informational data using the staff activity’s input
terminal, the business process Web client can be customized to present
virtually any type of data that users might need in order to complete the work
item.
166 WebSphere Application Server Enterprise V5

The default UserCalendar (JNDI name
com/ibm/websphere/scheduler/calendar/DefaultUserCalendarHome) supports
two calendar formats: SIMPLE and CRON. Both of these are well documented in
the WebSphere JavaDoc pages. In short, the SIMPLE calendar format describes
a time duration in seconds, minutes, hours, days, etc. For example, the string
“30minutes 2hours” specifies an activity duration of 2.5 hours. On the other hand,
the CRON calendar format describes a fixed point in time using a syntax that is
similar (yet distinctly different) from that used to schedule jobs on UNIX-like
systems. For example, the string “0 30 1 ? * MON-FRI” specifies a staff activity
duration that will expire at 1:30 am Monday through Friday, regardless of when
the activity started.

To add a duration to a staff activity, do the following:

1. Right-click the staff activity and select Properties.

2. Click Server on the left-hand side to view the Server properties.

3. In the Duration field, enter a time specification using the SIMPLE Arithmetic
Calendar format, as described in the
com.ibm.websphere.scheduler.UserCalendar JavaDoc reference. For
example, to assign a duration of five hours and 30 minutes to the staff activity,
enter 5hours 30minutes as shown in Figure 4-57 on page 168.

Note: In order to use any UserCalendar session bean as the Business
Process Container’s scheduler calendar, an EAR containing the UserCalendar
must be installed on the application server. On the WebSphere Application
Server Enterprise, the SchedulerCalendars.ear (which contains the default
UserCalendar described above) is installed by default. On the unit test server
within the WebSphere Studio Application Developer Integrated Edition,
Versions 5.0 and 5.0.1, the SchedulerCalendars.ear is not installed by default.
When using these versions of WebSphere Studio Application Developer
Integrated Edition, the SchedulerCalendars.ear must be imported into the
user’s workspace and deployed on the unit test server in order to configure a
UserCalendar as the Business Process Container’s scheduler calendar.
Otherwise, only the SIMPLE calendar format will be available within the unit
test server.

Important: Staff activities that are Claimed never expire.
 Chapter 4. Process Choreographer development scenarios 167

Figure 4-57 Staff activity duration configuration

4. Alternatively, if a Scheduler Calender JNDI name has been specified for your
business process container as described above, then other calendar formats
may be used. For example, if using the default UserCalendar, then a duration
string using the CRON format may be used by specifying CRON in the
Calendar field, and a CRON calendar string (for example: 0 30 1 ? *
MON-FRI) in the Duration field.

5. Click OK to close the staff activity properties window.

When a staff activity with a limited duration expires, the process will resume. In
this event, subsequent activities will need a way to know that a staff activity
expired, or not. This can be accomplished by using a Java snippet activity to
determine the state of the staff activity, and set a boolean process variable
accordingly.

The following example shows how this is done using the Business Process API.
The name of the staff activity is “Approval”, and the boolean process variable is
“approveSuccessful”.

Note: When the Calendar field of the Staff Activity Duration window is left
blank, the SIMPLE calendar format is assumed. Note also that this
calendar format is available even if no Scheduler Calendar is configured for
the business process container, and even if the SchedulerCalendars.ear is
not installed.
168 WebSphere Application Server Enterprise V5

Example 4-24 Using the Business Process API to determine the state of a staff activity

try {
// First, acquire the BusinessProcess object via its EJB Home interface
Context initialContext = new InitialContext();
Object result =

initialContext.lookup("com/ibm/bpe/api/BusinessProcessHome");
BusinessProcessHome processHome = (BusinessProcessHome)

javax.rmi.PortableRemoteObject.narrow
(result,BusinessProcessHome.class);

BusinessProcess process = processHome.create();
// Next, acquire the ActivityInstanceData for the “Approval” staff activity
// using the process instance ID for this instance of the process
ActivityInstanceData staffActivity =

process.getActivityInstance(processInstance().getID(),"Approval");
// Now get the execution state of the staff activity, compare to the
// constants and set the approveSuccessful process variable accordingly
int executionState = staffActivity.getExecutionState();
BooleanMessage approveSuccessful = getApproveSuccessful();
if (executionState == staffActivity.STATE_EXPIRED) {

System.out.println("activity expired");
approveSuccessful.setValue(false);

} else if (executionState == staffActivity.STATE_FINISHED) {
System.out.println("activity finished");
approveSuccessful.setValue(true);

}
setApproveSuccessful(approveSuccessful);

catch (Exception e) {
e.printStackTrace();

}

4.6 Sample scenario
The following are some considerations during the development and testing of the
sample application:

� Every time you change anything that changes the business process (any
change in the visual process designing, Java Snippet code, and so on), you
need to run the Deploy Process for this change to be reflected in the EE Test
Environment.

� If you make changes in the code and try to publish, but a publish error
message is received and you are not able to start the EETest server, remove
the failing publish project from the EETest server. Expand the EETest server
in the Server Configuration pane, right-click the failing project and select
Remove. Add it again by right-clicking the EETest server in the Server
Configuration pane, selecting Add, and selecting the removed project.
 Chapter 4. Process Choreographer development scenarios 169

170 WebSphere Application Server Enterprise V5

Chapter 5. Process Choreographer
runtime environment

The previous chapter focused on the development steps related to the Process
Choreographer function. This second chapter on the Process Choreographer
describes the runtime environment in detail.

The following topics are covered in this chapter:

� Process container architecture
� Runtime topologies
� Process container installation steps
� Configuring the staff plug-in provider
� Security considerations
� Managing the business process applications
� Problem determination and troubleshooting

5

© Copyright IBM Corp. 2003. All rights reserved. 171

5.1 Process container architecture
WebSphere Application Server Enterprise provides the runtime environment
necessary for the programming model described in the previous chapter through
the business process engine, which is also known as the business process
container or process container. Its architecture is illustrated in Figure 5-1. It is
implemented as a J2EE application that utilizes WebSphere Application Server
runtime services and resources. The key components of the process container
are:
� Process navigation
� People interaction
� Factory
� External interfaces
� Internal interfaces

Figure 5-1 Internal architecture of the WebSphere business process engine

For more details on the process container architecture, see the article in the
WebSphere Developer Domain at:

http://www7b.boulder.ibm.com/wsdd/library/techarticles/wasid/WPC_Concepts/WPC_C
oncepts.html

Process navigation
Process navigation is composed of the navigator and some plug-in components.

External Queue

External I/F

Session
EJB-

Based
API

Message-
Driven
Bean-
Based

API

External Queue

Internal I/F

Request
Dispatch

Internal
Queue
Handler

MDB

Process Navigation

Navigator

Process,
Activity

Data
Handling

Variables,
Conditions

Invocation

Java,
WSIF

Compensation

People Interaction

Work
Item

Manager

Staff
Queries

User Reg,
LDAP

Authorization

Work Item-
Based Persistent

Storage Handler

Factory

Business
Process

DB

Observer

Audit
Trail

Transient
Storage Handler

Business Process EngineBusiness Process Engine
172 WebSphere Application Server Enterprise V5

http://www7b.boulder.ibm.com/wsdd/library/techarticles/wasid/WPC_Concepts/WPC_Concepts.html

Navigator
The Navigator component is the heart of the process engine. It manages the
state transitions for all process instances, and the state transitions for all activities
in those process instances. These are illustrated in Figure 5-2.

The normal life of a process instance begins with a start request. This creates
the process instance and puts it into its running state. When all its contained
activities have reached an end state, the process instance is marked finished.
The process instance ceases to exist, either implicitly or via an explicit API call.

In exceptional cases, the process instance might encounter a fault that was not
processed as part of the process logic. In this case, it waits for the completion of
the active activities before putting the process into its failed state. Compensation
is then invoked if it was defined for the process.

A process instance can also be terminated by a process administrator. In this
case, after completion of the active activities, the process instance is put into its
terminated state.

Figure 5-2 State diagram for life cycle of a process

Plug-ins for process navigation
The Navigator delegates some of the tasks it has to perform to plug-ins. These
plug-ins decouple the Navigator from components it needs to use, and will allow
IBM to easily extend the capabilities of the process engine in the future.

Not There

Running

(External or Internal)
Terminate Request

Terminating

All Outstanding Activities
Reached End State

Terminated

Compensated

Failing

All Outstanding Activities
Reached End State

Failed

Finished

Gone

Compensation defined
&& top-level process

Delete Request/
Implicit Deletion

Delete Request/
Implicit Deletion

Delete Request/
Implicit Deletion

Initiate or Call Request

Normal Completion

Delete Request/
Implicit Deletion

Unhandled Fault
 Chapter 5. Process Choreographer runtime environment 173

Plug-ins are provided for:

� The invocation of activity implementations.

The process engine has two plug-ins for this: one for the invocation of
(external) services via the Web Services Invocation Framework (WSIF), and
one for the invocation of Java snippets.

� The handling of data in the process, such as evaluating conditions.

The process engine has a plug-in that understands conditions written in Java
against WSDL messages.

� The logging of interesting events in an audit trail.

The process engine has a plug-in that writes data to the audit trail table of the
process engine's database.

Factory
The Factory component is responsible for the management of the physical state
information the process engine deals with. It allows data to be stored in one of
the following forms:

� Transiently in memory, as required by non-interruptible processes for efficient
execution

� Persistently in a database, as required by interruptible processes for durability

The supported databases include DB2®, Oracle, Sybase, and Cloudscape™.

Internal interfaces
The process engine uses its internal queue to send JMS messages to itself to
process stratified transactions that are needed for interruptible processes. This
queue is a JMS queue that allows the persistent queuing of messages.

External interfaces
A façade-session EJB and a façade MDB provide the synchronous and
asynchronous renderings of the external interfaces.

People interaction
Note that Process Choreographer supports business processes with people
interaction only when the WebSphere Application Server security is enabled.
Otherwise, no authentication occurs in WebSphere Application Server, and since
the user is unknown, his work items cannot be determined.

The main components involved in people interaction are:

� Web client
� Work item manager
174 WebSphere Application Server Enterprise V5

� Staff support service
� Staff resolution plug-in
� Staff repositories

The architecture for these components is shown in Figure 5-3.

Figure 5-3 Staff Resolution Architecture

Web client
The Web client offers users a Web browser-based graphical user interface,
based on JSP (JavaServer Pages) technology. It offers the user a set of worklists
containing work items with which he can perform queries, view further details, or
perform certain actions. It also allows building JSP-based custom forms that
support staff activities with complex data or interaction scenarios. The Web client
interacts with the process engine via the API. It does not interact directly with the
other components supporting human interaction. The Web client is described in
more detail in the document “Understanding the WebSphere Process
Choreographer Web client” found at:

http://www7b.boulder.ibm.com/wsdd/zones/was/wpc.html

Work item manager
The work item manager (WIM) is a component of the process engine specially
dedicated for the management of work items. It is responsible for:

� The creation and deletion of work items in the database.

� The resolution of work item queries from process participants against this
database.

Web Client External I/F

Process Navigation

People Interaction

Work
Item

Manager

Staff
Support
Service

Staff Query Plug-in:
LDAP

Staff Query Plug-in:
User Registry

Business Process EngineBusiness Process Engine

User
Registry

LDAP
 Chapter 5. Process Choreographer runtime environment 175

http://www7b.boulder.ibm.com/wsdd/zones/was/wpc.html

� The coordination of the staff query resolution, which is performed by the staff
support service and the staff resolution plug-ins.

� The instance-related authorization based on the work items created for users.
Users are authorized to perform actions against an activity or process only if
they have received a corresponding work item. For example, process
participants can claim an activity only if they have a work item of the potential
owner type for that activity.

The work item manager uses an internal cache for resolved staff queries, with a
default query result expiration time of one hour. Thus, when a staff query result
from an identical query template already exists in the cache, the second
resolution will not occur and the cached object will be reused. This allows for
better performance. Also, when the cached query result expires and the
corresponding work item is queried, the staff query gets executed again. This
allows for updated query results, when changes occur in the staff repository. In
consequence, the WIM does not invoke the staff resolution for all work item
scheduling, and may also invoke the staff resolution when currently no work item
scheduling occurs.

Staff support service
The staff support service (SSS) acts as a staff resolution plug-in from the WIM
point of view. However, it is a master plug-in that manages the life cycle of the
specialized staff resolution plug-ins, and delegates the actual deployment and
staff resolution requests to these specialized plug-ins.

Staff resolution plug-ins
The specialized staff resolution plug-ins are bound to a specific staff repository
such as the User Registry or an LDAP (Lightweight Directory Access Protocol)
directory. They are responsible for the deployment and the actual staff query
execution, and perform these queries by invoking a set of API calls against their
repository. For more details on the staff resolution plug-ins, refer to the document
“WebSphere Application Server Enterprise Process Choreographer - Staff
Resolution Architecture” found at:

http://www7b.boulder.ibm.com/wsdd/zones/was/wpc.html

Staff repositories
Operating system (OS) registries, user registries, or LDAP registries can be used
as staff repositories.

5.2 Process container runtime topologies
In order to run business process applications to a WebSphere Application
Server, it must have a process container installed. This involves installing the
176 WebSphere Application Server Enterprise V5

http://www7b.boulder.ibm.com/wsdd/zones/was/wpc.html

process container EAR to an application server and configuring all the resources
it requires.

Before installation of business process containers and application servers, you
should determine a suitable installation topology and required hardware and
software components. The topology choice should take into account scalability,
load balancing, availability, and failover requirements for your business process
application with an understanding of the process container architecture. Other
factors to consider are security, ease of administration, and monitoring of
business processes.

Scalability and availability
The process container is implemented as a stateless process engine, many
instances of which can run in parallel on a single node or distributed in a cluster.
It can exploit both the clustering capabilities of WebSphere Application Servers
for IIOP requests and the clustering capabilities of WebSphere MQ for
JMS-based requests.

For microflows, there is an affinity between a particular process instance and the
thread that executes it. Many instances of a particular process template can run
in parallel on parallel threads.

For long-running processes, no such thread affinity exists. A given process
instance is simply reflected by a set of tuples persisted in the process database.
Threads work on segments of process instances. Multiple threads, even on
multiple nodes, can work concurrently on parallel branches of a process.

The entire approach relies on the business process database as the central state
repository that needs to be always available (and thus provides a single point of
failure). If critical, this availability has to be guaranteed by putting the database
on a reliable node managed by high availability software.

Sample installation topologies
Some of the common topologies that we may use in the installation of process
containers are described here. Instead of presenting an exhaustive list of all
topologies, we concentrate on how a process container and its related resources
should be configured for some typical topologies. We do not touch on other
topics relating to topologies, such as separation of Web tier and EJB tier, using a
load balancer (Edge components) to distribute client HTTP requests to each
HTTP server, introduction of firewalls, or DMZ. For more details on these topics,
refer to WebSphere Application Server V5 Handbook and WebSphere
Application Server Network Deployment V5, Getting Started.

In the sample topologies, the notations listed in Table 5-1 on page 178 are used
to indicate some required software components.
 Chapter 5. Process Choreographer runtime environment 177

Table 5-1 Notations for software components in the topology samples

The following sample topologies will be discussed:

1. Stand-alone application server on a single machine (later referred to as SA
topology).

2. Multiple application servers in Network Deployment without clustering (later
referred to as ND-noC topology).

3. Application server clusters in Network Deployment (later referred to as ND-C
topology).

a. Vertical scaling (later referred to as ND-VS topology).
b. Horizontal scaling (later referred to as ND-HS topology).

4. Application server cluster with WebSphere MQ Clustering (later referred to as
MQ-C topology).

5. Application server cluster with high-availability configuration of database and
central queue manager machines (later referred to as DB-C&MQ-C topology).

5.2.1 Stand-alone application server on a single machine (SA)
In this topology, we have WebSphere Application Server Enterprise together with
the HTTP server and Web server plug-in installed on a single machine.

A database system of choice (DB2, Oracle, Sybase, or Cloudscape) is installed
on the same machine. We have one process database and a corresponding
JDBC data source to connect to this database.

JMS provider can be either embedded WebSphere JMS (Embedded Messaging)
or WebSphere MQ. If WebSphere MQ is the JMS provider, it is installed locally. A
single WebSphere MQ queue manager and four required queues are created
locally. The two JMS connection factories are mapped to this queue manager.

� Simple installation that requires only one machine.
� No load balancing or failover.
� Suitable for development and test environments.

Notation Software component

WMQ WebSphere MQ Version 5.3.01

WAS WebSphere Application Server (version 5.0 is implied)

Plug-in Web Server plug-in for WebSphere Application Server Version
5.0

BPE Business Process Engine or process container

database database system (DB2, Oracle or Sybase)
178 WebSphere Application Server Enterprise V5

Figure 5-4 Topology 1: single application server instance, single machine

5.2.2 Application servers network deployed with no clustering
(ND-noC)

In this topology, WebSphere Application Server for Network Deployment,
Administrative Console extensions for WebSphere Application Server Enterprise
are installed on one machine. An HTTP server and plug-in are also located on
this machine. A database client software for the database system of choice is
installed on this machine.

WebSphere Application Server Enterprise is installed on Node1 and Node2.

Application server AS1 on Node1 uses a remote process database. Hence a
database system of choice (DB2, Oracle, Sybase, or Cloudscape) is installed on
a dedicated node. A corresponding database client is installed on Node1.

Application server AS2 on Node2 uses a local process database. Hence a
database system of choice with one local process database is installed on
Node2.

Each application server node has a WebSphere JMS (Embedded Messaging)
server that can be used as the JMS provider.

If WebSphere MQ is selected as the JMS provider, it is installed on the same
machine.

Node 1

WMQ Database
Server

BPEDB

Queues
Queues

WAS BASE &
EE V5

Queue
Manager

AS1

BPE
HTTP
Server

Plug-in

JMS

JDBC

Client HTTP
Request
 Chapter 5. Process Choreographer runtime environment 179

Figure 5-5 Topology 2: Network Deployment of multiple server instances on a node without clustering

In this topology, the deployment manager provides a single point of
administration for all nodes and server instances in the cell.

� When configuring a JDBC data source for an application server in the cell,
each data source must use its own unique database, that is BPEDB1 and
BPEDB2.

� Each application server instance has JMS resources configured to connect to
its own local queue manager and queues.

� No load balancing or failover.

� Suitable for administration of development and test environments for different
applications hosted on different application servers.

5.2.3 Application server clusters in Network Deployment (ND-C)
In Network Deployment, you can configure identical application server instances
into a cluster to share the workload. Clusters enable workload management

WAS
EE Admin

WAS
ND

Cell 1

HTTP
Server

Deployment
Manager

Database

BPEDB

Queues
Queues

WAS
BASE & EE

Node
Agent

Node 1

Queues
Queues

Node
Agent

Node 2

Queue
Manager

Queue
Manager

Database
ClientWMQ

AS1 BPE1

WAS
BASE & EE

Database
ClientWMQ BPEDB

AS2 BPE2

Plug-in

Database
Client
180 WebSphere Application Server Enterprise V5

between member servers. As your workload increases, you can add member
server instances to a cluster.

Process containers in a WebSphere Application Server cluster must share the
same process database and hence the same data source. Process containers in
a cluster must also share the same JMS resources. If your business process has
human activities, the containers in a cluster must also share the same staff
plug-in provider configurations. Global security must be enabled for the cell
containing the cluster.

There are two ways to form a server cluster: vertical scaling and horizontal
scaling.

Vertical scaling variant (ND-VS)
You can add multiple application server instances on the same machine or node.

� It allows increased utilization if CPU and memory on each application server
node.

� It provides failover in case of application server process failure. If an
application server process fails, client requests can be redirected to remaining
cluster members on the node.

� The failure of the host machine or node itself presents a single point of failure.

Figure 5-6 Topology 4, WebSphere clustering in Network Deployment, vertical scaling

Database
Server

BPEDB

Queues
Queues

WMQ
Server

Queue
Manager

WAS
EE Admin

WAS
ND

Cell 1

Database
Client

WAS
BASE & EE

Node 1

Database
Client

WMQ
Client

HTTP
Server

Plug-in

Node
Agent

Deployment
Manager

JMS

JDBCAS2 BPE

AS1 BPE

Cluster A
 Chapter 5. Process Choreographer runtime environment 181

Horizontal scaling variant (ND-HS)
You can add machines or nodes, each with an identical application server
instance to a cluster.

� It provides increased throughput by utilizing CPU and memory of additional
machines.

� Hosting cluster members on multiple nodes isolates hardware failures of a
node and provides failover support. Client requests can be redirected to the
application server members on other nodes if a node goes down.

� Hosting cluster members on multiple nodes also isolates application software
failures and provides failover support. If an application server process stops
running, client requests can be redirected to cluster members on other nodes.

Figure 5-7 Topology 5, WebSphere clustering in Network Deployment horizontal scaling

In both topologies with vertical or horizontal scaling:

� Database system of choice is installed on a dedicated server machine.

WAS
BASE & EE

Node
Agent

Node 2

Database
ClientWMQ

WebSphere Cluster A

Database
Server

BPEDB

WAS
BASE & EE

Node
Agent

Node 1

WAS
EE Admin

WAS
ND

Cell 1

HTTP
Server

Plug-in

QueuesQueues

WMQ
Server

Queue
Manager

Database
ClientWMQDeployment

Manager

AS1 BPE

AS2 BPE
Database

Client
182 WebSphere Application Server Enterprise V5

� WebSphere MQ is installed on a dedicated server machine. The required
queue manager and queues are located on this machine.

� Either WebSphere MQ client or Embedded Messaging JMS client is installed
on application server nodes to access the queue manager on the WebSphere
MQ server node.

� For application servers in Network Deployment, there is one internal JMS
server per application server node. You may select WebSphere JMS
(Embedded Messaging) as the JMS provider for the cluster. In this case, one
internal JMS server should be configured on a dedicated node with the
required queue manager and queues. This queue manager can be accessed
remotely by all application servers in the cluster through embedded JMS
client.

� The nodes for the database system, WebSphere MQ, and deployment
manager present single points of failure.

5.2.4 Application server cluster with WebSphere MQ Clustering
(MQ-C)

In addition to WebSphere Application Server clustering, intra-process load
balancing can be achieved by using clustered queue managers. This requires full
installation of WebSphere MQ instead of the embedded WebSphere JMS
provider. WebSphere MQ and WebSphere MQ Event Broker 5.3 are included in
the WebSphere Application Server Enterprise V5 package. The license is limited
to the use of WebSphere MQ on the same machine (node) as the WebSphere
Application Server.

To use WebSphere MQ queue manager clusters, you need two local queue
managers for each application server node: one to put messages that map to
connection factory jms/BPECFC, and one to get messages for mapping
jms/BPECF. The get queue manager owns the four queues that map to four JMS
destinations. We need both connections to two queue managers at the same
time, because put operations and get operation happen in the same transaction.

Note: You may install your database system of choice and WebSphere MQ
on separate disk volumes and file systems on the same dedicated
machine.

Restriction: On UNIX® systems, WebSphere MQ does not allow two
connections with BIND transport to two different queue managers at the same
time. Hence, one of the queue managers on a node needs to be configured
with CLIENT transport.
 Chapter 5. Process Choreographer runtime environment 183

These two local queue managers on each node are federated into a WebSphere
MQ queue manager cluster. This provide extra intra-process load balancing
between queue managers. Note that you need three queue manager nodes for
load balancing. For more details on setting up a WebSphere MQ queue manager
cluster for a process container, refer to the article in WebSphere Developer
Domain “WebSphere Application Server Enterprise Process Choreographer
using Process Choreographer in a distributed environment”, found at:

http://www7b.boulder.ibm.com/wsdd/library/techarticles/wasid/WPC_UsingDist/WPC_
UsingDist.html

With WebSphere MQ queue manager clustering, if a request message reaches
its destination queue manager, or it is en route to the destination queue on the
channel, and the destination queue manager fails, the system will not be able to
recover the message until the destination queue manager itself recovers. When a
message reaches a queue, it remains in this queue, even if it is a cluster queue.
If the node with this queue crashes, the message is not distributed to other
queues in the cluster. The message cannot be processed before the system
comes up again. Hence, WebSphere MQ queue manager clusters provide
intra-process load balancing but do not provide failover.

Figure 5-8 on page 185 illustrates one possible topology.
184 WebSphere Application Server Enterprise V5

http://www7b.boulder.ibm.com/wsdd/library/techarticles/wasid/WPC_UsingDist/WPC_UsingDist.html

Figure 5-8 Process container with WebSphere Application Server clustering and WebSphere MQ queue
manager clustering

5.2.5 Application server cluster and high-availability configuration
(DB-C&MQ-C)

You can eliminate single points of failure in topologies 3.a and 3.b by configuring
the process database and central WebSphere MQ queue manager on some form
of high-availability (HA) hardware/software cluster. If you use an LDAP server for
user registry, it also needs to be configured on an HA cluster. For example, you
can install the database server and WebSphere MQ server on clustered AIX
machines using HACMP (High Availability Cluster Multi-processing). For details
on HACMP on AIX, refer to High Availability Cluster Multi-processing for AIX,
Concepts and Facilities Guide V4.5, found at:

http://publibfp.boulder.ibm.com/epubs/pdf/c2342764.pdf

Queue
mgr3a&b

Queues

WebSphere Cluster A
WMQ Queue

Manager ClusterRepository

Node 3

Queues

WMQ

AS3.2
BPE

WAS
BASE & EE

Database
Client

Database
Server

BPEDB

Queues
Queues

WMQ

AS1.2
BPE

Database
Client

WAS
BASE & EE

Node
Agent

Node 1

Queues
Queues

WMQ

AS2.2
BPE

Database
Client

WAS
BASE & EE

Node
Agent

Node 2WAS
EE Admin

WAS
ND

Database
Client

Cell 1

HTTP
Server

Plug-in

Receiver Channel

Sender Channel

Deployment
Manager

AS3.1
BPE

Node
Agent

AS2.1
BPE

AS1.1
BPE

Queue
mgr3a&b

Queue
mgr3a&b

Queue
mgr3a&b

Queue
mgr3a&b

Queue
mgr3a&b
 Chapter 5. Process Choreographer runtime environment 185

http://publibfp.boulder.ibm.com/epubs/pdf/c2342764.pdf

Figure 5-9 High-availability (HA) topology with HA configuration of WebSphere MQ servers and database
servers

5.3 Installing the process container
This section describes the installation process for the process container.

5.3.1 Resources required by a process container
In selecting a topology and installing a process container, we need to install the
process container a enterprise application and configure resources it requires.

The default names and JNDI names of these resources used by the Process
Container Installation wizard of the Administrative Console are as follows:

� JDBC provider and a data source to access its process database. The default
JNDI name of the data source is jdbc/BPEDB. The default name of the
process database is BPEDB, which may be changed as necessary.

HA Cluster

WMQ
Standby

HA Cluster

Database
StandbyWAS

BASE & EE

Node
Agent

Node 2

Database
ClientWMQ

WebSphere Cluster A

Database
Server

BPEDB

WAS
BASE & EE

Node
Agent

Node 1

WAS
EE Admin

WAS
ND

Cell 1

HTTP
Server

Plug-in

QueuesQueues

WMQ
Server

Queue
Manager

Database
ClientWMQDeployment

Manager

AS2 BPE

AS1 BPEAS1 BPE

Database
Client
186 WebSphere Application Server Enterprise V5

You need to choose a database system for this. Supported database systems
are:

– Cloudscape (included with WebSphere Application Server Enterprise)
– DB2 Universal Database™ Enterprise V7.2 fp7 or V8.1
– Oracle8i database Release 8.1.7 or Oracle9i database releases
– Sybase Adaptive Server Enterprise (ASE) V12.0 or higher

� Scheduler to access business process database.

BPEScheduler is used as both the default name and default JNDI names.

� Work manager to manage threads for the scheduler.

The default name is BPESchedulerWorkManager (wm/BPEScheduler).

Scheduler and work manager are services offered by WebSphere Application
Server Enterprise.

For more details on scheduler and work manager, refer to Chapter 13,
“Scheduler service” on page 509.

� JMS Provider and the connection factories and JMS destinations.

Each container requires a pair of JMS connection factories. The default
names of these factories are:

– BPECFC (jms/BPECFC): Factory for put messages
– BPECF (jms/BPECF): Factory for get messages from

The connection factory for getting messages (jms/BPECF) has four queue
destinations. The default names (JNDI names) of these queues are:

– BPEIntQueue (jms/BPEIntQueue): Queue for process container internal
messages

– BPEApiQueue (jms/BPEApiQueue): Queue for BPE external API
messages

– BPEHldQueue (jms/BPEHldQueue): Queue for held messages that could
not be processed

– BPERetQueue (jms/BPEIntQueue): Queue for messages that temporarily
could not be processed.

� You can choose WebSphere Embedded Messaging Server (WebSphere
JMS) or WebSphere MQ (formerly known as MQSeries®) as the JMS
provider. If you want to use WebSphere Embedded Messaging as the JMS
provider, make sure that both server and client Embedded Messaging
features are selected when you install the WebSphere Application Server.

� Three listener ports configured for message listening service of each
application server. Their default names are:

– BPEApiListenerPort: To listen to the BPEApiQueue
 Chapter 5. Process Choreographer runtime environment 187

– BPEInternalListenerPort: To listen to BPEIntQueue
– BPEHoldListenerPort: To listen to BPEHldQueue

� Staff plug-in provider and configuration

If your business process has human activities, global security must be
enabled for staff queries.

5.3.2 Installing required software components
Based on the installation topology, you need to install different required software
components on different machines or nodes.

Installing WebSphere Application Servers
Process Choreographer installation instructions in the following sections assume
that a WebSphere Application Server (Base, Network Deployment or Enterprise)
is already installed in a suitable topology. If you plan to use WebSphere MQ as
the JMS provider, make sure you installed WebSphere Application Server
without the Embedded Messaging Server option. We recommend that you install
and use the WebSphere Application Server Embedded Messaging Client.

For details on WebSphere Application Server Version 5, Base and Network
Deployment installation, refer to IBM WebSphere Application Server V5.0
System Management and Configuration, WebSphere Handbook Series and the
WebSphere Application Server V5.0 InfoCenter.

Installing WebSphere MQ
Before you install WebSphere MQ on UNIX systems, create and mount a
journalized file system called /var/mqm for your messaging working data. Use a
partition strategy with a separate volume for the WebSphere MQ data. This
means that other system activity is not affected if a large amount of messaging
work builds up in /var/mqm. You can also create separate file systems for your
log data (var/mqm/log) and error files (var/mqm/errors). You should store log files
on a different physical volume from the messaging queues (var/mqm). This
ensures data integrity in the case of a hardware failure. If you are creating
separate file systems, allow a minimum of 30 MB of storage for /var/mqm, 20 MB
of storage for /var/mqm/log, and 4 MB of storage for /var/mqm/errors. For
installing WebSphere MQ client only, the storage requirement is typically less (for
example, 15 MB for /var/mqm).

The /var file system is used to store all the security logging information for the
system, and is used to store the temporary files for e-mail and printing.
Therefore, it is critical that you maintain free space in /var for these operations. If
you do not create a separate file system for messaging data, and /var fills up, all
security logging will be stopped on the system until some free space is available
188 WebSphere Application Server Enterprise V5

in /var. Also, e-mail and printing will no longer be possible until some free space
is available in /var.

For more information on installing WebSphere MQ on various platforms, refer to
the appropriate WebSphere MQ Quick Beginnings book:

� WebSphere MQ for Windows, V5.3 Quick Beginnings, GC34-6073

� WebSphere MQ for AIX, V5.3 Quick Beginnings, GC34-6076

� WebSphere MQ for Solaris, V5.3 Quick Beginnings, GC34-6075

� WebSphere MQ for HP-UX, V5.3 Quick Beginnings, GC34-6077

� WebSphere MQ for Linux for Intel® and Linux for zSeries®, V5.3 Quick
Beginnings, GC34-6078

You can get these books from the WebSphere MQ messaging platform-specific
books Web page at:

http://www-3.ibm.com/software/ts/mqseries/library/manualsa/manuals/platspecific
.html

After installing WebSphere MQ on multiple processor UNIX machines, ensure
that all processors can be used by issuing the following command:

setmqcap no_of_CPUs

where no_of_CPUs is the number of processors in the system.

Updating WebSphere environment variables for WebSphere MQ
IBM WebSphere Application Server uses the WebSphere environment variable
MQJMS_LIB_ROOT to locate the WebSphere MQ libraries for the WebSphere
MQ JMS Provider. This variable in turn is set relative to the environment variable
MQ_INSTALL_ROOT, which is the location of the WebSphere MQ (client or
server) installation.

Hence, you need to update WebSphere variables for WebSphere MQ, as follows:

1. In the Administrative Console, select Environment -> Manage WebSphere
Variables.

2. In WebSphere Variables, make sure that the correct scope (node where
WebSphere MQ is installed) is selected. Click the link MQ_INSTALL_ROOT.

3. In the text area for Value, enter the install root WebSphere MQ. For example:

On AIX:

/usr/mqm

On Solaris, HP-UX and Linux:

opt/mqm
 Chapter 5. Process Choreographer runtime environment 189

http://www-3.ibm.com/software/ts/mqseries/library/manualsa/manuals/platspecific.html

On Windows:

c:\Program Files\IBM\WebSphere MQ

Installing the database system
You can use different database systems for different Process Choreographer
business process containers. Your database can run on DB2, Oracle, or Sybase.

Cloudscape database software is included with WebSphere Application Server
Enterprise. The sample Process Choreographer configuration uses this
database. A Cloudscape database does not support remote database access;
hence you cannot use it as a database system for Process Choreographer in a
Network Deployment environment. Since Process Choreographer uses
distributed transactions, you will need to purchase and install the DTM feature for
Sybase ASE.

For UNIX systems, you should install a database system on a dedicated file
system.

Installing DB2
Use the installation wizard to install DB2 Universal Database Enterprise Edition
Version 7.2 FP7 or higher on the machine where the database is to be located. If
the database machine is remote to your application server machine, use the
wizard to install the DB2 runtime client on all the application server machines.If
you are installing your application servers in Network Deployment, install the
DB2 runtime client on the deployment manager machine. The installation wizard
will also create a DB2 instance and instance owner db2_instance_owner (default
is db2inst1) on these machines.

Detailed steps to install DB2 Universal Database systems are described in the
following manuals:

� DB2 Universal Database for UNIX, Quick Beginnings V 7, GC09-2970

� DB2 Universal Database for Windows, Quick Beginnings V 7, GC09-2971

� DB2 Universal Database, Quick Beginnings for DB2 Servers V 8, GC09-4836

� DB2 Universal Database, Quick Beginnings for DB2 Clients V 8, GC09-4832

On UNIX systems, perform the following steps after installation:

1. Update the .profile file for the user ID used by WebSphere Application Server
instance to access DB2. This is the administrative user ID that starts the
WebSphere Application Server. The default is root.

Add the following line:

. /home/db2_instance_owner/sqllib/db2profile
190 WebSphere Application Server Enterprise V5

You can also add the line to the WebSphere Application Server, V5
setupCmdLine.sh script.

2. On machines with multiple processors, update the number of processors that
can be used with the following command:

db2_install_dir/adm/db2licm -1

where db2_install_dir is installation directory for DB2.

Configuring DB2 client-server communication
If your application server is to access the database system remotely, you need to
configure the DB2 runtime client on the application server machine:

1. Log in as instance owner:

su - db2_instance_owner

2. Start the DB2 instance if it is not already started:

db2 db2start

3. Catalog the remote instance. Refer to the DB2 documentation for the
parameters that can be used with this command.

db2 catalog tcpip node node_name remote IP_address server port_no
remote_instance db2_instance

where node_name is the node name to be used by the client to refer to the
remote server instance, and IP-address is the IP address or host name of the
database server.

4. Test communication to the remote instance:

db2 attach to node_name user db2_instance_owner using password

5. To detach from the remote instance, use the command:

db2 detach

Update WebSphere environment variables for DB2 JDBC driver
On the DB2 JDBC Provider definition window of the WebSphere Application
Server Administrative Console, the JDBC provider classpath is set by default to
${DB2_JDBC_DRIVER_PATH}/db2java.zip. You can update the classpath by
updating the variable DB2_DRIVER_PATH.

Select Environment -> Manage WebSphere Variables and set the
DB2_JDBC_DRIVER_PATH variable to the value
/home/db2_instance_owner/sqllib/java12.
 Chapter 5. Process Choreographer runtime environment 191

5.3.3 Process container on a stand-alone topology (SA)
In this section, we describe how to install a process container to a stand-alone
application server. We assume that the following prerequisite steps have been
completed:

� WebSphere Application Server Enterprise is already installed on the
machine.

� The database system of choice is already installed and configured.

– For a local database, a database system is installed and configured on the
application server machine

– For a remote database, a database system is installed on a dedicated
database server machine. A database client is installed on the application
server machine. Communication between the database client and server
is configured and tested.

� WebSphere MQ is the JMS provider of choice. It is already installed and
configured on the application server machine.

You may install a process container to the application server and configure
resources required by the container by:

1. Using the Process Container Installation wizard of the Administrative
Console. You must create database tables and WebSphere MQ queue
manager and queues manually after running the wizard.

2. Manually configuring necessary resources and using the install user interface
in the Administrative Console. To manually configure the process container,
the following steps need to be performed:

a. Configuring the JDBC provider and data source.

b. Configuring the JMS queue resources.

c. Creating and configuring the scheduler.

d. Installing the business process container.

For details, refer to the WebSphere InfoCenter for Enterprise.

Note: Windows NT® or Windows 2000 platforms support only one DB2
installation. The DB2 environment variables are populated in the system
environment automatically. It is not necessary that WebSphere Application
Server set these environment variables.
192 WebSphere Application Server Enterprise V5

The following steps follow the first configuration approach, using the installation
wizard:

1. Make sure that your IBM WebSphere Application Server is running.

2. Launch the Administrative Console for WebSphere.

3. In the Administrative Console, select Servers -> Application Servers ->
servername.

4. In the Additional Properties section, click Business Process Container.

5. Near the bottom of the Business Process Container window, under Additional
Properties, click the link for the Business Process Container Install Wizard,
and follow the step-by-step instructions provided.

Figure 5-10 Business Process Container Install wizard

6. On the Step 1 page, shown in Figure 5-10, enter the properties of the data
source to be used by the process container. Select Create a new XA data
source, and select DB2 from the menu list. The GUI will select an appropriate
 Chapter 5. Process Choreographer runtime environment 193

implementation class name for this driver, for example
COM.ibm.db2.jdbc.DB2XADataSource.

Enter the following properties for the data source:

– In the Classpath field, you must enter a list of paths or JAR file names that
form the location for the JDBC provider classes. Classpath entries are
separated by using the Enter key and must not contain path separator
characters (such as ‘;’ or ‘:’). A classpath may contain variable (symbolic)
names, which can be substituted using a variable map. Check your driver’s
installation notes for specific JAR file names that are required. For a DB2
Universal Database, enter ${DB2_JDBC_DRIVER_PATH}/db2java.zip, where
DB2_JDBC_DRIVER_PATH is the WebSphere environment variable for the
JDBC driver location defined earlier in “Update WebSphere environment
variables for DB2 JDBC driver” on page 191.

– The Datasource user name is the name used to access the data source.
This user should have the authority to create and administer the database.
For DB2 on UNIX systems, enter the owner of db2 instance
db2_instance_owner. For DB2 on Windows, enter the DB2 user ID defined
during DB2 installation.

– The Datasource password is the password of the above data source user.

– The Custom properties are extra properties for your database system,
such as a database name (default is BPEDB) and a port number. They are
specified in multiple lines of property=value pairs.

The following are the custom properties you may modify for DB2:

• databaseName: Defines which database to access, for example
BPEDB.

• description: An optional description of the data source. Only used for
information purposes.

• portNumber: An optional integer that specifies the TCP/IP port number
where the JDBC provider resides.

• connectionAttributes: Optional connection attributes specific to DB2.
Refer to the DB2 documentation for a complete list of features.

• loginTimeout: Optional integer. If set to zero, there will be no timeout.
Non-zero values specify the maximum number of seconds allowed to
establish a connection to the database.

• enableMultithreadedAccessDetection: Optional boolean. If set to true,
it will automatically detect multi-threaded access to a connection and
its corresponding Statements, ResultSets, and MetaDatas.

For custom properties for Oracle, Sybase and Cloudscape databases,
refer to the InfoCenter for WebSphere Application Server Enterprise.
194 WebSphere Application Server Enterprise V5

Click Next.

7. On the Step 2 page, shown in Figure 5-11 on page 197, enter the properties
of the JMS provider to be used by the process container:

– A JMS provider is used for asynchronous messaging based on the Java
Message Service (JMS). The default is WebSphere JMS Provider, the
Embedded Messaging provider that can be installed with WebSphere. To
use external WebSphere MQ as a provider, select WebSphere MQ JMS
provider.

– In the Queue manager field is the name of the external JMS provider's
queue manager to use for the process container. Keep the default name
for the queue manager: WAS_nodename_server1.

– In the Classpath field, you must enter a list of paths or JAR file names that
form the location for the JMS provider classes. Classpath entries are
separated by using the Enter key and must not contain path separator
characters (such as ';' or ':'). The classpath may contain variable
(symbolic) names, which can be substituted using a variable map.

For AIX:

/usr/mqm/java/lib

For Solaris, HP-UX and Linux:

/opt/mqm/java/lib

For Windows, enter the WebSphere MQ installation path, for example:

C:\Program Files\IBM\WebSphere MQ

– The queue connection factory uses a JMS user ID to establish a
connection to the queue, by defining a J2C authentication alias to this user
ID. This user ID is not integrated with WebSphere Application Server
security. For an external WebSphere MQ provider, this user ID is in a user
registry (OS or LDAP) that WebSphere MQ security is using. For UNIX
systems, the user ID must belong to the mqm group.

– The JMS password is the password for the JMS user ID.

Tip: WebSphere will use the variable ${MQJMS_LIB_ROOT} as the
classpath that is set to ${MQ_INSTALL_ROOT}/java/lib automatically. If
you have already set the WebSphere variable MQ_INSTALL_ROOT,
you do not need to edit this classpath.
 Chapter 5. Process Choreographer runtime environment 195

8. In the Business Process Container Security Configuration pane shown in
Figure 5-11 on page 197, set the following values:

– Security Role mapping: The user or group from the user registry that is
associated with the Business Process Administrator role. The user or
group is defined in the user registry configured for the WebSphere
Application Server security. This user ID will be mapped to the role defined
in the process container application’s Deployment Descriptor, for example
BPESystemAdministrator.

– JMS API User ID: The user ID that the Business Process container MDB
will use when processing asynchronous API calls. This user ID will be
mapped to the role defined in the process container application’s
Deployment Descriptor, for example JMSAPIUser.

– JMS API password: The password for the user ID entered above.

Set these values and click Next.

Note: If WebSphere MQ is installed on the same machine as WebSphere
Application Server, the transport type is set to Bind (default). Then the JMS
user ID must be the same as the user ID with which WebSphere
Application Server is started.
196 WebSphere Application Server Enterprise V5

Figure 5-11 Step 2 of process container install wizard

9. On the step 3 page, shown in Figure 5-12 on page 198, keep the default
selection of the Create new MQ resources and click Next.
 Chapter 5. Process Choreographer runtime environment 197

Figure 5-12 Selecting JMS resources in install wizard

10.For step 4, review the summary shown in Figure 5-13 on page 199 to ensure
all entries are correct. Also review the reminder of tasks to be performed after
install wizard finishes.

Click Finish.

11.Save the configuration for WebSphere after getting a response window with
the message:

BPEContainer_nodename_server1 installed successfully.
198 WebSphere Application Server Enterprise V5

Figure 5-13 Step 4 remaining tasks reminders with WebSphere MQ as JMS provider

12.There are two major steps left to finish the process container installation.

– You need to create the business process database and tables.

– You need to create the queue manager and queues if you are using
WebSphere MQ as the JMS provider. The queue manager and queues
are created by the wizard if you selected WebSphere JMS (Embedded
Messaging) as the JMS provider.

The two steps are covered in the following sections.

Creating the process database and tables
To create the process database and tables, perform the following steps:

1. Create the database and tables using the scripts provided in the
ProcessChoreographer directory:

On Windows:

%WAS_HOME%\ProcessChoreographer

On UNIX:

$WAS_HOME/ProcessChoreographer

Where WAS_HOME is WebSphere Enterprise installation root, for example:

On Windows:

C:\WebSphere\AppServer

On AIX:
 Chapter 5. Process Choreographer runtime environment 199

/usr/WebSphere/AppServer

On Solaris, HP-UX, and Linux:

/opt/WebSphere/AppServer

2. Copy the file createDatabaseDb2.ddl from this directory to the database
server machine if it is a remote server.

Edit this file if necessary, for example to change the database name from
BPEDB to something else.

3. On UNIX, make sure the db2 environment variables are set by executing the
profile:

. /home/db2_instance_owner/sqllib/db2profile

4. Log in as a DB2 instance owner on the DB2 server.

su - db2_instance_owner

5. Create the database by issuing the following commands through CLI:

db2 -tf createDatabaseDb2.ddl

6. Bind the CLI programs against the database:

For UNIX:

db2 connect to BPEDB
db2 bind $DB2DIR/bnd/@db2cli.lst blocking all grant public
db2 connect reset

For Windows:

db2 connect to BPEDB
db2 bind %DB2PATH%\bnd\@db2cli.lst blocking all grant public
db2 connect reset

7. Catalog the process database to an alias on the client.

On an Application Server machine where DB2 runtime client is installed,
catalog the just-created database BPEDB to BPEDB_alias, which is the alias
specified in installing the process container:

su - db2_instance_owner
db2 catalog database BPEDB as BPEDB_alias at node node_name

Note: The database name of the process database created on the
database server should be aliased to the database name specified in the
process container of your WebSphere Application Server (DB2 client)
machine.
200 WebSphere Application Server Enterprise V5

Creating a queue manager and queues in WebSphere MQ
To create a WebSphere MQ queue manager, perform the following steps:

1. Locate the script in the ProcessChoreographer directory:

On Windows:

%WAS_HOME%\ProcesChoreographer\createQueues.bat

On UNIX:

$WAS_HOME/ProcessChoreographer/createQueues.sh

where WAS_HOME is WebSphere Enterprise installation root. Typical locations
for WAS_HOME are:

On AIX:

/usr/WebSphere/AppServer

On Solaris, HP-UX, and Linux:

/opt/WebSphere/AppServer

On Windows:

C:\WebSphere\AppServer

2. Go to the ProcessChoreographer directory and run the script to create the
queue manager named WAS_qmgr_name, specified in the install wizard and
the four queues required by the process container.

On Windows:

createQueues.bat WAS_qmgr_name

On UNIX:

./createQueues.sh WAS_qmgr_name

3. After a successful execution of the scripts, enter the following command to
check the status of the queue manager:

dspmq

To check the queues created, enter the following command:

runmqsc

At the mqsc prompt, type the command to display a list of local queues:

dis (pl*)

Note: You cannot have more than one queue manager with BIND transport
on UNIX systems. If you have another application that requires a second
queue manager on UNIX systems, the transport of the JMS provider for the
second queue manager should be specified as CLIENT with an associated
port number (the default is 1414).
 Chapter 5. Process Choreographer runtime environment 201

5.3.4 Installing process container in a cell topology (ND-noC)
In the ND-noC topology, we have a Network Deployment cell with multiple
application server nodes, with one application server instance on each node. The
Network Deployment manager is on a second dedicated machine. There is no
WebSphere Application Server clustering.

Deployment manager
1. Install the WebSphere Application Server Network Deployment (ND).

2. Install the Administrative Console extensions for WebSphere Enterprise using
the WebSphere Application Server Enterprise installation wizard.

3. Install the Web server and the Web server plug-in.

4. Install the database client for the database system of your choice to access
the process database on a database server.

Database server
1. Install your database system of choice.

2. Create a process database BPEDB1 for Application Server AS1.

a. Copy the database creation DDL file from an application server machine to
the database node.

b. Edit the database creation DDL and change the database name from
BPEDB to BPEDB1. You can also change the database path.

c. Create the database with appropriate commands using the DDL.

Node1
1. Install WebSphere Application Server Enterprise Version 5 (which includes

Base Version 5). If you want to use WebSphere Embedded Messaging, make
sure that you include both the Embedded Messaging Server and Client when
WebSphere is installed. if you plan to use WebSphere MQ as the JMS
provider, ensure that the Embedded Messaging Server feature is not
installed.

2. Install the client software for your database system of choice.

3. If you plan to use WebSphere MQ as the JMS provider, install WebSphere
MQ V5.3.01.

4. Create a server, for example, AS1.

5. Install the process container on AS1 using the Process Container Installation
wizard. Make sure the database name is changed to BPEDB1 (from the
default BPEDB) and the database is cataloged on Node1 to access the
database BPEDB1 on the database server remotely.
202 WebSphere Application Server Enterprise V5

6. Create the local queue manager and queues if WebSphere MQ is used as a
JMS provider.

Node2
1. Install WebSphere Application Server Enterprise V5 (which includes Base

Version 5). If you want to use WebSphere Embedded Messaging, make sure
that you include both the Embedded Messaging Server and Client when
WebSphere is installed. if you plan to use WebSphere MQ as the JMS
provider, ensure that the Embedded Messaging Server feature is not
installed.

2. Install the database system of choice and create a process database for
application server AS2.

3. If you plan to use WebSphere MQ as the JMS provider, install WebSphere
MQ V5.3.01.

4. Create a server, for example AS2.

5. Install the process container on AS2 using the Process Container Installation
wizard. Make sure the database name is changed to BPEDB2 (from the
default BPEDB) and the database is cataloged on Node2 to access the
database BPEDB2 locally.

6. Create the local queue manager and queues if WebSphere MQ is used as a
JMS provider.

Adding nodes to the cell
You can add the nodes configured to the deployment cell either by using the
Administrative Console or by using the wsadmin command-line interface.

1. Add Node1 to the deployment manager cell:

a. Make sure Node1 is up and running.

b. Bring up the Administrative Console for the cell.

c. Select System Administration -> Nodes.

d. Click Add Node.

e. In the Add Node window, enter the network host name of Node1.

f. If security is enabled, enter the user ID and password of the WebSphere
administrator for the deployment manager.

g. Select Include applications.

h. Click OK.

Alternatively, from the command line:

a. Change directory to the bin directory of the stand-alone application server
installation.
 Chapter 5. Process Choreographer runtime environment 203

b. Enter the addNode command:

addnode dmgr_hostname SOAPport -includeapps

where dmgr_hostname is the host name of the deployment manager and
SOAPport is the port number of the SOAP connector (default is 8879).

2. Add Node2 to the deployment manager cell:

Repeat the above steps, but enter the network host name of Node2 instead of
Node1.

3. In adding an existing stand-alone node to a cell, specify a bootstrap port
number (default is 9810) that is different from those being used by existing
nodes.

a. Select Servers -> Application Servers.

b. Click the name of the server whose port is to be updated, for example
server1.

c. Under Additional Properties, click End Points.

d. Click BOOTSTRAP_ADDRESS.

e. Under Configuration properties, change the entry for Port to an available
port number.

� Update the Web server plug-in.

– Select Environment -> Update Web Server Plugin.

– Click OK to generate the plug-in.

– Check that the generated configuration file plugin-cfg.xml is correct and
that it is located at the right directory.

A plug-in configuration file named plugin-cfg.xml is generated in the
directory <DeploymentManager_root>/config/cells. The entry for the
plug-in configuration file in <Web_Server_root>/conf/httpd.conf file points
to <WebSphere_root>/config/cells/plugin-cfg.xml by default.

You can either edit this entry in httpd.conf tile to point to the correct
location (and restart the HTTP server) or copy the plugin-cfg.xml file to the
right location.

5.3.5 Installing process container in topology (ND-C, ND-VS, ND-HS)
First, install and configure the necessary software components.

Web server
Install the Web server and Web server plug-in.
204 WebSphere Application Server Enterprise V5

Deployment manager
1. Install WebSphere Application Server Network Deployment.

2. Install WebSphere Application Server Enterprise.

3. Install database client software for the database system of your choice.

4. Configure the database to access the process database remotely from the
client.

Database server
1. Install database system of your choice.

2. Copy the database creation DDL from an application server machine to the
database node.

3. Edit the database creation DDL and change the database name if necessary.
You can also change the database path.

4. Create the database with the appropriate commands using the DDL file.

5. Configure the database to allow remote client access to the process
database.

WebSphere MQ server
This topology requires a dedicated WebSphere MQSeries server with a central
queue manager. This queue manager is responsible for both the put and the get
messages.

1. Install WebSphere MQ 5.3.01 or higher.

2. Create a central queue manager:

a. Copy the script $WAS_HOME/ProcessChoreographer/createQueues.sh
on UNIX (createQueues.bat on Windows platforms) from a WebSphere
Application Server Enterprise node to the WebSphere MQSeries server.

b. Run the createQueues command, specifying the name of the queue
manager (Queue_Manager_Name in the following command):

./createQueues.sh Queue_Manager_Name

3. Add a listener service:

a. On UNIX, add a dedicated port for the new queue manager to the
/etc/services file:

Service_Name port_number /tcp

where Service_Name is the name of the queue manager service and
port_number is the port number for the listener (default is 1414).

b. Add a dedicated port for the new queue manager to the /etc/inetd.conf file:
 Chapter 5. Process Choreographer runtime environment 205

Service_Name stream tcp nowait mqm /usr/mqm/bin/amqcrsta amqrsta -m
Queue_Manager_Name

where Service_Name is the name of the queue manager service (the same
name defined in the /etc/services file) and Queue_Manager_Name is the
name of the queue manager.

c. On Windows platforms, use WebSphere MQ Explorer to add the listener.

Application server nodes
1. Install WebSphere Application Server Enterprise V5 (which includes Base

Version 5).

2. Install the client software for the database system of your choice.

3. Install WebSphere MQ Client Version 5.3.01. You may choose to use the
WebSphere Embedded Messaging Client instead.

For topology ND-VS, add Node1 to the cell. For topology ND-HS, add Node1 and
Node2 to the cell. Once the nodes are added to the cell, process containers can
be installed. There are two ways to install business process containers to
application servers in a WebSphere Application Server cluster.

1. Create a cluster with two or more servers without the process container. Then
install the process container to the cluster using the install wizard.

2. Create a server and install a process container to the server using the wizard.
Then create a cluster using this server as a template.

Creating cluster first and installing process container
1. Create an application server AS1 on Node1 using the default server as a

template.

2. Create a cluster including the server AS1 as a template.

3. Add a second server clone AS2 to the cluster. For topology ND-VS, AS2 is
located on the same node as AS1. For topology ND-HS, AS2 is located on a
second node, Node2.

4. Configure the WebSphere MQ JMS provider with two connection factories
and four queue destinations manually at the cell scope. Specify Client binding
and provide the host name and port number for the WebSphere MQ server.

5. Install the process container using the install wizard. In the step 3 page, select
Use existing JMS resources. Then select the queue connection factories
and queue destinations set up in the previous step from the drop-down menu.

Creating a server with process container first and creating a cluster
1. Create the application server AS1 using the default server as a template.

2. Install the process container using the Process Container Install wizard.
206 WebSphere Application Server Enterprise V5

Note that the install wizard uses the following default values to configure new
JMS resources JMS connection factories: jms/BPECF, jms/BPECFC, and
BIND transport. Hence after the install wizard is finished, you must edit the
two connection factory configurations to change it to Client transport and
provide the host name and port number for the WebSphere MQ server
machine.

a. Select Resources -> WebSphere MQ JMS Provider -> WebSphere MQ
Queue Connection Factories.

b. Click the link for the connection factory BPECF.

c. Enter the network host name of the WebSphere MQ server.

d. Enter the port number of the WebSphere MQ service (1414).

e. Click OK.

f. Repeat the same steps (c to e) for the connection factory BPECFC.

g. Save the configuration for WebSphere.

Figure 5-14 Changing the connection factory configuration to Client transport
 Chapter 5. Process Choreographer runtime environment 207

3. Create a cluster including the server AS1 as a template.

4. Create a clone server AS2.

This will also clone the process container and all the resources configured in
AS1 for the process container on the server AS2.

5.4 Staff plug-in provider configuration

As mentioned in 4.5, “Staff support” on page 158, staff resolution plug-ins
resolve the abstract staff queries (that is, verbs and parameters specified when
the process is developed, also known as parameterized verbs) into real searches
performed against the appropriate user registry at runtime. The registry used to
resolve staff queries (also called the staff registry) can be the same registry as
that used by the WebSphere Application Server itself, or a separate LDAP
registry.

It is important to remember that staff plug-ins and the staff registry are only used
to authorize a previously authenticated user ID to interact with the business
process or its staff activities. User authentication is handled by WebSphere itself,
using the registry that is configured as part of the global security configuration.

The layers of indirection between the abstract staff queries and the real registry
queries allow developers to implement human interaction into business
processes in a manner that is both highly customizable and completely
independent of the actual staff registry which is configured at deploy time.

Each staff resolution plug-in (also called staff plug-in) is associated with a JNDI
name that is used by process templates at deploy time to determine which
plug-in is used at runtime. This information is included in the process’
ibm-flow.xmi file, which is part of the flow archive (FAR) file that represents the
process template. In WebSphere Application Server Enterprise Version 5.0,
there is no way to edit this value in either the Administrative Console or in the
Application Assembly Tool. Therefore it must be set using WebSphere Studio IE,
as follows:

1. Right-click the service project containing the business process.

2. Click the Staff button in the left-hand panel to see the staff properties.

3. Enter the JNDI name of the desired staff plug-in.

4. Click OK when done.

Important: WebSphere global security must be enabled when using business
process staff activities.
208 WebSphere Application Server Enterprise V5

Figure 5-15 Configuring which Staff plug-in a process should utilize

Each staff resolution plug-in is associated with an XSLT (Extensible Stylesheet
Language Transformations) file, which transforms the staff query verbs into the
language supported by the plug-in. The plug-in may also be associated with
required properties. For example, the LDAP staff plug-in requires various LDAP
server settings (for example, host name, port, baseDN, etc.) to be set as
properties during the plug-in configuration.

In the WebSphere Application Server Enterprise configuration, staff resolution
plug-ins are collected into staff plug-in providers. A staff plug-in provider is a
JAR file that contains the necessary Java class files for zero, one, or many staff
resolution plug-ins. For example, the User Registry staff plug-in consists of the
UserRegistryTransformation.xsl, which is mapped to the JNDI name
bpe/staff/userregistryconfiguration, and is contained within the User Registry
staff plug-in provider that is mapped to the JAR file
$(WAS_INSTALL_ROOT)/lib/bpestaffuserregistry.jar.

While there is no published API for creating new staff plug-in providers, the staff
plug-in XSL files and the parameterized verb XML schema that are the input to
the staff plug-in transformation are documented in the WebSphere Application
Server Enterprise Process Choreographer Staff Resolution Parameter
Reference. Using this, it is possible to create new staff plug-ins based on one of
the existing plug-in providers (System, User Registry, or LDAP). An example of
this can be found in “Creating custom staff query verbs” on page 163.

The WebSphere Application Server Enterprise is installed with three staff plug-in
providers, each of which is described in the following sections.
 Chapter 5. Process Choreographer runtime environment 209

System staff plug-in provider
After installation, the System staff plug-in provider contains two staff plug-ins,
both of which are intended for developer use only. Neither plug-in uses a
back-end staff registry, and therefore neither is suitable for production
environments. The plug-ins included within the System staff plug-in provider are:

� The Everybody staff plug-in, which transforms all staff queries to return
Everybody. This plug-in can be very useful during testing and debugging,
since it allows any authenticated user to claim any staff activity, regardless of
the query verb and parameter associated with that activity.

� The System staff plug-in, which supports the simple staff query types
everybody, nobody, and userID. This plug-in is also quite useful during testing
and debugging, but it cannot handle the more advanced query verbs
supported by the LDAP and User Registry plug-ins.

User Registry staff plug-in provider
The User Registry staff plug-in provider contains the User Registry staff plug-in.
This plug-in uses the registry that the WebSphere server is itself configured to
use for global security. Using this plug-in will force the business process engine
to use the same registry for authentication and authorization. This is the most
straightforward way to configure staff support for a production environment. It is
installed ready to use and requires no additional configuration parameters.

The user registry staff plug-in will work in conjunction with any of the three
supported WebSphere user registries: local OS, LDAP, and custom user registry.

The User Registry staff plug-in supports the following query verbs:

� users
� users by userID
� group members
� person search
� group search
� native query
� everybody
� nobody

LDAP staff plug-in provider
The LDAP staff plug-in provider contains the LDAP staff plug-ins, which are
intended for processes that require staff authorizations that are dependent on
organizational information, such as management chains, or various other user

Note: When using a custom user registry for WebSphere security in
conjunction with the User Registry staff plug-in, the deprecated
getUsersForGroup() interface must be implemented for the custom registry.
210 WebSphere Application Server Enterprise V5

attributes that are commonly found in LDAP directories, such as serial number,
contact information, location, etc. The LDAP staff plug-ins can provide these
capabilities by supporting a rich set of query verbs and parameters.

The LDAP staff plug-in provider supports all of the query verbs supported by the
User Registry staff plug-in, in addition to the following:

� Department members
� Role members
� Manager of employee
� Manager of employee by user ID

In addition to supporting addition query verbs, the LDAP staff plug-in provider
also supports additional query parameters. For example, when using the User
Registry plug-in, a person search query is limited to searching using the UserID
parameter, while the LDAP registry plug-in provider allows searches using any
attribute that is part of the LDAP schema.

Because staff plug-ins are only used for authorization, authentication is handled
by WebSphere itself. Therefore, the user registry configured for global security
must be capable of authenticating every user who might interact with the staff
activity. The simplest configuration using the LDAP staff plug-in is one in which
WebSphere global security is configured to use the same LDAP directory used
by the LDAP staff plug-in. (Note that the user registry staff plug-in would also
work and indeed be preferable in this case, if the more complex query verbs
supported by the LDAP staff plug-in are not required.) An alternative would be to
configure WebSphere to use another user registry containing the subset of the
user IDs in the LDAP directory that might interact with the process’ staff activities.

After installation, a sample LDAP staff plug-in is configured, with the JNDI name
bpe/staff/sampleldapconfiguration. This sample is useful as a guide for creating
an LDAP staff plug-in that is suitable for use in your environment.

The LDAP transformation file used by the sample LDAP staff plug-in,
$(WAS_INSTALL_ROOT)/ProcessChoreographer/Staff/LDAPTransformation.xsl,
might need to be modified to reflect your LDAP schema. Mapping between query
verb parameters and LDAP attributes can be found at the top of this file, in the
global variables section, as shown in Example 5-1. The variables with the prefix
“GS” are used by the group search queries, and the variables with the prefix “PS”
are used by the person search queries.

Example 5-1 Mapping between query verb parameters and LDAP attributes

<!-- Begin global variables -->
 <xsl:variable name="Threshold">20</xsl:variable>
 <xsl:variable name="DefaultPersonClass">inetOrgPerson</xsl:variable>
 <xsl:variable name="DefaultUserIDAttribute">uid</xsl:variable>
 Chapter 5. Process Choreographer runtime environment 211

 <xsl:variable name="DefaultManagerAttribute">manager</xsl:variable>
 <xsl:variable name="DefaultRecursivity">yes</xsl:variable>
 <xsl:variable name="DepartmentFilter">(OrgType=Department)</xsl:variable>
 <xsl:variable name="RoleFilter">(OrgType=Role)</xsl:variable>

 <xsl:variable name="GS_GroupID">unkown</xsl:variable>
 <xsl:variable name="GS_Type">unkown</xsl:variable>
 <xsl:variable name="GS_IndustryType">unknown</xsl:variable>
 <xsl:variable name="GS_BusinessType">unkown</xsl:variable>
 <xsl:variable name="GS_GeographicLocation">unkown</xsl:variable>
 <xsl:variable name="GS_Affiliates">unkown</xsl:variable>
 <xsl:variable name="GS_DisplayName">unkown</xsl:variable>
 <xsl:variable name="GS_Secretary">unkown</xsl:variable>
 <xsl:variable name="GS_Assistant">unkown</xsl:variable>
 <xsl:variable name="GS_Manager">unkown</xsl:variable>
 <xsl:variable name="GS_BusinessCategory">unkown</xsl:variable>
 <xsl:variable name="GS_ParentCompany">unkown</xsl:variable>

 <xsl:variable name="PS_UserID">uid</xsl:variable>
 <xsl:variable name="PS_Profile">unkown</xsl:variable>
 <xsl:variable name="PS_LastName">sn</xsl:variable>
 <xsl:variable name="PS_FirstName">unkown</xsl:variable>
 <xsl:variable name="PS_MiddleName">unkown</xsl:variable>
 <xsl:variable name="PS_Email">unkown</xsl:variable>
 <xsl:variable name="PS_Company">unkown</xsl:variable>
 <xsl:variable name="PS_DisplayName">unkown</xsl:variable>
 <xsl:variable name="PS_Assistant">unkown</xsl:variable>
 <xsl:variable name="PS_Secretary">unkown</xsl:variable>
 <xsl:variable name="PS_Manager">manager</xsl:variable>
 <xsl:variable name="PS_Department">unkown</xsl:variable>
 <xsl:variable name="PS_EmployeeID">unkown</xsl:variable>
 <xsl:variable name="PS_TaxPayerID">unknown</xsl:variable>
 <xsl:variable name="PS_Phone">unkown</xsl:variable>
 <xsl:variable name="PS_Fax">unkown</xsl:variable>
 <xsl:variable name="PS_Gender">unkown</xsl:variable>
 <xsl:variable name="PS_Timezone">unkown</xsl:variable>
 <xsl:variable name="PS_PreferredLanguage">unkown</xsl:variable>
<!-- End global variables -->

So, for example, if you need to do a person search using the “Department” query
parameter against an LDAP directory that uses the attribute name “dept”, then
edit the PS_Department variable definition to read:

<xsl:variable name="PS_Department">dept</xsl:variable>.

Before using an LDAP staff plug-in, it must be configured via the WebSphere
Administrative Console. The properties required by each LDAP staff plug-in are
specified by the LDAP staff plug-in provider JAR file. Remember that each LDAP
212 WebSphere Application Server Enterprise V5

staff plug-in maintains its own transformation file and its own set of LDAP staff
provider properties. The following steps are required for the configuration of an
LDAP staff plug-in:

1. On the WebSphere Administrative Console, select Resources ->Staff Plugin
Provider.

2. On the Staff Plugin Provider window, click LDAP Staff Plugin Provider.

3. On the LDAP Staff Plugin Provider window, click Staff Plugin Configuration.

4. On the Staff Plugin Configuration window, click LDAP Staff Plugin
Configuration sample.

5. Click Custom Properties.

6. On the Custom Properties window, specify the LDAP server URL (for
example, ldap://localhost:389) in the ProviderURL field, the Base
Distinguished Name (for example, o=itso,c=us) in the BaseDN field, and the
search scope (for example, subtreeScope) in the SearchScope field. If the
LDAP server requires authenticated access, specify the name of the
appropriate J2C authentication alias in the AuthenticationAlias field.

Query result caching
By default, when the business process container performs a staff query to
generate work items, the results of this query are cached for one hour. These
cached results will be re-used when creating work items within the current
process instance, as well as within other process instances.

The default query cache duration can be changed by modifying the
StaffQueryResultValidTimeSeconds property in the business process engine
properties file <WAS_ROOT>\properties\bpe.properties.

5.5 Security considerations
First we look at issues related to securing the Process Choreographer’s
resources. Then we look at the security context of a running process.

5.5.1 Securing the Process Choreographer resources
When a business process is used to provide a vital business function, all of the
resources used by the process engine should be secured. These are:

� The business process data source.

� The JMS queue destinations used internally to manage processes:
BPEApiQueue, BPEHldQueue, BPEIntQueue, and BPERetQueue.
 Chapter 5. Process Choreographer runtime environment 213

Securing the data source resource used by the business process is similar to
securing any other data source. Specify the appropriate J2C authentication alias
for the data source’s connection factory (for example, jdbc/BPEDB), and ensure
that no untrusted user IDs may access the back-end database.

Similarly, securing the queue resources used by the business process is a matter
of specifying the appropriate J2C authentication alias for the queue connection
factory used by the process engine (for example, jms/BPECF), and ensure that
no untrusted users may access the JMS provider’s queue destinations.

5.5.2 Process security context
A business process will either run with the security context of the user who
started the process or with no security context, depending on the mechanism
used to start the process. There are several ways a process may be started:

� If the process is started using the business process Web client, the process
will inherit the security context of the user running the Web client.

� If the process is started via a Session EJB binding, the process will inherit the
security context of the session bean that “wraps” the process. Unless the
session bean uses delegation, this will also be the security context of the
caller of the EJB.

� Similarly, if the process started via a SOAP binding, it will inherit the security
context of the Web Project that “wraps” the process. If there is a security
constraint on the service’s URL requiring the Web service client to
authenticate, the process will run with the security context of this
authenticated user. If there is no security constraint on the Web service’s
URL, the process will run with no security context.

� If the process is started via a JMS binding, it will run with no security context,
unless delegation is used on the message-driven bean that “wraps” the
process. Using delegation, the process can be made to run as a particular
user, or with the WebSphere server’s user identity.

Important: The Process Choreographer configuration JACL scripts will create
data source and JMS resources in WebSphere with the appropriate security
applied. If using Embedded Messaging, the queues themselves will also be
created with security applied. However, if using the external MQ JMS provider,
the queue access controls must be applied manually in order to secure these
queues. For more information, see the WebSphere MQ Security product
documentation.
214 WebSphere Application Server Enterprise V5

Once started, a process maintains the same security identity throughout its
lifetime. While various users may interact with the process through staff activities,
the process’ security context will remain unchanged.

An exception to this can occur in the case of an interruptible business process
that is started by a user ID that becomes not valid before the process is
complete. For example, a process that is started by an employee via the
business process Web client will run using the security context of that employee.
If this employee leaves the company before the process runs to completion, the
process will be unable to complete. If this occurs, a process administrator will
eventually need to terminate and delete the process instance.

5.5.3 Process Choreographer J2EE security roles
There are three J2EE security roles within the business process container
application: the Process Administrator role, the WebClientUser role, and the
JMSApiUser role. Each are discussed in the following sections.

Process Administrator role
As described in “Process-level staff roles” on page 162, process-level
administrative control may be assigned using the appropriate staff query
configuration, or, if the process-level administrator role is left unassigned, it is
inherited by the user ID that starts the process instance. In addition to these
methods of acquiring process-level administrative control, it may also be
assigned via the business process container’s Process Administrator security
role configuration. This attribute of the business process container is an optional
configuration when the process container is installed, and it may also be modified
subsequently by editing the security role bindings for the business process
container application.

In contrast to the process-level administrator staff role, which is assigned using
staff queries, the Process Administrator security role is a J2EE security role that
is bound directly to user IDs and groups in the user registry that WebSphere is
currently using for global security. This mechanism provides a way for
WebSphere administrators to assign process-level administrative control that
applies to all process templates, and which is independent of all aspects of the
process staff configuration.

Note: For more information on J2EE security roles and how they are
administered, see the WebSphere Version 5 Security Handbook.
 Chapter 5. Process Choreographer runtime environment 215

WebClientUser role
The WebClientUser role is, by default, bound to the All Authenticated Users
special subject. This role controls who has access to the business process Web
client, and the default setting allows any member of the user registry to access
this Web application. Note, however, that the process staff roles will dictate
whether or not users may be able to do anything after accessing the business
process Web client.

In some cases, it might be useful or necessary to restrict access to the business
process Web client to a subset of users. This can be easily done via the
WebClientUser security role binding.

JMSAPIUser role
The JMSAPIUser security role is used to apply a Run-as role (also known as
delegation) to the receiver bean that responds to the business process JMS API
interface. Since message-driven beans have no security context when
responding to received messages, Run-as roles are often used to insert a
particular user’s identity, so that these beans’ methods run with a known security
context.

The user ID and password used for the JMSAPIUser Run-as role can be
configured when the business process container is installed on the application
server, or subsequently by editing the Run-as mapping for the business process
container application.

If using the business process JMS API interface, it is necessary to map a user
who is a member of the Process Administrator security role to the JMSAPIUser
Run-as role. Otherwise, if not using the JMS API interface, this role can be left
unconfigured.

5.6 Managing business process applications
Business process applications are applications that contain the business
processes. They can be administered in a similar manner to any other J2EE
applications with a few additional considerations.

5.6.1 Artifacts of a business process application
Business process applications are packaged into Enterprise Application Archive
(EAR) files used to package standard J2EE applications. Typically, a J2EE EAR
file contains Web application archive (WAR) files, EJB modules in EJB Java
archive (EJB JAR) files, Java archive (JAR) files that contain supporting Java
classes, and other files contain properties and configuration information. EJB
216 WebSphere Application Server Enterprise V5

modules are deployed into EJB containers, and Web application modules are
deployed into Web containers.

A business process application project called as a service project in WebSphere
Studio IE can include one or more process models. Each business process
model is described in Flow Definition Markup Language (FDML). When a
deployable service is generated in WebSphere Studio IE, all necessary artifacts
of the service project are packaged into an EAR file. The EAR file includes:

1. One flow archive (FAR) file named project_name.far, where project_name is
the name of the service project. The FAR file includes:

– ibm-flow.xmi that specifies process templates included in the FAR file,
including their validFrom date and Web context.

– One FDML file for each process model. Each FDML file is named
model_name.fdml, where model_name is the name of the business
process model or template.

2. One Java archive (.jar) file whose default name is project_name.jar. This file
includes the following artifacts:

– One model_name.process file for each process, which defines each
process model graphically in WebSphere Studio IE.

– One class file model_name.class file for each process, that includes Java
snippets for data transformations, conditions for process transitions and
loops, and accessor methods for process variables. This class is extended
from BPE ProcessBackingBase.

– Java classes for all global variables defined in each process model.

– WSDL files for the interface, binding, and services defined for each
process model.

– Java classes used in implementation of activities in each process model.

– All supporting files such as XML files, properties files used in
implementation of activities in each process model.

– Services file that specify staff plug-in JNDI names and the verb sets to be
used with staff activities for all process models in the project.

3. One EJB JAR file (default name project_nameEJB.jar) that includes deployed
classes session EJBs, if EJB façade and JMS façade are generated for all the
process models in the project.

We may have other EJB JAR files that may be used in implementing activities
in each process model.

4. One WAR file (default name project_nameWeb.war) that includes Web
services (SOAP) interfaces to all process models in the project.
 Chapter 5. Process Choreographer runtime environment 217

We may have other WAR files that contain Web applications that may be used
in implementing activities or custom user interfaces to each process model.

5. Resource archive, RAR files: Zero or more .rar files for connecting to J2EE
resources such as JCA connectors to CICS.

6. Other J2EE EAR artifacts: Normal J2EE artifacts for an EAR produced for
WebSphere Application Server Enterprise, such as:

� application.xml
� ibm-application-ext.xmi
� ibm-application-bnd.xmi

At a minimum, a business process application EAR should consist of the
following files:

� project_name.far
� project_name.jar
� Either a project_nameEJB.jar or a project_nameWeb.war

5.6.2 Installing business process applications
You install these applications in the same way as other J2EE applications, using
either the administration scripts or the application install windows on the
Administrative Console. You also need to configure any resources required by
dependent J2EE components that implement services, such as data sources,
JMS resources, and CICS connectors. However, because FAR files are not J2EE
modules, they do not appear on the application install windows.

When you install a business process application, a FAR file is deployed to a
business process container by deployment tools under the covers. The rest of the
J2EE artifacts are deployed to the usual places. For example, EJB JARs are
deployed into an EJB container, WAR files are deployed into Web containers,
and JAR files and RAR files are deployed into directories for installed classes.
Configuration data for your application is added to the WebSphere configuration
repository, while process metadata is added to the Process Choreographer
databases.
218 WebSphere Application Server Enterprise V5

Figure 5-16 Deployment of a business process application

Currently, all the FAR files included in your business process application EAR file
are distributed to the application servers and WebSphere clusters where you
install any of the EJB JAR or WAR files included in this EAR file. It is
recommended that you install all the modules (EJB, WAR and FAR) together on
the same application servers and WebSphere clusters. As a consequence, you
must configure business process containers on all these application servers and
WebSphere clusters.

If you want to separate WAR files from the FAR files of your application, put them
in a different EAR file and install this EAR file separately. You cannot separate
EJB jars from FAR files.

When you install a process application, all the stand-alone servers and at least
one application server of each WebSphere cluster where you want to install the
application modules must be running. The corresponding database servers must
also be running.

If only some of the required servers are available at installation time, install the
application on the servers and WebSphere clusters that are running. You can
map the application to further servers and WebSphere clusters later.

5.6.3 Versioning process models
You can specify a validFrom date and time for a process model. This value is
specified in the Coordinated Universal Time (UTC) format. The validFrom date

WebSphere Application
Server Integration Edition

WebSphere®

WebSphere Application
Server V5 Enterprise

Business Process
Container

EJB Container

Installed Classes

Enterprise Application

Business Process
Module (FAR)

Business Process
Module (FAR)

Business Process
Module (FAR)

Business Process
Module (FAR)

Business Process
Module (FAR)

EJB Module
(JAR)

Business Process
Module (FAR)

Business Process
Module (FAR)

Adapter Module
(RAR)

Business Process
Module (FAR)

Business Process
Module (FAR)

Java Classes
(JAR)
 Chapter 5. Process Choreographer runtime environment 219

and time can be in the past. This time, together with the name of the model, is
used as the unique key to version a process template stored in the process
database.

You can change the validFrom time in WebSphere Studio IE by selecting the
Server view of the process in the process editor, as shown in Figure 5-17.

Figure 5-17 Setting validFrom date and time in WebSphere Studio IE process editor

You can overwrite an already installed process model as long as its validFrom
time is still in the future, that is, it has no instances yet. Both process model name
and validFrom time have to match that of the already installed process model to
do that.

You can provide a new version for an already installed process model, which may
or may not have instances. The new version is identified by the same name and a
newer validFrom time. Existing instances continue to run with the previous
version of the process model, while instances created after the validFrom time of
the new model use the new version.

If an overwritten process model is already referenced by an activity of another
process model, only upward compatible changes of its interface signature are
allowed. This is necessary because of late binding, since the new version might
be picked up by an already existing process, and thus its interface signature must
be guaranteed to be compatible with the signature of all existing activities using
it. The same applies to implementations.
220 WebSphere Application Server Enterprise V5

For a given version of the process template, you can change the behavior of
external implementation resources while an instance of that version is running by
upgrading EJBs or services that are used by the process model, if these
resources are in different EAR modules than that of the live process and the
interfaces for these implementations remain the same.

To update a business process model while keeping the live instances of the
original process to run to completion, do the following:

1. In WebSphere Studio IE, change the validFrom date and time of the model to
something more current than that of the existing process model.

2. Generate new deployable code making sure to specify JNDI names used for
the EJB façade or JMS façade different from those used with the live instance
of the old process version.

a. If your process model has activities invoking EJBs or services and you are
updating their implementations with the new version, you must specify
different JNDI names for these if you do not want live instances of the old
version to start using the new activity implementations.

b. If another process model is referencing your process model through its
EJB façade or JMS façade, you also need to update the referencing
process model accordingly. That is, change its validFrom time to be the
same as that of your process model (in case it has live instances) and
install it, mapping its EJB reference to the new JNDI name of your new
process model. The referencing process model should use EJB
references to allow updating of JNDI names at deployment.

3. Export the EAR file.

4. Install EAR specifying an application name that is different from the existing
process application.

5. Save the configuration.

6. Start the new application.

All new instances of this process model created after the new validFrom date use
this template of the process instead of the old template. The old template
remains in place so that existing process instances can continue to completion.

5.6.4 Starting and stopping process templates
When a business process module is installed successfully, the process templates
that are contained in the process module (FAR file) are started automatically. If
you need to stop these process templates, perform the following steps:

1. Be sure that you are using a Console User ID that has either the operator or
administrator role.
 Chapter 5. Process Choreographer runtime environment 221

2. In the navigation pane of the Administrative Console, select Applications ->
Enterprise Applications.

3. Click the business process application you want to manage.

4. In the Related Items section of the configuration properties window, click
Business Process Modules.

5. Select the process module you want to manage.

6. In the Additional Properties section, click Templates.

7. The Process Templates window is displayed, listing the process templates
that are contained in the selected process module.

You can stop a running process template, and start it again at a later point in
time, depending on the validFrom time that is specified. A process template will
not be started until the validFrom time is reached.

To stop a process template, check the box next to the process template and click
Stop.

To start a process template, check the box next to the process template and click
Start.

5.6.5 Uninstalling a business process application
When you uninstall a business process application, you remove it from all the
servers and WebSphere clusters on which it is installed. If you want to remove
the business process application from selected servers or WebSphere clusters
only, use application editing.

To uninstall a business process application in a distributed environment:

1. Ensure that all the stand-alone servers, at least one application server per
cluster, and the corresponding database servers are running.

2. Stop all process templates belonging to the application. This stops the
process template on all the application servers and WebSphere clusters on
which the application is installed.

3. Remove all instances of the process templates.

4. Uninstall the business process application.

5.6.6 Editing a business process application
When you edit a business process application, you change the mapping of the
application modules to the application servers and WebSphere clusters in the
222 WebSphere Application Server Enterprise V5

cell. You can use the Administrative Console or administration scripts to change
this mapping.

Only the EJB modules and Web modules appear in the Administrative Console. If
you change the mapping of your EJB or Web modules, the mapping of the
process modules (FAR files) is changed accordingly.

During the editing of a business process application, the following restrictions
apply:

� If you remove the mapping of a module to an application server or a
WebSphere cluster, then the process templates of that application must be
stopped and all instances of the templates must be removed from the
database belonging to the corresponding application server or WebSphere
cluster.

� All application servers and at least one member of each WebSphere cluster
that you want to change (remove or add) must be running. The associated
database servers must also be running.

5.6.7 Managing process instances
Each process container installation includes a default Web client to manage
processes. It provide a graphical Web interface to view process templates
installed on the application server or cluster. The URL for invoking the default
Web client is:

http://host_name:port_no/bpe/webclient

where host_name is the network host name of your application server and
port_no is the HTTP transport port number. You can start, stop, terminate and
delete process instances using the Web client. For interruptible processes with
staff activities, it allows users with potential owner, reader or editor roles to work
on the staff activities assigned to them.

5.7 Problem determination and troubleshooting
Process Choreographer uses the WebSphere framework JRas for traces,
messages, and audit logs. Typical steps applied in troubleshooting J2EE
applications on WebSphere Application Server can be applied when
troubleshooting process container and business process applications, keeping in
mind that process container uses JMS resources and a JDBC data source for the
process database.
 Chapter 5. Process Choreographer runtime environment 223

5.7.1 Error messages
All messages within Process Choreographer are NLS enabled. At runtime the
message catalog is responsible for handling the localized messages (messages
depend on the locale set in your system). All messages for one target language
are stored in a properties file with the naming convention you specify.

All errors, warnings and informations will be written to SystemOut.log in
WAS_install_dir/logs/server_name. You can identify messages from Process
Choreographer by looking at the message key:

HelloWorldBP operation failed javax.management.MBeanException: BPEA0008E:
Process template 'HelloWorldBP.Wed 2003-01-01 12:00:00.000' is not found.

The message key in this example is BPEA0008E, where:

� BPE is the identifier for Process Choreographer

� A is the component within Process Choreographer:

D Deployment
A API
E Engine
C Configuration
P Plug-ins
U Client

� 0008 is the message code within the component.

� E is the type of message:

I Information
W Warning
E Error

After the message key, you can find the localized message for this message key.
This message should provide the first information, such as:

Process template 'HelloWorldBP.Wed 2003-01-01 12:00:00.000' is not found.

If you need further information, you can use the Log Analyzer, which provides an
explanation and possible user actions for solving your problem.

5.7.2 Tracing process container
Process Choreographer uses the WebSphere framework JRas for traces. To turn
on tracing for Process Choreographer through the Administrative Console, do the
following:

1. Select Troubleshooting ->Logs and trace.
224 WebSphere Application Server Enterprise V5

2. In the table, select a server from the list of servers.

3. Click the link Diagnostic Trace to bring up the Diagnostic Trace Service
window.

4. On the Configuration tab in the General Properties column, check Enable
Trace.

5. To specify components to trace, perform one of the following steps:

– In the Trace specification box, enter:

com.ibm.bpe.*=all=enabled

– Click Modify to bring up a pop-up window. In the pop-up window, click the
Components tab.

6. Click the package com.ibm.bpe and select All enable.

You may select to choose specific levels of tracing or specific subpackages of
com.ibm.bpe:

com.ibm.bpe.client.*
com.ibm.bpe.engine.*
com.ibm.bpe.staff*
com.ibm.bpe.util.*

You may change the trace output setting. Trace output is sent to a file at
<WebSphere_root>/logs/trace.log.

7. Click OK.

8. Save the configuration for WebSphere.

5.7.3 Process audit trail
To use the audit trail for Process Choreographer, it must have been enabled
during the modeling of a process. It can be specified on the Server tab of the
process model in WebSphere Studio IE. It can also be specified at the activity
level in WebSphere Studio IE. This setting is entered into the FDML (Flow
Definition Modeling Language) file for the process model.

When a process instance is executed and audit trailing is enabled, Process
Choreographer writes information about each significant event into an audit log,
which is located in the table AUDIT_LOG_T in the process database. Process
Choreographer provides a plug-in for the audit trail database to be used. In
addition, you can clean up the audit log table according to your needs by using
the cleanup utility called BPEAuditLogDelete. To read the content of the audit
trail, use SQL or any other administration tool that allows you to read database
tables.
 Chapter 5. Process Choreographer runtime environment 225

Enabling the audit log has an adverse effect on process container performance.
Auditing has a relatively small impact on performance when using interruptible
business processes.
226 WebSphere Application Server Enterprise V5

Chapter 6. Extended Messaging

Asynchronous messaging patterns are an important part of the J2EE
application’s programming model because of the flexibility that they bring to a
distributed application architecture. Asynchronous messaging systems allow for
“loose coupling” between different applications, and between the different
programs that constitute a single, distributed application. Importantly, these
systems can span an extremely wide number of platforms. Moreover, when
sending and receiving messages, the senders and recipients of these messages
do not need to know about each other directly. This lets them evolve
independently of each other. These patterns are useful for process flows, parallel
processing, time-independent processing, and event-driven processing.

This chapter introduces Extended Messaging (EM), discusses the need for EM,
introduces the design patterns handled by EM, and works through a sample
application showing both sending and event style (MDB) receiving of messages
using EM. The second part of the chapter explores the runtime implications of
EM, including configuration, deployment, transactional concerns, and problem
determination.

6

© Copyright IBM Corp. 2003. All rights reserved. 227

6.1 Planning
This chapter describes the limitations of current Java messaging APIs, then
introduces a new set of technologies called Extended Messaging (EM) that IBM
introduced in WebSphere Enterprise V5. EM combines a number of development
and runtime enhancements to make the delivery of messaging programs faster
and more efficient in a WebSphere environment.

6.1.1 Java Message Service
The Java Message Service (JMS) is a set of Java APIs that provides a
framework for Java programs to make portable calls into asynchronous
messaging systems. The JMS specification was developed by several vendors
and is described in detail at:

http://java.sun.com/products/jms/index.html

However, JMS is a standard Java API, and does not take full advantage of the
J2EE container. In addition, JMS is a relatively low-level API and requires the
developer to write code for:

� Object lookups: JNDI lookups for connection factories and destinations.

� Message formats: The developer is tasked with constructing the parts of a
message (such as XML), and then parsing these message parts upon
retrieval.

� Caching of administration objects: For better performance, all thread-safe
JMS objects should be cached.

The EJB 2.0 specification introduced message-driven beans (MDB), which
provide container support for event-driven message retrieval. But the MDB
specification still does not handle a number of messaging patterns, such as:

� Sending messages with or without a response.

� Application-callable receiver beans. Messages need to be retrieved during a
program’s application flow, as opposed to the MDB style, where messages
are processed as soon as they arrive at a destination.

� Late responses in send and receive. This allows the sender to register an
MDB type listener to handle responses that cannot be processed within a
programmatically set timeout.

� Mapping and reformatting data in JMS messages. This lets the programmer
set the details of the JMSMessage as parameters of a message, instead of
having to build and parse the message data.

� Sending messages to multiple destinations (topics or queues).
228 WebSphere Application Server Enterprise V5

http://java.sun.com/products/jms/index.html

6.1.2 Extended Messaging
The next generation of messaging tools and runtime support is here. It is called
Extended Messaging (EM) and is delivered with WebSphere V5. EM tools are
included in WebSphere Studio IE, while runtime and configuration support are
part of WebSphere Enterprise.

6.1.3 Why use Extended Messaging?
EM enhances standard J2EE Messaging by providing support for all types of
messaging patterns, container support for these patterns, and code
simplification. The following messaging patterns are supported by EM:

� Sending

– Send - fire and forget
– Send with a synchronous response (optional timeout)
– Send with a deferred response

� Receiving

– Event style (MDB) with no response
– Event style (MDB) with a response
– Application callable (optional timeout) with no response
– Application callable (optional timeout) with a response

Container support
Because EM EJB beans run within the WebSphere Enterprise V5 runtime, they
take full advantage of J2EE caching, clustering, transactional, and security
constructs.

Code simplification
As discussed above, one of the problems with JMS coding is the amount of code
and J2EE constructs you have to write just to send a message. A traditional JMS
application looks like Example 6-1.

Example 6-1 JMS Code to send a message

// Initialize the JNDI context
InitialContext ctx = new InitialContext();

// Look up the QueueConnectionFactory in JNDI
Object o = ctx.lookup("jms/myQCF");
qcf =
(QueueConnectionFactory)PortableRemoteObject.narrow(o,QueueConnectionFactory.cl
ass);

// Create a QueueConnection
 Chapter 6. Extended Messaging 229

QueueConnection conn = qcf.createQueueConnection();

//Create a QueueSession
QueueSession session =
conn.createQueueSession(false,Session.AUTO_ACKNOWLEDGE);

// Look up the Queue in JNDI
Object o = ctx.lookup("jms/myQ");
q = (Queue) PortableRemoteObject.narrow(o,Queue.class);

// Create a QueueSender
QueueSender sender = session.createSender(q);

// Create a message
Message message = session.createTextMessage();
message.setJMSType("LogMessage");
message.setText("Hello World");

// Send the message
sender.send(message);

As mentioned earlier, there is no container support for caching of connection
factories, queues, senders, and so on. All that has to be done by hand.

Extended Messaging promotes code simplification by:

� Providing advanced tooling support. All messaging patterns discussed can be
supported by running wizards in WebSphere Studio IE. This is discussed in
detail in 6.3, “Development” on page 234.

� Data mapping of message parts.

� Sending messages to multiple destinations via Deployment Descriptor
settings on input and output ports.

� Tooling support provides response queue handling.

� Runtime container caching of administration objects.

6.2 Design
Extended Messaging is provided as a set of application interfaces that provide an
abstraction for JMS.

6.2.1 Messaging patterns
Let’s take a closer look at the sending and receiving patterns.
230 WebSphere Application Server Enterprise V5

Sending pattern
The sending pattern, illustrated in Figure 6-1, follows this scenario:

1. Client application looks up a sender bean and calls one of its sender
methods.

2. The sender method formats the message parts into a single message.

3. The sender bean sends the message to an output port.

4. The WebSphere Enterprise runtimemaps the output port to one or more JMS
destinations.

5. The WebSphere Enterprise runtime sends the message to the destination
defined for the output port.

Figure 6-1 Sending process

An Extended Messaging port provides an abstraction to JMS resources. There
are three types of ports, as follows:

� EM output port:

– Specifies the output queue and connection factory (this is required).

– Specifies the reply-to queue (this is optional).

– If a sender expects a reply and the reply-to queue is left blank, a
temporary queue is opened to accept the response.

– Reply-to queue is required for a send with deferred response, because a
temporary destination cannot be left open.

– Reply-to queue is required for late-message handling.

� EM input port:

– Specifies the input queue and connection factory.

EMS

Sender Bean

Assemble
Message Send Message

output port

Client

JMS

WebSphere Server

 Messaging

 Messaging
 Chapter 6. Extended Messaging 231

– Only used by Application Callable Receiver beans.

– The reply-to queue specifies where to send replies.

� EM extended MDB listener port:

– Used when an MDB performs the role of a late response message
handler.

The EM output port is illustrated in Figure 6-2.

Figure 6-2 Output port

Receiving pattern
The receiving pattern has two forms:

� MDB style

– The MDB listens to a JMS destination, receives the message, and then
calls a worker session bean.

– There is no input port for the MDB style.

� Application callable receiver bean

– Receives the message by listening to the destination specified in the input
port.

– Parses the message.

– Returns the message contents to the calling application.

Both receiving patterns are illustrated in Figure 6-3 on page 233.

EMS

Output Port

WebSphere Server

Sender Bean

Assemble
Message

Send Message

Client

Message Connection Factory
and JMS Destination

Reply-to Message Connection
Factory and JMS Destination

JMS
232 WebSphere Application Server Enterprise V5

Figure 6-3 Receiving process

6.2.2 Programming considerations
Extended Messaging programs are generally built using wizards in WebSphere
Studio IE, although the runtime interfaces are provided by the WebSphere
Enterprise runtime and can be programmed by hand. Design considerations are
similar to standard JMS and MDB applications except that EM will greatly simplify
the coding of these applications. The output of the WebSphere Studio IE wizards
will be either a session bean for sending messages and application callable
receiving of messages, or an MDB for event style receiving of messages. These
EJBs can then take full advantage of the J2EE container runtime. In the scenario
example included with this redbook, an EM sender bean will be built and included
in the Process Choreographer.

Important design considerations are:

� Event style receiving of messages: Create a receiver bean that implements
javax.ejb.MessageDrivenBean.

� Programmatic sending/receiving of messages: Create a session bean with
methods for send or receive.

� Data mapping: Use data mapping if the message has multiple parts to
facilitate the parsing of the message parts.

� Reply: For both sending and receiving of messages, replies can be specified
so that information can be sent to a secondary (reply) destination.

EMS

Application Callable
Receiver Bean

Disassemble
Message

Get Message
Send Response

input port

Client

JMS

Message
Driven
Bean

Worker
Session
Bean

 Messaging

 Messaging
 Chapter 6. Extended Messaging 233

� MDB style receiver: If a MDB type receiver is being used, it is best to write the
session bean that the onMessage() method will call. Then during the creation
of the receive bean, the tooling will generate the calls to the appropriate
session bean. This style drives a clean separation of messaging logic and
business logic.

� Deferred response: Used when the sender bean does not want to block for a
reply. The application calls receiveResponse() to programmatically retrieve
the response method.

� Late response: Used when there is a possibility of a missed response in
send/receive scenarios. When receiving a response and a timeout or other
error occurs, a MDB can be used as a late response handler to retrieve the
response and correlate with the sender, and process the response in the
onMessage() of the late response handler MDB.

6.3 Development
The development process for EM programs is detailed in this section. The
primary classes used during development are:

� CMMFactory: Static class used to build senders, receivers, parsers, and
formatters.

� CMMSender: Used to send a message and optionally receive a response.

� CMMReceiver: Used as an application callable receiver.

� CMMParser: Used during data mapping to parse the message parts via
name/value pairs.

� CMMFormatter: Used to build complex data mapping for messages.

6.3.1 Sample scenario
To illustrate the development process, a sender and receiver scenario will be built
that can later be incorporated into this redbook’s sample scenario. The order
process flow will call an EM sender during the ProcessOrder activity. The
ProcessOrder activity will pass the itemID, description, price, and quantity to the
sender to have the order placed on a queue. Then an MDB will read the order off
the queue and make the data available to other back-end processes for order
completion. For the sake of the sample, the order will be written to the system

Note: For a tutorial that uses a deferred response, see part II of:

http://www7b.software.ibm.com/wsdd/library/tutorials/0303_cox/cox_reg.html
234 WebSphere Application Server Enterprise V5

http://www7b.software.ibm.com/wsdd/library/tutorials/0303_cox/cox_reg.html

log, but a real process could make a call into a back-end process such as CICS.
The sample application flow is illustrated in Figure 6-4.

Figure 6-4 Sample application with generic names

The application components with their corresponding JNDI names are:

� Sender bean: OrderSender
� Output port: EMSOrderOutputPort, ems/itso/OrderOutputPort
� QueueConnectionFactory: OrderQCF, jms/itso/QCF
� Request queue: OrderRequestQueue, jms/itso/requestQ
� Reply queue: OrderReplyQueue, jms/itso/replyQ
� Receiver MDB: OrderReceiver
� Worker Session bean: ProcessOrder

6.3.2 Creating the sample
The sample application will be created in WebSphere Studio IE, as follows:

1. Launch WebSphere Studio IE with your workspace location.

2. Open the J2EE perspective.

3. Create a new J2EE 1.3 Enterprise Application project, with the following
details:

Enterprise application project name: ACompanyEMS

Unselect application client module, because this isn’t required.

OrderQCF

EMSOrderOutputPort

OrderRequest

OrderReply

OrderSender

OrderReceiverProcessOrder

Client

 queue

 queue
 Chapter 6. Extended Messaging 235

Create the OrderSender bean
The following steps will describe how to create the OrderSender bean for the
sample:

1. Select the EJBModules and ACompanyEMSEJB.

2. Right-click and select Extended Messaging -> Create Sender bean, as
shown in Figure 6-5.

Figure 6-5 Create Sender

3. On the Create Sender bean window, click the Create sender button, then
provide the following details:

– Bean name: OrderSender
– Default package: com.acompany.ems.beans

Click Next.

4. On the Enterprise Beans details window, select Local client view as shown
in Figure 6-6 on page 237. This will create local interfaces for the
OrderSender session EJB so that this bean can be called efficiently from the
order process flow.
236 WebSphere Application Server Enterprise V5

Figure 6-6 Select OrderSender details

5. Click Finish.

6. Fill in the port, response, and data mapping information per Figure 6-7 on
page 238, then click Next.
 Chapter 6. Extended Messaging 237

Figure 6-7 Create OrderSender bean

The output port resource-ref-name is the resource reference that will be
specified in the EJB Deployment Descriptor and bound to the output port with
the specified output port JNDI name.

The response selection means that when this sender bean sends a message,
it will expect to immediately receive a response message back.

The message format identifier specifies an arbitrary name for the type of
message that this sender bean will send. When a message is sent, the JMS
message header attribute JMSType will be set to this name.

7. On the Send with response window in Figure 6-8 on page 239, select No
timeout and Add to local interface.

This adds the sendWithResponse() method to the OrderSender beans local
interface so that this method is visible to the calling application.

Click Next.
238 WebSphere Application Server Enterprise V5

Figure 6-8 Specify the wait type for the response

8. On the data mapping window, select Define and validate method signature.
This will define the parameters for the sendWithResponse method. The
CMMFormatter class will then take these input parameters and build the JMS
message to be sent. Click Next.

9. On the define and validate the sending method signature window, enter a
return type of java.lang.String.

10.The four parameters in Table 6-1 on page 240 will constitute the four parts to
our message. Fill in the parameter name and parameter type input fields, and
then click the Add button.

Note: The Browse button only displays Java interfaces so it cannot be
used for our sample.
 Chapter 6. Extended Messaging 239

Table 6-1 Parameters

When complete the window, should look like Figure 6-9 on page 241.

Parameter Type

orderID java.lang.String

description java.lang.String

qty int

price java.lang.Double
240 WebSphere Application Server Enterprise V5

Figure 6-9 Define SendOrder method signature

11.Click Next.

12.The summary window will list the bean created, the method signature of any
methods created, and the resource reference for the output port and message
selector. Click Finish.

Examine OrderSender bean
We have now completed the steps for creating our OrderSender bean. You now
have a stateless session bean with a sendWithResponse() method that will take
 Chapter 6. Extended Messaging 241

the four input parameters that were defined during wizard generation. Execution
of the sendWithResponse() method will assemble the message and place the
message on the queue defined by the EMSOrderOutputPort. To examine the
code, do the following:

1. Expand EJB Modules -> ACompanyEMSEJB -> OrderSender. There are
both remote and local interfaces for the session EJB because both were
specified during EJB creation.

2. Double-click OrderSenderBean. Scroll down to the sendWithResponse()
method.

Consistent with the sending process pattern in Figure 6-1 on page 231, you
will see:

– The sender bean created based on the JNDI name of the output port.

– A CMMFormatter created and then updated with the input parameters.

– A message retrieved from the formatter.

– A message type set so that the MDB can listen for messages of this type
only.

– The message sent to the queue that will be specified when the output port
is configured.

– The response is returned based on the reply queue that will be specified in
the output port.

The code listing is shown in Example 6-2.

Example 6-2 The sendWithResponse method

public java.lang.String sendWithResponse(java.lang.String orderID,
java.lang.String description, int qty, java.lang.Double price) throws
CMMException

{
// Create sender
CMMSender sender = CMMFactory.createSender("ems/OrderOutputPort");
try {

// Create message factory
MessageFactory factory = sender.getMessageFactory();
// Create formatter
CMMFormatter formatter = CMMFactory.createCMMFormatter(factory);
// Add parameters to the message
formatter.addStringParameter(orderID);
formatter.addStringParameter(description);
formatter.addIntParameter(qty);
formatter.addObjectParameter(price);
// Get the message
Object request = formatter.getMessage();
// Set message type
242 WebSphere Application Server Enterprise V5

sender.setRequestMessageType("OrderRequestMessage");
// Send request receive response
Object response = sender.sendRequestReceiveResponse(request);
// Create parser
CMMParser parser = CMMFactory.createCMMParser(response);
// Process exception
if (parser.containsException()){

try{
 throw parser.getException();

}
catch(CMMException exc){ throw exc;}
catch(Exception exc){ throw new CMMException("Unexpected

Exception", exc);}
}
// Extract response and return
return parser.getStringParameter();

}
finally
{

sender.close();
}

}

3. Select EJB Modules -> ACompanyEMSEJB -> OrderSender and
double-click ResourceRef. It will open the Deployment Descriptor for the EJB
module at the resource reference. You can see the output port name of
ems/OrderOutputPort with a JNDI name of ems/acompany/OrderOutputPort.
We will use these later to configure the output port during runtime
administration. Close the Deployment Descriptor file because it will be
updated in the next step.

Create the OrderReceiver session bean
Now that we have created the sender bean, it is time to create an MDB that will
receive the message, pass the message to a ProcessOrder stateless session
bean, and then post a reply back to the OrderSender bean.

Create the ProcessOrder session bean
First, let’s create the ProcessOrder stateless session bean. This bean can then
be used in the wizards of WebSphere Studio IE during the receiver bean
creation.

1. Select File -> New -> Enterprise Bean.

2. In the Enterprise Bean Creation window, select ACompanyEMSEJB for the
project, then click Next.
 Chapter 6. Extended Messaging 243

3. In the Create an Enterprise Bean window, select Session Bean, then provide
the following details:

– Bean name: ProcessOrder
– Default package: com.acompany.ems.beans

Click Next.

4. On the Enterprise Details window, select Local client view, then click Finish.

5. The next step is to update the ProcessOrder bean by copying the method into
the bean. Select EJBModules -> ACompanyEMSEJB -> ProcessOrder and
double-click the ProcessOrderBean to open for editing.

6. Paste the processOrder() method from Example 6-3 into the end of the
ProcessOrderBean ahead of the last ‘}’.

Example 6-3 processOrder method

public String processOrder(java.lang.String orderID, java.lang.String
description, int qty, java.lang.Double price) {

// write out the order information to the system log. In real life
// we would process the order through a back end system
System.out.println("OrderID: " + orderID);
System.out.println("Description: " + description);
System.out.println("Quantity: " + new Integer(qty).toString());
System.out.println("Price: " + price.toString());
return "Order successfully retrieved and processed by

ProcessOrderBean:processOrder";
}

7. In the Outline view at the bottom left, right-click the processOrder method,
then select Enterprise Bean -> Promote to Local Interface.

8. Save the file, then close.

Create the OrderReceiver bean
To create the OrderReceiver bean, follow thes steps:

1. Right-click the EJBModules -> ACompanyEMSEJB, then select Enterprise
Messaging -> Create Receiver Bean.

2. Similar to what was done when creating the OrderSender bean, click the
Create Receiver bean button and provide the following details:

– Bean name: OrderReceiver
– Default package name: com.acompany.ems.beans

Click Next.

3. On the Enterprise Beans details window, specify the attributes as per
Figure 6-10 on page 245.
244 WebSphere Application Server Enterprise V5

– Destination Type: Queue
– Message selector: JMSType=’OrderRequestMessage’
– Listener port name: EMSOrderListenerPort

Figure 6-10 ReceiveOrder details

The Message selector specifies a filter for the messages that this
message-driven bean is interested in receiving. A message selector is like an
SQL “where” clause for a database query, but specifies conditions based on
JMS message header attributes. In this case, we want the OrderReceiver
bean to receive only messages of type OrderRequestMessage.

The listener port is a special port that you will configure later in the internal
JMS server. A listener port specifies the JMS connection factory and
destination to listen on for incoming messages.

4. Click Finish.

5. Back on the Create Receiver bean window, specify the window attributes as
shown in Figure 6-11 on page 246.

– Reply information: Send reply
 Chapter 6. Extended Messaging 245

– Extended Messaging data mapping: OrderRequestMessage

Figure 6-11 Create OrderReceiver bean

The OrderRequestMessage used for the data mapping matches the data
mapping used in the OrderSender bean. Send reply is used to send a reply
message back to the OrderSender bean, since it is blocking on the
OrderReceiver bean reply.

6. Click Next.

7. On the Application EJB window, we can specify a session bean that we want
to call from the onMethod method of the OrderReceiver. In this case we will
call the ProcessOrder’s processOrder() method. Fill in the parameters
according to Figure 6-12 on page 247.

– Select Call method on the remote or local interface of target ejb to call
target EJB.

– Application EJB Project: ACompanyEMSEJB

– Application EJB: ProcessOrder

– Select Local interface

– Application method: processOrder()
246 WebSphere Application Server Enterprise V5

Figure 6-12 Specify EJB for onMessage() to call

8. Click Next.

9. At the review window, click Finish.

We now have the ProcessOrder, Order Sender, and OrderReceiver beans
created. If you select the ‘+’ next to the OrderReceiver bean, you will notice that
there are no remote or local interfaces. This is because the OrderReceiver bean
 Chapter 6. Extended Messaging 247

is an MDB. Double-click the OrderReceiverBean and scroll down to the
onMessage() method as seen in Example 6-4.

Example 6-4 onMethod() of OrderReceiver

public void onMessage(javax.jms.Message msg) {
try {

// Select based on the message type
if ("OrderRequestMessage".equals(msg.getJMSType())){

try {
// Create reply sender
CMMReplySender replySender = CMMFactory.createReplySender(msg);
MessageFactory factory = replySender.getMessageFactory();
// Create formatter
CMMFormatter formatter = CMMFactory.createCMMFormatter(factory);
try {

// Create parser to extract parameters from the message
CMMParser parser = CMMFactory.createCMMParser(msg);
// Extract parameters
java.lang.String param0 = parser.getStringParameter();
java.lang.String param1 = parser.getStringParameter();
int param2 = parser.getIntParameter();
java.lang.Double param3 =

(java.lang.Double)parser.getObjectParameter();
// Create EJB
javax.naming.Context initialContext = new

javax.naming.InitialContext();
com.ibm.itso.ems.order.ProcessOrderLocalHome home =

(com.ibm.itso.ems.order.ProcessOrderLocalHome)initialContext.lookup("java:comp/
env/ejb/ProcessOrder");

com.ibm.itso.ems.order.ProcessOrderLocal obj = home.create();
// Invoke target method
String reply = obj.processOrder(param0, param1, param2,

param3);
// Set reply
formatter.addStringParameter(reply);

}
catch(Exception exc) {

// Set exception
formatter.setException(exc);

}
Object reply = formatter.getMessage();
// Send reply
replySender.sendReply(reply);
return;

}
catch(Exception exc) {

// Handle exception
CMMFactory.handleException(msg, exc);
248 WebSphere Application Server Enterprise V5

return;
}

}
}
catch (JMSException exc){

// Failed to get message type
}
CMMFactory.handleMessage(msg);
}

If you look at the onMessage() method, the first step is to verify that the message
is of type OrderRequestMessage. Then a CMMReplySender is built to send the
reply back to the OrderSender bean. A CMMParser is used to parse the
message. The parser will parse the message according to the message format
so it is important to use the same format as was specified in the OrderSender.
After parsing of the message, the ProcessOrder session bean is instantiated,
and called via its processOrder method. Finally, the sendReply method is called
to send the reply message to the reply queue. Remember the OrderSender is
waiting for this reply message.

Generate deployed code
The last step is to generate the stubs and skeletons for the EJBs:

1. Right-click the ACompanyEMSEJB project in the J2EE Hierarchy view, then
select Generate -> Deploy and RMIC Code.

2. Click Select All, then Finish.

We are now ready to configure the WebSphere Test Environment and run the
sender and receiver beans.

6.4 Unit test environment
The steps to run the sample are to create a new server, configure Extended
Messaging within the server, and run the sample.

1. Follow the steps from “Development environment” on page 667 to create a
new EE Test environment for the sample. You can skip the steps for adding

Note: We have just built a round-trip send, receive, and reply message
pattern. All the messaging plumbing was handled by the tooling in WebSphere
Studio IE and the corresponding EM runtime support in WebSphere
Enterprise. The programmer’s responsibility is to write the business logic in
the ProcessOrder bean and not focus on plumbing. This also promotes a good
separation of business logic from messaging implementation.
 Chapter 6. Extended Messaging 249

the enterprise applications, ACompany and ACompanyProcess, if you only
want to test the Extended Messaging application.

2. Right-click the ACompanyServer entry in the Server Configuration view
under the Servers folder and add the ACompanyEMS application.

WebSphere Studio IE does not support the Extended Messaging configuration
using the server configuration tool.

The following section describes how to configure Extended Messaging for
WebSphere Enterprise using the server configuration tool for basic JMS
configuration and Administrative Console for Extended Messaging configuration.

If you want to use the Administrative Console to configure your test server all the
way through without the server configuration tool, then skip the next section and
follow the steps in 6.5.2, “Configuration with JMS Embedded Messaging” on
page 259 after you have started the test server.

6.4.1 Configure Extended Messaging
It is now necessary to configure a QueueConnectionFactory, destinations, output
port, and the internal JMS server.

1. Switch to the Server perspective and double-click the ACompanyServer in
the Server configuration view to open the server configuration for the server.

2. Select the JMS tab and open the Node Settings part.

3. Create a new JMS Connection Factory by clicking the Add button next to the
the WASQueueConnectionFactory entries, then specify the following settings:

– Name: ACompanyQCF
– JNDI Name: jms/acompany/QCF
– Node: localhost
– Server Name: server1
– Component-managed authentication alias: jmsuser_alias
– Container-managed authentication alias: jmsuser_alias

4. Create two queues for the server by clicking Add next to the WASQueue
entries. Use the following details for the new entries:

– First entry:

• Name: OrderRequestQueue
• JNDI Name: jms/acompany/requestQ

– Second entry:

• Name: OrderReplyQueue
• JNDI Name: jms/acompany/replyQ
250 WebSphere Application Server Enterprise V5

At this point the server configuration should look like Figure 6-13.

Figure 6-13 Queue Connection Factory and Queue destinations configuration

5. Scroll down to the Server Settings section on the JMS window.

6. Add two queue names to the list by clicking the Add button and typing the
following two entries:

OrderRequestQueue
OrderReplyQueue

7. Make sure that the Initial State is set to START.

8. Switch to the EJB tab to configure the listener ports.

9. Click Add next to the listener ports, then specify the following settings:

– Name: EMSOrderListenerPort
– Connection factory JNDI name: jms/acompany/QCF
– Destination JNDI name: jms/acompany/requestQ
 Chapter 6. Extended Messaging 251

10.Switch to the Configuration tab, and make sure that the Administrative
Console is enabled for the server.

11.Save the server configuration and close the file.

12.Unfortunately, we cannot configure the output port for Extended Messaging in
the server configuration tool. We have to do that using the WebSphere
Administrative Console.

13.Start the test server. In the Servers view, right-click the ACompanyServer
and select Start. The server is started when you see the line:

Server server1 open for e-business in the console.

14.Launch the Administrative Console by going to the Servers tab and clicking
ACompanyServer and selecting Run administration console.

15.Log into the console, using the server ID and password you set for the test
server.

16.In the WebSphere Administrative Console, select Resources -> Extended
Messaging Provider -> Output Port.

17.On the Output Port window, select New.

18.On the New window, specify the following:

– Name: EMSOrderOutputPort

– JNDI Name: ems/acompany/OrderOutputPort

– JMS Connection Factory JNDI Name: Select jms/acompany/QCF from
the drop-down list

– JMS Destination JNDI Name: Select jms/acompany/requestQ and click
Add to select this destination queue.

– Response JMS Connection Factory JNDI Name: Select
jms/acompany/QCF from the drop-down list.

– JMS Destination JNDI Name: Select jms/acompany/replyQ from the
drop-down list.

Click OK.

19.Save the configuration for WebSphere.
252 WebSphere Application Server Enterprise V5

Figure 6-14 Output port config
 Chapter 6. Extended Messaging 253

6.4.2 Test the sample
After the configuration, it is necessary to refresh, add the ACompanyEMS
project, and then restart the server.

Refresh, update and restart the server
The following steps are followed to restart the server:

1. On the Server perspective in the Navigator view, right-click the Servers
project and select Refresh.

2. In the Server Configuration pane in the bottom left, right-click
ACompanyServer, then select Add -> ACompanyEMS.

3. Go to the Servers view at the bottom of the Server perspective. Right-click
ACompanyServer, and select Restart. This will also republish your project
and restart the server.

You should see a clean log with bindings for OrderRequestQueue,
OrderReplyQueue, ACompanyQCF, and EMSOrderOutputPort.

Start the IBM Universal Test Client
We will use the EJB test client provided by WebSphere Studio IE to test our
application.

1. Switch to the J2EE perspective then the J2EE view in WebSphere Studio IE.

2. Select EJB Modules -> ACompanyEMSEJB, right-click OrderSender, and
select Run on Server...

3. Select Test EJB local interface from the window, then click Finish. The IBM
Universal Test Client should start.
254 WebSphere Application Server Enterprise V5

Figure 6-15 IBM Universal Test Client

Run the sample
Follow these steps to use the test client to run the sample:

1. From the References pane in the test client, select OrderSenderLocal ->
OrderSenderLocalHome -> OrderSenderLocal create().

2. On the right pane, click Invoke, then click Work with Object on the same
window.

The test client should now look like Figure 6-16 on page 256.
 Chapter 6. Extended Messaging 255

Figure 6-16 Test client ready to run the local interface

3. On the References pane, select the String sendWithResponse() method.

4. For testing, the parameters on the right can be any valid parameter, but for
our sample application, they will represent an orderId, description, quantity,
and price. The window should look like the one shown in Figure 6-17 on
page 257.
256 WebSphere Application Server Enterprise V5

Figure 6-17 Prepare to run the sendWithResponse method

5. Click the Invoke button.

6. In the console, you will see the output from the ProcessOrder bean.
Remember from Figure 6-4 on page 235 that we have sent a message from
the OrderSender bean. Then the OrderReceiver MDB picked up the message
from the request queue and sent the parsed details to the ProcessOrder
stateless session bean. Finally, the OrderReceiver sends a “process order
completion” message back on the reply queue.

7. In the Universal Test Client Parameters pane, you should see the response
message “Order successfully retrieved and ...” at the bottom. This
shows that the reply message was picked up by the sender bean.

Note: Since the OrderSender bean created by the tooling in WebSphere
Studio IE is a stateless session bean, it is easy to use the Universal Test Client
to test the bean without writing a test harness to test the sendWithReply
method.
 Chapter 6. Extended Messaging 257

6.5 Configuration
WebSphere has three options for configuring messaging solutions. Embedded
Messaging is provided in the base and provides single node messaging
infrastructure for both point to point and publish and subscribe. External
messaging providers are also supported including WebSphere MQ and non-IBM
messaging products through the JMS interface.

6.5.1 Comparison of WebSphere MQ and Embedded Messaging
For most customers, Embedded Messaging will be used for development and an
external JMS provider will be used for production. The EM code developed in
WebSphere Studio IE will run unchanged in each environment. For more details
about the Embedded Messaging features of WebSphere V5, and comparisons to
WebSphere MQ and external JMS providers, see IBM WebSphere Application
Server V5.0 System Management and Configuration: WebSphere Handbook
Series, SG24-6195.

Embedded Messaging features
Embedded Messaging is provided as a component of WebSphere Application
Server V5. In 6.5.2, “Configuration with JMS Embedded Messaging” on
page 259 we define Queue Connection Factories and destinations. When the
server is started, a queue manager, request queue, and reply queue is started.

Some key features include:

� Support for JMS 1.0.2
� XA support
� Easy installation included with WebSphere installation

Limitations include:

� The queue manager runs on a single WebSphere node in a network deployed
installation, so there is a single point of failure for that node.

� Queue manager clusters are not supported.

� Messages can only be sent and received within a WebSphere environment.

� JMS is the only supported API, so there is no support for non-Java clients.

WebSphere MQ features
WebSphere MQ can be used as an external JMS provider. WebSphere MQ is
fully configurable within the WebSphere Administrative Console but does not
have the limitations discussed in “Embedded Messaging features” on page 258.
Typically WebSphere MQ will be used in production environments to provide
clustering and high-availability configurations.
258 WebSphere Application Server Enterprise V5

6.5.2 Configuration with JMS Embedded Messaging
This section provides instructions to configure Extended Messaging using the
JMS Embedded Messaging facility in WebSphere.

The information in this section can also be used to configure the test server in
WebSphere Studio IE.

Configure QueueConnectionFactory
For the test environment, we will be using the embedded JMS provider in
WebSphere. The QueueConnectionFactory will be used when we define the
output port. Defining a QueueConnectionFactory will start a WebSphere queue
manager when the server is restarted.

1. Start the application server if it is not running.

2. Start the Administrative Console, and log on with a valid user.

3. In the Administrative Console, expand Resources and select WebSphere
JMS Provider. This represents the Embedded Messaging provider.

4. At the bottom of the WebSphere JMS Provider window, select WebSphere
QueueConnection Factories.

5. On the WebSphere Queue Connection Factories window, select New.

6. Specify the following settings as seen in Figure 6-18 on page 260:

– Name: ACompanyQCF
– JNDI Name: jms/acompany/QCF

Note: You can use the default server, server1, for the following
configuration. If you prefer to define your own server, then follow the steps
from “Runtime environment” on page 675.
 Chapter 6. Extended Messaging 259

Figure 6-18 Specify QueueConnectionFactory
260 WebSphere Application Server Enterprise V5

7. At the end, select OK.

Configure queue destinations
Follow these steps to configure queue destinations for the EM sample:

1. Select Resources -> WebSphere JMS Provider.

2. At the bottom of the WebSphere JMS Provider window, select WebSphere
Queue Destinations.

3. On the WebSphere Queue Destinations window, select New.

4. On the New window, specify the following:

– Name: OrderRequestQueue
– JNDI Name: jms/acompany/requestQ

Click OK.

Note: In this particular sample, ACompanyEMS, we do not use security so
you can leave the two authentication alias fields empty, although the scenario
sample for the book needs security to be enabled or the
QueueConnectionFactory will fail. If you want to run the scenario sample, you
will have to specify the aliases for this item. You can do it right now or leave it
for later.

If you do it at this point, follow the steps from Appendix B, “Sample scenario”
on page 665 to create the users in your system and the necessary J2C
authentication aliases.
 Chapter 6. Extended Messaging 261

Figure 6-19 Create queue destination
262 WebSphere Application Server Enterprise V5

5. Define the reply queue similar to the request queue by repeating the previous
steps using the following details:

– Name: OrderReplyQueue
– JNDI Name: jms/acompany/replyQ

Click OK.

Configure the output port
Remember that the output port is an abstraction for the
QueueConnectionFactory, the request queue, and reply queue. If it is desired to
have a message sent to multiple destinations, they are specified in the output
port as well.

1. In the WebSphere Administrative Console, select Resources -> Extended
Messaging Provider, then select Output Port.

2. On the Output Port window, select New.

3. On the New window, specify the following:

– Name: EMSOrderOutputPort

– JNDI Name: ems/acompany/OrderOutputPort

– JMS Connection Factory JNDI Name: Select jms/acompany/QCF from
the drop-down list.

– JMS Destination JNDI Name: Select jms/acompany/requestQ and click
Add to select this destination queue.

– Response JMS Connection Factory JNDI Name: Select
jms/acompany/QCF from the drop-down list.

– Response JMS Destination JNDI Name: Select jms/acompany/replyQ
from the drop-down list.

Click OK.

4. Save the configuration for WebSphere.
 Chapter 6. Extended Messaging 263

Figure 6-20 Output port config
264 WebSphere Application Server Enterprise V5

Configure message listener service
In the Administrative Console, expand servers on the left-hand side:

1. Select Servers -> Application Servers.

2. In the Application Servers window, select server1.

3. On the Configuration tab, select Message Listener Service at the bottom of
the window.

4. On the Message Listener Service window, select Listener Ports.

5. Select New on the Listener Ports window, then specify the following:

– Name: EMSOrderListenerPort
– Connection factory JNDI name: jms/acompany/QCF
– Destination JNDI name: jms/acompany/requestQ

Click OK.

Your window should look like Figure 6-21 on page 266. Unfortunately, you
have to type the JNDI entries into the text fields as opposed to selecting them
from a combo box.

Note: If you decided to use your own server instead of the default, server1,
then you will need to use a different server name in this step.
 Chapter 6. Extended Messaging 265

Figure 6-21 Configure Listener Port for MDB

Configure the internal JMS server
Finally, we will configure the internal JMS server. This defines the queues to the
internal server so that they are started when the server starts.

1. Select Servers -> Application Servers then select server1 from the server
list.

2. On the Server window, select Server Components.

Note: If you decided to use your own server instead of the default, server1,
then you will need to use a different server name in this step.
266 WebSphere Application Server Enterprise V5

3. On the Server Components window, select JMS Servers.

4. Change the initial state to Started if it is not already set.

5. On the Internal JMS Server window, go to the text area for queue names and
add two new entries at the end of the list putting each in a new line, as follows:

OrderRequestQueue
OrderReplyQueue

Click OK.

The Internal JMS Server window should look like Figure 6-22.

Figure 6-22 Configure internal JMS server

6. Save the configuration for WebSphere.

7. Log out and close the Administrative Console.

8. Restart the application server if you had to change the initial state for the JMS
server.

At this point you are ready to deploy the sample for Extended Messaging. For
deployment, follow the steps in 6.6, “Deployment” on page 273.

Note: You will have to restart the server if the original state for the JMS
server was not started.
 Chapter 6. Extended Messaging 267

6.5.3 Configuration with WebSphere MQ as the JMS provider
Configuration with an external JMS provider such as WebSphere MQ is similar to
the configuration performed in 6.5.2, “Configuration with JMS Embedded
Messaging” on page 259. We will use the same JNDI names for the administered
objects, but the definitions are slightly different.

Installation
When installing WebSphere Enterprise with an external JMS provider it is best to
install the JMS provider first. For this redbook, we used WebSphere MQ 5.3.1.
The steps used for installation are:

1. Install WebSphere MQ. During the install you can create a default queue
manager. After the install, create two new queues for the request and reply
queues. For convenience, you can name them requestQ and replyQ.
Documentation for defining new queue managers and queues can be found in
the WebSphere MQ help subsystem.

2. Install WebSphere Application Server V5.

When presented with the window for Embedded Messaging, select the client
only and not the server.

3. Install WebSphere Application Server Enterprise.

Embedded Messaging will be grayed out because the client has already been
installed.

4. Start the application server.

5. Start the Administrative Console and log in.

6. Make sure the WebSphere environment variables point to the right location:

a. Select Environment -> Manage WebSphere Variables.

b. Adjust the MQJMS_LIB_ROOT and MQ_INSTALL_ROOT as necessary.
See Figure 6-23 on page 269.

Note: You can install WebSphere Application Server as part of the
WebSphere Enterprise install, but you will not be given the option of installing
only the client.
268 WebSphere Application Server Enterprise V5

Figure 6-23 Set WebSphere MQ install variables

Configure QueueConnectionFactory
To configure the QueueConnectionFactory for WebSphere MQ, perform the
following steps:

1. In the Administrative Console, select Resources -> WebSphere MQ JMS
Provider.

2. At the bottom of the WebSphere MQ JMS Provider window, select
WebSphere MQ Queue Connection Factories.

3. On the WebSphere MQ Queue Connection Factories window, select New.

4. Specify the following, as shown in Figure 6-24 on page 270:

– Name: ACompanyQCF
– JNDI Name: jms/acompany/QCF
– Queue Manager: Queue manager name specified in WebSphere MQ.
– Host: The host name of the machine where the queue manager is running.
– Port: Port number the MQ listener is running on.
– Channel: The server connection channel defined for the queue manager.
– Transport type: Client or bindings; here we used BINDINGS.

Click OK.

Note: The client transport uses TCP/IP and allows the queue manager to
reside on a separate physical machine. This requires that the WebSphere MQ
client be installed on the local machine. The bindings use the native interface
and require that the queue manager be co-located with the WebSphere
instance.
 Chapter 6. Extended Messaging 269

Figure 6-24 Configure queue manager
270 WebSphere Application Server Enterprise V5

Configure MQ style queue destinations
Unlike using the embedded JMS provider, the queue destinations must first be
configured in WebSphere MQ. To do this, see the help for WebSphere MQ. To
configure the queue definitions for the WebSphere Application Server Enterprise
runtime, do the following:

1. Go back to the WebSphere MQ JMS Provider window.

2. At the bottom of the WebSphere MQ JMS Provider window, select
WebSphere MQ Queue Destinations.

3. On the WebSphere Queue Destinations window, select New.

4. On the New window, specify the following:

– Name: OrderRequestQueue.

– JNDI Name: jms/acompany/requestQ.

– Base Queue Name: requestQ, or the queue name defined in MQ.

– Base Queue Manager Name: Queue manager name you are using in MQ.

– Target Client: JMS.

– Queue Manager Host: localhost if local, or the host name where the
queue manager is running.

– Queue Manager Port: The listener port for the queue manager.

– Server Connection Channel Name: Channel name defined for the queue
manager.

Then click OK. See Figure 6-25 on page 272.
 Chapter 6. Extended Messaging 271

Figure 6-25 Configure MQ request queue destination
272 WebSphere Application Server Enterprise V5

5. Configure the replyQ the same as the requestQ, except use the following
information where applicable:

– Name: OrderReplyQueue
– JNDI Name: jms/acompany/replyQ
– Base Queue Name: replyQ

Configure output port and message listener service
As the output port and message listener service, reference JNDI names from the
queue connection factory and queue definitions. The configuration of these is the
same as in “Configure the output port” on page 263 and “Configure message
listener service” on page 265.

Save the configuration for WebSphere. Log out, then close the Administrative
Console.

6.6 Deployment
The sample that was created in 6.3.2, “Creating the sample” on page 235 is a
J2EE application that includes the advanced messaging support in Extended
Messaging. Deployment of this sample is the same as deploying any J2EE
application using the WebSphere Administrative Console. To deploy the sample,
do the following:

1. Start WebSphere Application Server V5 if it is not running.

2. Start the Administrative Console.

3. Follow the steps in 6.5, “Configuration” on page 258 to configure EM using
either the Embedded Messaging or external WebSphere MQ.

To facilitate testing of the sample application in WebSphere, you can use the
sample enterprise application included in the downloadable code and skip to
step 7 on page 275. If you want to continue to use the EJB sample you created in
WebSphere Studio IE from “Extended Messaging” on page 227, use the sample
.WAR file provided with the downloadable code and proceed to step 4.

4. Using WebSphere Studio IE, import the ACompanyEMSWeb.war into the
ACompanyEMSWeb project.

a. Select File -> Import... -> War file, click Next.

Important: The configuration of the internal JMS server, as specified in
“Configure the internal JMS server” on page 266, is not required when using
an external JMS provider.
 Chapter 6. Extended Messaging 273

b. Select the ACompanyEMSWeb from your local disk.

c. For Web project, select existing.

d. Browse to the ACompanyEMSWeb project.

e. Select Overwrite existing resources.

f. Click Finish.

The import window should look like Figure 6-26.

Figure 6-26 Import ACompanyEMSWeb.war

5. Update the Java build path for the ACompanyEMSWeb project, as follows:

a. In the J2EE Hierarchy view, right-click ACompanyEMSWeb and select
Properties.
274 WebSphere Application Server Enterprise V5

b. Select Java Build Path.

c. Open the Projects tab and select ACompanyEMSEJB.

d. Select the Libraries tab, then click the Add Variable button.

e. In the New Variable Classpath Entry window, select WAS_EE_V5, then
click the Extend button.

f. In the Variable Extension window, select /lib/cmm.jar, then click OK.

g. In the Properties for ACompanyEMSWeb window, click OK to apply the
changes. If you see errors in your project, you may need to rebuild the
project.

6. Export the ACompanyEMS enterprise application, as follows:

a. Select File -> Export, then select EAR file.

b. For resources, select ACompanyEMS.

c. For the location, select the location of your choice.

d. Click Finish.

7. Open the WebSphere Administrative Console if not already open.

8. Select Applications -> Install New Application.

9. At the specify the EAR panel, browse the ACompanyEMS.ear file either
provided with the download, or exported from WebSphere Studio IE.

10.Select Next.

11.Continue selecting Next. You will see the JNDI definitions for the listener port,
and EJB definitions.

12.Select Finish on the last window.

13.At the end, save the configuration for WebSphere.

14.Start the ACompanyEMS enterprise application in WebSphere.

15.Open a browser and go to http://localhost:9080/ems/OrderInput.html.

You should see the following window. The form will call a servlet that calls the
sendWithReply method of the OrderSender bean. The servlet will return the
response to a corresponding JSP.
 Chapter 6. Extended Messaging 275

Figure 6-27 Testing the application

16.Click the Submit button, and you should see a response that the order was
processed successfully.

17.Examine the logs under your server, and you should see the SystemOut.log
file in Example 6-5.

Example 6-5 Output log

[3/26/03 11:09:01:609 CST] 777615e6 SystemOut O OrderID: 123456
[3/26/03 11:09:01:609 CST] 777615e6 SystemOut O Description: Sample
Description
[3/26/03 11:09:01:609 CST] 777615e6 SystemOut O Quantity: 100
[3/26/03 11:09:01:609 CST] 777615e6 SystemOut O Price: 100.0

If your don’t see the confirmation window, look at the SystemOut.log and
SystemErr.log in <WebSphere_root>/logs/server1. See “Problem determination
and troubleshooting” on page 284 for additional details.

6.7 Transactions and workload management
Because messaging systems are inherently asynchronous, propagating
transactions on sender and receiver beans can present complications. Table 6-2
276 WebSphere Application Server Enterprise V5

on page 277 lists the type of request and the transactional ramifications of that
request.

Table 6-2 Transaction and workload management support

Type of
Request

Transactional
Interaction

Workload
Management

Prerequisites
/Limitations

Notes

Synchronous
Send with no
response

Send is
transactional.
Put is
conditional on
completion of
transaction.

None None None

Synchronous
Send with
Response

Send is not
transactional.T
he get of
response is
transactional.

None A temporary
reply queue
should be
avoided for
failover
situations.

None

Send with
deferred
response

Both send and
get of
response are
transactional.

None Required to
have a specific
reply to queue.
Temporary
response
queue is not
permitted.

None

MDB style
receiver

Both receive
and reply are
transactional.

Receive is not
a problem.
Reply to
Connection
Factory and
destinations
must be
specified on all
servers in
cluster.

None Request and
response
either both
work or both
fail. In general
you should
always set the
listener retry
higher than
the queue's
default retry
limit.
 Chapter 6. Extended Messaging 277

6.8 Handling late responses
Late response handling provides a sender bean with the ability to have response
messages redirected to a defined MDB for response messages that cannot be
delivered in the requested timeout interval. This section is taken from the help
section of WebSphere Studio IE that details late responses.

6.8.1 Late response description
If an application uses a sender bean to send a message, it can optionally retrieve
a response to the message. The sender bean can either wait for the response or
defer retrieval of the response. Sometimes a response is delayed within the
messaging infrastructure, and therefore the application cannot receive the
response. Extended Messaging can retrieve such a response message (referred
to as a late-response message) when it does arrive and pass it to an MDB
provided by the application to handle late responses. The MDB used to handle

Application
Callable
Receiver with
Response

Both receive
and reply are
transactional.

As long as the
connection
factory and
queue
destination are
defined
consistently, a
response may
be sent from a
host other than
the one that
provided the
get.

Non-JMS
messages use
the Reply-to
queue as
specified in the
input port
when a reply is
sent.

If two
transactions
are used, it is
possible to
consume the
request and
lose the reply.
(Not possible if
one TX is used
for both get
and put.)

Handle Late
Response

Response is
transactional.

Workload
management
could be
problematic,
since the late
response
handler writes
the correlation
ID to a flat file
on the JMS
server node.

Type of
Request

Transactional
Interaction

Workload
Management

Prerequisites
/Limitations

Notes
278 WebSphere Application Server Enterprise V5

the late response is a standard EJB 2.0 MDB or a receiver bean deployed as an
MDB. The deployed MDB can then perform its processing on the message.

Late responses should not be considered normal application behavior.

For Extended Messaging to handle late responses for an application, the sender
bean must be deployed with the Handle Late Responses option enabled.

Definition of a late response
A late response occurs when the application is no longer able to retrieve
responses to messages that it has sent, as follows:

� Send with deferred response:

The application (enterprise bean) repeatedly tries to retrieve a response until
it ends. When the application no longer wants to retry to get a response, it can
register a request for Extended Messaging to handle the late response, by
calling a registerLateResponse() method on the sender bean. The
registerLateResponse() method is created by the WebSphere Studio IE
wizards when the generate method for late response check box is enabled.
See Figure 6-28 on page 281.

� Send with synchronous response handling:

When the sender bean sends a message, it waits for the response. The result
of this is that either the sender bean retrieves the response message or a
timeout error occurs. If the system raises a timeout error, the application can
no longer retrieve a response to the message. At this time the Extended
Messaging service registers the message for a late response.

Handling responses
Extended Messaging handles responses in the following stages:

1. Requesting a late response when it is available.

To ask the system to handle late responses for a sender bean, you deploy the
sender bean with the Handle late responses extension to the Deployment
Descriptor. If selected, the Handle Late Responses option defines that
Extended Messaging should pass the response, when it becomes available,
to the MDB provided by the application to handle late responses. When the
sender bean is deployed, a specialized listener port is associated with the
bean. This listener port is known as a handle late response listener port. If the
option is not selected, then the system does not handle late responses, and it
is the application's responsibility to handle any late responses.

2. Starting a JMS listener to retrieve the message when it is available, which
then drives the message bean to handle the JMS message.
 Chapter 6. Extended Messaging 279

The listener port must be defined with the following properties:

a. The same JMS destination is specified as the JMS response destination
on the output port used by the sender bean.

b. A listener port extension with Handle Late Responses enabled.

3. If a request is made to handle a late response, the Extended Messaging
service immediately registers a LateResponse message request with the
extended message consumer for the given listener port. The message
request is registered independently of any transaction context that the sender
bean has. A request record (containing the MessageID of the late response)
is added to the AsyncMessageLog log. When the message is eventually
received, it is passed to the MDB deployed against the specified late
response listener port.

6.8.2 Configuration of late response
The configuration of a late response consists of configuring a late response
policy, listener port, and late response extension.

Select late response handling
To enable late response handling, select the Generate method to register late
responses check box when defining the sender bean. This check box will be
enabled when a response type is selected, as shown in Figure 6-31 on
page 284.

Note: You cannot use a temporary destination for late responses.
280 WebSphere Application Server Enterprise V5

Figure 6-28 Select late response handling

Late response policy
After the sender bean has been created, it is necessary to configure the late
response handler policy in the Deployment Descriptor for the EJB module.

1. On the J2EE perspective in the J2EE hierarchy view, select the EJB module.

2. Right-click the EJB module, then select Open with -> Deployment
Descriptor Editor.

3. Go to the Extended Messaging tab and specify a late response handler policy
for the sender methods, as shown in Figure 6-29 on page 282.
 Chapter 6. Extended Messaging 281

Figure 6-29 Late handler policy

The sample above included both a deferred sender as well as a traditional
sender for testing purposes. Generally you would select any of the sender
methods that should handle late responses.

Late response listener port
Late response handler MDBs have their own listener ports that listen to the reply
queue. This allows the late response MDB to pick up the unhandled late
message when it hits the reply queue after the timeout. The listener port will be
configured as any traditional listener port, but it will be listening on the reply
queue instead of the request queue. In the sample shown in Figure 6-29, a port
was specified called “LATEPORT”. The listener port definition would look like
Figure 6-30 on page 283.
282 WebSphere Application Server Enterprise V5

Figure 6-30 Late handler listener port

Late response extension editor
When creating the listener port, it is also necessary to configure the listener port
extension, as follows:

1. Go to the listener port you have configured.

2. Select this listener port and scroll down to the Additional Properties at the
bottom of the right pane.

3. Select Listener Port Extensions.

4. Define the late response handling attributes per Figure 6-31 on page 284.
 Chapter 6. Extended Messaging 283

Figure 6-31 Late response extended configuration

You have now completed the necessary steps for configuring late response
handling.

6.9 Problem determination and troubleshooting
Troubleshooting is covered in both the help for WebSphere Studio IE and the
help for WebSphere Application Server Enterprise V5. A few common mistakes
configuring Extended Messaging are:

� NameNotFound exception: This is seen if there is a mismatch between the
JNDI name in the application code and the JNDI names specified for the
listener, input, or output ports.

� When using Embedded Messaging, if the internal JMS server is not
configured with the appropriate request and reply queues, then these queues
will not be started and you will see errors trying to connect to the queues.

� MQ2058: This is seen when using WebSphere MQ for the JMS provider, and
WebSphere cannot connect to the queue manager. This is usually caused by
not starting the configured queue manager in WebSphere MQ.
284 WebSphere Application Server Enterprise V5

6.10 Security considerations
Because Extended Messaging is a higher level abstraction than the JMS API, the
security configuration is the same for configuring JMS security for WebSphere.
When WebSphere security is on, it is necessary to configure credentials for the
queue connection factory and queue definitions. See Chapter 7, “Securing
Enterprise Integration components”, in IBM WebSphere V5.0 Security
WebSphere Handbook Series, SG24-6573.
 Chapter 6. Extended Messaging 285

286 WebSphere Application Server Enterprise V5

Chapter 7. Asynchronous Beans

Asynchronous Bean functionality is a new feature in WebSphere Enterprise
Version 5. It is also a clear and significant differentiator between WebSphere and
all of its competitions. There is no other product that has this ability to offer an
asynchronous programming model integrated as part of a J2EE application
server. We introduce this technology in this chapter.

7

© Copyright IBM Corp. 2003. All rights reserved. 287

7.1 Planning
Have you ever felt the need to spawn threads to do some work asynchronously
inside your servlet or EJB code, just as you are able to accomplish in normal
Java client code? The answer is most likely yes. However, the J2EE
specifications strongly recommend against trying to spawn other threads in the
container.

This J2EE constraint has a valid reason: the presence of unmanaged threads in
the application server can seriously undermine the ability of the application
server to ensure a stable, optimized, and scalable execution environment.
Another key issue associated with application code creating threads is that the
J2EE context of the application (security, local name space, and so on) does not
“flow” to the newly spawned thread. So what the executed code can do is very
limited, since the thread doesn’t have access to the full and rich J2EE
programming model.

The Asynchronous Bean framework provided by WebSphere Enterprise resolves
these two issues by providing J2EE components access to managed threads,
and also allowing their J2EE contexts to be propagated to a separate thread. By
using Asynchronous Beans, your J2EE components will be able to submit code
to be run on a separate thread and asynchronously. The code will execute in a
full J2EE execution context derived from your main thread of work, and thus can
use the full J2EE APIs. The work will execute on threads taken from the
WebSphere thread pool, and thus avoid the overhead of having to create threads
on the fly. Most importantly, WebSphere has control of all these threads, allowing
for better utilization of application server resources.

Quote: “This division of responsibilities requires that the application
components do not contain functionality that would clash with the functions
provided by the J2EE platform. If an application component tried to provide a
function that the J2EE platform implements, the J2EE platform could not
properly manage the function.

“Thread management is one example of functionality that would clash with the
J2EE platform’s function. If enterprise beans were allowed to manage threads,
the J2EE platform could not manage the life cycle of the enterprise beans, and
it could not properly manage transactions.”

- from the J2EE Spec 6.2.1: Programming Restriction
288 WebSphere Application Server Enterprise V5

7.1.1 What are Asynchronous Beans?
An Asynchronous Bean is a Java object or enterprise bean that can be executed
asynchronously by a J2EE application, using the J2EE context of the bean’s
creator. The ability to flow J2EE context to the newly spawned thread is very
important, because it gives to the executed code the rich and full J2EE
programming model and API.

The Asynchronous Bean model represents a very interesting compromise
between the loosely coupled approach used with messaging, where there is no
propagation of context, and the tightly coupled approach of traditional J2EE
programming, which requires a single thread of execution.

7.1.2 Asynchronous Beans programming interfaces
Asynchronous Beans provide full support of application controlled threading,
asynchronous callbacks, scoped alarms, and subsystem monitors, and yet it is
simple to use interfaces to your servlet or EJB code. Figure 7-1 on page 290
shows the hierarchy of the Asynchronous Beans interface.
 Chapter 7. Asynchronous Beans 289

Figure 7-1 AsynchBean API hierarchy tree

We can group these interfaces in the following manner:

� EventSource and EnventSourceEvents related
� WorkManager, Work, WorkEvent, WorkItem and WorkListener related
� AlarmManager, Alarm and AlarmListener related
� AsynchScope related
� SubsystemMonitor related

The key inheritance relationships in the Asynchronous Bean framework are
illustrated in Figure 7-2 on page 291.

interface com.ibm.websphere.asynchbeans.Alarm
interface com.ibm.websphere.asynchbeans.AlarmListener
interface java.util.EventListener

interface com.ibm.websphere.asynchbeans.WorkListener
interface com.ibm.websphere.asynchbeans.EventSource

interface com.ibm.websphere.asynchbeans.AlarmManager
interface com.ibm.websphere.asynchbeans.AsynchScopeManager

interface com.ibm.websphere.asynchbeans.AsynchScope
interface com.ibm.websphere.asynchbeans.WorkManager

interface com.ibm.websphere.asynchbeans.SubsystemMonitor
interface com.ibm.websphere.asynchbeans.EventSourceEvents

interface com.ibm.websphere.asynchbeans.AlarmManagerEvents
interface com.ibm.websphere.asynchbeans.AsynchScopeEvents
interface com.ibm.websphere.asynchbeans.SubsystemMonitorEvents
interface com.ibm.websphere.asynchbeans.WorkManagerEvents (also extends

com.ibm.websphere.asynchbeans.WorkEvents)
interface java.lang.Runnable

interface com.ibm.websphere.asynchbeans.Work
interface java.io.Serializable

interface com.ibm.websphere.asynchbeans.WorkWithExecutionContext
interface com.ibm.websphere.asynchbeans.SubsystemMonitorManager
interface com.ibm.websphere.asynchbeans.WorkEvent
interface com.ibm.websphere.asynchbeans.WorkEvents

interface com.ibm.websphere.asynchbeans.WorkManagerEvents (also extends
com.ibm.websphere.asynchbeans.EventSourceEvents)
interface com.ibm.websphere.asynchbeans.WorkItem
290 WebSphere Application Server Enterprise V5

Figure 7-2 Key interfaces and relationships

WorkManager and Work
At the heart of the APIs is the WorkManager interface, because it is the “anchor
point” that allows us to create all the various Asynchronous Beans. The
WebSphere administrator should create WorkManagers for J2EE applications
that require them. The administrator specifies the properties of the thread pool
and the “sticky” context policy for any Asynchronous Beans using this
WorkManager. There can be many of these WorkManagers. The administrator
binds each one in a unique place in JNDI.

A Scoping
Mechanism Thread Pool

Interfaces for
Creating and

Managing

fireEvent()

EventSource

Extends

Extends

AsynchScopeManager

AsynchScope WorkManager

Extends Extends

Important: Note the following two points:

1. AsynchScope and WorkManager extend AsynchScopeManager, so they
can be used to create AsynchScope, which allows you to build the
hierarchy.

2. AlarmManager, AsynchScope, WorkManager and SubsystemMonitor are
also EventSources, which means all could fire asynchronous events.
 Chapter 7. Asynchronous Beans 291

Applications will look up the WorkManager using resource references
(resource-ref). Here the component has a resource-ref called
“wm/myWorkManager”, which will be bound to physical WorkManager JNDI
name at deployment time.

Example 7-1 Resource reference for a WorkManager

<resource-ref id="ResourceRef_1">
<description>My WorkManager</description>
<res-ref-name>wm/myWorkManager</res-ref-name>
<res-type>com.ibm.websphere.asynchbeans.WorkManager</res-type>
<res-auth>Container</res-auth>
<res-sharing-scope>Shareable</res-sharing-scope>

...

The res-ref-name is, as usual, the relative name used in the component for its
java:comp/env to find the resource, in this case a WorkManager. The res-auth
and res-sharing-scope are specified but ignored for a WorkManager. You can
add this to a Web application’s web.xml or an EJB in the ejb-jar.xml files. You can
also use Application Assembly Tool or WebSphere Studio IE to specify them in
the editor for these files by simply adding a reference and typing the type as
com.ibm.websphere.asynchbeans.WorkManager. Example 7-2 shows the code a
client uses to look up a WorkManager.

Example 7-2 Look up a WorkManager

InitialContext ic = new InitialContext();
WorkManager wm = (WorkManager)ic.lookup("java:comp/env/wm/myWorkManager");
// now we can use it.

A WorkManager in its simplest form is a thread pool. Its special nature allows us
to use it to run Work instances asynchronously and to transfer J2EE context to
those threads. It supports the following operations:

� startWork() is used to initiate asynchronous work. This operation is heavily
loaded to enable a variety of different ways of controlling the asynchronous
work, including with the current execution state or previous execution state,
with or without a WorkListener, and with or without setting a timeout for when
the asynchronous work must be started. An instance of WorkItem will be
created and returned from this operation, to represent the specific thread of
asynchronous work created with this operation.

� doWork() is used to initiate synchronous work. This operation is similarly
loaded to enable a variety of different ways of controlling the work. The
primary use for this operation is to execute a piece of work in an execution
context that was captured earlier.
292 WebSphere Application Server Enterprise V5

� create() can be used to create a WorkWithExecutionContext, capturing the
current execution context from the calling thread of execution and combining
that with work that you want associated with that context. The captured
WorkWithExecutionContext can be used later with either the startWork() or
doWork() operation to initiate that work.

� join() can be used to block until either any or all of the outstanding
asynchronous work has completed. This can be used to idle the main thread
while parallel work is completing.

EventSources and Event
Asynchronous Beans also provide a generic event notification framework, which
is essentially an implementation of the observer pattern. An application can
create generic listeners and subscribe those listeners to monitor certain events
produced by an EventSource.

Several special classes in WebSphere Enterprise are already an EventSource,
such as AlarmManager, AsynchScope, WorkManager and SubSystemMonitor.
These event sources can fire their specific events, such as AlarmManagerEvent,
AsynchScopeEvent, WorkManagerEvent and SubSystemMonitorEvent
respectively. Applications interested in monitoring those events can implement
the event listeners, and register with the event sources.

There is also a special event source that you can use for intra-application
notification. This event source is included in each Enterprise Application. You can
look it up by using JNDI reference
java:comp/websphere/ApplicationNotificationService. This intra-application event
notification service makes it possible for components that belong to the same
application to communicate with each other through notification. For example an
EJB could subscribe a listener, while another EJB could fire an event.

The EventSource provides “type-safe” notification. You can ask an EventSource
to fire an event and target only the listeners that implement a certain interface.

Restriction: Keep in mind the intra-application notification is not valid for
communications that involves multiple EARs, where instead JMS should be
utilized.
 Chapter 7. Asynchronous Beans 293

Figure 7-3 EventSource and Event

AsynchScope
An AsynchScope is a scoping mechanism. It owns an AlarmManager and a
SubSystemMonitorManager. If the scope is destroyed, then any
alarms/subsystemmonitors managed by its alarm manager and subsystem
monitor manager are also destroyed. Properties can be stored in an
AsynchScope, giving J2EE applications a way to store a non-serializable state
that otherwise could not be stored in a session bean (Alarms, WorkItems,
application data).

AsynchScope can also have children that are also AsynchScopes. These can be
useful for scoping data underneath the parent. If the parent is destroyed, then the
children are destroyed also. AsynchScopes are named, and all scopes at the
same level of the tree must be uniquely named. Ultimately, a WorkManager owns
all AsyncScopes. This hierarchical structure is useful when you need to monitor
complex subsystems that may have a hierarchical structure themselves.

Event Y

Clients

EventSource

Listener X
Proxy Y

Subscriber X

Subscriber Y

Listener Y

Listener Y

Call Trigger Method

getProxy

WorkManager

Work id=xyz

Work id=abc
294 WebSphere Application Server Enterprise V5

Figure 7-4 AsynchScope hierarchy

AlarmManager and Alarm
A special application of the EventSource and Listener pattern is provided by the
Alarms. An application can get hold of an AlarmManager configured within every
AsynchScope. Example 7-3 shows a code snippet to get an AlarmManager,
where wm is an instance of WorkManager you looked up through JNDI.

Example 7-3 Lookup AlarmManager

AsynchScope as = wm.findAsynchScope("ItsoScope");
if (as == null) {

as = wm.createAsynchScope("ItsoScope");

anAsynchScope_1

aSubsystemMonitorManager_1

anAlarmManager_1

aWorkManager_1

anAsynchScope_3

aSubsystemMonitorManager_3

anAlarmManager_3

anAsynchScope_2

aSubsystemMonitorManager_2

anAlarmManager_2

Note: The WorkManager is the root of all of the Asynchronous Beans
framework. It can used by itself, or it can be used to create AsynchScope. The
AsynchScopes will utilize thread pool provided by the WorkManager.
 Chapter 7. Asynchronous Beans 295

}
//get the AlarmManager
AlarmManager am = as.getAlarmManager();

AlarmManager provides the create() method to create a new alarm. This method
has three parameters:

� An AlarmListener, which is the target for the alarm and the fired method on
this is called when the alarm goes off.

� A Context object for the alarm, which is useful for supplying alarm-specific
data to the listener and allows one listener to be created and used for multiple
alarms.

� An integer (int) specifies the milliseconds in which the alarm fires.

Alarm is a device that sits on its own thread in the WorkManager and will go off
after the specified number of milliseconds. When the alarm goes off, it will call
the fired() method on the listener, using the J2EE context of the alarm creator.
The creator can interact with the alarm manager, reset, or cancel the alarm.

Alarms are high-performing and transient. The application that is using them
need to recreate them after server shutdown and restart.

SubsystemMonitor
A subsystem monitor is returned to allow an application to interact with the
monitor created on its behalf. This is an EventSource so an application can
register a listener to it. An application can get hold of a SubsystemMonitor
through a SubsystemMonitorManager, which is configured within every
AsynchScope. Example 7-4 is the code snippet, where wm is an instance of
WorkManager you looked up through JNDI.

Example 7-4 Get a SubsystemMonitor

AsynchScope as = wm.findAsynchScope("ItsoScope");
if (as == null) {

as = wm.createAsynchScope("ItsoScope");
}
//get the AlarmManager
SubsystemMonitorManager ssmm= as.getSubsystemMonitorManager();
SubsystemMonitor ssm = ssmm.create(“name”, heartBeatInterval,

missedBeatsForStale, missedBeatsForDead);

Restriction: Alarms are not persistent in WebSphere Enterprise. If you need
to provide a persistent definition of time-activated tasks, the Scheduler Service
should be used instead.
296 WebSphere Application Server Enterprise V5

A subsystem monitor is basically a set of alarms. When it is created, the
application tells it how often heartbeats should be expected, how many beats
missed means that it is stale, and how many beats missed means it is dead. The
monitor then sets up alarms to track this status. If the ping method is called, then
these alarms are reset. If the alarm fires, then this means that ping has not been
called and no heartbeat was received by the application for the subsystem this
monitor is “watching”.

When the number of beats for stale has elapsed without a ping, then we fire a
stale event. Later, if the number of beats for dead elapse without a ping, then we
fire a dead event. If a ping is received after a stale or dead notification, then we
send a fresh event indicating the subsystem is alive again and carry on as
normal.

If the stale beats equal the dead beats, then no stale event is published, and we
just publish a dead event. The number of dead beats should always be greater or
equal to the number of stale beats. What constitutes a ping is application
specific. A destroy notification is also published.

The subsystem monitor can generate events. The events that can be generated
are documented in the SubsystemMonitorEvents interface. Implement the
Events interface and add an instance of this object using the
SubsystemMonitor.addListener method.

Figure 7-5 SubsystemMonitor

The flavors of Asynchronous Beans
There are three different flavors of Asynchronous Beans, which are explained in
the following sections.

To obtain a SubsystemMonitor:

Interested parties register listener

Events:
Stale, dead, fresh
listeners called using
J2EE context of code
that registered the listener

Must call
ping method

Periodic heartbeat

SubsystemMonitor
Subsystem to
be monitored
 Chapter 7. Asynchronous Beans 297

Work
This is an object that implements the com.ibm.websphere.asynchbeans.Work
interface, and represents the work that you want to execute asynchronously. The
Work class is derived from java.lang.Runnable. You must implement the following
method for any Work:

� run(): The work manager will call the run() method on your Work object when
it spawns the thread, having already set the execution context for this thread.
The run() method should be implemented as though it were a J2EE client,
and should include any logic you want to execute in the asynchronous thread.

� release(): The work manager will call this method when it wants to terminate
the thread of your Work. You should implement this method to terminate any
work that you are performing in the run() method, the run() method should
return because of the release() method having been called.

The Work is also registered with its own EventSource once it is started. The
WorkItem.getEventTrigger can be used to return a proxy that can be used to fire
events to the running Work. A Work object should implement any necessary
event interfaces if this mechanism is to be exploited. The
WorkItem.getEventTrigger method can then be used to fire events to those
interfaces. If the Work does not implement the interface supplied to
WorkItem.getEventTrigger, then nothing happens and the event is ignored.

AlarmListener
This is an object that implements the
com.ibm.websphere.asynchbeans.AlarmListener interface. This is called when a
high-speed transient alarm expires. Alarm listeners are special listeners that will
be “fired” when an alarm goes off. Any listener must implement the following
method:

� fired(): This method is called when an alarm fires. You implement any
business logic that should occur inside this method. Also you need to know if
the alarm is a one-time event or a repeating one. If the alarm is a one-time
event or is the last alarm in a periodic alarm, then the alarm should be
cancelled. Cancelling the alarm allows it to be reused, thus saving memory
and increasing performance. If the alarm is a repeating alarm, then the
Alarm.reset() method should be called to schedule the alarm to fire again
later. This again improves performance through memory optimizations.

In the Asynchronous Beans framework, an alarm is basically a timer that can be
created by a J2EE application and that can be associated with a listener to
invoke in case the alarm times out. Once again, the listener will be invoked on a
separate thread other than the alarm creator’s thread, but it will inherit the same
J2EE context as the alarm creator.
298 WebSphere Application Server Enterprise V5

EventListener
Event listener are asynchronous by nature. An application can create an event
listener and subscribe it to monitor the occurrence of a certain event. When the
event occurs, the listener will be notified and will run a certain logic to handle the
event. This is a lightweight asynchronous notification mechanism for
asynchronous events within a single JVM. Its main use is envisioned to be J2EE
components within a single EAR signaling each other about various application
asynchronous events.

Listeners can implement any interface; there are no restrictions. However, the
application that originates the events needs to know which method corresponds
to the event on the listener’s interface and call it. The event originator will do so
by acquiring a “proxy” from the EventSource. Calling a method on the proxy will
cause the same method to be invoked on all the listeners that are registered, and
that implement the requested interface.

The listener’s method will be executed in its own thread, but it will run under the
J2EE context of the component that registered the listener itself. It will not use
the J2EE context of the application that is firing the event.

7.1.3 Asynchronous Beans: simple Java objects or EJBs?
An Asynchronous Bean can be either a Java object or an EJB. Applications that
are comfortable with the servlet-only approach may find the Java object
approach to be most desirable. Applications more comfortable with EJBs may
elect to use Asynchronous Beans implemented with stateless session beans or
entity beans.

There are several differences in behavior between the two choices. Table 7-1
summarizes them.

Table 7-1 Java or EJB Asynchronous Beans comparison

Java Beans EJB

Transactions If created by a servlet then
java:comp/UserTransaction is
available. If created by an EJB
then only
TX_NOT_SUPPORTED is
allowed and a “buddy” EJB
must be used for full global
transaction support.

The support is what is
specified by the descriptor for
the EJB and the J2EE
specification.
 Chapter 7. Asynchronous Beans 299

There is not much difference from a performance point of view. The performance
is roughly equivalent to a local method call in both cases.

An EJB-based Asynchronous Bean is basically more independent of the creating
component.

7.1.4 Asynchronous Beans: programming model
Asynchronous beans represents a very interesting compromise between the
loosely coupled approach used with messaging, where there is no propagation of
context, and the tightly coupled approach of traditional J2EE programming, which
requires a single thread of execution.

Access to J2EE component metadata
The J2EE component metadata of the creating component is available to the
Asynchronous Bean when it is a simple Java object. Obviously, if the
Asynchronous Bean is a J2EE component such as a session bean then this is
the metadata that is active when a method is called.

However, when the object is a simple Java object, then it is allowed to look up the
java:comp name space as its creator would. This allows it to look up connection
factories and EJBs in the normal J2EE way. The environment properties of the
creating component are also available. The java:comp name space is identical to
the one available to the creating component. All connection factories use the
same resource sharing scope as the creating component also. The only

Security The credentials on the thread
that created the Asynchronous
Bean are used when the bean
is invoked.

The credentials on the thread
that created the Asynchronous
Bean are used. However, the
descriptor for the bean can
override this with the Run-as
role attribute.

Application Profile The profiles active for the
creating component are used.

The profiles active for the
creating component are used
but they may be augmented by
specifying additional ones on
the target EJB method.

Java:comp scope The Java:comp of the
component that created the
Asynchronous Bean are
always available to the
Asynchronous Bean.

The java:comp of the creating
component is ignored. The
java:comp of the async EJB is
always used.

Java Beans EJB
300 WebSphere Application Server Enterprise V5

exception to this rule is the java:comp/UserTransaction, which is only available to
the Asynchronous Bean when the J2EE component that created it was a servlet.
It is not visible when the owner was an EJB even if it was using bean-managed
transactions.

Other “sticky” J2EE contexts
We want Asynchronous Beans to inherit some of the J2EE contexts from the
creating component. The following J2EE contexts can be made sticky:

� Internationalization context
� WorkArea context
� Application profile
� Security context

Table 7-2 lists the methods that capture the J2EE context and thus create an
Asynchronous Bean.

Table 7-2 When J2EE context lifetime

All of these methods remember the J2EE context when they are called by an
application. It is this J2EE context that is used when the Asynchronous Bean is
invoked asynchronously later. The J2EE context when the Asynchronous Bean
was created by the application is not important. It is only when the object is
passed to one of the above methods that the J2EE context is remembered.

Transactions
Due to the asynchronous nature of this programming model, transactional
contexts are not passed to the Asynchronous Beans. Every Asynchronous Bean
method is called using its own local transaction. This is very similar to
container-managed transactions in a normal EJB when the
TX_NOT_SUPPORTED attribute is specified. The runtime starts a local
transaction containment before invoking the method. If the Asynchronous Bean
needs to make a global transaction, then there are several choices:

Method Description

Work.startWork Start an Asynchronous Bean on another
thread

AlarmManager.create Run the Asynchronous Bean when the
alarm expires

EventSource.addListener Run the Asynchronous Bean when a
matching event is published on the
EventSource
 Chapter 7. Asynchronous Beans 301

� If the Asynchronous Bean was created by a servlet then it can use the
UserTransaction object in JNDI at java:comp/UserTransaction to do this or it
can use a helper EJB method.

� If the Asynchronous Bean was created by an EJB, then it cannot use
java:comp/UserTransaction, even if the owner EJB was bean managed. It
must also use a helper session or entity bean in this case. The work to be
performed inside the transaction is contained in the helper EJB method.

� If the Asynchronous Bean is actually an EJB, then the normal J2EE
transaction rules apply. Here we have a stateless session bean whose local
interface implements an Asynchronous Bean interface such as Work,
EventSourceEvents or AlarmListener. When this is invoked, then the normal
J2EE rules apply. The transaction (TX) settings that apply to the method or
EJB apply. This is the most flexible way to deal with transactions with
Asynchronous Beans.

Security
If security is enabled, you have two options when configuring the WorkManager:

1. The WorkManager can be configured to remember the credential of the
thread that created the Asynchronous Bean. This is very useful, since the
Asynchronous Bean is allowed to access any resource that the creator was
allowed to. If we did not allow this, then when security is enabled the
Asynchronous Bean would be severely limited in terms of what resources it
can access either locally or remotely due to security restrictions.

2. Configure the WorkManager to never propagate the security credential. Here,
when the Asynchronous Bean is executed it runs as an unauthenticated or
anonymous credential which doesn't time out. However, since it is
unauthenticated you won't be able to call EJBs that have roles attached. But,
it is permissible for the Asynchronous Bean to call EJBs with interfaces whose
methods are set to RUN_AS_CALLER.

7.1.5 When to use Asynchronous Beans
Asynchronous Beans are a powerful innovative concept and extension to the
current J2EE specification. They enable the construction of stateful, “active” and
event-driven J2EE applications. These applications address a segment of
application space that J2EEs have not previously addressed: advanced
applications that require application threading, active agents within a server
application, and distributed monitoring capabilities. The following sections
describe possible scenarios where different Asynchronous Beans could be
utilized.
302 WebSphere Application Server Enterprise V5

Partition tasks so that they can run in parallel
You could execute a complex database task using multiple threads; an example
would be a complex calculation over a large set of rows. The set can be
partitioned and then each partition can execute in parallel. The EJB can block
until all threads finish and then aggregate the results and then return.

Integrate non-JMS messaging middleware
Applications can integrate a third-party messaging solution that does not support
JMS but has a Java API.

Dynamically listen for JMS queues and topics
If an application needs to subscribe on demand to queues or topics that were
unknown when the application was deployed, this is now possible because
threads can be started to block and receive those messages.

The use of background processing for performance
An application that needs to perform persistent message logging could use a
background task to write batched insert operations to a database in a single
transaction. The background task can wake every 100 ms to perform this.
Foreground tasks will store the log message in a synchronized data structure and
then continue without waiting for the message to be persisted. This is more
efficient because previously, each log operation resulted in a “begin, insert msg,
commit” operation and also blocked the application during this process, which
slowed the application significantly when logging was enabled. Now, the
background thread sends the following: “begin, insert msg1,msg2,msg3,msg4,
commit”. Batching the insert operations together like this significantly lowers the
impact of this on both the application server and the database.

7.2 Design
In this section, we will design an Asynchronous J2EE application. We will start
with a base and standard J2EE application, and look into different ways we can
enhance it by incorporating asynchronous behaviors in it. We are trying to make
this application simple enough to follow, and yet as logical as possible to cover all
three different kinds of Asynchronous Beans discussed previously. After studying
this sample, you should have a better understanding of the differences among
the three types of Asynchronous Beans, how to identify J2EE applications that
Asynchronous Beans address and apply to, and most importantly, how to create
advanced J2EE applications that require active agents, application threading,
and asynchronous notification capabilities.

This sample application is not complicated. For a more comprehensive and
real-world Asynchronous Beans scenario, refer to the WebSphereTrader
 Chapter 7. Asynchronous Beans 303

application shipped with the WebSphere Enterprise V5 product. This application
also use the Startup Bean service of WebSphere Enterprise V5. For more
information about Startup Beans, refer to Chapter 12, “Startup Bean” on
page 489.

7.2.1 Base application overview
Our base application is a standard J2EE application with one CMP entity bean
(Department), one singleton Java object (EntityBeanCacheSingleton), one
startup session bean (AppBootstrapBean), and one JSP (ListDepartment.jsp). It
uses some standard Java/J2EE patterns:

� CMP cache: Some J2EE applications use entity beans. It is a common design
pattern for performance reasons to cache the CMP data, especially if the
underlying table data does not change frequently.

� Singleton class: There will be only one instance of the class in the JVM.
Singleton patterns can be used in many different ways. One use is to hold
cache data.

� Startup Bean/class: Often used at server startup to do some preprocessing.
In our case, it is used to initialize the singleton class, thus the cache for CMP.

Figure 7-6 is a simple interaction diagram of these components.

Figure 7-6 Interaction diagram for the sample

Our application get initialized when the WebSphere server starts. WebSphere
runtime invokes the start() method of our AppBootstrapBean, which in turn
creates an instance of our singleton class EntityBeanCacheSingleton. The
singleton class will call the findAll() method in the home interface of the entity
bean Department, and will store the result in the cache. So, when WebSphere
server is up and running, our application is also initialized with CMP cache in the
singleton. Whenever we invoke ListDepartment.jsp, it will get data from the cache
held by the singleton class.

WebSphere runtime AppBootstrapBean EntityBeanCache (singleton) DepartmentHome (CMP)

start() getDepartments() findAll()

ListDepartment.jsp getDeptCached()
304 WebSphere Application Server Enterprise V5

7.2.2 Asynchronous patterns
So far, we have a working J2EE application with some good design patterns. But
there are two potential problems with the design and this application:

� We are initializing our application cache on the server main thread. If, for
some reasons, our Startup Bean takes a long time to finish, this will affect
greatly our server runtime, which may appear hanging. This could happen in
lots of scenarios: either there are problems with a database connection, or
just because of the large size of the cache.

� After we have loaded our application cache through a CMP bean, it will stay in
our singleton cache class for the lifetime of the JVM. Even if the underlying
data changes, our cache does not know about this. So, the application will get
stale data. We need a way to refresh our cache if any data has changed.

These are the scenarios our Asynchronous Beans come to rescue. Here are
three asynchronous patterns we will be using in our sample application:

� Background processing using Work

In this sample application, we want to offload the task of looking up CMP
entity beans from the AppBootstrapBean on the main thread of execution. We
will actually create a Work object InitializeCacheWork. This Work object will
invoke the EntityBeanCacheSingleton, which will in turn do the heavy-duty
work of finding all instances of the entity beans, and store the cache in
memory. The AppBootstrapBean just needs to initiate the work, then return
the control of execution to the main thread of server runtime, without blocking
and waiting for the cache to be actually initialized.

� Intra-application notification using EventListener

We will also implement asynchronous notification to refresh our CMP cache in
case the underlying data changes. It works in the following way:

– First, we define an UpdateCacheEventListener interface with an
method/event updateEntityCache.

– Our EntityBeanCacheSingleton object is interested in this event and wants
to be notified when such event fires, so it implements the EventListener
interface UpdateCacheEventListener.

– Whenever the data in the database changes, updateEntityCache event will
be fired, and our Singleton object will be called to update its copy of the
cache of CMP data.

� Transient, time-based activity using AlarmListener

In order to simulate the data change behavior in our sample application, we
will be implementing an AlarmListener UpdateDbAlarmListener, which will be
called every 30 seconds when an associated alarm fires. The AlarmListener
 Chapter 7. Asynchronous Beans 305

will use the Department CMP to insert a record into the database, and then
fire the updateEntityCache event.

7.3 Development - base application
This section provides step-by-step details on how to develop and test the sample
application using Asynchronous Beans.

7.3.1 Set up the base application
The sample application will be created in WebSphere Studio Application
Developer Integration Edition V5.

Import the base enterprise application project
1. Launch WebSphere Studio IE with a workspace for the Asynchronous Beans

sample.

C:\WSADIE5\wsappdevie.exe -data C:\SG246932\ItsoAsynchBeansBase

2. Switch to or open the J2EE perspective.

3. Select File -> Import from the menu.

4. Select Existing Project into Workspace on the Import window, then click
Next.

5. Browse for the ACompany folder under the directory where you have the
project extracted, in our example:
C:\SG246932\ItsoAsynchBeansBase\ItsoAsynchBeans. Click Finish.

The directory gets imported to the workspace. You will see a list of warnings
and errors in the Task view, but do not worry about them at this moment.

6. Import the following directories following the steps 3 to 5:

– ItsoAsynchBeans
– ItsoAsynchBeansWeb
– ItsoAsynchBeansEJB

7. Select Project -> Rebuild All from the menu to rebuild the application.
306 WebSphere Application Server Enterprise V5

8. Create the database mapping for the EJBs. On the J2EE perspective, J2EE
Hierarchy view, right-click EJB Modules -> ItsoAsynchBeansEJB and
select Generate -> EJB to RDB Mapping.

a. Select Create a new backend folder and click Next.

b. Select Top Down and click Next.

c. For the target database, select your database (in our case, DB2 Universal
Database V8.1). The database name is SAMPLE. The schema name is
the user name that created the sample database (in our case
ADMINISTRATOR). Click Finish.

d. Close the generated Map.mapmxi file.

9. Generate the deployed code for the EJBs. Right-click EJB Modules ->
ItsoAsynchBeansEJB and select Generate -> Deploy and RMIC Code.

a. Click Select All.

b. Click Finish.

7.3.2 Understand the base application
We have discussed the architecture and structure of our base application in the
design section. In the next sections, we take a quick look at our base application
code.

The Department CMP Bean
This is a standard EJB 2.0 entity bean with container-managed persistence. In
this sample, we created only local home and remote interfaces for it, since it is
not accessed remotely by other clients from outside the container. We also
created a custom finder findAll() in its home interface using EJBQL language.

The AppBootstrapBean Startup Bean
We use one Startup Bean in this sample to initialize the singleton class and thus
the CMP cache. The code in Example 7-5 on page 308 is from the start method
of the bean.

Note: Note that the Web module (ItsoAsynchBeansWeb) is using the EJB
module (ItsoAsynchBeansEJB).

The EJB module includes the following libraries in the Java Build Path:

� WAS_EE_V5/lib/asynchbeans.jar
� WAS_EE_V5/lib/asynchbeansImpl.jar
� WAS_EE_V5/lib/startupbean.jar
 Chapter 7. Asynchronous Beans 307

Example 7-5 Startup Bean, start() method

public boolean start() {
try {

System.out.println(
"**********APPBOOTSTAPBEAN HAS BEEN CALLED**********");

EntityBeanCacheSingleton s = EntityBeanCacheSingleton.instance();
} catch (Exception e) {

System.out.println(
"AppBootstrapBean.start(): Exception starting app: "+ e.toString());

e.printStackTrace();
return false;

}
return true;

}

The EntityBeanCacheSingleton object
When the instance of this class is created, it will call the findAll() method in the
home interface of the entity bean Department, and store the result in a static data
structure.

Example 7-6 EntityBeanCacheSingleton.java

package com.ibm.itso.was5e.asynchbean;

import java.util.Collection;
import java.util.Iterator;
import java.util.Vector;
import javax.naming.InitialContext;

public class EntityBeanCacheSingleton {
static private EntityBeanCacheSingleton _instance = null;
private Vector deptCache = null;

protected EntityBeanCacheSingleton() {
System.out.println("**********INITIALIZE THE CMP CACHE**********");
deptCache = this.getDepartments();

}

static public EntityBeanCacheSingleton instance() {
if (null == _instance) {

_instance = new EntityBeanCacheSingleton();
}
return _instance;

}

private Vector getDepartments() {
308 WebSphere Application Server Enterprise V5

Vector v = new Vector();
try {

InitialContext ic = new InitialContext();
DepartmentLocalHome cbHome =

(DepartmentLocalHome) ic.lookup("java:comp/env/ejb/Department");
Collection c = cbHome.findAll();
Iterator i = c.iterator();
while (i.hasNext()) {

DepartmentLocal dl = (DepartmentLocal) i.next();
DepartmentData dd = new DepartmentData();
String dno = ((DepartmentKey) dl.getPrimaryKey()).getDeptno();
dd.setDeptNo(dno);
dd.setDeptName(dl.getDeptname());
dd.setMgrNo(dl.getMgrno());
v.add(dd);

}
} catch (Exception e) {

System.out.println(
"AppBootstrapBean.start(): Exception starting app: "

+ e.toString());
e.printStackTrace();

}
return v;

}

public Vector getDeptCache() {
return deptCache;

}

public void setDeptCache(Vector deptCache) {
this.deptCache = deptCache;

}
}

The ListDepartment JSP
As we discussed in the design section, the ListDepartment.jsp will only call the
EntityBeanCacheSingleton, and display data from the cache.

Example 7-7 ListDepartment.jsp

<%
 out.println("DEPARTMENT LIST: " + new java.util.Date());
 out.println("<table border='1' cellspacing='1' cellpadding='7'>");
 out.println("<tr><td width='25%'>Department No</td>");
 out.println("<td width='50%'>Department Name</td>");
 out.println("<td width='25%'>Manager No</td>");

 java.util.Vector v = EntityBeanCacheSingleton.instance().getDeptCache();
 Chapter 7. Asynchronous Beans 309

 java.util.Iterator i = v.iterator();
 while (i.hasNext()) {
 DepartmentData d = (DepartmentData) i.next();

String deptNo = d.getDeptNo();
String name = d.getDeptName();
String mgrNo = d.getMgrNo();

 out.println("<tr><td width='25%'>" + deptNo + "</td>");
 out.println("<td width='50%'>" + name + "</td>");
 out.println("<td width='25%'>" + mgrNo + "</td>");
 }
 out.println("</table>");
%>

7.3.3 Configure the base application
In the following sections are the step-by-step instructions to configure the base
application.

Configure a database for the application
We assume that you have installed DB2 for Windows and created the SAMPLE
database, because the application will be using the Department table in this
database.

1. If you have not done so, install DB2 first.

2. Make sure you are logged in with a user that has permissions to create a
database.

3. Start the First Steps application to create the sample database.

4. Select the Create Sample Database option and create the sample database.

5. Once the creation process is done, close the First Steps application.

Configure a test server in the Studio
1. Follow the steps from “Create the test server” on page 670 to create the test

server.

2. In the Server Configuration view, expand Servers, right-click the new test
server, then add the ItsoAsynchBeans project to the server configuration.

Note: The user who created the sample database sets the schema name for
the tables. For example you have created the sample database under the
db2admin user, and the schema name is DB2ADMIN.
310 WebSphere Application Server Enterprise V5

Define the data source
1. Open the server configuration for the server.

2. Select the Security tab, then add a new JAAS authentication entry with the
following details:

– Alias: SampleDBAlias

– User ID: it is the name of user who created the sample database, in our
case db2admin

– Password: password for the user ID, in our case passw0rd

3. Select the Data source tab, select the DB2 JDBC Provider (XA), then create
a new data source with the following details:

– Version: Version V5.0 data source
– Name: SampleDS
– JNDI name: jdbc/Sample
– Component-managed authentication alias: SampleDBAlias
– Container-managed authentication alias: SampleDBAlias
– Resource property - databaseName: Sample

4. Save and close the server configuration.

7.3.4 Run the base application
1. Start the test server ACompanyServer, and monitor the console output:

Figure 7-7 Server console with the base application
 Chapter 7. Asynchronous Beans 311

2. Select the ListDepartment.jsp, right-click, and from the drop-down context,
select Run on Server. You will see the window in Figure 7-8.

Figure 7-8 Base application department list display

3. You can reload this page, and you will always get the same result. Remember,
our JSP is using cache for a CMP Department.

7.4 Development: “Asynchronize” the base application
In this section we enhance the base application and implement the features
described in 7.2.2, “Asynchronous patterns” on page 305.

The ready-made extended application is also available as a WebSphere Studio
IE workspace. For more information about how to use the extended application,
refer to 7.4.4, “Set up the extended application” on page 325.

Important: As you can see from the server output, our Startup Bean
AppBootstrapBean is invoked by WebSphere runtime, and it will delegate to
our singleton cache class to call findAll() method of CMP Department’s home
interface, and store the result in the cache of our Singleton object.
312 WebSphere Application Server Enterprise V5

7.4.1 Asynchronously initialize the cache using Work
In this section, we will create a Work object InitializeCacheWork to do the
background processing, and initialize our CMP cache asynchronously.

Create the Work in Studio
1. Switch to the J2EE Navigator view, and expand ItsoAsynchBeanEJB.

2. Right-click ejbModule and select New -> Class.

3. Specify com.ibm.itso.was5e.asynbean for the package and
InitializeCacheWork for the class name.

4. Click Add... for the interfaces and select the Work interface on the
subsequent window (start typing the word “Work” to facilitate the selection).
Click OK.

Figure 7-9 Add Work Interface

5. Click Finish.
 Chapter 7. Asynchronous Beans 313

Figure 7-10 Create InitializeCacheWork class

6. The InitializeCacheWork.java source file should now be open in the source
editor.

7. You should complete the Work class with its implementation of the run()
method. For our Work object, you just need to add one line to this method as
shown in the code sample in Example 7-8.

Example 7-8 the run() method of IntializeCacheWork object

package com.ibm.itso.was5e.asynchbean;
import com.ibm.websphere.asynchbeans.Work;

public class InitializeCacheWork implements Work {
public void release() {
}
public void run() {
314 WebSphere Application Server Enterprise V5

EntityBeanCacheSingleton s = EntityBeanCacheSingleton.instance();
}

}

8. Save and close the file.

Change the Startup Bean to use Work object
1. Open our singleton class AppBootstrapBean.java for editing.

2. Add the import statement to the code com.ibm.websphere.asychbeans.*
package.

3. Comment out the line to call the Singleton class directly -
EntityBeanCacheSingleton.instance() as in the base application.

4. Add the code to look up a work manager, create an instance of our
IntializeCacheWork class, and then submit the work to the work manager to
be processed asynchronously. When you finish, the start() method of the
Startup Bean should look like Example 7-9.

Example 7-9 Modified start() method for the Startup Bean

public boolean start() {
 try {
 System.out.println(

 "$$$$$$$$$$$$ APPBOOTSTAPBEAN HAS BEEN CALLED.");

 //EntityBeanCacheSingleton s = EntityBeanCacheSingleton.instance();
 InitialContext ic = new InitialContext();

 //get the WM
 WorkManager wm =

(WorkManager) ic.lookup("java:comp/env/wm/WorkManager");

 //Start an Asynchronous work to initialize the cache
 InitializeCacheWork pw = new InitializeCacheWork();
 wm.startWork(pw);
 System.out.println(

 "$$$$$$$$$$$$ STARTING ASYNCHRONOUS WORK TO INITIALIZE CACHE");

 } catch (Exception e) {
System.out.println(

"AppBootstrapBean.start(): Exception starting app: "
+ e.toString());

e.printStackTrace();
return false;

 }
 return true;
}

 Chapter 7. Asynchronous Beans 315

5. Save your file.

Test the application with asynchronous work
In this step, we need to create a resource reference from the Startup Bean to the
WorkManager, and bind the resource reference to the actual resource JNDI
name.

1. In the J2EE Hierarchy view, expand the EJB modules folder, and double-click
ItsoAsynchBeansEJB to open it up with the Deployment Descriptor editor.

2. Switch to the References tab and select AppBootstrap.

3. Click Add and then select the EJB Resource Reference radio button. Click
Next.

4. Type wm/WorkManager for the name. This is the name you used in the code,
“java:comp/env/wm/WorkManager”.

5. Type com.ibm.websphere.asynchbeans.WorkManager for the type field. Do not
try to select it from the pull-down list as this type is not available.

6. Select Application for the Authentication. Your window should look like
Figure 7-11 on page 317.
316 WebSphere Application Server Enterprise V5

Figure 7-11 Define EJB resource reference

7. Click Finish.

8. Expand AppBootstrap and click the recently created reference.

9. On the right-hand side, you will see an empty field called JNDI name. Type
wm/default in this field.
 Chapter 7. Asynchronous Beans 317

Figure 7-12 Bind resource reference to JNDI name

10.Save the EJB Deployment Descriptor.

11.The next step is to test the application with the asynchronous work
implemented. Start the test server and monitor the console output.
318 WebSphere Application Server Enterprise V5

Figure 7-13 Server console with asynchronous work

12.Select the ListDepartment.jsp, right-click, and from the drop-down context,
select Run on Server, and you will get the same result as shown in
Figure 7-17 on page 327.

7.4.2 Asynchronously keep cache updated using EventListener
Asynchronous Beans provide a generic event notification framework. The
EventSource provides “type-safe” notification. You can ask an EventSource to
fire an event and target only the listeners that implement a certain interface.

To facilitate intra-application notification, WebSphere Enterprise V5 provides a
special type of EventSource, which is included in each enterprise application.

Important: If you look carefully, you will notice that Cache is now initialized
after the main server thread finishes with the message “Server server1 open
for e-business”. It is also executed on a different thread. You could tell this by
looking at the thread hash number. This tells us that the operation of retrieving
cache is done in background asynchronously, not blocking the main thread
execution. Compare this with Figure 7-7 on page 311.
 Chapter 7. Asynchronous Beans 319

This EventSource can be found using JNDI lookup in any servlet or EJB code in
the application.

You can follow the steps in the next section to implement this pattern in our
sample application.

Define the EventListener interface
1. Switch to the J2EE Navigator view, and expand ItsoAsynchBeanEJB.

2. Right-click ejbModule and select New -> Interface.

3. Specify com.ibm.itso.was5e.asynbean for the package and
UpdateCacheEventListener for the type name, and click Finish.

4. The interface file should be open in the editor. We need to add just one
method in the interface: public void updateEntityCache().

Implement the EventListener interface
The EntityBeanCacheSingleton object in our base sample is interested in the
updateEntityCache event, so it will implement the interface
UpdateCacheEventListener.

1. Open the source code of the singleton class in an editor.

2. First we add to the end of the line of class declaration: implements
UpdateCacheEventListener

3. The updateEntityCache() method should be implemented as shown in
Example 7-10.

Example 7-10 Implementing updateEntityCache() method for the EventListener

public void updateEntityCache() {
 System.out.println("$$$$$$$$$$$$ HANDLE ASYNCHRONOUS EVENT: UPDATING
CACHE......");
 setDeptCache(getDepartments());
 System.out.println("$$$$$$$$$$$$ THE CMP CACHE UPDATED.");
 System.out.println();
}

Register the Listener with Application EventSource
Now that we have implemented the listener, we still have to register it with our
application-specific EventSource to indicate the interest in receiving the
updateEntityCache event. This is done inside of the Singleton object constructor.

Example 7-11 Register listener in singleton constructor

protected EntityBeanCacheSingleton() {
 try {
320 WebSphere Application Server Enterprise V5

 deptCache = this.getDepartments();
 System.out.println("$$$$$$$$$$$$ THE CMP CACHE INITIALIZED");
 System.out.println();

 //regiter this as a listener to asynchronous event
 InitialContext ic = new InitialContext();
 EventSource appES =(EventSource) ic.lookup(

EventSource.APPLICATION_NOTIFICATION_EVENT_SOURCE);
 appES.addListener(this);
 } catch (Exception e) {

e.printStackTrace();
 }
}

At this stage, our EventListener EntityCacheSingleton is all set and ready to
handle any updateEntityCache event. In the next section, we will create an
AlarmListener, which simulates updating database and firing the
updateEntityCache event.

7.4.3 Asynchronously update database using AlarmListener
AlarmListener is the third kind of Asynchronous Bean. Its logic gets executed
when the associated alarm goes off. In this example, we create an alarm that
fires every 30 seconds, so our listener UpdateDbAlarmListener would get
invoked every 30 seconds also. The EventListener/Asynchronous Bean will try to
insert a record into the database through the Department entity bean, and then
get hold of the application EventSource to fire the updateEntityCache event.

Develop the AlarmListener
1. Switch to the J2EE Navigator view, and expand ItsoAsynchBeanEJB.

2. Right-click ejbModule and select New -> Class.

3. Specify com.ibm.itso.was5e.asynbean for the package and
UpdateDbAlarmListener for the class name.

4. Click Add for the interfaces and select the AlarmListener interface on the
subsequent window (start typing the word “AlarmListener” to facilitate the
selection). Click OK.

Tip: Inside the code, you can also do a lookup like this:

ic.lookup(“java:comp/websphere/ApplicationNotificationServer”)

EventSource.APPLICATION_NOTIFICATION_EVENT_SOURCE is just a
convenient static constant.
 Chapter 7. Asynchronous Beans 321

Figure 7-14 Add AlarmListener Interface

5. Click Finish.

Important: Make sure to select the AlarmListener interface in the
com.ibm.websphere.asynchbeans package.
322 WebSphere Application Server Enterprise V5

Figure 7-15 Create UpdateDbAlarmLister class

6. The UpdateDbAlarmListener.java source file should now be open in the
source editor.

7. You should complete the AlarmListener class with its implementation of the
fired() method.

8. First we need to import javax.naming.* and
com.ibm.websphere.asynchbeans.EventSource. This is needed because we
will fire asynchronous event in this Alarm listener.

Example 7-12 fired() method for AlarmListener

public class UpdateDbAlarmListener implements AlarmListener {
 static int i = 20;
 public void fired(Alarm arg0) {
 try {

 System.out.println("$$$$$$$$$$$$ UPDATEdbALARM FIRED.");
 Chapter 7. Asynchronous Beans 323

 System.out.println("$$$$$$$$$$$$ HANDLE ALARM: INSERTING NEW ROW INTO
TABLE, AND");

 InitialContext ic = new InitialContext();
DepartmentLocalHome cbHome =

(DepartmentLocalHome) ic.lookup("java:comp/env/ejb/Department");
DepartmentLocal c = cbHome.create("F"+i, "MATH--" +i, "");
i++;

 System.out.println("$$$$$$$$$$$$ FIRING ASYNCHRONOUS UPDATE CACHE
EVENT......");
 EventSource appES =(EventSource) ic.lookup(

EventSource.APPLICATION_NOTIFICATION_EVENT_SOURCE);
UpdateCacheEventListener eventProxy =

(UpdateCacheEventListener) appES
.getEventTrigger(UpdateCacheEventListener.class);

eventProxy.updateEntityCache();
System.out.println();

//reset the Alarm;
arg0.reset(30000);

}catch (Exception e) {
 e.printStackTrace();
}

 }
}

Develop the Alarm
We have developed our AlarmListener UpdateDbAlarmListener, and now we
need to associate it with an Alarm. As we have mentioned, the Alarm will go off
every 30 seconds, and it is created in our Startup Bean when the server starts.

1. Open the Startup Bean AppBootstrapBean.java for editing.

2. We need to add the code in Example 7-13 on page 325 to the start() method
of the bean just below where we start the asynchronous work.

Note: The listener code first invokes the create() method of the entity bean’s
home interface, and this will actually insert a row into the database. After the
database has been updated, we want to notify all registered event listeners
about the updateEntityCache event. We achieve this first by looking up the
application EventSource, getting a proxy for our listener interface (this step
essentially does the filtering), and then calling the updateEntityCache()
method on the proxy, which will propagate the calls to every registered
listener, including our EntityBeanCacheSingleton listener.
324 WebSphere Application Server Enterprise V5

Example 7-13 Code to create Alarm

//get the AS
AsynchScope as = wm.findAsynchScope("ItsoScope");
if (as == null) {

as = wm.createAsynchScope("ItsoScope");
}
//get the AlarmManager
AlarmManager am = as.getAlarmManager();
UpdateDbAlarmListener updateListener = new UpdateDbAlarmListener();
//create an Alarm to go off every 30 seconds
Alarm a1 = am.create(updateListener, this, 30000);

3. In order to create an Alarm, we need to get an instance of AlarmManager
from an AsynchScope, which is created by the work manager.

4. Save and close the file.

7.4.4 Set up the extended application
The extended application developed in this section is available as a copy of
WebSphere Studio IE workspace.

The extended application does not require any additional configuration compared
to the base application.

For instructions on importing the workspace, and creating and configuring the
test server, see 7.3.1, “Set up the base application” on page 306.

7.5 Unit test environment
We have enhanced our base application with some asynchronous behaviors, and
we are ready now to test the application.

1. Start the test server and monitor the console. When the server finishes, you
will see the same output as in Figure 7-16 on page 326. We know our CMP
cache initialized immediately after the server runtime is up.

2. Right-click the ListDepartment.jsp, and from the drop-down menu, select
Run on Server, and you will also see the same result in the browser as
shown in Figure 7-17 on page 327.

3. Wait approximately 30 seconds. If you check the console, it will look like
Figure 7-16 on page 326.
 Chapter 7. Asynchronous Beans 325

Figure 7-16 Server console with Asynchronous functions

4. You can tell from the output when our Alarm fires, the database gets updated,
and an event is sent out to refresh the CMP cache.

5. If you reload the ListDepartment.jsp now, you will see some new records in
the table. Remember, our JSP file always pulls data from the cache. This time
our cache gets refreshed, so we will not get stale data.
326 WebSphere Application Server Enterprise V5

Figure 7-17 Department listing

6. If you wait for a while, and go back to check the console, you will notice our
Alarms keep going off, and our cache get updated whenever there is a
database update.
 Chapter 7. Asynchronous Beans 327

Figure 7-18 Server console with Asynch functions

7. When we reload our JSP, you will see more records in the tables.

7.6 Assembly
We need to package and export our application for installation in WebSphere.

1. Click File -> Export.

2. Select EAR File and click Next.

3. Select ItsoAsynchBeans for the resource to export, and browse to directory
where you want to save the ItsoAsynchBeans.ear file.

4. Select Export Source Files.

5. Click Finish.

When we test the application in WebSphere Studio IE, we bind our
WorkManager reference to the default WorkManager defined in a server with the
JNDI name of wm/default. If you have created another physical WorkManager
with a different JNDI name, and want to use that, you need to do the following
steps:

1. Launch the Application Assembly Tool.
328 WebSphere Application Server Enterprise V5

2. On the resulting windows, click the Existing tab, and click Browse to find the
ItsoAsynchBeans.ear we exported just now, and click OK.

3. Expand ItsoAsynchBeans -> EJB Modules -> ItsoAsynchBeansEJB ->
SessionBeans -> AppBootstrap, and select Resource Reference.

Figure 7-19 Application Assembly Tool

4. Switch to the Bindings tab, change the JNDI name of WorkManager to
whatever you have defined in the WebSphere Application Server. In our case,
the name is wm/ItsoAsynchBeansWM. Click Apply.

5. Save and close the EAR file.

7.7 Configure
The starting point for configuration is the ItsoAsynchBeans EAR file. We will first
create a data source and WorkManager for the application using the WebSphere
Enterprise Administrative Console. Subsequently, we will install the application in
WebSphere Application Server and test it.

Create a data source for the ItsoAsynchBeans application
1. Start WebSphere Application Server Enterprise. Open a command prompt

and change the directory to \WebSphere\Application Server\bin, and issue
the following command:

startServer server1
 Chapter 7. Asynchronous Beans 329

2. Launch the Administrative Console for WebSphere, then log in.

3. Create a new data source for the server with the following details:

– Provider: DB2 JDBC Provider

– Classpath C:/sqllib/java/db2java.zip, or where your db2java.zip file
resides.

– Data source name: SampleDS

– JNDI name: jdbc/Sample

Check Use this Data Source in CMP.

Click OK.

4. Click the Data Source you just created and scroll down. Click J2C
Authentication Data Entries. Create a new entry with the following details:

– Alias: SampleDSAlias

– User ID: The name of user who created the sample database, in our case
db2admin

– Password: password for the user ID, in our case passw0rd

5. Click the SampleDS link at the top of the frame to go back to the data source
definition. Scroll down, select <node name>/SampleDSAlias for the
Component-managed Authentication Alias.

6. Click OK.

7. Save the configuration for WebSphere.

Create a WorkManager for the ItsoAsynchBeans application
1. Expand Resources and click WorkManager. Click New to create a new item.

Use the following details for the entry:

– Name: ItsoAsynchBeansWM
– JNDI name: wm/ItsoAsynchBeansWM
– Number Of Alarm Threads: 5
– Minimum Number Of Threads: 1
– Maximum Number Of Threads: 10
– Thread Priority: 2

Check the Security check box in the Service Names field. This will ensure the
security context, if any, will be propagated to the Work implementation.
330 WebSphere Application Server Enterprise V5

Figure 7-20 WorkManager definition

2. Save the configuration for WebSphere.

3. Restart the application server.

7.8 Deployment
We are ready now to install and test our application in WebSphere Enterprise
Server.

1. Launch the Administrative Console and log in.

2. Expand Applications and then click Install New Application.

3. In the main window, click Browse, and find the ItsoAsynchBeans.ear file.

4. Click Next, and click Next again, since we do not need to change anything.

5. Click Step 3: Provide default datasource mapping for modules
containing 2.0 entity beans, specify the data source JNDI name
jdbc/Sample, which we created in the previous section.
 Chapter 7. Asynchronous Beans 331

Figure 7-21 Data source mapping

6. Click Step 9, the last step, and click Finish.

7. Once the deployment is finished, save the configuration for WebSphere.

8. The next step is to start the application. Select Applications -> Enterprise
Applications.

9. From the list of enterprise applications already installed, check
ItsoAsynchBeans and click Start.

10.Our application is now loaded and running. If you check the SystemOut.log in
the server logs directory, you should find the following lines.

Example 7-14 Server SystemOut.log

[4/15/03 21:29:35:288 EDT] 5c8c3c8a WebGroup I SRVE0180I: [ItsoAsynchBeansWeb]
[/ItsoAsynchBeansWeb] [Servlet.LOG]: InvokerServlet: init
[4/15/03 21:29:35:308 EDT] 5c8c3c8a SystemOut O $$$$$$$$$$$$ APPBOOTSTAPBEAN HAS BEEN
CALLED
[4/15/03 21:29:35:338 EDT] 5c8c3c8a SystemOut O $$$$$$$$$$$$ STARTING ASYNCHRONOUS WORK TO
INITIALIZE CACHE
[4/15/03 21:29:35:338 EDT] 5c8c3c8a ApplicationMg A WSVR0221I: Application started:
ItsoAsynchBeans
[4/15/03 21:29:37:241 EDT] 2059fcaf SystemOut O $$$$$$$$$$$$ THE CMP CACHE INITIALIZED
[4/15/03 21:29:37:241 EDT] 2059fcaf SystemOut O
[4/15/03 21:30:05:341 EDT] 353c3ca1 SystemOut O $$$$$$$$$$$$ UPDATEdbALARM FIRED.
[4/15/03 21:30:05:341 EDT] 353c3ca1 SystemOut O $$$$$$$$$$$$ HANDLE ALARM: INSERTING NEW
ROW INTO TABLE, AND
[4/15/03 21:30:05:351 EDT] 353c3ca1 SystemOut O $$$$$$$$$$$$ FIRING ASYNCHRONOUS UPDATE
CACHE EVENT......
[4/15/03 21:30:05:361 EDT] 353c3ca1 SystemOut O $$$$$$$$$$$$ HANDLE ASYNCHRONOUS EVENT:
UPDATING CACHE......
[4/15/03 21:30:05:542 EDT] 353c3ca1 SystemOut O $$$$$$$$$$$$ THE CMP CACHE UPDATED.
332 WebSphere Application Server Enterprise V5

11.This log tells us that our CMP cache is loaded asynchronously when our
application starts, and also the cache is updated whenever our Alarm fires.

12.So when our JSP file is loaded now, we are sure it is always refreshed data,
even if the database is updated.

Figure 7-22 Department list

13.If you keep reloading the JSP file every 30 seconds, you will see the list
changing.

7.9 QoS (Quality of Service) considerations
This section discusses the Quality of Service (QoS) considerations for
Asynchronous Beans.
 Chapter 7. Asynchronous Beans 333

7.9.1 Multiple WorkManagers
An application will sometimes wish to reserve resources for various qualities of
service. An application can specify the need for multiple WorkManagers by
having more than one resource-ref for WorkManager resources.

When an application wants to execute multiple operations in parallel, then it uses
a WorkManager to start a Work for each operation. The administrator can specify
a maximum number of threads for the WorkManager. If this is fixed at N threads,
then at most N operations will be executed in parallel. If there are more than N
items, then N are executed first and the others queued. The queued Works are
executed in sequence as the N completes.

So, a WorkManager can be used by an administrator to limit the number of
concurrent parallel tasks. Therefore, an application can specify more than one
resource-ref and then choose one depending on the classification of the Work.
This gives great flexibility to the administrator.

Small machines configuration
The administrator can choose to make a single WorkManager and then bind it to
all resource-refs in the application. So, the developer has specified and uses
multiple “logical” WorkManagers, but the administrator has decided to use a
single WorkManager for all.

Large machines configuration
The administrator makes a WorkManager for each quality of service. He/she also
sizes each WorkManager. The user is free to set a maximum number on the
threads in the pool as well as the thread priority. The administrator then binds
each WorkManager to the appropriate resource-ref when the application is
deployed.

This allows the administrator to carefully tune each WorkManager to the quality
of service.

7.9.2 Dynamically tuning WorkManagers at runtime
There is an MBean available for each WorkManager in a JVM. There is actually
an MBean for each thread pool in a JVM. This MBean allows an administrator
using wsadmin to tune the size of a WorkManager at runtime without restarting
the server. These changes are purely transient and will be lost if the server is
restarted. The admin object for the WorkManager should be modified if the
changes are to be permanent. For details on how to use wsadmin and MBeans,
refer to the WebSphere System Administration documentation.
334 WebSphere Application Server Enterprise V5

7.10 Security considerations
Using Asynchronous Beans technology, the security context is stored in the
database between each call and reused when the next activity is executed.
Asynchronous Beans have a feature that allows Work objects to store the
associated security context and rebuild and reuse it later.

We discussed some security issues associated with Asynchronous Beans in
7.1.4, “Asynchronous Beans: programming model” on page 300. Refer to that
section.

7.11 An additional sample
This additional sample for Asynchronous Beans is part of the extended sample
application. For further details about using the extended sample application, refer
to Appendix B, “Sample scenario” on page 665.

In the sample application, some of the purchase orders need approval if the price
is higher than a certain amount. The approver checks if the request is
acceptable. At this time, the approver might need to check if there are better
products. For this reason, we provide the product search UI for the approver. On
this UI, the users can search the product information from four different
resources: the catalog of this system, the other catalogs provided by Company A
and Company B, and Amazon.com. The following steps show the usage of the
new UI.

1. Invoke a Web browser and open the following page:

http://<your_server>/approval

2. Enter the keyword, select the resource that you want to search, and click
Search.
 Chapter 7. Asynchronous Beans 335

Figure 7-23 Search window

3. The result window is returned even if all searches are not done. If there are
unfinished searches, the page shows “Searching....” in each result field. This
page is reloaded until all searches are done.

Figure 7-24 Result window

On the traditional Web site, the result is blocked until all queries are done. By
using Asynchronous Beans, the users can get part of the results without waiting
for all queries to finish. Of course, because of the parallel execution, the queries
can finish faster than the sequential execution.
336 WebSphere Application Server Enterprise V5

7.11.1 Implementation details
The SearchServlet accepts the request from the query page. The keyword and
the targets of the queries are sent on the request. The SearchServlet instantiates
the objects that run queries, passes the keyword and starts the query. The
queries run asynchronously and SearchServlet forwards the request to result.jsp
without waiting for the queries to finish. The result.jsp gets the results of queries
from SearchWork. If the query haven’t finished, the result.jsp returns
“Searching...” instead of the result of query.

The result page is reloaded every 5 seconds until all queries are finished.

Figure 7-25 The flow of asynchronous search

The Java source codes, JSPs and the Deployment Descriptors are in the
ACompanyApprovalWeb project. To compile this project, asynchbeans.jar and
wsexception.jar must be in your CLASSPATH, and i18nctx.jar also must be in it
because this project has a dependency on the Internationalization service.

 EJBSearchWork

 SearchServlet result.jsp

 AmazonSearchWork

Forward
Request

Start
Asynchronous
Beans

Get Query
Results

WorkManager

 result.jsp

Get Query
Results

Query Page Result Page Result Page

Reload
 Chapter 7. Asynchronous Beans 337

SearchServlet
This servlet is invoked by the request from the query page. The servlet gets the
keyword and the list of target from the request.

The servlet instantiates the SearchWork objects. The SearchWork extends
com.ibm.websphere.asynchbeans.Work interface. Each SearchWork object is an
Asynchronous Bean and implements a search of each resource.

Each SearchWork starts on the WorkManager. The WorkManager is obtained
from the JNDI repository.

After starting the queries, the servlet forwards the request to the result.jsp.

The code of this servlet is shown in Example 7-15.

Example 7-15 SearchServlet.java

......
public class SearchServlet extends HttpServlet {
......

public void doPost(HttpServletRequest req, HttpServletResponse resp)
throws ServletException, IOException {
req.setCharacterEncoding("UTF8");
String keyword = req.getParameter("keyword");
String[] target = req.getParameterValues("target");

Map queryMap = new HashMap();
if (target != null && target.length > 0) {

try {
InitialContext ctx = new InitialContext();
WorkManager wm =

(WorkManager) ctx.lookup("java:comp/env/wm/default");

for (int i = 0; i < target.length; i++) {
SearchWork work = null;
if (target[i].equals("ejb")) {

work = new EJBSearchWork();
queryMap.put("ejb", work);

} else if (target[i].equals("file")) {
work = new FileSearchWork();
queryMap.put("file", work);

} else if (target[i].equals("jdbc")) {
work = new JDBCSearchWork();
queryMap.put("jdbc", work);

} else if (target[i].equals("amazon")) {
work = new AmazonSearchWork();
queryMap.put("amazon", work);

}
if (work != null) {
338 WebSphere Application Server Enterprise V5

work.initialize(keyword);
wm.startWork(work);

}
}

} catch (NamingException ne) {
throw new ServletException(ne);

} catch (WorkException we) {
throw new ServletException(we);

}
}

HttpSession session = req.getSession();
session.setAttribute("queryMap", queryMap);

ServletContext context = getServletContext();
String jspFile =

I18nUtils.getI18nUtils().getLocalizedFileName(
"/result",
".jsp",
context);

RequestDispatcher rd = context.getRequestDispatcher(jspFile);
rd.forward(req, resp);

}
}

EJBSearchWork
When you select “Our Catalog” on the search page, this class is called. This
class is an Asynchronous Bean. The search function is implemented in the run()
method and is called asynchronously.

The catalog data is stored as an entity bean named Catalog. The search function
calls the finder method findByKeyword(String keyword). It returns the list of EJBs
and the query result is retrieved from these EJBs.

When using a Java object as an Asynchronous Bean, it only has a local
transaction on the thread. This means that if it makes a call to an EJB method
that uses TX_REQUIRES, then the container will wrap that call in its own global
transaction that will be committed when the method returns. When you call the
finder method on the CMP beans, then access the returned CMP beans, it fails
because the transaction is already committed when the finder method returns. In
this case, you must have a global transaction surrounding the finder and the
codes using the returned CMP beans.
 Chapter 7. Asynchronous Beans 339

JDBCSearchWork
When you select Catalog From Company A on the search page, this class is
called. This class is an Asynchronous Bean. The search function is implemented
in the run() method and is called asynchronously.

The catalog data is stored in one table in the database. The search function
retrieves the data by sending the SQL query. This class uses the JDBC functions.

FileSearchWork
When you select Catalog From Company B on the search page, this class is
called. This class is an Asynchronous Bean. The search function is implemented
in the run() method and is called asynchronously.

The catalog is stored in a file as the comma-separated data. The search function
opens the file and reads it sequentially. On each line, the search function
pattern-matches with the keyword.

AmazonSearchWork
When you select Search From Amazon.COM on the search page, this class is
called. This class is an Asynchronous Bean. The search function is implemented
in the run() method and is called asynchronously.

The search function calls the keyword search function of Amazon Web Services
to get the product information. The client proxy of the Web Service is created by
WebSphere Studio using WSDL which is provided by Amazon.COM. For more
detail about the Web Services, see the redbook WebSphere Version 5 Web
Services Handbook, SG24-6891.

For more detail about the Amazon Web Services, see the following Web site:

http://associates.amazon.com/exec/panama/associates/ntg/browse/-/1067662/ref=gw
_hp_ls_1_3/

result.jsp
This page shows the results of the queries. The result of each query is stored in
HttpSession and is shown in the separated JSP, which is included into this page.
If all queries are not done, the following element is put at the head element.
Because of this element, this page is reloaded every 5 seconds until all queries
are done. The element for reloading the page in HTML code is:

<META HTTP-EQUIV="REFRESH" CONTENT="5;URL=result.jsp">
340 WebSphere Application Server Enterprise V5

http://associates.amazon.com/exec/panama/associates/ntg/browse/-/1067662/ref=gw_hp_ls_1_3/

7.11.2 Configuration and requirements
This application uses a WorkManager, a data source and an EJB. The
references to these resources must be in the web.xml. The details of the
resources are the following:

� The SearchServlet accesses a WorkManager to execute the Asynchronous
Beans. We use the default WorkManager and need to make the reference to
it. The name of the reference is wm/default, its JNDI name is wm/default, and
its type is com.ibm.websphere.asynchbeans.WorkManager.

� The JDBCSearchWork accesses a data source to retrieve the data from the
database. We use the same data source as the EJBs use and need to make
the reference to it. The name of the reference is jdbc/redbookDS, its JNDI
name is jdbc/redbookDS and its type is javax.sql.DataSource.

� The EJBSearchWork accesses the Catalog entity bean to get the catalog
information via local home and local interfaces. We need to make the local
reference to it. The name of the reference is ejb/Catalog, the JNDI name is
ejb/Catalog and it links to the Catalog bean in the ACompanyEJB.jar.

To run this application, you must have an installation of the WebSphere
Enterprise Version 5 configured with the Scheduler and Asynchronous Beans
option. After you install WebSphere Enterprise Version 5, you must configure one
data source that is bound to jdbc/redbookDS on the JNDI repository. If you need
more information about the installation, see Appendix A, “Installation and
configuration” on page 653.

The JDBCSearchWork accesses one table in the REDBOOK database. The
table is created during the normal database setup process for the sample
application.
 Chapter 7. Asynchronous Beans 341

342 WebSphere Application Server Enterprise V5

Chapter 8. Application Profiling and
Access Intent

This chapter introduces the benefits of Application Profiling and Access Intent
and how this feature of WebSphere Application Server Enterprise V5 fits your
business needs.

This chapter covers the following topics:

� What Application Profiling and Access Intent is
� Why you should use Application Profiling and Access Intent
� How Application Profiling and Access Intent answers your needs
� Detailed description of this Programming Model Extension

This chapter is organized different from other PME chapters, because this PME
does not require configuration, deployment, or runtime discussion. It is purely
related to application design, development, and assembly.

This chapter also uses a different sample application that does not relate to the
sample scenario used in the majority of the book. This PME requires a different
set of components from the components in the ACompany sample application.

8

© Copyright IBM Corp. 2003. All rights reserved. 343

8.1 Overview
One of the main drawbacks of EJBs has always been performance. EJBs are
reusable components by nature. But this reusability introduces a performance
problem. In a common scenario, different clients access the same set of Entity
EJBs. The intent of each client is completely different.

WebSphere Enterprise V5 adds the capability to the EJB container to be
configured to provide optimal performance based on a specific type of EJB use.
Various Access Intent hints can be declared at assembly time to indicate to
WebSphere resources (such as the container and the persistence manager) to
provide the appropriate Access Intent services for every EJB request.

Access Intent Policies are hints not only to the persistence manager but also to
the EJB container and the Relational Resource Adapter:

� Persistence manager makes decisions about isolation level, cursor
management, and so on.

� EJB container influences the management of EJB collections.

� Relational Resource Adapter (RRA) provides prefetch hints in defined
increments to control the number of rows read from database at a time.
WebSphere does not provide paging nor does the RRA provide prefetch.
Instead, a prefetch hint is passed to the database telling how many rows are
going to be read so that the database can optimize the access.

Profiling levels
Profiling can be configured at different levels, depending on your needs.
Table 8-1 shows the different Profiling configurations available as they are seen
in the Application Assembly Tool and their granularity level.

Table 8-1 Profiling configurations

PME Scope

Dynamic Query Entity

Access Intent Method

Application Profiling Unit of Work
344 WebSphere Application Server Enterprise V5

You can set different Profiling configurations on the same EJB, so apparently
there will be collisions. But a clear priority hierarchy has been defined upon these
three levels of Profiling. Notice that there are three types of Profiling, each with a
different level of granularity.

Access Intent
Access Intent lets you associate an Entity CMP EJB method with an Access
Intent Policy. An Access Intent Policy is a set of properties defining how the EJB
container should access the persistence layer.

This feature is provided in WebSphere Application Server V5 as well as in the
Enterprise. It is a step forward in performance tuning but yet limited.

Figure 8-1 Access Intent diagram

Because Access Intents are defined at method level, you can assign different
Access Intent Policies to EJB’s create, remove, setter and getter methods,
achieving some performance tuning. If you are unable to decide which Access
Intent to apply in deciding upon the caller or client of the Entity EJB, this issue is
covered by Application Profiling.

Important: WebSphere V5.0.0 and V5.0.1 define Dynamic Query intent at
bean level. This intent is used whenever the Dynamic Query service is
invoked. In WebSphere V5.0.2 this function disappears and is substituted by
default Access Intent. This intent is used when no other intent can be applied
even if the bean load is done through the Dynamic Query service. This book
refers exclusively to WebSphere V5.

Ent ity EJB
Method

Access Intent
1 1

1

N

Policy
 Chapter 8. Application Profiling and Access Intent 345

Application Profiling
Application Profiling lets you associate task names to Session and Entity EJB
methods and group a set of tasks under a set of Access Intents. This provides
the capability of associating at runtime an Entity EJB method with a specific
Access Intent depending on the task under which it is called. So the binding is
caller dependent and resolved dynamically at runtime.

Figure 8-2 Application Profiling diagram

A task is associated with an Application Profile at deploy time. At runtime, the
task name gets propagated and its arrival identifies the caller. An Application
Profile associated with that caller task defines the Access Intents to be applied.

Default Access Intent
There is another level of configuration for Access Intent. You can set an Entity
EJB to be accessed with a specific Access Intent when it is loaded as a result of
a Dynamic Query. In fact, this configuration is used by default if no other Access
Intent is specified. This Access Intent is defined at bean level.

Access I ntent

Access
I nt ent

Policies Ent ity EJB
MethodTask

Session EJB
Method

Ent ity EJB

Access I ntent

Applicat ion Profile

Container Tasks

Applicat ion Profiles

1 1

1

1

1 1 NN

N

N

Policy

N

346 WebSphere Application Server Enterprise V5

Figure 8-3 Default Access Intent, Dynamic Query Access Intent diagram

Profiling prioritization
When different Access Intents are defined on the same entities, prioritization is
applied to resolve which Access Intent to apply. Figure 8-4 on page 348 shows
the decision algorithm used to apply an Access Intent when many Access Intents
have been defined or are applicable for the current request.

Note: Access Intents within an Application Profile and default Access Intents
are defined at bean level. Access Intents are defined at method level.
Compare the Access Intent diagrams in Figure 8-1 on page 345, Figure 8-2 on
page 346, and Figure 8-3.

Ent ity EJB

Access I ntent
1 1

1

N

Policy
 Chapter 8. Application Profiling and Access Intent 347

Figure 8-4 Application Profiling prioritization

Application
Profile

Access
Intent

Default
(Dynamic Query)

Application
Profile

Access
Intent

Default
(Dynamic Query)
348 WebSphere Application Server Enterprise V5

8.2 Planning
Application Profiling and Access Intent (from now on called Application Profiling
or just Profiling) are meant to be configured at deployment time through the
extended Deployment Descriptors. For flexibility, an API is exposed for Entity
BMP EJBs. This section shows you how to configure Application Profiling and
how to work with the exposed API.

The steps to be taken to prepare an application for Profiling are:

1. Create a custom Access Intent Policy to fit your needs

2. Create a Container Task

a. Associate the Task with EJB methods

3. Create an Application Profile

a. Associate the Profile with a set of Tasks

b. Create a set of Access Intents

i. Associate Entity EJB methods with a custom or predefined Access
Intent Policy

An association graph between client methods, Tasks, Profiles, Access Intents
and Entity EJBs methods is shown in Figure 8-2 on page 346.

Access Intent Policies
Access Intent Policies are defined by four attributes that serve as an access hint
for the persistence manager.

Access Type
Access Type is configured upon two parameters that define the type of access on
the bean and the concurrency control applied.

� Concurrency Control

– Pessimistic

A lock is acquired on the instance. No one can modify or delete the
instance before the end of the transaction. This ensures integrity of read
data at the expense of concurrency.

– Optimistic

Lock is not acquired until the commit. If the instance is changed during
transaction, an exception will be thrown on commit. This generally
improves concurrency but an application must be able to handle
exceptions.
 Chapter 8. Application Profiling and Access Intent 349

� Access Type

– Read

If pessimistic read intent is specified and an update method is called on a
CMP EJB, the container throws an
com.ibm.ws.ejbpersistence.utilpm.UpdateCannotProceedWithIntegrityExc
eption.

– Update

Pessimistic update has additional qualifiers to configure:

• Weakest Lock at Load

Although update intent is specified, a container acquires read lock first.
If needed, it will try to escalate the lock to update. This is the default
Access Intent for all CMP EJBs. This allows better concurrency than if
an update lock was attempted at the beginning, but it may result in
dead locks.

• Exclusive

This is the highest level of locking, which results in the most restrictive
isolation levels. It is used to prevent phantom reads.

• No Collision

No concurrency control. Selects without locks and updates without
checks. This option can be used safely only if database tables where
EJBs are persisted are not shared with any other software other than
WebSphere. Do not use unless mandatory.

Collection Increment
When you call a finder method you get a lazy collection back from the container.
The collection is loaded in memory in chunks, so that as you iterate through it the
data you need is already in memory. This parameter controls how many
elements are loaded in a single operation in the WebSphere Application Server
cache.

Collection Scope
As already mentioned, when you call a finder method you get a lazy collection. It
will expire at the transaction boundary, as a default. But you can extend this
scope by specifying activity session.

� Transaction

Is the default value. The collection will no longer be usable at the end of the
transaction that created it. References will be dropped and objects will be
ready for garbage collection.
350 WebSphere Application Server Enterprise V5

� ActivitySession

The collection may be accessed until the end of the Activity Session under
which the collection was retrieved, spanning multiple transactions.

Resource manager Prefetch Increment
This parameter suggest how many rows should be retrieved from the underlying
relational database in a single operation. If set to zero, the JDBC driver will
ignore it. This parameter may be completely ignored by some database
implementations that have their own optimization mechanism. It is a hint to the
JDBC driver and may or may not be taken into account.

Read Ahead
This parameter involves multiple Entity EJBs. It is only available for Entity EJBs
with a Container Managed Relationship (CMR) defined on them. Possible values
are the names of any CMR field on the current Entity EJB. The container uses
the read-ahead parameter to prefetch the data of the related entities. This only
takes effect when the loading of the entities takes place as a result of invoking a
findByPrimaryKey() method.

WebSphere Enterprise comes with several predefined Access Intent Policies, as
noted in Table 8-2.

Table 8-2 Predefined Access Intent Policies

Access Intent Policy Transaction
Isolation

Description

wsPessimisticRead read committed Read locks are held
for the duration of the
transaction. Updates
are not permitted.

wsPessimisticUpdate repeatable read Gets update lock at
the beginning of the
transaction. Prevents
dead locks.

wsPessimisticUpdate-Exclusive serializable Read or update locks
are held for the
duration of the
transaction on the
entire range of data
affected by the SQL
statement. Misuse
may result in dead
locks.
 Chapter 8. Application Profiling and Access Intent 351

A read committed transaction isolation level ensures only committed data is read.
No locks are maintained for the duration of the transaction. This implies that
another process may change and commit the data you are reading, leading to a
non-repeatable read. Also rows matching your criteria may be inserted or

wsPessimisticUpdate-noCollision read committed No locks held but
updates permitted.
Provides no
concurrency control.
Can lead to data
corruption if misused.

wsPessimisticUpdate-weakestLockAtLoad repeatable read Initial read lock held.
Locks escalated at
storage time if
updates are made.
This is the default
policy.

wsOptimisticRead read committed No locks are used.
Updates are not
allowed.

wsOptimisticUpdate read committed No locks are held.
Updates are allowed.
If data originally
queried has changed
since the read, the
update will produce
an exception and will
not take place.

Note: Concurrency control and access type parameters have not been
included, since they are part of the Access Intent Policy name and therefore
are obvious. All collection scopes are set to Transaction. No prefetch
increment or read-ahead is defined. All pessimistic updates have a collection
increment value of 1, except wsPessimisticUpdate-NoCollision, which has a
value of 25. The rest have a value of 25 (A value of 1 is used with SELECT
FOR UPDATE and a value of 25 for SELECT).

Important: The transaction isolation levels are only true for the following
JDBC drivers: DB2, Sybase, Informix®, Cloudscape, and SQLServer.

Access Intent Policy Transaction
Isolation

Description
352 WebSphere Application Server Enterprise V5

deleted, causing a phantom read. In database terminology, this isolation level is
called cursor stability.

The repeatable read transaction isolation level works like the read committed but
it also ensures repeatable reads. Another process will not be able to update a
row you obtained until your transaction is complete. However, phantom reads are
still possible. In database terminology, this isolation level is called read stability.

A serializable transaction isolation level ensures repeatable reads and disallows
phantom reads by preventing other processes from inserting or deleting rows
that would modify your result set until your transaction has completed. In
database terminology, this isolation level is called repeatable read.

Optimistic concurrency always implies that dead locks are possible, but are less
likely. Under pessimistic concurrency control, transactions started with read
intent are not capable of supporting an update.

Figure 8-5 shows a better approach to decide which Access Intent should be
chosen, taking into consideration the intention of the transaction and the isolation
level that the transaction requires.

Figure 8-5 Access Intent decision table

Important: Do not confuse the lock escalation concept in an Access Intent
context with lock escalation in a database context. In a database context,
escalation of locks refers to the internal mechanism of the database that
reduces the number of locks. In a single table, locks may be escalated to a
table lock from many row locks. In an Access Intent context, lock escalation is
a synonym of lock conversion in a database context. It happens when a more
restrictive lock than the one held is needed. A read lock on an object may be
converted to an update lock.

Transaction
Isolation Level

Access Type read update

wsOptimisticRead wsPessimisticUpdate-NoCollision

wsPessimisticRead wsOptimisticUpdate

wsPessimisticUpdate wsPessimisticUpdate-weakestLockAtLoad

read commited

repeatable read

Identifies access intents that hold locks.
All locks are help for the duration of the transaction.
 Chapter 8. Application Profiling and Access Intent 353

8.3 Performance report

To demonstrate the concepts and effectiveness of Application Profiling,
Figure 8-6 on page 355 through Figure 8-10 on page 360 show several varying
configurations and client mixes. Note that the application design and
configuration is intended only to show the effect of Application Profiling on
specific concurrency problems. Typical customer applications will generally not
have the same concurrency issues as those shown here, and these results
cannot be extrapolated onto any other application or data access pattern.

Tip: Notice that the provided Access Intent Policies cover all the possible
combinations between pessimistic and optimistic concurrency control and
read and update access types. When defining an Access Intent you can
override all the other configurable attributes of the Access Intent Policy of your
choice. There is no need to create custom policies but for Dynamic Query
Access Intents. Dynamic Query Access Intents do not let you override Access
Intent attributes.

Note: The performance data shown here is part of IBM WebSphere
Application Server Enterprise, Version 5 Performance Report, an IBM internal
document.
354 WebSphere Application Server Enterprise V5

Figure 8-6 WeakestLockAtLoad versus Application Profile

In the example shown in Figure 8-6, read threads and update threads invoke
findByPrimaryKey, then retrieve and iterate through a CMR collection of 50
beans. Read threads get a CMR field from each bean, and update threads store
new values. For WebSphere Application Server, all bean accesses default to
wsPessimisticUpdate-WeakestLockAtLoad. For Application Profiling, read
threads use OptimisticRead, and update threads use PessimisticUpdate.

According to the chart, the difference can be small between the default
wsPessimisticUpdate-WeakestLockAtLoad in WebSphere Application Server
policy and Application Profiling defaults in WebSphere Application Server
Enterprise. This is due mainly to the locks required by the workload and minimal
contention. No selects are for update, and locks are escalated to write locks by
the database on an as-needed basis. The default
wsPessimisticUpdate-WeakestLockAtLoad Access Intent Policy is appropriate
for certain data access patterns, and for this scenario Application Profiling
provides minimal benefit.
 Chapter 8. Application Profiling and Access Intent 355

While Figure 8-6 on page 355 shows little difference between the default Access
Intent Policy wsPessimisticUpdate-WeakestLockAtLoad and a configuration with
default Application Profiling, an environment where stronger locking is necessary
shows how Application Profiling improves performance by optimizing the Access
Intent to the client request. The remaining charts show how a stronger locking
requirement poses more of a concurrency problem, and how Application Profiling
can be used to overcome the locking contention by associating specific client
requests with a particular Access Intent.

Figure 8-7 shows two examples of a workload where a single client does updates
and multiple clients do reads. The update request must use PessimisticUpdate,
rather than the default wsPessimisticUpdate-WeakestLockAtLoad shown in
Figure 8-6 on page 355. All clients access the data using a findByPrimaryKey.

Figure 8-7 Pessimistic Update for all accesses versus Application Profiling

Note: The default wsPessimisticUpdate-WeakestLockAtLoad Access Intent
can pose problems for more than one update thread due to deadlocks and
rollbacks. For more than one update thread, a different Access Intent such as
PessimisticUpdate should be used, and Application Profiling can improve
performance for that case as seen in Figure 8-7 and Figure 8-8.
356 WebSphere Application Server Enterprise V5

In the scenario used for Figure 8-7 on page 356 and Figure 8-8 on page 358,
read threads and update threads do findByPrimaryKey, then retrieve and iterate
through a CMR collection of 50 beans. Read threads get a CMR field from each
bean, and update threads store new values. For the WebSphere Application
Server V5 example, the beans are loaded using the PessimisticUpdate policy
because only one Access Intent Policy can be used when the beans are loaded.
For WebSphere Application Serve Enterprise V5 Application Profiling, read
threads load beans using OptimisticRead, and update threads load beans using
PessimisticUpdate. After the bean is loaded, all data accesses from all method
invocations use the policy in effect when the bean was loaded.

Figure 8-7 on page 356 shows the performance differences obtained when
Application Profiling tunes the application server to the workload. In the case of
WebSphere Application Server V5, the read thread and the update threads both
load the beans using the same PessimisticUpdate Access Intent Policy.
Therefore, the update thread and the read threads all carry the same overhead
when accessing the data.

For WebSphere Enterprise Application Profiling, transactions that load beans for
read only can use a different Access Intent than transactions that load beans for
update. In this case, the update thread continues to use PessimisticUpdate on
data accesses after the beans are loaded, but the read threads use
OptimisticRead, which eliminates the read thread locks that cause contention
with all other threads. The lower CPU utilization indicates a bottleneck caused by
database locking.

Database lock monitor tools (such as DB2 Snapshot) can be used to detect and
verify locking behavior. Figure 8-8 on page 358 shows how additional business
logic on threads increases concurrency issues (due to increased lock hold time),
and again how Application Profiling can be used to overcome the locking
contention by associating client requests with the optimal Access Intent. The
chart shows an even larger delta in the PessimisticUpdate scenario when we add
additional processing to the read thread (such as doing file I/O to build a report)
while the locks are held. A comparison between this and the previous chart
shows the Application Profiling scenario can withstand the extra lock time held on
the read threads and maintain CPU utilization rather than serializing on the
database.
 Chapter 8. Application Profiling and Access Intent 357

Figure 8-8 Pessimistic Update for all Accesses versus Application Profiling

Figure 8-8 shows more data similar to Figure 8-7 on page 356, but the scenario
includes an increase in update threads.

Again, for WebSphere Application Server V5, all accesses to data using
findByPrimaryKey use the PessimisticUpdate Access Intent because that is the
Access Intent Policy used for loading the entity beans. Since incoming threads
can be either for read or for update, all threads must use that update Access
Intent.

Application Profiling enables multiple Access Intents per thread, and the Access
Intents can be associated with and therefore optimized to the incoming request
(read Access Intent for read requests, update Access Intent for update requests).

In summary, Application Profiling can make a significant performance
improvement for specific data access patterns. In the cases shown here, when
some incoming requests require stronger locking than others, Application
Profiling can optimize the data access pattern to specific requests. Note that the
scenario used for these charts is for demonstration purposes only, and that
real-world scenarios with different data access patterns and locking
requirements will likely see less performance benefit than that shown here.
358 WebSphere Application Server Enterprise V5

Collection Increment Access Intent
Figure 8-9 shows the usage of Application Profiling to tune the collection
increment. Collection Increment determines how many beans are activated with
data from the persistence manager cache, for a collection returned by a finder
method. Read threads obtain and iterate through a collection. For the
WebSphere Application Server V5 example, all threads use the same collection
increment because only one Access Intent Policy can be configured on any one
load point (the method that drove the bean to load), while Application Profiling
enables different collection increment values to be tuned for different client
requests.

Figure 8-9 Application Profiling using Collection Increment

For Figure 8-9, the result shows a workload where a set of clients benefit from a
reduced collection increment value because the search result is satisfied earlier
in the iteration, and not as many beans must be activated with data from the
persistence manager cache.

In this example, a session bean method invokes the remote interface on a
custom finder method, then iterates through the returned result set collection.
Under the covers, the application server EJB container activates and returns the
 Chapter 8. Application Profiling and Access Intent 359

initial number (collection increment value) of EJBs. For the rest of the result set,
the container gets the keys only and does not activate the beans. When the
iterator in the session bean requires the next group of EJBs in the result set, the
next group (again, collection increment value) of EJBs are activated and
returned.

In the example in Figure 8-9 on page 359, the session bean logic generally finds
the EJB it requires earlier in the result set and jumps out of the iteration
operation. Setting the collection increment to a lower value avoids the additional
overhead of activating additional beans.

Read ahead Access Intent
Read ahead is an Access Intent hint that specifies an association between CMP
entity beans. Read ahead allows applications to minimize the number of
database round trips by retrieving a transaction’s working set of EJBs within one
query. Read ahead caches the data for related objects, which ensures the data is
present for the activation of the EJBs that are most likely needed next by the
application.

Figure 8-10 Read ahead performance

In Figure 8-10, the chart on the left shows how performance can be improved by
reducing trips to the database. For this example, client threads make requests to
a session bean that does a findByPrimaryKey on a CMP entity bean A. The
session bean then uses a CMR field in bean A to get a collection from CMP bean
360 WebSphere Application Server Enterprise V5

B. While the collection is being iterated, a third database access occurs while
fields are retrieved from CMP bean C.

The comparison shows the difference in throughput when 50 client threads make
requests to an application with no read ahead configured, versus with read
ahead configured. The read ahead relationship is configured in bean A, and
specifies that data should be read for the second and third beans B and C. When
the findByPrimaryKey is invoked on bean A, a more complex query is issued that
includes a database join, which caches the data for beans B and C. The chart on
the left shows the difference for multiple trips to the database, versus a single trip
to the database but with a more complex join query. More trips to the database
adversely affects throughput, while the more efficient read ahead produces better
throughput.

Read ahead can also have a negative impact on throughput, if the read ahead
hint is not applied correctly. If read ahead causes a load of data that not all clients
need, inefficiencies can occur.

The chart on the right side of Figure 8-10 on page 360 shows the difference
Application Profiling makes when multiple Access Intents are specified for bean
A. In this example, clients invoke two methods on a session bean. Both session
bean methods invoke the same findByPrimaryKey on entity bean A. One session
bean method requires data from three entity beans in the same transaction and
can benefit from read ahead (the same A, B, and C transaction as in the previous
example).

The other session bean method requires data from only the first entity bean;
reading data from the second and third beans is not necessary. The client driver
runs a mix of 50 request threads, with 25 threads accessing the session bean
method that does the read-ahead, and the other 25 threads accessing the
method that requires only one field from the first bean.

The chart shows the difference when both findByPrimaryKey invocations use the
same Access Intent (Read Ahead) versus the Application Profiling capability to
assign different Access Intents to the same bean. For WebSphere Application
Server Enterprise V5, the method that needs only a single bean saves on
database accesses. If read ahead is configured for bean A, both session bean
operations get all the data on the findByPrimaryKey method even though one of
them does not require data from the second and third beans. Read ahead is not
always an optimization, but Application Profiling enables the customization to use
read ahead only where it can best be used.
 Chapter 8. Application Profiling and Access Intent 361

8.4 Assembly
The sample scenario for this chapter differs from the global scenario used in this
book to fit the purpose of illustrating different configuration possibilities that could
not be addressed in the global scenario.

Figure 8-11 Sample scenario for Application Profiling

The sample scenario shown in Figure 8-11 represents a simple e-banking
application. The application has Customer and Account CMP Entity EJBs with a
relation of one Customer to many Accounts. It also has two Session EJBs:

� Customer Administrator: For administration purposes, such as Customer
creation, modification and deletion.

� Account Browser: Intended to be used by customers connecting online to
browse their accounts.

A user can browse his accounts, transfer money between accounts, and view all
the transfers associated with a specific account. These business methods are
implemented in the Browser session EJB. The applications works with three
Entity EJBs: a Customer CMP, an Account CMP and a Transfer BMP. A
one-to-many Container Managed Relationship (CMR) has been established
between Customer and Account.

Until now, configuration issues for persistence of the Entity CMP EJBs resided
solely on the Entity CMP EJB. So the EJB container had to access the
persistence layer always in the most restricted way of all possible accesses
defined for an Entity CMP EJB.

The most restricted access for Customer may be defined for creation, update, or
deletion. Therefore, the Customer EJB, even if it was going to be accessed for

 Database

 JSP Page
 Servlet

Transfer
BMP EJB

Browser
Session EJB

Customer
CMP EJB

Account
CMP EJB

1

N

CMR

 +getAccountsForCustomer()
 +browseConfirmedTransfers()
 +confirmTransfer()
362 WebSphere Application Server Enterprise V5

browsing purposes by the AccountBrowser, would access the persistence layer
performing a lock as if it were updated by the CustomerAdministrator.

The AccountBrowser best approach should be accessing the Customer in an
optimistic way with no prefetch and with read-ahead. We are not performing any
data modification, so optimistic access is best. Only one Customer is being
retrieved, so there is no need for prefetch. But we want to browse all of the
Customer’s related Accounts, so a read ahead specified over the relationship
would fit best.

On the other hand, the CustomerAdministrator best approach should be
accessing the Customer EJB in a pessimistic way with no prefetch and no read
ahead.

8.4.1 Creating an Access Intent Policy
We will use the sample scenario application illustrated in Figure 8-11 on
page 362 to show you how to use the Application Assembly Tool to create a
custom Access Intent Policy.

The browseConfirmedTransfers business method retrieves a collection of
Transfer objects related to a given account number. Associated transfers are
expected to be an average of 10 per month.

You will create an Access Intent Policy with an optimistic concurrency control.
The transaction isolation level is read committed, so no uncommitted transfers
will be read. Data integrity will not be compromised if during the execution of
browseConfirmedTransfers method transfers are deleted or created. You can
take advantage of Profiling setting the resource manager prefetch increment to
10, as this is the average number of transfers to be returned by the method.

1. Launch the WebSphere Application Assembly Tool.

Once the Application Assembly Tool starts, the window shown in Figure 8-12
on page 364 opens. Click the Browse button and select the sample scenario
application file named eBankEAR.ear. Click OK when done.
 Chapter 8. Application Profiling and Access Intent 363

Figure 8-12 Application Assembly Tool: Welcome window

2. The Application Assembly Tool loads the enterprise application archive and
shows a tree on the left pane with all the configurable options. Select EJB
Modules -> eBankEJB. The tree in Figure 8-13 on page 365 shows options
related to Application Profiling highlighted with a red square. Refer also to
Figure 8-2 on page 346 to view the relationship between the entities these
options configure.
364 WebSphere Application Server Enterprise V5

Figure 8-13 Tree of configurable options

3. On the left pane, select the Access Intent Policies node. Select File -> New
-> Selected Object from the menu to create a new Access Intent Policy. The
New Access Intent Policy window will open, as seen in Figure 8-14 on
page 366.
 Chapter 8. Application Profiling and Access Intent 365

Figure 8-14 Application Assembly Tool: New Access Intent Policy window

4. Give the Access Intent Policy the following name:
eBankFindTransferByAccountPolicy.

5. Click the Edit button. A list with the four configurable attributes appear. Select
Access type. All the possible access types are present; choose Optimistic
Read.

6. Click the Edit button again. Select Resource manager prefetch. Set the
value to 10.

8.4.2 Creating an Access Intent
The next step is to associate the previously created Access Intent Policy with the
findByAccount method on the Transfer bean. When this method is invoked on the
Transfer bean to retrieve a collection of Transfer objects, the database will
prefetch as many as 10 reducing the number of trips to the database.

This task can be performed both from the Application Assembly Tool and from
WebSphere Studio IE.
366 WebSphere Application Server Enterprise V5

Application Assembly Tool
The following steps apply to the Application Assembly Tool:

1. In the left pane, select the Access Intent node. Select File -> New ->
Selected Object. The New Access Intent window will open, as seen in
Figure 8-15.

Figure 8-15 Application Assembly Tool: New Access Intent window

2. Give the Access Intent the following name: eBankFindByAccountIntent.

3. Click the Add button. The next window shows a tree with all the available
entity beans and its methods. You can select a method to associate in the
Access Intent, depending of the interface that exposes it. Expand the tree to
see the following nodes:

– eBankEJB.jar
– Transfer
– All methods
 Chapter 8. Application Profiling and Access Intent 367

Figure 8-16 Application Assembly Tool: Add methods to an Access Intent

Select the method with the following signature:
findByAccount(java.lang.String). Click OK to confirm.

4. The Application Assembly Tool shows the window seen in Figure 8-15 on
page 367 with the data you just added. From the Applied Access Intent
drop-down list, select eBankFindTransferByAccountPolicy, the Access
Intent Policy we created in previous steps.

5. Click OK to confirm the creation of the new Access Intent.

WebSphere Studio IE
To perform this operation from WebSphere Studio IE, you need to import the
EAR file into the application workbench, as follows:

1. Launch WebSphere Studio IE.

2. Select Window -> Open Perspective -> J2EE.

3. From the top left pane, click the J2EE Hierarchy tab. A tree with all J2EE
components currently loaded in the workbench appears, as seen in
Figure 8-17 on page 369.

Note: Clicking the Edit button lets you override Collection Scope,
Collection Increment, Resource Manager Prefetch Increment, and Read
Ahead Policy attributes. Given that the default policies cover all possible
combinations of the remaining attribute Access type, you can use default
policies and override them as needed instead of creating new policies.
368 WebSphere Application Server Enterprise V5

Figure 8-17 J2EE Hierarchy tree

Expand the tree by clicking on the plus sign on the left of the EJB Modules
and eBankEJB nodes.

4. Right-click eBankEJB and from the pop-up menu, select Open With ->
Deployment Descriptor Editor. The Deployment Descriptor will open in the
top-right pane of the perspective.

5. Switch to the Access tab. Scroll down if necessary to view the Access Intent
for Entities 2.x option, as seen highlighted in Figure 8-18 on page 370.
 Chapter 8. Application Profiling and Access Intent 369

Figure 8-18 Access Intent for Entities 2.x

6. Click the Add button next to Access Intent for Entities 2.x. A wizard starts to
help you configure your Access Intents.

a. Give the following name to the new Access Intent:
eBankFindByAccountIntent.

b. Select the appropriate Access Intent Policy: wsOptimisticRead.

Click Next to continue.

c. The next window shows all Entity EJBs in the current EJB module. Check
the Transfer bean. Click Next to continue.

Note: You cannot configure Access Intents with custom policies from
WebSphere Studio IE, since it only offers WebSphere Application
Server capabilities. You cannot override attributes when creating an
Access Intent from WebSphere Studio IE.
370 WebSphere Application Server Enterprise V5

d. The Transfer bean is shown on the next window. Expand it by clicking the
plus symbol on the left. All the methods of the Transfer bean are shown
categorized by the interface that exposes them. Notice the different
symbols and their meanings, as seen in Figure 8-19.

Figure 8-19 Icon legend

e. Scroll down and select all findByAccount methods, as seen in
Figure 8-20.

Figure 8-20 Select method

f. Click Finish to confirm the creation of the new Access Intent.

8.4.3 Creating an Application Profile
The getAccountsForCustomer business method implemented on the Browser
EJB retrieves all the accounts associated with a given customer. Since there is a
CMR specified between Customer and Account, we can take advantage of
Profiling by reading ahead of time Account objects as soon as we retrieve a
Customer. We will configure an optimistic read policy with read ahead specified
on the CMR attribute of Customer.

First, you will create a task and associate it with the getAccountsForCustomer
method. Then you will create an Application Profile and tie it to the previously
 Chapter 8. Application Profiling and Access Intent 371

defined task. In the final step, you will set the appropriate Access Intent for the
Customer bean in this profile.

The following steps apply to the Application Assembly Tool:

1. We are going to create an Application Profile to benefit from the read ahead
hint when retrieving Customer data. So when we get the Customer data, we
will also obtain its related Accounts. This technique requires a transaction
context.

Create a container transaction that starts when getAccountDataForCustomer
is invoked on the Browser bean. Select Container Transactions on the left
pane. From the menu, select File -> New -> Selected Object.

a. Give the association the following name: RequiredTransactions.

b. Click the Add button. A tree with all the beans and its methods is shown.

c. Select the Browser bean and under All Methods select
getAccountDataForCustomer(String). Click OK.

d. Select a Transaction Attribute of Required. Click OK to confirm the
changes.

2. On the left pane, select Container Tasks. On the menu, select File -> New ->
Selected Object. The window seen in Figure 8-21 on page 373 will open.
372 WebSphere Application Server Enterprise V5

Figure 8-21 Application Assembly Tool: new task window

a. Give the task the following name:
eBankGetAccountDataForCustomerRefTask. This will be the name of the
association between the Entity EJB methods and the task name.

b. Click the Add button. The next window shows a tree with all the available
entity and session beans and their corresponding methods categorized by
the interface that exposes them. Expand the tree by selecting
eBankEJB.jar -> Browser -> All methods.
 Chapter 8. Application Profiling and Access Intent 373

Figure 8-22 Application Assembly Tool: Adding methods in task creation

Select the getAccountDataForCustomer(java.lang.String) method.
Click OK to confirm.

c. Select Run as specified and give the task the following name:
eBankGetAccountDataForCustomerTask. This is the name of the task
under which the Application Profile will be applied. If you select Run as
caller, the Application Profile service will apply the profile associated to
the caller’s task.

d. Click OK to confirm the creation of the task.

3. On the left pane, select Application Profile. From the menu, select File ->
New -> Selected Object. The window seen in Figure 8-23 on page 375 will
open.
374 WebSphere Application Server Enterprise V5

Figure 8-23 Application Assembly Tool: new Application Profile

a. Give the Application Profile the following name: eBankWebUserProfile.

b. Click the Add button. From the drop-down list, select the task you created
in the previous step: eBankGetAccountDataForCustomerTask.

c. Click OK to confirm the creation of the new profile.

4. On the left pane, expand the tree by selecting Application Profile ->
eBankWebUserProfile -> Access Intent. From the menu, select File -> New
-> Selected Object. The window seen in Figure 8-24 on page 376 will open.
 Chapter 8. Application Profiling and Access Intent 375

Figure 8-24 Application Assembly Tool: new Access Intent for an Application Profile

a. Give the new Access Intent the following name:
eBankGetAccountDataForCustomerIntent.

b. Click the Add button. All available entity beans are shown. Select
Customer. Click the OK button to confirm.

c. From the Applied Access Intent drop-down list, select wsOptimisticRead.
When browsing Account data for a Customer, we do not require any locks.
The Access Intent is only for reading.

d. Click the Edit button next to the Access Intent attributes overrides. A menu
with overridable attributes pops up. Select the Read ahead hint.

Note: Notice the difference from the base Access Intent definition. In
the base Access Intent definition, you associate a bean method with an
Access Intent Policy. When creating an Access Intent under an
Application Profile, you associate the whole bean to an Access Intent
Policy. Base Access Intents are defined at method level. Application
Profile Access Intents are defined at bean level.
376 WebSphere Application Server Enterprise V5

e. Close the error window.

f. Click OK to confirm the creation of the Access Intent without a read ahead
hint configured.

g. Explicitly set an wsOptimisticRead Access Intent on Account EJB and
name it eBankReadAheadCompatibleAccount.

h. At the top of the right pane, select the Access Intent you created on the
Customer EJB: eBankGetAccountDataForCustomerIntent.

i. At the bottom of the right pane, click the Edit button under the Access
Intent attributes overrides option. Select the Read ahead hint. Now the
Application Assembly Tool shows a tree with available CMR fields, as seen
in Figure 8-25.

Figure 8-25 Application Assembly Tool: Access Intent with read ahead hint

j. Check account.

k. Click OK to confirm override the read ahead hint.

l. Click Apply to confirm changes in the Access Intent.

Important: When creating a Read ahead hint under an Access Intent (not an
Application Profile) ,the Application Assembly Tool opens a window showing
the following error:

EAAT0046I: The Access Intent attribute must be optimistic in order to
configure a read ahead hint.

The Application Assembly Tool will not let you select any CMR field, because it
does not recognize the Access Intent you have already selected. On the other
hand, when creating a read ahead hint under an Application Profile you are
working with an association between two EJBs. The Access Intent chosen is
applied on the EJB where the Access Intent is being configured and also on
the related EJB. The Application Assembly Tool obliges you to explicitly set an
Access Intent for this related EJB under the same Application Profile where
the read ahead hint is being configured. The explicit Access Intent and the
read ahead hint Access Intent must be of the same nature so that there is no
conflict. Since a read ahead hint must be an optimistic read Access Intent, be
sure to configure the CMR related EJB with an optimistic read Access Intent.
 Chapter 8. Application Profiling and Access Intent 377

Whenever the Customer bean is accessed from the
getAccountDataForCustomer method, this Access Intent will be applied. If we
were planning to delete, create, or modify Customer objects through our
application, a new profile should be created to accommodate new needs. When
modifying or deleting Customer objects, locking would be useful. No read ahead
would be needed, since you only need the Customer object, not its related data.
We could set different collection increments when modifying just one Customer
or applying a modification to a collection of Customer objects.

8.4.4 Creating a Dynamic Query Access Intent
This Access Intents are created under the Dynamic Query option in the
Application Assembly Tool. Access Intents created under this option will be
applied only if no other Access Intent is assigned to the associated bean and the
bean is loaded as a result of a Dynamic Query.

Now you will create a Dynamic Query Access Intent for the Account bean. In
order to create safe transfers, we will access the Account objects with a
pessimistic concurrency control with read intent but able to escalate to an
update. You will use the wsPessimisticRead-WeakestLockAtLoad policy. If the
Account object is modified between the read and the update, an exception will be
thrown.

1. On the left pane, select Dynamic Query. From the menu, select File -> New
-> Selected Object. The window seen in Figure 8-26 on page 379 will open.

Note: Notice that once you assign an Access Intent to an entity bean under a
profile, you cannot assign another Access Intent to the same bean under the
same profile.
378 WebSphere Application Server Enterprise V5

Figure 8-26 Application Assembly Tool: new Dynamic Query Access Intent

a. Give the Access Intent the following name: eBankModifyAccountIntent.

b. Click the Add button. Select the Account entity bean.

c. From the Applied Access Intent drop-down list, select
wsPessimisticRead-WeakestLockAtLoan.

d. Click OK to confirm the creation of the default Access Intent.

8.4.5 Application Profiling API
The Application Profiling service exposes an API available to EJBs through a
JNDI lookup. This API enables you to programmatically set the task name.

Note: Default Access Intent is defined at bean level. Notice that you cannot
override default Access Intent Policies. If needed, a Dynamic Query
Access Intent justifies the creation of a new Access Intent Policy.
 Chapter 8. Application Profiling and Access Intent 379

To develop applications using this API, you need to include the appprofile-ee.jar
in your project’s classpath in WebSphere Studio IE.

1. In WebSphere Studio IE, select Window -> Open Perspective -> Java.

2. In the Package Explorer view, located on the left pane, right-click the Java
Project or EJB Project where you want to use the Application Profiling
service. From the pop-up menu, select Properties.

3. On the left pane of the Properties window, select Java Build Path.

4. On the right pane of the Properties window, select Libraries.

5. Click the Add variable button. A window opens showing all available
variables. See Figure 8-27.

Figure 8-27 New Classpath variable

a. Selectthe WAS_EE_V5 variable. Click the Extend button to complete the
path to the JAR file you need. A window opens and shows a directory tree.

b. Navigate in the directory tree to the lib folder. In the lib folder, select
appprofile-ee.jar. Click OK to add the new library.

6. Click OK to confirm the changes.

WebSphere Studio IE will rebuild your project and the Application Profiling
service will be available to your code.

Use the code in Example 8-1 to programmatically set the task names.

Example 8-1 TaskNameManager API

InitialContext ic = new InitialContext();
// acquire access to the service
TaskNameManager tnManager =

ic.lookup("java:comp/websphere/AppProfile/TaskNameManager");
try {

tnManager.setTaskName("updateAccount");
380 WebSphere Application Server Enterprise V5

} catch (IllegalTaskNameException e) {
// task name reference not configured. Handle error.

}
/*
* reset the task name to undo any changes and recover whatever
* task name was current when this method was invoked.
*/
tnManager.resetTaskName();

Using this API in your enterprise applications will make them not portable to
other application servers. Application Profiling is flexible enough and has a
declarative approach. An enterprise application configured with Application
Profiling is portable to any other application server, although no Access Intent or
Application Profile will be applied since they are WebSphere Application Server
proprietary features.

Testing the sample scenario
Refer to 8.5, “Problem determination and troubleshooting” on page 381 to enable
Relational Resource Adapter (RRA) component traces. RRA component traces
will print the queries used by the runtime to access the persistent storage. You
can see how the Application Profiling hints are being used by the runtime to
optimize the access.

8.5 Problem determination and troubleshooting
Enabling Relational Resource Adapter (RRA) component traces in WebSphere
Application Server Enterprise gives you information on how the runtime is using
the Application Profiling hints. To enable RRA component traces, follow these
steps:

1. Launch the WebSphere Administrative Console, then log in.

2. Select Servers -> Application Servers.

3. On the right pane, click server1, which is the default instance.

4. From the Additional Properties table, select Logging and Tracing.

5. Select Diagnostic Trace. Two tabs show on the right pane: Configuration and
Runtime. Their contents are the same, but the effect on the server
configurations is different. Data stored on the Runtime tab will have effect only
until the server instance is stopped. Changes are lost when the server
instance is stopped. Data stored under the Configuration tab persists over
system shutdowns. Click the Runtime tab.

6. In the Trace Specification text area type RRA=all=enabled.
 Chapter 8. Application Profiling and Access Intent 381

7. Click OK to confirm the new settings. Since these changes are made in the
Runtime tab, no additional step is required. Making changes in the
Configuration tab requires you to click Save.

You have enabled traces so that you can see how EJBs are accessed. To
compare the behavior of Application Profiling versus no Profiling, follow these
steps:

1. Deploy the sample application with Application Profiling in your WebSphere
Application Server Enterprise V5. The install instructions for the sample
application, eBank, can be found in the additional materials available with this
redbook (see Appendix C, “Additional material” on page 683).

2. Open your browser and type the following URL:
http://localhost:9080/eBankWeb/.

3. When you are prompted, enter a valid Customer ID type 01, then press Enter.

4. A list of accounts for the selected customer is presented. Select account
number 001 and click the Transfer money button.

5. The selected account will be the account from where money will be
transferred.

a. Under credit, enter account number 003.

b. Under amount, type 150.

c. Click the Confirm button.

6. A summary of the operation is seen. Click Back to return to the Customer’s
accounts view.

7. Select account number 001. Click the Show movements button.

8. A list of historic related transfers is seen. The first balance value is the original
balance of the account. Adding or substracting the value in the amount
column gives you the next balance. The last value in bold letters, above the
Back button, is the current account balance. Close the browser.

9. Go to <WebSphere_root>/logs/server1. Open the trace file.

If you compare traces from the sample application using the Application Profiling
service and not using it, you will notice some differences. When retrieving the
data for the specified customer, the Application Profiling service uses the read
ahead hint. Compare the traces shown in Example 8-2 and Example 8-3 on
page 383.

Example 8-2 No Application Profiling

[7/22/03 12:15:58:211 CEST] 5e03f599 WSRdbConnecti d getConnection
 com.ibm.ws.rsadapter.cci.WSRdbConnectionFactoryImpl@4bd03591
 com.ibm.ws.rsadapter.cci.WSRdbConnectionSpecImpl@d23690ae
382 WebSphere Application Server Enterprise V5

 UserName = null
 Password = null
 Catalog = null
 IsReadOnly = null
 TypeMap = null
 AccessIntent = (pessimistic update-weakestLockAtLoad)(collections: transaction/25) (resource
manager prefetch: 0) (AccessIntentImpl@d23690ae)

SELECT T1.ID, T1.NAME FROM ITSO.CUSTOMER T1 WHERE T1.ID = ?

SELECT T1.ID, T1.BALANCE, T1.CUSTOMER_ID FROM ITSO.ACCOUNT T1 WHERE T1.CUSTOMER_ID = ?

Example 8-2 on page 382 shows that the default Access Intent,
weakestLockAtLoad, is being applied. Customer and Account data is retrieved in
two steps. In addition, no prefetch is used, so Account rows need several trips to
the database to be loaded.

Example 8-3 With Application Profiling: eBankWebUserProfile is being applied.

[7/23/03 13:33:05:460 CEST] 5b69d867 WSRdbConnecti d getConnection
 com.ibm.ws.rsadapter.cci.WSRdbConnectionFactoryImpl@5cb7d842
 com.ibm.ws.rsadapter.cci.WSRdbConnectionSpecImpl@be890c5f
 UserName = null
 Password = null
 Catalog = null
 IsReadOnly = null
 TypeMap = null
 AccessIntent = (optimistic read)(collections: transaction/25) (resource manager prefetch:
5)((account (ReadAheadItemImpl@78e1858)) (ReadAheadHintImpl@1))) (AccessIntentImpl@be890c5f)

SELECT A2.ID, A2.NAME, A1.ID, A1.BALANCE, A1.CUSTOMER_ID FROM ITSO.CUSTOMER A2 LEFT OUTER JOIN
ITSO.ACCOUNT A1 ON A2.ID = A1.CUSTOMER_ID WHERE A2.ID = ?

Example 8-3 shows the result of applying eBankWebUserProfile that you
configured in the sample in 8.4.3, “Creating an Application Profile” on page 371.
An optimistic read approach is used. Customer and Account data is retrieved in a
single step. The use of a prefetch increment of 5 ensures that at least five rows
will be loaded from the database in just one trip.

If you are using the Application Profiling API to dynamically set the task name at
runtime, you should be able to manage the IllegalTaskNameException as seen in
Example 8-1 on page 380.
 Chapter 8. Application Profiling and Access Intent 383

384 WebSphere Application Server Enterprise V5

Chapter 9. Transactional Services

The transactional support provided by J2EE architecture can be too constrained
for some application models. WebSphere Enterprise extends the architecture
with new features for transactions. The possible transactional scenarios are:

� A transaction involving a single one-phase commit resource.

This model is supported by J2EE as a Local Transaction.

� A transaction involving a single two-phase commit resource.

This model is supported under J2EE as a Local Transaction.

� A transaction involving several one-phase commit resources.

This model is not supported by the J2EE architecture. WebSphere
Applications Server Enterprise V5 provides the ActivitySession service to
support this model.

� A transaction involving several two-phase commit resources.

This model is supported under J2EE as a global transaction.

� A transaction involving several two-phase commit resources and just a single
one-phase commit resource.

This model is not supported by the J2EE architecture. WebSphere
Application Server Enterprise V5 provides the Last Participant Support to
cover this model.

ActivitySession service and Last Participant Support are independent services.

9

© Copyright IBM Corp. 2003. All rights reserved. 385

This chapter first introduces all transaction-related concepts needed to
understand Last Participant Support and ActivitySession services. Later, it
separately explains how these services work, including configuration issues,
runtime management and troubleshooting.

9.1 Transactions overview
In this book we use the following terms:

� Resource Manager Local Transaction (RMLT)
� Local Transaction Containment (LTC)
� Global transaction

Resource Manager Local Transaction (RMLT)
An RMLT is a resource adapter’s view of a local transaction. It represents the unit
of recovery on a single connection that is managed by the resource manager.
The resource manager offers javax.resource.cci.LocalTransaction and
java.sql.Connection interfaces to enable a bean or the container to request that
the resource adapter commit or roll back its RMLT.

Figure 9-1 Resource Manager Local Transaction sample

EJB Conta iner

Session
EJB

Session
EJB

Loca l Transact ion Conta inm ent

Entit y
EJB

Ent it y
EJB

Ent it y
EJB

Ent it y
EJB

update()

delete()

Resource
Manager

begin()

execut e()

com mit ()

Resour ce Manager Local Transaction

begin()

execute()

com mit ()

Resource Manager
Local Tr ansact ion
386 WebSphere Application Server Enterprise V5

The diagram in Figure 9-1 on page 386 illustrates two RMLTs invoked within the
same LTC. Both RMLTs involve the same resource manager. The Entity EJBs
that trigger the RMLTs are BMP Entity EJBs, so explicit invocation of begin and
commit methods are needed.

Local Transaction Containment (LTC)
A LTC is a bounded unit of work scope where zero, one, or more Resource
Manager Local Transactions (RMLT) may be accessed. The LTC defines the
boundary at which all RMLTs must be complete. Any incomplete RMLT may be
resolved according to the resolution policy specified at deployment time. An LTC
context is always established by the container in the absence of a global
transaction. An LTC is local to a bean instance. LTCs are not shared across
beans even if those beans are managed by the same container. The J2EE
specification defines the LTC on the bean method level.

Figure 9-2 Local Transaction Containment sample

The diagram in Figure 9-2 illustrates an LTC where a Session EJB starts a
Container Managed Transaction on request of a J2EE client call. Two different
Entity EJBs are involved in the LTC.

EJB Container

Session
EJB

Session
EJB

J2EE
Client
J2EE
Client

doSomething()

Ent ity
EJB

Ent ity
EJB

Ent ity
EJB

Ent ity
EJB

update()

delete()

Local Transact ion Containm ent
 Chapter 9. Transactional Services 387

Global transaction
Global transactions are supported by resource managers capable of dealing with
the two-phase commit protocol. These resource managers implement the
javax.transaction.xa.XAResource interface. The application server uses a
Transaction Manager to coordinate the transaction. The Transaction Manager is
external to any of the resource managers and it is provided by the application
server.

Figure 9-3 Global transaction

Figure 9-3 shows a transaction where two Container Managed (CMP) entity
beans are backed up by two different XA resource managers. A global
transaction context is needed. The Transaction Manager coordinates both
resource managers using the two-phase commit protocol. There is no RMLT in a
global transaction. From the resource manager’s point of view, the transaction
cannot be local, since it is externally managed by the Transaction Manager.

The application server will provide the following functions:

� Inform the transaction manager when a transaction begins.
� Perform the work of the transaction.
� Tell the transaction manager to commit the transaction.

The transaction manager uses the XAResource interface to coordinate the
two-phase commit process across multiple resource managers. Two-phase
commit, as seen in Figure 9-4 on page 389, works as follows:

1. In phase 1, the transaction manager asks all resource managers to prepare to
commit their work. If a resource manager can commit its work, it replies

EJB Container

Session
EJB

Global Transact ion

Ent it y
EJB

Entit y
EJB

update()

delete()

Resource
Manager

Resource
Manager

Transact ion
Manager

prepare_com mit()
prepare_commit ()

comm it ()
commit ()

begin()

execute()

begin()

execute()

execute ()

execute ()
388 WebSphere Application Server Enterprise V5

affirmatively, and hardens its recoverable data to the permanent storage. A
negative reply reports an inability to commit for any reason.

2. In phase 2, the transaction manager directs all resource managers either to
commit or roll back the work done on behalf of the global transaction, based
on the replies from phase 1.

Figure 9-4 Two-phase commit

9.2 Last Participant Support
Last Participant Support allows the single one-phase commit resource to be
involved in a global transaction where multiple two-phase commit resources
execute. Multiple interactions may occur involving the one-phase commit
resource in the same transaction, but only one such resource may be involved.

It is possible for a resource adapter that does not implement the XAResource
interface to participate in a global transaction using Last Participant Support.
This allows the use of a single one-phase commit resource in a global
transaction, along with any number of two-phase commit resources. At
transaction commit, the two-phase commit resources will first be prepared. If this
is successful, the one-phase commit resource will be called to commit, followed
by the call to commit for two-phase commit resources. See Figure 9-5 on
page 390.

Transaction
Manager

Resource
Manager

A

Resource
Manager

B

prepare co
mmit

prepare commit

vo
te co

mmit

vote commit

Transaction
Manager

Resource
Manager

A

Resource
Manager

B

co
mmit

commit

Global
Transaction

Global
Transaction

First Phase Second Phase
 Chapter 9. Transactional Services 389

Figure 9-5 Last Participant Support

Last Participant Support introduces the hazard of a mixed resolution of the global
transaction if the one-phase commit resource succeeds and one or more of the
two-phase commit resources fail during the commit phase. The one-phase
commit resource cannot be recovered.

Last Participant Support cannot be considered a substitute for the two-phase
commit protocol. Applications that use Last Participant Support must be
structured to handle the hazard mentioned before.

9.2.1 Configuration
Configuration of an Enterprise Application for Last Participant Support can be
achieved using the Application Assembly Tool or using the Administrative
Console. In both cases, the configuration tasks are reduced to a check box that
enables or disables the acceptance of a heuristic hazard.

Transaction
Manager

2PC
Resource
Manager

A

2PC
Resource
Manager

B

prepare commit

prepare com
m

it

vote commit

vote com
m

it

Transaction
Manager

2PC
Resource
Manager

A

2PC
Resource
Manager

B

co
m

m
it

com
m

it

Global
Transaction

Global
Transaction

First Phase Second Phase

1PC
Resource
Manager

1PC
Resource
Manager

commit
390 WebSphere Application Server Enterprise V5

Application Assembly Tool
To enable Last Participant Support from the Application Assembly Tool, follow
these steps:

1. Open the sample enterprise application archive ACompany.ear in the
Application Assembly Tool.

2. On the left pane, select the ACompany node.

3. On the right pane, select WAS Enterprise tab.

4. On the WAS Enterprise tab, select Accept heuristic hazard. See Figure 9-6.

Figure 9-6 Application Assembly Tool: Last Participant Support enablement

5. Click Apply to make the configuration update.

6. Save and close the EAR file.

Administrative Console
To enable Last Participant Support from the Administrative Console, follow these
steps:

1. Launch the Administrative Console and log in.

2. Select Applications -> Enterprise Applications.

3. On the right pane, select the name of your application: ACompany.

4. Under the Configuration tab, scroll down if necessary until you can see the
Additional Properties table. Under Additional Properties, select Last
Participant Support extension. See Figure 9-7 on page 392.
 Chapter 9. Transactional Services 391

Figure 9-7 Administrative Console - Last Participant Support extension

5. Check Accept Heuristic Hazard.

6. Click OK to confirm the configuration change.

7. Save the configuration for WebSphere.

8. Restart the application for the changes to take effect.

9.2.2 Troubleshooting
Problems under the Last Participant Support extension can be derived from:

1. Mixing multiple single one-phase commit resources with one or more
two-phase commit resources under the same transaction.

This is not a supported scenario. Last Participant Support only accepts a
single one-phase commit resource.

2. Mixing just a single one-phase commit resource with one or more two-phase
commit resources under the same transaction without enabling Last
Participant Support.

3. Mix of the previous two problems.

Tracing
When you work on a scenario similar to the one explained in the previous section
under the second (2) point, default traces are enough to diagnose the problem.
392 WebSphere Application Server Enterprise V5

You can view traces in the file
<WAS_INSTALL>/logs/<servicemen>/SystemOut.log or using the Administrative
Console. The Administrative Console not only shows traces but gives a complete
diagnosis, and sometimes a solution, for the referred problem.

If you try to run the sample application eBankLPS without Last Participant
Support enabled, the runtime environment will throw an exception if the
application has a heuristic hazard and you have not chosen to accept it.

Look at the bottom of the Administrative Console to check for errors. Clicking the
link of new errors will show a detailed description of the exceptions thrown as
seen in Figure 9-8. Three exceptions are thrown related to this misuse of a single
one-phase commit resource manager with one or more two-phase resource
managers without enabling Last Participant Support.

Figure 9-8 Administrative Console exceptions

The first exception is triggered by the container. In the list shown in Figure 9-8,
you can see time stamps and realize that exceptions are ordered first to last from
bottom to top. Click in the first exception to see the details as seen in Figure 9-9.

Figure 9-9 Administrative Console: error details
 Chapter 9. Transactional Services 393

The Explanation row of the General Properties table has enough information to
recognize the problem. The User Action row suggests corrective actions.

Heuristic reporting
Using Last Participant Support introduces a hazard of a mixed output if one or
more two-phase resources fail to commit in the commit phase. At this moment,
the prepare commit has been issued and the one-phase commit resource has
been committed. No rollback can be performed on the one-phase commit
resource. The output is mixed, as there will be committed and uncommitted
resources.

A more unusual situation is the heuristic condition that happens when the system
crashes when resolving the one-phase commit resource. In this case
WebSphere Application Server will be unable to determine how the one-phase
commit resource was resolved. The two-phase commit resources will be rolled
back. When restarting the application server, it will inform you that such a
heuristic condition has been reached, as seen in Example 9-1.

Example 9-1 Heuristic condition

[7/14/03 17:23:19:659 CEST] 6deed3fc TrLog E WTRN0061W: A heuristic condition may have
occurred for transaction 000000010214b4786c9ae46a3c7e78287e72bc22039d18461f8a

It can be helpful when using Last Participant Support, as well as with
ActivitySession service, to enable heuristic reporting. Heuristic reporting
provides tracking of one-phase commit resources so that you can be sure if
these resources have been correctly resolved or a mixed output state has been
reached.
394 WebSphere Application Server Enterprise V5

Figure 9-10 Heuristic reporting sequence diagram

Figure 9-10 shows how heuristic reporting works. The Java Transaction Service
(JTS) coordinates the global transaction across resources. In this sample, there
are two XA capable resources (two-phase commit) and a one-phase commit
resource. The JTS starts with the prepare phase, as also seen in Figure 9-4 on
page 389. In this phase, the JTS asks the XA resources for their disposition to
commit. The second phase consists of committing the resources. The first to be
committed is the one-phase resource. If heuristic reporting is enabled, a line is
written to the log before and after committing the one-phase resource. If
eventually any of the XA resources cannot commit, it will provoke a rollback in all
the two-phase commit resources. The heuristic reporting will inform you whether
the one-phase commit resource succeeded in committing, provoking a mixed
outcome, or was also rolled back. Using heuristic reporting, you will be able to
recover from inconsistent states induced by mixed outcome.

To configure heuristic reporting, open the Administrative Console:

1. Select Servers -> Application Servers.

2. In the right pane, under the Configuration tab, scroll down through the
Additional Properties table to select Transaction service.
 Chapter 9. Transactional Services 395

3. Select the enableLoggingForHeuristicReporting check box.

9.3 ActivitySession
EJBs cannot extend a Resource Manager Local Transaction (RMLT) beyond the
boundary of an EJB method invocation. There is a need to extend support for
ACID transactions. A J2EE application accessing one or more EJBs backed by
non-transactional one-phase commit resources is not capable of coordinating
these resources.

ActivitySession provides both a way to extend transaction boundaries beyond
method invocation and to specify EJB activation and passivation by means of
these new boundaries. ActivitySession becomes a new entity in the transactional
scenario defining new boundaries for a unit of work.

ActivitySession can be associated with an HTTP session, so not only can the unit
of work boundaries be defined by the client but the EJB life cycle can be scoped
to that client.

Figure 9-11 ActivitySession

Figure 9-11 shows how ActivitySession can extend the LTC. In this particular
scenario, the ActivitySession is scoped to the client life cycle. Entity EJBs could
be activated at the beginning of the ActivitySession and passivated at the end,

EJB Conta iner

Session
EJB

J2EE
Client

doSomething()

Ent ity
EJB

Ent it y
EJB

update()

delete()

Act ivity Session

browse()
doSomethingElse()
396 WebSphere Application Server Enterprise V5

reducing the overhead of activating and passivating the EJBs on each method
call.

There are a few usage rules that have to do with RMLTs, LTCs, global
transactions and ActivitySessions:

� Nested ActivitySessions are not supported.
� ActivitySession boundaries cannot overlap.
� ActivitySessions may encapsulate one or more global transactions.
� Global transactions within an ActivitySession are independent of each other.
� It is not possible for an LTC to coexist with a global transaction.
� No one can wrap an ActivitySession; ActivitySessions exist on their own.

9.3.1 Extended Local Transaction
ActivitySession service extends the J2EE LTC beyond the method invocation
providing Extended Local Transactions. Extended Local Transactions are offered
in WebSphere Enterprise V5 by means of the ActivitySession as LTCs.

There are two patterns of LTC usage:

� Containment

RMLTs within the LTC are started and completed by the application. RMLTs
are said to be contained by the LTC. RMLTs that are not completed by the
application by the end of the LTC boundary are cleaned up by the container in
a direction (commit or rollback) determined by the unresolved action policy.
This is a bean-managed or programmatic approach.

� Enlistment

RMLTs are started by the container when the application first uses a
connection. RMLTs are said to be enlisted in the LTC. RMLTs are completed
by the container at the end of the LTC. This is a container-managed or
declarative approach.

The ActivitySession service captures the commit operations of each local and
global transaction and upholds them. At the end of the ActivitySession, the
container will effectively commit or roll back each individual transaction.

The ActivitySession is not a substitute for the two-phase commit protocol. An
ActivitySession may result in a mixed outcome, if any single-phase resource
successfully gets committed before another resource fails to commit. In this case,
the ActivitySession service will allow the programmer to retrieve the list of
resources that were committed and those whose state is uncertain.
 Chapter 9. Transactional Services 397

Configuration
Configuration of ActivitySession service requires two steps that resemble the
transactional configuration specified by the Java Transaction Architecture (JTA):

1. Configure the ActivitySession component level properties.

Components that support ActivitySession are:

– EJB Components: Session and entity beans
– Web Components: Servlets

2. Configure the Container ActivitySessions

This step is only needed if the application is using an enlistment pattern. This
is done in a manner very similar to the definition of Container Transactions in
J2EE. ActivitySession boundaries are defined by specifying the
ActivitySession support given by each EJB method.

ActivitySession component level properties
Some attributes have been added to the IBM extensions to manage LTCs:

� Boundary

Identifies the containment boundary at which all contained RMLTs must be
completed. Possible values are:

– Bean method

RMLTs must be resolved within the scope of the bean method where they
were started. It is the default value.

– ActivitySession

If an ActivitySession context is present, RMLTs must be resolved within
the ActivitySession scope. If no ActivitySession context is present the
policy will be the same as if BeanMethod value was assigned.

� Resolution control

Assigns the responsibility of initiating and ending RMLTs to a component.
Possible values are:

– Application

The application code is responsible for explicitly starting RMLTs and
completing them before reaching the LTC boundary. An enlistment pattern
is used.

Restriction: A value of ActivitySession is not valid for Stateless Session
Beans.
398 WebSphere Application Server Enterprise V5

If connections are used without calling begin()::LocalTransaction or
setAutoCommit(false)::Connection, then the connections will be
auto-committed by the resource adapter or the underlying resource
manager. This execution model may introduce the need for an application
to be notified when the LTC boundary is ending in order to fulfill its
responsibility to complete RMLTs it started. A synchronization interface is
exposed to implement this need.

Any incomplete RMLTs by the end of the LTC boundary will be cleaned up
by the container according to the value of the unresolved action attribute.

– Container

The container is responsible for both starting RMLTs and completing them
within the LTC boundary. Container begins an RMLT when a connection is
first used within the LTC scope and automatically completes it at the end
of the LTC scope. The boundary may be either an ActivitySession or a
bean method.

� Unresolved action

Indicates the action the container will request any RMLT to take in case it is
unresolved at the end of the LTC boundary.

– Commit

Pending RMLTs will be instructed to commit by the container.

– Rollback

Pending RMLTs will be instructed to roll back by the container. This is the
default value.

These parameters can be configured using the Application Assembly Tool or in
WebSphere Studio IE. LTCs can be configured in EJBs as well as in Servlets.

� WebSphere Studio IE

To configure LTCs from WebSphere Studio IE, follow these steps:

– For EJBs:

i. Open the EJB Deployment Descriptor.

ii. Switch to the Beans tab.

Important: This attribute should only be applied when resolution control has
a value of application. Unresolved action does not make sense in a context
where it is the container that already decides what action to request on the
resource managers with incomplete RMLTs. Application Assembly Tool will not
check that you apply this constraint.
 Chapter 9. Transactional Services 399

iii. Select the EJB to configure.

iv. Scroll down the right pane to access the WebSphere Extensions.

v. Under WebSphere Extensions the three attributes (Boundary, Resolver
and Unresolved action) appear below the Local Transaction 2.0 title.

– For Servlets:

i. Open the Web Deployment Descriptor.

ii. Switch to the Servlets tab.

iii. Select the Servlet to configure.

iv. Scroll down the right pane to access WebSphere Extensions.

v. The three attributes (Boundary, Resolver and Unresolved action)
appear at the bottom.

� Application Assembly Tool

To configure LTCs from the Application Assembly Tool, follow these steps:

– For EJBs:

i. On the left pane, expand the tree by selecting
<enterprise_application> -> EJB Modules -> <ejb_module> and
then selecting either Session Beans or Entity Beans.

ii. Select the Session or entity bean you want to configure.

iii. On the right pane, switch to the IBM Extensions tab.

iv. The three properties to be configured appear under the Local
Transactions title.

– For Servlets:

i. On the left pane, expand the tree by selecting
<enterprise_application> -> Web Modules -> <web_module> ->
Web Components.

ii. Select the Servlet you want to configure.

Important: In the Servlet configuration these attributes only have meaning if
ActivitySession is to be used. The Boundary attribute should be always set to
ActivitySession since the Bean Method value does not apply. The Boundary
attribute value should be inferred from the usage or not of the ActivitySession.
400 WebSphere Application Server Enterprise V5

iii. Open the IBM Extensions tab to access the Unresolved action
attribute.

iv. Switch to the WAS Enterprise tab to access the Resolver attribute. The
Resolver attribute appears named as ActivitySession control kind.
When set to None, no ActivitySession is used. If Application or
Container values are applied, then Boundary is set to ActivitySession,
since no other value may apply to Servlets.

Container ActivitySession
After configuring how the ActivitySession service is going to behave in each
component, you should configure what support is expected by each method. A
method may be associated with the following ActivitySession attribute values:

� Never

An ActivitySession context is forbidden. Any violation causes a
RemoteException to be thrown.

� Supports

If an ActivitySession context is received it will be used. If no ActivitySession is
present at invocation, none will be used.

� Not Supported

No ActivitySession is needed. If one is received, it will be suspended. On
method return, the ActivitySession will be resumed.

� Requires New

If an ActivitySession context is received, it is suspended and a new
ActivitySession is created. If no ActivitySession is present, a new one is
created.

� Required

If an ActivitySession context is received it will be used. If no ActivitySession is
active when a method is called, a new ActivitySession is created.

� Mandatory

An ActivitySession must be present at method invocation. Otherwise, an
ActivitySessionRequiredException is thrown.

Important: In the Application Assembly Tool, the ActivitySession service
configuration attributes are in two different tabs: WAS Enterprise and IBM
Extensions. The name of one of the attributes is also changed. The
Resolver attribute appears as ActivitySession control kind.
 Chapter 9. Transactional Services 401

Figure 9-12 ActivitySession attribute values

Figure 9-12 shows the possible ActivitySession attribute values and their effect
when an ActivitySession is received and when it is not.

Container ActivitySessions can only be configured in the Application Assembly
Tool. There is no tool support for this in WebSphere Studio IE. Container
ActivitySession configuration groups methods from different components and
assigns this group a support level for the ActivitySession.To create a container
ActivitySession, follow these steps:

1. In the Application Assembly Tool, expand the tree on the left pane by
selecting <enterprise_application> -> EJB Modules -> <ejb_module> ->
Container ActivitySession.

2. From the menu, select File -> New -> Selected Object. You will see the
window shown in Figure 9-13 on page 403.

Identifies the error conditions

Act iv ity
Session
Policies

Act iv ity
Session
Received

Yes No

throw s exception -

uses -

suspends -

suspends creates
new

creates new

uses creates new

uses throw s except ion

Never

Supports

Not Supported

Requires New

Mandatory

Required
402 WebSphere Application Server Enterprise V5

Figure 9-13 Application Assembly Tool - New Container ActivitySession

You must group methods with the same ActivitySession attribute under the
same Container ActivitySession definition. Nevertheless, you can have
different Container ActivitySessions with the same ActivitySession attribute
value but with different naming. The name can add semantics to the
Container ActivitySession, so you can identify the purpose of the associated
methods.

3. Give a name to the Container ActivitySession.

4. Click the Add button. A window will open to browse the methods of the EJBs.

5. Select the methods you want to add and click Apply for each one.

6. Once you have finished adding methods, click OK to confirm the changes.

7. From the drop-down list, choose the ActivitySession attribute value required
for these methods.

8. Click OK to create the new Container ActivitySession.
 Chapter 9. Transactional Services 403

ActivitySession service API
If the Resolver is set to Application, a containment pattern is being used and
coding using the ActivitySession service API is needed for the application. You
can achieve the same goals using ActivitySession programmatically using the
API instead of configuring Container ActivitySessions.

To access the ActivitySession service API, you need to add the
activitySession.jar to your project’s build path. Follow these steps:

1. In WebSphere Studio IE, select Window -> Open Perspective -> Java.

2. In the Package Explorer view, located in the left pane, right-click the Web
Project or EJB Project where you want to use the ActivitySession service.
From the pop-up menu, select Properties.

3. On the left pane of the Properties window, select Java Build Path.

4. On the right pane of the Properties window, select Libraries.

5. Click the Add variable button. A window opens showing all available variables
as seen in Figure 9-14.

Figure 9-14 Build path variable

a. Select the WAS_EE_V5 variable. Click the Extend button to complete the
path to the JAR file you need. A window opens and shows a directory tree.

b. Navigate in the directory tree to the lib folder. Select activitySession.jar.
Click OK to add the new library.

6. Click OK to confirm the changes.

WebSphere Studio IE will rebuild your project and the ActivitySession service will
be available to your code.

The ActivitySession service is exposed to application programmers through the
com.ibm.websphere.ActivitySession.UserActivitySession interface. The methods
exposed by this interface are shown in Example 9-2 on page 405.
404 WebSphere Application Server Enterprise V5

Example 9-2 UserActivitySession

public interface UserActivitySession {

public static final int EndModeCheckPoint = 0;
public static final int EndModeReset = 1;
public static final int StatusSessionActive = 0;
public static final int StatusSessionCompleting = 1;
public static final int StatusSessionCompleted = 2;
public static final int StatusNoSession = 3;
public static final int StatusUnknown = 4;

public abstract void beginSession();
public abstract void endSession(int i);
public abstract void resetSession();
public abstract void checkpointSession();
public abstract int getStatus();
public abstract String getSessionName();
public abstract void setSessionTimeout(int i);
public abstract int getSessionTimeout();
public abstract void setResetOnly();

}

An ActivitySession is started with a beginSession method call and ended with a
endSession method call.

The UserActivitySession lets you checkpoint work to commit changes made up
to a specific point without ending the ActivitySession.

The resetSession method call causes the ActivitySession service to roll back all
changes to the last checkpoint.

You can programmatically set a timeout for the ActivitySession through the
setTimeOut method call. The time is specified in seconds. It can also be set
through the Administrative Console for each server instance, as seen in 9.4,
“Runtime” on page 410.

The implementation of this interface can only be accessed through a JNDI
lookup. The UserActivitySession implementation is bound to the
java:comp/websphere/UserActivitySession name. Example 9-3 shows how to
use the UserActivitySession.

Example 9-3 UserActivitySession usage

//perform lookup

Important: Throws clauses have been removed from the code in Example 9-2
for a clearer view.
 Chapter 9. Transactional Services 405

InitialContext ic= new InitialContex();
UserActivitySession uas=

(UserActivitySession)ic.lookup(“java:comp/websphere/UserActivitySession“);
uas.beginSession();

//do some work
myBean.doSomeWork();

//mid checkpoint
uas.checkpointSession();

//do some more work
myOtherBean.doSomeWork();

//end the session
uas.endSession(UserActivitySession.EndModeCheckPoint);

A Web application can use both transactions and ActivitySessions. Any
transactions started within the scope of an ActivitySession must be ended by the
Web component that started them and within the same request dispatch.

9.3.2 Extended EJB life cycle
Without ActivitySession service support, there were only two different ways to
keep an EJB within scope between multiple method calls:

� Use of commit option A.

This option prevents the EJB from being workload managed and disallows
sharing the database tables with other applications.

� Start a global transaction.

Global transactions need external resources (not only from the resource
manager) to coordinate the different RMLTs. A transaction service such as
the JTS must be used. This carries a performance weight.

Important: Necessary try/catch statements have been removed for clarity. For
a detailed description of exceptions needed to be caught, refer to “Exception
handling” on page 411.

Important: Actually WebSphere Studio IE V5.0.1 has a bug that inhibits the
use of the ActivitySession service under WebSphere Test Environment EE. To
correct this configuration problem, edit the file named
<wsad_ie_install>/runtimes/ee_v5/properties/implfactory.properties. Search
for the key com.ibm.websphere.csi.ContainerExtensionFactory. Assign it the
following value: com.ibm.ejs.csi.ContainerExtensionFactoryPMEImpl.
406 WebSphere Application Server Enterprise V5

ActivitySession service lets you extend the life cycle of an EJB without the
performance drawback of a global transaction and avoiding the restrictions of
using commit option A.

An EJB activation can be scoped to the ActivitySession, rather than being
scoped to the transaction boundaries, offering additional control on the timing for
EJB activation and passivation, with potential performance benefits.

This feature can highly improve performance by avoiding unnecessary
passivations. EJBs remain active and ready.

Configuration
New EJB Bean cache policies have been added to existing IBM extensions. The
Bean cache policies are governed by two attributes:

� Activate At

Defines when an EJB is activated and placed in cache as well as when it is
removed from cache and passivated.

– Once

The EJB is activated and put in cache the first time it is accessed.
Removal and passivation depend on the container.

– Transaction

Activation and passivation as well as cache life time are governed by
transaction boundaries. The EJB is activated and put in cache when the
transaction begins and passivated and removed from cache when the
transaction ends.

– ActivitySession

Activation and passivation as well as cache life time are governed by
ActivitySession boundaries. This is a new policy.

� Load At

Specifies when the container should synchronize the bean with the
persistence layer. This implies whether the container has exclusive or shared
access to the database.

– Activation

The EJB is loaded from the persistent storage when it is activated
regardless of the Activate At policy. The container will use exclusive
access to the persistence layer.

– Transaction

The EJB is loaded at the start of the transaction. The container will use
shared access to the persistence layer.
 Chapter 9. Transactional Services 407

The Bean cache policy governs which commit option will be used for the specific
bean where it is configured.

Figure 9-15 Bean cache policies and commit options

Figure 9-15 shows which commit options will be used depending on the Load At
and Activate At values of the Bean cache policy.

According to the EJB 2.1 specification, supported commit options are A, B and C.
Commit option C+ is an IBM extension to support an EJB life cycle bounded to
the Activity Session boundaries. With commit option C+, the EJB is activated
only once per ActivitySession, but data may be loaded or stored multiple times
within that session at checkpoints.

� Option A

When the transaction ends, the container caches the instance and it remains
valid across transactions. The container invokes ejbStore to synchronize the
instance. The instance remains both ready and valid, so the container will not
load it again from the persistent storage when the next transaction begins.
Exclusive access to the instance is ensured by the container.

� Option B

The container invokes ejbStore, caches the instance but marks it as not valid.
When a new transaction begins, the container invokes ejbLoad to synchronize
the bean, since the container does not ensure exclusive access.

� Option C

The container does not cache the instance. At the end of the transaction, the
container invokes ejbStore and ejbPassivate and returns the instance to the
pool. At the beginning of the next transaction, ejbActivate and ejbLoad are
invoked on the retrieved instance to synchronize the state of the EJB.

� Option C+

This option is different from the others because instead of referring to
transaction boundaries, it refers to ActivitySession boundaries. An
ActivitySession may contain multiple transactions, global or local. With
commit option C+, an EJB is stored at the transaction end and loaded at the
beginning of the next transaction. No activation or passivation is needed. The
same object is reused between transactions.

C+CBTransact ion

UnsupportedUnsupportedAAct ivat ion

Activity
SessionTransact ionOnce

Act ivate At

Load At

C+CBTransact ion

UnsupportedUnsupportedAAct ivat ion

Activity
SessionTransact ionOnce

Act ivate At

Load At
408 WebSphere Application Server Enterprise V5

Figure 9-16 summarizes these properties. The Write column specifies whether
the EJB is written to persistent storage at the transaction end. The Ready column
specifies if the instance remains ready for the next transaction. If ready, the
instance is not returned to the pool. The Valid column specifies if the instance
remains valid for the next transaction. If valid, the instance does not need to be
synchronized with the persistent storage at the beginning of the next transaction.

Figure 9-16 Commit options

The EJB life cycle is influenced by the commit options. Depending on the commit
option used by the container, some EJB callback methods may be obviated to
achieve better performance.

Figure 9-17 shows which methods get invoked in a scenario where an Entity EJB
is invoked in two consecutive transactions. The figure illustrates whether the
selected method is invoked or not at the end of the first transaction and at the
beginning of the second transaction.

Figure 9-17 EJB callback methods invocation depending on commit options

Com m it
Opt ion

EJB St ate

W rite Ready Valid

X
X X

X

Option A
Opt ion B
Opt ion C
Opt ion C+

 Reads as YES X Reads as NO

ejbStore ejbPassivate ejbActivate ejbLoad
X X X X

X X

X X

Opt ion A
Opt ion B
Opt ion C
Opt ion C+

Com m it
Opt ion

EJB State at transaction end at transaction begin

 Reads as YES X Reads as NO
 Chapter 9. Transactional Services 409

9.3.3 Usage scenarios
Using the ActivitySession service in association with a Web container lets you
extend and define transactions of EJBs during the client’s life cycle.

Coordination of one-phase commit resources is not supported by the J2EE
specification. ActivitySession adds more flexibility to the constrained J2EE
model, enabling the coordination of one-phase commit resources under a unit of
work.

Client scoped life cycle
ActivitySessions used within a Web container are automatically associated to the
HTTP Session. An EJB can be activated and passivated in ActivitySession
boundaries, as was seen in 9.3.2, “Extended EJB life cycle” on page 406.
Therefore, it is possible to span the life of an EJB and map it to the client’s life
cycle.

Client side demarcation
The association between the ActivitySession and the HTTP Session also
rewards you with the possibility of client-side defined transactions.
ActivitySession lets you coordinate a number of one-phase commit resources
within the boundaries of a single unit of work. You can span this unit of work
through multiple client invocations.

Coordination of one-phase commit resources
ActivitySession service allows the coordination of multiple one-phase commit
resources within the boundaries of a single unit of work. It is not a substitute for
the two-commit phase protocol and introduces a heuristic hazard.

9.4 Runtime
Although ActivitySession service usage can lead to a mixed outcome when
coordinating several one-phase commit resources, there is no need to accept the
heuristic hazard.

Important: Both Figure 9-16 and in Figure 9-17 show different views of the
same data. Notice that Option C+ in an ActivitySession context behaves
similar to Option B in a transaction context. Option C+ is the only possible
option when using ActivitySession service for scoped activation.
410 WebSphere Application Server Enterprise V5

9.4.1 Enable the ActivitySession service
The only runtime configuration needed is the enablement of the ActivitySession
service on the server you want to deploy your application to. To enable the
ActivitySession service, follow these steps:

1. In the left pane of the Administrative Console, select Servers -> Application
Servers.

2. In the right pane, select the server where you want to enable the
ActivitySession service. The default server name is server1.

3. Select the Configuration tab, if not already selected.

4. Scroll down the Additional Properties table and click in ActivitySession
Service.

5. Select the Startup check box and specify a default timeout value. The default
value is 5 seconds. This means that if the ActivitySession is not resolved after
five seconds, it will be rolled back.

9.4.2 Troubleshooting
This section describes how to use WebSphere tracing facilities to recover from
errors derived from mixed outcomes. It also shows how to deal with exceptions
when using a bean-managed ActivitySession.

Exception handling
When using a bean-managed ActivitySession, several exceptions must be taken
into account, depending on the invoked method:

� begin()::UserActivitySession

– ActivitySessionAlreadyActiveException

You tried to start an ActivitySession while another one was already
present. ActivitySession boundaries cannot overlap with each other.

– SystemException

Unknown error starting a new ActivitySession.

– NotSupportedException

ActivitySession is not supported by a nested call within this
ActivitySession context.

– TransactionPendingException

You tried to start a new ActivitySession while a transaction was still
pending. ActivitySessions and transactions cannot overlap their
boundaries.
 Chapter 9. Transactional Services 411

� endSession()::UserActivitySession

– MixedOutcomeException

A heuristic condition has been reached. Some of the resources were able
to commit, whereas others were rolled back.

– NotOriginatorException

You tried to end the ActivitySession from a component other than the one
that started the ActivitySession. ActivitySessions must be started and
resolved within the same component.

– SystemException

Unknown error when resolving the ActivitySession.

– NotSupportedException

ActivitySession is not supported by a nested call within this
ActivitySession context.

– ActivitySessionResetException

Unknown error when trying to reset the current ActivitySession.

– NoActivitySessionException

You tried to end an ActivitySession context but no ActivitySession context
was present.

– ContextPendingException

– ActivitySessionPendingException

Heuristic reporting
You can also use the heuristic reporting facility when using the ActivitySession
service. Refer to “Heuristic reporting” on page 394.

9.5 JTA extensions
Programming Model Extensions have also been introduced to JTA. These
extensions are available both to Web and J2EE containers. Two new
mechanisms have been added:

� Callback registration

Provides a mechanism for applications to be notified when a transaction
completes.

� Transaction identity

Provides a mechanism to determine the transaction identity.
412 WebSphere Application Server Enterprise V5

For more information on JTA Extensions, refer to the WebSphere InfoCenter.

9.6 Samples
Several sample applications are provided for illustration:

� eBankBase

This is the base sample. Contains two modules:

– eBankWebBase: a Web module.
– eBankEJBBase: an EJB module.

The base sample is a simple banking application where you can select a
customer ID, browse accounts, and perform transfers.

� eBankLPS

This sample extends the base sample by simulating a CICS back end with a
one-phase commit data source. It is a typical scenario where data is not only
backed locally to the application but also propagated to legacy systems that
do not provide two-phase commit connectors.

� eBankLPSFail

This sample uses a custom one-phase commit resource that sleeps the
thread at commit. If you “kill” the WebSphere Application Server process at
this time, you will meet a heuristic condition. Check SystemOut.log for the
precise time of killing the process, as shown in Example 9-4. Also check the
server.pid file to see which server process ID you have to kill.

Example 9-4 SystemOut ready to kill WAS

[7/14/03 17:22:12:372 CEST] 2225d3b9 SystemOut O HEY!!! kill WAS now!!!
[7/14/03 17:22:12:592 CEST] 2225d3b9 SystemOut O XAResource received end
with TMSUCCESS
[7/14/03 17:22:12:592 CEST] 2225d3b9 SystemOut O In Commit -- CRASH NOW!

� eBankLifeAS

This sample illustrates the EJB extended life cycle, and bounds an
ActivitySession to an HTTP Session. The Customer entity bean has been
configured to be activated and passivated at ActivitySession boundaries. You
can compare activation and passivation events on the Customer bean with
those in the base sample. In the base sample, shown in Example 9-5,
Customer is activated and passivated at method boundaries.

Example 9-5 Sample without extended life cycle

O -BEGIN-Logon
O -END-Logon
 Chapter 9. Transactional Services 413

 -BEGIN-getAccountDataForCustomer
O Customer [null] activated!
O Customer [01] loaded!
O -END-getAccountDataForCustomer
O Customer [01] stored!
O Customer [01] passivated!
I SRVE0180I: [eBankWebAS] [/eBankWebAS] [Servlet.LOG]: /accountList.jsp: init

 -BEGIN-browseConfirmedTransfers
O -END-browseConfirmedTransfers
I SRVE0180I: [eBankWebAS] [/eBankWebAS] [Servlet.LOG]:
/browseConfirmedTransfers.jsp: init

 -BEGIN-getAccountDataForCustomer
O Customer [null] activated!
O Customer [01] loaded!
O -END-getAccountDataForCustomer
O Customer [01] stored!
O Customer [01] passivated!

 -BEGIN-confirmTransfer
O -END-confirmTransfer
I SRVE0180I: [eBankWebAS] [/eBankWebAS] [Servlet.LOG]: /confirmTransfer.jsp:
init

 -BEGIN-getAccountDataForCustomer
O Customer [null] activated!
O Customer [01] loaded!
O -END-getAccountDataForCustomer
O Customer [01] stored!
O Customer [01] passivated!

 -BEGIN-Logoff
O -END-Logoff

In the sample shown in Example 9-6, Customer is activated at logon and
passivated at logoff.

Example 9-6 Sample with extended EJB life cycle

O -BEGIN-Logon
O -END-Logon

O -BEGIN-getAccountDataForCustomer
O Customer [null] activated!
O Customer [02] loaded!
O -END-getAccountDataForCustomer
O Customer [02] stored!
414 WebSphere Application Server Enterprise V5

I SRVE0180I: [eBankWebAS] [/eBankWebAS] [Servlet.LOG]: /accountList.jsp: init

O -BEGIN-browseConfirmedTransfers
O -END-browseConfirmedTransfers
I SRVE0180I: [eBankWebAS] [/eBankWebAS] [Servlet.LOG]:
/browseConfirmedTransfers.jsp: init

O -BEGIN-getAccountDataForCustomer
O Customer [02] loaded!
O -END-getAccountDataForCustomer
O Customer [02] stored!

O -BEGIN-getAccountDataForCustomer
O Customer [02] loaded!
O -END-getAccountDataForCustomer
O Customer [02] stored!

O Customer [02] passivated!
O -BEGIN-Logoff
O -END-Logoff

Apart from the provided EAR files, some other files are provided to help you
create the testing environment:

� ebank.creation.sql

Contains SQL statements to create necessary tables and data structures
needed for the two-phase commit resource.

� backend.creation.sql

Contains SQL statements to create necessary tables and data structures
needed for the one-phase commit resource that will simulate a CICS server.
Transfer data will be duplicated in this database.

� customer.txt

Sample data for the customer table.

� account.txt

Sample data for the account table.

To create a test environment and install all the samples, follow these steps:

1. From the DB2 control center, create a database called EBANK using the
wizard. Use the default values.

2. From the DB2 control center, create a database called BACKEND using the
wizard. Use the default values.

3. Copy all the files listed above to a specific directory in your file system,
<install_files_dir>.
 Chapter 9. Transactional Services 415

4. Open a DB2 command window and move to the directory named
<install_files_dir>.

5. Type the following command: db2 -tvf ebank.creation.sql

6. Type the following command: db2 -tvf backend.creation.sql

7. Open the Administrative Console and create an authentication alias to
connect to the databases:

a. In the Administrative Console, select Security -> JAAS Configuration ->
J2C Authentication Data. Click New.

b. Set the J2C Authentication Data Alias to ebankDbUser.

c. Set the J2C Authentication Data User ID to the User ID with which you
access DB2.

d. Set the J2C Authentication Data Password to the password with which you
access DB2.

e. Click OK to accept the changes. Then click Save to prepare for saving the
changes. Finally, click the Save button to confirm changes and save them
to the configuration files.

8. Open the Administrative Console and create the two data sources: an XA
data source to connect to EBANK and a one-phase commit data source to
connect to BACKEND.

a. To create the two-phase commit data source, do the following:

i. In the Administrative Console, select Resources -> JDBC Providers.

ii. In the right pane, click New.

iii. From the JDBC providers combo box, select DB2 JDBC Provider (XA)
and click OK.

iv. Give this provider the following name: DB2eBankXAProvider. Click OK
to accept the changes.

v. Select the recently created provider: DB2eBankXAProvider.

vi. Scroll down to Additional Properties and select Data Sources and click
New.

Tip: At this point ,all the databases, tables, and sample data has been created
and imported. Check that you have two databases: EBANK and BACKEND.
Check the database EBANK. There should be three tables: CUSTOMER,
ACCOUNT and TRANSFER. Check that CUSTOMER and ACCOUNT contain
data. Check that the BACKEND database contains one table: TRANSFER.
Note that all tables are under the ITSO schema.
416 WebSphere Application Server Enterprise V5

vii. Set the Data Source Name to ebank.

viii.Set the Data Source JNDI Name to jdbc/ebank.

ix. Set the Component-managed Authentication Alias to ebankDbUser.

x. Set the Container-managed Authentication Alias to ebankDbUser.

xi. Click OK to accept changes. Then click Save to prepare for saving the
changes. Finally, click the Save button to confirm the changes and
save them to the configuration files.

b. To create the one-phase commit data source:

i. In the Administrative Console, select Resources -> JDBC Providers.

ii. In the right pane, click New.

iii. From the JDBC providers combo box, select DB2 JDBC Provider and
click OK.

iv. Give this provider the following name: DB2eBankNonXAProvider. Click
OK to accept the changes.

v. Select the recently created provider DB2eBankNonXAProvider.

vi. Scroll down to Additional Properties and select Data Sources and click
New.

vii. Set the Data Source Name to backend.

viii.Set the Data Source JNDI Name to jdbc/backend.

ix. Set the Component-managed Authentication Alias to ebankDbUser.

x. Set the Container-managed Authentication Alias to ebankDbUser.

xi. Click OK to accept the changes. Then click Save to prepare for saving
the changes. Finally, click the Save button to confirm changes and
save them to the configuration files.

9. Install the provided Enterprise Applications in WebSphere Application Server.
You do not have to modify any of the default settings already provided in the
sample applications.

10.Test the installation. Open a Web browser and type the following URL:
http://<host>:<port>/<application_name>.

If you are running a local WebSphere Application Server installation with
default settings the URL will be http://localhost:9080/<application_name>.

Possible values for <application_name> are eBankBase, eBankLPS,
eBankLPSFail, or eBankLifeAS.

Once running the application, possible customer IDs are 01, 02 or 03.
Possible account numbers are 001, 002, 003, 004, 005, 006.
 Chapter 9. Transactional Services 417

418 WebSphere Application Server Enterprise V5

Chapter 10. Business Rule Beans

This chapter explains how to use the Business Rule Beans in building enterprise
applications. It includes the following topics:

� Overview of the Business Rule Beans framework

� Design considerations for using Business Rule Beans in enterprise
applications

� Implementation of business rules

� Testing of business rules

� Preparation for business rules deployment

The second part of this chapter explores the runtime aspects of Business Rule
Beans:

� Deployment
� Troubleshooting
� Performance considerations
� Security considerations

10
© Copyright IBM Corp. 2003. All rights reserved. 419

10.1 Planning
The Business Rule Beans framework extends the scope of the WebSphere
Application Server Enterprise to support business applications that externalize
their business rules. Business Rule Beans are designed to remove the volatile
and rapidly changing components of a system, for example the business rules,
from the application to allow changes to be made to the application without
touching the applications’ core components, such as user interfaces, database
interfaces, and business object structure.

Rule externalization is accomplished by extending the application analysis and
design processes to identify the points of variability in application behavior.
Business Rule Beans are implemented as standard Java components (Java
Beans or Enterprise Java Beans) that are managed by the WebSphere
environment (much like an EJB component). To access the Business Rule Bean,
a program simply needs to implement a trigger point; this trigger point interfaces
with the Business Rule Bean framework to execute the business rule that is
encapsulated within a Business Rule Bean. Programming a unique new rule
implementation in Java is usually a simple process, made easier by the set of
predefined rule implementors that can be used to create a customized business
rule.

Business Rule Beans
A business rule is a statement that defines or constrains some aspect of a
business by asserting control over some behavior of that business. A business
rule officiates over frequently changing business practices, and can come from
government regulations, company practices, customer status, or other external
factors such as adapting business processes to react to competitive pressure.
These types of rules can change periodically, and do not require a rebuild of all
applications that support the business process. By externalizing rule processing,
the rule can change without affecting the business process. At its simplest level,
a business rule is little more than a well-placed if/then statement that compares a
variable against a determined value, and then issues a command when they
match.

Why use Business Rule Beans?
Business Rule Beans provide a framework and a tool that facilitates externalizing
business rules from the core of the business applications. Externalizing the
rapidly changing laws that governs the business process allows decoupling of the
rules from the process application. So at any point in time, when performing any
change to the business process rules, one does not need to rebuild the whole
business application. Moreover, this separation leads to reduced maintenance
and testing costs of the application code, since any rule change would require
only maintaining and testing the rule itself, and not the whole business
420 WebSphere Application Server Enterprise V5

application. Rule maintenance is not limited to modifying existing business rules;
it also incorporates the introduction of new rules. Moreover, changes to business
rules can be made ahead of time and scheduled to take effect automatically at a
specific time.

The Business Rule Beans framework provides a Rule Management tool that has
a very simple administrative GUI. It can be used by business analysts who are
not IT professionals to configure existing rules, by changing variable business
rule data. Let’s say for example that an insurance company grants a 10%
discount to customers who are more than 60 years old. At some point in time, the
company’s policy may change the discount percentage. This can be incorporated
in the system in a very simple manner. The business analyst needs to use the
Rule Management Application and change only the value of the discount
percentage.

Business Rule Beans framework not only decouples the business code from the
application code, but also decouples user roles within an organization. In any
organization applying the Business Rule Beans framework, the following three
roles need to exist:

� Rule-based Application Component Developer: Provides EJBs and servlets
that call out to business rules when appropriate. The component developer is
conceptually unaware of the specific implementation that is going to be
associated with the rule.

� Rule Implementation Developer: Creates the Java classes that provide the
concrete implementation of the business rules.

� Domain Expert (Business Analyst): Determines the values for the business
rules, such as the start and end dates for using the rule, the rule’s initialization
parameters, and the business intent.

This kind of working arrangement is advantageous because these individuals are
able to work in parallel. The rule implementation developer may create a rule
without needing to know the values that are to be contained inside it, and the
analyst can modify it knowing the rule name and the folder it is located in, using
the Rule Management Application.

Business Rules can be utilized in virtually every application domain. Some
obvious applications include personalization of Web sites, where you could
configure rules to adapt the behavior of the site depending on the particular client
who is accessing it. You can determine the user classification based on previous
access duration to the Web site, and then determine the Web site content based
on the user classification. The insurance and banking industries, which are
characterized by complex and mutating business requirements, can also make
broad use of the rules. For example, the car insurance rate can be based on a
customer’s age, miles driven per month, or number of accidents within a certain
 Chapter 10. Business Rule Beans 421

durations. In banking applications, service charges can be determined based on
a customer’s classification as determined by the amount of investment by that
customer.

The following is a detailed client scenario for using Business Rule Beans.
Consider a Web banking site that has a business model that places customers in
one of a number of categories, depending on their average daily balance, their
average daily activity, and their exception history. Depending on these items, a
customer could be in the Risk, General, Gold, or Silver category. The rules that
determine this categorization are in a state of nearly continuous adjustment, as
the economy changes, government regulations change, the financial affairs of
the bank's customers change, and as competitive pressure is brought to bear on
the bank. The category into which a customer is placed controls what fees they
are required to pay, how many free checks they can write in a month, and the
interest rate they earn on their balance. This system could easily be implemented
using the Business Rule Beans framework to manage and control both the
categorization and the decisions that are contingent upon categories. A business
analyst could relatively easily learn to manage the rules that govern this
categorization, and as they change, could modify them so that developer skills
can be directed toward more productive activities. A default administrative view is
provided, or this can be done even more effectively through custom applications
that are written to the Java/J2EE APIs that the Business Rule Beans framework
supports, thereby providing full access to the rules that are used.

This bank likes to periodically motivate its customers to try to get into the next
higher category. To do that, they run month-long promotions where customers
who maintain some average daily balance (lower than would normally be
required for the next category) are automatically placed into the higher category
for a trial period of some number of additional months. After that period, if they've
met the criteria for that category, they get to stay. After the month-long promotion,
the rules go back to their normal condition. Since the rules are implemented
using the Business Rule Beans framework, they can easily be overridden for a
given period of time and rendered ineffective at a later point of time. At that time,
the original rules come back into effect. The override rules remain in the system,
to be used again when it is time for the next promotional activity. Since the rule
data has been externalized, the override rules can simply be copied from the
base rules, and such values as the minimum average daily balance for the
category can be easily and quickly changed to reflect the new temporary
business requirements.
422 WebSphere Application Server Enterprise V5

10.2 Design
WebSphere Application Server Enterprise V5 provides a framework for Business
Rule Beans. In this section, we study this framework and how the components of
this framework interact with each other.

10.2.1 Business Rule Beans framework
The Business Rule Beans framework facilitates the externalizing of changeable
business logic by providing the following components:

� Business Rule Beans EJBs, which provide a runtime environment for the
framework.

During the development phase, they persist business rule configurations. At
runtime, Business Rule Beans EJBs are responsible for finding and firing
Business Rule Beans rules. Business Rule Beans EJBs must be deployed
with the application that uses them.

� Business Rule Beans Trigger Point framework, which provides an interface to
access Business Rule Beans rules from the rule client (application code that
uses a Business Rule Beans rule).

Trigger points are pieces of application code that make a call to a rule. They
are placed in EJBs, servlets, or Java classes that depend on business logic
implemented in Business Rule Beans rules. The rule client creates an
instance of a TriggerPoint object and calls one of its trigger methods, which
looks up Business Rule Beans rules by names defined in the Rule
Management Application. Once the rule is found, the TriggerPoint object
invokes the rule by calling the fire method on the RuleImplementor (a Java
class that implements a business rule).

� Business Rule Beans Rule Implementors, which are Java classes that provide
implementation for common business logic.

These rule implementors are ready for use by rule clients through the
TriggerPoint objects described above.

� A starter set library of generic rules, for example GreaterThan, IsNull, and
Range written in Java, that can be used for building customized rules.

� An interactive Rule Management Application to create, retrieve, update, and
delete rules.

It is a stand-alone tool for maintaining the rules. You can use it to configure
the rule name, implementation class, start and end date, initialization
parameters, etc.
 Chapter 10. Business Rule Beans 423

� A batch eXtended Markup Language (XML) based rule loader/unloader to
make rules portable.

This is the Business Rule Beans Rule Importer and Exporter toll, which allows
you to import and export Business Rule Beans rule configuration as XML
files. It can be used to move Business Rule Beans rule configuration between
servers.

10.2.2 Architecture
The described components are used for both during the development phase and
at runtime. At runtime, the rule client invokes Business Rule Beans rules using
the TriggerPoint object. Each Business Rule Beans rule configured in the Rule
Management Application is represented as an EJB at runtime. After the Business
Rule Beans rule is located, the framework fires the actual implementation and
returns results to the rule client. Figure 10-1 shows the interaction of Business
Rule Beans components.

Figure 10-1 Runtime interaction of Business Rule Beans components

The runtime code that is used to find and trigger rules is made up of two parts:

1. The part that runs on the client, that is the rule client component. It can be any
EJB, servlet, or Java class in your enterprise application that is dependent on
the rule business logic. You can place the TriggerPoint in any of these
components to use your Business Rule Beans rule. The client code is used to
do the following:

– Find a specified rule.

– Determine where the rule should be triggered. Refer to 10.8.2, “Rule firing
location” on page 453 for more details about rule firing locations.

– Call the fire method on all the rules

– Combine the results from the rules.

Rule Client

ApprovalClient

(Session Bean)

Trigger

Return
Result

Execute
Rule

Return
Result

Fire the
Rule

Return
Result

Trigger Point

BRBeans

EJBs

ApprovalRule

(Java Class)

Rule Implementors

WebSphere
424 WebSphere Application Server Enterprise V5

2. The part that runs on the server consists of the EJBs used to represent rules
and rule folders. These EJBs do the following:

– Provide for business rule persistence.

– Provide query functions that the client part of the runtime can use to find
rules to be triggered.

The objects used to implement a business rule contain methods and attributes
used by Business Rule Beans runtime and/or its administrative component. An
externalized business rule is implemented as a pair of objects:

� Rule: This is an Entity EJB that stores all the persistent data for the business
rule. This is the object that the trigger point framework code performs a query
to find the Rule object(s) representing the business rules to be triggered.
Once the Rules are found, the framework code determines where the Rule is
to be invoked, either local to the trigger point or remotely on the application
server. It then invokes the fire method on either the Rule EJB itself or on the
local copy of the EJB to perform the function of the business rule.

� RuleImplementor: The class name of the business rule’s RuleImplementor is
stored persistently in the Rule. The RuleImplementor is a transient object (not
managed by the application server) that the Rule instantiates and then uses
to do the actual work. When the fire() method is called on the Rule object, the
Rule object combines its persistent set of values with the parameters it
received on invocation to create the parameter list for the parameter list. The
actual execution of the RuleImplementor algorithm can take place either
remotely or locally.

The Business Rule Beans framework uses a database to persist Business Rule
Beans rule data. You can create a separate database to maintain rule data or
create tables in the main database used by the application. All EJBs accessed in
the same transaction must specify the same isolation level. Using a different
database for business rules removes this restriction, because application EJBs
and rule EJBs are accessed in different transactions. Having separate databases
also follows the concept of externalizing the business rules from the enterprise
application. Moreover, having the rules data separate from the application data
facilitates the reuse of the existing business rules with other applications. In our
sample application, we used a separate database to maintain business rule data.

There are two kinds of rules in WebSphere. The difference between the two is
mainly in the return value.

� A classifier is capable of accepting a set of input values, and returning a set of
values that enumerates what something with those characteristics is. These
rules are very useful for such things as controlling process flows,
implementing systems that are event driven, and other more advanced
system architectures. A classifier rule returns a String that represents the
 Chapter 10. Business Rule Beans 425

classification. Typically, the values that the String can assume belong to a
limited set (Gold, Silver, Platinum for customer status, for instance).

� A non-classifier or base rule is the most generic kind of rule. It processes the
input parameters and returns an array of objects. For more details about the
different types of business rules, refer to the WebSphere Application Server
Enterprise V5 InfoCenter.

10.3 Development
In order to develop an enterprise application the uses Business Rule Beans,
three activities take place during the development process (see Figure 10-2):

� Rule implementors are created. This step is optional. Application developers
can use Business Rule Beans rule implementors provided with the
framework.

� Trigger points are placed in the rule client.

� Business rules are configured using the Rule Management Application. The
tool uses Business Rule Beans EJBs to save Business Rule Beans rule
configuration information. This condition implies that an application server
must be started prior to using the tool.

Figure 10-2 Business Rule Beans components during the development phase

10.3.1 Development environment setup
In developing Business Rule Beans based applications, you need to start by
setting up WebSphere Studio IE to develop and run applications using Business
Rule Beans. This section assumes that DB2 is the DBMS used.

Create a project containing Business Rule Beans code
The following are the steps for setting up the environment for developing
Business Rule Beans:

1. From the J2EE perspective main menu, select File ->New -> EJB Project.

a. Select Create 2.0 EJB Project.

Rule Configuration
using Rule

Management
Application

Rule Client
Implementation

Place
Trigger Point

Business Logic
Implementation

(Rule Implementors)
426 WebSphere Application Server Enterprise V5

b. Click Next.

c. Specify a project name, ACompanyBrbEJB. Select Use default for the EJB
project.

d. Specify an EAR project name, ACompanyBrbEAR. Select Use default for the
EAR project.

e. Click Finish.

2. Now that the project is created, you need to add the necessary JAR files for
Business Rule Beans support to the project Java build path. Right-click the
new ACompanyBrbEJB project and select Properties from the menu.

a. In the properties for ACompanyBrbEJB window, select Java Build Path.
Click the Libraries tab. Click the Add Variable button, and select
WAS_V5_XERCES. Click OK.

b. Click the Add Variable button and select WAS_EE_V5. Click Extend. In
the variable Extension window, expand the lib directory, and select
brbClient.jar, brbServer.jar, brbRuleMgmtApp.jar, and distexcep.jar.
Click OK.

c. Click OK.

3. Add the BRBeansDB2 JAR file to the ACompanyBrbEJB project.

a. Select File -> Import, and select EJB JAR file. Click Next.

b. Browse and locate the BRBeansDB2.jar file to import. This file can be
found in
<WebSphere_Studio_IE_root>\runtimes\ee_v5\BRBeans\BRBeansDB2.j
ar.

c. Choose to import to an existing EJB project, and type in the EJB project
name AcompanyBrbEJB.

d. Click Finish.

4. Generate the Business Rule Beans code for deployment.

a. In the J2EE perspective, J2EE Hierarchy view, expand EJB Modules,
right-click AcompanyBrbEJB:BRBeansDB2 and select Generate ->
Deploy and RMI Code.

b. Make sure three EJBs are selected: Rule, RuleFolder, and RuleHelper,
then click Finish.

Creating the Business Rule Beans database
This section walks you through the process of creating the Business Rule Beans
database. For running Business Rule Beans two tables are needed: Rule and
RuleFolder, which correspond to the Entity EJBs.
 Chapter 10. Business Rule Beans 427

1. In the J2EE perspective, J2EE Hierarchy view, under EJB Modules, select
ACompanyBrbEJB:BRBeansDB2. Right-click and select Generate ->
Schema DDL. This generates the Table.ddl.

2. Open a DB2 command window by selecting Start -> Programs -> IBM DB2
-> Command Window. Enter the command db2 create database brb. This
will create a database called brb to be used by the Business Rule Beans.

3. Connect to the database and grant access to the application database user:

db2 connect to brb
db2 grant dbadm on database to user dbuser
db2 disconnect current

4. Connect to brb database that you have just created using the command:

db2 connect to brb user <db_username> using <db_password>.

5. Change directory to
<WebSphere_Studio_IE_root>\Workspace\ACompanyBrbEJB\ejbModule\ME
TA-INF, where <WebSphere_Studio_IE_root>\Workspace is the directory
containing your WebSphere Studio IE workspace, so this may be a different
directory on your machine.

6. Enter the command db2 -tf Table.ddl. You should now have tables for the
Rule and RuleFolder Entity EJBs.

Configure Rule Management Application
The provided Rule Management Application is used to create and configure
rules. In order to be able to run the Rule Management Application from
WebSphere Studio IE, you need to do the following:

1. Go to the Java perspective, and select the Package Explorer view. Expand
the Business Rule Beans EJB project ACompanyBrbEJB, and expand the
JAR file WAS_EE_V5/lib/brbRuleMgmtApp.jar.

2. Expand the package com.ibm.ws.brb.rm.ui, and select the
RuleManagement.class.

3. From the main menu of WebSphere Studio IE, select Run -> Run..., the
Launch Configurations window will open. Select Java Application and click
the New button at the bottom of the window. This should add a new Java
application to the list named RuleManagement as shown in Figure 10-3 on
page 429. Verify that in the Main tab, the Project is ACompanyBrbEJB, and
the Main class is com.ibm.ws.brb.rm.ui.RuleManagement.

Note: The database script can be found under the database directory
under the name of brbDB.ddl.
428 WebSphere Application Server Enterprise V5

Figure 10-3 Java application configuration for Rule Management Application

4. Select the Arguments tab, and specify the following for the VM arguments:
“-DbrbPropertiesFile=<WebSphere_Studio_IE_root>\runtimes\ee_v5\bin\brb
eansDefaultProperties”, where <WebSphere_Studio_IE_root> is the name of
the directory where WebSphere Studio Application Developer Integration
Edition is installed on your machine. If there are spaces in the path name, you
should put double quotes (“) around the entire property as shown here.
 Chapter 10. Business Rule Beans 429

Figure 10-4 Rule Management Application arguments

Example 10-1 brbDefaultProperties file

host=localhost
port=2809
RuleJndi=brbeans/application/Rule

Important: The brbeansDefaultProperties file contains WebSphere server
host and port information, as well as the JNDI names of Business Rule Beans
EJBs. If you are accessing the WebSphere server remotely, modify the host
and port information before using the Rule Management Application. Note
also that you can make a copy of the original brbeansDefaultProperties file,
and give it a name of your choice, such as brbeansMyAppProperties, do the
necessary changes to that file, and use it in your application’s configuration
instead of the default one. Example 10-1 shows the contents of the
brbDefaultProperties file.
430 WebSphere Application Server Enterprise V5

RuleFolderJndi=brbeans/application/RuleFolder
RuleHelperJndi=brbeans/application/RuleHelper

5. Under Working directory, uncheck Use default working directory, and select
Local directory. For Local directory, specify
<WebSphere_Studio_IE_root>\runtimes\ee_v5\bin.

6. Click the JRE tab. Select the WebSphere v5 EE JRE.

Figure 10-5 Rule Management Application JRE

7. Click the Classpath tab. Uncheck Use default class path at the bottom of
the tab. This allows you to add entries to the classpath.

a. Click Add External JARs button. Go to the
<WebSphere_Studio_IE_root>\runtimes\ee_v5\lib directory and select the
file namingclient.jar. Click Open. Namingclient.jar should be added to the
classpath.
 Chapter 10. Business Rule Beans 431

b. Click the Advanced button. Select Add External Folder and click OK.
Select the <WebSphere_Studio_IE_root>\runtimes\ee_v5\properties
directory. Click OK. The properties directory should be added to the
classpath.

Figure 10-6 Rule Management Application classpath

8. Click Apply to save the changes to the RuleManagement Java application.
Click Close.

Configure application server
Now that you have performed the Rule Management Application setup, you need
to start the application server before running the Rule Management Application
with ACompanyBrbEJB project. The following steps show how to set up and start
the ACompanyUnitTestServer to be able to run the Rule Management
application, and then run the application.
432 WebSphere Application Server Enterprise V5

1. Switch to the Server perspective. In the Server Configuration view, expand
Servers, and double-click ACompanyUnitTestServer. In the editor, select
the Environment tab, click the Add button in the System Properties section.
Enter brbPropertiesFile as the name, and for the value enter
<WebSphere_Studio_IE_root>\runtimes\ee_v5\bin\brbeansDefaultProperties
where <WebSphere_Studio_IE_root> is the name of the directory where
WebSphere Studio Application Developer Integration Edition is installed on
your machine.

2. Create a data source on the application server to be used by the Business
Rule Beans and the Rule Management Application.

c. Select the Security tab at the bottom of the view. In the JAAS
Authentication Entries section click the Add button. In the JAAS
Authentication Entry window, type ACompanyBrbAlias for Alias, and then
type your DB2 user ID and password in the User ID and Password fields.
Click OK.

d. In the editor for the ACompanyUnitTestServer, select the Data Source tab
at the bottom of the view.

i. Under Server Settings, in the JDBC provider list select DB2 JDBC
Provider (XA) whose implementation class is
COM.ibm.db2.jdbc.DB2XADataSource. Click the Add button to the
right of Data source defined in the JDBC provider select above.

ii. In the Create a Data Source window select DB2 JDBC Provider and
select Version 5.0 data source. Click Next. Specify BRBeansDS for the
Name. Specify jdbc/BRBeansDS for the JNDI name. For
Container-managed authentication alias, select ACompanyBrbAlias.
Click Next.

iii. Select the databaseName property. For the value of this property
specify the name of your database, BRB. Click Finish.

e. Save the file ACompanyUnitTestServer and close it.

3. Specify to use the data source.

a. In the J2EE perspective, J2EE Navigator view, expand ACompanyBrbEJB
to ejbModule/META-INF/ejb-jar.xml. Right-click ejb-jar.xml and select
Open with -> Deployment Descriptor Editor.

b. Select the Overview tab. Scroll down to the WebSphere Bindings section
and find JNDI - CMP Factory Connection Binding. For the JNDI name,
specify eis/jdbc/BRBeansDS_CMP. Note that this is the JNDI name of the
J2C connection factory that was automatically created when you created
the 5.0 data source.

c. Save and close the file.
 Chapter 10. Business Rule Beans 433

4. In order to be able to start the Rule Management Application with the security
enabled, you need to grant the RuleManager and RuleUser roles to everyone.

a. In the J2EE perspective, Hierarchy view, expand Enterprise Applications
and select ACompanyBrbEAR, right-click and select Open with ->
Deployment Descriptor Editor.

b. Select the Security tab as shown in Figure 10-7. Click the Gather button,
and three security roles will show up in the list. Select each of the
RuleManager and the RuleUser roles and in the WebSphere Bindings
section, select the Everyone check box.

c. Save and close.

Figure 10-7 Business Rule Beans security roles

5. Add the ACompanyBrb project to the sample application server. In the Server
perspective, Server Configuration view, under Servers, right-click
ACompanyUnitTestServer, and select Add -> ACompanyBrbEAR.

Note: Granting the roles RuleManager and RuleUser is done here only
for development purposes. In a runtime environment, the roles are
mapped to the users and groups according to the security policy.
434 WebSphere Application Server Enterprise V5

10.3.2 Creating the rule implementor
Rule implementors are Java classes that encapsulate business logic. These
classes must implement the RuleImplemetor interface, which has three methods:

� init()

This method provides the initial state to the rule implementor. The method is
called by the framework when a Business Rule Beans rule is first fired, just
like a servlet’s init method that is invoked the first time a servlet is run. Rule
implementor initialization parameters are configured using the Rule
Management Application. For more details, see 10.3.3, “Creating and
configuring the rule” on page 436.

� fire():

This method implements business logic of the rule and returns results of an
algorithm to the caller. The TriggerPoint object invokes the fire method from
the rule client, passing parameters expected by the rule implementation.

� getDescription():

This method returns a string containing a description of the RuleImplementor.

Example 10-2 Signatures of RuleImplementor methods

public Object fire(TriggerPoint arg0, Object arg1,
IRuleCopy arg2, Object[] arg3)

throws BusinessRuleBeansException
public String getDescription()
public void init(Object[] arg0, String[] arg1,

String arg2, IRuleCopy arg3)
throws BusinessRuleBeansException

Example 10-2 shows the signatures of the methods that a RuleImplementor
class needs to implement. In order to create the RuleImplementor:

1. In the J2EE perspective, J2EE Navigator view, select and expand the
ACompanyBrbEJB. Select the ejbModule and right-click. Create a new
package named, for example, com.acompany.brb.rules.

2. Create a new class named, for example, ApprovalRule, in the package
com.acompany.brb.rules. Let the class implement the RuleImplementor
interface.

3. Implement the init method. The init method needs to pick up the rule
initialization parameters. In this sample application, the rule parameter that is
needed for initialization is the total amount of the purchase order, above which
an approval is required, which is called in our sample approvalLimit.

4. Implement the fire method. The fire method as mentioned earlier contains the
rule business logic. In case of this sample application, the fire method
 Chapter 10. Business Rule Beans 435

compares the total purchase order amount with the approval limit amount. If it
is greater than the limit, then an approval is required; otherwise no approval is
needed.

For more details about the methods implementation, have a look at the sample
code provided in Appendix B, “Sample scenario” on page 665.

10.3.3 Creating and configuring the rule
The Rule Management Application is used to configure and maintain Business
Rule Beans rules. The tool gives the ability to perform the following tasks:

� Create a new Business Rule Beans rule definition, specifying:

– Business Rule Beans rule folder and name (used to look up the Business
Rule Beans rule by the TriggerPoint object)

– Business Rule Beans rule start and end date.

– Business Rule Beans rule type: Classifier, non-classifier, or classified.

– Business Rule Beans rule implementor Java class.

– Initialization parameters for the rule implementor.

– Dependent Business Rule Beans rules.

� Modify a Business Rule Beans rule definition.

� Export or import Business Rule Beans rule definitions, which are created in
XML format.

� Quick copy action, which allows you to replace existing Business Rule Beans
rules with a new one on a specified date. The Quick Copy function creates a
copy of the existing rule and allows you to change the Business Rule Beans
rule start date and the initialization parameters. Once the copy of the
Business Rule Beans rule is created, the end date of the original rule is set to
the start date of the new rule.

To order to create and configure rules during the development process using
WebSphere Studio IE, you need to do the following:

1. Start the server. In the Servers view, select the Servers tab at the bottom.
Right-click the Server Instance ACompanyUnitTestServer and select Start.
This should switch you to the Console view automatically. If not, select the
Console view tab at the bottom. Wait for the message Server server1 open
for e-business. The test environment should now be started.

2. Switch to the Java perspective. Click the Run button. The Rule Management
Application GUI should come up. Note that when you want to run the Rule
Management Application again, you can simply go to the Java perspective,
436 WebSphere Application Server Enterprise V5

select Run -> Run... from the main menu, select RuleManagement, and click
Run.

Figure 10-8 Rule Management Application GUI

Expanding the Rule name space as shown in Figure 10-8, you would find that
there is an already existing rule shipped with Business Rule Beans. This is the
Business Rule Beans CacheRule. For more details about that rule, refer to 10.8,
“Performance considerations” on page 451.

3. Create a new folder structure for the new rule to be created. It is
recommended that you follow the Java package naming convention when
creating folders for your rules. For our sample application, the folder structure
is com/acompany/brb/rules. To create a rule folder, select the folder where
you want the new folder to be nested. From the main menu, select File ->
New -> Folder. A new folder appears in the folder hierarchy in edit mode.
Enter a folder name and press the Enter key.

4. Create a new rule ApprovalRule. In the rule browser window, select the folder
where you want the new rule to be created. From the main menu, select File
-> New -> Rule.

a. In the New Rule properties window, in the General tab enter the general
information about the rule, such as its name, start date, classification,etc.,
as shown in Figure 10-9 on page 438.
 Chapter 10. Business Rule Beans 437

Figure 10-9 New Rule creation

b. Use the Implementation tab to define the manner in which the rule is
implemented. You should specify the fully qualified name of the Rule
Implementor class, the rule firing location, and the rule initialization
parameters. To specify the rule initialization parameters, select the Add
button in the Initialization parameter section. Enter the Description, Type,
and Value as shown in Figure 10-11 on page 439.
438 WebSphere Application Server Enterprise V5

Figure 10-10 New Rule Implementation information

Figure 10-11 Rule initialization parameters

c. Click OK.

The Description tab is used to define the purpose and intent of the rule. The
Dependent Rules tab can be used to specify the rules that the newly created rule
will depend on. Finally the Other tab is used to establish precedence, and enter
information that is relevant to you but does not fit into any other category.
 Chapter 10. Business Rule Beans 439

Once a business rule is created among the properties, they describe its state.
This determines whether a rule can be used by the rule client at runtime or not.
Table 10-1 shows the possible states of a business rule, and what each means.
Rule states can be modified using the Rule Management Application.

Table 10-1 Business rules states

10.3.4 Creating the rule client
In our sample application, the rule client is a session bean that is used by the
Place Order process to check whether an approval is needed for the purchase.
To create the rule client session bean and to place a trigger point, do the
following:

1. Switch to the J2EE perspective, and select the J2EE Navigator view. Select
and expand the ACompanyBrbEJB project. Select ejbModules, and create
a new package named com.acompany.brb.ejbs.

2. Create a new session bean named ApprovalClient. Open the
ApprovalClientBean.java for editing. Add the statement import
com.ibm.websphere.brb.TriggerPoint.

3. Implement the isApproveRequired method as in Example 10-3.

Example 10-3 Implementation of isApproveRequired - TriggerPoint placement

public boolean isApproveRequired (Double total){
boolean result = false;
try {

//Create new trigger point
TriggerPoint tp = new TriggerPoint();

//Disable caching - for demonstration purpose
tp.disableCaching();

//The rule expects the total purchase order amount
Object[] firingParams = { total };
String ruleName = "com/acompany/brb/rules/ApprovalRule";

State Description

In effect The rule is available for use. A rule must be in this state in order
to be fired from the rule client.

Schedules The rule start date is set to some date in the future.

Expired The rule is no longer active, since the rule end date is in the past.

Invalid The rule configuration has errors.

Unavailable The rule is not ready for use.
440 WebSphere Application Server Enterprise V5

//Call the rule
Object resultObject = tp.triggerClassifier(

null, //Target Object-not required
firingParams, //Rule firing parameters
ruleName); //The name of the rule to fire

if (resultObject!=null) {
//Rule successfully called
Object[] resultArray = (Object[])resultObject;
result = ((Boolean) resultArray[0]).booleanValue();

}
} catch(Exception e) {

e.printStackTrace();
}
return result;

}

4. Promote the method to remote interface.

5. Select ACompanyBrbEJB, right-click and select Generate ->Deploy and
RMIC Code.

10.3.5 Integrating the sample application with the business rule
As shown in Figure 10-12 on page 442, we need to integrate our rule with the
sample application by making the Place Order process, and in particular the
isApproveRequired subprocess, invoke the ApprovalClient EJB. When the
isApproveRequired process invokes the isApproveRequired method of the
ApprovalClient, it passes the purchase order total amount as an argument. The
ApprovalClient will trigger the ApprovalRule, which is already initialized with an
approval limit of $1000.
 Chapter 10. Business Rule Beans 441

Figure 10-12 Sample application with Business Rule Beans

1. In the J2EE perspective, J2EE Navigator view, expand ACompanyServices
and select PO.process.

Figure 10-13 Place Order Process

2. Select the isApproveRequired process, and right-click and select
Properties. Select the Implementation option.

Process
Web Client

Purchase
Total Amount

(Runtime
Parameter)

Approval Limit = $1000
Approval
Required

Rule

Rule
Implementor

Rule Data

A Company
Place Order

Process

EJB Container

Approval
Client

Session Bean
442 WebSphere Application Server Enterprise V5

a. Click the Browse button and select the interface representing the rule
client, in this case com.acompany.brb.ejbs.ApprovalClient.

b. Select the method that you need the process to invoke. In this case it is
isApproveRequired method.

c. Specify the JNDI name ejb/ApprovalClient.This is the JNDI name for the
EJB specified in the EJB description.

d. Click OK.

Figure 10-14 Properties for isApproveRequired process

3. Save and close the PO.process.

4. In the J2EE perspective, J2EE Hierarchy view, select EJB Modules ->
ACompanyProcess EJBs, right-click Generate Deploy code. Make sure
POPortTypeService is selected, and click Finish.

5. Switch to the Server perspective, and select ACompanyUnitTestServer from
the Server tab. Right-click and select Deploy process.
 Chapter 10. Business Rule Beans 443

10.4 Unit test environment
In this section, we test our business rule and business rule client using the
Universal Test Client. Then we test our sample application after the integration of
the application with the Business Rule Beans.

10.4.1 Rule unit testing
In order to use the Universal Test to test the rule itself without the sample
application, do the following:

1. In the Server perspective, Servers view, select the Servers tab. Select
ACompanyUnitTestServer, right-click and select Start.

2. After the server starts successfully, in the same view, select
ACompanyUnitTestServer, right-click and select Run universal test client.
IBM Universal Test Client starts, showing its home page.

3. From the home page, select JNDI Explorer This opens the JNDI Explorer as
shown in Figure 10-15.

Figure 10-15 Universal Test Client - JNDI Explorer

4. Expand the ejb node, and look for the ApprovalClient session bean. Note that
the path you have to follow to look for your bean is based on the JNDI name
that you have assigned to your session bean. In the sample scenario case,
the JNDI name for the bean is ejb/ApprovalClient. That is why you will find the
bean directly under the ejb node.
444 WebSphere Application Server Enterprise V5

5. Select the ApprovalClient entry. This opens the window in Figure 10-16. In
the References section on the left, under the EJB References, you will find the
ApprovalClient bean. Expand the ApprovalClient node; you will find the
ApprovalClientHome node, which you will also need to expand. Select
ApprovalClient create(). Click the Invoke button in the Parameters window
on the right. Click the Work with Object button.

Figure 10-16 Universal Test Client - EJB References

6. Expand the newly added ApprovalClient 1 bean in the References section.
Select the boolean isApproveRequired(Double), which will allow you to
invoke the method by entering a value in the Parameters section, and click the
Invoke button. This will call the isApproveRequired method in the
ApprovalClient session bean, which in turn will trigger the ApprovalRule rule,
and will return the result whether an approval is required for the test value
you’ve entered.
 Chapter 10. Business Rule Beans 445

Figure 10-17 Invoking isApproveRequired method

10.4.2 Testing the sample application with the rule beans enabled
This section demonstrates how to test the sample application after the integration
of Business Rule Beans. We are assuming the ACompanyUnitTestServer is
already started.

1. From the Server perspective, Servers tab, select ACompanyUnitTestServer,
right-click and select Run Process WebClient.

2. You will be requested to enter the administrative user name and password
that you have used when you enabled security. Once you do this, the work
item manager will open, as shown in Figure 10-18.

Figure 10-18 Work Item Manager
446 WebSphere Application Server Enterprise V5

e. From the Templates combo box on the left, select PO and click the Start
button.

3. Specify the process input message by entering an item ID and the desired
quantity, and click the Start Process button. This will invoke the PlaceOrder
process, which will use the ApprovalRule to decide whether an approval is
needed for that order.

Figure 10-19 PO Process Input Message

10.5 Assembly
After successful completion of testing the sample application integrated with
Business Rule Beans, you can import the application’s EAR files into the
Application Assembly Tool. There are no specific functions for Business Rule
Beans in the Application Assembly Tool, but the deployment team can use it to
modify JNDI names, data source names, or any references or bindings. Once the
 Chapter 10. Business Rule Beans 447

necessary changes are done to the EAR file, it can be exported again from AAT
and redeployed in WebSphere.

10.6 Deployment
Business Rule Beans should be deployed as a part of the application EAR file.
We completed this step while setting up Business Rule Beans development
environment in “Create a project containing Business Rule Beans code” on
page 426. As mentioned before, the Business Rule Beans framework uses a
database to persist Business Rule Beans rule data. In our case, this is the brb
database created in “Creating the Business Rule Beans database” on page 427.

Before starting with the installation of the application, make sure that the
ACompanyServer is running. This is the application server on which our sample
application is installed. For more details, refer to Appendix B, “Sample scenario”
on page 665. Start and log in to the Administrative Console, and perform the
following steps:

1. Change the scope to the ACompanyServer in order to create the data source
under the server. By default the scope is set to node.

2. Select DB2 JDBC Provider (XA). Select Data Sources at the bottom of the
window.

3. Click New to create a new data source, then provide the following information:

– Name: BRBeansDS
– JNDI name: jdbc/BRBeansDS
– Check Use this Data Source in container managed persistence (CMP)
– Component-managed Authentication Alias: dbuser
– Container-managed Authentication Alias: dbuser

Click OK.

4. Select the newly created BRBeansDS entry, then select Custom Properties
at the bottom of the page.

5. Select the databaseName entry and change the value to brb.

6. Save the configuration for WebSphere.

7. The next step is to install the ACompanyBrb application. Select Applications
-> Install New Application.

Note: The chosen alias is the same alias created in Appendix B, “Sample
scenario” on page 665 for the sample application. If you want, you may
create a separate alias to be used with your Business Rule Beans.
448 WebSphere Application Server Enterprise V5

8. Browse for the ACompanyBrb.ear file, then click Next.

9. Navigate through the installation steps. Make sure that you check the Deploy
EJBs box, and provide the database type DB2UDB_V81 and database
schema name EJB.

Map both Rule and RuleFolder CMP 1.x beans to the BRBeansDS data
source.

Also make sure that your application is installed on the ACompanyServer
application server.

10.Once the installation is done, save the configuration.

11.Open the file <WebSphere_root>\bin\brbeansDefaultProperties for editing.
Check that the proper JNDI names are specified for the Business Rule Beans
EJBs (Rule, RuleFolder, and RuleHelper). Check that the proper host name
and port numbers are specified. In our sample application, we need to
change the port number from 2809 (server1 port number) to 2810
(ACompanyServer port number). Save the changes to the file and close.

12.Select Servers -> Application Servers then select the ACompanyServer in
order to assign the brbPropertiesFile to the server properties. In the
ACompanyServer additional properties section, select Process Definition,
which is used to define the command line information necessary to
start/initialize a process.

13.In the Process Definition additional properties, select Java Virtual Machine
-> Custom Properties.

14.In the custom properties window, click the New button to create a new
property. Enter the following values:

– Name: brbPropertiesFile
– Value: <WebSphere_root>\bin\brbeansDefaultProperties

15.Click OK and save the WebSphere configuration.

16.Restart ACompanyServer.

10.6.1 Running the Rule Management Application
The Rule Management Application shipped with Business Rule Beans runs
outside of any container. Hence the JNDI names need to be specified when this
tool is run. The script for this tool requires that a properties file name be passed
as a command-line parameter. This name is then specified as the value for the
brbPropertiesFile property when the tool is run. To start the application:

1. Make sure that ACompanyServer is started.
 Chapter 10. Business Rule Beans 449

2. Open a command prompt and change the current directory to
<WebSphere_root>\bin.

3. Issue the command rulemgmt brbeansDefaultProperties. This will start the
Rule Management Application. For more details about using this tool, refer to
10.3.3, “Creating and configuring the rule” on page 436.

10.7 Problem determination and troubleshooting
A few common problems running applications using Business Rule Beans are
listed below:

� When an application attempts to reference Business Rule Beans EJBs, the
code will first look for the brbPropertiesFile Java property. If this property is
specified, then the names listed in the file are used to find the EJBs. If the
property is not specified, then Business Rule Beans attempts to use the EJB
references specified in the container. If the application is not running in a
J2EE container, and if the brbPropertiesFile property is not specified, then
there is no way to resolve the EJB references. Example 10-4 shows the
exception message and stacktrace if such a condition occurs. This is solved
by specifying the brbPropertiesFile property.

Example 10-4 Sample trace showing error with the brbPropertiesFile

Message:
 The jndi name for the Rule EJB was not found. The possible cause: The
application client is not in a container (ex: client container, servlet, EJB),
a properties file was not specified with the java -DbrbPropertiesFile option,
and the default Rule jndi name of com/ibm/ws/brb/Rule was not found.
Stack trace:
com.ibm.websphere.brb.BusinessRuleBeansException

at com.ibm.ws.brb.Helper.getRuleHome(Helper.java:778)
at com.ibm.ws.brb.LocalRuleManager.<init>(LocalRuleManager.java:98)
at com.ibm.websphere.brb.TriggerPoint.<init>(TriggerPoint.java:251)
at com.ibm.websphere.brb.TriggerPoint.<init>(TriggerPoint.java:188)
at

com.acompany.brb.ejbs.ApprovalClientBean.isApproveRequired(ApprovalClientBean.j
ava:48)

Note: If you have created a new application server for the sample, then the
port number of the JNDI directory services is different from the default.
Open the brbeansDefaultProperties file in a text editor and change the port
to the correct number. In our case it is 2810.
450 WebSphere Application Server Enterprise V5

� The host name and port number used to access the name server can also be
set in this properties file.

– You might get a NameNotFound exception for your Business Rule Beans
even though your JNDI names are specified correctly. This might be due to
a mismatch between the port number specified in the brbproperties files
and the server port number. By default in the brbeansPropertiesFile the
port number is set to server1 port number, which is 2809. In our sample
application, we have created a new application server, ACompanyServer,
whose port number is 2810. Thus you need to modify the
brbeansPropertiesFile with the correct server port number.

– If the server name and the port number are not specified, then the name
server used by the container in which the application is running is used. If
the application is not running in a container, then localhost is used for the
host name, and 900 is used for the port number.

� As discussed before, during runtime the trigger point object fetches the rule
required, then it fires it. You might notice that the fetching process is
successful (no errors or exceptions are thrown), but the rule doesn’t perform
the desired task. This might be because the rule is not in effect. You may
check the rule status using the Rule Management Application. The rule status
might be expired or scheduled. The rule status must be in effect for the rule to
function properly.

10.8 Performance considerations
Every business rule is represented as an EJB at runtime. As a result, whenever a
rule is triggered, a query is performed to find the EJBs representing the rules to
be triggered, and a remote method call is performed on the EJB to actually
trigger the rule. Since both of these actions can be costly from a performance
perspective, this section discusses the techniques that can be used to improve
performance.

10.8.1 Client-side caching
The Business Rule Beans framework incorporates a cache on the client side.
The scope of this cache is limited to the JVM in which the client is running, so
that any trigger calls performed in a particular JVM will use the same cache. The
Business Rule Beans cache caches the results of all queries performed to find a
set of rules to be triggered. The next time a trigger is performed in that JVM with
the same rules specified, the rules will be found in the cache and the query will
not actually require going to the server.
 Chapter 10. Business Rule Beans 451

The disadvantage of using the client-side cache is the inability to recognize
Business Rule Beans rule configuration changes immediately. A cache polling
frequency determines how often the client-side cache is refreshed. The next time
a trigger is performed after a polling interval has passed, the cache will check to
see if any changes at all have been made to the persistent rule data stored on
the server. If no changes have been made, then the cache is not refreshed. If any
changes at all have been made, then the entire cache is cleared so that the
changes will be picked up. The default polling frequency is 10 minutes. You can
change the polling frequency in the Rule Management Application.

1. Start the Rule Management Application if it is not already started.

2. Expand the Rule Namespace folder.

3. Expand the com -> ibm -> websphere -> brb folder.

4. You should see BRB CacheRule as shown in Figure 10-20.

Figure 10-20 Rule Management Application - BRB CacheRule

5. Select BRB CacheRule, right-click, and select Properties.

6. In the Properties window, select the Implementation tab.

7. Select the PollFrequency initialization parameter, and click the Change
button. Note that the value for this initialization parameter has the format
hh:mm:ss, where hh stands for hours, mm stands for minutes, and ss stands
for seconds.

8. Change the value of the PollFrequency initialization parameter, as shown in
Figure 10-21 on page 453. Click OK.
452 WebSphere Application Server Enterprise V5

Figure 10-21 Changing rule initialization parameters

Caching can be disabled for a particular TriggerPoint object using the
disableCaching method. After disableCaching is called, any triggers performed
using that TriggerPoint object will not use the cache. Triggers performed using
other TriggerPoint objects are not affected.

10.8.2 Rule firing location
The Business Rule Beans framework allows you to specify where a particular
rule should be fired. This determines where the rule implementor for the rule is
actually instantiated and invoked. There are three possible values for the firing
location:

1. Local

Fires the Java rule implementor local to the client that fired the rule, that is, in
the same JVM in which the trigger was performed. The disadvantages of
firing the rules locally is the requirement to install rule implementors on each
client system that uses Business Rule Beans rules. The best performance is
achieved by using the client-side cache and local firing location, since no
remote server calls are performed in such a configuration.

2. Remote

Fires the Java rule implementor on the application server where the Business
Rule Beans are installed. RuleImplementors must be in the server classpath.
Without caching, the set of actions done to fire a rule require a remote call to
the server. The following are the actions performed to fire a rule remotely:

– Finding the rule
– Determining whether the rule is to be fired locally or remotely
– Calling the fire on the remote rule

3. Anywhere

First tries to fire the Java rule implementor locally. If the Java rule implementor
cannot be found, then it fires the Java rule implementor remotely. This is the
default value.
 Chapter 10. Business Rule Beans 453

The firing location parameter for a specific rule is set on the Implementation tab
of the rule Properties window in the Rule Management Application, as shown in
Figure 10-22.

Figure 10-22 Configuring rule firing location

Note that, in addition to performance, maintenance must be considered in
relation to specifying a rule firing location. The rule implementor classes for rules
that are defined to be fired locally must be present on any client system that tries
to fire those rules. Otherwise, the implementor cannot be instantiated when the
rule is fired. This can result in maintenance problems when the rule
implementors are changes, since they must be updated on many different
systems.

10.8.3 Creating database indexes
Creating an index over the database table that is used to store rules is an
important way to improve the performance of rule queries. It is recommended
that an index be created over the rulename column of the table containing the
rules. This greatly improves the performance of rule-triggered queries that are
454 WebSphere Application Server Enterprise V5

looking for rules with specific names. The index saves the query the effort of
searching every row in the table.

10.9 Security considerations
As discussed earlier, Business Rule Beans EJBs are major components of a
runtime environment for the framework. At runtime, Business Rule Beans EJBs
are responsible for finding and firing Business Rule Beans rules. These are three
main EJBs in the Business Rule Beans framework: Rule, RuleFolder, and
RuleHelper. Thus Business Rule Beans don’t have specific security
considerations. They just need to follow regular EJB security handling.

Security can be applied to EJBs in the following ways:

� Access control can be applied to individual session and entity bean methods
so that only callers who are members of particular security roles can call
those methods.

� Session and entity bean methods that need to be aware of the role or identity
or the caller can programmatically call the J2EE API methods isCallerInRole
and getCallerPrincipal to determine a caller’s role and principal, respectively.
When using isCallerInRole, security role references are used, which are later
mapped to security roles.

There are three security roles attached to the Business Rule Beans framework:

� RuleUser: The person who uses an application that contains trigger points.

� RuleManager: The person who will use the Rule Management Application or
other application that uses the Rule Management APIs. This person will be
allowed to create, modify, and delete rule and rule folders.

� DenyAllRole: Deny all access role.

For more details about securing Enterprise Java Beans, refer to IBM WebSphere
V5.0 Security, WebSphere Handbook Series, SG24-6573.
 Chapter 10. Business Rule Beans 455

456 WebSphere Application Server Enterprise V5

Chapter 11. Dynamic Query

This chapter introduces the benefits of the Dynamic Query service and how this
feature of WebSphere Application Server Enterprise V5 fits your business needs.

This chapter covers the following topics:

� An introduction to Dynamic Query service, and its use in enterprise
applications

� Design guidelines and considerations

� Development process

The second part of this chapter explores the runtime aspects of dynamic queries:

� Deployment
� Troubleshooting
� Performance considerations
� Security considerations

11
© Copyright IBM Corp. 2003. All rights reserved. 457

11.1 Planning
Dynamic Query service is provided by WebSphere Application Server Enterprise
in the area of data access through CMP EJBs. The base application server
supports the standard EJB QL specifications, with some extensions that increase
the flexibility of the syntax of EJB QL. However, one of the characteristics of EJB
QL is its static nature. Once you have associated an EJB QL query to a finder
method and deployed your EJB, the query can only be modified by redeploying
and re-installing the EJB. The Dynamic Query service removes this limitation. It
allows applications to formulate queries at runtime and have them submitted and
executed on the fly, providing a behavior that resembles that of traditional
dynamic SQL. The Dynamic Query service works at the object schema level, just
like regular EJB QL. So this is a form of object query, and not a database query.
It works for CMP Entity EJBs, allowing you to perform queries on both CMP and
CMR fields.

11.1.1 Dynamic Query
Dynamic Query service maintains the same features of EJB 2.0 QL and of the
base WebSphere Query enhancements, while providing even more functionality.
Table 11-1 summarizes the extent of query support in WebSphere.

Table 11-1 Query support in WebSphere

Function EJB 2.0
Query

Base
WebSphere
Query

Dynamic
Query
service

Select clause required optional optional

Delimited identifiers no yes yes

String comparisons = and <> = <> > < = <> > <

Scalar functions some more more

Calendar comparisons yes yes yes

Order by no yes yes

SQL date/time expressions no yes yes

Query over inheritance graph no yes yes

Subqueries no yes yes

EXISTS predicate no yes yes

DISTINCT predicate no yes yes
458 WebSphere Application Server Enterprise V5

It is clear from the table that the Dynamic Query service overcomes the need to
statically define the query in the EJB Deployment Descriptor, by supporting
query definition at runtime, unlike the WebSphere Application Server Base
Query, where there is no dynamic capability. Moreover, the Dynamic Query
service supports a number of other syntactical extensions, such as the
aggregate functions (MAX, MIN, SUM, etc.) for all queries. In WebSphere
Application Server base, these functions are only supported in subqueries. The
GROUP BY and HAVING clauses are also supported by the Dynamic Query
service.

In addition to these syntactical extensions, Dynamic Query service supports the
use of business methods in the query projection and predicate clause. Let’s say
for example that we have a Department entity bean, and we need to find all
department numbers where the department purchases are more than $10000.
The query can be formulated as shown in Example 11-1. In this example, the
business method computeTotalOrders is used in the query where clause. For
WebSphere Enterprise to perform this query containing the method call,
instances of the Department bean need to be activated. If the query runs across
a large number of instances, these queries may take significant time and
resources to complete.

Example 11-1 Business methods use in Dynamic Query

select d.id from Department d where d.computeTotalOrders() > 10000

Another extension that the Dynamic Query service provides is the support for
data array queries. For example, the query in Example 11-2 will find all the cid,
cname, and cdeptid of a Customer object.

Example 11-2 Data Array queries

select c.cid, c.name, c.cdeptid from Customer c

Aggregate functions no in subquery yes

GROUP BY, HAVING no in subquery yes

Bean business methods no no yes

Dependent Value methods no no yes

Multiple element select no no yes

Dynamic Query execution no no yes

Function EJB 2.0
Query

Base
WebSphere
Query

Dynamic
Query
service
 Chapter 11. Dynamic Query 459

Why use Dynamic Query?
WebSphere Application Server Enterprise, through the Dynamic Query service,
provides high-performance, scalable access to objects representing processes
and entities, supplemented by the speed and efficiency of a relational database
for querying, grouping, and sorting. The capability to query EJBs based on their
attributes and methods, and their relationships with other EJBs, serves as the
foundation for a variety of enterprise applications. For example, let’s say that an
airline has modeled their business domain as a set of EJBs. Let’s say that a
Flight EJB encapsulates the data and business functionality of one flight. Pricing
of a seat on a flight is a dynamic, complex process, so it is implemented by a
calculatePrice() method on the Flight EJB. There is an endless set of scenarios
where it would be useful to include the calculatePrice() method on an EJB query.
For instance, travel agents, or passengers might want to search for flights
between a set of locations, with prices falling within a defined range.

The use of dynamic queries can be beneficial in financial applications, where an
assessRisk() method on a FinancialInstrument EJB dynamically calculates a risk
score for a particular instrument, based on current market conditions. This would
clearly be a useful element to include in the select or where clauses of an EJB
query. This would enable easy selection of instruments with risk measurement
falling in a specified range and inclusion of the risk scores in the return set.

The possibilities of the Programming Model Extensions are vast. They are useful
in almost every industry and in every enterprise. For instance, data mining and
focused consumer marketing applications require the ability to execute queries
with criteria that are not known at development time. In fact, query criteria might
change from day to day. Such applications also typically need to group and sort
query results in multiple ways.

The use of the Dynamic Query service in an enterprise application has the
following benefits:

� There is no need to know the query search criteria until application runtime.

� Dynamic Query service allows you to return multiple CMP or CMR fields from
a query, while deployment queries allow only a single element to be specified
in the SELECT clause.

� Dynamic Query service allows you to perform aggregation in the query, while
deployment queries do not allow use of the aggregation function SUM, AVG,
COUNT, MAX, MIN in the top level SELECT of a query.

� Dynamic Query service allows you to use value object methods or bean
methods in the query statement.

� In some cases, using the Dynamic Query service may alleviate performance
issues with EJB QL queries. Using the Dynamic Query service, you can
formulate queries that would require a lot of hand-coded processing if you
460 WebSphere Application Server Enterprise V5

used the standard EJB QL. For example, assume that you have a query that
returns the maximum salary of employees, on a department-by-department
basis. With Dynamic Query service, you can formulate and execute your
query, and get exactly the result you need, without further processing and
without requiring EJB activation. With regular EJB QL, your program would
have to manually do the grouping and aggregation, and EJBs would have to
be massively activated.

� Dynamic Query service may reduce the need for specific finders. You may
add finding behavior to an existing application without even redeploying it.

� You can use the Dynamic Query service when you want to interactively test
an EJB query during development but do not want to repeatedly deploy your
application each time you update a finder or select query.

11.2 Design
This section introduces you to the technology behind the design of the Dynamic
Query service, and the possible interaction between enterprise application
clients and the Dynamic Query service. Then we will introduce some design
considerations and recommendations when using this Programming Model
Extension.

Dynamic Query service
The Dynamic Query service is implemented using “push down” technology. The
technology involves taking an object query statement and using metadata that
describes the mappings of EJB attributes to database tables and columns, to
translate it to an SQL statement that can be executed by the database
management system. In effect, the EJB query is pushed down to the database,
which is designed to perform this type of query evaluation, and groups and sorts
very efficiently. As would be expected, not all of an EJB query can be pushed
down. The application server must still evaluate some query criteria, such as
results of method invocations. By delegating most of the work, including
navigation of relationships, to the database, excellent performance can be
provided. Lastly, this push down technology is designed to be independent of the
database vendor. It works with any relational database supported by
WebSphere.

The Dynamic Query service is provided by the stateless Query session bean.
The client of the Query session bean may be a remote client or it may be a local
client, depending on whether the client makes use of the bean’s remote or local
interfaces. A remote client accesses the query bean through the bean’s remote
interface, and remote home interface. A remote client can be any Java program
such as an application, JSP, applet, or servlet. A local client accesses the query
 Chapter 11. Dynamic Query 461

bean through the bean’s local interface and local home interface. A local client is
collocated in the same JVM with the query bean and can be another enterprise
bean such as a session bean, entity bean or message-driven bean, as shown in
Figure 11-1. The Query Engine can perform queries on entity beans, on CMP
fields, and on CMR fields, represented by Entity EJB X and Entity EJB Y in the
figure.

Figure 11-1 Dynamic Query service

Design concerns and recommendations
There are two major concerns to explore before deciding to use Dynamic
Queries with your enterprise applications. One of these concerns is related to
performance, while the other is related to security.

� If you have a query that has a high frequency of execution, you should define
it as a finder or select method and consider using SQLJ as a deployment
option for best performance. The Dynamic Query service always uses JDBC
and must parse and process the EJB query at runtime.

� If you need security control over which queries a user can execute, you need
to define the queries as finder or select methods and use EJB method
authorization. The Dynamic Query service does not have fine-grain security
control at this time. You can control who is permitted access to the remote

QueryBean
(remote

interface)

Query
Engine

Entity
EJB

Y

Entity
EJB

X

WebSphere Enterprise

M 1

Web Server

Servlet

JSP

Java
Client

Program

EJB Server

QueryBean
(local

interface)

EJB
(query
client)
462 WebSphere Application Server Enterprise V5

query bean and the local query bean, but once authorized a user can execute
any valid query and return any data in the server.

11.3 Development
The Dynamic Query API, the stateless session bean named query, is provided in
QueryClient.jar. Using the Dynamic Query API is similar to using any other J2EE
EJB application bean. The default JNDI name for the query bean is
com/ibm/websphere/ejbquery/Query. The query bean has both a remote and a
local interface to support both remote and local clients, as shown in Table 11-2.

Table 11-2 Query bean interfaces

Table 11-3 shows the JAR files that comprise the Dynamic Query service.

Table 11-3 Dynamic Query service JAR files

The following sections discuss in detail how to use the query bean and the
services it provides, then focus on the development environment setup and the
development process.

Interfaces Classes

remote interface com.ibm.websphere.ejbquery.Query

remote home interface com.ibm.websphere.ejbquery.QueryHome

local interface com.ibm.websphere.ejbquery.QueryLocal

local home interface com.ibm.websphere.ejbquery.QueryLocalHome

JAR File Usage

query.jar Query parser and runtime

qjcup.jar Auxiliary classes for parser

querybean.jar Query session bean

qryclient.jar Client stubs and classes

querymd.jar Auxiliary classes for query

queryws.jar Auxiliary classes for query
 Chapter 11. Dynamic Query 463

11.3.1 Dynamic Query Bean
The QueryBean interface has three client methods:

� executeQuery(): this method parses and executes the query in a single
operation. The executeQuery method in the remote interface has some extra
arguments over the method provided by the local interface.

– The common arguments to local and remote interface are:

• java.lang.String queryStatement, which is a string containing the query
statement to be invoked, for example”

select Object(c) from Customer c

• java.lang.Object[] parameterVars, which is an array of objects used as
value holders for literal values. Queries can include optional
parameters, and you can specify values for those parameters in the
parameterVars array. For example:

select Object(c) from Customer c where c. cdeptid > ?1

• Note that positional numbering starts at 1.

• java.util.Properties queryDomain, which allows you to point to the EJB
that you want to run the query on, by specifying the Abstract Schema
Name and Application/Module/Component AMC pairs. The AMC name
is used to distinguish between multiple installed applications sharing
the same Abstract Schema Name. This situation occurs if multiple EJB
JARs are installed on the same application server, and they have
beans with the same Abstract Schema Name. If the AMC is not
specified, then the Schema Name is assumed to be unique.

– The remote interface extra arguments allow the remote client to select a
portion of the resultset, rather than having to deal with the entire resultset.
These arguments are:

• int skipRows: used to request a subset of the results. Records are
retrieved starting skipRow+1.

• int maxRows: used to specify the number of rows required for retrieval.
If set to java.lang.Integer.MAX_Value, all results starting at skipRow+1
are returned.

– The return value type for this method is QueryIterator(). It covers:

• A collection of objects implementing the entity bean’s remote or local
interface

• A collection of values returned by business methods

• A collection of CMP or CMR fields
464 WebSphere Application Server Enterprise V5

� prepareQuery(): this method invokes the query parsing and plan creation
process. It receives exactly the same three common input parameters
described above (queryStatement, parameterVars, and queryDomain). This
method returns the optimized query plan generated from the query string
input parameter. Normally a client would not directly invoke the prepareQuery
or executePlan methods. The return type of this method is a string containing
the created query plan, which is a query statement parsed, validated, and
optimized, and it is presented as an input to the executePlan method.

� executePlan(): this method executes a query plan that is in a string text form.
It receives two input parameters for the local interface, and an additional two
for the remote interface.

– The two common parameters are:

• queryPlan: represents the query plan in string format
• parameterVars: same as executeQuery

– The additional parameters for the executePlan method in the remote
interface are:

• skipRows: same as executeQuery
• maxRows: same as executeQuery

Local client programming model
For a local client to use the Dynamic Query service, the client implementation
should perform the following steps:

1. Look up the QueryLocalHome.

2. Populate the parameter list.

3. Create an instance of the Query bean.

4. Formulate the query string.

5. Run the query.

6. Iterate through the resultset. Each iteration will retrieve a tuple. For each
tuple, the client should get the name of the field and its corresponding value. If
one of the values is an EJB reference, then that will be an EJB local
reference. You just need to cast it to the correct type using normal Java

Note: There might be times when the same query is being executed
multiple times. Therefore, some performance optimization can be received
by invoking prepareQuery once, and then invoking executePlan multiple
times, rather than invoking executeQuery multiple times. Doing this helps
save parsing effort.
 Chapter 11. Dynamic Query 465

casting. It has to be narrowed to the correct type using
java.rmi.PortableRemoteObject.

This sequence of steps is shown in Example 11-3.

Example 11-3 Local client using Dynamic Query

QueryLocalHome home =
(QueryLocalHome)context.lookup (“java:comp/env/ejb/QueryLocalHome”);

Object[] params = new Object[] {new Integer(10000)};
QueryLocal queryEngine = home.create();
userTransaction.begin();
String query =

“select Object(c) from Customer where c.cdeptid() = ?1”;
try{

QueryLocalIterator it = queryEngine.executeQuery(query, params, null);
} catch(QueryException e){

System.out.println(e.getMessage());
}
System.out.println(“There are “ + it.getFieldsCount() + “fields.”);
while (it.hasNext()){

IQueryTuple tuple = (IQueryTuple) it.next();
Customer c = (Customer) tuple.getField(1);
System.out.println(“Customer Name = “ + c.getName());
System.out.println(“Total Orders = “ + c.calculateTotalOrders());

}

Remote client programming model
For a remote client to use the Dynamic Query service, the client implementation
should perform the following:

1. Look up the QueryBean home.

2. Populate the parameter list.

3. Create an instance of the Query bean.

4. Formulate the query string.

5. Specify the desired number of rows to be retrieved.

6. Run the query.

7. Iterate through the resultset. Each iteration will retrieve a tuple. For each
tuple, the client should get the name of the field and its corresponding value. If

Note: When using a local client with Dynamic Query, the query must be
invoked from within a transaction scope. At transaction termination, local
query iterator is invalidated.
466 WebSphere Application Server Enterprise V5

one of the values is an EJB reference, that it has to be narrowed to the correct
type using java.rmi.PortableRemoteObject.

An example of this sequence of steps is shown in Example 11-4.

Example 11-4 Remote client using Dynamic Query

QueryHome h =
Object[] params = new Object[] {new Integer(10000)};
Query q = h.create();
String query =

“select Object(c) from Customer where c.cdeptid() = ?1”;
int skip = 0;
int max = 100; //fetch first 100
try{

QueryIterator it = q.executeQuery(query, params, null, skip, max);
} catch(QueryException e){

System.out.println(e.getMessage());
}
System.out.println(“There are “ + it.getFieldsCount() + “fields.”);
while (it.hasNext()){

IQueryTuple tuple = (IQueryTuple) it.next();
Customer c =
(Customer)PortableRemoteObject.narrow(tuple.getField(1),Customer.class);
System.out.println(“Customer Name = “ + c.getName());
System.out.println(“Total Orders = “ + c.calculateTotalOrders());

}

11.3.2 Development environment setup
When developing applications that use the Dynamic Query service, you need to
start by setting up WebSphere Studio WebSphere Studio IE to develop and run
applications using dynamic queries.

Import the Dynamic Query EAR file
The following are the steps for setting up the environment for developing dynamic
queries. From the J2EE perspective:

1. From the main menu, select File ->Import. Select the option to import an
EAR file, and click Next.

Important: When an object is selected by the query, the return value is an
EJB local reference, which needs casting to the correct type using normal
Java casting, when using a local client. When using a remote client, the EJB
reference has to be narrowed to the correct type using
java.rmi.PortableRemoteObject.
 Chapter 11. Dynamic Query 467

2. Click the Browse button to look for the query.ear file, which is available in
<WebSphere_Studio_IE_root>\runtimes\ee_v5\installableApps. Select the
query.ear file, and click the Open button.

3. Give a name for the project that you will import the Dynamic Query code to,
for example QueryEJB, and click Finish.

You will have as a result a new QueryBean project containing the Query session
bean. To have a look at it, switch to the J2EE Hierarchy view in the J2EE
perspective, and expand the node EJB Modules. Expand the querybean
project, and there you will find the Query session bean.

11.3.3 Development of Dynamic Query sample
In our sample application, described in Chapter 3, “Sample scenario” on
page 25, we have three main entity beans: Catalog, Orders, and Customers. We
are going to use the Dynamic Query service to query the entity beans, and the
relationship Customers-Orders. The components of the sample are shown in
Figure 11-2.

Figure 11-2 Dynamic Query sample

Search
JSP

Query
Servlet

Query
Bean

Query
Engine

submit query Results
JSP

executeQuery

query results
468 WebSphere Application Server Enterprise V5

The Search JSP provides the user with a set of predefined queries, such as:

� List all orders by a customer on a specific item.
� List all orders by a customer since a specific date.
� Get the total price of all orders by a customer since a specific date.
� List all orders by a customer’s department on a specific item.
� List all orders by a customer’s department since a specific date.
� Get the total price of all orders by a customer’s department since a specific

date.

In addition to these predefined queries, a user can define a query using the
Search JSP. Once the user submits a query, the query is redirected to the
QueryServlet, which performs a lookup for the Query home, creates an instance
of the query bean, formulates the query string, and runs the query. Once the
query is executed, the servlet forwards the resultset to the Results JSP, which
iterates on the resultset, displaying the selected fields and the resulting values.

Customers EJB built-in query
According to the above list of queries, we need to have the means to get a list of
all customers in a specific department, in order to be able to retrieve all the
orders placed by that department. In this section, we are going to add this feature
to the Customers entity bean. Following are the steps:

1. Switch to the J2EE perspective, J2EE hierarchy view. Expand EJB Modules
-> ACompanyEJB -> Customers. Double-click the Customers bean. This
will open the EJB Deployment Descriptor, and the CustomersBean will be
selected in the Beans tab.

2. Scroll down to the section titled Queries, to define an EJBQL query for the
Customers bean. Click the Add button.

3. Check New to specify that you are creating a new method, and select the
radio button ejbSelect for the method type. Give the method a name, for
example ejbSelectCustomersInDept. Click the Add button to specify the
parameters that this method receives. In our sample application, this method
needs a String argument representing the department ID. Specify that the
method return type is java.util.Collection. Click Next.

4. Edit the query statement.

SELECT t.cid FROM Customers t WHERE t.cdepartmentid = ?1

5. Click Finish.

6. Save the EJB Deployment Descriptor and close. If you now open
CustomersBean you will find the new select method at the end of the class
implementation. It will look as follows:

public abstract java.util.Collection ejbSelectCustomersInDept(
java.lang.String departmentID)
 Chapter 11. Dynamic Query 469

throws javax.ejb.FinderException;

7. Now having the query method ready, we will create a method in the
CustomersBean that is going to use the ejbSelect method, and convert the
Collection to a Vector. We will have a Customers EJB representing the
customer placing an order, and we will need to retrieve the IDs of all the
customers who are in the same department as the customer placing the
order. So from our search JSP, we will invoke this method
getCustomersInDepartment and it will return a Vector containing the IDs of all
customers in the department.

Example 11-5 getCustomersInDepartment method

public Vector getCustomersInDepartment() {
try {

Vector v = new Vector();
Collection allCustomers = ejbSelectCustomersInDept(getCdepartmentid());
Iterator iterator = allCustomers.iterator();
while (iterator.hasNext()) {

 v.add(iterator.next());
}
return v;

} catch (javax.ejb.FinderException e) {
System.out.println("**** Finder Exception ***:" + e.getMessage());
e.printStackTrace();

}
return null;

}

8. Save and close CustomersBean.

9. Promote the newly created method to the beans’s local interface, and
generate the deploy code for the Customers bean.

bpeWebclient project configuration
In our sample application, instead of creating a new Web project for our JSPs, we
are using the business process Web client bpeWebclient. You need to perform
the following two actions, in order by able to use the Dynamic Query service with
the JSPs you create in this project:

1. Switch to the J2EE perspective, select the J2EE Navigator view. Select the
bpeWebclient project, and right-click to select the project properties. In the
project properties window, select the option Java Build Path. Select the tab
libraries, and click the button Add External JARs. Browse to add the file
qtyclient.jar, which is present in
<WebSphere_Studio_IE_root>\runtimes\ee_v5\lib. Select the qryclient.jar
file, and click the Open button. Then click OK.
470 WebSphere Application Server Enterprise V5

2. Expand the bpeWebclient project, select and double-click Web Deployment
Descriptor. This will open the Deployment Descriptor editor. Select the
Source tab from the top tabs. You will need to add local references for the
Query and Customers beans, as shown in Example 11-6.

Example 11-6 bpeWebclient local references

<ejb-local-ref id="EJBLocalRef_1049752101031">
<ejb-ref-name>ejb/QueryLocalHome</ejb-ref-name>
<ejb-ref-type>Session</ejb-ref-type>
<local-home>com.ibm.websphere.ejbquery.QueryLocalHome</local-home>
<local>com.ibm.websphere.ejbquery.QueryHome</local>

</ejb-local-ref>
<ejb-local-ref id="EJBLocalRef_1049840476047">
<ejb-ref-name>ejb/Customers</ejb-ref-name>
<ejb-ref-type>Entity</ejb-ref-type>
<local-home>com.acompany.ejbs.CustomersLocalHome</local-home>
<local>com.acompany.ejbs.CustomersHome</local>

</ejb-local-ref>

3. After modifying the source, switch back to the References tab and select the
EJB Local tab at the top.

4. Select the ejb/QueryLocalHome entry and enter the value for the JNDI Name
as com/ibm/websphere/ejbquery/Query.

5. Select the ejb/Customers entry and enter the value for the JNDI Name as
ejb/Customers.

6. Save and close the descriptor.

Search JSP development
The steps to develop this sample search JSP are as follows:

1. Expand the bpeWebclient project, select the Web Content and right-click.
Select New -> JSP File. Fill in the necessary information to create the JSP
whose name is DQuery, for example, which will represent our search JSP. For
detailed implementation of the JSP, refer to sample code provided in
Appendix B, “Sample scenario” on page 665.

a. The search JSP receives two parameters in the HTTPRequest: one is the
ID of a customer and the other is the ID of an item in the catalog. So in the
beginning of the JSP, you need to extract these two parameters from the
request, as shown in Example 11-7 on page 472. After doing that, you
need to create a Customers EJB, and use the findByPrimaryKey() method
with the customer ID to construct a Customers EJB populated with the
customer data. This bean is used to retrieve the list of customers in the
same department as the current one. This is done using the method
getCustomersInDepartment described in the previous section. This
 Chapter 11. Dynamic Query 471

method returns a vector of the customers’ IDs. Then we use these lists to
construct a string of these IDs to use later on in our queries.

Example 11-7 Search JSP

String itemID = request.getParameter(“itemID”);
String customerID = request.getParameter("customerID");
javax.naming.Context c = new javax.naming.InitialContext();
CustomersLocal customerHome =

((CustomersLocalHome) c.lookup("java:comp/env/ejb/Customers")).
findByPrimaryKey(new CustomersKey(customerID));

String deptID = customerHome.getCdepartmentid();
Vector allCustomers = customerHome.getCustomersInDepartment();
String ids = "'" + ((Object)allCustomers.elementAt(0)).toString() + "'";
for (int i = 1; i < allCustomers.size(); i++)

ids = ids + ",'" + ((Object)allCustomers.elementAt(i)).toString() + "'";

b. The following list shows the predefined query statements that are defined
in the search DQuery JSP.

– List all orders by customer on a specific item:

SELECT o.odate as OrderDate, o.oqty as Quantity, o.oprice as UnitPrice,
(o.oqty*o.oprice) as TotalPrice FROM Customers c, IN(c.orders) o WHERE
c.cid = ?1 AND o.oitem = ?2 ORDER BY o.odate

This select statement queries both the Customers EJB and the
Customers-Orders relationship, retrieving order date, order quantity, unit
price, and order total price of all previous orders performed by a customer
on a specific item. The parameter list for this query includes the customer
ID (cid) and the item ID (oitem). The retrieved results are ordered by the
order date.

– List all orders by a customer since a specific date:

SELECT o.odate as OrderDate, x.cname as ItemName, o.oqty as Quantity
FROM Customers c, IN(c.orders) o, Catalog x WHERE c.cid = ?1 AND x.cid
= o.oitem AND o.odate > ?2

This select statement queries the Customers EJB, the Customers-Orders
relationship, and the Catalog EJB, retrieving order date, order item name,
and order quantity, for all orders by a customer since a specified date. The
parameter list for this query includes the customer ID (cid) and the date.
The retrieved results are ordered by the order date.

– Get total price of all orders by a customer since a specific date:

SELECT SUM(o.oqty*o.oprice) as TotalPrice from Orders o where
o.ocustomer = ?1 and o.odate > ?2

This select statement uses the summation aggregate function SUM to
retrieve the sum of prices of all orders by a customer since a certain date.
472 WebSphere Application Server Enterprise V5

– List all orders by a customer’s department on a specific item:

SELECT o.odate as OrderDate, c.cid as CustomerID, o.oqty as Quantity,
o.oprice as UnitPrice, (o.oqty*o.oprice) as TotalPrice from Customers c,
IN(c.orders) o WHERE c.cid in ?1 AND o.oitem = ?2 ORDER BY o.odate

This select statement queries both the Customers EJB and the
Customers-Orders relationship, retrieving order date, customer ID, order
quantity, unit price, and order total price of all previous orders performed
by a customer on a specific item. The parameter list for this query includes
the list of customer IDs (cid) and the item ID (oitem). The retrieved results
are ordered by the order date. The list of customer IDs in the department
is retrieved using the method getCustomersInDepartment shown in
Example 11-5 on page 470, as mentioned earlier.

– List all orders by a customer’s department since a specific date:

SELECT o.odate as OrderDate, c.cid as CustomerID, x.cname as ItemName,
o.oqty as Quantity, (o.oqty*o.oprice) as TotalPrice FROM Customers c,
IN(c.orders) o, Catalog x WHERE c.cid in ?1 AND o.oitem = x.cid AND
o.odate > ?2

This select statement queries the Customers EJB, the Customers-Orders
relationship, and the Catalog EJB, retrieving order date, the customer ID,
order item name, order quantity, and the order total price for all orders by a
customer’s department since a specified date. The parameter list for this
query includes the list of customer IDs (cid) in the department and the
date. The retrieved results are ordered by the order date.

– Get total price of all orders by a customer’s department since a specific
date:

select SUM(o.oqty*o.oprice) as TotalPrice from Orders o where
o.ocustomer in ?1 and o.odate > ?2

This select statement uses the summation aggregate function SUM to
retrieve the sum of prices of all orders by all customers in a department
since a certain date.

c. The Submit Query button in the JSP submits to the QueryServlet. The
parameters list to the servlet will include the selected query string, the
customer ID, the item ID, the queries date argument, and the list of
customer IDs in the department.

Query Servlet development
To create the query servlet, in the J2EE perspective, select the J2EE Navigator
view, expand the bpeWebclient -> Web Content, select Java Source, right-click
and choose to create a new servlet. You need to perform the following actions:

1. Specify a package and a class name for the servlet, such as QueryServlet,
and click Finish.
 Chapter 11. Dynamic Query 473

2. The doPost method of the QueryServlet needs to begin a user transaction,
since we are using the QueryBean local interface, look up the
QueryLocalHome, and create the bean. Finally the servlet needs to invoke
the executeQuery method passing the query string available in the
HTTPRequest, in addition to the needed query parameters. The
QueryServlet will set the resultset as an attribute in the HTTPRequest, and
forward to the search results JSP.

Example 11-8 QueryServlet doPost method

javax.transaction.UserTransaction ut =
(javax.transaction.UserTransaction) c.lookup("java:comp/UserTransaction");

ut.begin();

queryEngine = ((com.ibm.websphere.ejbquery.QueryLocalHome) c
.lookup("java:comp/env/ejb/QueryLocalHome"))
.create();

com.ibm.websphere.ejbquery.QueryLocalIterator iter =
queryEngine.executeQuery(req.getParameter("query"), params, null);

req.setAttribute("resultset",iter);
getServletContext().getRequestDispatcher("DQueryResult.jsp").forward(req,resp);

Results JSP development
In the J2EE perspective, select the J2EE Navigator view, expand the
bpeWebclient project, select Web Content and right-click. Select New -> JSP
File. Fill in the necessary information to create the JSP whose name is
DQueryResult, for example, which will represent our search results JSP.
Example 11-9 shows the implementation of the body of the results JSP. Mainly,
the resultset attribute needs to be retrieved from the HTTPRequest, and then
iterate through the resultset, to display the query results in a table format.

Example 11-9 Results JSP body

<BODY>
<%

QueryLocalIterator iter = (QueryLocalIterator)
 request.getAttribute("resultset");

%>
<table cellpadding="0" cellspacing="5" border="2" width="100%">
<%

int fieldCount = iter.getFieldsCount();
for(int k =0; k < fieldCount; k++) {

%>
<td><%=iter.getFieldName(k+1)%></td>

<% } // end for k
 while (iter.hasNext()) {
 IQueryTuple rows = (IQueryTuple)iter.next();
474 WebSphere Application Server Enterprise V5

%>
<TR>

<%
for(int i = 0; i < fieldCount; i++){

%>
<TD><%= rows.getObject(i+1).toString()%></TD>

<%
} // end for

%>
</TR>

<%
 } // end while
%>
</TABLE>
</BODY>

11.3.4 Integration of Dynamic Query with sample application
The main point of integration of the Dynamic Query sample and the sample
application is adding this function to the Purchase Order process Web client. The
scenario is as follows. The person approving an order can use the Dynamic
Query sample to retrieve information about previous orders by the person placing
the new order. The approver can select any of the already defined queries to
execute, and also can specify queries at runtime, using the process Web client.

The Dynamic Query sample can be integrated into the default process Web
application. Open the Activity.jsp and insert the code, shown in Example 11-10,
into the file at line 221, right after the <%-- End of Headline of Content frame
--%> line.

Example 11-10 Dynamic Query code

<%-- inserting the Dynamic Query application --%>
<%

String DQprocessStarter=null;
String DQitemID=null;
String DQattributeName=null;
String DQattributeValue=null;

if(process!=null) {
DQprocessStarter=process.getStarter();

}

if (((attributeInputMessageNames != null) &&
(attributeInputMessageNames.size() != 0)) || (inputMessageJSP != null)) {

for (int i=0; i < attributeInputMessageNames.size(); i++) {
 Chapter 11. Dynamic Query 475

DQattributeName = (String) attributeInputMessageNames.elementAt(i);
DQattributeValue = (String)

context.getInputMessageAttribute(DQattributeName);
if(DQattributeName.equals("itemID")) {

DQitemID=DQattributeValue;
break;

}
}

}
%>
<% if(DQprocessStarter!=null && DQitemID!=null) { %>
<FORM NAME="queryForm" ACTION="Dquery.jsp" METHOD="GET">
<INPUT TYPE="hidden" NAME="customerID" VALUE="<%= DQprocessStarter %>">
<INPUT TYPE="hidden" NAME="itemID" VALUE="<%= DQitemID %>">
<INPUT TYPE="submit" VALUE="Run research for this order.">
</FORM>
<% } %>
<%-- end of inserting the Dynamic Query application --%>

This code puts a form onto the Web page with a button that takes the user to the
Dynamic Query page. The information for the query, process starter and item ID
is gathered from the process instance, which is available as an object in the
request.

11.4 Unit test environment
The QueryBean is packaged in a query.ear file that is automatically installed on
the default server during the WebSphere Enterprise installation. This EAR file
needs to be manually installed in the Universal Test Environment, in order to be
able to test an enterprise application that uses the Dynamic Query service.

11.4.1 Configure application server
The following steps show how to set up and start the ACompanyUnitTestServer
to be able to test the sample Dynamic Query application:

1. Switch to the Server perspective, in the Server Configuration view, expand
Servers, select ACompanyUnitTestServer, right-click, and select Add.
Select the QueryEJB project in order to add it to the server.

Note: The code above can be found in the MyBpewebclient Web application.
Since a new process Web client is generated for every WebSphere Enterprise
test server, the code is integrated into the customized process Web client.
476 WebSphere Application Server Enterprise V5

2. Select ACompanyUnitTestServer, and double-click to open the server for
editing. In the editor, select the Configuration tab. If you are using a remote
client for your Dynamic Query, then in the Server Settings section, the
Application class loader policy should be set to SINGLE. If a remote client is
used then, it should be set to MULTIPLE.

3. Save the server configuration and close.

11.4.2 Running the sample application
The following steps show how to run the sample Dynamic Query application:

1. Start ACompanyUnitTestServer.

2. Open a browser window and type the following URL:

http://localhost:9080/bpe/Dquery.jsp?customerID=1&itemID=1

The JSP user interface is shown in Figure 11-3 on page 478. The user can
select any of the buttons to select a query. This will display the query
statement in the text field at the bottom of the page. Some of the queries
require that the user specify a date using the day, month, and year drop-down
lists before selecting the query. After the user selects the desired query, or
types a query in the text field, the user should click the Submit Query button.
The search results page will display the query resultset in a tabular form as
shown in Figure 11-4 on page 478.
 Chapter 11. Dynamic Query 477

Figure 11-3 Sample search JSP

Figure 11-4 Sample search results

11.5 Assembly
After successful completion of testing the sample application integrated with
Dynamic Query, you need to assemble two components: the ACompany EAR file
and the bpeWebclient WAR file. After exporting the necessary files, you can
open the application’s EAR files using the Application Assembly Tool. You will
478 WebSphere Application Server Enterprise V5

need to configure the EJBs’ Access Intent when invoked by a Dynamic Query.
Once the necessary changes are done to the EAR file, it can be saved using AAT
and deployed in WebSphere.

The second action that you will need to do is to incorporate the bpeWebclient
with our new JSPs into the business process container in WebSphere. This can
also be done using the Application Assembly Tool.

The following section guides you through the process of exporting the project
files, and doing the necessary changes using AAT.

11.5.1 Projects export
In “Customers EJB built-in query” on page 469, we modified the original
Customers bean by adding the query and the method to retrieve the IDs of all the
customers in a department. This change requires redeploying the ACompany
EJBs. So you need to do the following:

1. From WebSphere Studio IE main file menu, select Export -> EAR file. Click
Next.

2. Select ACompany as the resource you want to export, and browse to specify
the location where you want to save your EAR file.

3. Click Finish.
 Chapter 11. Dynamic Query 479

Figure 11-5 Exporting ACompany EAR

Now you need to export the bpeWebclient WAR file. From the main menu, select
File -> Export -> WAR file and click Next. Select the bpeWebclient as the
resource you want to export, specify a location for saving the file, and click
Finish.

11.5.2 Configuring EJB Access Intent for Dynamic Query
You can set an Entity EJB to be accessed with a specific Access Intent when it is
loaded as a result of a Dynamic Query. This Access Intent is defined at the bean
level. For details about the possible policies that you can assign for the bean’s
Access Intent, refer to “Access Intent Policies” on page 349 and specifically
Table 8-2 on page 351. To configure an EJB Access Intent Policy, you need to
use the Application Assembly Tool. Following are the steps for assigning bean
Access Intent for dynamic queries:

1. Open the ACompany project EAR file using the Application Assembly Tool.
480 WebSphere Application Server Enterprise V5

2. Expand the ACompany project, and select EJB Modules -> ACompanyEJB
-> Dynamic Query. Right-click and select New. The New Dynamic Query
Access Intent window opens, as shown in Figure 11-6.

Figure 11-6 Application Assembly Tool - New Dynamic Query Access Intent

3. For each EJB in the project, you need to do the following:

a. Give a name for the EJB Dynamic Query Access Intent.

b. Click the Add button close to the Entity Beans field. This will open a
window displaying all entity beans in your project. Select the bean for
which you are creating the Access Intent.

c. Select the Access Intent Policy of your choice from the drop-down list, and
click Apply.

4. After you finish, save your changes, and save the EAR file to be used for
deployment.

11.5.3 Incorporating bpeWebclient.war
Before doing this step, you need to make sure that business process container
application (BPEContainer_cellName_ACompanyServer) that is installed on
 Chapter 11. Dynamic Query 481

ACompanyServer in your runtime environment is stopped. Start the Application
Assembly Tool and follow these steps:

1. Open an existing EAR file, which will be located in
<WebSphere_root>/installedapps/cellName/BPEContainer_cellName_ACom
panyServer.ear.

2. Expand the Web Modules node. Select BPEWebClient, right-click and select
Delete.

3. After you delete the existing Web client, select the Web Modules node,
right-click and select Import. Browse and locate the bpeWebclient.war file
that you have exported from WebSphere Studio IE, and select Open. The file
name should be bpewebclient.war, the context root should be /bpe, and the
display name BPEWebClient.

4. Save your changes and close AAT.

11.6 Configuration
The system administrator might need to install the query.ear application into the
application server, if a new server is being created, since the WebSphere product
install does this only for the default server. In the case of our sample, we are
using a new server ACompanyServer, thus we need to install query.ear on
ACompanyServer.

11.6.1 Installing query.ear
Since the WebSphere Enterprise installation only provides the Dynamic Query
service with the default server (server1), we will need to install the service to the
new server we have created for our sample application ACompanyServer. To do
that, you need to start the WebSphere Administrative Console, and choose to
install a new application. You will need to point to the query.ear file available in
<WebSphere_root>\installableApps.

Follow the steps to install the query.ear, but you need to note two things. First,
you need to assign a new name to the application, since the name query is
already available in the repository with the server1. So for example you can
name the new installation ACompanyQuery. The second thing that you should
notice is to install this application on the ACompanyServer. After you finish the
installation, you need to save your configuration.

After saving, and starting the ACompanyQuery application, the
ACompanyServer will be ready for deployment of applications that use the
Dynamic Query service.
482 WebSphere Application Server Enterprise V5

11.6.2 Application class loader policy configuration
In our sample application we are using the local interface of the query bean. In
order to use the local interface of the query bean, you must configure your server
to use Application Classloader Policy = SINGLE.

To configure the ACompanyServer, select Servers -> Application Servers ->
ACompanyServer. This will open the editor for configuring the server’s general
properties. For the Application class loader policy, select the value SINGLE from
the available drop-down list, and click OK. You will need to save the updated
server configuration and restart ACompanyServer.

11.7 Deployment
In Chapter 11, “Dynamic Query” on page 457, and in particular “Customers EJB
built-in query” on page 469, we modified the original Customers bean by adding
the query and the method to retrieve the IDs of all the customers in a
department. And in 11.5.2, “Configuring EJB Access Intent for Dynamic Query”
on page 480, we configured the Access Intent for the beans when invoked
through a Dynamic Query. These changes require redeploying the ACompany
EJBs. Thus, you will need to uninstall the ACompany application from
ACompanyServer, and install it again in the new EAR file. Thus you need to do
the following:

1. Make sure that ACompanyServer in your runtime environment is started.

2. Stop the ACompany application, and uninstall it.

3. Once the ACompany application is uninstalled, select Applications -> Install
New Application.

4. Follow the steps for installing the newly exported ACompany EAR file. You
don’t need to select the deploy EJB option, since we have already generated
the deployed code using WebSphere Studio IE. Make sure that you are
installing the ACompany application on ACompanyServer, and not on the
default server (server1).

5. Start the ACompany application, and make sure that the application
BPEContainer_cellName_ACompanyServer is started too.

Now you are able to run the Dynamic Query sample, simply by opening a Web
browser and typing the URL:

http://localhost:9081/bpe/Dquery.jsp?customerID=1&itemID=1

Important: Using a value of MULTI may result in your application being unable
to find the local interface for the query bean home.
 Chapter 11. Dynamic Query 483

If the code is integrated into a process Web client (see 11.3.4, “Integration of
Dynamic Query with sample application” on page 475), start a new PO process,
navigate to the activity details page, where you should find a button on the top of
the page that takes you to the Dynamic Query page.

11.8 Performance considerations
As mentioned in Chapter 11, “Dynamic Query” on page 457, dynamic queries
can be performed on EJB objects and on CMP fields. The following section
discusses some performance considerations regarding performing queries on
objects and on fields.

11.8.1 Transactions and Dynamic Query
By default Dynamic Query makes calls against the database with the lowest level
of locking possible. Using Dynamic Query, one can either select CMP fields or
can select EJB objects. In cases when CMP fields are selected, there is no
locking of the data selected. So in this case, you should be aware that the data
you are selecting is volatile. Currently there is no way to enforce locking for the
records when you are selecting CMP fields. This means that the use of Dynamic
Query can be dangerous in some instances. Let’s say you want to make a
transaction based on information returned in the data set. Example 11-11 runs a
query that returns all the account balances. Then customers pay interest based
on the account balance. However, this example is not safe. The reason is that the
value of balance can change between when we run the query and when we
assign a new balance. Moreover, the account might be deleted between running
the query and looking up the account to set the balance. This is because the
back-end rows are not locked when a data query runs.

Example 11-11 Selecting CMP fields

Select a.id, a.balance from Account a
For (x in resultset)

if (a.balance > 1000 && a.balance < 5000) {
 Account A = findByPrimaryKey(a.id);
 A.setBalance(a.balance*1.01);

}
if (a.balance > 5000) {

 Account A = findByPrimaryKey(a.id);
 A.setBalance(a.balance*1.02);

}

So the code for the balance update may be rewritten as Example 11-12 on
page 485 to overcome the problem of the possibility of account deletion. After the
484 WebSphere Application Server Enterprise V5

data is selected, findByPrimaryKey() method is invoked, and if the account has
been deleted between running the query and the findByPrimaryKey(),
AccountNotFoundException will be thrown. If the account still exists, the
findByPrimaryKey() method has the side effect of locking the account for the
transaction. The level of locking is based on the object’s Access Intent. So there
is still a possibility that the account balance will change during iterations, if the
Account Bean Access Intent is optimistic.

Example 11-12 Selecting CMP fields with exception handling

Select a.id, a.balance from Account a
For (x in resultset)
try {

Account A = findByPrimaryKey(a.id);
} catch (AccountNotFoundException e) {

}
if (A.getBalance() > 1000 && A.getBalance() < 5000) {

A.setBalance(A.getBalance()*1.01);
}
if (A.getBalance() > 5000) {

A.setBalance(A.getBalance()*1.02);
}

The only way to lock a piece of information is to return the instance that relates to
it. The only way to implement Example 11-11 on page 484 safely is to select EJB
objects instead of selecting CMP fields, and then perform the update, as shown
in Example 11-13.

Example 11-13 Selecting EJB instances

Select object(a) from Account a
For(x in resultset)

If (a.getBalance() > 1000 && a.getBalance < 5000){
a.setBalance(a.getBalance()*1.01);

and so on..

The side effect of selecting the EJB object instead of selecting the data fields is
that all of the resulting instances are instantiated. This makes the performance
much slower because it must return and lock each and every instance of
Account. We will use an enormous amount of back-end resources. All work with
Account will wait for this transaction to complete. If you have 10000 accounts to
update their balances, you will end up instantiating 10000 objects in your
runtime, which will bring the system performance down. Moreover, while all this is
going on, you will have all these records blocked. The optimal use of query in this
case would be to set a lock on the data that prevents updating but allow others to
read.
 Chapter 11. Dynamic Query 485

A possible workaround to reduce the number of instances available in memory
during runtime is to use the Query bean remote interface. The executeQuery
method in the remote interface allows you to divide the resultset into groups, by
specifying the cursor position skipRows arguments, and the maxRows argument.
But remember that you need to commit after each transaction to be able to
release the lock on the selected objects.

One more issue worth noticing when using Dynamic Query is the possibility of
using one the bean’s method in the query where clause. Let’s say we need to
retrieve accounts whose balance is greater than 10000. In Example 11-14 the
first query selects an Account object, which gets instantiated and used to retrieve
the account balance. The second query selects data only. The Account bean is
instantiated to evaluate getBalance() in the where clause, so you get a lock on
the object based on the Account bean’s default Access Intent. But since you are
selecting CMP fields, the lock is released at the end of the transaction, not at the
end of the query. The problem in this situation is in cases when the Access Intent
is optimistic. The getBalance method will get invoked indicating that the balance
is greater than 10000, then a moment later that balance might get changed by
another user reducing the balance.

Example 11-14 Selecting objects with condition

select object(a) from Account a where a.getBalance()>10000
or
select a.id, a.balance from Account a where a.getBalance()>10000

11.9 Security considerations
As discussed earlier the Query session bean is responsible for executing queries
on entity beans, and on CMP/CMR fields, through the use of its executeQuery()
method. Security can be controlled on the use of this bean. That is you can
control the use of the Dynamic Query service through granting or denying access
to the Query bean. If you want to deny somebody the ability to perform queries,
this is done by denying this user access to the Query session bean and its
method. Once a user has access to the Query bean and the executeQuery()
method, then the user can perform any query. You can control who is permitted
access to the remote query bean and the local query bean, but once authorized
a user can execute any valid query and return any data in the server. If you need
security control over which queries a user can execute, you need to define the
queries as finder or select methods and use EJB method authorization. The
Dynamic Query service does not have fine-grain security control at this time.

A user may submit a query in which an object is being selected, or data array
query. Access to a certain bean information can be controlled by
486 WebSphere Application Server Enterprise V5

granting/denying access to the bean and its methods. So if is an object query
and the user does not have access to the bean, then the user won’t be able to
retrieve the desired data. For example, let’s say the user submits a query such
as:

SELECT OBJECT(e) FROM Employee e

If the user running the query doesn’t have access to the Employee bean, then the
user won’t be able to execute this query, since this query requires instantiating
the Employee bean.

Unfortunately WebSphere does not have security access control for CMP and
CMR fields. So let’s say that the user doesn’t have access to the Employee bean,
and submits a query such as:

SELECT e.name, e.salary FROM Employee

Submitting such a query will return the desired results to the user, although this
user is not granted access to the Employee bean, since there is no security on
the fields level, and since in such a type of query the Employee bean is not
instantiated.

Another example that is worth watching for is a situation such as having two
EJBs: an Employee EJB, which a user is not allowed to access, and a
Department bean, which the user can access. Let’s say the user submits a query
such as :

SELECT e.name FROM Department d, IN (d.employees) as e WHERE d.deptNum = 10

This user will be able to retrieve the list of employee names, although this user is
not allowed to access the Employee bean.

If the submitted query has a method call, then the user access privileges on that
method are checked first before the method is invoked and the query is executed.
 Chapter 11. Dynamic Query 487

488 WebSphere Application Server Enterprise V5

Chapter 12. Startup Bean

Startup Beans service is an enterprise service that you can use to do some
initialization or cleanup before your J2EE application starts and after it stops.
This chapter explains the usage of Startup Beans in WebSphere Enterprise V5.

12
© Copyright IBM Corp. 2003. All rights reserved. 489

12.1 Introduction
Throughout the evolution of J2EE application design, there was always a need to
do initialization or cleanup tasks before the application starts. This can be solved
in different ways. In most cases, we end up without a JDNI environment for
locating applications resources and also a lack of security.

For this purpose, WebSphere Enterprise introduces the Startup Bean service. A
Startup Bean is a special session EJB loaded and executed by the EJB container
just before application begins to start. An application will not complete its startup
until the Startup Bean has completed the execution.

12.1.1 Why use Startup Beans?
The advantages of using Startup Beans instead of some other proven and
already tested mechanisms are as follows:

� Startup Beans run with full security context.

� Startup Beans run within WebSphere’s name space. Therefore it uses JNDI
to find and use other resources.

� If we compare it to a servlet, the a servlet’s init() method is often used as a
startup mechanism for starting initialization tasks.

The Startup Bean also provides a method that executes upon the
application’s shutdown.

12.2 Design
Startup Beans can be used in various situations, for example:

� Application runtime dependencies as an availability of database or legacy
system connection can be checked, before starting up the application.

� A Startup Bean could load data into the cache.

� Similar to data cache is to “warm up” entity beans—by executing finder
method and storing the EJB handles for future use. This is also known as
“commit option A” EJB cache and can be even more effective together with
Async Beans.

� Startup Beans can work well together with asynchronous programming. If an
application is using a large cache of some objects, but it can still work without
the cache, it is not necessary for the application to wait until the full cache is
built. With a Startup Bean we can initiate an Async Bean which populates the
cache and starts the application.
490 WebSphere Application Server Enterprise V5

� Another proven example using Startup Beans with Asynchronous Beans is
independent fast logging. Asynchronous Beans are used for writing
application logs to the database and Startup Beans serve as a fast bootstrap
mechanism.

� Startup Beans can also be used together with the scheduler service. Before
application starts up, we can create a task and schedule it with the Scheduler
service.

In our sample scenario, we use a Startup Bean for two tasks:

� For calling the CatalogUpdate process.
� For creating a task and schedule it with the scheduler service.

12.3 Development
In this section we describe how to use Startup Beans.

Steps for using Startup Beans
Startup Beans are just another session EJB in your application. In order to add
Startup Beans to an application, do the following:

� Create a Startup Bean according to provided programming API.
� Add it to the application EAR.
� Deploy the EAR in the application server.

Remote and Home interface
A Startup Bean is a user-defined EJB 2.0 session bean. It can be either stateful
or stateless. If it is stateful, the same instance is used for start and stop.
Otherwise, two instances are created.

It is mandatory to use the following home and remote interfaces:

1. EJB home interface must be:

com.ibm.websphere.startupservice.AppStartUpHome

2. EJB remote interface must be:

com.ibm.websphere.startupservice.AppStartUp

Important: In order to successfully compile your application and generate
deploy code, startupbean.jar must be added to the Java build path. In
WebSphere Studio IE, this file is located in the
WebSphere_Studio_IE_root>\WAS_EE_V5\lib directory. In WebSphere V5.0
Enterprise, the file is in the <WebSphere_root>\lib directory.
 Chapter 12. Startup Bean 491

This will assure that the WebSphere runtime recognize the bean as a Startup
Bean and proceed accordingly. A Startup Bean is not exposed in WebSphere’s
JNDI name space. You can have more than one Startup Bean per EAR or EJB
module.

A remote interface defines the following methods that must be implemented:

� boolean start()

This method is called before an application starts. From this method we call
all the user-defined initialization code we want to execute.

The start() method returns true when everything goes right, indicating that the
application will start. Returning false or throwing any exceptions indicates that
application start will be aborted.

There are no restrictions on what you can do in this method. The full IBM
WebSphere Enterprise programming model is available.

Because the application will not start before this method completes
successfully, we encourage the use of Asynchronous Beans if the initialization
task is not necessary to complete fully prior to the application’s start.

� void stop()

This method is called before the application stops. More exactly, it is called
after you initiate the stop of the application and all the requests have been
served. This method can call all the user-defined “cleanup” code we want to
execute.

There are no restrictions on what you can do in this method. The full IBM
WebSphere Enterprise programming model is available.

Exceptions thrown by this method will be logged but ignored, and the
application will continue to stop.

Transactional considerations
The startup session bean must use Container Managed Transactions. On stop()
and starts() methods, any transactional attribute can be used, except
TX_MANDATORY, because the methods are not started from a thread that has a
transactional context defined. If you use the TX_MANDATORY attribute, an
exception is thrown and application start is aborted.

Read more about the behavior of Startup Beans in 12.9, “Runtime environment”
on page 502.

Security considerations
There is no specific security setting for Startup Beans.
492 WebSphere Application Server Enterprise V5

If you use security enabled for WebSphere V5.0 Enterprise, the default identity
for Startup Bean is system. This means if you do not specify any
deployment-related security settings on the Startup Bean, the identity of the
Startup Bean will be the same as the one used for starting WebSphere.

If your Startup Bean uses some secured object that requires a different caller
identity, then the security identity must be enabled on the Startup Bean and
Run-as on the Startup Bean’s start() and stop() methods must be configured to
use the correct identity.

Required session bean timeout
Set the timeout to 0. If it is set to any other value, it will be ignored anyway, since
startup service automatically checks and sets it to 0.

12.4 Unit test environment
For Startup Beans, there is nothing special to configure in the WebSphere Studio
IE test environment. In WebSphere Application Server Enterprise, the Startup
Bean service is always enabled. After the development is done, you just publish
the project that contains Startup Beans onto the WebSphere Studio IE
WebSphere V5.0 Enterprise test environment server.

12.5 Assembly
At the assembly time, you might want to specify the following settings for Startup
Beans:

� Startup Bean priorities
� Security identity
� Transactional properties

Startup Bean priorities
If there is more than one Startup Bean in your application, you can specify
priorities among them. See 12.9.1, “Priorities when using multiple Startup
Beans” on page 504 for more details and explanation about how to set it.

Security identity
You can set security for the bean using Application Assembly Tool. This can be
done as shown on Figure 12-1 on page 494.
 Chapter 12. Startup Bean 493

Figure 12-1 Setting Startup Bean security, on bean’s scope

Or you can set security just on stop() and start() methods. This is the
recommended way. This is not possible within standard J2EE scope. It is a
WebSphere extension. Take a look at Figure 12-2 on page 495 to see how to do
it with Application Assembly Tool.
494 WebSphere Application Server Enterprise V5

Figure 12-2 Setting security for stop() and start() methods in Startup Bean

Transactional properties
See Figure 12-3 on page 496 for details about settings transactional properties
on stop() and start() methods with the Application Assembly Tool.
 Chapter 12. Startup Bean 495

Figure 12-3 Setting transactional properties on start() and stop() methods

JNDI considerations
During application assembly we can specify a JDNI name for the Startup Bean.
However, Startup Beans are not exposed in JNDI, and they do not need to be
since the only client for Startup Beans is the application server runtime.

12.6 Development
There is no special support from WebSphere Studio IE or any other tool for
Startup Beans development. You just create a session bean using the right home
and remote interfaces. Make sure that startupbean.jar is in the Java classpath.

12.6.1 Sample scenario
In our sample scenario, we will first use a startup session bean to trigger the
CatalogUpdate process.
496 WebSphere Application Server Enterprise V5

Prerequisites
Before starting with the development of a Startup Bean for our sample scenario,
you need to do the following:

� A database must be created; the database contain the tables necessary for
our sample scenario. See “Database” on page 666 for details about database
creation.

� For testing our sample with WebSphere Studio IE there must be an instance
of WebSphere V5.0 Enterprise server created. See “Development
environment” on page 667 for details.

� The startupbean.jar file must be added to the Java build path of the EJB
module which will contain the Startup Bean. We use the ACompanyEJB
module here. If you are using WebSphere Studio IE select the module,
right-click and select Properties, switch to Java Build Path tab, choose Add
Variable, select WAS_EE_V5, go to the lib directory and choose
startupbean.jar. Apply the changes.

Creating a service proxy
The first step is to create a CatalogUpdate service proxy class. It is not a
necessary step; it just makes calling CatalogUpdate service easier.

Follow these steps to create a service proxy:

1. Select Business Integration Perspective, navigate to the Deployable
Services and select CatalogUpdatePortTypeEJBService.wsdl under
ACompanyEJB. Right-click the service, select Enterprise Services ->
Generate Service Proxy.

2. Enter data as in Figure 12-4 on page 498, and click Next.

3. Select Client stub for the proxy style, select CatalogUpdatePortType for the
operations to include in the proxy, and click Finish.
 Chapter 12. Startup Bean 497

Figure 12-4 Creating service proxy bean

Creating startup session bean
The next step is to create the startup session bean, follow the steps below:

1. In J2EE hierarchy window, go to EJB Modules and right-click the
ACompanyEJB module. Select New -> Enterprise Bean.

2. In the first Enterprise Bean Creation window, make sure that ACompanyEJB
is selected for the project, click Next.

3. Configure the second Enterprise Bean Creation window as on Figure 12-5 on
page 499Click Next.
498 WebSphere Application Server Enterprise V5

Figure 12-5 Creating startup session bean, part 1

4. Configure the second Enterprise Bean Creation window as in Figure 12-6 on
page 500. Make sure that you select
com.ibm.websphere.AppStartUpHome for the Remote home interface and
com.ibm.websphere.AppStartUp for the Remote interface. If you correctly
added startupbean.jar file to Java build path, the interfaces should be listed in
the class selection pop-up window. Click Finish.
 Chapter 12. Startup Bean 499

Figure 12-6 Creating startup session bean, part 2

Adding code for the Startup Bean
In this step you will add the code for the start() and stop() methods to the Startup
Bean created in the previous section. Open the StartUpBean.java file and add
the methods as in Example 12-1.

Example 12-1 StartUpBean.java

import com.acompany.CatalogUpdatePortTypeProxy;
...

public boolean start() {
try {

System.out.println("StartUpBean: executing start method");
CatalogUpdatePortTypeProxy aProxy =

new CatalogUpdatePortTypeProxy();

try {
// this line can be used for quicker testing
aProxy.InputOperation("1", 0.30, "");
// the following code should go to production
// we can only use URL if there is a Web server
// with the catalog.xml
500 WebSphere Application Server Enterprise V5

// aProxy.InputOperation("",0,"http://acompany.com/catalog.xml");
} catch (org.apache.wsif.WSIFException e) {

System.out.println("StartUpBean: calling CatalogUpdate failed");
}

} catch (Exception e) {
e.printStackTrace();
return false;

}
System.out.println("StartUpBean: start method executed successfully.");
return true;

}

public void stop() {
System.out.println("StartUpBean: executing stop method");

}
...

What is the start() method doing?
1. In the start() method, we create a new instance of

CatalogUpdatePortTypeProxy service proxy.

2. Then we call proxy’s InputOperation() method passing ItemID and Price, for
which we use hardcoded values “1” and 0.30.

3. The InputOperation() method takes the values and send a message to
CatalogUpdate service, which then updates our CATALOG database.

In the source, you can see two InputOperation() method calls. The commented
InputOperation() method call is using the CatalogUpdate service in a different
way. Instead of passing values for ItemID and Price, you can also pass an URL,
under which is an XML file with the updates to the service. In our case we had a
predefined XML file served under the local Web server. More details about
CatalogUpdate service are in Appendix B, “Sample scenario” on page 665.

In Example 12-2, you can see a part of what we get in test environment server
output console. For more detailed traces of startup service execution for the
same sample, check 12.10, “Problem determination and troubleshooting” on
page 506.

Example 12-2 Startup Bean output

ApplicationMg A WSVR0200I: Starting application: ACompany
WebContainer A SRVE0169I: Loading Web Module: ACompanyWeb.
WebGroup I SRVE0180I: [ACompanyWeb] [/acompany] [Servlet.LOG]: JSP 1.2 Processor: init
WebGroup I SRVE0180I: [ACompanyWeb] [/acompany] [Servlet.LOG]: FormLoginServlet: init
WebGroup I SRVE0180I: [ACompanyWeb] [/acompany] [Servlet.LOG]: FormLogoutServlet: init
WebGroup I SRVE0180I: [ACompanyWeb] [/acompany] [Servlet.LOG]: SimpleFileServlet: init
 Chapter 12. Startup Bean 501

WebGroup I SRVE0180I: [ACompanyWeb] [/acompany] [Servlet.LOG]: InvokerServlet: init
EJBContainerI I WSVR0207I: Preparing to start EJB jar: ACompanyEJB.jar
EJBContainerI I WSVR0037I: Starting EJB jar: ACompanyEJB.jar
SystemOut O StartUpBean: executing start method
SystemOut O com.ibm.bpe.util.MessageLogger: com.ibm.bpe.engine.Engine is using JRas message
logger
SystemOut O Updated item:1, new price:0.3
SystemOut O Updated items:1
SystemOut O StartUpBean: start method executed successfully
ApplicationMg A WSVR0221I: Application started: ACompany

12.7 Configuration
For Startup Beans, there is no need for any special configuration in WebSphere
Application Server Enterprise. The Startup Bean’s behavior is configured during
development and assembly time. During deployment, Startup Beans are
deployed the same as any EJB.

12.8 Deployment
Startup Beans deploy like any other EJB. It is a part of your application, a part of
the JAR file. What makes the difference is that upon application startup
WebSphere recognizes them and runs them as a Startup Bean at application
startup.

12.9 Runtime environment
This section describes how Startup Bean service behaves from the runtime point
of view.

Startup service runtime flow
The following steps represent different states in the life cycle of a Startup
Bean in runtime. The diagram is shown in Figure 12-7 on page 504.

1. Application startup

After the application’s EAR is loaded, service looks for all the Startup Beans.
It finds them according to the home interface. Then, for each Startup Bean it
looks for the presence of wasStartupPriority as a property defined for the
startup EJB in the Deployment Descriptor. If there is no priority property
defined or it is the wrong type, it would be set to the lowest possible value for
the integer.
502 WebSphere Application Server Enterprise V5

Startup Beans are ordered according to priority and the startup service takes
the bean with the highest priority from the queue. It checks its transactional
properties on start() and stop() methods. If a TX_MANDATORY exception is
thrown, startup of the application is aborted. Then it finds the actual bean
using JNDI and runs its start() method. If there was no problem with the
lookup and the start() method returned true upon its execution, the startup
service stores the bean handle and proceeds to next Startup Bean in the
ordered queue as long there are any Startup Beans left. When it finishes
successfully with all the Startup Beans, WebSphere starts the application and
its JMS, IIOP and HTTP listeners.

2. Application shutdown

In the application shutdown process, right after the containers stopped
serving the requests, Startup Beans are taken one by one in the reverse order
of precedence regarding the application’s startup. For each bean, stop() is
executed. Any exception thrown at this stage is ignored, and startup service
continues with the next bean. Finally, it shuts down the application and the
listeners.

3. EJB Module re-start

Let’s suppose we have an application with more than one EJB module and
each contains Startup Bean(s). If one of the EJB modules is stopped and then
restarted, the startup service will consider it an application start. Therefore, it
will execute the Startup Beans that are part of the restarted EJB module.

4. Application server crash

If the application server crashes, the Startup Bean stop() method may not be
executed. When restarting the server, the start() method will be executed
normally.

Important: Startup service waits until the start() method finishes its
execution. So, if there is a demanding task triggered by the start() method,
it could take some time before applications actually start. In those
situations, it is recommended that you use Asynchronous Beans to do the
task and therefore finish with the start() method as soon as possible.
 Chapter 12. Startup Bean 503

Figure 12-7 Startup Startup Bean service runtime flow on startup

12.9.1 Priorities when using multiple Startup Beans
An application can have more than one Startup Bean. In this situation, priorities
must be defined for the beans.

For this purpose, an environment property must be defined on each Startup
Bean. The name of this priority must be wasStartupPriority and its type must be
java.lang.Integer.

Load
application's

EAR file

Find startup
beans

wasStartupPriority
 def ined and is of

integer type?

Order startup beans
according to

wasStartupPriority

Set priority to
lowest

Select next
statup bean
according to

priority

Transactional attribute
for stop() and start()
 methods is NOT

TX_MANDATORY

Find the startup
bean

JNDI lookup OK?

Invoke start()
method

start() returned
TRUE?

Store startup
bean's handle

Any startup bean
left?

START the application
ABORT the start up of the

application

No

Yes

Yes

No

No

Yes

Yes
504 WebSphere Application Server Enterprise V5

In Figure 12-8, you can see how to add an environment property with the
Application Assembly Tool. In Figure 12-9 on page 506, you can see how to add
an environment property with WebSphere Studio IE.

The default priority of a Startup Bean is 0. The property can be looked up using
JNDI via java:comp/env/wasStartupPriority.

Within one application’s scope, a Startup Bean with a higher priority will be
executed first. Beans with the same priority will be executed in undefined order.
Beans are stopped in the reverse order that they are started in.

Figure 12-8 Using AAT to add wasStartupPriority environment property to Startup Bean
 Chapter 12. Startup Bean 505

Figure 12-9 Using WebSphere Studio IE to add wasStartupPriority environment property to Startup Bean

12.9.2 Scalability
If we use Startup Beans on clustered applications, multiple clones will run the
applications. That is true also for the Startup Bean. Every clone will have a
Startup Bean instance of the application. The Startup Bean is invoked for each
clone in a cluster.

Startup Bean service of a clone is not aware of other clones and it does not
synchronize any actions between instances of Startup Beans among clones.
Therefore, it is the programmers’ responsibility to take appropriate actions to
avoid dead locks or data inconsistencies.

12.10 Problem determination and troubleshooting
You will quickly know if there is a configurational problem with Startup Beans you
are using: the application simply will not start. Start will be aborted by the startup
service and it will continue to start other applications.

As a first step, check if the transactional and security settings are correct.

If you encounter problems using Startup Beans and you suspect that the problem
source is somewhere within the startup service, then you can additionally use the
following trace string to monitor what is happening in the execution time.
506 WebSphere Application Server Enterprise V5

com.ibm.ws.startupservice.*=all=enabled

In Example 12-3, you can see the trace output for the startup service for our
sample scenario described in Appendix B, “Sample scenario” on page 665.

Example 12-3 Sample trace output

ApplicationMg A WSVR0200I: Starting application: ACompany
StartUpServic > stateChanged
 com.ibm.ws.runtime.deploy.DeployedObjectEvent[source=ACompany [class
com.ibm.ws.runtime.component.DeployedApplicationImpl]]
StartUpServic < stateChanged
StartUpServic d handleModuleMetaData:App name is ACompany
StartUpServic > stateChanged
 com.ibm.ws.runtime.deploy.DeployedObjectEvent[source=ACompanyWeb.war [class
com.ibm.ws.runtime.component.DeployedModuleImpl]]
StartUpServic < stateChanged
WebContainer A SRVE0169I: Loading Web Module: ACompanyWeb.
WebGroup I SRVE0180I: [ACompanyWeb] [/acompany] [Servlet.LOG]: JSP 1.2 Processor: init
WebGroup I SRVE0180I: [ACompanyWeb] [/acompany] [Servlet.LOG]: FormLoginServlet: init
WebGroup I SRVE0180I: [ACompanyWeb] [/acompany] [Servlet.LOG]: FormLogoutServlet: init
WebGroup I SRVE0180I: [ACompanyWeb] [/acompany] [Servlet.LOG]: SimpleFileServlet: init
WebGroup I SRVE0180I: [ACompanyWeb] [/acompany] [Servlet.LOG]: InvokerServlet: init
StartUpServic > stateChanged
 com.ibm.ws.runtime.deploy.DeployedObjectEvent[source=ACompanyWeb.war [class
com.ibm.ws.runtime.component.DeployedModuleImpl]]
StartUpServic < stateChanged
EJBContainerI I WSVR0207I: Preparing to start EJB jar: ACompanyEJB.jar
StartUpServic d handleModuleMetaData:App name is ACompany
StartUpServic d Skipping bean. Not a startup bean:ACompany#ACompanyEJB.jar#CatalogTask
StartUpServic d Skipping bean. Not a startup bean:ACompany#ACompanyEJB.jar#OrdersTask
StartUpServic d Skipping bean. Not a startup bean:ACompany#ACompanyEJB.jar#ApprovalBR
StartUpServic d Skipping bean. Not a session bean:ACompany#ACompanyEJB.jar#Catalog
StartUpServic d Skipping bean. Not a session bean:ACompany#ACompanyEJB.jar#Orders
StartUpServic d Skipping bean. Not a startup bean:ACompany#ACompanyEJB.jar#Notification
StartUpServic d Found startup bean StartUp in ACompany module ACompanyEJB.jar
StartUpServic d Overriding Stateful Session Timeout to zero. Configured value=600
StartBeanInfo d Transaction Attribute for method: start = TX_NOT_SUPPORTED
StartBeanInfo d Transaction Attribute for method: stop = TX_NOT_SUPPORTED
StartUpServic d Skipping bean. Not a startup bean:ACompany#ACompanyEJB.jar#ACompanyTask
StartUpServic > stateChanged
 com.ibm.ws.runtime.deploy.DeployedObjectEvent[source=ACompanyEJB.jar [class
com.ibm.ws.runtime.component.DeployedModuleImpl]]
StartUpServic < stateChanged
EJBContainerI I WSVR0037I: Starting EJB jar: ACompanyEJB.jar
StartUpServic > stateChanged
 com.ibm.ws.runtime.deploy.DeployedObjectEvent[source=ACompanyEJB.jar [class
com.ibm.ws.runtime.component.DeployedModuleImpl]]
StartUpServic < stateChanged
 Chapter 12. Startup Bean 507

StartUpServic > stateChanged
 com.ibm.ws.runtime.deploy.DeployedObjectEvent[source=ACompany [class
com.ibm.ws.runtime.component.DeployedApplicationImpl]]
StartUpServic d EAR Started
StartUpApplic > starting ACompany
StartUpModule > start
 ACompanyEJB.jar
StartUpModule d Starting Bean: ejb/com/acompany/ejbs/StartUpHome
StartBeanInfo > start
 ejb/com/acompany/ejbs/StartUpHome
StartBeanInfo > getStartUpBean
StartBeanInfo > getStartUpHome
StartBeanInfo < getStartUpHome
StartBeanInfo < getStartUpBean
SystemOut O StartUpBean: executing start method
SystemOut O com.ibm.bpe.util.MessageLogger: com.ibm.bpe.engine.Engine is using JRas message
logger
SystemOut O Updated item:1, new price:0.3
SystemOut O Updated items:1
SystemOut O StartUpBean: start method executed successfully
StartBeanInfo d Startup Bean start method called
 ejb/com/acompany/ejbs/StartUpHome
 true
StartBeanInfo < start
 ejb/com/acompany/ejbs/StartUpHome
StartUpModule d StartUpBean.start returned true: ejb/com/acompany/ejbs/StartUpHome
StartUpModule < start
 ACompanyEJB.jar
StartUpApplic < starting ACompany
StartUpServic < stateChanged
ApplicationMg A WSVR0221I: Application started: ACompany
508 WebSphere Application Server Enterprise V5

Chapter 13. Scheduler service

The Scheduler service is a WebSphere Enterprise mechanism that is
responsible for starting actions at specific times or intervals. This chapter
describes the usage of the Scheduler service.

13
© Copyright IBM Corp. 2003. All rights reserved. 509

13.1 Introduction
Until now, there has been no functionality providing time-driven actions in
WebSphere. As always, there was an option to build a proprietary mechanism,
but in the end it would not be well integrated into the WebSphere runtime.

With the Scheduler service, the actions can be scheduled to happen only once,
some time in the future, or on a recurring basis or at regular intervals. It can also
receive notifications about task activity.

Why use the Scheduler service?
Beside the better integration, here is a list of the advantages of using the
Scheduler service:

� Administration

Scheduler service administration is consistent with WebSphere resource
management.

� Persistence and transactional robustness

Scheduler tasks can be persistent. Basically this means that the task
definitions are stored in a relational database and can be executed for
indefinite repetitions and arbitrary long time periods.

� Scalability

The Scheduler service can be clustered using workload management for
performance and availability.

� Calendar independence

Each task is executed according to the specified calendar. You can provide
your own calendar classes that suit your local business calendar.

� Design flexibility

Scheduler tasks can be EJB-based tasks or they can be triggered using JMS
messages.

� Notifications

The Scheduler can perform notification actions on various task activity events.

13.2 Design
The Scheduler is useful any time you need to ensure that certain actions are
taken on a regular basis. For example:

� Schedule regular backups, cleanups, night-time, or “batch” processing.
510 WebSphere Application Server Enterprise V5

� Implement automatic, non-user driven activities, as reminders, to-do actions,
etc.

Tasks can be persistent or nonpersistent.

In our sample scenario we will use the Scheduler for periodical calling of the
CatalogUpdate process to update the catalog from external resources.

13.3 Development
In the following text, we describe how to use the Scheduler service from your
application.

13.3.1 Scheduler API
The Scheduler API is contained in the com.ibm.websphere.scheduler package.
Check the complete description of the Scheduler API in the WebSphere
Enterprise InfoCenter:

http://publib7b.boulder.ibm.com/wasinfo1/en/info/ee/javadoc/ee/com/ibm/webspher
e/scheduler/package-summary.html

13.3.2 Steps for using the Scheduler service
There are no tools that provide help creating and scheduling tasks. All must be
done programmatically in your J2EE application. The following steps must be
done when using the service:

1. Configure the Scheduler service.

2. Develop the Scheduler client code:

a. Define tasks
b. Define notifications
c. Define calendar
d. Find Scheduler and scheduling tasks
e. Manage scheduled tasks

3. Add the code to your application.

4. Deploy.

Configure the Scheduler service
The first step is to have the Scheduler service and its prerequisites configured as
the work manager and Scheduler database. This can be done using the
 Chapter 13. Scheduler service 511

http://publib7b.boulder.ibm.com/wasinfo1/en/info/ee/javadoc/ee/com/ibm/websphere/scheduler/package-summary.html

WebSphere administration. Refer to “Scheduler configuration using the
Administrative Console” on page 530 for more details.

Define task
Defining a task consists of creating a task information object and creating a task
action object.

Task information
A task is defined by constructing a task information object. This object contains
all the task information such as start times, repeat interval, the calendar to use,
start interval, state, and persistence.

Generic task information is defined by the TaskInfo interface. Additionally two
interfaces extend TaskInfo:

� BeanTaskInfo

Used when the target object is an EJB session bean.

� MessageTaskInfo

Used to create a scheduled task that sends a JMS message to either a queue
or topic.

WebSphere Enterprise provides implementation for both interfaces described
above. Programmatically you create an instance of these two objects by
executing the appropriate create() method of the Scheduler service.

Task
The Task information object also specifies the target action and the executable
action of the task. This target can be one of the following:

� JMS message

A message that is sent by JMS to a queue or topic. In this case you use
MessageTaskInfo object for target action. With this object you can specify all
the JMS-related properties (connection factory, queue, and message).

� Session EJB

Within the application EAR, there is a session EJB that implements the
IBM-provided home and remote interface. A method of this bean is then
called when the task fires. It should be implemented as an EJB 2.0 stateless
session bean. You must use the TaskHandlerHome interface for EJB’s home
interface and the TaskHandler interface for EJB’s remote interface. When the
Scheduler executes the action, it runs TaskHandler EJB’s process() method.

Important: Remember the JNDI name you used for the Scheduler service
configuration.
512 WebSphere Application Server Enterprise V5

� A user-supplied JMS message is queued or published by WebSphere JMS
service to the user-supplied queue or topic. In this case you use the
MessageTaskInfo object for the target action. With this object, you specify all
the JMS-related properties (connection factory, queue, and message).

Define notification

Various events regarding task status can be generated by the Scheduler service,
for example when the task is scheduled, upon successful execution of the task,
upon cancelled execution, upon deleting, etc. When using the notification
mechanism, the following must be defined:

� Notification mask represents the mask of which event will be monitored and
upon which we want to be notified. This is done by creating and configuring
an instance of the TaskNotificationInfo class.

� Notification action is performed upon the occurrence of the specified events.
The action is specified by an EJB 2.0 session bean. You must use the IBM
provided NotificationSinkHome interface for EJB’s home interface and
NotificationSink interface for EJB’s remote interface.

The handleEvent() method is called when the notification is fired.

When you have both the notification event mask and notification action bean
defined, you set the notification via the TaskInfo object by using its
setNotificationSink() method.

Define user calendar

When creating a task information object, there is an option to specify
user-defined calendar(s). This is done by calling the setUserCalendar(String
homeJNDIName, String specifier) method on the TaskInfo object.

This can be very useful, since different types of businesses rely on different
calendars for calculations. Even within the same business, we can have different

Note: The action that is executed by a scheduled task can be either a special
session EJB or a specific JMS message.

Note: Defining notification is optional. You can schedule tasks without using
the notification mechanism.

Note: Using user-defined calendars is optional. You can schedule tasks
without providing a calendar. WebSphere implements two calendars that
cover the majority of the needs. These calendars are used by default.
 Chapter 13. Scheduler service 513

calendars. For example national holidays differ from country to country, so the
term “next business day” according to a given date can have a different value.

Calendar is represented by a stateless session bean, which must use the
IBM-provided UserCalendarHome interface for EJB’s home interface and
UserCalendar interface for EJB’s remote interface. A calendar bean can contain
more than one calendar. In the bean, you need to implement the following remote
methods:

� void validate(String calendar, String delta)

It checks if a given calendar name matches any of the calendars that are
defined in the bean. It also checks if the delta specifier is valid for the given
calendar.

� Date applyDelta(Date baseTime, String calendar, String delta)

This method takes the given baseTime date and then, according to the given
calendar implementation and delta interval, calculates the exact time of
execution.

These two methods are used by the Scheduler service when calculating the firing
interval.

Default user calendar
Since the Scheduler service always use a calendar, WebSphere Enterprise V5
already implements one.

If no calendar is specified when defining a TaskInfo object, then the default
calendar implementation (actually its simple arithmetic calendar) will be used.

The other choice is to do a lookup for the default UserCalendar using its JNDI
name: com/ibm/websphere/scheduler/calendar/DefaultUserCalendarHome.
Then you can reuse it in your own calendar.

The default UserCalendar supplied with the WebSphere Scheduler implements
two types of calendars:

� CRON-like calendar

The calendar can only be set using setUserCalendar() on the TaskInfo object,
specifying the default calendar’s JNDI name and “CRON” as a calendar
identifier.

The CRON calendar’s time interval argument looks like a UNIX CRON-based
interval. It is a string consisting of the following substrings:

“second minute hourOfDay DayOfMonth Month DayOfWeek”

Refer to the Scheduler API in WebSphere Enterprise V5 InfoCenter for more
details.
514 WebSphere Application Server Enterprise V5

� Simple arithmetic calendar

By default this calendar is used. It simply calculates the delta interval
according to a specified interval, which depends on how the starting time is
set in the TaskInfo object.

Calendar’s time interval argument is a string consisting of
NumberTimeinterval substrings, where Number is an integer and Timeinterval
is one the following: “seconds”, “minutes”, “hours”, “days”, “months”,
“years”.

For example a valid string for an arithmetic calendar would be:

“10days 3minutes 1months”

Find the Scheduler service and schedule the task
The Scheduler service is exposed in JNDI. Programmatically, you use JDNI
lookup to find the Scheduler service on the WebSphere Enterprise V5 application
server and then schedule the task.

Manage scheduled tasks
Once tasks are scheduled, you can manage them through the Scheduler service.
Once you obtained the service using the JNDI, you can do the following with
already created tasks:

� Suspend a task. The task does not run until it has been resumed.

� Resume a previously suspended task.

� Cancel a task.

� Permanently delete a completed or cancelled from the persistent store.

� Return the current status of the task.

Other methods, such as finding a task or getting a task’s ID, are also
implemented. Refer to the Scheduler API for more details.

Note: How you order the substrings does not depend on the Timeinterval
value, but be careful because the order directly affects the final date result.
Parsing the string and applying values to the time base goes from left to
right. In some cases we can get different values for the same time base,
using the same NumberTimeinteval substrings but in a different order.

Restriction: The Scheduler is available only to server-side components
where the Scheduler daemon is running. If a Scheduler resource is defined at
the node level, for example, all the application servers on that node have
access to that Scheduler and will run its daemon. You can selectively disable
the daemon on an application server.
 Chapter 13. Scheduler service 515

13.4 Unit test environment
The Scheduler service must be configured in WebSphere Studio IE test
environment for the WebSphere Enterprise V5 test server. In WebSphere Studio
IE, there is a limited set of administration tasks for the test server available
through the GUI. In particular, there is no Scheduler administration using the
server editor tool in WebSphere Studio IE. You have to have the test environment
server running and the Administrative Console enabled for the server. Once the
server is running, use a Web browser to access the Administrative Console
where you can configure the Scheduler service the same way as for the runtime
application server. See 13.8, “Configuration” on page 527.

13.5 Assembly
The following section discusses the assembly-related actions for the Scheduler
service.

In the application code, local name references are used for the Scheduler service
so before you can use the Scheduler you have to tell your application where they
are in the JNDI name space. You can use the Application Assembly Tool by doing
the following:

1. In the Application Assembly Tool, open your application EAR file. Select the
module from where the Scheduler is used. If there is more than one module,
you will have to create a resource environment reference for each one. That
means each module—client, EBJ or Web module—from which you use the
Scheduler service needs a resource environment reference for the Scheduler.

2. If you have selected an EJB module, you have to find the bean that uses the
Scheduler service and then expand it. Select ACompany -> EJB Modules ->
ACompanyEJB -> Session Beans -> StartUp. If you have selected a client
application module, the resource environment property is already in the
subroot directory. Right-click Resource Environment References and select
New.

3. On the General tab, enter the name you are using in your code as a local
reference, for example ACompanyScheduler. For the type, enter
com.ibm.websphere.scheduler.Scheduler.

Note: Tasks are managed only programmatically by using the Scheduler API
within the code. There is no administration available for created tasks, so be
aware of all the created tasks. Once a persistent task is created, it will exist
and run until we (programmatically) delete it from the database.
516 WebSphere Application Server Enterprise V5

4. On the Bindings tab, for the JNDI name enter the JNDI name that you
specified when creating the new Scheduler service in WebSphere, for
example ACompanyScheduler.

5. Save the EAR and close it.

13.6 Building and tools
There is no special support from WebSphere Studio IE or any other tool for the
Scheduler. You just create a session bean using the correct home and remote
interfaces. Make sure that the schedulerclient.jar file is in the Java classpath. See
“Prerequisites” on page 517 for more details.

13.7 Sample scenario
In our sample scenario of using the WebSphere Enterprise Scheduler service,
we will use the session bean option for the target action. The development part
consists of developing a task session bean and developing the code that will get
the Scheduler, create a task information object, set the properties and the target
action, and finally schedule the task.

Our task bean will execute exactly the same code as in the Startup Bean in
Chapter 12, “Startup Bean” on page 489. Every time the Scheduler service
executes the task, it updates the catalog database for the application.

We will use already created Startup Beans for assigning the task for the
Scheduler service.

Prerequisites
You need to meet the following prerequisites:

� The application database needs to be in place. See “Database” on page 666
for details.

� For testing the sample with WebSphere Studio IE, a test server needs to be
created and configured. For more information, refer to “Development
environment” on page 667.

� The schedulerclient.jar file needs to be in the Java build path of the EJB
module that will contain the Startup Bean. It is the ACompanyEJB module.

� Since the Scheduler sample reuses the Startup Bean sample, make sure that
you have already done that sample in WebSphere Studio IE.
 Chapter 13. Scheduler service 517

� The Scheduler service will be used from the Startup Bean. For the startup
EJB, you need to define a resource reference that points to the Scheduler
service.

Creating the task session EJB
Take the following steps to create the task session EJB:

1. In the J2EE hierarchy window, select EJB Modules and right-click the
ACompanyEJB module. Select New -> Enterprise Bean.

2. In the first Enterprise Bean Creation window, make sure that ACompanyEJB
is selected for the project, and click Next.

3. Configure the second Enterprise Bean Creation window as in Figure 13-1.
Click Next.

Figure 13-1 Creating the task session EJB, screen 1

4. Configure the second Enterprise Bean Creation window, as in Figure 13-2 on
page 519. Make sure that you select
com.ibm.websphere.scheduler.TaskHandlerHome for the Remote home
interface and com.ibm.websphere.scheduler.TaskHandler for the Remote
interface. Click Finish.
518 WebSphere Application Server Enterprise V5

Figure 13-2 Creating the task session EJB, screen 2

Adding code for the Task Handler bean
The next step is to add the code for the process method of ACompanyTask.
Open ACompanyTaskBean.java and add the method as in Example 13-1.

Example 13-1 ACompanyTaskBean.java

import com.acompany.CatalogUpdatePortTypeProxy;
import com.ibm.websphere.scheduler.TaskStatus;
...
public void process(TaskStatus status) {

System.out.println("ACompanyTaskBean: executing process");
try {

CatalogUpdatePortTypeProxy aProxy = new CatalogUpdatePortTypeProxy();
try {

// this line can be used for testing
// we can only use URL if there is a Web server with the catalog.xml
aProxy.InputOperation("1", 0.30, "");
// the following code should go to production
// aProxy.InputOperation("",0,"http://acompany.com/catalog.xml");

} catch (org.apache.wsif.WSIFException e) {
System.out.println("ACompanyTaskBean: calling CatalogUpdate failed");

}

 Chapter 13. Scheduler service 519

}
catch (Exception e) {

e.printStackTrace();
}
System.out.println("ACompanyTaskBean: process executed successfully");

}

In the process method we do the same as in the previous case with the Startup
Bean. We create a new instance of the service proxy and then call its
InputOperation method. The InputOperation method takes the values and sends
a message to CatalogUpdate service, which then updates the CATALOG table in
the database.

The commented InputOperation method call uses the CatalogUpdate service in
a different way. You can also pass a URL under which is an XML file with the
updates to the service. In our case we had a predefined XML file served from the
local Web server. More details about CatalogUpdate service can be found in
3.4.1, “Catalog update business process” on page 29.

Adding the Scheduler service enablement code
We will use the Startup Bean used in 12.3, “Development” on page 491. In the
start method, we will find a Scheduler and deploy the previously created task.
Open StartUpBean.java and add the scheduleTask method as in Example 13-2.

Example 13-2 Adding scheduleTask() method to StartUpBean.java

import com.ibm.websphere.scheduler.BeanTaskInfo;
import com.ibm.websphere.scheduler.Scheduler;
import com.ibm.websphere.scheduler.TaskHandlerHome;
import com.ibm.websphere.scheduler.TaskStatus;
...
boolean scheduleTask(long startInterval, int repeats, long repeatInterval,
String taskName) {

boolean result=false;
try {

//Get the Scheduler
Context initialContext = new InitialContext();
System.out.println("StartUpBean.scheduleTask: Getting the Scheduler");
Object schedulerObj =

initialContext.lookup("java:comp/env/ACompanyScheduler");
Scheduler scheduler = (Scheduler)

javax.rmi.PortableRemoteObject.narrow(schedulerObj, Scheduler.class);
// Get the task handler which will be called when the task runs.

Note: Originally, the InputOperation method passes a URL to the external
catalog. For faster and easier testing, use the line with one item update.
520 WebSphere Application Server Enterprise V5

System.out.println("StartUpBean.scheduleTask: Getting the task
handler");

Object taskHandlerObj =
initialContext.lookup("java:comp/env/LocalTaskHandlerReference");

TaskHandlerHome taskHandlerHome =
(TaskHandlerHome) PortableRemoteObject.narrow(taskHandlerObj,

TaskHandlerHome.class);
// Create our Schedule Task Info for our ACompanyTask task handler
System.out.println("StartUpBean.scheduleTask: Creating the task");
BeanTaskInfo taskInfo = scheduler.createBeanTaskInfo();
taskInfo.setTaskHandler(taskHandlerHome);
taskInfo.setStartTimeInterval(startInterval + "minutes");
taskInfo.setRepeatInterval(repeatInterval + "minutes");
taskInfo.setNumberOfRepeats(repeats);
taskInfo.setName(taskName);
//set the name of the task which is associated to a TaskID
TaskStatus status = scheduler.create(taskInfo);
System.out.println("StartUpBean.scheduleTask: Task submitted");
System.out.println("StartUpBean.scheduleTask: Task ID is: " +

status.getTaskId());
System.out.println("StartUpBean.scheduleTask: The name of the Task is: "

+ status.getName());
System.out.println("StartUpBean.scheduleTask: Task status is: " +

status.getStatus());
result=true;

}
catch (Exception e) {

System.out.println("StartUpBean.scheduleTask: failed");
e.printStackTrace();

}
return (result);

}

What the scheduleTask method does:

1. Finds the configured Scheduler service using JNDI and creates an instance.

2. Finds the Task Handler bean using JNDI and creates an instance.

3. Creates a task and submits it to the Scheduler service.

The next step is to modify the start method of the Startup Bean. See
Example 13-3.

Example 13-3 Modifying start() method in StartUpBean.java

public boolean start() {
try {

System.out.println("StartUpBean: executing start method");
CatalogUpdatePortTypeProxy aProxy = new CatalogUpdatePortTypeProxy();
 Chapter 13. Scheduler service 521

try {
// this line can be used for testing
// we can only use URL if there is a Web server with the catalog.xml
aProxy.InputOperation("1", 0.30, "");
// the following code should go to production
// aProxy.InputOperation("",0,"http://acompany.com/catalog.xml");

}
catch (org.apache.wsif.WSIFException e) {

System.out.println("StartUpBean: calling CatalogUpdate failed");
}

}
catch (Exception e) {

e.printStackTrace();
return false;

}
System.out.println("StartUpBean: calling scheduleTask");
return scheduleTask(1, 5, 1, "TheACompanyTask");

}

As you can see, we are still calling the CatalogUpdate from the start method of
the Startup Bean. But, after we also call scheduleTask and schedule
ACompanyTask.

The arguments used in the call are (1, 5, 1, "TheACompanyTask"), which
means 1 minute of startup delay, 5 repetitions, 1 minute between each repetition
and TheACompanyTask is a name we chose for our task. Because we do not
specify any specific calendar with the task, all the time values are relative to the
default calendar.

User-defined calendar
In this section we create our own user-defined calendar. It will not be used in this
sample scenario. It is used in the Internationalization sample. Find the details
about the Internationalization sample in Chapter 16, “Internationalization (i18n)
service” on page 583.

This sample reuses the default calendar and adds some hooks for specific
settings. So, when the specified time interval will not meet our criteria, our
calendar will pass the control to the default calendar.

Create the bean
Create the bean with the following steps using WebSphere Studio IE:

1. In J2EE hierarchy window, navigate to the EJB Modules and right-click the
ACompanyEJB module, then select New -> Enterprise Bean.

2. In the first Enterprise Bean Creation window, make sure that ACompanyEJB
is selected for the project, and click Next.
522 WebSphere Application Server Enterprise V5

3. Configure the second Enterprise Bean Creation window, as in Figure 13-3.
Click Next.

Figure 13-3 Creating UserCalendar bean, first window

4. Configure the second Enterprise Bean Creation window as in Figure 13-4 on
page 524. Make sure that you select the
com.ibm.websphere.scheduler.UserCalendarHome for the Remote home
interface and com.ibm.websphere.scheduler.UserCalendar for the Remote
interface. Click Finish.
 Chapter 13. Scheduler service 523

Figure 13-4 Creating UserCalendar bean, second window.

Add resource environment reference
Since we use the default calendar bean in our calendar bean, a resource
reference must be added to the Deployment Descriptor of EJB module. Take the
following steps:

1. Open the Deployment Descriptor of ACompanyEJB project by double-clicking
ACompanyEJB. Switch to the References tab, select the
ACompanyCalendar bean and click Add.

2. Select Resource environment reference and click Next. Enter
UserDefaultCalendar in the Name field, and in the Type field enter
com.ibm.websphere.scheduler.calendar.DefaultUserCalendarHome. Click
Finish.

3. Select the created resource environment reference and in WebSphere
Bindings in the JDNI name field, enter
com/ibm/websphere/scheduler/calendar/DefaultUserCalendarHome for the
value.

4. Save the changes and close the file.
524 WebSphere Application Server Enterprise V5

Adding code for the ACompanyCalendar
Open ACompanyCalendarBean.java and copy the code as in Example 13-4.

Example 13-4 ACompanyCalendarBean.java

package com.acompany.ejbs;

import java.util.Date;
import javax.naming.InitialContext;
import com.ibm.websphere.scheduler.UserCalendar;
import com.ibm.websphere.scheduler.UserCalendarHome;
import com.ibm.websphere.scheduler.UserCalendarPeriodInvalid;
import com.ibm.websphere.scheduler.UserCalendarSpecifierInvalid;

public class ACompanyCalendarBean implements javax.ejb.SessionBean {
UserCalendar defaultCalendar;

private javax.ejb.SessionContext mySessionCtx;

public javax.ejb.SessionContext getSessionContext() {
return mySessionCtx;

}

public void setSessionContext(javax.ejb.SessionContext ctx) {
mySessionCtx = ctx;

}

public void ejbCreate() throws javax.ejb.CreateException {
try {

InitialContext initialContext = new InitialContext();
UserCalendarHome defaultUserCalendarHome = (UserCalendarHome)

initialContext.lookup("java:comp/env/UserDefaultCalendar");
defaultCalendar = defaultUserCalendarHome.create();

} catch (Exception e) {
System.out.println("ACompanyCalendarBean: create failed");
e.printStackTrace();

}
}

public void ejbActivate() {}

public void ejbPassivate() {}

public void ejbRemove() {}

public Date applyDelta(java.util.Date baseTime, java.lang.String calendar, java.lang.String
delta) throws UserCalendarSpecifierInvalid, UserCalendarPeriodInvalid {

try {
if (delta.equalsIgnoreCase("begintrade")) {
 Chapter 13. Scheduler service 525

if (calendar.equalsIgnoreCase("Europe/Brussels"))
return (defaultCalendar.applyDelta(baseTime, "CRON", "0 0 8 ? ? Mon-Fri"));

else
return (defaultCalendar.applyDelta(baseTime, "CRON", "0 0 9 ? ? Mon-Fri"));

} else
return (defaultCalendar.applyDelta(baseTime, calendar, delta));

} catch (Exception e) {
System.out.println("ACompanyCalendarBean: applyDelta failed");
e.printStackTrace();
throw new UserCalendarPeriodInvalid();

}
}

public String[] getCalendarNames() {
try {

return (new String[] { "Europe/Brussels" + defaultCalendar.getCalendarNames()});
} catch (Exception e) {

System.out.println("ACompanyCalendarBean: getCalendarNames failed");
e.printStackTrace();

}
return (new String[] { "Europe/Brussels" });

}

public void validate(java.lang.String calendar, java.lang.String delta) throws
UserCalendarSpecifierInvalid, UserCalendarPeriodInvalid {

try {
if (!delta.equalsIgnoreCase("begintrade"))

defaultCalendar.validate(calendar, delta);
} catch (Exception e) {

System.out.println("ACompanyCalendarBean: validate failed");
e.printStackTrace();

}
}

}

As you can see in the code for ACompanyCalendar’s creation in the ejbCreate()
method, it does a lookup for the default user calendar that will be used later.

Since a calendar bean generally defines more than one calendar, the
implemented calendars are distinguished by their calendar name, which has to
be specified when we specify which calendar bean we will use with our task. The
calendar identifier of our user-defined calendar ACompanyCalendar is
“Europe/Brussels”. If any other calendar name is used, our calendar will pass the
handling to the default calendar.

So, our calendar’s name is added to the default calendar name list in
getCalendarNames() and returned to the caller.
526 WebSphere Application Server Enterprise V5

The only time delta interval that our calendar recognizes is beginTrade. If we use
it with any other delta interval, our calendar will pass the handling to the default
calendar.

Generally, in a calendar bean, delta time for the next task fire up is calculated
using the applyDelta() method. If you use the right interval, begintrade, it will
schedule the task using the default interval. The task will be scheduled to run
every week, Monday to Friday, at 8 am or at 9 am. If you specify the calendar
identifier, which is Europe/Brussels, the task will be scheduled at 8 am;
otherwise it will be scheduled at 9am.

13.8 Configuration
In this section we explain the configuration procedures of the Scheduler service
and its dependencies.

Work manager service in relation to the Scheduler service
The Scheduler service depends on the Asynchronous Beans service. It uses
asynchronous alarm managers for firing task actions. This means that a work
manager resource needs to be created and configured for use by the Scheduler.

Launch the Administrative Console and choose Resources -> Work manager.
Select the scope where you want to create the work manager and click New. You
will get the work manager configuration window, shown in Figure 13-5 on
page 528. Specify the required properties, then click OK.

An important work manager property is Service names, which specify which
context information is propagated to the task. For example, if one of the
scheduled tasks also uses the Internationalization service, make sure that
Internationalization is selected when configuring work manager for the
Scheduler.

Important: The Scheduler service uses the work manager’s alarm threads, so
setting the number of alarm threads indirectly affects the Scheduler behavior.
In fact it affects how many tasks can be scheduled concurrently. One alarm
thread is used for each task action and another alarm thread for the daemon,
so keep in mind how many tasks would be scheduled and set the number of
alarm threads accordingly.
 Chapter 13. Scheduler service 527

Figure 13-5 Work manager configuration

Save the configuration for WebSphere.

The Scheduler database
The Scheduler service stores task information in a database. The database
needs to be created together with a JDBC provider and a data source resource.

There are batch scripts provided for creating the Scheduler database with
different vendor database types. The scripts can be found in the
<WebSphere_root>\Scheduler directory. You will have to modify the script to suit
it to the database name, tablespace name, and the Scheduler table prefix name
that you choose.
528 WebSphere Application Server Enterprise V5

The table prefix is a property of the Scheduler configuration. It is a prefix for the
task tables' names. Independent Schedulers can share one Scheduler database.
You just have to use different table prefixes so a different set of tables are created
and used by different schedulers within the same database.

To create the database in IBM DB2 UDB, do the following:

1. Copy the following files from the <WebSphere_root>\Scheduler to a
temporary directory, for example: C:\temp\database.

– createTablespaceDB2.ddl
– createSchemaDB2.ddl

2. Open the createTablespaceDB2.ddl in a text editor.

a. Replace all occurrences of @SCHED_TABLESPACE@ with a tablespace name,
for example SCHEDTBLSPC.

b. Replace the @location@ with a location in your system, for example
C:\ACompanyDB. Make sure that the directory exists in your system.

3. Open the createSchemaDB2.ddl in a text editor.

a. Replace all occurrences of @TABLE_PREFIX@ with a table prefix, for example
SONE.

b. Replace all occurrences of @SCHED_TABLESPACE@ with a tablespace name,
for example SCHEDTBLSPC.

4. Start a DB2 command window and run the following commands:

cd c:\temp\database
db2 connect to REDBOOK user dbuser using passw0rd
db2 -tf createTablespaceDB2.ddl
db2 -tf createSchemaDB2.ddl
db2 disconnect current

5. Close the command window.

6. You can remove the C:\temp\database directory.

Restriction: When using DB2, the table name length was restricted to 18
characters. As you may see in the Scheduler database creation scripts, nine
characters are added to the table prefix for two of the table names. For
example, if the table prefix property is “ACompSch”, one of the tables would
be named “ACOMPSCHTASK_IDX1”. Keep this 18-character limit in mind
when specifying the table prefix property.
 Chapter 13. Scheduler service 529

Scheduler configuration using the Administrative Console
The Scheduler service is configured using the Administrative Console. Launch
the Administrative Console and choose Resources -> Scheduler
Configuration. Select the scope where you want to create a Scheduler service
and click New. You will see the Scheduler service configuration window shown in
Figure 13-6. Specify the required properties. Make sure that you enter the
database name where the Scheduler tables reside and specify the Scheduler
table prefix (see “The Scheduler database” on page 528 for more details).

Figure 13-6 Scheduler service configuration

Save the configuration for WebSphere.
530 WebSphere Application Server Enterprise V5

Disable the Scheduler service
The Scheduler service is enabled by default, which means it starts during the
WebSphere startup.

In order to disable the service, perform the following steps:

1. Launch the Administrative Console, and choose Servers -> Application
Servers. Select the application server that has defined the Scheduler service
that you want to disable.

2. On the Configuration tab, click Scheduler service. Under General Properties,
unmark the Startup property.

3. Save the configuration for WebSphere.

13.9 Deployment
Beside the configuration of the Scheduler service, you also have task definition
EJBs, notification EJBs, and the code that uses the Scheduler with those beans.
This is all included in your application as a part of the EAR. There are no specific
steps related to the deployment of Scheduler beans in the WebSphere
Enterprise runtime.

13.10 Scheduler service runtime
An important part of the Scheduler service is the wakeup daemon. It is an
Asynchronous Bean created when the Scheduler service is started.

The wakeup daemon thread wakes up periodically and reads the tasks from the
database that will start in the next scheduled interval according to the Scheduler
service settings. It then creates alarms for each of the forthcoming tasks by using
alarm threads from the assigned work manager pool.

Each alarm thread has the firetime set according to the specified task's firetime.
When the alarm thread wakes up, it tries to run the action that is associated with
its task. To prevent concurrent firing of the same action, there is a locking
mechanism built in. The alarm thread is aborted if the locking mechanism finds
out that some other daemon has already fired the task.
 Chapter 13. Scheduler service 531

13.11 Problem determination and troubleshooting
If you encounter problems using the Scheduler service and you suspect that the
source of the problem is somewhere within the service, then you can also use the
following trace string to monitor what is happening in the execution time:

com.ibm.ws.scheduler.*=all=enabled

The example below shows a trace for our sample scenario during startup. You
can see how the Scheduler service initializes and binds to the JNDI name space.
Next, you can see how the Scheduler daemon starts up and starts reading the
tasks.

Example 13-5 Sample trace

SchedulerServ > initialize
com.ibm.websphere.mls.config.schedulerservice.impl.SchedulerServiceImpl (enable: true)

SchedulerServ I SCHD0001I: The Scheduler Service has started.
SchedulerServ < initialize
...
SchedulerServ > propertyChange

java.beans.PropertyngeEvent[source=null [class
com.ibm.ws.runtime.component.ApplicationServerImpl]]

STARTING
SchedulerServ < propertyChange
ResourceMgrIm I WSVR0049I: Binding DefaultWorkManager as wm/default
ResourceMgrIm I WSVR0049I: Binding ACompanyWorkManager as wm/acompany
SchedulerReso > isUsedFor

com.ibm.websphere.mls.config.scheduler.impl.SchedulerConfigurationImpl (name:
ACompanySchedulerService, jndiName: ACompanyScheduler) (datasourceJNDIName: jdbc/redbookDS,
datasourceAlias: dbuser, tablePrefix: SOne, pollInterval: 10)
SchedulerReso < isUsedFor

true
SchedulerReso > getBindingObject
SchedulerConf d Scheduler parameters for: ACompanyScheduler
SchedulerConf d StartDaemon: true

Locking mechanism: Every task has an integer value variable dedicated.
When the alarm thread wakes up it starts a transaction and reads the task
(together with the integer variable) from the database. Then it tries to update
the variable, adding 1 to its value. If it succeeds, then the alarm thread fires
the action of the task. After this, the alarm thread updates the task and
commits the changes. If the alarm thread was not successful in updating the
variable in the first place, this means that some other daemon has already
fired the task, so the current transaction is rolled back and the alarm thread is
aborted.
532 WebSphere Application Server Enterprise V5

SchedulerConf d Partition Range: 1-4
SchedulerConf d Partitions: 1,2,3,4
SchedulerConf d Task Max Batch Size: 1
SchedulerConf d Task Max Batch Range: 0ms
SchedulerConf d Max Tasks per sec per Poll: 200
SchedulerConf d Max Tasks per Poll: 2000
SchedulerConf d Max Task Load Size: 250
SchedulerReso < getBindingObject
ResourceMgrIm I WSVR0049I: Binding ACompanySchedulerService as ACompanyScheduler
...
SchedulerServ > startSchedulers
SchedulerServ I SCHD0001I: The Scheduler Service has started.
SchedulerServ d Setting alarms which will poll the database
SchedulerServ d Counted a total of 2 schedulers
SchedulerServ d Starting Scheduler Daemon for instance: ACompanyScheduler
SchedulerImpl > <init>
com.ibm.ws.scheduleonfig.SchedulerConfiguration@663df35d
SchedulerImpl > initialize
DBHelper > <init>
TransactionCo > preinvoke
TransactionCo d preinvoke: No tran is present...Starting global tran.
TransactionCo < preinvoke
TXStart:true, LTCSt:false, TXSuspend:false, LTCSuspend:false
DBHelper d Connection user=USERID
DBHelper d Connection password=XXXXXX
DBHelper d Retrieved connection for SchedulerConfiguration_1. Total=1. ISOLEVEL=2
DBHelper d DataSource Class: com.ibm.ws.rsadapter.jdbc.WSJdbcDataSource
DBHelper d Database product: DB2/NT
DBHelper d Database version: 08.01.0000
DBHelper d Driver name: IBM DB2 JDBC 2.0 Type 2
DBHelper d Driver version: 08.01.0000
TransactionCo > postinvoke
TransactionCo d postinvoke: Global transaction was started. Attempting to commit.
TransactionCo d postinvoke: Global transaction committed..
TransactionCo d postinvoke: No local or global transaction to restore
TransactionCo < postinvoke
DBHelper d Returned connection for SchedulerConfiguration_1. Total=0
DBHelper < <init>
TaskStoreImpl > <init>
TaskStoreImpl < <init>
SchedulerImpl < initialize
SchedulerImpl > createMBean
SchedulerImpl < createMBean
SchedulerImpl < <init>
SchedulerImpl > startDaemon
...
SchedulerImpl d Creating poller AsynchScope: ~SchedulerImpl_ACompanyScheduler_Poller
SchedulerImpl d Creating Tasks AsynchScope: ~SchedulerImpl_ACompanyScheduler_Tasks
SchedulerImpl d Started daemon for: ACompanyScheduler
 Chapter 13. Scheduler service 533

SchedulerImpl < startDaemon
...
TransactionCo > postinvoke
TransactionCo d postinvoke: Global transaction was started. Attempting to commit.
SchedulerImpl > fired
SchedulerImpl d Destroying Tasks AsynchScope: ~SchedulerImpl_ACompanyScheduler_Tasks
SchedulerImpl d Creating Tasks AsynchScope: ~SchedulerImpl_ACompanyScheduler_Tasks
SchedulerImpl > poll
TransactionCo > preinvoke
TransactionCo d preinvoke: Local transaction is present... Suspending it and starting a Global
Tran
TransactionCo < preinvoke
TXStart:true, LTCSt:false, TXSuspend:false, LTCSuspend:true
DBHelper d Connection user=USERID
DBHelper d Connection password=XXXXXX
DBHelper d Retrieved connection for SchedulerConfiguration_1. Total=1. ISOLEVEL=2
TaskStoreImpl > findTasksBeforeNotComplete

Mon Apr 14 16:21:5DT 2003 (SOneTASK,1050351716234,2000)
DBHelper < getSQLStatement
DBHelper d Looking for property TASK_DB2_FINDTASKSBEFORENOTCOMPLETE
DBHelper d Looking for property TASK_DEFAULT_FINDTASKSBEFORENOTCOMPLETE
DBHelper < getSQLStatement

SELECT TASKID, VERS,ROW_VERSION, TASKTYPE, TASKSUSPENDED, CANCELLED, NEXTFIRETIME,
STARTBYINTERVAL, STARTBYTIME, VALIDFROMTIME, VALIDTOTIME, REPEATINTERVAL, MAXREPEATS,
REPEATSLEFT, TASKINFO, NAME, AUTOPURGE, FAILUREACTION, MAXATTEMPTS, QOS, PARTITIONID,
CREATETIME from SOneTASK where ((NEXTFIRETIME < ?) AND (REPEATSLEFT <> 0) AND (CANCELLED = 0)
AND PARTITIONID IN (1,2,3,4)) ORDER BY NEXTFIRETIME ASC
TransactionCo d postinvoke: Global transaction committed..
TransactionCo d postinvoke: No local or global transaction to restore
TransactionCo < postinvoke

13.12 Performance monitoring
By default the performance monitoring within the Scheduler service is not
enabled. To enable it using the Administrative Console do the following:

1. Select the application server you want to monitor, switch to either the
Configuration or the Runtime tab (if the process is running), and click
Performance Monitoring Service. The difference is that changing the
property on the runtime will already affect the currently running application
server process, while changing the property on the configuration level will
take effect with the application server’s next startup.

2. If you do not want to monitor all the WebSphere components, you should not
set the initial specification level to Standard. It is better to change the PMI
enablement just for the Scheduler service. Choose Custom initial
534 WebSphere Application Server Enterprise V5

specification, find the schedulerModule property, which by default is set to N
(none).

3. Change the schedulerModule property value to H (high). See Figure 13-7 on
page 536. Apply the changes and save the configuration if necessary.

4. At this point, you can start monitoring the Scheduler service using the
performance viewer client.

The following Scheduler service runtime behavior can be monitored using the
WebSphere Performance Monitoring Infrastructure (PMI):

� Failed tasks

Total number of tasks where execution failed for application reasons.

� Executed tasks

Total number of tasks executed successfully.

� Number of polls

The number of polls (of the task database) since the Scheduler service
started up.

� Tasks per sec

The number of tasks per second processed by the Scheduler service.

� Collisions per sec

The number of collisions (trying to place the same task into alarm) between
multiple Scheduler services.

� Time for poll query (ms)

The time taken to get all tasks due to expire (that will be scheduled for the
next alarm) from the database.

� Task execution Time (ms)

The time taken to execute a task in milliseconds.

� Tasks expiring per poll

The number of tasks in a poll.

� Task latency (secs)

The average latency of tasks in seconds, which means how late tasks were
executed.

Tip: All the Scheduler service performance monitoring variables belong to the
High group of PMI specification levels.
 Chapter 13. Scheduler service 535

� Poll time (secs)

The time between pools.

� Tasks executed per poll

The number of tasks executed per poll.

Figure 13-7 PMI configuration for the Scheduler service

13.13 Security considerations
If you use security on WebSphere V5.0 Enterprise, the default identity that the
Scheduler service uses with the task action session bean is system. This means
if you do not specify any deployment-related security settings on the bean, the
identity of the bean will be the same as the one used for starting WebSphere.

If the task action session bean (TaskHandler) uses some secured objects that
require a different caller identity, then the security identity must be enabled on the
Startup Bean and The Run-as on the bean’s process must be configured to use
the correct identity.
536 WebSphere Application Server Enterprise V5

Chapter 14. Object pools

This chapter discusses the object pools service in WebSphere Application
Server Enterprise V5.

The sample application is a J2EE client that uses the application server’s object
pool service. This sample is not part of the sample scenario used for most of the
book.

14
© Copyright IBM Corp. 2003. All rights reserved. 537

14.1 Planning
Java by its design is a “memory safe” language. The Java Virtual Machine (JVM)
provides a mechanism that takes memory handling tasks away from the
programmer. Java programs create a huge amount of Java objects during
execution, and the garbage collecting mechanism takes care of deallocating the
memory of the objects that are no longer needed. However garbage collecting is
still an expensive operation, since it can take a lot of processing resources.
Beside garbage collecting, we also have time penalties for object instantiation.
Every object includes some overhead information, which is also initialized.
Naturally each new release of the JVM implementation tends to improve on these
issues, but still there must be something done in the meantime. One step to
improve performance is object pooling. A Java application can have its own pool
of objects that are already instantiated and waiting for use. When the application
at any point needs an object, it just “fetches” one from the pool and later when it
is no longer needed, it returns the object to the pool for later reuse.

Why use object pools?
Using WebSphere’s object pooling has the following advantages:

� Administration

WebSphere’s object pool service administration is consistent with WebSphere
resource management. Object pools are managed through WebSphere's
administration mechanisms, which include all the advantages of centralized
management with the Network Deployment version.

� Implementation level

With WebSphere Enterprise V5, object pooling is already implemented within
the J2EE application container. It is an extension. In contrast with your own
object pooling implementation, where it would be just a part of your J2EE
application, the object pooling service in WebSphere Enterprise V5 is coupled
closely with the rest of the services in J2EE application container.

� Performance monitoring and tracing

Since object pooling is a part of WebSphere Enterprise V5, it also uses the
PMI and the tracing infrastructure. You can monitor what is happening with
the object pool in the runtime.

� Variety

WebSphere’s object pool implementation provides two object pool types:
synchronized and unsynchronized.
538 WebSphere Application Server Enterprise V5

� Flexibility

If the provided object pool implementation does not suit your application, you
can create your own object pool implementation, which is then managed by
WebSphere’s object pool manager.

14.2 Design
Generally, you should consider using object pools if your application consists of
many threads that frequently use a common complex object.
The performance benefits of using object pools should be carefully considered.
The majority of applications do not need to use object pools to obtain adequate
performance, but those who need it can gain significant performance
improvements. When considering whether to use object pools or not, you should
think about the following two issues:

� Size and complexity of the object

Using object pools with simple object types, you could slow down your
application performance unless the usage frequency is so high that you can
achieve improvement over normal JVM garbage collection.

� Object usage frequency

Logically, more frequent use of some object qualifies them better to be used
with object pooling.

You can make estimations or run tests with simple code about how much time is
expected to be used in JVM for instantiation of the given object type and later for
garbage collecting, depending on the JVM memory settings.

Do not forget to select the right pool type, synchronized or unsynchronized. A
synchronized pool is useful for applications where little contention exists for
objects in the pool. A synchronized pool can be shared across threads, which
means more efficient use of pooled objects, because there are fewer idle
instances of objects in the pool at any given time. In addition, a single shared
pool is easier to manage than multiple pools.

14.3 Development
In the following sections, we describe how to use object pools from your
application.
 Chapter 14. Object pools 539

There is no special support in WebSphere Studio IE or any other tool for object
pools. You only have to make sure that the objectpool.jar exists in the project’s
Java classpath.

14.3.1 Object Pools API
The Object Pools API is contained in the com.ibm.websphere.asynchbeans.pool
package. For more details, check the complete description of the Object Pools
API in the WebSphere Enterprise InfoCenter:

http://publib7b.boulder.ibm.com/wasinfo1/en/info/ee/javadoc/ee/com/ibm/webspher
e/asynchbeans/pool/package-summary.html

The following sections briefly introduce the main parts of WebSphere’s
Enterprise object pool implementation.

Object pool manager
The object pool manager interface describes the object pool manager. The
object pool manager is a factory for object pools. WebSphere Enterprise V5
provides implementation for the object pool manager. You can define one or
more managers and register them in the WebSphere JNDI name space using
Administrative Console. Refer to “Object pool manager configuration” on
page 553 for details.

The object pool manager interface defines two methods:

� createFastPool(): This method returns an unsynchronized object pool.
� getPool(): This method returns a synchronized object pool.

Object pool
The object pool is a pool of reusable objects of the same type. WebSphere's
default object pool implementation implements this interface. Using the default
implementation, any Java object that has a public default constructor can be
pooled.

This interface define two methods:

� getObject(): Retrieves an object from the object pool.
� returnObject(): Returns an object that is no longer needed to the object pool.

Important: In order to successfully compile your application and generate
deploy code, the objectpool.jar file must be added to Java build path. In
WebSphere Studio IE the file is in the
<WebSphere_Studio_IE_root>\WAS_EE_V5\lib directory. In WebSphere V5.0
Enterprise, the file is in the <WebSphere_root>\lib directory.
540 WebSphere Application Server Enterprise V5

http://publib7b.boulder.ibm.com/wasinfo1/en/info/ee/javadoc/ee/com/ibm/websphere/asynchbeans/pool/package-summary.html

Make sure that you return the objects to the right pool. If not, you will get a
ClassCast exception.

Custom object pool
Custom object pools are used when WebSphere’s object pool implementation
does not suit the needs of your application, for example if you need a notification
about taking and returning an object to and from the object pool. Since the
default WebSphere object pool implementation does not provide this, you can
use this interface to create your object pool implementation. The custom
ObjectPool interface extends the ObjectPool interface with additional methods
that you need to implement beside the methods inherited from the ObjectPool
interface. The methods defined in the custom ObjectPool interface are:

� flushPool(): Called when the system needs memory, so it asks you to clean all
the idle objects.

� setProperties(): Called when the custom object pool is constructed. A map of
the supplied parameters is supplied. These are the additional optional
parameters added to the custom object pool configuration. Refer also to
“Custom object pool configuration” on page 553.

Each custom pool must be registered within an object pool manager.

PoolableObject
When pooling the object of your own defined Java class types using the default
object pool implementation, you might need to have some initialization or cleanup
code in the object when the object is taken from the pool or returned to the pool.
Such an object needs to implement the PoolableObject interface with the
following methods:

� init() is called when the object is about to be reused from the pool.
� returned() is called when the object is returned to the pool.

The default pool implementation checks if the object being pooled implements
this interface. If it does, then it will call the init() method when getting the object
from the pool and it will call the returned() method when the returning the object.

Important: Do not synchronize the methods of your custom object pool
implementation. Your implementation is wrapped by an internal object pool
implementation that adds synchronization when it is created using the
ObjectPoolManager.getPool() method. When a fast pool is created, then your
implementation runs unsynchronized.
 Chapter 14. Object pools 541

14.3.2 Steps for using object pools
The following steps must be done in your application when programming for
object pools.

Find the object pool manager
The object pool manager is exposed in the JNDI name space. The manager has
to be created in WebSphere Enterprise V5 using its Administrative Console.
Refer to “Object pool manager configuration” on page 553 for more details about
the object pool manager configuration.

Programmatically, you do a lookup on a context to find an object manager. See
Example 14-1.

Example 14-1 Object pool manager lookup

initialContext = new InitialContext();
opm = (ObjectPoolManager) initalContext.lookup("java:comp/env/ObjectPool");

You can see that we do a lookup using a local reference, so make sure that this
local reference is bound to the object pool manager JNDI, as described in “Add a
resource environment reference” on page 546.

Get an object pool for specified class
When you have the object pool manager, you will ask it to get an object pool for
the class you want to be pooled. This is done by calling the getPool() method on
the object pool manager, which will then create an object pool for the given class
and return it to your control. See Example 14-2. It gets an object pool for the
ArrayList class.

Example 14-2 Getting an object pool from the object pool manager

ObjectPool oPool = opm.getPool(ArrayList);

The createFastPool() method can also be called. In this case, the object pool
manager creates and returns an object pool that is not a thread safe,
unsynchronized object pool.

Important: Only one object pool for the specified class exists in a JVM. If the
object pool for the given class already exists, the object pool manager returns
that object pool. It does not create another object pool for the same object
type.
542 WebSphere Application Server Enterprise V5

Get an object from the object pool
After we have the object pool created, we can get an object of the specified class
by calling the getObject() method of the object pool. See Example 14-3.

Example 14-3 Getting an object from the object pool

ArrayList obj = oPool.getObject();

Return the object to the object pool
After we do not need the object in our application anymore, we return the object
back to the object pool by calling returnObject() method of the object pool. See
Example 14-4.

Example 14-4 Returning the object to the object pool

oPool.returnObject(obj);

If you “forget” to return the object to the object pool, its instance will remain there,
since it is not used in future requests. This is a programmatic error and it will not
do any harm, except consume more resources, but it will definitely hinder object
pooling capabilities, so it will not be efficient at all. Make sure that you return the
objects.

14.4 Unit test environment
To use object pools, there is nothing special to configure in WebSphere Studio IE
test environment. The object pool service for the application server is enabled by
default. After developing and publishing the project, the test server is ready to run
the application with object pool support.

14.5 Assembly
This section describes the assembly time actions related to object pools.

Object pool manager resource environment reference
In your code, you should use local name references for the object pool manager.
Before you can use an object pool, you need to specify the location in the JNDI
name space. You can use the Application Assembly Tool to specify such
references for an enterprise application:

1. Open the application EAR file in the Application Assembly Tool. Select the
module from where object pools are used. If there are more than one, you will
 Chapter 14. Object pools 543

have to create a resource environment reference for each one. That means
each module—client, EJB or Web module—from which you use object pools
needs a resource environment reference for the object pool manager.

2. If you selected an EJB module, you have to find the bean that uses object
pool manager and then expand it. If you selected the client application
module, the resource environment property is already in the subroot directory.
Right-click Resource Environment References and select New.

3. On the General tab, enter the name you are using in your code as a local
reference for the object pool manager. For the Type, enter
com.ibm.websphere.asynchbeans.pool.ObjectPoolManager.

4. Under the Bindings tab, enter the JNDI name that you specified when creating
the object pool manager on WebSphere Application Server.

14.6 Sample application
The following sample application demonstrates the use of object pools. The
application does not relate to the sample scenario used for this book. It shows
the difference between using some object with or without object pooling. It
creates a specified number of job threads and starts them.

As command-line arguments, the application takes two parameters:

� Number of threads: The number of job threads it will create.

� Java class name: Specifies which Java class is being used for simulating jobs.
With this you can see the difference in performance when using different
classes with object pooling or not.

Each job thread runs two different units of work several times and calculates the
execution time for both cases: the first unit of work is without object pools while
the second unit uses object pooling. A unit of work in JobThread is represented
by doSomething() and doSomethingUseObjectPool() methods. These two
methods allocate an object of the specified class type, then they put the thread to
a random wait between 1 and 6 milliseconds. This represents doing some work
with the objects.

Prerequisites
The following prerequisites have to be met before starting with the sample
application:

� For testing the sample with WebSphere Studio IE, there must be an instance
of a WebSphere V5.0 Enterprise test server created.
544 WebSphere Application Server Enterprise V5

� An object pool manager has to be created for the WebSphere Studio IE test
application server. Start your test application server and launch the
Administrative Console. Additionally, create an object pool manager using the
steps in “Object pool manager configuration” on page 553. Remember the
JNDI name you use for the object pool manager.

Create application client project
First, you have to create an application client project. Do the following:

1. In WebSphere Studio IE, select File -> New -> Application Client Project.
Then select Create J2EE 1.3 Application client project. Enter ObjectPtest
as the project name and ObjectPtestEAR as the new project name. Click
Finish. A new application client project is created.

2. In the J2EE Navigator view, select the newly created ObjectPtest project and
right-click it. Select Properties and you will get the Properties for ObjectPtest
window. Go to the Java Build Path and select the Libraries tab.

3. In the Libraries tab, choose AddVariable, select WAS_EE_V5, double-click it,
go to lib directory and choose objectpool.jar. Apply the changes.

Create ObjectTest application client
To add the main class into application client project, follow these steps:

1. Still using the J2EE navigator view, in the ObjectPtest project, select
appClientModule, right-click it and select New -> Class. In the New Java
Class window, enter ObjectTest as the value for the Name property. Leave all
the other properties with their default values. Click Finish.

2. Copy the code as shown in Example 14-5 into the ObjectTest.java class.

In the code, you can see that the client first tries to find the object pool manager,
then creates a specified number of job threads and starts them.

Example 14-5 ObjectTest.java

import javax.naming.InitialContext;
import com.ibm.websphere.asynchbeans.pool.ObjectPoolManager;

public class ObjectTest {
public static void main(String[] args) {

if (args.length < 2) System.out.println("usage:ObjectTest numberOfThreads className");
int numberOfThreads = Integer.parseInt(args[0]);
JobThread[] threads = new JobThread[numberOfThreads];
ObjectPoolManager opm = null;
String className = args[1];
InitialContext initalContext;

//Lookup for object pool manager
 Chapter 14. Object pools 545

try {
System.out.println("ObjectTest: looking for ObjectPoolManager");
initalContext = new InitialContext();
opm = (ObjectPoolManager) initalContext.lookup("java:comp/env/ObjectPool");

} catch (Exception ex) {
ex.printStackTrace();

}
for (int i = 0; i < numberOfThreads; i++) {

//Create a new JobThread thread
threads[i] = new JobThread("JobThread_" + i, opm, className);
System.out.println("ObjectTest: starting thread: " + threads[i].getName());
//Start the thread thread
threads[i].start();

}
}

}

Add a resource environment reference
Since a local reference to object pool is used in ObjectTest.java, you have to add
a resource environment reference to the application, as follows:

1. Open the Client Deployment Descriptor of the ObjectPtest project. Switch to
the References tab and click Add.

2. Select Resource environment reference and click Next. Enter ObjectPool
in the Name field, and enter
com.ibm.websphere.asynchbeans.pool.ObjectPoolManager in the Type field.
Click Finish.

3. Select the created resource environment reference and under WebSphere
Bindings and in the JDNI name field, enter the value you specified when you
created the object pool manager on the test application server (see “Object
pool manager configuration” on page 553 for the value). In our case, we
entered ACObjectPoolManager for the JNDI name.

4. Save and close the descriptor.

Change the main class of the application client
The next step is to change the specified main class of the client, so that the J2EE
client container will know which class to run when starting the application. Our
main class is ObjectTest.java. The client container will start the program by
starting its main() method. Follow these steps:

1. Using the J2EE navigator view, in the ObjectPtest project, select
appClientModule -> META-INF and open the MANIFEST.MF file.

2. Under the Dependencies tab at the bottom, enter ObjectTest as the value for
the Main-Class property.
546 WebSphere Application Server Enterprise V5

3. Save and close the file.

Create JobThread
The last step is to add a JobThread class. Do the following:

1. On the J2EE navigator view, in the ObjectPtest project, right-click the
appClientModule and select New -> Class.

2. In New Java Class window, enter JobThread as the value for the Name
property. Clear the Public Static Void Main(String args[]) field under the Which
method stubs would you like to create? property. Leave all the other
properties with their default values. Click Finish.

3. Copy the code as in Example 14-5 on page 545 into the JobThread.java
class.

Example 14-6 JobThread.java

import java.util.Random;
import com.ibm.websphere.asynchbeans.pool.ObjectPool;
import com.ibm.websphere.asynchbeans.pool.ObjectPoolManager;

public class JobThread extends Thread {
static Double averageExecutionTime = new Double(0);
static Double averageExecutionTimeUsingPool = new Double(0);
static Long totalNumberOfRepetitions = new Long(0);
Random rand = new Random(System.currentTimeMillis());
ObjectPool oPool = null;
ObjectPoolManager opm;
String className = new String();
Class customClass;
//Initialize
public JobThread(String name, ObjectPoolManager opm, String className) {

super.setName(name);
this.opm = opm;
this.className = className;

}

public void run() {
// Wait between 1-100 miliseconds before start
synchronized (this) {

try {
this.wait(1 + rand.nextInt(100));

} catch (InterruptedException e) {};
}
try {

customClass = Class.forName(className);
//Get an object pool for specified class
oPool = opm.getPool(customClass);
 Chapter 14. Object pools 547

} catch (Exception ex) {
ex.printStackTrace();

}
int repetitions = rand.nextInt(500);
synchronized (totalNumberOfRepetitions) {

totalNumberOfRepetitions = new Long(totalNumberOfRepetitions.longValue() +
repetitions);

}
//Do something using objects without object pooling
//Repeat the job 1-500 times
//Read the time before starting the job
long startTime = System.currentTimeMillis();
for (int i = 0; i < repetitions; i++) {

doSomething();
}
//Read the time after ending the job
long endTime = System.currentTimeMillis();
//Do something using objects WITH object pooling
//Repeat the job 1-500 times
long startTimeUsingObjectPool = System.currentTimeMillis();
for (int i = 0; i < repetitions; i++) {

doSomethingUseObjectPool();
}
long endTimeUsingObjectPool = System.currentTimeMillis();
//Calculate doSomething execution time and add it to the total value
synchronized (averageExecutionTime) {

averageExecutionTime = new Double(averageExecutionTime.doubleValue() + endTime -
startTime);

}
//Calculate doSomethingUseObjectPool execution time and add it to the total value
synchronized (averageExecutionTimeUsingPool) {

averageExecutionTimeUsingPool = new
Double(averageExecutionTimeUsingPool.doubleValue() + endTimeUsingObjectPool -
startTimeUsingObjectPool);

}
System.out.println("Exiting thread" + this.getName());
System.out.println("doSomething average execution time = " + (endTime - startTime) /

repetitions);
System.out.println("doSomethingUseObjectPool average execution time = " +

(endTimeUsingObjectPool - startTimeUsingObjectPool) / repetitions);
System.out.println("Total average execution time = " +

averageExecutionTime.doubleValue() / totalNumberOfRepetitions.doubleValue());
System.out.println("Total average execution time using pool= " +

averageExecutionTimeUsingPool.doubleValue() / totalNumberOfRepetitions.doubleValue());
}

public void doSomething() {
try {

Object aL = customClass.newInstance(); //Create a new object
548 WebSphere Application Server Enterprise V5

randomWait(1 + rand.nextInt(5)); //Wait between 1 and 6 miliseconds
} catch (Exception ex) {

ex.printStackTrace();
}

}

public void doSomethingUseObjectPool() {
Object obj = oPool.getObject(); //Get an object from the object pool
randomWait(1 + rand.nextInt(5));//Wait between 1 and 6 miliseconds
oPool.returnObject(obj);//Return the object to the object pool

}

synchronized private void randomWait(int miliseconds) {
try {

this.wait(miliseconds);
} catch (InterruptedException e) {}

}
}

When a JobThread thread is started, it enters the run() method. It waits for 1-100
milliseconds, then it creates an object pool for the given class.

The next step is to run a unit of work without using object pooling. This is done by
running the doSomething() method and is repeated for 1-500 times (a random
value). After and before, the system time is read to calculate how long it took to
run all the repetitions.

The next step is to run a unit of work, but this time using object pooling. This is
done by running the doSomethingUseObjectPool() method and is repeated for
the same number of repetitions as previously for the doSomething() method.
After and before, the system time is read to calculate how long it took to run all
the repetitions.

Keep in mind that every unit of work includes a random wait between 1 and 5
milliseconds after the application allocates the object and before it returns it to
the object pool. In the long run, this should not have any effect on the time
difference between the doSomething() and doSomethingUseObjectPool()
methods.

After all the jobs are done in a thread, the code calculates and reports the time
values for both job methods. Since the number of repetitions between different
threads differs, generally it returns different values for different threads.

In the end, it calculates the total average time for both doSomething() and
doSomethingUseObjectPool() methods.
 Chapter 14. Object pools 549

Test the application client
Export the project into EAR file and use the launchClient command to run the
project in a J2EE client container. The detailed step-by-step instructions are as
follows:

1. Select the ObjectPtest project, and select Project -> Rebuild Project.

2. Select Export, then select EAR file, and click Next.

3. Select the ObjectPtestEAR for export. Enter the file name to which you want
to export the project, for example C:\SG246932\ObjectPtest.ear. Click
Finish, and check if the project was exported.

4. Open a console or command prompt window. Change to the directory where
the WebSphere launchclient.bat resides.

5. Make sure that the test server is running with the object pool sample
application.

6. The following command is an example of how to use the client:

launchClient C:\SG246932\ObjectPtest.ear -CCjar=ObjectPtest.jar
-CCBootstrapPort=2809 -CCverbose=true 500 java.util.ArrayList

The first argument is the number of threads, for example 500. The second
argument is the Java class for tests. Just make sure that they are in the
classpath.

In Example 14-7, you can see the sample output after running the command.

Example 14-7 Sample output for ObjectTest object pooling test application.

C:\Program Files\WebSphere\AppServer\bin>launchClient C:\ObjectPtest.ear -CCjar=ObjectPtest.jar
-CCBootstrapPort=2809 -CCverbose=true 500 java.util.ArrayList
IBM WebSphere Application Server, Release 5.0
J2EE Application Client Tool
Copyright IBM Corp., 1997-2002
WSCL0012I: Processing command line arguments.
WSCL0001I: Command line, property file, and system property arguments resolved to:
 File to launch = C:\ObjectPtest.ear
 CC Property File = null
 Client Jar File = ObjectPtest.jar
 Alternate DD = null
 BootstrapHost =

Note: The total average time is an average of the time that it took to execute
the method, including all the repetitions in all the threads. A time share from
each thread is weighted by the number of repetitions for the thread, so we
cannot have the accurate value until the last thread finishes. When the last
thread finishes, it reports the correct value.
550 WebSphere Application Server Enterprise V5

 BootstrapPort = 2809
 Trace enabled = false
 Tracefile = null
 Init only = false
 Classpath Parameter = null
 Security Manager = disable
 Security Manager Class = Not used. -CCsecurityManager=disable
 Security Manager Policy = Not used. -CCsecurityManager=disable
 Exit VM = false
 Soap Connector Port = null
 Application Parameters = 500 java.util.ArrayList
WSCL0013I: Initializing the J2EE Application Client Environment.
WSCL0400I: Binding resource environment reference object:
 JNDI name: ObjectPool ==> ACObjectPoolManager @ corbaloc:iiop:localhost:2809
 Type: com.ibm.websphere.asynchbeans.pool.ObjectPoolManager
 Description:
WSCL0031I: The object was bound successfully.
WSCL0600I: Binding HandleDelegate object.
WSCL0031I: The object was bound successfully.
WSCL0900I: Initializing and starting components.
WSCL0910I: Initializing component: com.ibm.ws.activity.ActivityServiceComponentImpl
WSCL0911I: Component initialized successfully.
WSCL0910I: Initializing component:
com.ibm.ws.ActivitySession.ActivitySessionClientComponentImpl
WSCL0911I: Component initialized successfully.
WSCL0910I: Initializing component: com.ibm.ws.workarea.WorkAreaServiceClient
WSCL0911I: Component initialized successfully.
WSCL0910I: Initializing component: com.ibm.ws.appprofile.EEClientAppProfileComponentImpl
WSCL0911I: Component initialized successfully.
WSCL0910I: Initializing component: com.ibm.ws.i18n.context.I18nClientComponentImpl
WSCL0911I: Component initialized successfully.
WSCL0901I: Component initialization completed successfully.
WSCL0035I: Initialization of the J2EE Application Client Environment has completed.
WSCL0014I: Invoking the Application Client class ObjectTest
ObjectTest: looking for ObjectPoolManager
ObjectTest: starting thread: JobThread_0
ObjectTest: starting thread: JobThread_1
ObjectTest: starting thread: JobThread_2
ObjectTest: starting thread: JobThread_3
ObjectTest: starting thread: JobThread_4
...
Exiting threadJobThread_485
doSomething average execution time = 37
doSomethingUseObjectPool average execution time = 30
Total average execution time = 50.34385009889552
Total average execution time using pool= 31.956074635486864
Exiting threadJobThread_484
doSomething average execution time = 37
doSomethingUseObjectPool average execution time = 30
 Chapter 14. Object pools 551

Total average execution time = 50.50452468887294
Total average execution time using pool= 32.088585881570424
Exiting threadJobThread_483
doSomething average execution time = 37
doSomethingUseObjectPool average execution time = 30
Total average execution time = 50.66519927885036
Total average execution time using pool= 32.22109712765399

Results
We received the following test result on our system:

Total average execution time = 50.66519927885036
Total average execution time using pool= 32.22109712765399

The results can be interpreted as follows. On the tested system when using 500
threads and the java.util.ArrayList class, it took approximately 50 milliseconds on
average per job task when no object pools were used. When object pooling was
used, it took approximately 32 milliseconds on average per job task.

You can use the application to test the difference using your own classes. You
can also check how the JVM memory settings affect behavior.

14.7 Configuration
The object pool service is configured using the WebSphere Administrative
Console. First you have to configure an object pool manager and then you can
create object pools under the object pool manager.

Disable the object pool service
The object pool service is enabled by default. It starts during the WebSphere
startup. If you want to disable the service, take the following steps:

1. Launch the Administrative Console and log in.

2. Select Servers -> Application Servers. Select the application server that
has defined the object pool service that you want to disable.

3. Under the Configuration tab, click Object Pool Service. Under the General
Properties, unmark the Startup property.

4. Apply the changes and save the configuration for WebSphere.

Important: Although this sample application shows the performance gain for
object pools, it is just a proof of concept and it has flaws. You cannot expect
the same performance gains with a “real” application, because there are many
factors that have not been and cannot be calculated here.
552 WebSphere Application Server Enterprise V5

Object pool manager configuration
Perform the following steps to configure the object pool manager for WebSphere
Enterprise V5:

1. Launch the Administrative Console.

2. Select Resources -> Object pools. On the first administration window, select
the scope when you want to create a scheduler service and click New.

3. You will get the object pool manager configuration window, as shown in
Figure 14-1. Specify the mandatory properties for the object pool manager
name and the object pool manager JNDI name. Optionally, you can specify
Description and Category properties.

Figure 14-1 Object pool manager configuration

4. Save the configuration for WebSphere.

Custom object pool configuration
When WebSphere’s object pool implementation does not suit your application’s
needs, you can provide a customized object pool implementation, which
implements the CustomObjectPool interface. Every custom object pool has to be
registered under an existing object pool manager. In order to define a custom
object pool on a given object pool manager, click Object Pools in the Additional
Properties section of the object pool manager configuration (see Figure 14-1).
Then for the Pool Class Name, specify the type of class that is pooled. And in the
 Chapter 14. Object pools 553

PoolImpl Class Name field, specify the class name of your object pool
implementation. See Figure 14-2.

Figure 14-2 Configuring custom object pool

Additionally you can specify custom properties that will be given to your pool
implementation in runtime, when the customer object pool is created. See
“Custom object pool” on page 541 for more details. Click Custom Properties in
the Additional Properties section of the object pool manager configuration (see
Figure 14-1 on page 553).

14.8 Runtime environment
As you may already determined from the Java API name, object pools are related
to Asynchronous Beans. Async Beans internally use object pooling, but not only
the Async Bean service. The Internationalization service also uses object pools
internally.

Synchronized object pools
WebSphere offers two types of object pools: synchronized and unsynchronized.
The synchronized type of pool is thread safe. Applications can share the pool
among different threads. Underneath, the synchronized pool is in fact a wrapped
unsynchronized pool.
554 WebSphere Application Server Enterprise V5

Unsynchronized object pools
Unsynchronized pools are not thread safe. Applications can only use them within
one thread. They are faster than the synchronized, so if your application uses an
object pool in one thread, we recommend the use of unsynchronized pool.

Sharing object pools
If the application server shares an object pool between applications, care must to
be taken to avoid class loader problems. This is not an issue when pooling JDK
supplied objects, such as java.util.HasMap, for example. But if you are pooling
application objects, then class loader problems may occur. We recommend not
sharing pools between applications when application objects are being pooled.

Workload management and failover
Object pool service does not have any special workload management or failover
capabilities. It is running within a JVM scope. When you configure the object pool
configuration manager on the cell or on the node level, every application server
that belongs to the cell or node will have one with the specified name registered,
and they are not aware of each other. If you work with object pools on one server
and you lose it, your application can still continue to run on another server.
However, since it exists only in memory, object pools on the crashing server will
be lost.

Programmatically, you can still return the objects obtained from the crashed
server pool to the new pool, but if the type of the pooled class is not the same,
you will get a ClassCastException exception.

14.9 Problem determination and troubleshooting
If you encounter problems using object pool service and you suspect that the
problem source is somewhere within the service then you can additionally use
the following trace string to monitor what is happening in the execution time:

com.ibm.ws.asynchbeans.pool.*=all=enabled

14.10 Performance monitoring
By default, performance monitoring within the object pool service is not enabled.
Follow the steps below to enable it:

1. Launch the Administrative Console and log in.

2. Select the application server of which object pool you want to monitor, switch
to the Configuration or the Runtime tab (only if the process is running) and
 Chapter 14. Object pools 555

click Performance Monitoring Service. The difference is that changing the
property on the runtime will already affect the currently running application
server process, while changing the property on the configuration level will
take effect with the application server’s next startup.

3. If you do not want to monitor all the WebSphere components, you should not
set the initial specification level to Standard, but only change PMI enablement
for the object pool service. Choose Custom initial specification, and locate
the objectPoolModule property, which by default is set to N (none).

4. Change the objectPoolModule property value to H (high). See Figure 14-3 on
page 557.

5. Apply the changes and save the configuration.

6. After the configuration, you can monitor the object pool service through your
performance viewer client.

The following object pool service runtime behavior can be monitored using
WebSphere’s Performance Monitoring Infrastructure (PMI):

� Objects created: Total number of new objects created.
� Objects allocated: The number of objects requested from the pool.
� Objects returned to pool: The number of objects returned to the pool.
� Idles object in pool: Average number of idle object instances in the pool.

Tip: All the object pool service performance monitoring variables belong to the
High group of the PMI specification levels.
556 WebSphere Application Server Enterprise V5

Figure 14-3 PMI configuration for object pool service

Important: There is no PMI available when using custom object pools.
 Chapter 14. Object pools 557

558 WebSphere Application Server Enterprise V5

Chapter 15. Shared Work Area service

A Shared Work Area is a WebSphere Application Server Enterprise
Programming Model Extension (PME) allowing you to pass user-defined
information in a J2EE environment via a Java context.

This chapter discusses the usage of the Shared Work Area service in J2EE
application and more specifically in WebSphere.

15
© Copyright IBM Corp. 2003. All rights reserved. 559

15.1 Planning
In the process of developing software applications, the need to pass data
between application components is often a fundamental requirement. A
significant part of this is contextual information such as security information,
transaction context, locale information and business state data. When developing
distributed applications, potentially spanning multiple logical and physical tiers,
the process of passing context data around can be quite challenging. As a
particular user request flows from the originating client through one or more
application tiers, the information has to be always available to the current
component for processing. Even if the information is not needed for a particular
component, it must be preserved and propagated to components further down
the process flow in case they need the information to complete their jobs.

The scenario in this chapter can be best explained using an example. In a typical
application, a browser-initiated request might call a servlet, which then calls a
session EJB that calls multiple Entity EJBs. In this example, the servlet, session
EJB, and Entity EJB would all need access to security information, transactional
information, and possibly other business information. Fortunately, in case of
J2EE, the underlying protocol RMI/IIOP has the ability to implicitly carry private
context information on the thread of execution without the developer having to
write any code. This is how security and transaction contexts are propagated
from an EJB client (a servlet in this example) to each EJB that it calls, as well as
to each EJB that those EJBs call, whether the EJBs are on the same physical tier
or separate ones.

This takes care of a large part of the “standard” contextual data that needs to flow
from tier to tier, but what about the business data that might be necessary or at
least convenient to have available to every component? For instance, when a
user initiates a session it might be beneficial to look up some profile information
and make that available to all the components that are called by the application.
There are a couple of alternatives to achieve this. One would be to add a “custom
profile” key or object to every method call so the providing component has
access to the profile data. This would have to be done even in cases where the
component did not need the data, but other components further down the line
might need it to complete their functions. This alternative would have several
negative side effects, including making every method call more complex,
increasing maintenance complexity, and reducing the reuse potential of many
EJBs. Clever design and/or use of a custom framework might reduce the severity
of these side effects, but they would still pose significant challenges. In the case
where components have been purchased from a third party, adapting pre-written
components in this fashion might be literally impossible without participation from
the component vendor.
560 WebSphere Application Server Enterprise V5

A better alternative would be to have the underlying middleware “plumbing” carry
the client profile information the same way that it carries security and
transactional information. This provides a much simpler programming model as
well as much more flexibility and maintainability.

The WebSphere Enterprise Shared Work Area service provides a simple, flexible
solution to the problem outlined above. Using this service, developers can easily
create a work area, insert data into it, and make remote invocations to EJBs. The
work area will be propagated with each remote method invocation in the same
way that the security and transaction contexts are. The receiving component may
use the data, ignore it, or add more to it. If the receiving component calls
methods on other components, the work area data will flow along to those
components as well. When the original client is done with the work area, it
terminates it.

A work area is defined as a set of properties, each of which contains a key (which
uniquely identifies the element), a value (the actual data that needs to be
propagated), and a mode (which indicates whether the data can be modified or
deleted by downstream components). Work areas can also be nested to provide
control over data visibility and even override specific properties.

Work areas are not only interesting to corporate customers, but can be very
much interesting to Independent Software Vendors who need to build
customizable applications and need solution to carry customized data along that
might not be known by many of the components at development time.

15.2 Design
Work areas can hold any kind of information, and they can hold an arbitrary
number of individual pieces of data. Each piece of data is represented by a
property that consists of a key-value-mode triplet. The key-value pair represents
the information contained in the property. The key is a name by which the
associated value is retrieved. The mode determines whether the property can be
removed or modified. Each piece of data can be accessed separately, so if the
type or length of the data changes, only those methods that actually use that
particular piece of data are affected by the change.

The Shared Work Area service has an important characteristic: the data can only
be passed one way, from the caller to the remote method. If the remote method
makes changes to the data, the changes are never seen by the caller. A remote
method can be another servlet or a method in the remote interface of an EJB.
Even if the servlet or bean resides in the same JVM, the call is still considered
remote. It is important to remember this characteristic when designing
applications using the Shared Work Area service.
 Chapter 15. Shared Work Area service 561

There are two prime considerations in deciding whether to pass specific
information explicitly as an argument or implicitly by using a work area:

� Pervasiveness

How much of the given information is used in your application overall? Is it
used in a majority of the methods in an application? The Shared Work Area
service is best used to store data that is required by many parts of the
application. If we pass this data as properties, method signatures would
quickly become cluttered. Even methods that do not need the data may have
to pass it along to other methods that require it. Also, if future enhancements
require additional data to be passed or the type or length of the data must
change, all methods that use or have to pass this data would have to change.
By using shared work areas, only those methods that actually use the data
would have to handle it. Because a shared work area is not explicitly passed,
there are no extra properties for methods that do not need the data. In this
sense, a work area is similar to the security or transaction context in
WebSphere Application Server, but in contrast to those two, it is generalized
and exposed for use in your application.

� Size

Is it reasonable to send the information even when it will not be used? The
size of information used with shared work areas is important from a
performance point of view. Since we cannot always predict and control the
size programmatically, WebSphere’s implementation has built in some
configurable limitations for the size of information stored in a shared work
area.

15.3 Development
There is no special support for Shared Work Area services in WebSphere Studio
IE. You only have to make sure that acwa.jar and distexcep.jar are in the
application’s Java classpath.

Important: In order to successfully compile your application and generate
deploy code, acwa.jar and distexcep.jar files must be added to Java build path.
In WebSphere Studio IE, the files are in the
<WebSphere_Studio_IE_root>\WAS_EE_V5\lib directory. In WebSphere
Enterprise V5, the files are in the <WebSphere_root>\lib directory.
562 WebSphere Application Server Enterprise V5

15.3.1 Work Area API
The Work Area API is contained in com.ibm.websphere.workarea package. For
more details about the API check complete description of Work Area API in the
WebSphere Enterprise InfoCenter:

http://publib7b.boulder.ibm.com/wasinfo1/en/info/ee/javadoc/ee/com/ibm/webspher
e/workarea/package-summary.html

In the following sections, we describe parts of WebSphere Enterprise’s work area
implementation.

UserWorkArea
This is the interface that defines the work area class. It consists of the following
methods:

� begin() and complete(): Start and terminate a work area in current thread.

� set(): Define or modify a property in the work area.

� get(): Get the defined properties.

� getName(): Return the name of a specified property.

� retrieveAllKeys(): Return all defined properties for the work area of caller’s
thread.

� remove(): Terminate the work area that was created (if any) in the caller’s
thread.

PropertyModeType
By this class you define permissions for each property in a work area. Possible
values are:

� Normal

You can modify, override (by a new one with the same name in a nested work
area) and remove the property.

� Read-only

The value of read-only property cannot be modified. However you can remove
the property (only from the thread that created its work area).

� Fixed

Property cannot be removed, but it can be modified and overridden.

� Fixed read-only

Property cannot be removed, nor overridden, nor modified.
 Chapter 15. Shared Work Area service 563

http://publib7b.boulder.ibm.com/wasinfo1/en/info/ee/javadoc/ee/com/ibm/websphere/workarea/package-summary.html

Modifying properties within a work area
For a particular work area, only the originator thread (the thread that created and
“owns” the given work area) can modify, remove, or change mode of properties
created in that work area.

Nested work areas
A nested work area is a work area created “over” another work area. Let’s say
you have a thread that got a work area from a remote caller. When your thread
creates another work area, we call the new work area to be nested. Then using
work area in the current thread, you will see all the properties. The originating
work area, plus the properties from the newly created nested work area, will
appear as one flat work area. The remote caller will not be aware of any nested
work areas, since the originating thread will not see anything from the newly
created nested work area.

In contrast, when you make a remote call to another thread from the current
thread (the one that inherited a work area and then created a nested work area
over), the called thread will get both work areas and again it will appear like one
flat work area.

Nested work areas are also used to override the properties from the originating
work areas. Since you cannot change properties in a work area if you are not the
originator who created the work area, the only chance is to create a nested work
area with the same property. And in the nested work area, you can only create
the same property if the inherited property permits it, which it can do if its mode is
not any of the read-only modes.

15.3.2 Steps for using the Shared Work Area service
The following steps have to be done in your application when programming for
work areas.

Find the Shared Work Area service
The object work area is exposed in the JNDI name space. Nothing has to be
configured in WebSphere. By default it is enabled and programmatically you can
access it by doing a lookup on a context to find the Shared Work Area service.
See Example 15-1.

Example 15-1 Shared Work Area service lookup

import com.ibm.websphere.workarea.*;
import javax.naming.InitialContext;
...
initialContext = new InitialContext();
workArea = (UserWorkArea)
564 WebSphere Application Server Enterprise V5

initalContext.lookup("java:comp/websphere/UserWorkArea");

The Shared Work Area service is available within the WebSphere J2EE server
environment and also within J2EE client container. In both cases the same
procedure is used to get the service, it depends if you want to create or to use
existing work areas within given thread just find the service.

Create a work area
When you have the Shared Work Area service you can create and associate a
new work area for the current thread of execution. This is done by invoking the
begin() method, as shown in Example 15-2.

Example 15-2 Create a work area

import com.ibm.websphere.workarea.*;
...
//find work area service
...
//create a new work area with name ACompanyWorkArea in the current thread
workArea.begin("ACompanyWorkArea");

This code creates a new work area named ACompanyWorkArea in the thread
that invokes it. There are no restrictions on the name, except it has to be a
non-null value.

If there are already existing work areas associated with the thread, a nested work
area will be created. Refer to “Nested work areas” on page 564 for more details.

Use work area
So far, we have found a Shared Work Area service and defined work areas. The
next step is to put properties with values into the work area. Remember, each
property is represented by a name, value, mode triplet.

Set user defined properties
In Example 15-3 on page 566, we put two properties into the work area of the
current thread: a property named productID and its value is represented with our
own ProductProperties class. You can put whatever you want in the work area
value as long as your user-defined class implements the java.io.Serializable
interface. Also when we set the property, we did not specify its mode. By default
the property’s mode is set to Normal.

Additionally we put a property named customerName with a value of John and
also set the property to be Fixed (that is, it cannot be overridden by another
nested work area) and Read-only (its value cannot be modified).
 Chapter 15. Shared Work Area service 565

Example 15-3 Set user defined property

import com.ibm.websphere.workarea.*;
...
//find work area service
...
//define and init product properties
ProductProperties productProps = new ProductProperties();
//set user defined properties
ProductProperties productID = new ProductProperties();
workArea.set(“productProperties”, productProps);
workArea.set(“customerName”, “John”, PropertyModeType.fixed_readonly);

Get defined properties
When we need to get a property from a work area, we simply invoke a get()
method supplying the property name. Work area service will start searching on
current threads’ work area and nested areas. See Example 15-4.

Example 15-4 Get user defined properties

import com.ibm.websphere.workarea.*;
...
//find work area service
...
ProductProperties productProps = (ProductProperties)
workArea.get(“productProperties”);

Modify properties
When we want to modify the property, we simply invoke the set() method again
with the same property name. You can only do that in the originator thread (the
thread that created the work area). If you try to modify it in a “remote” thread
(which got the context from the caller, the originating thread), you will get
NotOriginator exception.

If you want to modify a property of the work area in a non-originator thread, the
only way is to create another nested work area with the same property and this is
only possible when the original property allows it to be overridden, if its mode is
not read-only.

Important: Your classes must implement java.io.Serializable if you want to put
them into the work area property.

Important: For the given work area you can only modify the properties whose
mode is either Normal or Fixed. And you can only modify them from the thread
where the work area was created - the originator thread.
566 WebSphere Application Server Enterprise V5

Change property mode
The mode of the property can only be changed from the originating thread, the
thread that creates the property. In a non-originating thread, you can create a
nested work area with the same property that would have other modes.
Permissible mode changes depend on the original mode. See Table 15-1.

Table 15-1 Permissible mode changes in a nested work area

Remove properties
You can also remove properties already created. See Example 15-5. Only the
originating thread, the thread that created it, can remove it. Otherwise you will get
a NonOriginator exception. If the property’s mode is set to Fixed, then you cannot
remove it, not even from an originator thread. You will get a PropertyFixed
exception.

Example 15-5 Get user defined properties

import com.ibm.websphere.workarea.*;
...
//find work area service
...
ProductProperties productProps = (ProductProperties)
workArea.remove(“productProperties”);

Terminate work area
When you no longer need a work area, you should terminate it. See
Example 15-6. Again, you can only terminate a work area that was created in the
current thread. If the current thread just has a work area inherited from a remote
caller, then it cannot terminate it. It can only terminate its work areas and nested
work areas.

Example 15-6 Terminate work area

import com.ibm.websphere.workarea.*;
...
//find work area service
...

Mode in the workarea created by
originating thread

Possible mode change in nested work
area

Normal All modes

Read-only No change allowed

Fixed read-only No change allowed

Fixed Fixed, Fixed read-only
 Chapter 15. Shared Work Area service 567

//use work area
...
//terminate work area
workArea.complete();

15.4 Unit test environment
To use work areas, there is nothing special to configure in the WebSphere Studio
IE test environment. The work area service is enabled by default.

15.5 Sample application
In this section, we will create a sample application, which consists of a
stand-alone Java client named WorkAreaTestClient running in the J2EE client
container, and of a remote EJB named ACompanyWorkAreaBean, running in
WebSphere Application Server Enterprise V5. In the work area properties, we
put the ComputerProperties class. This is a custom class that implements
java.io.Serializable, so we can use it as a value in properties.

In this sample, we have a large company with some intranet applications. The
employees can use some J2EE stand-alone application that is a client for some
internal applications. There are many different computer systems from which the
client is used and for statistical reasons or evaluation we want to collect the data
about the client computer systems: processor type, OS type, and number of
processors. These all are stored in the ComputerProperties class. Every client
stores this class in a work area property, which is then propagated to the servers.

Prerequisites
The following prerequisites have to be met before starting with the sample
application:

� For testing purposes, a WebSphere Enterprise test server needs to be
created in WebSphere Studio IE.

� The developed EJB is going to be part of the ACompany project’s
ACompanyEJB module. It can reside in any EJB module you create in your
project.

Create the application client project
The first step is to create an application client project:

1. In WebSphere Studio IE, select File -> New -> Application Client Project.
568 WebSphere Application Server Enterprise V5

2. Select Create J2EE 1.3 Application client project. Enter the project name:
WorkAreaTestClient. Select this project to be under Existing Enterprise
Application and select ACompany for the application. Click Finish.

If you do not have the ACompany project already created, you should create
another project that will contain the ACompanyWorkAreaTest EJB.

3. In the J2EE Navigator view, right-click the WorkAreaTestClient project, then
select Properties. In the Properties for WorkAreaTestClient window, switch to
the Java Build Path and select the Libraries tab.

4. In the Libraries tab choose AddVariable, double-click the WAS_EE_V5, go to
the lib directory and choose acwa.jar and distexcep.jar.

5. Apply the changes.

Create WorkAreaTestClient application client class
To add the main class into the application client project, follows these steps:

1. In the J2EE Navigator view, right-click the appClientModule in ObjectPtest,
then select New -> Class.

2. In New Java Class window, enter WorkAreaTestClient as the value for the
Name property. Leave all the other properties with their default values. Click
Finish.

3. Copy the code from Example 15-7 into the WorkAreaTestClient.java class.

Example 15-7 WorkAreaTestClient.java

import javax.naming.InitialContext;
import javax.rmi.PortableRemoteObject;
import com.acompany.ejbs.*;
import com.ibm.websphere.workarea.*;

public class WorkAreaTest {
public static void main(String[] args) {
UserWorkArea workArea=null;
ACompanyWorkAreaTest remoteEJB=null;
ComputerProperties compProps_0 = new ComputerProperties("CSIR", "XIA", 1);
ComputerProperties compProps_1 = new ComputerProperties("LETNI", "SWODNIW", 1);
ComputerProperties compProps_2 = new ComputerProperties("ALOROTOM", "XINU", 2);
ComputerProperties compProps_3 = new ComputerProperties("CRAPS", "SIRALOS", 3);
//Find work area service
try {

InitialContext initalContext = new InitialContext();
workArea = (UserWorkArea) initalContext.lookup("java:comp/websphere/UserWorkArea");
ACompanyWorkAreaTestHome home = (ACompanyWorkAreaTestHome) PortableRemoteObject.narrow(
initalContext.lookup("java:comp/env/ejb/ACompanyWorkAreaTest"),

ACompanyWorkAreaTestHome.class);
remoteEJB = home.create();
 Chapter 15. Shared Work Area service 569

} catch (Exception e) {
e.printStackTrace();
System.exit(1);

}
//create a work area
workArea.begin("originatorWorkArea");
System.out.println("WorkAreaTest: workArea "+workArea.getName()+" created\n");
//set the properties
try{

workArea.set("clientComputerPropertiesNormal",compProps_0,PropertyModeType.normal);
workArea.set("clientComputerPropertiesReadOnly",compProps_1,PropertyModeType.read_only);
workArea.set("clientComputerPropertiesFixedNormal",

compProps_2,PropertyModeType.fixed_normal);
workArea.set("clientComputerPropertiesFixedReadOnly",

compProps_3,PropertyModeType.fixed_readonly);
} catch(PropertyReadOnly e) {

e.printStackTrace();
} catch(Exception e) {

e.printStackTrace();
}
//do some tests on this work area remotely
try{

remoteEJB.changeInherited();
remoteEJB.changeNested();

} catch(Exception e) {
e.printStackTrace();

}
//try to overwrite read only property
try {

workArea.set("clientComputerPropertiesReadOnly",compProps_2);
} catch(PropertyReadOnly e) {

System.out.println("WorkAreaTest: as expected got PropertyReadOnly when trying to
overwrite read only property\n");

}
catch(Exception e) {

e.printStackTrace();
}

//try to overwrite fixed property
try{

workArea.set("clientComputerPropertiesFixedNormal",compProps_2);
System.out.println("WorkAreaTest: as expected we could overwrite fixed normal

property from local work area\n");
} catch(Exception e) {

System.out.println("WorkAreaTest: unexpected exception");
e.printStackTrace();

}
//complete work area
workArea.complete();
570 WebSphere Application Server Enterprise V5

}
}

Create ComputerProperties application class
To add the main class into the application client project, do the following:

1. In J2EE hierarchy window, right-click the ACompanyEJB module in EJB
Modules.

2. Select New -> New -> Class. In the New Java Class window, enter
ComputerProperties as the value for the Name property. Uncheck Public
Static Void Main(String args[]). Leave all the other properties at their default
values. Click Finish.

3. Copy the code from Example 15-8 into the ComputerProperties.java class.

Example 15-8 ComputerProperties.java source

package com.acompany.ejbs;
public class ComputerProperties implements java.io.Serializable {

protected String processorType;
protected String osType;
protected Integer numberOfProcessors;
//default constructor
public ComputerProperties() {

this.processorType = new String("ABAKUS");
this.osType = new String("OS4");
this.numberOfProcessors = new Integer (1);

}
//another constructor
public ComputerProperties(String pTyp, String osTyp, int nOfPr) {

this.processorType = new String(pTyp);
this.osType = new String(osTyp);
this.numberOfProcessors = new Integer (nOfPr);

}
//setter method for proccessorType
public void setProcType(String pTyp) {

this.processorType = new String(pTyp);
}
//setter method for osType
public void setOsType(String osTyp) {

this.osType = new String(osTyp);
}
//setter method for numberOfProcessors
public void setNumOfProc(int nOfPr) {

this.numberOfProcessors = new Integer (nOfPr);
}
//getter method for proccessorType
public String getProcType() {
 Chapter 15. Shared Work Area service 571

return(this.processorType);
}
//getter method for osType
public String getOsType() {

return(this.osType);
}
//getter method for numberOfProcessors
public int getNumOfProc() {

return(this.numberOfProcessors.intValue());
}

}

The class is just a simple class that contains two String attributes, one for OS
and one processor type, and an Integer for number of processor. Additionally it
contains a few setter and getter methods for the attributes.

Change the main class of the application client
You have to change the specified main class of the client so that the J2EE client
container will know which class to run when starting the application. Our main
class is ObjectTest.java. The client container starts the program by starting its
main() method.

1. In the J2EE Navigator view, select ObjectPtest -> appClientModule ->
META-INF and double-click the MANIFEST.MF file.

2. In the Dependencies tab at the bottom, enter WorkAreaTestClient as the
value for the Main-Class property.

3. Save and close the file.

Create ACompanyWorkAreaTest bean
To create ACompanyWorkAreaTest bean and all the necessary environment, do
the following:

1. In the J2EE hierarchy window, right-click the ACompanyEJB module in the
EJB Modules, then select New -> Enterprise Bean.

2. In the first Enterprise Bean Creation window, make sure that ACompanyEJB
is selected for the project, and click Next.

3. Configure the first Enterprise Bean Creation window, as shown in Figure 15-1
on page 573, and click Next.
572 WebSphere Application Server Enterprise V5

Figure 15-1 Creating ACompanyWorkAreaTest bean, first window

4. Configure the second Enterprise Bean Creation window, as shown in
Figure 15-2 on page 574, and click Finish.
 Chapter 15. Shared Work Area service 573

Figure 15-2 Creating ACompanyWorkAreaTest bean, second window

Adding code for the ACompanyWorkAreaTest remote interface
Open the ACompanyWorkAreaTest.java and copy the code from Example 15-9.

Example 15-9 ACompanyWorkAreaTest.java

package com.acompany.ejbs;
public interface ACompanyWorkAreaTest extends javax.ejb.EJBObject {

public void changeInherited() throws java.rmi.RemoteException;
public void removeInherited() throws java.rmi.RemoteException;
public void changeNested() throws java.rmi.RemoteException;

}

Adding code for the ACompanyWorkAreaTest bean
Open ACompanyWorkAreaTestBean.java and copy the code from
Example 15-10.

Example 15-10 ACompanyWorkAreaTestBean.java

package com.acompany.ejbs;
import javax.naming.InitialContext;
574 WebSphere Application Server Enterprise V5

import com.ibm.websphere.workarea.*;
public class ACompanyWorkAreaTestBean implements javax.ejb.SessionBean {

UserWorkArea workArea;
ComputerProperties compProp = new ComputerProperties("ADA", "DONUX", 2);
private javax.ejb.SessionContext mySessionCtx;
public javax.ejb.SessionContext getSessionContext() {

return mySessionCtx;
}

public void setSessionContext(javax.ejb.SessionContext ctx) {
mySessionCtx = ctx;

}

public void ejbCreate() throws javax.ejb.CreateException {
try {

InitialContext initalContext = new InitialContext();
//Find (inherited) work area
workArea = (UserWorkArea) initalContext.lookup("java:comp/websphere/UserWorkArea");
System.out.println("ACompanyWorkAreaTestBean: found workarea: " +

workArea.getName());
//list all the properties
String[] properties = workArea.retrieveAllKeys();
if (properties != null) {

for (int i = 0; i < properties.length; i++)
System.out.println("ACompanyWorkAreaTestBean: found " + properties[i] + "

property in workarea:" + workArea.getName());
} else

System.out.println("ACompanyWorkAreaTestBean: no properties found in workarea =" +
workArea.getName());

} catch (javax.naming.NamingException e) {
System.out.println("ACompanyWorkAreaTestBean: lookup failed");
e.printStackTrace();

}
}

public void ejbActivate() {}

public void ejbPassivate() {}

public void ejbRemove() {}

public void changeInherited() {
ComputerProperties compProp = new ComputerProperties("NEUMMAN", "DONUX", 3);
//try to modify normal property
try {

workArea.set("clientComputerPropertiesNormal", compProp);
} catch (NotOriginator e) {

System.out.println();
System.out.println("ACompanyWorkAreaTestBean: as expected got NonOriginator
 Chapter 15. Shared Work Area service 575

exception");
System.out.println("when trying to modify a normal property from " +

workArea.getName());
} catch (Exception e) {

System.out.println("This exception was not expected !!!");
e.printStackTrace();

}
//try to remove fixed normal property
try {

workArea.remove("clientComputerPropertiesNormal");
} catch (NotOriginator e) {

System.out.println();
System.out.println("ACompanyWorkAreaTestBean: as expected got NonOriginator

exception");
System.out.println("when trying to remove normal property from " +

workArea.getName());
} catch (Exception e) {

System.out.println("This exception was not expected !!!");
e.printStackTrace();

}
}

public void changeNested() {
//Create a new nested work area; work area scope has now changed
workArea.begin("nestedWorkArea");
System.out.println();
System.out.println("ACompanyWorkAreaTestBean: created new nested work area");
//try to override read-only property
try {

System.out.println();
System.out.println("ACompanyWorkAreaTestBean: trying to override read only property

in" + workArea.getName());
workArea.set("clientComputerPropertiesReadOnly", compProp);

} catch (PropertyReadOnly e) {
System.out.println("ACompanyWorkAreaTestBean: as expected got PropertyReadOnly

exception");
System.out.println("when trying to override a read-only property");

} catch (Exception e) {
System.out.println("This exception was not expected !!!");
e.printStackTrace();

}
// overriding a fixed normal property
try {

System.out.println();
System.out.println("ACompanyWorkAreaTestBean: overriding a fixed normal property");
workArea.set("clientComputerPropertiesFixedNormal", compProp);
System.out.println("ACompanyWorkAreaTestBean: as expected we could override a

property");
576 WebSphere Application Server Enterprise V5

ComputerProperties props = (ComputerProperties)
workArea.get("clientComputerPropertiesFixedNormal");

System.out.println();
System.out.println("ACompanyWorkAreaTestBean: clientComputerPropertiesFixedNormal:

procType=" + props.getProcType());
System.out.println("ACompanyWorkAreaTestBean: clientComputerPropertiesFixedNormal:

osType = " + props.getOsType());
System.out.println("ACompanyWorkAreaTestBean: clientComputerPropertiesFixedNormal:

numOfProc=" + props.getNumOfProc());
} catch (java.lang.Exception e) {

System.out.println("This exception was not expected !!!");
e.printStackTrace();

}
//try to remove normal property - but now the scope is changed because of new work area
try {

workArea.remove("clientComputerPropertiesNormal");
} catch (NotOriginator e) {

System.out.println();
System.out.println("ACompanyWorkAreaTestBean: as expected we got NotOriginator

exception");
System.out.println("when trying to remove normal property from " +

workArea.getName());
} catch (Exception e) {

System.out.println("This exception was not expected !!!");
e.printStackTrace();

}
//complete nested work area
try {

workArea.complete();
} catch (Exception e) {

System.out.println("This exception was not expected !!!");
e.printStackTrace();

}
}

}

Use the application client
At the end, build the project and test the client, export the project into an EAR file,
and use the launchClient command to run the project in J2EE client container.

1. Select the ACompanyClient project, and from the menu bar select Project ->
Rebuild Project.

2. From the menu, select Export. The export wizard starts. Select EAR file on
the first window, then click Next. Select ACompany as a project you want to
export. Enter the file name to which you want to export the project, for
example C:\SG246932\ACompany.ear. Click Finish.
 Chapter 15. Shared Work Area service 577

3. Open a terminal or command prompt window. Change the directory where
WebSphere’s launchClient.bat resides in your system.

4. Make sure that the WebSphere Enterprise test server is running.

5. The client takes no arguments. Here is an example of how to run our client:

launchClient C:\SG246932\ACompany.ear -CCjar=WorkAreaTestClient.jar
-CCBootstrapHost=localhost -CCBootstrapPort=2809 -CCverbose=true

The output you should get from the server is shown in Example 15-11 and the
output you should get from the client is shown in Example 15-12 on page 579.

Example 15-11 Server system output when testing sample application

HttpTransport A SRVE0171I: Transport https is listening on port 9,043.
SchedulerServ I SCHD0001I: The Scheduler Service has started.
ConnectionFac I J2CA0107I: Component-managed authentication alias not specified for connection
factory or datasource BPEDataSourceCloudscape.
RMIConnectorC A ADMC0026I: RMI Connector available at port 2809
WsServer A WSVR0001I: Server server1 open for e-business
SystemOut O ACompanyWorkAreaTestBean: found workarea: originatorWorkArea
SystemOut O ACompanyWorkAreaTestBean: found clientComputerPropertiesReadOnly property in
workarea:originatorWorkArea
SystemOut O ACompanyWorkAreaTestBean: found clientComputerPropertiesNormal property in
workarea:originatorWorkArea
SystemOut O ACompanyWorkAreaTestBean: found clientComputerPropertiesFixedReadOnly property
in workarea:originatorWorkArea
SystemOut O ACompanyWorkAreaTestBean: found clientComputerPropertiesFixedNormal property in
workarea:originatorWorkArea
SystemOut O
SystemOut O ACompanyWorkAreaTestBean: as expected got NonOriginator exception
SystemOut O when trying to modify a normal property from originatorWorkArea
SystemOut O
SystemOut O ACompanyWorkAreaTestBean: as expected got NonOriginator exception
SystemOut O when trying to remove normal property from originatorWorkArea
SystemOut O
SystemOut O ACompanyWorkAreaTestBean: created new nested work area
SystemOut O
SystemOut O ACompanyWorkAreaTestBean: trying to override read only property
innestedWorkArea
SystemOut O ACompanyWorkAreaTestBean: as expected got PropertyReadOnly exception
SystemOut O when trying to override a read-only property
SystemOut O
SystemOut O ACompanyWorkAreaTestBean: overriding a fixed normal property
SystemOut O ACompanyWorkAreaTestBean: as expected we could override a property
SystemOut O
SystemOut O ACompanyWorkAreaTestBean: clientComputerPropertiesFixedNormal: procType=ADA
SystemOut O ACompanyWorkAreaTestBean: clientComputerPropertiesFixedNormal: osType = DONUX
SystemOut O ACompanyWorkAreaTestBean: clientComputerPropertiesFixedNormal: numOfProc=2
578 WebSphere Application Server Enterprise V5

Example 15-12 Client output when testing sample application

C:\Program Files\WebSphere\AppServer\bin>launchClient C:\ACompany.ear
-CCjar=WorkAreaTestClient.jar -CCBootstrapPort=2809 -CCverbose=true
IBM WebSphere Application Server, Release 5.0
J2EE Application Client Tool
Copyright IBM Corp., 1997-2002
WSCL0012I: Processing command line arguments.
WSCL0001I: Command line, property file, and system property arguments resolved to:
 File to launch = C:\ACompany.ear
 CC Property File = null
 Client Jar File = WorkAreaTestClient.jar
 Alternate DD = null
 BootstrapHost =
 BootstrapPort = 2809
 Trace enabled = false
 Tracefile = null
 Init only = false
 Classpath Parameter = null
 Security Manager = disable
 Security Manager Class = Not used. -CCsecurityManager=disable
 Security Manager Policy = Not used. -CCsecurityManager=disable
 Exit VM = false
 Soap Connector Port = null
 Application Parameters =
WSCL0013I: Initializing the J2EE Application Client Environment.
WSCL0025I: Binding EJB reference object:
 JNDI name: ejb/ACompanyWorkAreaTest ==>
ejb/com/acompany/ejbs/ACompanyWorkAreaTestHome @ corbaloc:iiop:localhost:2809
 Description:
WSCL0031I: The object was bound successfully.
...
WSCL0035I: Initialization of the J2EE Application Client Environment has completed.
WSCL0014I: Invoking the Application Client class WorkAreaTest

WorkAreaTest: workArea originatorWorkArea created

WorkAreaTest: as expected got PropertyReadOnly when trying to overwrite read only property

WorkAreaTest: as expected we could overwrite fixed normal property from local work area

If you check through the code and the outputs, you find the following:

1. In the beginning, the client finds the Shared Work Area service and the
remote EJB. The client starts a work area named originatorWorkArea and
creates properties for it, each with a different mode and using
ComputerProperties classes as a property value.
 Chapter 15. Shared Work Area service 579

2. The client calls the changeInherited() remote method on the
ACompanyWorkAreaTest EJB that is running on the server. At this time, the
client’s work area gets propagated to the EJB. In the create() method, we can
find the work area and print out the properties available.

3. The server EJB tries to modify a normal property using a set() method. Since
the server did not create and put the property into the (inherited) work area,
we receive a NotOriginator exception, as expected, and we intercept it.

4. The server EJB tries to remove a property. Since the server did create and
put the property into the (inherited) work area, we get a NotOriginator
exception, as expected, and we intercept it.

5. The client calls the changeNested() remote method on the
ACompanyWorkAreaTest EJB. The Work area gets propagated. Execution
moves to the server. In this method call, the server starts with creating
another (nested) work area.

6. The method tries to override a read-only property and as expected we get a
ReadOnly exception.

7. The code successfully overrides a fixed normal property. Therefore, we see a
new value in the nested work area under this property. The original property
remains unchanged on the client side. It does not see the nested work area.

8. The server completes (closes) the work area created in the changeNested()
call and exits, and the execution returns to the client. Note that after we
complete the work area, the overridden property is gone.

9. The client tries to overwrite a read-only property. As expected, we receive and
intercept a PropertyReadOnly exception.

10.The client tries to overwrite a fixed property. It succeeds as expected.

11.Finally, the code completes the work area and exits.

15.6 Configuration
This section explains the configurational procedures for the the Shared Work
Area service and its dependencies. Handling and managing shared work areas
is all done programmatically from the J2EE application. In administering terms,
only a few properties of the Shared Work Area service can be configured.
580 WebSphere Application Server Enterprise V5

15.6.1 Shared Work Area service configuration
For the Shared Work Area service configuration, do the following:

1. Launch the Administrative Console and select Servers -> Application
Servers. Select the application server where you want to configure the
Shared Work Area service.

2. In the Configuration tab, click Work Area Service. You will get the work area
configuration window as shown in Figure 15-3.

Here you can enable or disable the Shared Work Area service. By default it is
enabled. The service starts during WebSphere startup. If you have it disabled
and then enable it while the server is running, the server must be restarted to
start the service.

Additionally, you can set the maximum send and the maximum receive size
(in bytes) of a single work area.

Figure 15-3 the Shared Work Area service configuration

15.6.2 Shared work area client properties
When using shared work areas from a client running in a J2EE client container,
you should be able to specify some properties affecting the behavior. In this case
the properties are specified by using the “-D” JVM directives. You need to edit the
 Chapter 15. Shared Work Area service 581

launchClient script and add the property to the Java invocation line. The following
properties are available:

� -Dcom.ibm.websphere.workarea.maxSendSize

This sets the maximum send size of a single shared work area. The property
type is integer and has a default value of 32767 bytes.

An example of specifying this parameter would be:

-Dcom.ibm.websphere.workarea.maxSendSize=10000

� -Dcom.ibm.websphere.workarea.enabled

This enables or disables the use of Shared Work Area within your client
application. The property type is boolean and has a default value of TRUE,
which means the work area is enabled by default.

15.7 Problem determination and troubleshooting
If you encounter problems using the Shared Work Area service and you suspect
that the problem source is somewhere within the service, then you can also use
the following trace string to monitor what is happening in the execution time:

com.ibm.ws.workarea.*=all=enabled
582 WebSphere Application Server Enterprise V5

Chapter 16. Internationalization (i18n)
service

The Internationalization service provides a mechanism for propagating locale
and time zone information from clients to servers and between server
components. This information can be used by server application components to
customize the results according to the client locale and time zone. The transfer of
the locale and time zone information is done transparently by the
Internationalization (i18n) service. This chapter covers when to use the
Internationalization service, how to develop the application that uses this service,
and configuration and troubleshooting of the service.

16
© Copyright IBM Corp. 2003. All rights reserved. 583

16.1 Planning
This chapter describes the value of the Internationalization service, the problems
of existing solutions for internationalization, then introduces the WebSphere
Enterprise Internationalization service.

Internationalization (i18n)
An application that can present information to users according to regional cultural
conventions is said to be internationalized. The application can be configured to
interact with users from different localities in culturally appropriate ways. In an
internationalized application, a user in one region sees error messages, output,
and interface elements in the requested language. Date and time formats, as well
as currencies, are presented appropriately for users in the specified region. A
user in another region sees output in the conventional language or format for that
region.

Internationalization of an application is driven by two variables: the time zone and
the locale. The time zone indicates how to compute the local time as an offset
from a standard time, such as Greenwich Mean Time (GMT). The locale is a
collection of information about language, currency, and the conventions for
presenting such information as dates. In a localized application, the locale also
indicates the message catalog from which an application is to retrieve message
strings. A time zone can cover many locales, and a single locale can span time
zones. With both time zone and locale, the date, time, currency, and language for
users in a specific region can be determined.

Why use the Internationalization service?
In a distributed client/server environment, application processes may run on
different machines configured to different locales corresponding to different
culture conventions. They may also be located across geographical boundaries.
With the advent of Internet-based business computational models, such as
e-commerce, more and more clients and servers will operate in different locales
and geographical regions.

Internationalization techniques have traditionally been expensive and difficult to
implement, so they have been applied only to major development efforts.
However, given the rise in distributed computing and in the use of the World Wide
Web, application developers have been pressured to internationalize a much
wider variety of applications. This requires making internationalization
techniques much more accessible to application developers.
584 WebSphere Application Server Enterprise V5

Computers located in different locales
Client and server processes can run on computers that have a different locale
setting. For example, a Spanish client may invoke a business method on an
object that resides on an American server. Some business methods can be
locale-sensitive. For example, a business method may return a sorted list of
strings; the Spanish client will expect that list to be sorted according to the
Spanish collating sequence, not in the server’s English collating sequence. Since
data retrieval and sorting procedures run on the server, the locale of the client
has to be available in order to perform a legitimate sort. A server may also have
to return strings containing date, time, currency, or exception messages
formatted according to the client’s locale.

Computers located in different time zones
Client and server processes can execute in geographical locations having
different time zones. For example, suppose a vendor makes the claim that orders
received before 2:00 PM will be processed by 5:00 PM the same day. The times
given, of course, are in the time zone of the server that is processing the orders.
It is important to know the client’s time zone in order to give customers in other
time zones the correct times for same-day processing. Other time zone-sensitive
operations include time stamping messages, order tracking, transaction
completion time, and estimated shipment arrival times.

16.1.1 The traditional solutions and the limitations
The conventional solution for solving locale and time zone mismatch problems is
to pass one or more extra parameters on all business methods necessary for
conveying either the client’s locale or time zone to the server. Although the
technique is simple, it has serious limitations:

� Parameter lists become longer.

� Extra parameters may need to be added to all methods to pass the
information through the call chain even if they do not use the information.

� Adding extra parameters to deployed applications is inherently error-prone.

� It may be impossible to add parameters to the applications that are not easily
modified, such as legacy applications.

16.1.2 The Internationalization service solution
The WebSphere Internationalization service solves the locale and time zone
mismatch problems without the traditional limitations. The locale list and time
zone are managed as a unit, referred to as an internationalization context. The
Internationalization service manages the distribution of internationalization
context across the various components of Enterprise applications, including Java
 Chapter 16. Internationalization (i18n) service 585

client applications, EJBs, JSPs, and servlets. The server-side components can
use the internationalization context API to access the distributed
internationalization context and then localize computations to the locale or time
zone of the client-side components.

16.2 Design
The service associates an internationalization context with each thread of
execution in an application. When a client-side program invokes a remote
business method, the Internationalization service obtains the context associated
with the current thread and attaches it to the outgoing request. On the server
side, the Internationalization service detaches the caller’s context from the
incoming request and associates it with the remote business method thread. The
service propagates this context on subsequent remote business method
invocations to pass the context of the original request down the call chain.

16.2.1 Internationalization context
An internationalization context is a distributable collection of internationalization
information containing an order list, or chain, of locales and a single time zone,
where the locales and time zone are instances of Java SDK types,
java.util.Locale and java.util.TimeZone. A locale chain is ordered according to the
user’s preference.

� java.util.Locale:

The Locale object is defined by a language and optional country and variant.
An application can use Locale to properly format messages or sort string lists,
for example, by passing it to the locale-sensitive methods of other Java SDK
objects, such as java.text.NumberFormat, java.text.DateFormat or
java.text.Collator.

� java.util.TimeZone:

The TimeZone represents a time zone offset from GMT. An application can
use TimeZone to perform time-sensitive computations. For example, the
constructors of java.util.Calendar accept a TimeZone parameter that
configures the resulting Calendar objects to compute time according to the
supplied time zone and daylight savings rules.

Note: The Internationalization service does not support the time zone
types other than java.util.SimpleTimeZone. Unsupported time zone types
map to the default time zone of the JVM when supplied to
internationalization context API methods.
586 WebSphere Application Server Enterprise V5

The Internationalization service manages and makes available two varieties of
internationalization context: the caller context representing the caller’s
localization environment, and the invocation context representing the local
environment under which a business method executes. The server application
components use elements of the caller and invocation internationalization
contexts to appropriately tailor locale-sensitive and time zone-sensitive
computations.

Caller context
Caller internationalization context contains the local chain and time zone
received on incoming EJB business method and servlet service method
invocations. It is the internationalization context propagated from the calling
process. Use caller context elements within server application components to
localize computations to the calling component. Caller context is read-only and
can be accessed by all application components by using the Internationalization
interface of the internationalization context API.

Caller context is computed in the following manner:

� On an EJB business method or a servlet service method and servlet service
method invocation, the Internationalization service extracts the
internationalization context from the incoming request and scopes this context
to the method as the caller context.

� On the servlets, the caller locales are retrieved from the Accept-Language
header field in the HTTP request. This field depends the language setting of
the Web browser. However, on the servlets, the caller time zone is always
GMT because there is no space to put the time zone information in the HTTP
request.

Invocation context
The invocation internationalization context contains the locale chain and time
zone under which EJB business methods and servlet service methods execute. It
is managed by either the hosting container or the application component,
depending on the applicable internationalization policy. On outgoing business
method requests, it is the context that propagates to the target process. Use
invocation context elements to localize computations under the specified settings
of the current application component.

The invocation context is computed in the following manner. On an incoming
business method or servlet service method invocation, the Internationalization
service queries the associated context management policy. If the policy is
container-managed internationalization (CMI), the container scopes the context
designated by the policy to the invocation. Otherwise the policy is
application-managed internationalization (AMI), and the container scopes an
 Chapter 16. Internationalization (i18n) service 587

empty context to the invocation that can be altered by the method
implementation.

The application components can access invocation context elements through
both the Internationalization and InvocationInternationalization interfaces of the
internationalization context API. The invocation context elements can be
overwritten under the application-managed internationalization policy only.

On an outgoing business method request, the service obtains the currently
scoped invocation context and attaches it to the request. This outgoing exported
context becomes the caller context of the target invocation. When supplying the
invocation context elements, either for export on outgoing requests or through
the API, the Internationalization service always provides the most recent element
set using the API.

16.2.2 Internationalization type
Every server application component that runs on WebSphere Enterprise has one
internationalization type setting. By this setting, the server container decides that
the invocation internationalization context is managed by the application
component or by the hosting J2EE container.

The server application components can be deployed to use one of the following
types of internationalization context management:

� Application-managed internationalization (AMI)
� Container-managed internationalization (CMI)

Application-managed internationalization (AMI)
Under the AMI deployment policy, component developers assume complete
control over the invocation internationalization context. AMI components can use
the internationalization context API to programmatically set invocation context
elements.

The AMI components are expected to manage the invocation context.
Invocations of AMI components implicitly run under the default locale and time
zone of the hosting JVM. If the invocation context elements are not set by using
the API, the container gets the JVM default values when accessed through the
API or when exported on business methods. To export context elements other
than the JVM defaults, AMI servlets, AMI EJB and EJB client application must

Note: For any missing or null context element, the service inserts the
corresponding default element of JVM (for example,
java.util.Locale.getDefault() and java.util.TimeZone.getDefault()). The default
elements of JVM are determined by the settings of the operating system.
588 WebSphere Application Server Enterprise V5

overwrite invocation elements using the internationalization context API. To
continue propagating the context of the calling process, AMI servlets and AMI
EJBs have to use the API to transfer the caller context elements to the invocation
context.

Container-managed internationalization (CMI)
Under the CMI, the Internationalization service collaborates with the Web and
EJB containers to set the invocation internationalization context for the servlets
and EJBs. The service sets invocation context according to the container
internationalization attribute of the policy associated with a servlet (service
method) or an EJB business method.

The methods within CMI components can obtain elements of the invocation
context using the internationalization context API, but cannot set them. Any
attempt to set invocation context elements within CMI components results in a
java.lang.IllegalStateException.

Internationalization attribute
A CMI policy includes a container internationalization attribute that indicates
which internationalization context the container is to scope to an invocation. The
main field of the container internationalization attribute is the Run-as field. The
Run-as field specifies one of three types of invocation context that a container
can scope to a method. For the servlet service and EJB business methods, the
container constructs the invocation internationalization context according to the
Run-as field and associates this context to the current thread before delegating
to the method’s implementation. The invocation context types specifiable with the
Run-as field are following:

� Caller

The container invokes the method under the internationalization context of the
calling process. Select run as caller when you want the invocation to execute
under the invocation context of the calling process.

� Server

The container invokes the method under the default locale and time zone of
the JVM. Select run as server when you want the invocation to execute under
the invocation context of the JVM.

� Specified

The container invokes the method under the internationalization context
specified in the attributes. Select run as specified when you want the
invocation to execute under the custom invocation context specified in the
 Chapter 16. Internationalization (i18n) service 589

policy, then provide the custom context elements by completing the Locales
and Time zone ID fields:

– Locales field

The Locales field specifies an ordered list of locales that the container
scopes to an invocation. You can put one or more locales in this field. A
locale presents a specific geographical, cultural, or political region and
contains three fields:

• Language code

The language code is one of the lowercase, two-character codes
defined by ISO-639. However, the language code is not restricted to
ISO codes and is not a required field. A valid locale has to specify a
language code if it does not specify a country code.

• Country code

The country code is one of the uppercase, two-character codes defined
by ISO-3166. However, the country code is not restricted to ISO codes
and is not a required field. A valid locale has to specify a country code
if it does not specify a language code.

• Variant

The variant is a vender-specific code. The variant is not a required field
and serves only to supplement the language and country code files
according to application-specific or platform-specific requirements.

– Time zone ID field

The Time zone ID field specifies a shorthand identifier for a time zone that
the container scopes to an invocation. A time zone represents a temporal
offset and computes daylight savings information. A valid ID indicates any
time zone supported by the Java 2 SDK type, java.util.TimeZone.
Specifically, a valid ID is any of the IDs in the list of the time zone IDs
returned by method java.util.Timezone.getAvailableIds(), or a custom ID
having the form GMT[+|-]hh[[:]mm]. For example, America/Los_Angeles,
GMT-08:00 are valid time zone IDs.

By default, invocations of servlet service methods and EJB business methods
implicitly run as Caller.

Applicable settings
The applicable settings of the internationalization type depend on the component
type. The following list shows the applicable settings for each type of
components:

� The servlets, session beans and message-driven beans can be deployed as
AMI or CMI, but not both. CMI is the default.
590 WebSphere Application Server Enterprise V5

� The internationalization type of the entity beans is CMI and it cannot be
configured.

� The EJB client applications do not have an internationalization type setting,
but are implicitly AMI.

16.3 Development
In this section, we show you how to use the internationalization context API. To
develop the application that uses the internationalization context API, you have to
put the i18nctx.jar file in your classpath. This file is in the <WebSphere_root>/lib
directory.

16.3.1 The internationalization context API
The applications use the API to access and manage internationalization context.
Three interfaces are provided by the com.ibm.websphere.i18n.context package
for this purpose:

� com.ibm.websphere.i18n.context.UserInternationalization
� com.ibm.websphere.i18n.context.Internationalization
� com.ibm.websphere.i18n.context.InvocationInternationalization

The UserInternationalization interface
The UserInternationalization interface provides a factory for obtaining the
internationalization context API objects. These objects give access to the desired
type of an internationalization context (caller or invocation contexts). This
interface is shown in Example 16-1.

Example 16-1 The UserInternationalization interface

public interface UserInternationalization {
public Internationalization getCallerInternationalization();
public InvocationInternationalization getInvocationInternationalization();

}

The UserInternationalization interface defines two methods:

� Internationalization getCallerInternationalization()

This method returns an object implementing the Internationalization interface.
This interface allows read-only access to the caller context. If the service is
disabled, the method throws a java.lang.IllegalStateException.
 Chapter 16. Internationalization (i18n) service 591

� InvocationInternationalization getInvocationInternationalization()

This method returns an object implementing the
InvocationInternationalization interface. This interface allows read and write
access to the invocation context according to the internationalization context
management policies. If the service is disabled, the method throws a
java.lang.IllegalStateException.

The Internationalization interface
The Internationalization interface allows read-only access to the
internationalization context. This interface is shown in Example 16-2.

Example 16-2 Internationalization interface

public interface Internationalization {
public java.util.Locale[] getLocales();
public java.util.Locale getLocale();
public java.util.TimeZone getTimeZone();

}

The Internationalization interface provides three methods for read-only access to
the internationalization context elements:

� java.util.Locale[] getLocales()

This method returns the array of locales associated with the current thread. If
the array of locales is null, the method returns an array containing the default
locale of the process associated with the execution of this method. The
method is useful if the first locale in the array is not recognized or not
supported by the server. In this case, a different locale from the array could be
selected.

� java.util.Locale getLocale()

This method returns the first element from the array of locales associated with
the current thread. If the array of locales is null, the method returns the default
locale of the process associated with the execution of this method.

� java.util.TimeZone getTimeZone()

This method returns the java.util.SimpleTimeZone object associated with the
current thread. If the time zone is null, the method returns the default time
zone of the process associated with the execution of this method.

The InvocationInternationalization interface
The InvocationInternationalization interface allows read and write access to the
invocation internationalization context. Use this interface to read or modify the
invocation internationalization context. The server component can access the
592 WebSphere Application Server Enterprise V5

invocation internationalization context if its internationalization type is AMI. This
interface is shown in Example 16-3.

Example 16-3 The InvocationInternationalization interface

public interface InvocationInternationalization extends Internationalization {
public void setLocales(java.util.Locale[] locales);
public void setLocale(java.util.Locale locale);
public void setTimeZone(java.util.TimeZone timeZone);
public void setTimeZone(String timeZoneId);

}

Since the InvocationInternationalization interface extends the Internationalization
interface, all methods from the Internationalization interface are available in the
InvocationInternationalization interface. In addition, the
InvocationInternationalization interface defines four more methods:

� void setLocales(java.util.Locale[] locales)

This method sets the array of locales associated with the current thread to the
supplied array of locales. The supplied locale array can be null or have a
length greater than or equal to zero. When the supplied locale array is null or
has a length of zero, the Internationalization service sets the array of locales
to an array length of 1 containing the default locale of the process associated
with the execution of this method. Null entries can exist within the supplied
array of locale. However, on the remote method invocation, the
Internationalization service substitutes all null elements with the default locale
of the default locale of the process associated with the execution of this
method.

� void setLocale(java.util.Locale locale)

This method sets the array of locales associated with the current thread to an
array of length 1 containing the supplied locale. If the supplied locale is null,
the service sets the array of locales to an array of length 1 containing the
default locale of the process associated with the execution of this method.

� void setTimeZone(java.util.TimeZone timeZone)

This method sets the invocation time zone associated with the current thread
to the supplied time zone. If the supplied time zone is null or not an instance
or subclass of java.util.SimpleTimeZone, the service sets the time zone to the
default time zone of the process associated with the execution of this method.

� void setTimeZone(String timeZoneId)

This method sets the invocation time zone associated with the current thread
to java.util.SimpleTimeZone with the supplied time zone ID. The general
format for the time zone ID is either country/city or GMT[+|-]hh[[:]mm]. For
example, the time zone ID for the U.S. Pacific time zone is
 Chapter 16. Internationalization (i18n) service 593

America/Los_Angeles or GMT-08:00. If the supplied time zone ID is null or
unsupported, the Internationalization service sets the time zone to a time
zone having an ID of GMT and the default offset of the process is associated
with the execution of this method. The use of three-letter time zone IDs other
than GMT is deprecated. A list of supported time zone IDs can be obtained by
using the java.util.TimeZone.getAvailableIds() method. See the Java 2 SDK
API documentation for more information about the time zone IDs.

16.3.2 Using the Internationalization service
This section shows you how to use the Internationalization service by using a
sample application. This application consists one stateless session bean and
one EJB client. On the stateful session bean, we explain how to retrieve the
caller internationalization context. On the EJB client, we explain how to retrieve
and set the invocation internationalization context.

To use the internationalization context, we have to:

1. Bind to the Internationalization service.

2. Use the UserInternationalization interface to retrieve the API objects that
afford access to the desired internationalization context types.

3. Access the desired context type.

Once the context is accessed, we can use it with the time zone and
locale-sensitive operations.

Retrieving and Using the caller Internationalization context
Using the ejbCreate() method, the Internationalization service is bound. It is
looked up from the JNDI repository. Once the Internationalization service is
bound, we can retrieve the caller internationalization context. From the caller
internationalization context, we can retrieve the caller locale and time zone and
use them for the time zone and locale-sensitive operations. There is no need to
pass the locale and time zone as a parameter to the method. The sample codes
are shown in Example 16-4.

Example 16-4 Retrieving and using the caller internationalization context

package com.ibm.itso.i18n;

import java.text.*;
import java.util.*;
import javax.ejb.EJBException;
import javax.naming.*;
import com.ibm.websphere.i18n.context.*;

public class I18nHelloBean implements javax.ejb.SessionBean {
594 WebSphere Application Server Enterprise V5

private UserInternationalization i18nService = null;
.....
public void ejbCreate() throws javax.ejb.CreateException {

try {
InitialContext ctx = new InitialContext();
i18nService =

(UserInternationalization) ctx.lookup(
"java:comp/websphere/UserInternationalization");

} catch (NamingException ne) {
throw new EJBException(ne);

}
}
.....
public String greeting() {

Internationalization callerI18n =
i18nService.getCallerInternationalization();

Locale callerLocale = callerI18n.getLocale();
TimeZone callerTimeZone = callerI18n.getTimeZone();
DateFormat df =

DateFormat.getDateTimeInstance(
DateFormat.FULL, DateFormat.FULL, callerLocale);

df.setTimeZone(callerTimeZone);
ResourceBundle resource =

ResourceBundle.getBundle("com.ibm.itso.i18n.myResource",
callerLocale);

Object[] obj = { df.format(new Date())};
return new MessageFormat(resource.getString("greetStr")).format(obj);

}
}

Retrieving and setting invocation internationalization context
The Internationalization service is bound to the JNDI. Then the invocation
internationalization context is retrieved from the UserInternationalization
interface. On the EJB client, we can set the locale and time zone to the
invocation internationalization context. This context is passed to the server-side
components and retrieved as the caller internationalization context. The sample
code is shown in Example 16-5.

Example 16-5 Retrieving and setting the invocation internationalization context

package com.ibm.itso.i18n;

import java.util.*;
import javax.naming.InitialContext;
import javax.rmi.PortableRemoteObject;
import com.ibm.websphere.i18n.context.*;

public class I18nHelloClient {
 Chapter 16. Internationalization (i18n) service 595

....
public void callGreeting(Locale locale, TimeZone timeZone) {

try {
InitialContext ctx = new InitialContext();
UserInternationalization i18nService =

(UserInternationalization) ctx.lookup(
"java:comp/websphere/UserInternationalization");

InvocationInternationalization invI18n =
i18nService.getInvocationInternationalization();

invI18n.setLocale(locale);
invI18n.setTimeZone(timeZone);

I18nHelloHome home =
(I18nHelloHome) PortableRemoteObject.narrow(

ctx.lookup("java:comp/env/ejb/I18nHello"),
I18nHelloHome.class);

System.out.println(home.create().greeting());
} catch (Exception ex) {

ex.printStackTrace();
}

}
}

16.3.3 Enhanced Internationalization Service
The enhanced Internationalization service extends the Internationalization
service to support the internationalization on the Web Services applications by
using the same concepts. It is provided as the technology preview.

The enhanced service transparently propagates internationalization context over
the requests originating from the J2EE Web Services clients. On an outgoing
Web Services request, the service creates a SOAP header block containing the
invocation context associated to the current thread and this SOAP representation
is then inserted into the outgoing request.

When a request arrives at the server side, the service scopes the propagated
internationalization context, referred to as the caller context, to the invocation of
the stateless session bean enabled as a Web service. It also scopes an
invocation context to the invocation in case the internationalization context
management policies are CMI and run as Caller.

To perform the localizations, Web services-enabled EJBs will obtain the elements
of either context using the internationalization context API and utilize them within
locale- or time zone-sensitive operations.
596 WebSphere Application Server Enterprise V5

The Internationalization service is bound to the JNDI. Then invocation
internationalization context is retrieved from the UserInternationalization
interface. On the Web Services client, we can set the locale and time zone to the
invocation internationalization context. This context is passed to the server side
components and retrieved as the caller internationalization context. The sample
code is shown in Figure 16-6.

Example 16-6 The Web Services client using the enhanced Internationalization service

package com.ibm.itso.i18n;

import java.util*;
import javax.naming.InitialContext;
import javax.rmi.PortableRemoteObject;
import javax.xml.namespace.QName;
import com.ibm.websphere.i18n.context.*;

public class I18nHelloServiceClient {
........
public void callGreeting(Locale locale, TimeZone timeZone) {

try {
InitialContext ctx = new InitialContext();
UserInternationalization i18nService =

(UserInternationalization) ctx.lookup(
"java:comp/websphere/UserInternationalization");

InvocationInternationalization invI18n =
i18nService.getInvocationInternationalization();

invI18n.setLocale(locale);
invI18n.setTimeZone(timeZone);

I18nHelloSEIService service =
(I18nHelloSEIService) ctx.lookup(

"java:comp/env/service/I18nHelloSEIService");
QName portQName =

new QName("http://i18n.itso.ibm.com", "I18nHelloSEI");
I18nHelloSEI port =

(I18nHelloSEI) service.getPort(portQName, I18nHelloSEI.class);

System.out.println(port.greeting());
} catch (Exception ex) {

ex.printStackTrace();
}

}
}

To set up the enhanced Internationalization service, see “Install Enhanced
Internationalization Service Technology Preview” on page 624.
 Chapter 16. Internationalization (i18n) service 597

16.4 Unit test environment
There is no tooling support and no configuration support in WebSphere Studio
Application Developer Integration Edition. By default the Internationalization
service is disabled. If you are planning to test the Internationalization service on
the unit test environment, you have to enable it. The steps to enable it are as
follows:

1. Open the server configuration.

2. Switch to the Configuration tab and make sure that the Administrative
Console is enabled.

3. Start the test server, then right-click the server and select Run
administrative console.

Figure 16-1 Run the Administrative Console on WebSphere Studio IE

4. When the Administrative Console comes up, follow the steps in 16.8,
“Configuration” on page 622.

5. Import the SchedulerCalendars.ear from the
<WebSphere_Studio_IE_root>\runtimes\ee_v5\installableApps directory. Use
the project name: SchedulerCalendars.

6. Open the properties for the Calendar EJB project and add the
scheduler-client.jar to the Java Build Path. The library is under the
WebSphere Enterprise \lib directory. You can use the WAS_EE_V5 variable.

Note: Use this technology preview if you want to gain experience with the
latest standards or if you are beginning a development project that will not be
deployed until full support is available.
598 WebSphere Application Server Enterprise V5

7. Select the Calendars EJB project in the navigator view, then select Select
Project -> Rebuild Project from the menu.

8. Add the application to the server configuration. You will have to stop the test
server to perform this step.

16.5 Assembly
You can specify the internationalization type and attribute by using the
Application Assembly Tool. This section shows you how to set them. These steps
are optional. If you don’t set them, the default settings are CMI and run as Caller.

16.5.1 Specify the internationalization type
The servlets, session bean, and message-driven bean have an
internationalization type setting that specifies whether internationalization
context is managed by the application component or by its hosting J2EE
container during invocation of their respective life cycles and business methods.

Setting the internationalization type for EJB
The steps to set the internationalization type for an EJB are the following:

1. Start the Application Assembly Tool.

2. Open your J2EE archive file.

3. Select the application name and click EJB Modules. Select the EJB module
name and click [Session Beans | Message Driven Beans] and select the
EJB name in the left-hand pane.

4. Click the WAS Enterprise tab in the right-hand pane.

5. Select Container for CMI or Application for AMI in the Internationalization
Type field.
 Chapter 16. Internationalization (i18n) service 599

Figure 16-2 Setting internationalization type for EJB

6. Click Apply.

Setting the internationalization type for servlet
The steps to set the internationalization type for a servlet are as follows:

1. Start the Application Assembly Tool.

2. Open your J2EE archive file.

3. Select the application name and click Web Modules. Select the Web module
name and click Web Components and select the Servlet name in the
left-hand pane.

4. Click the WAS Enterprise tab in the right-hand pane.

5. Select Container for CMI or Application for AMI in the Internationalization
Type field.
600 WebSphere Application Server Enterprise V5

Figure 16-3 Setting the internationalization type for servlet

6. Click Apply.

16.5.2 Specify the container internationalization attribute
You can specify the container internationalization attribute for the CMI servlets
and CMI EJBs. The applicable value of internationalization attribute is Caller,
Server or Specified. If the value is Specified, the custom internationalization
attributes can be specified.

Named container internationalization attributes can be associated with sets of
servlets or with sets of EJB business methods.

Setting the internationalization attribute for EJBs
The steps to set the internationalization attribute for EJBs are the following:

1. Start the Application Assembly Tool.

2. Open your J2EE archive file.

3. Select the application name and click EJB Modules. Select the EJB modules
name and click Internationalization in the left-hand pane.

4. To configure a new attribute, right-click Internationalization and select New.
Otherwise, skip to step 5.
 Chapter 16. Internationalization (i18n) service 601

a. On the New Container Internationalization Attribute window, enter a
description that uniquely identifies the policy in the Description field.

b. Click Add by Methods. On the All Methods window, select one or more
methods to which the attribute will apply and click OK to exit the window.
The selected methods will appear in the Methods list.

c. Click OK.

5. Select a named container internationalization attribute from the Description
list. The fields of the selected attribute are displayed.

6. If desired, re-enter a description that uniquely identifies this attribute.

7. Click Add by Methods. On the All Methods window, select one or more
methods to which the attribute will apply and click OK to exit the window. The
selected methods will appear in the Methods list.

8. Select Caller, Server or Specified in the Run-as field.

If you select Specified, follow the steps below:

a. Enter a description of the specified context. This field is optional.

b. Complete the Timezone field:

i. Enter a description of this time zone.

ii. Enter the ID of this time zone. For more detais on the time zone ID, see
“Internationalization attribute” on page 589.

c. Complete the Locales field:

i. Click Add.

ii. On the Add Locales window, enter a description, the language code,
the country code and any variant. For details on locale, see
“Internationalization attribute” on page 589.

iii. Click OK to exit the window.
602 WebSphere Application Server Enterprise V5

Figure 16-4 Setting the internationalization attribute for EJB

9. Click Apply.

Setting the internationalization attribute for servlets
The steps to set the internationalization attribute for servlets are the following:

1. Start the Application Assembly Tool.

2. Open your J2EE archive file.

3. Select the application name and click Web Modules. Select the Web
modules name and click Internationalization in the left-hand pane.

4. To configure a new attribute, right-click Internationalization and select New.
Otherwise, skip to step 5.

a. On the New Container Internationalization Attribute window, enter a
description that uniquely identifies the policy in the Description field.

b. Click Add by Web Components. On the Add Servlets window, select one
or more servlets to which the attribute will apply and click OK to exit the
window. The selected servlets will appear in the Web Components list.

c. Click OK.

5. Select a named container internationalization attribute from the Description
list. The fields of the selected attribute are displayed.

6. If desired, re-enter a description that uniquely identifies this attribute.
 Chapter 16. Internationalization (i18n) service 603

7. Click Add by Web Components. On the Add Servlets window, select one or
more servlets to which the attribute will apply and click OK to exit the window.
The selected servlets will appear in the Web Components list.

8. Select Caller, Server or Specified in the Run-as field.

If you select Specified, follow the steps below:

a. Enter a description of the specified context. This field is optional.

b. Complete the Timezone field:

i. Enter a description of this time zone.

ii. Enter the ID of this time zone. For details on the time zone ID, see
“Internationalization attribute” on page 589.

c. Complete the Locales field:

i. Click Add.

ii. On the Add Locales window, enter a description, the language code,
the country code and any variant. For details on the locale, see
“Internationalization attribute” on page 589.

iii. Click OK to exit the window.

Figure 16-5 Setting the internationalization attribute for servlet

9. Click Apply.
604 WebSphere Application Server Enterprise V5

16.6 Sample scenario for the EJB client
In the following text we demonstrate the use of i18n on our sample scenario. This
sample shows how the Internationalization service works between EJBs and
EJB clients.

16.6.1 Description
Briefly, we will schedule a task and it will be scheduled differently according to
the time zone of the client that schedules a task. In this scenario we want to
scheduler a task remotely.

Let’s say that the task is an update of stock values and we want to update the
values before stock trading begins.

Now, let’s say this is a worldwide application and that we have a stock market in
Frankfurt that opens at 9 AM local time and that we have a stock market in New
York that opens at 8 AM local time. And, we want to use the same stand-alone
client to schedule a task for updating the stock values, and we want to use the
same commands or procedure to do it.

So, the internationalization context from the client will be propagated right to the
scheduler proxy, which will decide which calendar to use for scheduling the task
according to the client’s time zone.

The following parts are involved:

� SchedulerClient

This is a simple stand-alone client that runs in J2EE client container. We can
use it for schedule tasks, list tasks, delete tasks and cancel tasks on a local or
remote WebSphere server. As an argument, it also includes the time zone;
thus we can simulate that a client is in a different time zone.

� SchedulerProxy

SchedulerProxy is a stateless EJB that serves as a proxy between the
scheduler client and Scheduler service.

When scheduling a task it uses a user-defined calendar.

� ACompanyCalendar

ACompanyCalendar is a user-defined scheduler calendar. What is important
here is that its name identifier is the client time zone ID. So, we will use
different calendars according to the client time zone ID.
 Chapter 16. Internationalization (i18n) service 605

16.6.2 Prerequisites
Before starting development, make sure that the following prerequisites are met:

� The scheduled task we use here is ACompanyTask handler, which was
already developed for sample scenarios in Chapter 13, “Scheduler service”
on page 509. It also uses some Java proxy classes for the Catalog process.
For this sample scenario, it is really not necessary to have a “real task”
defined. Therefore, if you skipped the scheduler sample scenario, you can
just create a simple TaskHandler EJB with an empty process() method and
use it as a task handler when defining and scheduling a task.

However, if you want to use our ACompanyTask, make sure that you
successfully use the scheduler sample scenario together with all its
prerequisites.

� For testing our sample with WebSphere Studio IE, there has to be an instance
of WebSphere V5.0 Enterprise server created. For details refer to
“Configuring the test environment” on page 670.

� The i18nctx.jar file has to be added to the Java build path of the EJB module
that will contain the Startup Bean. This will be the ACompanyEJB module. If
you are using WebSphere Studio IE, select this module, then right-click
Properties, and go to the Java Build Path tab. Then choose AddVariable,
select WAS_EE_V5, go to the lib directory, and choose startupbean.jar.
Apply the changes.

� This sample requires the scheduler calendar services. The test server has to
run the SchedulerCalendar.ear application. For more information, refer to
16.4, “Unit test environment” on page 598.

16.6.3 Develop
In this section, we will create and add the code for the sample scenario.

Create application client project
First, you have to create an application client project, as follows:

1. In WebSphere Studio IE, select File -> New -> Application Client Project.
Then select Create J2EE 1.3 Application client project. Enter
ACompanyClient as the project name. In the Enterprise application project
field, select Existing and select ACompany for the existing project, and click

Note: For the i18n demonstration, it is not necessary to define the
ACompanyTask handler. You can use any task handler bean just as a
placeholder.
606 WebSphere Application Server Enterprise V5

Next. On the next window, check ACompanyEJB.jar in the Available
dependent JARs field. Click Finish. The new application client project is
created.

2. In the J2EE Navigator view, right-click the newly created ACompanyClient
project. Select Properties and you will get the Properties for ObjectPtest
window. Go to the Java Build Path and select the Libraries tab.

3. In the Libraries tab, choose AddVariable, select WAS_EE_V5, double-click it,
go to lib directory, and choose i18nctx.jar. Apply the changes.

Create SchedulerClient application client
To add the main class into application client project, do the following:

1. Still using the J2EE navigator view, in ObjectPtest project, select
appClientModule, right-click it and select New -> Class. In the New Java
Class window enter SchedulerClient as the value for the Name property.
Also, enter com.acompany.client as the value for the Package property.
Leave all the other properties at their default values. Click Finish.

2. Now, copy the code shown in Figure 16-7 into the SchedulerClient.java class.

Example 16-7 SchedulerClient.java

package com.acompany.client;

import javax.naming.InitialContext;
import javax.rmi.PortableRemoteObject;
import com.acompany.ejbs.SchedulerProxy;
import com.acompany.ejbs.SchedulerProxyHome;
import com.ibm.websphere.i18n.context.InvocationInternationalization;
import com.ibm.websphere.i18n.context.UserInternationalization;

public class SchedulerClient {

public static void main(String[] args) {

SchedulerClient schedulerClient = new SchedulerClient();

switch (args.length)
{
case 3:
case 4:

schedulerClient.callTask(Integer.parseInt(args[0]), args[1], args[2], args[3]);
break;

case 2:
if (args[0].equalsIgnoreCase("cancelTask"))
{

schedulerClient.cancelTask(args[1], false);
break;
 Chapter 16. Internationalization (i18n) service 607

}
else if (args[0].equalsIgnoreCase("deleteTask"))
{

schedulerClient.cancelTask(args[1], true);
break;

}
if (args[0].equalsIgnoreCase("listTask"))
{

schedulerClient.listTask(args[1]);
break;

}
default:

System.out.println("SchedulerClient repeat taskName deltaInterval [timezoneID]");
System.out.println("SchedulerClient cancelTask taskId");
System.out.println("SchedulerClient deleteTask taskId");
System.out.println("SchedulerClient listTask taskId");
System.exit(-1);

}
System.exit(0);

}

public void callTask(

int repeat,
String taskName,
String deltaInterval,
String timeZoneId) {
try {

InitialContext ctx = new InitialContext();
SchedulerProxy scheduler;
SchedulerProxyHome home =

(SchedulerProxyHome) PortableRemoteObject.narrow(
ctx.lookup("java:comp/env/SchedulerProxy"),SchedulerProxyHome.class);

scheduler = home.create();

if (timeZoneId != null) {
UserInternationalization i18nService =

(UserInternationalization) ctx.lookup(
"java:comp/websphere/UserInternationalization");

InvocationInternationalization invI18n =
i18nService.getInvocationInternationalization();

invI18n.setTimeZone(timeZoneId);
}
scheduler.scheduleTask(repeat, taskName, deltaInterval);

} catch (Exception ex) {
ex.printStackTrace();

}
}

608 WebSphere Application Server Enterprise V5

public void cancelTask(

String taskId,
boolean purge){
try {

InitialContext ctx = new InitialContext();
SchedulerProxy scheduler;
SchedulerProxyHome home =

(SchedulerProxyHome) PortableRemoteObject.narrow(
ctx.lookup("java:comp/env/ejb/SchedulerProxyHome"),
SchedulerProxyHome.class);

scheduler = home.create();

scheduler.cancelTask(taskId, purge);
} catch (Exception ex) {

ex.printStackTrace();
}

}

public void listTask(

String taskId)
{
try {

InitialContext ctx = new InitialContext();
SchedulerProxy scheduler;
SchedulerProxyHome home =

(SchedulerProxyHome) PortableRemoteObject.narrow(
ctx.lookup("java:comp/env/ejb/SchedulerProxyHome"),
SchedulerProxyHome.class);

scheduler = home.create();

scheduler.listTask(taskId);
} catch (Exception ex) {

ex.printStackTrace();
}

}
}

In the code, you can see that in our stand-alone Java client we have four main
methods: scheduleTask(), cancelTask(), deleteTask(), listTask(). What the client
does is to find the SchedulerProxy EJB and then calls its remote method passing
the right arguments.

Regarding i18n service, everything is done in the callTask() method. First we get
the service via a JNDI lookup and then we get the invocation internationalization
context. Then we set its time zone to the time zone specified by command-line
arguments. Thus by setting the client time zone, we simulate different time zones
 Chapter 16. Internationalization (i18n) service 609

in which a client might be located. In a real-world application, you certainly won’t
do that since you usually want to set it to the system default.

Add a resource environment reference
Since a local reference to the SchedulerProxy EJB is used in
SchedulerClient.java, you must add a resource environment reference, as
follows:

1. Open the Client Deployment Descriptor of the ACompanyClient project. Go to
References tab and click Add.

2. Select EJB reference and click Next. Now, enter SchedulerProxy in the
Name field. Then on the Link: click Browse and in the Link reference
selection window, select the SchedulerProxy bean under the ACompany
project, and click OK. Click Finish.

3. Select the created resource environment reference and in WebSphere
Bindings in the JDNI name field, make sure that
ejb/com/acompany/ejbs/SchedulerProxyHome is entered.

Create SchedulerProxy bean
In the following section, we describe how to create SchedulerProxy bean and the
necessary environment.

Create the bean
To create the bean, do as follows:

1. In the J2EE hierarchy window, go to EJB Modules and right-click the
ACompanyEJB module. Select New -> Enterprise Bean.

2. In the first Enterprise Bean Creation window, make sure that ACompanyEJB
is selected for the project, and click Next.

3. Configure the first Enterprise Bean Creation window as shown in Figure 16-6
on page 611. Click Next.
610 WebSphere Application Server Enterprise V5

Figure 16-6 Creating SchedulerProxy bean, first window

4. Configure the second Enterprise Bean Creation window as shown in
Figure 16-7. Click Finish.

Figure 16-7 Creating SchedulerProxy bean, second window
 Chapter 16. Internationalization (i18n) service 611

Add resource environment reference
Since we use local EJB references for the ACompanyCalendar bean, for the
ACompanyTask bean and for the Scheduler service in the Scheduler proxy bean,
you have to add resource references to the Deployment Descriptor of EJB
module, as follows:

1. Open the Deployment Descriptor of the ACompanyEJB project by
double-clicking ACompanyEJB in the EJB modules directory using the J2EE
Hierarchy view. Go to the References tab, select the SchedulerProxy bean
and click Add.

2. Select EJB reference and click Next. Now, enter LocalCalendarReference in
the Name field. Then on the Link: click Browse and in the Link reference
selection window, select the ACompanyCalendar bean under the ACompany
project, and click OK. Click Finish.

3. Select the created resource environment reference and in WebSphere
Bindings in the JNDI name field, make sure that
ejb/com/acompany/ejbs/ACompanyCalendarHome is entered.

4. Again select the SchedulerProxy bean and click Add. Select EJB reference
and click Next. Now, enter LocalTaskHandlerReference in the Name field.
Then on the Link: click Browse and in the Link reference selection window,
select the ACompanyTask bean under the ACompany project, and click OK.
Click Finish.

5. Select the created resource environment reference and in WebSphere
Bindings in the JDNI name field, make sure that
ejb/com/acompany/ejbs/ACompanyTaskHome is entered.

6. Again select the SchedulerProxy bean and click Add. Select Resource
environment reference and click Next. Now, enter ACompanyScheduler in the
Name field, and enter com.ibm.websphere.scheduler.Scheduler in the Type
field. Click Finish.

7. Select the created resource environment reference and in WebSphere
Bindings in the JNDI name field, enter ACompanyScheduler for the value. Save
the changes.

Adding code for the SchedulerProxy remote interface
Open the SchedulerProxy.java file and copy the code shown in Example 16-8 on
page 613.

Note: If you use your own task handler bean, you have to modify steps 4
and 5 accordingly.
612 WebSphere Application Server Enterprise V5

Example 16-8 SchedulerProxy.java

package com.acompany.ejbs;
/**
 * Remote interface for Enterprise Bean: SchedulerProxy
 */
public interface SchedulerProxy extends javax.ejb.EJBObject
{

public boolean scheduleTask(int repeats, String taskName, String deltaInterval) throws
java.rmi.RemoteException;

public void cancelTask(String taskId, boolean purge) throws java.rmi.RemoteException;
public void listTask(String taskId) throws java.rmi.RemoteException;

}

Adding code for the SchedulerProxy bean
Open theSchedulerProxyBean.java and copy the code shown in Example 16-9.

Example 16-9 SchedulerProxyBean.java

package com.acompany.ejbs;
import javax.naming.InitialContext;
import javax.rmi.PortableRemoteObject;
import com.ibm.websphere.i18n.context.Internationalization;
import com.ibm.websphere.i18n.context.UserInternationalization;
import com.ibm.websphere.scheduler.BeanTaskInfo;
import com.ibm.websphere.scheduler.Scheduler;
import com.ibm.websphere.scheduler.TaskHandlerHome;
import com.ibm.websphere.scheduler.TaskStatus;

public class SchedulerProxyBean implements javax.ejb.SessionBean {
private javax.ejb.SessionContext mySessionCtx;
/**
 * getSessionContext
 */

private Scheduler scheduler = null;
private InitialContext initialContext = null;
private UserInternationalization i18nService = null;

public javax.ejb.SessionContext getSessionContext() {
return mySessionCtx;

}
/**
 * setSessionContext
 */
public void setSessionContext(javax.ejb.SessionContext ctx) {

mySessionCtx = ctx;
}

 Chapter 16. Internationalization (i18n) service 613

/**
 * ejbCreate
 */
public void ejbCreate() throws javax.ejb.CreateException {

try {
initialContext = new InitialContext();
System.out.println("SchedulerProxyBean.scheduleTask: Getting the Scheduler");
scheduler = (Scheduler) initialContext.lookup("java:comp/env/ACompanyScheduler");
//Get the i18Service
i18nService = (UserInternationalization)

initialContext.lookup("java:comp/websphere/UserInternationalization");
} catch (javax.naming.NamingException e) {

System.out.println("SchedulerProxyBean: lookup failed");
e.printStackTrace();

}

}
/**
 * ejbActivate
 */
public void ejbActivate() {
}
/**
 * ejbPassivate
 */
public void ejbPassivate() {
}
/**
 * ejbRemove
 */
public void ejbRemove() {
}

public void cancelTask(String taskId, boolean purge) {
try {

scheduler.cancel(taskId, purge);
} catch (Exception e) {

System.out.println("SchedulerProxyBean: cancelTask failed");
e.printStackTrace();

}
};

public void listTask(String taskId) {
TaskStatus status;
try {

status = scheduler.getStatus(taskId);
System.out.println("SchedulerProxyBean.listTask: Task ID is: " + status.getTaskId());
System.out.println("SchedulerProxyBean.listTask: The name of the Task is: " +

status.getName());
614 WebSphere Application Server Enterprise V5

System.out.println("SchedulerProxyBean.listTask: Task created " +
status.getTimeCreated());

System.out.println("SchedulerProxyBean.listTask: Task status is: " +
status.getStatus());

System.out.println("SchedulerProxyBean.listTask: Next fire time " +
status.getNextFireTime());

} catch (Exception e) {
System.out.println("SchedulerProxyBean: listTask failed");
e.printStackTrace();

}
};

public boolean scheduleTask(int repeats, String taskName, String deltaInterval) {
return (scheduleTaskInt(0, repeats, 0, taskName, deltaInterval));

};

private boolean scheduleTaskInt(long startInterval, int repeats, long repeatInterval,
String taskName, String deltaInterval) {

boolean result = false;
//UserInternationalization i18nService = null;

try {
//Get Time zone ID - ISO 3166
Internationalization clientI18n = i18nService.getCallerInternationalization();
String clientTimeZoneID = clientI18n.getTimeZone().getID();

// Get the task handler which will be called when the task runs.
System.out.println("SchedulerProxyBean.scheduleTask: Getting the task handler");

Object taskHandlerObj =
initialContext.lookup("java:comp/env/LocalTaskHandlerReference");

TaskHandlerHome taskHandlerHome = (TaskHandlerHome)
PortableRemoteObject.narrow(taskHandlerObj, TaskHandlerHome.class);

// Create our Schedule Task Info for our ACompanyTask task handler
System.out.println("SchedulerProxyBean.scheduleTask: Creating the task");

BeanTaskInfo taskInfo = scheduler.createBeanTaskInfo();
taskInfo.setTaskHandler(taskHandlerHome);
taskInfo.setStartTimeInterval(startInterval + "minutes");

if (deltaInterval.length() != 0)
taskInfo.setRepeatInterval(deltaInterval);

else
taskInfo.setRepeatInterval(repeatInterval + "minutes");

taskInfo.setNumberOfRepeats(repeats);
taskInfo.setName(taskName);
 Chapter 16. Internationalization (i18n) service 615

//set calendar bean and specify calendar identifer according to client's time zone
id, if not CET the default calendar will be used

System.out.println("SchedulerProxyBean.scheduleTask: clientTimeZone =" +
clientTimeZoneID);

taskInfo.setUserCalendar("java:comp/env/LocalCalendarReference", clientTimeZoneID);

//set the name of the task which is associated to a TaskID
TaskStatus status = scheduler.create(taskInfo);

System.out.println("SchedulerProxyBean.scheduleTask: Task submitted");
System.out.println("SchedulerProxyBean.scheduleTask: Task ID is: " +

status.getTaskId());
System.out.println("SchedulerProxyBean.scheduleTask: The name of the Task is: " +

status.getName());
System.out.println("SchedulerProxyBean.scheduleTask: Task status is: " +

status.getStatus());
result = true;

} catch (Exception e) {
System.out.println("SchedulerProxyBean.scheduleTask: failed");
e.printStackTrace();

}
return (result);

}
}

As you can see in the code on SchedulerProxy’s creation in ejbCreate() method,
we do a lookup for the Scheduler service and the i18n service.

The main method is schedulerTaskInt(). Here we get the client’s
internationalization context and then specify the calendar that will be used with
the scheduled task according to the client internationalization context. In our
case, our calendar name is “Europe/Brussels” . Since the name is also used to
identify time zone in the internationalization context, we just pass the client’s time
zone ID to our user-defined calendar bean as the calendar name.

We then schedule the task. If you are more interested in scheduling procedures,
they are the same as used with Scheduler sample scenario. See “Sample
scenario” on page 517.

When the Scheduler service schedules a task, it calls applyDelta() method of the
calendar bean specified for the task. In our case, we used our calendar bean. It
then determines how to schedule the task according to the client time zone. For
details about the calendar, see “User-defined calendar” on page 522.
616 WebSphere Application Server Enterprise V5

Use the application client
Finally you can build the project and test the client. We will export the project into
the EAR file and use the launchClient command to run the project inthe J2EE
client container. Follow these steps:

1. Select the ACompanyClient project, and from the menu bar select Project ->
Rebuild Project. Click Export, select the EAR file and click Next. Select
ACompany as a project you want to export. Enter the file name to which you
want to export the project. We entered C:\ACompany.ear. Click Finish, and
check if the project was exported to where you specified.

2. In Windows, open a Command Prompt window. If you don’t have
launchClient.bat in your system path, move to the location where it is. You can
use the one that comes with WebSphere Studio IE test environment. In this
case it is in the <WebSphere_Studio_root>\runtimes\ee_v5\bin directory. Or if
you have WebSphere V5.0 Enterprise installed, you can use its launchClient.
In that case, it is in the <WebSphere_root>\bin directory.

3. Make sure that the WebSphere Application test server is running.

4. SchedulerClient recognizes one of the following syntax forms:

– SchedulerClient repeat taskName deltaInterval timezoneID

This form is used for scheduling task. It takes the following arguments:

repeat How many times the scheduled task will repeat.

deltaInterval The time interval when the task will be scheduled. For the
this demonstration of the i18n service, you have to use the
beginTrade value as the deltaInterval.

timezoneID The time zone ID under which the client will “pretend” to be
running. For the demonstration of the i18n service, you can
use “Europe/Brussels” as the value of timezoneID.

– SchedulerClient cancelTask taskId

This form is used for canceling tasks. You simply specify the ID of the task
you want to cancel.

– SchedulerClient deleteTask taskId

This form is used for deleting tasks. You simply specify the ID of the task
you want to delete.

– SchedulerClient listTask taskId

This form is used for listing task information. You simply specify the ID of
the task you want to see status.

5. Here is an example how to use our client:

launchClient C:\ACompany.ear -CCjar=ACompanyClient.jar
-CCclasspath="C:\program files\websphere\appserver\lib\i18nctx.jar"
 Chapter 16. Internationalization (i18n) service 617

-CCBootstrapHost=localhost -CCBootstrapPort=2809 -CCverbose=true
SchedulerClient 1 ATaskName beginTrade Europe\Brussels

where BootstrapPort and BootstrapHost are the bootstrap port and the host
name or IP of the WebSphere Application Server on which you will run the
client. In our case, this is WebSphere Studio IE test environment server.
Check the bootstrap port in your configuration.

This command will schedule a task. Give it a name (ATaskName), and specify
1 repetition. It will also set the Europe\Brussels calendar to “begin trade”,
which means it will schedule the update task to happen Mon-Fri at 8AM, the
beginning of the trading day.

Another example would be:

launchClient C:\ACompany.ear -CCjar=ACompanyClient.jar
-CCclasspath="C:\program files\websphere\appserver\lib\i18nctx.jar"
-CCBootstrapHost=localhost -CCBootstrapPort=2809 -CCverbose=true
SchedulerClient 1 ATaskName beginTrade Pacific/Honolulu

In this case a different calendar will take effect and as a consequence, the
task will be scheduled to happen Mon-Fri at 9AM.

16.7 Sample scenario for the Web client
In this section, we describe how the Internationalization service works in the
sample scenarios. This sample shows you how the Internationalization service
works for the Web clients, such as Web browsers.

Users prefer user interfaces that are localized for their language, and many Web
sites provide the localized user interfaces. The preferred languages are usually a
part of the configuration of the Web browser. In this section, we show you how to
provide the localized Web UI by using the Internationalization service. To access
to the localized UI, follow these steps:

1. Invoke a Web browser and open the following page:

http://<your server name>:<your server port>/approval/index.jsp

You will see the UI where the local language is English.
618 WebSphere Application Server Enterprise V5

Figure 16-8 The default UI

2. Add Korean and Japanese to the language setting of the Web browser. For
example, click Tools -> Internet Options -> Languages if you are using
Microsoft® Internet Explorer.

3. Access the same page again. This time, you will see the UI where the
language is Japanese.

Figure 16-9 The Japanese UI

In this application, the default UI is in English. If no languages are specified, the
default English UI appears. In addition, a Japanese UI is provided, but the
 Chapter 16. Internationalization (i18n) service 619

Korean UI is not. Therefore, when the user specifies Korean and Japanese as
the preferred languages, the Japanese UI will be displayed even if the priority of
the Korean language is higher than Japanese.

16.7.1 Implementation details
When the index.jsp is accessed, this JSP looks for the localized page by using
I18nUtils and forwards the request to the page.

The Java source codes, JSPs, and the Deployment Descriptors are in the
ACompanyApprovalWeb project. To compile this project, the i18nctx.jar has to be
in your classpath, and asyncbeans.jar and wsexception.jar also have to be in
your classpath, because this project has a dependency on Asynchronous Beans.

I18nUtils
When the instance of I18nUtils is created, UserInternationalization is looked up
from the JNDI repository and kept for future use.

In the getLocalizedFileName method, the user’s preferred languages are
retrieved as the caller locales from the internationalization context. Then it
determines the file name from the specified base name, specified extension and
one of the locales, and checks if the file exists. For example, when the base
name is “/query”, the extension is “.html” and the locales are Korean(ko) and
Japanese(ja), it looks for “/query_ko.html” and “/query_ja.html” as the localized
files. If the file exists, it returns the file name. If no files exist, it returns the default
file name, which is the base name plus the extension.

Example 16-10 I18nUtils

package com.acompany.approval;

import java.io.File;
import java.util.Locale;
import javax.naming.*;
import javax.servlet.ServletContext;
import com.ibm.websphere.*;

public class I18nUtils {
private UserInternationalization i18nService = null;
......
public I18nUtils() {

try {
InitialContext ctx = new InitialContext();
i18nService =

(UserInternationalization) ctx.lookup(
"java:comp/websphere/UserInternationalization");
620 WebSphere Application Server Enterprise V5

} catch (NamingException ne) {
ne.printStackTrace();

}
}

public String getLocalizedFileName(
String baseName,
String extension,
ServletContext context) {
String resultFile = null;
Internationalization callerI18n =

i18nService.getCallerInternationalization();
Locale[] locales = callerI18n.getLocales();

for (int i = 0; i < locales.length; i++) {
String fileName = baseName;
String language = locales[i].getLanguage();
if (language != null && language.length() != 0) {

fileName = fileName + "_" + language;
String country = locales[i].getCountry();
if (country != null && country.length() != 0) {

fileName = fileName + "_" + country;
}

}
fileName = fileName + extension;
String path = context.getRealPath(fileName);
File file = new File(path);
if (file.exists()) {

return fileName;
}

}
return baseName + extension;

}
}

16.7.2 Configuration and requirements
To run this application, you need to have an installation of the WebSphere
Enterprise Version 5 configured with the Additional Enterprise Extensions option.
After you install WebSphere Enterprise Version 5, you must configure it to start
up the Internationalization service.
 Chapter 16. Internationalization (i18n) service 621

16.8 Configuration
The default setting of the Internationalization service is disabled. If you are
planning to use this service, you must enable it. To enable the
Internationalization service, do the following:

1. Start the WebSphere Administrative Console, then log on.

2. Click Servers -> Application Servers.

3. Select the server name.

4. Click Internationalization Service in the Additional Properties.

5. Check Startup and click Apply.

Figure 16-10 Enable the Internationalization service on Administrative Console

6. Save the configuration and restart the server.

You can also enable the Internationalization service by using the wsadmin
command. Enter the following commands to wsadmin and restart the server:

Example 16-11 Enable the Internationalization service by wsadmin

set x [$AdminConfig list I18NService]
$AdminConfig modify $x { { enable true } }
$AdminConfig save
exit
622 WebSphere Application Server Enterprise V5

16.9 Deployment
There are no settings at deployment time. If you need to set the
internationalization type and attributes, use the Application Assembly Tool. For
more details, see “Assembly” on page 599.

16.10 Problem determination and troubleshooting
This section shows you the problem determination steps. First, we show the
possible reasons for some exceptions and the solutions:

� javax.naming.NameNotFoundException

If the Internationalization service does not properly initialize, the JNDI lookup
on the UserInternationalization URL throws a
javax.naming.NameNotFoundException. Make sure the Internationalization
service is installed correctly and configured to start up. To configure to start
up the Internationalization service, see “Configuration” on page 622.

When the Internationalization service initialize properly, you will see the
following message in SystemOut.log in <WebSphere_root>/logs/<server
name> directory.

Example 16-12 The Internationalization service initializing message

[4/3/03 16:36:01:997 CST] 6daa4389 I18nService I I18N0009I: The
Internationalization service is created on server1.
[4/3/03 16:36:01:997 CST] 6daa4389 I18nServiceSe I I18N0009I: The
Internationalization service is enabled on server1.
[4/3/03 16:36:03:429 CST] 6daa4389 I18nService I I18N0009I: The
Internationalization service is initialized on server1.

� java.lang.IllegalStateException

java.lang.IllegalStateException is thrown whenever a server application
component whose internationalization type is set to container-managed
internationalization (CMI) attempts to set the invocation context. This is a
violation of the CMI policy, under which servlets and EJBs cannot modify their
invocation internationalization context.

If you need to modify the invocation internationalization context, modify the
internationalization type to application-managed internationalization (AMI) by
using the Application Assembly Tool. For more details, see “Assembly” on
page 599.

If you still have a problem, turn on the trace service to get more information about
the Internationalization service. To have your application server emit the trace
statements for the Internationalization service, specify the appropriate trace
 Chapter 16. Internationalization (i18n) service 623

string to the server’s diagnostic trace service. The steps for this task are as
follows:

1. Start the WebSphere Administrative Console, then log on.

2. Click Servers -> Application Servers.

3. Select the server name.

4. Click Diagnostic Trace Service in the Additional Properties.

5. Select the Enable Trace check box.

6. In the Trace Specification field, type the following (no spaces and no line
breaks):

com.ibm.ws.i18n.context.*=all=enabled:com.ibm.websphere.i18n.context.*=all=
enabled

7. Click Apply.

8. Save the configuration and restart the server.

16.11 Install Enhanced Internationalization Service
Technology Preview

If you are planning to use the Enhanced Internationalization Service, you must
install the Enhanced Internationalization Service Technology Preview. This
technology preview requires the installation of WebSphere Enterprise Version 5
configured with the Additional Enterprise Extensions option and the installation of
Web Services Technology Preview. For more details about the installation of
WebSphere Enterprise Version 5, see Appendix A, “Installation and
configuration” on page 653. For more details about the Web Services Technology
Preview, refer to the following resources:

� Web Services Technology Preview

http://www7b.software.ibm.com/wsdd/downloads/web_services.html

� WebSphere Version 5 Web Services Handbook, SG24-6891

The steps for installing the Enhanced Internationalization Service Technology
Preview are as follows:

1. Download the Technology Preview from:

http://www7b.software.ibm.com/wsdd/downloads/wasee5/ei.html

2. Unzip the downloaded file into a temporary directory.

3. Change the directory to the i18nctx subdirectory of the temporary directory.
624 WebSphere Application Server Enterprise V5

http://www7b.software.ibm.com/wsdd/downloads/web_services.html
http://www7b.software.ibm.com/wsdd/downloads/wasee5/ei.html

4. Launch the installer. You must specify the WebSphere Enterprise Version 5
installed directory as the argument.

installI18nTP C:/WebSphere/AppServer

5. Click Next on the Welcome window.

6. Click OK to accept the license agreement.

7. Verify the WebSphere Enterprise Version 5 installed directory, which is shown
in the Directory Name field, and click Next to continue.

8. Click Next to install the features shown.

9. Click Finish to complete the installation.
 Chapter 16. Internationalization (i18n) service 625

626 WebSphere Application Server Enterprise V5

Chapter 17. WebSphere Enterprise
runtime

This chapter discusses the WebSphere runtime environment, including generic
functions and features, some architecture considerations and configuration
issues.

Most of the runtime environment discussions apply to the base application
server, which is covered in the following Redbooks:

� IBM WebSphere Application Server V5.0 System Management and
Configuration, SG24-6195

� IBM WebSphere V5.0 Performance, Scalability and High Availability,
SG24-6198

17
© Copyright IBM Corp. 2003. All rights reserved. 627

17.1 Introduction
WebSphere Application Server Version 5.0 is IBM's implementation of the J2EE
(Java 2 Enterprise Edition) platform, conforming to the Java 2 Platform
Enterprise Edition (J2EE) Specification, V1.3.

In this chapter, we discuss the runtime architecture and components of three
different WebSphere Application Server packages:

� IBM WebSphere Application Server V5, referred to as WebSphere base.

� IBM WebSphere Application Server Enterprise V5, referred to as WebSphere
Enterprise.

� IBM WebSphere Application Server Network Deployment V5, referred to as
Deployment Manager.

A Network Deployment environment consists of multiple application server
nodes grouped into a single administrative domain.

There are also other WebSphere Application Server packages, but they are not
relevant here. If you want more information about different packages, see the
redbook IBM WebSphere Application Server V5.0 System Management and
Configuration, SG24-6195.

17.2 Architecture
This chapter will focus on architectural differences introduced by WebSphere
Enterprise. In addition we briefly discuss each of the WebSphere Enterprise
Extensions.

From the runtime architectural point of view, we discuss two different WebSphere
versions: base and Enterprise.

WebSphere Enterprise provide additional support for solving “large-scale”
software development problems in the areas of:

� Function (sometimes called Extensions): New APIs providing increased
power for the J2EE programmer

� Quality of Service: Transparently making applications more scalable,
manageable and higher performing (sometimes called Optimizations).

� Extensibility: Plug-in and SPIs required for large, complex heterogeneous
environments.
628 WebSphere Application Server Enterprise V5

17.2.1 WebSphere Application Server V5 base
Figure 17-1 illustrates the basic architectural layout of WebSphere Application
Server V5 base.

Figure 17-1 WebSphere Application Server V5 base architecture

In the following sections, we briefly describe the parts of the application server
shown in the diagram.

Node
A node is a logical grouping of WebSphere managed server processes that
share common configuration and operational control. In the base configuration,
each application server is responsible for its own configuration in the
configuration repository.

Node Agent
The Node Agent is a process running on each node connected to a cell. It is
present in every WebSphere Application Server installation, but it is only
activated when the server connects to the cell.

Config
repository

(file)Web
browser

client

EJB container

Web container

Application Server

Embedded JMS Server

Node
Agent

Node

Java
client

Client container

Application
Database

A
dm

in
ap

pl
ic

at
io

n

A
d

m
in

 s
er

vi
ce

Admin
UI

Scripting
client

C
us

to
m

er

ap
pl

ic
at

io
n

(e
ar

)

HTTP server

WebSphere
plug-in

Embedded
HTTP server

J2C container

Web
Services
engine

Name Server (JNDI)

Security server
 Chapter 17. WebSphere Enterprise runtime 629

The process handles Deployment Manager and node communications. Its
responsibilities include administration tasks and process management tasks.

HTTP Server with WebSphere plug-in
The HTTP Server is the Web server, the primary access point to the Web
applications. A Web server can serve static content to the clients, and can route
specific requests to application servers.

In order to pass an application server request, the Web server has a plug-in
installed that routes the request to the right application server.

Embedded HTTP server
The application server also has to act as a Web server to serve content to clients
using HTTP protocol. In this case the content can be either static or dynamic,
although application servers practically serve dynamic content.

The embedded Web server is part of the Web container. Each application server
has one Web container. Therefore each application server has an embedded
server instance running and listening on a distinct port.

Application server
The application server is the primary component of WebSphere. It runs in a Java
Virtual Machine (JVM), providing the runtime environment for the application's
code. The application server provides containers that specialize in enabling the
execution of specific Java application components. There are three containers in
the application servers:

� Web container
� EJB container
� J2C container

Web browser clients connect to the Web container through the HTTP server and
Web server plug-in to access the dynamic content. Stand-alone Java
applications, either J2EE application clients or thin Java clients, connect to the
EJB container to access EJBs, and invoke methods through RMI/IIOP.

Web container components can use EJB resources within the application logic.
Application servers can access a shared database for storing data. The
application server provides other services besides the containers:

� Object Request broker (ORB)
� Name service (JNDI)
� Security service (JAAS and Java 2 security)
� Admin service (JMX)
� Trace service
630 WebSphere Application Server Enterprise V5

� Performance Monitoring Interface (PMI)
� Transaction management
� Messaging interfaces (JMS)
� E-mail interfaces (JavaMail)
� Database connection (JDBC) and connection pooling

Web container
The Web container processes servlets, JSP files and other types of server-side
includes. Each Web container automatically contains a single session manager.

When handling servlets, the Web container creates a request object and a
response object, then invokes the servlet service method. The Web container
invokes the servlet’s destroy method when appropriate and unloads the servlet,
after which the JVM performs garbage collection.

The Web container runs an embedded HTTP server for handling HTTP(S)
requests from external Web server plug-ins or Web browsers.

A Web container configuration provides information about the application server
component that handles servlet requests forwarded by the Web server. Each
application server runtime has one logical Web container, which can be modified
but not created or removed. The administrator specifies Web container
properties including:

� Default virtual host.
� Session management properties.
� Number and type of connections between Web server and Web container.
� Port(s) on which the Web container listens for incoming HTTP(S) requests.

EJB container
The EJB container provides all the runtime services needed to deploy and
manage Enterprise Java Beans (EJBs). It is a server process that handles
requests for both session and entity beans.

The enterprise beans (inside EJB modules) installed in an application server do
not communicate directly with the server. Instead, the EJB container provides an
interface between the EJBs and the server. Together, the container and the
server provide the bean runtime environment.

The container provides many low-level services, including threading and
transaction support. From an administrative viewpoint, the container manages
data storage and retrieval for the contained beans. A single container can host
more than one EJB JAR file.
 Chapter 17. WebSphere Enterprise runtime 631

J2C container
The Java Connector Architecture (JCA) container is a component provided by
WebSphere Application Server, into which JCA resource adapters from EIS
vendors can be plugged-in, configured and used by JCA compliant applications.

For information on JCA containers, see the J2EE Connector specification at:

http://java.sun.com/j2ee/connector/

Admin service
The Admin service runs within each server JVM. In the base configuration, the
Admin service runs in the application server. In the Network Deployment
configuration, each of the following servers host an Admin service:

� Deployment Manager
� Node Agent
� Application server
� JMS server

The Admin service provides the necessary functions to manipulate configuration
data for the server and its components. The configuration is stored in a
repository, a set of XML files stored in the server's file system.

Application servers are attached to nodes and nodes belong to a cell in the
Network Deployment environment. In this environment the Deployment Manager
is responsible for managing all the application servers in the cell, which means
that the administrator has access to multiple application servers under one user
interface through the Deployment Manager.

The Admin service running in a particular server is responsible only for that
server.

Admin services has a course-grained security control and filtering functionality,
providing different levels of administration to certain users or groups.

Admin application
The Admin application is a special EAR installed on the application server
instance. This EAR only has a Web module. The application performs
administration tasks for the application server, based on user interactions from
the Web.

Admin UI
The Admin UI (user interface) is a Web browser-based interactive graphical user
interface. Users can access the Admin application with a Web browser and
perform administration tasks.
632 WebSphere Application Server Enterprise V5

http://java.sun.com/j2ee/connector/

Scripting client (wsadmin)
The scripting client is a text-based, command-line administration client for
WebSphere Application Servers. The client supports multiple scripting
languages.

Embedded JMS Server
The embedded WebSphere JMS provider uses a JMS server to implement the
integrated messaging functions. It supports point-to-point and publish/subscribe
styles of messaging and is integrated with the transaction management service.

The JMS server is used for:

� Support of message-driven beans.
� Messaging within a WebSphere cell.

In the base configuration, the JMS server runs in the same JVM as the
application server. In the Network Deployment configuration, the JMS server is
separated from the application server and runs in a separate dedicated JVM.

Name server (JNDI)
Each application server JVM hosts a name service that provides a Java Naming
and Directory Interface (JNDI) name space. The service is used to register all
EJBs and J2EE resources (JMS, J2C, JDBC, URL, JavaMail) hosted by the
application server.

The JNDI implementation in WebSphere Application Server V5 is built on top of a
Common Object Request Broker Architecture (CORBA) naming service
(CosNaming).

Security server
Each application server JVM hosts a security service that uses the security
settings held in the configuration repository to provide authentication and
authorization functionality.

Security issues are not covered in this redbook. For information about
WebSphere security, see the redbook IBM WebSphere V5.0 Security Handbook,
SG24-6573.

Web Services engine
The Web services engine does not really stand as a separate component. The
application server implements numerous APIs for additional services. Web
services are provided as a set of APIs in cooperation with the J2EE applications.
 Chapter 17. WebSphere Enterprise runtime 633

WebSphere's Web services engine is based on AXIS, and implements the
following specifications:

� SOAP (Simple Object Access Protocol)

A protocol that defines the messaging between Objects. It is based on the
XML and XML Schema specification.

� WSDL (Web Services Description Language)

Describes the services that can be located and used by applications.

� UDDI (Universal Description, Discovery and Integration)

Enables an application to find services on the network published by service
brokers.

� WSIF (Web Services Invocation Framework)

A tool that provides a standard API for invoking services described in WSDL,
no matter how or where the services are provided. The architecture allows
new bindings to be added at runtime.

The Web services support provided in WebSphere Application Server V5 is not
covered in this redbook. For detailed information on the Web services support in
WebSphere Application Server V5, see the redbook WebSphere Version 5 Web
Services Handbook, SG24-6891.

17.2.2 WebSphere Application Server Enterprise
Figure 17-2 on page 635 depicts the basic architectural layout of WebSphere
Application Server Enterprise V5.
634 WebSphere Application Server Enterprise V5

Figure 17-2 WebSphere Application Server Enterprise V5 architecture

This redbook does not go into detail about the components that exist in
WebSphere Application Server base or Network Deployment. This section
focuses on those components that are provided by the WebSphere Enterprise
environment.

Business Process container
The Business Process Container is a new type of container for the application
server. It is indicated as an enterprise application overlapping the Web and EJB
container. The container is really a special enterprise application and not an
application server implementation of a new container. Because the application
server is still a J2EE application server, the container implementation does not

Config
repository

(file)Web
browser

client

EJB container

Web container

Application Server

Embedded JMS Server

Node
Agent

Node

Java
client

Client container

Supporting
database

A
d

m
in

ap
pl

ic
at

io
n

A
d

m
in

 s
er

vi
ce

Admin
UI

Scripting
client

HTTP server

WebSphere
plug-in

Embedded
HTTP server

J2C container

Web
Services
engine

Name Server (JNDI)

Security server

B
us

in
es

s
P

ro
ce

ss

C
on

ta
in

er

B
us

in
es

s
P

ro
ce

ss

A
pp

lic
a

tio
n

Application server services

PME modules Supporting
database
 Chapter 17. WebSphere Enterprise runtime 635

violate the specification. The administration process hides these details from the
user, so it really looks and works like an individual container.

The Business Process applications, developed by WebSphere Studio IE, are
also deployed as enterprise applications (.ear). The WebSphere Enterprise
administration makes sure that the processes are deployed into the process
container. The Business Process applications usually have three modules:

� Process EJB module, implementation of the process flow.

� Process Web client, implementation of the GUI for the process.

� Flow archive (.far), a package of all the flow descriptions implemented in the
application. The flow descriptions are stored in .fdml format. This module is
automatically generated by WebSphere Studio IE and stored under the root
EAR module as a packaged file.

Special Enterprise Archive
As mentioned before, the Business Process Container is a special enterprise
application:

� It is loaded first as an enterprise application.

� The class loader can see other enterprise application modules, because the
container has to interact with the process applications.

The business process applications are also somewhat special. They are loaded
before other enterprise applications.
636 WebSphere Application Server Enterprise V5

Supporting database
The business process container requires a database to persist the process
templates, instances, and states. The database is registered in WebSphere as a
data source. Therefore, any WebSphere supported database can be used.

WebSphere Enterprise provides scripts for different database products to
configure the database for Process Choreographer.

Important: There is an important consideration regarding classloading the
business process container and related applications. Consider the following
scenario, based on our sample:

� ACompany’s business logic is implemented as a set of EJBs under the
ACompany EAR, packaged into the ACompanyEJB.jar.

� ACompany’s business processes are under the ACompanyProcess EAR.

The following steps explain the problems we can experience:

1. The business processes have to use the business logic calling methods on
the EJBs. When exporting ACompanyProcess from Studio, the EAR will
include the ACompanyEJB.jar as part of the package.

2. Exporting ACompany from Studio will put the ACompanyEJB.jar in the .ear
again. It is quite common that we have the same code packaged and
deployed multiple places instead of just one, although it is not
recommended and should be avoided.

3. After deploying the ACompany.ear and the ACompanyProcess.ear on the
server, for example a staging or test server, the application works fine.

4. Let’s make some modifications to the business model, change some of the
EJB code that is used in the business process.

5. Export and redeploy the ACompany.ear application.

6. We will find the application not working or not working exactly as we
expected, no matter how and what we change in the code.

The problem is with the duplication of the ACompanyEJB.jar. Since the
business process applications are loaded first and the ACompanyProcess has
the old ACompanyEJB.jar, the process container will use that package instead
of our new one.

The solution to the problem is to redeploy not only the enterprise application
with the business model, ACompany.ear, but to redeploy the business process
also, ACompanyProcess.ear.
 Chapter 17. WebSphere Enterprise runtime 637

For more information about Process Choreographer configuration, refer to
Chapter 5, “Process Choreographer runtime environment” on page 171.

Application server services
The WebSphere Application Server architecture is designed in a way that new
application server services can be easily developed and plugged into the existing
server architecture.

The Programming Model Extensions in WebSphere Enterprise are
implementations of service extensions. The extensions are then installed on top
of the base application server. These services provide those additional functions
and features that we know as Programming Model Extensions (PME) in
WebSphere Enterprise V5.

Services, PMEs, Enterprise Applications
The question arises: how can one use the services provided in WebSphere
Enterprise? Think about the base services provided by the application server,
such as Web container, EJB container, and Embedded HTTP Server. These
services are either accessed by using a specific API, for example a servlet API or
EJB API, or the service interacts directly with the deployed code and content, for
example serving HTML files.

The services in WebSphere Enterprise work the same way. Some services can
be accessed using the provided API, for example Scheduler service,
Internationalization (I18N) service, and Shared Work Area service. Other
services work behind the scenes and use the Deployment Descriptors, or
extensions in the descriptors, for example Last Participant Support. Again other
services require a specific enterprise application that provides access to the
services to other applications, for example Dynamic Query.

Figure 17-3 on page 639 summarizes how a custom enterprise application can
access the enterprise services.
638 WebSphere Application Server Enterprise V5

Figure 17-3 Using the application server services

Table 17-1 is a list of the extensions and the provided method of accessing them.

Table 17-1 Accessing PMEs in WebSphere Enterprise

Extension API access Deployment
Descriptor

Special EAR
provided

Process
Choreographer

X (for the client) X (application itself
is a special EAR)

Extended
Messaging

X (Wizards
provided in Studio)

Asynchronous
Beans

X

Application
Profiling, Access
Intent

X

Business Rule
Beans

X X

Dynamic Query X X

Startup Beans X

EAR

module API
service module

PME

services

Application Server

PME required
EAR

module

component

DD
 Chapter 17. WebSphere Enterprise runtime 639

Supporting database
Some of the Programming Model Extensions require a supporting database to
persist states for different objects and services. Extensions that require a
supporting database:

� Process Choreographer (see the previous section)
� Business Rule Beans
� Scheduler service

 Process Choreographer
Process Choreographer administration involves the following tasks:

� Installing and configuring the Business Process Container, including the
supporting database and the message provider

� Deploying processes

� Managing processes: starting, stopping

� Configuring the staff support

For more information about the administration tasks related to this extension,
refer to Chapter 5, “Process Choreographer runtime environment” on page 171.

Extended Messaging
Extended Messaging administration involves the following tasks:

� Configuring the application server resources for Extended Messaging
� Creating and configuring the message provider

Scheduler service X

ActivitySession X

Last Participant
Support

X

Object pools X

Shared Work Area X

Internationalization
(I18N) service

X

CORBA support X

Extension API access Deployment
Descriptor

Special EAR
provided
640 WebSphere Application Server Enterprise V5

For more information about the administration tasks related to this extension,
refer to 6.5, “Configuration” on page 258.

Asynchronous Beans
Asynchronous Beans require that WorkManager resource(s) be configured for
the application server.

For more information about the administration tasks related to this extension,
refer to 7.7, “Configure” on page 329.

Application Profiling and Access Intent
Application Profiling and Access Intent are defined at development time. There
are no deployment or administration tasks related to this feature.

Transactional services
Transactional services cover multiple features in WebSphere Enterprise. The
administration tasks apply to some of these features:

� Enabling Last Participant Support for an application
� Configuring ActivitySession for the application server

For more information about the administration tasks related to this extension,
refer to Chapter 9, “Transactional Services” on page 385.

Business Rule Beans
Business Rule Beans administration involves the following tasks:

� Creating and administering the supporting database for the rules
� Managing the rules using the Rule Management application

For more information about the administration tasks related to this extension,
refer to 10.6, “Deployment” on page 448 and 10.6.1, “Running the Rule
Management Application” on page 449.

Dynamic Query
Dynamic Query administration involves the following tasks:

� Installing the supporting enterprise application (query.ear)
� Changing the application server’s class loader policy

For more information about the administration tasks related to this extension,
refer to 11.6, “Configuration” on page 482 and 11.7, “Deployment” on page 483.
 Chapter 17. WebSphere Enterprise runtime 641

Startup Beans
Startup Beans do not require any specific administration for the application
server.

The order of loading applications and modules can be specified, and it may have
an impact on the Startup Beans, for example making sure that certain resources
from applications are available by the time a Startup Bean fires.

Scheduler service
Scheduler service administration involves the following tasks:

� Creating and administering the supporting database
� Configuring the WorkManager service
� Configuring the Scheduler resources
� Scheduler may require that you install a supporting application for

SchedulerCalendars.ear

For more information about the administration tasks related to this extension,
refer to 13.8, “Configuration” on page 527.

Object pools
Object pools administration involves the following tasks:

� Configuring (enable/disable) the Object pool service for the application server.

� Configuring the Object pool resources.

For more information about the administration tasks related to this extension,
refer to 14.7, “Configuration” on page 552.

Shared Work Area
The Shared Work Area service can be configured for the application server.

For more information about the administration tasks related to this extension,
refer to 15.6, “Configuration” on page 580.

Internationalization service
The Internationalization (i18n) service can be configured (enable/disable) for the
application server.

For more information about the administration tasks related to this extension,
refer to 16.8, “Configuration” on page 622.
642 WebSphere Application Server Enterprise V5

17.3 Administration
The most important rule for WebSphere Application Server Enterprise when
using Network Deployment Manager is that all application servers in the cell
must be Enterprise application servers. The different editions of the application
server (Express, base, Enterprise) cannot mix in one cell under Network
Deployment.

Figure 17-4 WebSphere Application Server (base) in a cell using Network Deployment Manager

Config
repository

(file)

Master
repository

(file)

Web
browser

client

EJB container

Web container

Application Server

Embedded JMS Server

Node Agent

Node

Java
client

Client container

Application
Database

A
d

m
in

 s
er

vi
ce

Admin
UI

Scripting
client

C
us

to
m

e
r

ap
pl

ic
a

tio
n

 (
e

ar
)

HTTP server

WebSphere
plug-in

Embedded
HTTP server

J2C container

Web
Services
engine

Name Server (JNDI)

Security server

Cell

Deployment Manager

Admin
application

(.ear) Name Server (JNDI)

Admin Service

Admin Service

Session
Database

Web Services
Gateway (.ear)

UDDI registry
(.ear)

Application Server
 Chapter 17. WebSphere Enterprise runtime 643

Install Administrative Console on a new server
The preferred way of managing multiple application servers is to install the
WebSphere Network Deployment application and use the Deployment Manager
to manage the application servers.

Although there are situations where more than one application server instance is
required but you may not want to use the Deployment Manager. These cases
are: development and testing environments, staging servers, and hosting servers
to provide individual application servers for multiple users.

This section provides information about the installation of the Administrative
Console for a new application server, including an explanation of some minor
difficulties with the installation.

First, we need to understand how WebSphere Enterprise is organized and what
happens to the Administrative Console when we install the product.

WebSphere Application Server Enterprise is a collection of application server
extensions called Programming Model Extensions (PME). The extensions are
installed on top of the base application server. This architecture ensures the
compatibility of applications and it also ensures the J2EE compatibility.

At the beginning of the installation, the features and functions selected are the
Programming Model Extensions, and only the selected extensions will be
installed with the product. The modularization of the product also applies to the
Administrative Console. Only those administration modules are installed where
the pertinent extension is selected for installation.

For example, if you want to install the Asynchronous Beans and Business Rule
Beans extensions, the installation process installs only these two extensions for
the application server and it installs only the two pertinent packages for the
Administrative Console.

The problem with installing a new Administrative Console is that the provided
.ear file from the installableApps directory is only the base application without
extensions. The install process does not remember the selected extensions, so it
does not install them. The following description provides step-by-step
instructions on how to install a new Administrative Console.

Note: At this point we assume that the default server, server1 is configured for
the WebSphere Enterprise application server.

The steps below will create a new application server instance also. If you
already have the server skip those steps.
644 WebSphere Application Server Enterprise V5

1. Make sure that WebSphere Application Server is stopped.

2. Install the interim fix for WebSphere Application Server Enterprise V5
PQ70707. Put the PQ70707.jar in a directory where you can place your
interim fixes.

3. Open a command window and set the JAVA_HOME environment variable:

set JAVA_HOME=<WebSphere_Root>\java

Go to <WebSphere_root>\WAS50_efix and run efixWizard.bat.

4. With the wizard, select the directory where you can find your interim fixes,
then install the PQ70707 interim fix. At the end, close the efixWizard.

5. Start the WebSphere Application Server (server1).

6. Export the Administrative Console application from server1. Open a
command window, go to <WebSphere_root>\bin, then issue the following
command:

EARExpander.bat -ear ..\installableApps\adminconsoleE.ear -operationDir
“<WebSphere_root>\installedApps\<your_Nodename>\adminconsole.ear”
-operation collapse

Where you have to replace <WebSphere_root> and <your_Nodename>
according to your environment.

At the end close the command window.

7. Launch the Administrative Console and log in.

8. Select Servers -> Application Servers, then click New to create a new
server.

9. Provide the name for the server: ACompanyServer.

10.Once the creation of the server is done, save the configuration for
WebSphere.

11.Select Environment -> Virtual Hosts.

12.Select admin_host, then Host Aliases on the next page.

13.Click New to add a new entry.

– Host name: *

Note: This problem is solved in WebSphere Application Server Enterprise
V5.0.2.

Note: There is an E at the end of the adminconsoleE.ear file you export.
Make sure you do not overwrite the original adminconsole.ear file.
 Chapter 17. WebSphere Enterprise runtime 645

– Port: 9091

Add another entry:

– Host name: *
– Port: 9044

14.Go back to the Virtual Hosts and select default_host, then Host Aliases.

15.Add the following entry:

– Host name: *
– Port: 9081

and another one:

– Host name: *
– Port: 9444

Save the configuration for WebSphere.

16.We need to install the Administrative Console for the new server. Select
Applications -> Install New Application.

17.Browse for the adminconsoleE.ear under the
<WebSphere_root>\installableApps directory.

18.Step through the installation process. In Step 3, make sure that you assign
the application to the ACompanyServer application server.

19.Once the installation is done, save the configuration for WebSphere.

20.We need to stop server1 and start the ACompanyServer.

Close the WebSphere Administrative Console, then use the following
commands (names are case sensitive):

stopserver server1
startserver ACompanyServer

21.Open the WebSphere Administrative Console, then log in.

22.Check for the extensions in the Administrative Console.

17.4 Workload management
Discussing workload management usually means focusing on how to, within a
given runtime environment, divide the load on the resources that are used by an
application. By resources we refer to system memory, CPU time, input/output
processing, and communications. In our case the runtime environment is
WebSphere Application Server Enterprise as a J2EE application server with
additional programing and runtime extensions.
646 WebSphere Application Server Enterprise V5

In the following sections, we start with a quick overview of WebSphere
Application Server base workload management capabilities and then continue
with the differences that are particular to enterprise extensions. The focus is just
on the application server, although cloning or using multiple instances of other
resources such as a Web server and databases is supported with WebSphere
Application Server. The recommended resources for more details about the
possibilities are:

� IBM WebSphere V5.0 Performance, Scalability and High Availability,
SG24-6198

� WebSphere Application Server V5 InfoCenter

17.4.1 Scalability and high availability basics
This section is a quick overview of the scalability and high availability basics that
can be applied to WebSphere Enterprise.

Figure 17-5 illustrates the basic configuration for a single application server.

Figure 17-5 Basic configuration, without scalability and high availability

Vertical scaling and cloning
Vertical scaling means installing or having more than one instance of application
server on the same machine to get better utilization of its resources. Typically, a
multiprocessor machine with enough memory and I/O capabilities is used in this
situation. It is meant to have an J2EE application spread over vertical cloned
application servers, so the application's request throughput and response time
will be better, but you can also have independent J2EE applications among the
vertical cloned application server. In either case, machine resources are
exploited better, but where we spread the same application, there must be some
additional services available to spread and coordinate the workload of one
application over multiple J2EE application servers. In this case, it is these
services to which we refer when we speak about the workload management

HTTP
Server

Application
database

Application
server

Admin
UI

Web
browser

client

Server
 Chapter 17. WebSphere Enterprise runtime 647

capabilities of WebSphere Application Server. In order to use them you have to
create a WebSphere cluster and assign application servers to the cluster.

Figure 17-6 Vertical scaling and cloning

Horizontal scaling and cloning
Horizontal scaling means having application server instances installed over more
than one machine, because the J2EE application we use is large and thus would
take too much resources from one machine, that is, a single machine would be
underpowered to run a given application. So the aim is the same as before: to
spread the application over more J2EE application servers. In this case the same
workload management services are used as before.

Web
browser

client
Application
database

Application
server 2

Application
server 1

Application
server N

...

HTTP
Server

Server

Admin
UI
648 WebSphere Application Server Enterprise V5

Figure 17-7 Horizontal scaling and cloning

17.5 Where to find more information
� IBM WebSphere Application Server V5.0 System Management and

Configuration: WebSphere Handbook Series, SG24-6195

� WebSphere Application Server V5 for iSeries™: Installation, Configuration,
and Administration, SG24-6588

� IBM WebSphere V5.0 Performance, Scalability, and High Availability:
WebSphere Handbook Series, SG24-6198

� IBM WebSphere V5.0 Security WebSphere Handbook Series, SG24-6573

� WebSphere InfoCenter at:

http://publib7b.boulder.ibm.com/webapp/wasinfo1/index.jsp?deployment=Enterp
rise&lang=en

then select System Administration.

Web
browser

client
Application
database

Application
server 2

Admin
UI

Application
server 1

Application
server N

...

HTTP
Server

Deployment
Manager

Master
repository

Server

HTTP
Server

Cell

Node

Node

Node

HTTP
Server

HTTP
Server

Network
Dispatcher
 Chapter 17. WebSphere Enterprise runtime 649

http://publib7b.boulder.ibm.com/webapp/wasinfo1/index.jsp?deployment=Enterprise&lang=en
http://publib7b.boulder.ibm.com/webapp/wasinfo1/index.jsp?deployment=Enterprise&lang=en

650 WebSphere Application Server Enterprise V5

Part 3 Appendixes

Part 3
© Copyright IBM Corp. 2003. All rights reserved. 651

652 WebSphere Application Server Enterprise V5

Appendix A. Installation and
configuration

This appendix provides an explanation of the procedures for installing,
configuring, and verifying IBM WebSphere Application Enterprise.

This chapter concentrates on the decisions and tasks associated with
WebSphere Application Server Enterprise. If you need information about the
installation of WebSphere Application Server and WebSphere Application Server
Network Deployment, refer to the redbook IBM WebSphere Application Server
V5.0 System Management and Configuration: WebSphere Handbook Series,
SG24-6195.

A

© Copyright IBM Corp. 2003. All rights reserved. 653

Planning for installation
There are several ways to install WebSphere Application Server Enterprise. The
simplest way is the umbrella installation, which installs both the WebSphere
Application Server base product and the Enterprise product during the same
installation procedure. You can also add the Enterprise product to the existing
base product.

On the umbrella installation, only the base features that Enterprise product
requires are installed. The installer installs the base product without the following
features:

� IBM HTTP Server
� Web server plug-ins
� Performance and analysis tool

If you must install these features or you want to customize the base product, you
can install the base product before installing the Enterprise product. The
installation image for the base product is available in the directory WAS50.

If you plan to install the Enterprise product on a multinode environment, you must
install Enterprise product on each federated node in the cell and install the
Enterprise product on the Deployment Manager node as well. IBM WebSphere
supports a cell of homogeneous nodes. If you are planning to use the Enterprise
extensions on any application server node in the cell, you must install the
Enterprise product on all nodes, including the Deployment Manager node.

The Enterprise Administrative Console extensions are not installed on a
federated node. If you later decide to remove the node from the cell, you must
uninstall and reinstall the Enterprise product on the node to get the Enterprise
Administrative Console extensions.

Installations
If you are planning to install an umbrella installation, see “Install Enterprise and
base at the same time” on page 655. If you already have the existing base
product or you want to customize the base product before installing the
Enterprise product, see “Install Enterprise to the existing base” on page 658.

If you are planning to install the Enterprise product to the existing multinode
environment, see “Install Enterprise to the existing Network Deployment” on
page 661 to install on the Deployment Manager node, and see “Install Enterprise
to the existing base” on page 658 to install on the application server node.
654 WebSphere Application Server Enterprise V5

Install Enterprise and base at the same time
WebSphere Application Server Enterprise requires the WebSphere Application
Server base product. If the base product is not installed, the Enterprise installer
works as an umbrella installation that installs both the base product and the
Enterprise product.

Installation steps
The installation steps are the following:

1. Log on as an administrator user in the local server domain (not part of a
Windows domain).

2. Insert the IBM WebSphere Application Server Enterprise V5 CD into the
CD-ROM drive.

3. Using the Windows Explorer, switch to the \nt directory on the CD.
Double-click LaunchPad.bat to start the installation.

4. Select a language for the LaunchPad and click OK.

5. Review the Readme file and installation guides.

6. Click Install the product. Then the installer starts.

7. Select a language for the installer and click OK.

8. On the Welcome window, click Next to continue.

9. The software license agreement window will appear. Read the agreement and
check I accept the terms in the license agreement, then click Next to
continue.

10.Select Typical if you want to install Embedded Messaging, Business Rule
Beans, Extended Messaging, Dynamic Query, Additional Enterprise
Extensions, Scheduler and Asynchronous Beans, Process Choreographer,
and their samples. Select Custom if you want to customize your installation.

11.If you select Custom, select the features to install. For guidance on which
features to install, see Table A-1 on page 656.
 Appendix A. Installation and configuration 655

Table A-1 Enterprise features and feature dependencies

Components Dependency Feature description

E
m

b
edd

ed
M

essag
in

g

A
d

ditio
nal E

n
terp

rise
E

xten
sio

n
s

S
ch

ed
u

ler an
d

A
syn

ch
ro

no
u

s B
ean

s

Embedded Messaging Installing and configuring a
JMS provider

Server and Client

Message-driven Bean
Samples

Business Rule Beans Externalizing business rules
with Business Rule Beans

Business Rule Beans Sample

Extended Messaging Using Extended Messaging in
applications

Extended Messaging Sample X

Dynamic Query Using the Dynamic Query
service

Dynamic Query Sample

Additional Enterprise Extensions Using the following functions in
applications
� Internationalization service
� Application Profiling
� Object pools
� Startup Beans
� WorkArea service
� ActivitySession service
� Last Participant Support

Additional Enterprise
Extension Sample

Scheduler and Asynchronous
Beans

Using Scheduler service and
Asynchronous Beans

Scheduler and Asynchronous
Beans Sample

X

656 WebSphere Application Server Enterprise V5

12.The next window asks for the install directories for IBM WebSphere
Application Server and Embedded Messaging. Verify the install directories
and click Next to continue.

13.The next window asks the node name and host name for this installation. The
node name must be unique within a cell. Verify them and click Next to
continue.

14.The next window will allow you to choose to run WebSphere Application
Server as a service. Windows services can be automatically started, and
startup and recovery operations can be configured. Check if you want to elect
it as a service and click Next to continue.

15.The last window before the installation begins shows a summary of all of the
choices. Click Next to begin the installation.

16.At first, the WebSphere Application Server base product and interim fixes are
installed. Then the installer will begin the progress of installing Enterprise
features and samples that were selected during the installation.

Process Choreographer X X Using Process Choreographer

Process Choreographer
Sample

Configure sample BPE
container

X

CORBA C++ SDK Implementing CORBA
applications

Interface Repository Support
(requires DB2)

CORBA C++ SDK Sample

JavaDoc Installing WebSphere
Application Server Release 5
API document in JavaDoc
format

Components Dependency Feature description

E
m

b
ed

ded
M

essag
ing

A
d

d
itio

n
al E

n
terp

rise
E

xten
sio

n
s

S
ched

u
ler an

d
A

syn
ch

ro
n

ou
s B

ean
s

 Appendix A. Installation and configuration 657

17.The last step of the installation gives you the opportunity to register the
product. Click Next to continue.

18.Click Finish to complete the installation.

19.After completing the installation, the First Steps windows comes up. From this
window, you can start the server and verify the installation.

Verify the installation
To verify Enterprise functions, run the samples. If you did not install samples
associated with the extensions you are verifying, return the installation and use
the Custom installation type to add additional samples. The steps to verify
Enterprise extensions are the following:

1. Start the server using one of these methods.

a. Select the Start the server option on the First Steps window.

b. Issue the command <WAS_ROOT>\bin\startServer server1 from a
command window.

2. Run the Sample Gallery using one of these methods:

a. Select the Samples Gallery option on the First Steps window.

b. Invoke a Web browser to access the following:

http://localhost:9080/WSsamples/en/index.html

c. Select Start -> Programs -> IBM WebSphere -> Application Server
v5.0 -> Samples Gallery.

3. Follow the links and instructions on this page to access samples of Enterprise
extensions.

Running the sample successfully indicates that the functionality of the extension
is fully operational.

Install Enterprise to the existing base
If you already installed the base product, you can add the Enterprise extensions
to it. When you invoke the installer, the installer detects the existing products and
shows you a list of them. Check Add to the existing copy of WebSphere
Application Server, v5.0 and select one of the base installation instances on the
window shown in Figure A-1 on page 659.

Note: On the First Steps window, there is one menu, that is the Verify
Installation menu. On this menu, only the base functions are verified.
658 WebSphere Application Server Enterprise V5

Figure A-1 The window to select the existing base product

After you select the existing base product, you will see the list of the Enterprise
extensions. If you did not install the base features that the selected Enterprise
extensions requires, the installer will install them automatically. Table A-2 shows
you the dependencies between the base features and the Enterprise extensions.

Table A-2 Enterprise features and product feature dependencies

Enterprise Feature Base product feature

A
p

p
licatio

n

S
erver

A
d

m
in

S

crip
tin

g

A
d

m
in

istrative
C

o
n

so
le

A
p

p
licatio

n

A
ssem

bly To
o

l

A
p

p
licatio

n
 S

erver
sam

p
le

E
m

b
edd

ed

M
essag

in
g

M
essag

e-d
riven

b

ean
 sam

ple

Business Rule Beans X X X

Business Rule Beans sample X

Extended Messaging X X

Extended Messaging sample X X
 Appendix A. Installation and configuration 659

If you did not install the Embedded Messaging and select to install it or it is
required by the other features, you need to specify the directory that the
Embedded Messaging is installed.

The installer will install the required base features, apply the interim fixes that are
required by Enterprise extensions, then install Enterprise features.

Dynamic Query X

Dynamic Query sample X

Additional Enterprise Extensions X X X

Additional Enterprise
Extension sample

X

Scheduler and Asynchronous
Beans

X

Scheduler and Asynchronous
Beans sample

X

Process Choreographer X X X

Process Choreographer
sample

X

Configure a sample BPE
container

X

CORBA C++ SDK

Interface Repository Support
(Requires DB2)

CORBA C++ SDK sample X

JavaDoc

Enterprise Feature Base product feature

A
p

p
licatio

n

S
erver

A
d

m
in

S

crip
tin

g

A
d

m
in

istrative
C

o
n

so
le

A
p

p
licatio

n

A
ssem

bly To
o

l

A
p

p
licatio

n
 S

erver
sam

p
le

E
m

b
ed

ded

M
essag

ing

M
essag

e-d
riven

b

ean
 sam

p
le
660 WebSphere Application Server Enterprise V5

Verify the installation
The way to verify the installation is the same as umbrella installation. See “Verify
the installation” on page 658.

Install Enterprise to the existing Network Deployment
On the multinode environment, you must install the Enterprise product on all the
nodes in the cell and Deployment Manager node. This section covers how to
install the Enterprise product to the Deployment Manager node where the
Network Deployment product is installed. To install the Enterprise product on the
application node, see “Install Enterprise to the existing base” on page 658.

Figure A-2 The multinode environment

There is no way to install the Network Deployment product and the Enterprise
product at the same time. You must install the Network Deployment product
before you install the Enterprise product.

When you invoke the installer, the installer detects the existing products and
shows a list of them. Check Add to the existing copy of WebSphere

Deployment
Manager
Node

dmgr
Enterprise Administrative
Console Extensions

Network Deployment
Product

Application Server
Node

AppServer

Enterprise Extensions

Application
Server
Product

Node
Agent

Application Server
Node

AppServer

Enterprise Extensions

Application
Server
Product

Node
Agent

Cell

This section
focuses
on this
 Appendix A. Installation and configuration 661

Application Server Network Deployment, v5.0 and select one of the base
installation instance on the window shown in Figure A-3.

Figure A-3 The window of select the existing Network Deployment product

Only administrative extensions that extend the Administrative Console and the
scripting facilities are installed on the Deployment Manager. There are no
choices to select the features. When installing on the existing Network Manager
node, the installer automatically installs the Administrative Console extensions
feature. No base features and no Enterprise extensions are installed on the
Network Manager node.

Verify the installation
On the Network Deployment, only the extension of the Administrative Console is
installed. To verify the installation, start the Deployment Manager and invoke a
Web browser and open the Administrative Console by accessing the following:

http://localhost:9090/admin/

You will find some additional resources for the Enterprise extensions.
662 WebSphere Application Server Enterprise V5

Troubleshooting the installation
If you received some errors during the installation or the verification, check the
log files. Table A-3 shows you where the log files are located.

Table A-3 installation log files

You can also find the error logs for each Enterprise component in
<WebSphere_root>\logs\pme\PluginProcessor and the log files for interim fixes
in <WebSphere_root>\logs\pmeefixlogs.

If the installation logs do not contain enough information to determine the cause
of the problem, turn on tracing. The installer will report the stdout and stderr logs
to the console window by adding the -is:javaconsole option to the Install
command:

Install -is:javaconsole

Component Log Filename

base product

<WAS_ROOT>\log

Application Server log.txt

Embedded messaging feature installation log mq_install.log

Embedded messaging feature configuration log createMQ.<node>.server1.log

Default Application installDefaultApplication.log

Samples Gallery installSamples.log

Administrative Console installAdminConsole.log

Enterprise product

<WAS_ROOT>\log

Enterprise log.txt
PMEinstallSummary.log
WAS.PME.install.log

Administrative Console installAdminConsole.log

<WAS_ROOT>\log\pme

Enterprise PluginProcessorInst.log
PMEinstallApps.log
 Appendix A. Installation and configuration 663

To capture additional information to a log, add -is:log <filename> to the
Install command:

Install -is:log C:\temp\install.log

Configuration
To configure the WebSphere Application Server Enterprise, invoke a Web
browser and open the Administrative Console by accessing the following:

http://localhost:9090/admin/

For detailed configurations for each Enterprise extensions, see the configure part
of each runtime chapters.

If you are planning to use external data sources, the following information is
available to help you:

� Go to the InfoCenter at
http://publib7b.boulder.ibm.com/wasinfo1/index.jsp and click
Resources -> Data access -> Accessing data from applications -> Data
sources.

If you are planning to use WebSphere MQ as the JMS provider, the following
information is available to help you:

� IBM WebSphere Application Server V5.0 System Management and
Configuration: WebSphere Handbook Series, SG24-6195

� Go to the InfoCenter at
http://publib7b.boulder.ibm.com/wasinfo1/index.jsp and click
Resources -> Messaging -> Using JMS and messaging in applications ->
Administering WebSphere JMS support -> Installing and configuring a
JMS provider -> Installing WebSphere MQ as the JMS provider.

If you are planning to turn on security, the following information is available to
help you:

� IBM WebSphere V5.0 Security WebSphere Handbook Series, SG24-6573

� Go to the InfoCenter at
http://publib7b.boulder.ibm.com/wasinfo1/index.jsp and click Security.

If you are planning to make a multinode environment, the following information is
available to help you:

� WebSphere V5.0 Applications: Ensuring High Performance and Scalability,
SG24-6198
664 WebSphere Application Server Enterprise V5

http://publib7b.boulder.ibm.com/wasinfo1/index.jsp
http://publib7b.boulder.ibm.com/wasinfo1/index.jsp
http://publib7b.boulder.ibm.com/wasinfo1/index.jsp

Appendix B. Sample scenario

This appendix is a detailed description of the sample application that is provided
with this redbook.

The sample application is based on the sample scenario introduced in Chapter 3,
“Sample scenario” on page 25. The application implements some of the
functions that are necessary to show the functions and features in WebSphere
Enterprise V5.

B

© Copyright IBM Corp. 2003. All rights reserved. 665

Sample application
The sample application is a partial implementation of the sample scenario used
in this book. The main objective of the sample is to show the functions and
features specific to WebSphere Enterprise V5. This appendix walks through the
application showing the technical details, in order to get a better understanding.

User registry
You can use either the operating system (OS) or LDAP user registry. To make it
simpler we recommend that you use the local OS for the sample application.

Create the users listed in Table B-1 in your user registry.

Table B-1 Users

If you are using Windows, make sure that the Administrator has the “Act as part
of the operating system” privilege.

Database
The following steps are required to create and populate the database for the
sample application. It is the same for the base and the extended sample
application. Some database items are only used in the extended sample.

1. Open a command window or a terminal window with the DB2 environment.

2. Run the setup.bat script from the database directory. It creates the database,
creates the database tables, and populates the database.

3. Make sure that the script ran successfully. You can check the responses from
the individual commands or you can open a DB2 Control Center and check for
the generated database and database tables.

4. Close the command or terminal window.

username password

wsadmin passw0rd

dbuser passw0rd

bpedbuser passw0rd

jmsuser passw0rd

client01 passw0rd
666 WebSphere Application Server Enterprise V5

Development environment
The instructions below explain how to set up the development test environment
for the sample application. There are two versions of the sample application
shipped together with the book. One is the base version, without extensions. The
other is a more complex one with several extensions to the original code.

Start WebSphere Studio Application Developer Integration Edition. In order to
have the security working with the test server, we need to start the application
under a local operating system user, for example Administrator. We also need to
specify the location of the workspace for the workbench. The command to start
up WebSphere Studio IE with the required settings is:

runas /user:Administrator “<WebSphere_Studio_IE_root>\wsappdevie.exe -data
<workspace_location>”

Where <workspace_location> is the directory for the workspace, for example
C:\SG246932\ACompanyBase.

Importing the sample application
Follow these steps to import the sample application:

1. Open or switch to the Resource perspective in WebSphere Studio IE.

2. Select File -> Import from the menu.

3. Select Existing Project into Workspace on the Import window, then click
Next.

4. Browse for the ACompany folder under the directory where you have the
project extracted, in our example C:\SG246932\ACompanyBase\ACompanyBase.
Click Finish.

The directory will be imported to the workspace. You will see a list of warnings
and errors in the Task view, but do not worry about them at this moment.

5. Import these directories following steps 2 to 4:

– ACompanyEJB
– ACompanyWeb
– ACompanyClient

Important: The instructions in this section apply to the base sample with no
extensions.

Note: The administrator has to have the “Act as part of the operating system”
user right assigned.
 Appendix B. Sample scenario 667

– ACompanyService

The ACompanyServices services project holds the source for the business
processes. The next step is to generate the deployable code for the processes.

1. Open or switch to the Business Integration perspective and select Service
Projects -> ACompanyServices -> com.acompany.

2. Right-click the PO.process file and select Enterprise Services -> Generate
Deploy Code. The Generate Deploy Code window appears.

a. Select EJB for the Inbound binding type.

b. Specify the EAR project name. ACompanyProcess. The EJB project name
should change automatically to ACompanyProcessEJB.

c. Click Finish.

Figure B-1 Generate Deploy Code window
668 WebSphere Application Server Enterprise V5

It may take a minute to generate the deployed code for the processes.

3. Repeat step 2, selecting the UpdateCatalog.process business process to
generate the deployed code.

4. Generate the EJB deployed code for all the EJB modules. Open or switch to
the J2EE perspective.

a. Select the EJB Modules, select the modules one-by-one, right-click the
module, then select Generate -> Deploy and RMIC Code.

b. Click Select all to generate the code for all EJBs.

c. Click Finish and wait until the code is generated.

5. Repeat the previous step for all EJB modules.

6. Select Project -> Rebuild All from the menu. It may take a few minutes to
rebuild all the projects on the workspace.

At the end, you should have 30 items on the Task view: four errors, eight
warnings and 18 information items. This is normal.

Importing the extended sample application
The import of the extended sample application is identical to the base
application. Follow the steps found in “Importing the sample application” on
page 667.

Use the directory C:\SG246932\ACompanyBase\ACompanyExt in step 4 on
page 667.

At step 5 import the following directories:

� ACompany
� ACompanyApprovalWeb
� ACompanyBrbEAR
� ACompanyBrbEJB
� ACompanyClient
� ACompanyClientI18N
� ACompanyEJB
� ACompanyEMS
� ACompanyEMSEJB
� ACompanyEMSWeb
� ACompanyWeb
� ObjectPtest
� ObjectPtestEAR
� WorkAreaTestClient
 Appendix B. Sample scenario 669

There are two different process projects: one is for an extended process Web
client, and one is for a customized process Web client. Select the one you need
and move the project directories to the
C:\SG246932\ACompanyBase\ACompanyExt directory.

The extended process Web client projects are in the
C:\SG246932\ACompanyBase\ACompanyExt.bpewebclient directory. Copy them
to the workspace directory, then import them.

� ACompanyProcessWeb: You will have to add this project as a Web module to
the ACompanyProcess enterprise application, once it is created while
generating the deployed code for the processes.

� ACompanyServices

The following customized process Web client projects are in the
C:\SG246932\ACompanyBase\ACompanyExt.MyBpewebclient directory. Copy
them to the workspace directory, then import them.

� ACompanyServices
� MyBpewebclient
� MyBpewebclientEAR

Configuring the test environment
This section shows how to set up the test server for the sample application.

Create the test server
The first step is to create the WebSphere Enterprise V5 test server.

1. Open the Server perspective.

2. Select File -> New -> Server and Server Configuration. This will start the
server wizard.

3. On the first window enter the Server name ACompanyServer, the folder name
Servers, and the server type 5.0 EE Test Environment. Click Next.

4. When asked Do you want to create a new server project with the name
Servers?, click Yes.

5. On the next window, where the HTTP port number is set to 9080, click Finish.
Wait until the system creates your test server and the initial configuration.

6. Open the server configuration for the ACompanyServer by double-clicking the
ACompanyServer entry in the Server Configuration view under the Servers
folder.

7. Select the Configuration tab and check Enable administration console.

8. Set the Application class loader policy to SINGLE under this tab.
670 WebSphere Application Server Enterprise V5

9. Select the Security tab, click enable security, then set the Server ID and
password using the operating system user name and password that started
WebSphere Studio IE; in our case this is Administrator.

10.Select the Variables tab, find the DB2_JDBC_DRIVER_PATH entry under the
Node Settings, then click Edit. Provide the path for the DB2 Java directory, for
example C:\SQLLIB\java.

11.Select the Data source tab. Under the server settings, add a new JDBC
provider with the following details:

– Database type: IBM DB2
– JDBC provider type: DB2 JDBC Provider (XA)
– Name: DB2 XA JDBC provider
– Implementation class name: COM.ibm.db2.jdbc.DB2XADataSource
– Classpath: ${DB2_JDBC_DRIVER_PATH}/db2java.zip

12.Save and close the configuration.

Configure the test server for the base application
Once the test server is available, the next step is to configure the server.

1. Open the server configuration for the ACompanyServer by double-clicking the
ACompanyServer entry in the Server Configuration view in the Servers
folder.

2. Create a new JAAS authentication entry with the following details:

– Alias: dbuser_alias
– User ID: dbuser
– Password: passw0rd

3. Add a new data source for the new JDBC provider with the following details:

– JDBC provider: DB2 JDBC Provider (XA)
– Data source type: Version 5.0
– Name: redbookDS
– JNDI name: jdbc/redbookDS
– Data source helper class name:

com.ibm.websphere.rsadapter.DB2DataStoreHelper
– Component-managed authentication alias: dbuser_alias
– Container-managed authentication alias: dbuser_alias
– databaseName: REDBOOK

Select Use this data source in container managed persistence (CMP).

4. Save and close the configuration.
 Appendix B. Sample scenario 671

5. Right-click the ACompanyServer entry in the Server Configuration view in
the Servers folder and add the following applications to the server:

– ACompany
– ACompanyProcess

6. At the very end, the processes have to be deployed. Right-click the
ACompanyServer entry in the Server Configuration view in the Servers
folder and select Deploy Process. The deployment may take a couple
minutes.

7. The test environment is ready to run in WebSphere Studio IE. You can start
the test server by right-clicking the ACompanyServer entry in the Server
Configuration view and selecting Start. The startup process may take a
couple minutes. In the meantime you can check the trace in the Console view.

Additional configurations for the extended sample application
During the configuration you will have to start and stop the test application server
a couple of times. Some components may fail to start during the startup, because
of missing configuration steps during the process. Do not worry about these
problems at this point. The server has to start up without any problems once all
the configurations are done.

Follow these steps to configure the test server for the sample application:

1. Right-click the ACompanyServer entry in the Server Configuration view
under the Servers folder and add the following applications to the server:

– ACompanyEMS
– ACompanyBrbEAR
– MyBpewebclientEAR

2. Before you proceed to the following steps, turn off security for the ACompany
application server in WebSphere Studio IE. There is a bug that prevents you
from logging in to the Administrative Console when the application server is
secured. Once you are done with the configuration steps with the
Administrative Console, enable security again before you restart the server.

Open the server configuration and uncheck the Enable security box in the
Security tab.

3. Extended Messaging configurations

Follow the steps in 6.4.1, “Configure Extended Messaging” on page 250 to
configure the test server for the Extended Messaging sample.

4. Business Rule Bean configurations

a. Create the Business Rule Beans database by following the steps in
“Creating the Business Rule Beans database” on page 427.
672 WebSphere Application Server Enterprise V5

b. Set up the Rule Management Application by following the steps in
“Configure Rule Management Application” on page 428.

c. Configure the test server by following the steps in “Configure application
server” on page 432.

d. Start the test server.

Once the server is running, the business rule has to be configured. Follow
the steps in 10.3.3, “Creating and configuring the rule” on page 436.

5. Scheduler service configurations. The Startup Bean sample uses the
Scheduler service. There are two options:

– Configure the Scheduler service first and use it together with the Startup
Bean sample. This section follows this course.

– Modify the Startup Bean code and remove the scheduler part. Check the
StartUpBean.java source code for comments about disabling the work
scheduling part in the bean.

a. Start the test server if it is not running.

b. Create a new work manager for the application by following the steps in
“Work manager service in relation to the Scheduler service” on page 527.

c. Create the Scheduler database for the service. Follow the instructions in
“The Scheduler database” on page 528.

d. Create a new Scheduler service by following the steps in “Scheduler
configuration using the Administrative Console” on page 530.

6. Startup Bean configurations:

a. Open the server configuration for the ACompanyServer by double-clicking
the ACompanyServer entry in the Server Configuration view in the
Servers folder.

b. Switch to the Applications tab and select the ACompanyProcess
application.

c. Change the Start weight to 9. This means that this application starts
earlier than the ACompany application, so the resources from
ACompanyProcess will be available for the Startup Bean.

7. Dynamic Query configurations

a. Import the Dynamic Query supporting enterprise application into Studio.
Follow the steps in “Development environment setup” on page 467.

b. Add the Query application to the test server. You have to stop the server
for this operation.

8. Object pool manager configuration

a. Start the test server if it is not running.
 Appendix B. Sample scenario 673

b. Follow the configuration steps in “Object pool manager configuration” on
page 553.

9. Configure the Shared Work Area service by following the steps in 15.6.1,
“Shared Work Area service configuration” on page 581.

10.Configure the Internationalization (I18N) service for the test server by
following the instructions in 16.4, “Unit test environment” on page 598.

11.At the end, enable security for the application server. Before you can do that,
make sure that the test server is stopped. Open the server configuration, then
check the Enable security box in the Security tab.

12.Start the test server and check the Console view to see if there is any error
during the server startup.

Running J2EE clients in WebSphere Studio
This section shows you how to run J2EE clients with the test server in the
development environment:

1. Open or switch to the Java perspective.

2. Select Run -> Run... from the menu.

3. Select WebSphere V5 Application client on the left side of the window.

4. Click New.

5. Specify the name, for example MyClient

6. In the Application tab, select the server type: WebSphere V5 EE. Select the
Enterprise Application MyApplication.

7. In the Arguments tab, you can specify the client application, in case you have
multiple J2EE clients under one enterprise archive. Use the -CCjar directive.
For example if you have a client called MyClient, add the following to the
Program arguments line:

-CCjar=MyClient.jar

If you have other command-line arguments you need to pass to the
application, specify them at the end of the Program arguments line.

8. You can also specify additional libraries for the application in the Classpath
tab.

9. Click Apply, to save the configuration in WebSphere Studio.

10.Click Run to run the application. Make sure you have the application server
running for the client.
674 WebSphere Application Server Enterprise V5

Runtime environment
This section provides step-by-step instructions for setting up the runtime
environment for the sample application.

Configuring the runtime environment
The step is to create the database and populate it. In order to do that, follow the
steps in “Database” on page 666.

1. Create a new application server instance and install the Administrative
Console for the new instance. For detailed steps, refer to “Install
Administrative Console on a new server” on page 644.

2. Start the application server if it is not running and launch the Administrative
Console.

3. Select Environment -> Manage WebSphere Variables and select the
DB2_JDBC_DRIVER_PATH variable.

Change the value to <DB2_root>\java, where <DB2_root> is the directory
where DB2 is installed, for example C:\SQLLIB.

Save the configuration for WebSphere.

4. The next step is to install the business process container.

5. Click Servers -> Application Servers -> ACompanyServer.

6. In the Additional Properties section, click Business process container.

7. Ignore the business process container settings. Click the Business Process
Container Install Wizard link at the bottom, and follow the step-by-step
instructions provided.

8. On the Select the Database Configuration for the Business Process Container
window, select DB2 for the new XA data source.

9. In the classpath text box, enter C:\SQLLIB\java\db2java.zip.

10.Enter the data source user name: bpedbuser and password passw0rd.

11.Change the database name to ACBPEDB under the custom properties.

12.Click Next.

13.On the Select JMS Provider and Security window, leave the JMS provider:
WebSphere JMS Provider.

14.Set the JMS User ID as wsadmin, and the password as passw0rd (it is the
WebSphere administrator user).
 Appendix B. Sample scenario 675

15.In the Business Process Container Security Configuration section, set
Security Role Mapping as wsadmin, set the JMS API User ID as wsadmin, adn
the JMS API password as passw0rd.

16.Click Next.

17.On the Select JMS Resources window, the Create new JMS resources
using default values option should be selected.

18.Click Next.

19.On the summary window, click Finish to create the business process
container.

20.At the end of the process, a message appears confirming the successful
creation of the container.

21.Save the configuration for WebSphere.

22.Open a DB2 command window. Change the directory to
<WebSphere_root>\ProcessChoreographer.

23.Issue the command:

db2set DB2_RR_TO_RS=YES

Restart the database instance in order to make this setting effective.

24.Create the database:

db2 create database ACBPEDB

25.Grant access to the database for the bpedbuser:

db2 connect to acbpedb
db2 grant dbadm on database to user bpedbuser

26.Open the file in a text editor:

createTablespaceDb2.ddl

Replace the @location@ occurrences with the location where you want your
data stored, for example C:\ACBPEDB. Make sure that the directory exists.

27.To create the DB2 tablespace, issue the command:

db2 -tvf createTablespaceDb2.ddl

Make sure that the script's output contains no errors.

28.Disconnect then reconnect to the database with the bpedbuser again:

db2 disconnect current
db2 connect to ACBPEDB user bpedbuser using passw0rd

Important: Use short and all lowercase names for JMS user and JMS API
user. If you use Administrator on Windows, it will not work!
676 WebSphere Application Server Enterprise V5

29.To create the DB2 scheme, issue the following command:

db2 -tvf createSchemaDb2.ddl

Make sure that the script's output contains no errors.

30.Bound the CLI packages to the new database. Issue the following command:

db2 bind %DB2PATH%\bnd\@db2cli.lst blocking all grant public

31.Enable security using the Administrative Console.

32.Select Security -> User Registries -> Local OS, then enter the Server User
ID wsadmin, and password passw0rd. Click OK and save the configuration for
WebSphere.

33.Select Security -> Global Security.

34.Select Enable security, and disable Enforce Java2 Security (we do not
need Java 2 security for this example).

35.Click OK, then save the configuration for WebSphere.

36.Log out from the Administrative Console.

37.Stop the server:

stopserver ACompanyServer

38.Start the server (the name is case sensitive):

startserver ACompanyServer

Deploying the base sample application
The instructions in this section apply to the base application without extensions.

1. Make sure that the ACompanyServer is running, then start and log in to the
Administrative Console.

Note: If you do not connect to the database with the right user, the schema
for the tables will be wrong and the Business Process Container EJBs will
not be able to find them.

Note: You have to have an OS user with the name of wsadmin and
password of passw0rd.

Note: Using Windows, make sure that the current operating system user
(Administrator) has the “Act as part of the operating system” privilege.
WebSphere is not going to be able to validate the user without this setting.
 Appendix B. Sample scenario 677

2. Select Security -> JAAS Configuration -> J2C Authentication Data. Click
New to create a new entry, then provide the following info:

– Alias: dbuser
– User ID: dbuser
– Password: passw0rd

Click OK.

3. Save the configuration.

4. Select Resources -> JDBC Providers.

5. Change the scope to the ACompanyServer in order to create the data
source under the server. By default the scope is set to node.

6. Select: DB2 JDBC Provider (XA). Select Data Sources at the bottom of the
page.

7. Click New to create a new data source, then provide the following info:

– Name: redbookDS
– JNDI name: jdbc/redbookDS
– Check Use this Data Source in container managed persistence (CMP)
– Component-managed Authentication Alias: dbuser
– Container-managed Authentication Alias: dbuser

Click OK.

8. Select the newly created redbookDS entry, then select Custom Properties at
the bottom of the page.

9. Select the databaseName entry and change the value to REDBOOK.

10.Save the configuration for WebSphere.

11.The next step is to install the ACompany application. Select Applications ->
Install New Application.

12.Browse for the ACompanyBase.ear file, then click Next.

13.Navigate through the installation steps. Make sure that you check the Deploy
EJBs box, and provide the database type DB2UDB_V81 and the database
schema name ITSO. Also make sure that the application is installed on the
ACompanyServer application server.

14.Once the installation is done, save the configuration.

15.Install the process application. Select Applications -> Install New
Application.

16.Browse for the ACompanyProcessBase.ear file, then click Next. Navigate
through the installation steps. Make sure that the application is installed on
the ACompanyServer application server.

17.Once the installation is done, save the configuration.
678 WebSphere Application Server Enterprise V5

18.Select Applications -> Enterprise Applications. Check the box next to the
ACompany and ACompanyProcess applications and click Start.

19.Once both applications are running, the sample application is ready to test.
You can open the Default Business process Web client at:

http://localhost:9081/bpe/webclient

Uninstall the base sample
If you want to uninstall the base sample application to deploy the extended
sample application, or you just want to remove it from the application server,
follow these steps:

1. Select Applications -> Enterprise Applications. Select the
ACompanyProcess application.

2. Select the Business Process Modules link at the bottom, then select
ACompanyServices.

3. Click Templates, check both templates (CatalogUpdate, PO) and stop them.

4. Go back to the applications list and stop the ACompany and
ACompanyProcess applications.

5. Once they are stopped, you can select both and uninstall them.

6. Save the configuration for WebSphere.

Deploying the extended sample application
If you have the base sample installed, you will have to remove the applications
from the application server. Follow the steps from the previous section to do that.

7. Install the ACompany extended application. Select Applications -> Install
New Application.

8. Browse for the ACompanyExt.ear file, then click Next.

9. Navigate through the installation steps. Make sure that you check the Deploy
EJBs box, and provide the database type DB2UDB_V81 and the database
schema name ITSO. Also make sure that the application is installed on the
ACompanyServer application server.

10.Once the installation is done, save the configuration.

11.Install the process application. Select Applications -> Install New
Application.

12.You can select to install the customized or the extended Process Web client.

a. To install the customized Process Web client, browse for the
ACompanyProcess.MyBpewebclient.ear file, then click Next. Navigate
 Appendix B. Sample scenario 679

through the installation steps. Make sure that the application is installed on
the ACompanyServer application server.

For this scenario you have to install the MyBpewebclientEAR.ear
application also.

b. To install the extended Process Web client, browse for the
ACompanyProcess.bpewebclient.ear file, then click Next. Navigate
through the installation steps. Make sure that the application is installed on
the ACompanyServer application server.

13.Once the installation is done, save the configuration.

14.Extended Messaging configurations

Follow the steps in 6.5.2, “Configuration with JMS Embedded Messaging” on
page 259 to configure the application server for the Extended Messaging
sample. Ifyou want to use the external WebSphere MQ messaging provider,
refer to 6.5.3, “Configuration with WebSphere MQ as the JMS provider” on
page 268.

15.Business Rule Bean configurations

a. Create the Business Rule Beans database by following the steps in
“Creating the Business Rule Beans database” on page 427.

b. Deploy the Business Rule Beans application by following the steps in 10.6,
“Deployment” on page 448.

After starting the application server to setup the rule the ACompany
application will fail to start. It is normal at this stage since the rest of the
application is not configured yet.

c. Run the Rule Management application by following the steps in 10.6.1,
“Running the Rule Management Application” on page 449.

Once the server is running the business rule has to be configured. Follow
the steps in 10.3.3, “Creating and configuring the rule” on page 436.

16.Scheduler service configurations. The Startup Bean sample uses the
Scheduler service, you have to configure the scheduler to make it work.

a. Start the ACompanyServer application server if it is not running.

b. Create a new work manager for the application by following the steps in
“Work manager service in relation to the Scheduler service” on page 527.

c. Create the Scheduler database for the service. Follow the instructions in
“The Scheduler database” on page 528.

d. Create a new Scheduler service by following the steps in “Scheduler
configuration using the Administrative Console” on page 530.
680 WebSphere Application Server Enterprise V5

17.Startup Bean configurations:

a. Select Applications -> Enterprise Applications, and select the
ACompany application.

b. Change the Start weight to 2, which means that this application starts later
than the ACompanyProcess application, so the resources from
ACompanyProcess will be available for the Startup Bean.

c. Save the configuration.

18.Dynamic Query configurations

Follow the steps in 11.6, “Configuration” on page 482 to install the Dynamic
Query application for the ACompanyServer.

Also change the class loader policy for the server to SINGLE.

19.Configure the Object pool manager by following the steps in “Object pool
manager configuration” on page 553.

20.Configure the Shared Work Area service by following the steps in 15.6.1,
“Shared Work Area service configuration” on page 581.

21.Configure the Internationalization (I18N) service by following the instructions
in 16.8, “Configuration” on page 622.

22.Once everything is configured for the extended sample, stop and start the
server.

Check the log file for the server to see if there was any error during the
startup.

Deploy the Universal Test Client (optional)
The Universal Test Client (UTC) is part of WebSphere Studio. It is a very useful
and handy application for testing purposes. If you want the same functionality in
the runtime environment for the application server, follow these steps:

1. Copy the Universal Test Client enterprise application, IBMUTC.EAR, from the
<WebSphere_Studio_IE_root>\wstools\eclipse\plugins\com.ibm.etools.utc_5.
0.1 directory to the <WebSphere_root>\installableApps directory.

2. Start the application server, launch the Administrative Console, and log in.

3. Start installing a new Enterprise application (.ear) and select the IBMUTC.ear
to install from the <WebSphere_root>\installableApps directory.

4. Go through the usual application installation steps.

5. Start the UTC application.
 Appendix B. Sample scenario 681

682 WebSphere Application Server Enterprise V5

Appendix C. Additional material

This redbook refers to additional material that can be downloaded from the
Internet as described below.

Locating the Web material
The Web material associated with this redbook is available in softcopy on the
Internet from the IBM Redbooks Web server. Point your Web browser to:

ftp://www.redbooks.ibm.com/redbooks/SG246932

Alternatively, you can go to the IBM Redbooks Web site at:

ibm.com/redbooks

Select the Additional materials and open the directory that corresponds with
the redbook form number, SG246932.

Using the Web material
The additional Web material that accompanies this redbook includes the
following files:

File name Description

C

© Copyright IBM Corp. 2003. All rights reserved. 683

http://www.redbooks.ibm.com/
http://www.ibm.com/redbooks/
http://www.ibm.com/redbooks/
ftp://www.redbooks.ibm.com/redbooks/SG246932

SG246932.zip The sample application in a ZIP package (both base and
extended versions are included).

System requirements for downloading the Web material
The following system configuration is recommended:

Hard disk space: 20MB minimum
Operating System: Windows 2000 with SP3 and the latest security updates
Processor: Pentium® 4, 1GHz or faster
Memory: 512 MB minimum, 1GB preferred

How to use the Web material
Download the SG246932.zip file to a temporary directory. Create a directory for
the additional material, for example: C:\SG246932, and unzip the contents of the
Web material ZIP file into this folder.

For further instructions on how to use the sample application included in the
additional material, refer to Appendix B, “Sample scenario” on page 665.
684 WebSphere Application Server Enterprise V5

acronyms
1PC One-phase commit

2PC Two-phase commit

AAT Application Assembly Tool

ACID Atomicity, Consistency,
Isolation, Durability

AMC Application / Module /
Component

AMI Application Managed
Internationalization

API Application Programming
Interface

BMP Bean Managed Persistency

BPE Business Process Engine

BPEL4WS Business Process Execution
Language for Web Services

CMI Container Managed
Internationalization

CMP Container Managed
Persistency

CMR Container Managed
Relationship

CORBA Common Object Request
Broker Architecture

CPU Central Processing Unit

CSS Cascading Style Sheet

DD Deployment Descriptor

DMZ Demilitarized Zone

EAR Enterprise Archive

EIS Enterprise Information
Systems

EJB Enterprise JavaBeans

EJB QL EJB Query Language

EM Extended Messaging

FAR Flow Archive

Abbreviations and
© Copyright IBM Corp. 2003. All rights reserved.
FDML Flow Definition Markup
Language

FP FixPack

GMT Greenwich Mean Time

GUI Graphical User Interface

HA High Availability

HACMP High Availability Cluster
Multi-Processing

HTML Hypertext Markup Language

HTTP Hypertext Transfer Protocol

IBM International Business
Machines Corporation

IE Integration Edition
(WebSphere Studio)

ITSO International Technical
Support Organization

J2EE Java 2 Enterprise Edition

JAR Java Archive

JCA Java Connector Architecture

JDBC Java Database Connection

JMS Java Message Service

JNDI Java Naming and Directory
Interface

JSP JavaServer Pages

JVM Java Virtual Machine

LDAP Lightweight Directory Access
Protocol

MDB Message-Driven Bean

MVC Model-View-Controller

ND Network Deployment

NLS National Language Support

OASIS Organization for the
Advancement of Structured
Information Standards
 685

ORB Object Request Broker

OS Operating System

PME Programming Model
Extension

PMI Performance Monitoring
Interface

QL Query Language

QoS Quality of Service

RDB Relational Database

RMI/IIOP Remote Method Invocation /
Internet Inter-ORB Protocol

RRA Relational Resource Adapter

SDK Software Development Kit

SOA Service Oriented Architecture

SOAP Simple Object Access
Protocol

SQL Structured Query
Language

SSS Staff Support Service

UDDI Universal Description,
Discovery and Integration

WAR Web Archive

WIM Work Item Manager

WSDL Web Services Description
Language

WSFL Web Services Flow Language

WSIF Web Services Invocation
Framework

XML Extended Markup Language

XSLT Extensible Stylesheet
Language Transformations
686 WebSphere Application Server Enterprise V5

Related publications

The publications listed in this section are considered particularly suitable for a
more detailed discussion of the topics covered in this redbook.

IBM Redbooks
For information on ordering these publications, see “How to get IBM Redbooks”
on page 689.

� IBM WebSphere Application Server V5.0 System Management and
Configuration: WebSphere Handbook Series, SG24-6195

� WebSphere V5.0 Applications: Ensuring High Performance and Scalability,
SG24-6198

� IBM WebSphere V5.0 Security WebSphere Handbook Series, SG24-6573.

� Exploring WebSphere Studio Application Developer Integration Edition 5.0,
SG24-6200

� WebSphere Version 5 Web Services Handbook, SG24-6891

� WebSphere Application Server Enterprise Edition 4.0: A Programmer's
Guide, SG24-6504

� Java Connectors for CICS: Featuring the J2EE Connector Architecture,
SG24-6401

� WebSphere Enterprise: WebSphere Application Server Enterprise Edition
4.0: A Programmer's Guide, SG24-6504

� IBM WebSphere V5.0 Performance, Scalability and High Availability,
SG24-6198

� WebSphere Application Server V5 for iSeries: Installation, Configuration, and
Administration, SG24-6588

Other resources
These publications are also relevant as further information sources:

� DB2 Universal database for UNIX, Quick Beginnings V 7, GC09-2970

� DB2 Universal database for Windows, Quick Beginnings V 7, GC09-2971

� DB2 Universal database, Quick Beginnings for DB2 Servers V 8, GC09-4836
© Copyright IBM Corp. 2003. All rights reserved. 687

� DB2 Universal database, Quick Beginnings for DB2 Clients V 8, GC09-4832

� High Availability Cluster Multi-processing for AIX, Concepts and Facilities
Guide V4.5, SC23-4276-04

� WebSphere MQ for Windows, V5.3 Quick Beginnings, GC34-6073

� WebSphere MQ for AIX, V5.3 Quick Beginnings, GC34-6076

� WebSphere MQ for Solaris, V5.3 Quick Beginnings, GC34-6075

� WebSphere MQ for HP-UX, V5.3 Quick Beginnings, GC34-6077

� WebSphere MQ for Linux for Intel and Linux for zSeries, V5.3 Quick
Beginnings, GC34-6078

Referenced Web sites
These Web sites are also relevant as further information sources:

� WebSphere InfoCenter

http://publib7b.boulder.ibm.com/webapp/wasinfo1/index.jsp?deployment=Enterp
rise&lang=en

� WSIF implementation

http://cvs.apache.org/viewcvs.cgi/xylem-axis-wsif

� WSDD Process container architecture document

http://www7b.boulder.ibm.com/wsdd/library/techarticles/wasid/WPC_Concepts/W
PC_Concepts.html

� Process Choreographer Web client

http://www7b.boulder.ibm.com/wsdd/zones/was/wpc.html

� Staff resolution architecture

http://www7b.boulder.ibm.com/wsdd/zones/was/wpc.html

� (WSDD): WebSphere Application Server Enterprise Process Choreographer
using Process Choreographer in a distributed environment

http://www7b.boulder.ibm.com/wsdd/library/techarticles/wasid/WPC_UsingDist/
WPC_UsingDist.html

� WebSphere MQ platform specific books:

http://www-3.ibm.com/software/ts/mqseries/library/manualsa/manuals/platspec
ific.html

� Sun’s JMS page

http://java.sun.com/products/jms/index.html
688 WebSphere Application Server Enterprise V5688 WebSphere Application Server Enterprise V5

http://publib7b.boulder.ibm.com/webapp/wasinfo1/index.jsp?deployment=Enterprise&lang=en
http://cvs.apache.org/viewcvs.cgi/xylem-axis-wsif
http://www7b.boulder.ibm.com/wsdd/zones/was/wpc.html
http://www7b.boulder.ibm.com/wsdd/zones/was/wpc.html
http://java.sun.com/products/jms/index.html
http://www7b.boulder.ibm.com/wsdd/library/techarticles/wasid/WPC_Concepts/WPC_Concepts.html
http://www7b.boulder.ibm.com/wsdd/library/techarticles/wasid/WPC_UsingDist/WPC_UsingDist.html
http://www-3.ibm.com/software/ts/mqseries/library/manualsa/manuals/platspecific.html

� Extended Messaging tutorial on defered response

http://www7b.software.ibm.com/wsdd/library/tutorials/0303_cox/cox_reg.html

� Amazon.com Web services

http://associates.amazon.com/exec/panama/associates/ntg/browse/-/1067662/re
f=gw_hp_ls_1_3/

� WebSphere Enterprise Scheduler API

http://publib7b.boulder.ibm.com/wasinfo1/en/info/ee/javadoc/ee/com/ibm/webs
phere/scheduler/package-summary.html

� Web Services Technology preview

http://www7b.software.ibm.com/wsdd/downloads/web_services.html

� Sun’s J2C page

http://java.sun.com/j2ee/connector/

How to get IBM Redbooks
You can order hardcopy Redbooks, as well as view, download, or search for
Redbooks at the following Web site:

ibm.com/redbooks

You can also download additional materials (code samples or diskette/CD-ROM
images) from that site.

IBM Redbooks collections
Redbooks are also available on CD-ROMs. Click the CD-ROMs button on the
Redbooks Web site for information about all the CD-ROMs offered, as well as
updates and formats.
 Related publications 689

http://www.redbooks.ibm.com/
http://www.ibm.com/redbooks/
http://www.ibm.com/redbooks/
http://www7b.software.ibm.com/wsdd/downloads/web_services.html
http://java.sun.com/j2ee/connector/
http://publib7b.boulder.ibm.com/wasinfo1/en/info/ee/javadoc/ee/com/ibm/websphere/scheduler/package-summary.html
http://associates.amazon.com/exec/panama/associates/ntg/browse/-/1067662/ref=gw_hp_ls_1_3/
http://www7b.software.ibm.com/wsdd/library/tutorials/0303_cox/cox_reg.html

690 WebSphere Application Server Enterprise V5690 WebSphere Application Server Enterprise V5

Index

Symbols
.project file 120
“flat” work area 564
“push down” technology 461
“type safe” notification 319

A
Abstract Schema Name 464
Access intent 21, 345, 641

Assembly 367–368
Bean level 346
Create 366
Dynamic Query 378
Method level 347
Read Ahead 360
Studio 368

Access Intent Policy 345, 349
Create 363
Predefined 351

Access type 350
Read 350
Update 350

Exclusive 350
No Collision 350
Weakest Lock at Load 350

Accessing PMEs 639
ACID properties 56
ACID transactions 396
Action commands 66
Activate At policy 407
Activities

Empty 50
Java snippets 49
Process 49
Receive event 49
Service 48
Staff 49

Activity ID 102
Activity state

Claimed 102
Finished 102
Ready 102

ActivitySession 21, 396
© Copyright IBM Corp. 2003. All rights reserved.
beginSession() method 405
Boundary 398
Client scoped life cycle 410
Client side demarcation 410
Configuration 398
Coordination of one-phase commit resources
410
endSession() method 405
Exceptions 411
Option A 408
Option B 408
Option C 408
Option C+ 408
Properties 398
resetSession() method 405
Resolution control 398
Runtime 410
Troubleshooting 411
Unresolved action 399
Usage Scenarios 410

ActivitySession attribute values 401
ActivitySession service API 404
Actors 27
acwa.jar 562
Add Access intent

Studio 370
Add Breakpoint 149
Add client page 88
Adding libraries 75
Admin application 632
Admin service 630, 632
Admin UI 632
Administration 643
Administrative Console

Install 644
Aggregation 460
AIID 102
Alarm 295, 321
Alarm development 324
AlarmListener 298, 305, 321

fired() 298
fired() method 323

AlarmManager 291, 294–295
AMC 464
 691

AMI 587
AppBootstrapBean 307
Application callable receive 229
Application client test 550
Application Profile 355, 371
Application profiling 21, 346, 641

API 349, 379
Assembly 363
Decision algorithm 347
Sample flow 362
Supporting application 379
Test 381
Tracing 381

Application server 630
architecture 629
cluster 180, 183, 185
crash 503
network deployed 179
services 638

Application shutdown 503
Application start up 502
Application/Module/Component 464
Application-Managed Internationalization 587–588
appprofile-ee.jar 380
Architecture 628
Assembly

Business Rule Beans 447
Dynamic Query 478
Dynamic Query Access Intent 480
Internationalization service 599
Object pools 543
Scheduler service 516
Startup Beans 493

Assign query 161
Asynchronizing applications 312
Asynchronous application 303
Asynchronous Beans 20, 641

API 289
Application Profile 300
Base application 306
Compare 299
Datasource setup 329
Deployment 331
Development 312
EJB cache code 308
framework 288
J2EE Component MetaData 300
J2EE Contexts 301
Java object 289

List display code 309
Programming interface 289
Programming Model 300
Quality of Service 333
Resource references 292
Sample 335
Security 300, 302, 335
Singleton code 307
Test 325
Test server 325
Three types 297
Transactions 299, 301
Work development 313

Asynchronous patterns 305
Asynchronous search 337

Flow 337
Asynchronous service invocation 54
Asynchronous Work test 316
AsynchScope 291, 294
Attach nodes 203
Attach to Process Engine 151
Audit trail 225

B
Background processing 303, 305
Base application

Test server 671
Base rule 426
Base sample

Deployment 677
import 667
Uninstall 679

Basic configuration 647
Bean cache policy 407
BeanTaskInfo interface 512
Blocks 50
BPE

Artifacts 216
Availability 177
Class loader issues 637
Client settings 88
Configuration file 117
Debugging 148
Error messages 224
External interfaces 174
Factory 174
Internal interfaces 174
Management 216
692 WebSphere Application Server Enterprise V5

Navigator 173
People interaction 174
Process debugger 149
Scalability 177
Staff repositories 176
Staff resolution plug-ins 176
Staff support 158
Staff support service 176
Supporting database 637
Testing 148
Tracing 224
ViewContext 107
Web client 175
Work item manager 175

BPE API
Processes 62

BPE architecture 172
BPE Java client 132
BPE Java client libraries 139
BPE servlet client 140
BPE Web client 71

API 72
Customization 73
Customize 71
Customizing the content 123
Customizing the header 122
Customizing the layout 122
JSP fragments 84
Look and feel 71
Process information 72
Process Input page 83
Process output page 82
Register custom JSPs 88
Security role 119
Splash screen 121
Staff activity 72

BPEContainer 118
bpecontainer_ejb 118
BPEL 60
BPEL4WS 60
BPERemoteDeploy 118
bperemotedeploy_ejb 118
bpesoapclient 118
bpeWebclient 118, 471

copy 118
BRBeansDB2.jar 427
brbeansDefaultProperties 430
brbPropertiesFile 450
Built in query sample 469

Business Analyst 421
Business logic 435
Business Process Container 635

Install Wizard 675
Supporting database 676

Business process engine 42
Concurrency 43
Heterogeneous execution 43
Quality of Service 43
Recoverability 43

Business Process Execution Language for Web
Services 60
Business process-based applications 42
Business processes 36
Business Rule Beans 21, 641

Architecture 424
Assembly 447
Base rule 426
brbeansDefaultProperties 430
Classifier rule 425
Client component 424
Client-side Caching 451
Components 424
Configure rule 436
Create folder 437
Create project 426
Create rule 436–437
Creating database indexes 454
Database 427
Deployment 448
Deployment code 427
Development 426
Development process 426
EJBs 423
Flow 424
framework 420, 423
Java libraries 427
New folder 437
New rule 437
Non-classifier rule 426
Persistence 425
Precedence 439
Process flow 442
Rule 425, 427
RuleFolder 427
RuleImplementor 423, 425
Sample 422, 441
Sample flow 442
Scenario 422
 Index 693

Security 455
Test environment 432, 444
Test sample 446
Trigger Point 423
TriggerPoint object 424
VM arguments 429
XML 424

Business rules 420
Business scenario 26

C
Calendar

Resource environment reference 524
Caller identity 346
Caller Internationalization context 594
Cascading Style Sheets 117
Cell 643
Cell configuration 203
Class loader 636

issues 637
policy 477, 483

Classifier rule 425
Cloning 647–648
CMI 587
CMM 228
CMR 351
Code assist 119
Collection Increment 350

Access Intent 359
Collection increment 359
Collection Scope 350

ActivitySession 351
Transaction 350

Compare Asynchronous Beans 299
compensate_ejb 118
Compensation 56
Concurrency Control 349
Configuration

ActivitySession 398
Class loader policy 483
Dynamic Query 482
Extended Messaging 250
Internationalization service 622
Last Participant Support 390
Object pools 552
Process cache settings 68
Process commands 68
Process view 68

Scheduler service 511, 527, 530
Shared Work Area service 580
Startup Beans 502
WebSphere 664

Configuration repository 629
Configure Test server 671
Connection pooling 631
Container ActivitySession 401
Container internationalization attribute 601
Container Managed Messaging 228
Container Managed Relationship 351
Container Tasks 372
Container Transactions 372
Container-Managed Internationalization 587, 589
Context root 74
Contextual information 560
Controller 64
CORBA C++ SDK 23
Country code 590
Create Application profile 372
Create Data source 448, 678
Create new JSP 84
Create Rule implementor 435
Create scheduler database 529
Create Sender bean 236
Create service proxy 497
Create servlet 143
Create startup session bean 498
Create task session EJB 518
Create Test server 670
Create work area 565
createFastPool() method 540
Cron calendar 167, 514
CSS 117
Custom installation 655
Custom object pool 541, 553
Custom Staff Query Verbs 163
Customer loyalty scenario 422
Customization

BPE Web client 73

D
Data access patterns 358
Data dictionary 78
Data integrity 363
Data mapping 230
Database connection 631
Database lock monitor 357
694 WebSphere Application Server Enterprise V5

DB2_JDBC_DRIVER_PATH 194
Dead beats 297
Deadlock 356
Debugging 148

Step-by-step mode 154
Default access intent 346
Default user calendar 514
Deferred response 229
Define Data source 311
Define local EJB reference 145
Define notification 513
Define task 512
Define user calendar 513
DenyAllRole role 455
Dependent Rules 439
Deploy process 218, 672
Deployment

Business Rule Beans 448
Dynamic Query 483
Internationalization service 623
Scheduler service 531
Startup Beans 502
Universal Test Client 681

Deployment Manager node 654, 661
Design

Internationalization service 586
Object pools 539
Scheduler service 510
Shared Work Area service 561
Startup Beans 490

Develop AlarmListener 321
Development

Internationalization service 591
Object pools 539
Scheduler service 511
Shared Work Area service 562
Startup Beans 491, 496

Development Environment Setup 426
Different locales 585
Different time zones 585
Display commands 65
distexcep.jar 562
Domain Expert 421
Dynamic Query 21, 458, 641

Access Intent 378, 480
Aggregate functions 459
API 463
Assembly 478
Bean business methods 459

benefits 460
bpeWebclient 470
Business methods 459
Calendar comparisons 458
Client implementation 465
Configuration 482
Delimited identifiers 458
Dependent Value methods 459
Deployment 483
Design 462
Development 463
Development environment 467
DISTINCT predicate 458
Dynamic query execution 459
Example 460
EXISTS predicate 458
Financial applications 460
GROUP BY, HAVING 459
Import supporting application 467
Install query.ear 482
Interfaces 463
Java libraries 463
JNDI name 463, 471
JSP 472, 474
Local client programming model 465
Locking 484
Multiple element select 459
Order by 458
parameterVars 464
Performance 462, 484
Process Choreographer integration 470
Query over inheritance graph 458
queryDomain 464
queryStatement 464
Remote client programming model 466
Results JSP 474
Return multiple fields 460
Sample client 467
Sample deployment 468
Sample flow 468
Sample integration 475, 481
Sample query client 466
Scalar functions 458
Scenario 460
Security 486
Select clause 458
service 458
Servlet 474
SQL date/time expressions 458
 Index 695

String comparisons 458
Subqueries 458
Test environment 476
Test sample 477
Transactions 484

Dynamic Query Bean 464
Dynamic SQL 458
Dynamic tuning 334
Dynamically listen for JMS queues 303

E
EAAT0046I 377
eBank sample 363
Editing process 222
EE Test Environment 148
efixes 660
efixWizard.bat 645
EJB 344, 631
EJB Access Intent 480
EJB container 344, 630–631
EJB custom finder 307
EJB life cycle 396, 406
EJB method authorization 462
EJB module 631

re-start 503
EJB performance 344
EJB QL 458
EJB RDB mapping 307
EJB references restriction 146
EM 228
E-mail interfaces 631
Embedded HTTP server 630
Embedded JMS Server 633
Embedded Messaging 258
Empty activities 50
Enable ActivitySession service 411
Enhanced Internationalization Service 596, 624

Install 624
Enterprise architecture 634
Enterprise Extensions 628, 659
Enterprise Java Beans 631
Event 293
Event driven applications 302
Event source

Reference 293
Event style receive 229
EventListener 299, 305, 320
EventSources 291, 293, 319

Everybody staff plugin 210
executePlan() method 465
executeQuery() method 464
Existing base product 654
Export 645
Export adminconsole 645
Export EAR 479
Export project 479
Extended Local Transactions 397

Containment 397
Enlistment 397

Extended messaging 20, 228, 640
code 241
Configuration 250
Late responses 278
Port 231
Receiver bean 243
Transactions 276
Wizards 233

Extended sample application 669
Configuration 672
Deployment 679

Extensibility 628
Externalize rule processing 420

F
Facades 63
FAR 208, 636
FDML 59
Feature dependencies 656, 659
Features to install 655
findByPrimaryKey() method 351, 361
Fire and forget 229
Flow archive 208, 636
flushPool() method 541
Forward operations 58

G
Gather security roles 434
Generated code 241, 247
Generic rules library 423
getObject() method 540
getPool() method 540
Global Transaction 388
Global Transaction scenario 388
GMT 584
Greenwich Mean Time 584
696 WebSphere Application Server Enterprise V5

H
HACMP 185
Handling responses 279
Heuristic condition 394
Heuristic reporting 394–395
High availability 647
High Availability Cluster Multi-processing 185
High-availability configuration 185
Horizontal scaling 182, 648
HTTP protocol 630
HTTP Server 630
HTTP Server plug-in 630
HTTPRequest 471

I
i18n 584
I18nUtils 620
IBM Agent Controller 148
IBM HTTP Server 654
IBM JDK 140
Implementation 320
Import 669
Install 192, 202

Administrative Console 644
Database server 202, 205
Existing base 658
Existing Network Deployment 661
Features 655
Network Deployment 205
query.ear 482
Troubleshooting 663
Verify 662
Web server 204
WebSphere MQ server 205
WebSphere Network Deployment 202

Installation 654
Steps 655
Topologies 177
Verify 661
WebSphere 654

interface 435
interim fixes 645, 660
internal JMS server 266
Internationalization 527
Internationalization attribute 589

EJBs 601
Servlet 603

Internationalization context 586

API 591
Internationalization interface 592
Internationalization service 23, 642

Application client test 617
Assembly 599
Caller context 587
Configuration 622
Deployment 623
Design 586
Develop sample 606
Development 591
Invocation context 587
NameNotFoundException 623
Resource environment reference 610
Run as Caller 589
Run as Server 589
Run as Specified 589
Sample application 605
Sample application client 606
Sample details 620
Sample Web client 618
Scenarios 584
Test environment 598
Tracing 623
Traditional solutions 585
Web Services 596

Internationalization type 588, 599
EJB 599
Servlet 600

internationalized 584
Interruptible processes 52
Intra-Application Notification 305
Intra-process load balancing 183
Invocation internationalization context 595
InvocationInternationalization interface 592
Invoke RMLT 387

J
J2C 19
J2C Container 630, 632
J2EE

Asynchronous 303
J2EE client

Run 674
JAAS Authentication Entries 433
Java

Swing 134
Visual Editor 133
 Index 697

Java 2 Connectors 19
Java application

Run 428
WebSphere Studio 428

Java Connector Architecture 632
Java GUI application 133
Java Message Service 228
Java process debugger 153
Java SDK 586
Java snippets 49
Java Transaction Service 395
Java Virtual Machine 538, 630
JCA 632
JMS 228
JMSAPIUser Role 216
JNDI 630
JNDI Explorer 444
JSP 631
JSP development 471
JTA Extensions 412
JTS 395
JVM 538, 630

K
key-value-mode triplet 561

L
Language code 590
Last Participant Support 21, 389

Configuration 390
Tracing 392
Troubleshooting 392

Late binding values 161
Late response extension 283
Late responses 278–279
launchClient 138, 617
LDAP schema 211
LDAP staff plugin 163

Configuration 213
LDAP staff plugin provider 210
LDAP user registry 666
License agreement 655
Listener port 282
Load At policy 407
Load point 359
Local Transaction Containment 387
Locale 586
Locales field 590

lock conversion 353
lock escalation 353
Loops 50
Lowest level of locking possible 484
LPS 389
LTC 387
LTC scenario 387

M
macroflow 52
Manage tasks 515
Manage WebSphere Variables 189
Managed process 629
Managing processes 216
MDB 228
Message formats 228
Message Listener Service 265
Message Sending Pattern 231
Message-Driven Beans 228, 633
MessageTaskInfo interface 512
Messaging interfaces 631
Messaging output port 263
Messaging Patterns 230
Messaging Receiving Pattern 232
Metadata 461
microflows 51
Model 64
Model-View-Controller 64
MQ messaging 258
MQJMS_LIB_ROOT 195
Multinode environment 654, 661
Multiple WorkManagers 334
MVC 64

N
Name server 633
Name service 630
NameNotFound 284
Nested work areas 564
Network Deployment 180, 661
New Access Intent Policy 365
New Web project 74
NLS 224
Node 629
Node Agent 629
Non-classifier rule 426
Non-interruptible process 51
non-JMS middleware 303
698 WebSphere Application Server Enterprise V5

Notification 513
Notification action 513
Notification framework 319
Notification mask 513
NumberTimeinterval 515

O
OASIS 60
Object pool manager 540, 553
Object pools 22, 538, 540, 642

Add a resource environment reference 546
Advantages 538
API 540
Application client development 545
Assembly 543
Configuration 552
Design 539
Development 539
Disable 552
Find 542
init() method 541
JNDI 542
Performance 555
Resource environment reference 543
returned() method 541
Runtime 554
Sample 544
Specifed class 542
Synchronized pool 539
Test 550
Test environment 543
Test results 552
Tracing 555
Unsynchronized pool 539
Workload management and failover 555

Object query statement 461
Object Request broker 630
Object usage frequency 539
objectpool.jar 540
Open Business process 79
Open message part types 80
Open process file 93
Optimistic concurrency 353
Optimistic concurrency control 349
OptimisticRead 357
ORB 630
Organization for the Advancement of Structured In-
formation Standards 60

P
Parallel search 335
Parallel task 303
Parameterized verb 160
Partition tasks 303
Pass data between application components 560
Performance

Dynamic Query 484
Object pools 555
Scheduler service 534

Performance and analysis tool 654
Performance Monitoring Interface 631
Performance Monitoring Service 534
Performance report 354
Persistence Manager 344
Persistence Manager cache 359
Pessimistic concurrency control 349
PessimisticUpdate 356–358
Phantom reads 353
PIDD 98
PME 638
PoolableObject 541
Potential owner 159
Predicate clause 459
prepare commit 394
prepareQuery() method 465
Process activities 49
Process choreographer 20, 640

Activities 48, 63
API JNDI 131
API Local interface 131, 140
API Remote interface 131
Audit trail 225
Blocks 50
Command implementation 67
Compare WebSphere MQ Workflow 39
Compensation 56
Composition model 45
Configuration file 67
Data source configuration 193
Default JSPs 68
Deploy Process 218
EJB façade 64
Empty activities 50
External API 60
General API 61
Information Model 44
Installation wizard 193
J2EE approach 42
 Index 699

J2EE programming model 45
J2EE security roles 215
Java snippets 49
JMS provider configuration 195
Loops 50
Managment 216
MDB façade 63
Modelling language 59
Organization model 45
Parallel activities 47
Process activities 49
Process engine 38
Process model 47
Process template 47
Programming 42
Programming model 44
Receive event activities 49
Security 213
Sequential activities 47
Service activities 48
Services model 44
Staff activities 49
Tracing 224
Transaction boundaries 53
Using 38
Variables 50
Web client 64
Work items 63

Process Choreographer API 128
Process container

Architecture 172
Clustering 206
Database setup 199
Install 186
Resources 186
Runtime topologies 176
Security configuration 196
Software components 188
WebSphere MQ setup 201

Process Debug Perspective 150
Process debugger 149

Java Debugger 153
WebSphere Application Server 158

Process deployment 218
Process EJB module 636
Process ID 98
Process Instance Name Panel 123
Process life cycle 56
Process modeling language 59

Process navigation 172
Plug-ins 173

Process Security Context 214
Process template 221
Process versioning 219
Process Web client 636
ProcessAdministrator Role 215
Process-Level Staff Roles 162
Process-specific API 63
Profiling Levels 344
Profiling priorization 347
Programming Model Extensions 638

Overview 19

Q
QoS 628
Qualities-of-Service 628
Query bean 461
Query Engine 462
Query enhancements 458
Query projection 459
Query Result Caching 213
Query support 458
query.ear 476, 482
QueryBean 464
QueryClient.jar 463
QueryIterator() method 464
Queue destinations 261, 271
QueueConnectionFactory 259, 269

R
Read Ahead 351, 360, 377
Receive event activities 49
Receiver bean 228, 243

Code 247
Redbooks Web site 689

Contact us xix
Registration 320
Relational Resource Adapter 344
Repeatable read 353
Repository 632
Resource Manager 387

Prefetch Increment 351
Resource Manager Local Transaction 386
Resource reference

Work 317
returnObject() method 540
RMLT 386
700 WebSphere Application Server Enterprise V5

Role-based permissions 159
RRA 344
Rule

Configuration 436
Unit test 444

Rule client 440
Create 440

Rule Firing Location 453
Anywhere 453
Configuration 454
Local 453
Remote 453

Rule Implementation Developer 421
Rule implementor

Create 435
Rule loader 424
Rule maintenance 421
Rule Management 421
Rule Management Application 421, 423, 428, 436

Configuration 428
Run 449
Tasks 436
WebSphere Studio 428

Rule Management tool 421
Rule object 425
Rule properties 437
Rule settings 437
Rule state

Expired 440
In effect 440
Invalid 440
Schedules 440
Unavailable 440

Rule-based Application Component Developer 421
RuleImplementor 425, 435

fire() 435
getDescription() 435
init() 435

RuleManager role 434, 455
rulemgmt 450
Rules states 440
RuleUser role 434, 455
Running Java application 428
Runtime architecture 628
Runtime environment

Sample configuration 675
Startup Beans 502

S
Sample

Activity input page 100
Activity output map 104
Activity output page 102
Activity pages 99
Application profiling 362
Approval pages 94
Asynchronous Beans 335
Asynchronous Beans output 332
Asynchronous Beans test 311
Asynchronous search servlet 338
Base application 306
BPE Java client 132
BPE servlet client 140
Business Rule Bean 441, 672, 680
Business Rule Beans flow 442
CMP Cache 304
Configuration 310, 341
Configuring activity pages 106
Customized activity input page 111
Customized activity output page 113, 115
Customized JSPs 92
Customized process information input page
109
Customized process input page 107
Customizing BPE JSPs 79
Database 666
Database configuration 310
Development environment 667
Dynamic Query 468, 475, 673, 681
eBank application 363
Extended messaging 672, 680
Generate EJB deploy code 669
Import 306
Import to Studio 667
Input request page 94
Interaction diagram 304
Internationalization service 674, 681
Look and feel 117
Object pool 544, 673, 681
Parallel Search 337
Predefined queries 469
Process error page 87
Process information page 98
Process input map 96
Process input mapping 85
Process input page 84, 95, 123
Process output message page 90
 Index 701

Process page 95
Rebuild projects 669
Runtime environment 675
Scheduler service 517, 673, 680
Shared Work Area service 674, 681
Singleton 304
Startup Bean 304, 315, 673, 681
Test BPE servlet client 146
Test environment configuration 670
Test server configuration 310
Testing BPE Java client 137
User registry 666

Sample application 666
Sample business processes 29
Sample code

EMS 229
Sample configuration 496
Sample JSP 471
Sample process

Generate deploy code 668
Sample scenario 26

Extended messaging 234
Sample servlet 473
Scalability 647

Startup Beans 506
Schedule a Task 515
Scheduler API 511
Scheduler Calendar JNDI name 166
Scheduler database 528
Scheduler service 22, 510, 642

Alarm thread 531
Assembly 516
Configuration 511, 527
Deployment 531
Design 510
Development 511
Disable 531
Example 510
Find 515
JNDI 514
Locking mechanism 532
Performance 534
Runtime 531
Sample scenario 517
Scenario 510
Security 536
Supporting database 528
Test environment 516
Tracing 532

Wakeup daemon 531
Work Manager service 527

Scheduler service enablement 520
schedulerclient.jar 517
SchedulerProxy bean 610
Scripting client 633
Security

Business Rule Beans 455
Dynamic Query 486
executeQuery() 486
Extended messaging 285
Scheduler service 536
Startup Beans 492

Security context 214
Security server 633
Security service 630
Sender bean 236

Code 241
Service activities 48
service oriented architecture 16
Servlet 631
Servlet development 473
Session management 631
Set of alarms 297
setProperties() method 541
Shared Work Area 22, 642

Sample scenario 560
Shared Work Area service 560, 584

API 563
Application client 568
Change property mode 567
Characteristics 561
Client properties 581
Configuration 580
Design 561
Development 562
Find 564
Get properties 566
JNDI 564
Modify properties 564, 566
Pervasiveness 562
PropertyModeType 563
Remove properties 567
Sample 568
Size 562
Test 577
Test environment 568
Tracing 582
user defined properties 565
702 WebSphere Application Server Enterprise V5

Sharing object pools 555
Simple arithmetic calendar 515
SIMPLE calendar 167
Simple Object Access Protocol 634
SimpleTimeZone 586
Single machine 178
SOA 16
SOAP 634
Special Enterprise Archive 636
Specific finders 461
Splash screen 121
SQL statement 461
SQLJ 462
Staff activity 49, 54

Assign query 161
Global Variables 164

Staff Activity Data 166
Staff Activity Duration 166
Staff activity roles 159
Staff plugin 208
Staff plugin provider

Configuration 208
Staff queries 159
Staff resolution plugin 208
Staff settings 208
Staff support 158
Stale beats 297
Stand-alone application server 178
Stand-alone topology 192
Start WebSphere Studio 667
Starter role 163
Starting process template 221
Startup Beans 22, 490, 642

Assembly 493
Configuration 502
Default priority 505
Deployment 502
Design 490
Development 491, 496
Example 490
Home interface 491
Implementation 500
Priorites 493
priorities 504
Remote interface 491
Runtime environment 502
Sample 496
Scalability 506
Security 492

Security identity 493
start() method 315, 492, 501
stop() method 492
Test environment 493
Tracing 506
Transactional properties 495
Transactions 492
Using 491

Startup service runtime flow 502
startupbean.jar 497
Stopping process template 221
Stopping templates 679
Stratified transactions 52
Studio

Import sample 667
J2EE clients 674

SubsystemMonitor 291, 296
SubSystemMonitorManager 294
Supporting database 199, 640
Swing GUI 134
Synchronized object pools 554
Synchronous response 229
Synchronous service invocation 53
System staff plugin 210
System staff plugin provider 210

T
Table prefix 529
Task 512

Cancel 515
Partition 303
Permanently delete 515
status 515
Suspend 515

Task handler bean implementation 519
Task information 512
Task target action 512
Terminate work area 567
Test

Business Rule Beans 446
Test environment

Business Rule Beans 444
Configuration 432, 476, 670
Dynamic Query 476
Internationalization service 598
Object pools 543
Scheduler service 516
Shared Work Area service 568
 Index 703

Start 137
Startup Beans 493

Test server 433
Data source 433

Testing 148
Time zone ID 590
Time-Based activity 305
TimeZone 586
Topology 178–180
Trace service 630
Tracing

Application profiling 381
Last Participant Support 392

Transaction
Compensation 56
Hazard 390
Phase one 388
Phase two 389
XA 56

Transaction isolation level 352
Transaction management 631
Transaction Manager 388
Transaction termination 466
Transactional services 641

Samples 413
Transactions

Dynamic Query 484
Startup Beans 492

Transient activity 305
Trigger point 420
Troubleshooting

ActivitySession 411
Last Participant Support 392

Two-phase commit 388
Type safe notification 293
Typical installation 655

U
UDDI 634
Umbrella installation 654–655
Undo 56
Undo operations 58
Uninstall process 222
unit of work scope 387
Unit test

Extended messaging 249
Universal Description, Discovery and Integration
634

Universal Test Client 254, 444
Deployment 681

Unsynchronized object pools 555
Updating process 221
Use cases 26
Use work area 565
User calendar 513
User defined calendar 522
User registry 666
User Registry staff plugin provider 210
UserCalendar 167
UserInternationalization interface 591
UserWorkArea 563
Using Internationalization service 594
Using Object pools 542
Using Scheduler service 511
Using Shared Work Area service 564
Using Startup Beans 491
UTC 681

V
Value object methods 460
Variables 50
VerbSet.xml 163
Verify installation 658
Versioning processes 219
Vertical scaling 181, 647
View 64
Virtual host 631
Visual Editor 133

W
Wakeup daemon thread 531
wasStartupPriority 504
wasStartupPriority property 502
WeakestLockAtLoad 355
Web client

ViewContext 107
Web container 630–631
Web Deployment Descriptor 143

Editing the source 146
Web server plug-ins 654
Web services

Architecture 17
Web Services Description Language 634
Web services engine 633
Web Services Invocation Framework 634
WebClientUser Role 216
704 WebSphere Application Server Enterprise V5

WebSphere
Configuration 664
Installation 654

WebSphere Application Server
Process debugger 158

WebSphere Application Server Enterprise 634
Architecture 634
cell 643

WebSphere Application Server V5 base 629
WebSphere cell 643
WebSphere Client 138
WebSphere Embedded Messaging 258
WebSphere Enterprise

cell 643
features 655
Installation 654

WebSphere environment variables 189
WebSphere JMS Provider 259, 633
WebSphere JVM settings 449
WebSphere MQ 183

Clustering 183
Messaging 258
messaging provider 268
Workflow 36

Compare Process Choreographer 39
WebSphere plug-in 630
WebSphere Studio

Visual Editor 133
WebSphere Variables 675
WebSphereTrader 303
Welcome Pages 122
Work 291, 298

Amazon Search 340
Background processing 305
Development 313
EJB search 339
File Search 340
JDBC Search 340
release() 298
run() method 298, 314

Work Area property
Fixed 563
Fixed read-only 563
Normal 563
Read-only 563

Work Item Manager 159
Work Manager

create() 293
doWork() 292

join() 293
startWork() 292

Work manager service 527
Workflow 36
Workload management 646
WorkManager 291

Reference 292
Tuning 334

WorkManager configuration 330
WorkManager reference 328
wsadmin 633
WSDL 17, 634
wsexception.jar 620
WSFL 59
WSIF 18, 634
wsOptimisticRead 352
wsOptimisticUpdate 352
wsPessimisticRead 351
wsPessimisticUpdate 351, 355
wsPessimisticUpdate-Exclusive 351
wsPessimisticUpdate-noCollision 352
wsPessimisticUpdate-weakestLockAtLoad 352

X
XA capable resources 395
XA resource 56
XA standard 56
XAResource 388
XML files 632
 Index 705

706 WebSphere Application Server Enterprise V5

(1.0” spine)
0.875”<

->1.498”
460 <

-> 788 pages

W
ebSphere Application Server Enterprise V5

and Program
m

ing M
odel Extensions

W
ebSphere Handbook Series

®

SG24-6932-00 ISBN 0738428493

INTERNATIONAL
TECHNICAL
SUPPORT
ORGANIZATION

BUILDING TECHNICAL
INFORMATION BASED ON
PRACTICAL EXPERIENCE

IBM Redbooks are developed by
the IBM International Technical
Support Organization. Experts
from IBM, Customers and
Partners from around the world
create timely technical
information based on realistic
scenarios. Specific
recommendations are provided
to help you implement IT
solutions more effectively in
your environment.

For more information:
ibm.com/redbooks

WebSphere Application Server
Enterprise V5 and Programming
Model Extensions
WebSphere Handbook Series

Programming Model
Extensions in
WebSphere
Enterprise V5

Sample application
for each PME

WebSphere
Enterprise V5
Runtime

This IBM Redbook provides system administrators,
developers and architects with the knowledge needed to
implement WebSphere Application Server V5.0 Enterprise
runtime environment, to design, develop, assemble and
deploy enterprise applications, and to perform ongoing
managmement of the WebSphere environment.

Part 1, “Introduction” explains how the book is organized to
cover the WebSphere Enterprise product. It helps you to
understand the product line for planning. This part gives a
broad description of the sample scenario used for the book on
the business requirements level.

Part 2, “Programming Model Extensions” is the major part of
the book. It covers all the Programming Model Extensions for
WebSphere Application Server V5.0 Enterprise. Each
extension is discussed in its own chapter starting with
planning and design, through development and deployment to
the configuration and administration. The book follows the
J2EE roles and actions to be taken in an end-to-end solution
design.

The Appendixes give detailed steps for installing and
configuring WebSphere Application Server V5.0
Enterprise.There are also step-by-step instructions for
configuring and deploying the sample application that is
shipped with the book.

Back cover

	Front cover
	Contents
	Notices
	Trademarks

	Preface
	The team that wrote this redbook
	Become a published author
	Comments welcome

	Part 1 Introduction
	Chapter 1. Introduction
	1.1 WebSphere Application Server Enterprise
	1.1.1 Simplify build-to-integrate tasks
	1.1.2 Accelerate large-scale application development

	1.2 How this book is organized
	1.2.1 Organization of the PME chapters
	1.2.2 End-to-end solution implementation

	Chapter 2. Planning
	2.1 Planning for WebSphere Enterprise
	2.2 Using WebSphere Enterprise
	2.3 Service oriented architecture
	2.3.1 Web services
	2.3.2 J2C
	2.3.3 Programming Model Extensions
	2.3.4 Combining PMEs

	Chapter 3. Sample scenario
	3.1 Business scenario
	3.2 Business drivers
	3.3 Use cases
	3.4 Business processes
	3.4.1 Catalog update business process
	3.4.2 Purchase Order (PO) business process

	Part 2 Programming Model Extensions
	Chapter 4. Process Choreographer development scenarios
	4.1 Planning
	4.1.1 Business processes
	4.1.2 Why use Process Choreographer?
	4.1.3 Comparison with WebSphere MQ workflow
	4.1.4 Business processes for J2EE programmers
	4.1.5 Programming model
	4.1.6 J2EE programming model

	4.2 Design
	4.2.1 Elements of a process model
	4.2.2 Types of processes and transactions
	4.2.3 Life cycle of a process
	4.2.4 Undoing service activities: compensation
	4.2.5 Process modeling languages and standards
	4.2.6 External programming interfaces

	4.3 Development
	4.3.1 Choreographer Web client
	4.3.2 Customizing the choreographer Web client

	4.4 Testing and debugging
	4.4.1 Unit test environment

	4.5 Staff support
	4.6 Sample scenario

	Chapter 5. Process Choreographer runtime environment
	5.1 Process container architecture
	5.2 Process container runtime topologies
	5.2.1 Stand-alone application server on a single machine (SA)
	5.2.2 Application servers network deployed with no clustering (ND-noC)
	5.2.3 Application server clusters in Network Deployment (ND-C)
	5.2.4 Application server cluster with WebSphere MQ Clustering (MQ-C)
	5.2.5 Application server cluster and high-availability configuration (DB-C&MQ-C)

	5.3 Installing the process container
	5.3.1 Resources required by a process container
	5.3.2 Installing required software components
	5.3.3 Process container on a stand-alone topology (SA)
	5.3.4 Installing process container in a cell topology (ND-noC)
	5.3.5 Installing process container in topology (ND-C, ND-VS, ND-HS)

	5.4 Staff plug-in provider configuration
	5.5 Security considerations
	5.5.1 Securing the Process Choreographer resources
	5.5.2 Process security context
	5.5.3 Process Choreographer J2EE security roles

	5.6 Managing business process applications
	5.6.1 Artifacts of a business process application
	5.6.2 Installing business process applications
	5.6.3 Versioning process models
	5.6.4 Starting and stopping process templates
	5.6.5 Uninstalling a business process application
	5.6.6 Editing a business process application
	5.6.7 Managing process instances

	5.7 Problem determination and troubleshooting
	5.7.1 Error messages
	5.7.2 Tracing process container
	5.7.3 Process audit trail

	Chapter 6. Extended Messaging
	6.1 Planning
	6.1.1 Java Message Service
	6.1.2 Extended Messaging
	6.1.3 Why use Extended Messaging?

	6.2 Design
	6.2.1 Messaging patterns
	6.2.2 Programming considerations

	6.3 Development
	6.3.1 Sample scenario
	6.3.2 Creating the sample

	6.4 Unit test environment
	6.4.1 Configure Extended Messaging
	6.4.2 Test the sample

	6.5 Configuration
	6.5.1 Comparison of WebSphere MQ and Embedded Messaging
	6.5.2 Configuration with JMS Embedded Messaging
	6.5.3 Configuration with WebSphere MQ as the JMS provider

	6.6 Deployment
	6.7 Transactions and workload management
	6.8 Handling late responses
	6.8.1 Late response description
	6.8.2 Configuration of late response

	6.9 Problem determination and troubleshooting
	6.10 Security considerations

	Chapter 7. Asynchronous Beans
	7.1 Planning
	7.1.1 What are Asynchronous Beans?
	7.1.2 Asynchronous Beans programming interfaces
	7.1.3 Asynchronous Beans: simple Java objects or EJBs?
	7.1.4 Asynchronous Beans: programming model
	7.1.5 When to use Asynchronous Beans

	7.2 Design
	7.2.1 Base application overview
	7.2.2 Asynchronous patterns

	7.3 Development - base application
	7.3.1 Set up the base application
	7.3.2 Understand the base application
	7.3.3 Configure the base application
	7.3.4 Run the base application

	7.4 Development: “Asynchronize” the base application
	7.4.1 Asynchronously initialize the cache using Work
	7.4.2 Asynchronously keep cache updated using EventListener
	7.4.3 Asynchronously update database using AlarmListener
	7.4.4 Set up the extended application

	7.5 Unit test environment
	7.6 Assembly
	7.7 Configure
	7.8 Deployment
	7.9 QoS (Quality of Service) considerations
	7.9.1 Multiple WorkManagers
	7.9.2 Dynamically tuning WorkManagers at runtime

	7.10 Security considerations
	7.11 An additional sample
	7.11.1 Implementation details
	7.11.2 Configuration and requirements

	Chapter 8. Application Profiling and Access Intent
	8.1 Overview
	8.2 Planning
	8.3 Performance report
	8.4 Assembly
	8.4.1 Creating an Access Intent Policy
	8.4.2 Creating an Access Intent
	8.4.3 Creating an Application Profile
	8.4.4 Creating a Dynamic Query Access Intent
	8.4.5 Application Profiling API

	8.5 Problem determination and troubleshooting

	Chapter 9. Transactional Services
	9.1 Transactions overview
	9.2 Last Participant Support
	9.2.1 Configuration
	9.2.2 Troubleshooting

	9.3 ActivitySession
	9.3.1 Extended Local Transaction
	9.3.2 Extended EJB life cycle
	9.3.3 Usage scenarios

	9.4 Runtime
	9.4.1 Enable the ActivitySession service
	9.4.2 Troubleshooting

	9.5 JTA extensions
	9.6 Samples

	Chapter 10. Business Rule Beans
	10.1 Planning
	10.2 Design
	10.2.1 Business Rule Beans framework
	10.2.2 Architecture

	10.3 Development
	10.3.1 Development environment setup
	10.3.2 Creating the rule implementor
	10.3.3 Creating and configuring the rule
	10.3.4 Creating the rule client
	10.3.5 Integrating the sample application with the business rule

	10.4 Unit test environment
	10.4.1 Rule unit testing
	10.4.2 Testing the sample application with the rule beans enabled

	10.5 Assembly
	10.6 Deployment
	10.6.1 Running the Rule Management Application

	10.7 Problem determination and troubleshooting
	10.8 Performance considerations
	10.8.1 Client-side caching
	10.8.2 Rule firing location
	10.8.3 Creating database indexes

	10.9 Security considerations

	Chapter 11. Dynamic Query
	11.1 Planning
	11.1.1 Dynamic Query

	11.2 Design
	11.3 Development
	11.3.1 Dynamic Query Bean
	11.3.2 Development environment setup
	11.3.3 Development of Dynamic Query sample
	11.3.4 Integration of Dynamic Query with sample application

	11.4 Unit test environment
	11.4.1 Configure application server
	11.4.2 Running the sample application

	11.5 Assembly
	11.5.1 Projects export
	11.5.2 Configuring EJB Access Intent for Dynamic Query
	11.5.3 Incorporating bpeWebclient.war

	11.6 Configuration
	11.6.1 Installing query.ear
	11.6.2 Application class loader policy configuration

	11.7 Deployment
	11.8 Performance considerations
	11.8.1 Transactions and Dynamic Query

	11.9 Security considerations

	Chapter 12. Startup Bean
	12.1 Introduction
	12.1.1 Why use Startup Beans?

	12.2 Design
	12.3 Development
	12.4 Unit test environment
	12.5 Assembly
	12.6 Development
	12.6.1 Sample scenario

	12.7 Configuration
	12.8 Deployment
	12.9 Runtime environment
	12.9.1 Priorities when using multiple Startup Beans
	12.9.2 Scalability

	12.10 Problem determination and troubleshooting

	Chapter 13. Scheduler service
	13.1 Introduction
	13.2 Design
	13.3 Development
	13.3.1 Scheduler API
	13.3.2 Steps for using the Scheduler service

	13.4 Unit test environment
	13.5 Assembly
	13.6 Building and tools
	13.7 Sample scenario
	13.8 Configuration
	13.9 Deployment
	13.10 Scheduler service runtime
	13.11 Problem determination and troubleshooting
	13.12 Performance monitoring
	13.13 Security considerations

	Chapter 14. Object pools
	14.1 Planning
	14.2 Design
	14.3 Development
	14.3.1 Object Pools API
	14.3.2 Steps for using object pools

	14.4 Unit test environment
	14.5 Assembly
	14.6 Sample application
	14.7 Configuration
	14.8 Runtime environment
	14.9 Problem determination and troubleshooting
	14.10 Performance monitoring

	Chapter 15. Shared Work Area service
	15.1 Planning
	15.2 Design
	15.3 Development
	15.3.1 Work Area API
	15.3.2 Steps for using the Shared Work Area service

	15.4 Unit test environment
	15.5 Sample application
	15.6 Configuration
	15.6.1 Shared Work Area service configuration
	15.6.2 Shared work area client properties

	15.7 Problem determination and troubleshooting

	Chapter 16. Internationalization (i18n) service
	16.1 Planning
	16.1.1 The traditional solutions and the limitations
	16.1.2 The Internationalization service solution

	16.2 Design
	16.2.1 Internationalization context
	16.2.2 Internationalization type

	16.3 Development
	16.3.1 The internationalization context API
	16.3.2 Using the Internationalization service
	16.3.3 Enhanced Internationalization Service

	16.4 Unit test environment
	16.5 Assembly
	16.5.1 Specify the internationalization type
	16.5.2 Specify the container internationalization attribute

	16.6 Sample scenario for the EJB client
	16.6.1 Description
	16.6.2 Prerequisites
	16.6.3 Develop

	16.7 Sample scenario for the Web client
	16.7.1 Implementation details
	16.7.2 Configuration and requirements

	16.8 Configuration
	16.9 Deployment
	16.10 Problem determination and troubleshooting
	16.11 Install Enhanced Internationalization Service Technology Preview

	Chapter 17. WebSphere Enterprise runtime
	17.1 Introduction
	17.2 Architecture
	17.2.1 WebSphere Application Server V5 base
	17.2.2 WebSphere Application Server Enterprise

	17.3 Administration
	17.4 Workload management
	17.4.1 Scalability and high availability basics

	17.5 Where to find more information

	Part 3 Appendixes
	Appendix A. Installation and configuration
	Planning for installation
	Installations
	Install Enterprise and base at the same time
	Install Enterprise to the existing base
	Install Enterprise to the existing Network Deployment

	Troubleshooting the installation
	Configuration

	Appendix B. Sample scenario
	Sample application
	User registry
	Database
	Development environment
	Importing the sample application
	Importing the extended sample application
	Configuring the test environment
	Additional configurations for the extended sample application
	Running J2EE clients in WebSphere Studio

	Runtime environment
	Configuring the runtime environment
	Deploying the base sample application
	Uninstall the base sample
	Deploying the extended sample application
	Deploy the Universal Test Client (optional)

	Appendix C. Additional material
	Locating the Web material
	Using the Web material
	System requirements for downloading the Web material
	How to use the Web material

	Abbreviations and acronyms
	Related publications
	IBM Redbooks
	Other resources

	Referenced Web sites
	How to get IBM Redbooks
	IBM Redbooks collections

	Index
	Back cover

