

ibm.com/redbooks

Self-Service Applications using
IBM WebSphere V5.0
and IBM MQSeries Integrator

Peter Kovari
Kadhar Masthan

Carla Sadtler
Jan Smolenski

Paul Solano
Jose Luis Spagnuolo

Frank Strecker
Raghu Varadan

Self-Service applications using Router
and Decomposition patterns

WebSphere Application Server
V5, MQ V5.3, MQ Integrator V2.1

Patterns for e-business
solution design

Front cover

Self-Service Applications using IBM WebSphere
V5.0 and IBM MQSeries Integrator

July 2003

International Technical Support Organization

SG24-6875-00

© Copyright International Business Machines Corporation 2003. All rights reserved.
Note to U.S. Government Users Restricted Rights -- Use, duplication or disclosure restricted by GSA ADP Schedule
Contract with IBM Corp.

First Edition (July 2003)

This edition applies to WebSphere Application Server V5, WebSphere MQ V5.3, WebSphere MQ
Integrator V2.1 for use with the Windows 2000 Server, AIX 5L, and Red Hat Linux 7.2.

Note: Before using this information and the product it supports, read the information in
“Notices” on page ix.

Contents

Notices . ix
Trademarks . x

Preface . xi
The team that wrote this redbook. .xi
Become a published author . xiv
Comments welcome. xiv

Part 1. Patterns for e-business . 1

Chapter 1. Patterns for e-business . 3
1.1 The Patterns for e-business layered asset model . 5
1.2 How to use the Patterns for e-business . 6

1.2.1 Selecting a Business, Integration, or Composite pattern, or a Custom
design . 7

1.2.2 Selecting Application patterns. 12
1.2.3 Review Runtime patterns . 13
1.2.4 Review Product mappings . 16
1.2.5 Review guidelines and related links . 17

1.3 Summary . 17

Chapter 2. The Self-Service business pattern . 19
2.1 Self-Service applications . 20
2.2 Self-Service application patterns. 20
2.3 Application patterns used in this book. 23

2.3.1 Router pattern . 23
2.3.2 Decomposition pattern . 27

Chapter 3. Runtime patterns . 33
3.1 Nodes . 34
3.2 Basic Runtime pattern for the Router pattern . 37

3.2.1 Variation 1 . 39
3.3 Basic Runtime pattern for Decomposition . 40

3.3.1 Variation 1 . 41
3.4 For more information . 42

Chapter 4. Product mapping . 43
4.1 Runtime product mappings . 44
4.2 Product summary . 49
© Copyright IBM Corp. 2003. All rights reserved. iii

Part 2. Guidelines . 57

Chapter 5. Technology options . 59
5.1 Web client . 61

5.1.1 Web browser . 62
5.1.2 HTML . 63
5.1.3 Dynamic HTML . 63
5.1.4 CSS. 64
5.1.5 JavaScript . 65
5.1.6 Java applets . 65
5.1.7 XML (client side) . 67
5.1.8 XHTML 1.1 (HTML 4.01) . 68
5.1.9 VoiceXML . 69
5.1.10 XForms . 69
5.1.11 XSLT . 69
5.1.12 Mobile clients . 70

5.2 Web application server . 71
5.2.1 Java servlets . 73
5.2.2 JavaServer Pages (JSPs) . 74
5.2.3 JavaBeans . 74
5.2.4 XML. 75
5.2.5 Enterprise JavaBeans . 79
5.2.6 Additional enterprise Java APIs . 81

5.3 Integration technologies . 82
5.3.1 Web services. 82
5.3.2 J2EE Connector Architecture . 86
5.3.3 Java Message Service . 88
5.3.4 Message Oriented Middleware . 91
5.3.5 Others . 92

5.4 Where to find more information . 93

Chapter 6. Application design . 95
6.1 Application structure . 96

6.1.1 Model-View-Controller design pattern. 96
6.1.2 Struts. 97
6.1.3 Sample application . 99

6.2 EJB design guidelines . 105
6.2.1 Local and remote home interfaces . 105
6.2.2 Using the Singleton pattern. 109
6.2.3 The Facade pattern. 110

6.3 JMS design guidelines . 112
6.3.1 Message models . 112
6.3.2 JMS point-to-point model . 114
iv Self-Service Applications using IBM WebSphere V5.0 and IBM MQSeries Integrator

6.3.3 JMS publish/subscribe model . 115
6.3.4 JMS messages . 119
6.3.5 Synchronous versus asynchronous design considerations 121
6.3.6 Where to implement message producers and consumers 128
6.3.7 Message-driven beans . 129
6.3.8 Managing JMS objects . 135
6.3.9 JMS and JNDI . 136
6.3.10 Embedded JMS Provider versus WebSphere MQ 137
6.3.11 WebSphere to MQ connection options . 138
6.3.12 Best practices for JMS and IBM WebSphere MQ 143

Chapter 7. Application development . 147
7.1 MVC development using the Struts framework . 148

7.1.1 Creating a Web diagram . 148
7.1.2 Coding Struts elements. 148

7.2 Developing a message-driven bean with WebSphere Studio 152
7.2.1 Message-driven bean implementation . 153
7.2.2 Life cycle of a message-driven bean. 154
7.2.3 Creating an MDB using WebSphere Studio 156
7.2.4 Coding the message-driven bean . 158

7.3 XML and XSLT development . 160
7.3.1 XML as data transfer technology . 160
7.3.2 Guidelines for creating an XML message . 161
7.3.3 Performing XML transformations . 162
7.3.4 Working with XSLTC . 163
7.3.5 WebSphere Studio XML support. 165
7.3.6 Using XML JavaBeans . 166

Chapter 8. Developing WebSphere MQ Integrator message flows. 169
8.1 What is a broker domain? . 170
8.2 Developing message flows . 171

8.2.1 Preparations: creating queue managers and defining queues 172
8.2.2 Using the Control Center. 172
8.2.3 Creating message flows . 174

Chapter 9. Security . 185
9.1 End-to-end security . 186
9.2 Applying security to our Runtime patterns. 188
9.3 Security guidelines . 191
9.4 Application security . 193
9.5 Messaging security . 196

9.5.1 Securing WebSphere MQ resources . 200
9.5.2 Securing WebSphere MQ Integrator resources 207

9.6 Security design principles summary . 209
 Contents v

Chapter 10. Performance and availability . 211
10.1 Introduction . 212
10.2 Performance analysis . 212
10.3 Performance considerations in messaging . 212

10.3.1 Connection pooling . 212
10.3.2 Multithreaded programs . 214
10.3.3 Persistent versus non-persistent messages 215
10.3.4 One-phase commit optimization . 216
10.3.5 Caching WebSphere MQ JMS objects . 217
10.3.6 Message-driven beans performance considerations 217

10.4 High availability with WebSphere MQ . 218
10.4.1 Overview of WebSphere MQ cluster components 220
10.4.2 WebSphere MQ simplified management 222

Part 3. Implementation . 225

Chapter 11. Technical scenarios . 227
11.1 Application flow . 228
11.2 System setup. 229

11.2.1 Products used to prove the scenarios. 229
11.2.2 Development environment . 230
11.2.3 Runtime environment . 231

Chapter 12. Configuring WebSphere. 235
12.1 Defining JMS resources to WebSphere . 236

12.1.1 Determining the correct scope . 236
12.2 Using the embedded JMS server . 237

12.2.1 Defining a queue connection factory . 237
12.2.2 Defining a queue destination. 240
12.2.3 Define the queue for the JMS server . 242

12.3 Using WebSphere MQ V5.3 . 243
12.3.1 Defining a queue connection factory . 243
12.3.2 Define a queue destination . 247
12.3.3 Define the queue for WebSphere MQ. 253

12.4 Deploying message-driven beans in WebSphere V5.0 253
12.5 Testing, logging, debugging . 257

Chapter 13. Configuring WebSphere MQ and MQ Integrator 259
13.1 WebSphere MQ objects . 260
13.2 WebSphere MQ system management . 263

13.2.1 Remote administration . 266
13.3 Creating the WebSphere MQ Integrator databases 267
13.4 Creating the WebSphere MQ Integrator Configuration Manager 269

13.4.1 Creating the brokers . 272
vi Self-Service Applications using IBM WebSphere V5.0 and IBM MQSeries Integrator

13.4.2 Transaction behavior. 276
13.5 Testing, logging, debugging . 278

Appendix A. Additional material . 281
Locating the Web material . 281
Using the Web material . 282

System requirements for downloading the Web material 282
How to use the Web material . 282
13.5.1 Supplier application configuration . 284
13.5.2 Running. 285

Abbreviations and acronyms . 287

Related publications . 289
IBM Redbooks . 289

Other resources . 289
Referenced Web sites . 290
How to get IBM Redbooks . 291

IBM Redbooks collections. 291

Index . 293
 Contents vii

viii Self-Service Applications using IBM WebSphere V5.0 and IBM MQSeries Integrator

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult
your local IBM representative for information on the products and services currently available in your area.
Any reference to an IBM product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product, program, or service that
does not infringe any IBM intellectual property right may be used instead. However, it is the user's
responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document.
The furnishing of this document does not give you any license to these patents. You can send license
inquiries, in writing, to:
IBM Director of Licensing, IBM Corporation, North Castle Drive Armonk, NY 10504-1785 U.S.A.

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer
of express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made
to the information herein; these changes will be incorporated in new editions of the publication. IBM may
make improvements and/or changes in the product(s) and/or the program(s) described in this publication at
any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in any
manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of the
materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Information concerning non-IBM products was obtained from the suppliers of those products, their published
announcements or other publicly available sources. IBM has not tested those products and cannot confirm
the accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on
the capabilities of non-IBM products should be addressed to the suppliers of those products.

This information contains examples of data and reports used in daily business operations. To illustrate them
as completely as possible, the examples include the names of individuals, companies, brands, and products.
All of these names are fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:
This information contains sample application programs in source language, which illustrates programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs in
any form without payment to IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating platform for which the
sample programs are written. These examples have not been thoroughly tested under all conditions. IBM,
therefore, cannot guarantee or imply reliability, serviceability, or function of these programs. You may copy,
modify, and distribute these sample programs in any form without payment to IBM for the purposes of
developing, using, marketing, or distributing application programs conforming to IBM's application
programming interfaces.
© Copyright IBM Corp. 2003. All rights reserved. ix

Trademarks
The following terms are trademarks of the International Business Machines Corporation in the United States,
other countries, or both:

AIX 5L™
AIX®
CICS®
DB2 Universal Database™
DB2®
eServer™
Encina®
Everyplace™
IBM®
ibm.com®

IMS™
Lotus®
MQSeries®
MVS™
OS/390®
RACF®
Redbooks(logo)™
Redbooks™
S/390®
SOM®

SupportPac™
Tivoli®
TXSeries™
VisualAge®
VSE/ESA™
WebSphere®
z/OS™

The following terms are trademarks of other companies:

Intel, Intel Inside (logos), MMX, Pentium and ProShare are trademarks of Intel Corporation in the United
States, other countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the
United States, other countries, or both.

Java and all Java-based trademarks and logos are trademarks or registered trademarks of Sun
Microsystems, Inc. in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

SET, SET Secure Electronic Transaction, and the SET Logo are trademarks owned by SET Secure
Electronic Transaction LLC.

Other company, product, and service names may be trademarks or service marks of others.
x Self-Service Applications using IBM WebSphere V5.0 and IBM MQSeries Integrator

Preface

This IBM® Redbook introduces the Router and Decomposition application
patterns for Self-Service e-business applications. The book discusses the
messaging and transactional capabilities of an application and is a valuable
source for IT architects, IT specialists, application designers, application
developers, system administrators, and consultants.

Part 1, “Patterns for e-business”, introduces the Patterns for e-business concept,
focusing particularly on the Self-Service business pattern and the Router and
Decomposition application patterns.

Part 2, “Guidelines”, provides guidelines for messaging and transactional
applications, including application design and development, and some of the
non-functional requirements for such applications, including security and system
management and performance.

Part 3, “Implementation” provides information on how to set up and configure
both the development and runtime environments for the sample application
discussed in this book.

The team that wrote this redbook
This redbook was produced by a team of specialists from around the world
working at the International Technical Support Organization, Raleigh Center.
© Copyright IBM Corp. 2003. All rights reserved. xi

The Team (left to right, top: Frank Strecker, Raghu Varadan, Jan Smolenski, Paul Solano;
front: Jose Luis Spagnuolo, Peter Kovari)

Peter Kovari is a WebSphere® Specialist at the International Technical Support
Organization, Raleigh Center. He writes extensively about all areas of
WebSphere. His areas of expertise include e-business, e-commerce, security,
Internet technologies and mobile computing. Before joining the ITSO, he worked
as an IT Specialist for IBM in Hungary.

Kadhar Masthan is an e-business technical consultant in Cognizant Technology
Solutions, India, a major IT solutions provider and a business partner of IBM. He
has four years of experience in the IT industry. He holds a degree in computer
engineering from the Central Institute of Technology, Chennai (India). He is also
pursuing a Masters of Science degree at Bits Pilani, India. His areas of expertise
include Web applications development using WebSphere, IBM DB2®,
WebSphere MQ and IBM VisualAge® For Java. He writes articles about
WebSphere architecture for Cognizant. He has written about the WebSphere
platform and developing applications using WebSphere.
xii Self-Service Applications using IBM WebSphere V5.0 and IBM MQSeries Integrator

Carla Sadtler is a WebSphere Specialist at the International Technical Support
Organization, Raleigh Center. She writes extensively in the WebSphere and
Patterns for e-business areas. Before joining the ITSO in 1985, Carla worked in
the Raleigh branch office as a Program Support Representative. She holds a
degree in mathematics from the University of North Carolina at Greensboro.

Jan Smolenski (Jania) is an Advisory Software Engineer and Certified MQ
Solutions Expert/Specialist at the IBM Developer Technical Support Center in
Dallas, Texas. He has over 20 years of experience in the IT industry, ranging
from large systems to PC workstations. He holds a degree in Computer Science
and Mathematics from the University of Warsaw, Poland. His areas of expertise
include transaction processing, messaging systems and Web development.

Paul Solano is an IT Solution Architect working for GBM de Costa Rica, an IBM
Alliance company located in San José, Costa Rica. He has five years of
experience in Web-based application development and integration. He holds a
degree in Computer Science from the Instituto Tecnológico de Costa Rica. His
areas of expertise includes enterprise application design and development using
the WebSphere family of products.

Jose Luis Spagnuolo is a Certified Consulting IT Architect in IBM Brazil. He has
20 years of experience in the IT industry and has worked with large systems,
artificial intelligence, networking, client/server and e-business. He holds a degree
in Technology of Data Processing and a degree in Business Administration from
Mackenzie University. He is also a member of the IBM IT Architect Certification
Board. Before joining IBM Brazil, he worked as an IT Specialist at the IBM
International Education Centre in La Hulpe, Belgium.

Frank Strecker is an IT Specialist in IBM Germany. He holds a degree in Legal
Sciences from Hannover University and has four years of experience in the IT
industry. His areas of expertise include e-business and messaging systems.

Raghu Varadan is a Sr. Architect with the Architecture Center of Excellence in
IBM Global Services Americas. He has over 14 years of experience in software
consulting, demonstrating the broad business application of technology, strategic
technology planning, and systems architecture. He has extensive experience in
developing large-scale, complex enterprise-wide architectures, OO, and
client-server architectures and development, and has been involved in both
business and technical aspects of the full life cycle of software development. He
has written publications on architecture, methodologies, and emerging
technologies, and presented at public and internal conferences.

Thanks to the following people for their contributions to this project:

Gail Christensen
Mark Endrei
 Preface xiii

Michele Galic
Margaret Ticknor
Jeanne Tucker
International Technical Support Organization, Raleigh Center

Thanks to the following IBM employees:

Jonathan Adams, IBM UK, Software Group Technical Strategy
Greg Behrend, IBM US, Software Services for WebSphere
Ligia Fumi Tsubouchi, IBM Brazil

Become a published author
Join us for a two- to six-week residency program! Help write an IBM Redbook
dealing with specific products or solutions, while getting hands-on experience
with leading-edge technologies. You'll team with IBM technical professionals,
Business Partners and/or customers.

Your efforts will help increase product acceptance and customer satisfaction. As
a bonus, you'll develop a network of contacts in IBM development labs, and
increase your productivity and marketability.

Find out more about the residency program, browse the residency index, and
apply online at:

ibm.com/redbooks/residencies.html

Comments welcome
Your comments are important to us!

We want our Redbooks™ to be as helpful as possible. Send us your comments
about this or other Redbooks in one of the following ways:

� Use the online Contact us review redbook form found at:

ibm.com/redbooks

� Send your comments in an Internet note to:

redbook@us.ibm.com

� Mail your comments to:

IBM Corporation, International Technical Support Organization
Dept. HZ8 Building 662
xiv Self-Service Applications using IBM WebSphere V5.0 and IBM MQSeries Integrator

http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/
http://www.ibm.com/redbooks/
http://www.ibm.com/redbooks/
http://www.redbooks.ibm.com/contacts.html

P.O. Box 12195
Research Triangle Park, NC 27709-2195
 Preface xv

xvi Self-Service Applications using IBM WebSphere V5.0 and IBM MQSeries Integrator

Part 1 Patterns for
e-business

Part 1
© Copyright IBM Corp. 2003. All rights reserved. 1

2 Self-Service Applications using IBM WebSphere V5.0 and IBM MQSeries Integrator

Chapter 1. Patterns for e-business

This IBM Redbook is part of the Patterns for e-business series. In this
introductory chapter, we provide an overview of how IT architects can work
effectively with the Patterns for e-business.

The role of the IT architect is to evaluate business problems and to build
solutions to solve them. To do this, the architect begins by gathering input on the
problem, creating an outline of the desired solution, and taking into account any
special considerations or requirements that need to be factored into that solution.
The architect then takes this input and designs the solution. This solution can
include one or more computer applications that address the business problems
by supplying the necessary business functions.

To enable the architect to do this better each time, we need to capture and reuse
the experience of these IT architects in such a way that future engagements can
be made simpler and faster. We do this by taking these experiences and using
them to build a repository of assets that provides a source from which architects
can reuse this experience to build future solutions, using proven assets. This
reuse saves time, money and effort and in the process helps ensure delivery of a
solid, properly architected solution.

The IBM Patterns for e-business helps facilitate this reuse of assets. Their
purpose is to capture and publish e-business artifacts that have been used,
tested, and proven. The information captured by them is assumed to fit the
majority, or 80/20, situation.

1

© Copyright IBM Corp. 2003. All rights reserved. 3

The IBM Patterns for e-business are further augmented with guidelines and
related links for their better use.

The layers of patterns plus their associated links and guidelines allow the
architect to start with a problem and a vision for the solution, and then find a
pattern that fits that vision. Then, by drilling down using the patterns process, the
architect can further define the additional functional pieces that the application
will need to succeed. Finally, he can build the application using coding
techniques outlined in the associated guidelines.
4 Self-Service Applications using IBM WebSphere V5.0 and IBM MQSeries Integrator

1.1 The Patterns for e-business layered asset model
The Patterns for e-business approach enables architects to implement
successful e-business solutions through the re-use of components and solution
elements from proven successful experiences. The patterns approach is based
on a set of layered assets that can be exploited by any existing development
methodology. These layered assets are structured in a way that each level of
detail builds on the last. These assets include the following.

� Business patterns that identify the interaction between users, businesses,
and data.

� Integration patterns that tie multiple Business patterns together when a
solution cannot be provided based on a single Business pattern.

� Composite patterns that represent commonly occurring combinations of
Business patterns and Integration patterns.

� Application patterns that provide a conceptual layout describing how the
application components and data within a Business pattern or Integration
pattern interact.

� Runtime patterns that define the logical middleware structure supporting an
Application pattern. Runtime patterns depict the major middleware nodes,
their roles, and the interfaces between these nodes.

� Product mappings that identify proven and tested software implementations
for each Runtime pattern.

� Best-practice guidelines for design, development, deployment, and
management of e-business applications.

These assets and their relation to each other are shown in Figure 1-1 on page 6.
 Chapter 1. Patterns for e-business 5

Figure 1-1 The Patterns for e-business layered asset model

Patterns for e-business Web site
The Patterns Web site provides an easy way of navigating top down through the
layered Patterns’ assets in order to determine the preferred reusable assets for
an engagement.

For easy reference to Patterns for e-business refer to the Patterns for e-business
Web site at:

 http://www.ibm.com/developerWorks/patterns/

1.2 How to use the Patterns for e-business
As described in the last section, the Patterns for e-business are a layered
structure where each layer builds detail on the last. At the highest layer are
Business patterns. These describe the entities involved in the e-business
solution.

Best-Practice Guidelines

Application Design
Systems Management
Performance
Application Development
Technology Choices

Customer
requirements

Product
mappings

Any M
ethodology

Runtime
patterns

Application
patterns

Composite
patterns

Business
patterns

Integration
patterns
6 Self-Service Applications using IBM WebSphere V5.0 and IBM MQSeries Integrator

http://www.ibm.com/developerWorks/patterns/

Composite patterns appear in the hierarchy shown in Figure 1-1 on page 6 above
the Business patterns. However, Composite patterns are made up of a number of
individual Business patterns, and at least one Integration pattern. In this section,
we discuss how to use the layered structure of Patterns for e-business assets.

1.2.1 Selecting a Business, Integration, or Composite pattern, or a
Custom design

When faced with the challenge of designing a solution for a business problem,
the first step is to take a high-level view of the goals you are trying to achieve. A
proposed business scenario should be described and each element should be
matched to an appropriate IBM Pattern for e-business. You may find, for
example, that the total solution requires multiple Business and Integration
patterns, or that it fits into a Composite pattern or Custom design.

For example, suppose an insurance company wants to reduce the amount of
time and money spent on call centers that handle customer inquiries. If
customers are allowed to view their policy information and to request changes
online, they will be able to cut back significantly on the resources spent handling
these things over the phone. The objective is to allow policyholders to view their
policy information stored in legacy databases.

The Self-Service business pattern fits this scenario perfectly. It is meant to be
used in situations where users need direct access to business applications and
data. Let’s take a look at the available Business patterns.

Business patterns
A Business pattern describes the relationship between the users, the business
organizations or applications, and the data to be accessed.
 Chapter 1. Patterns for e-business 7

There are four primary Business patterns, explained in Figure 1-2:

Figure 1-2 The four primary Business patterns

It would be very convenient if all problems fit nicely into these four slots, but
reality says that things will often be more complicated. The patterns assume that
most problems, when broken down into their most basic components, will fit
more than one of these patterns. When a problem requires multiple Business
patterns, the Patterns for e-business provide additional patterns in the form of
Integration patterns.

Integration patterns
Integration patterns allow us to tie together multiple Business patterns to solve a
business problem. The Integration patterns are outlined in Figure 1-3 on page 9.

Business Patterns Description Examples

Self-Service
(User-to-Business)

Applications where users
interact with a business
via the Internet or
intranet

Simple Web site
applications

Information Aggregation
(User-to-Data)

Applications where users
can extract useful
information from large
volumes of data, text,
images, etc.

Business intelligence,
knowledge management,
Web crawlers

Collaboration
(User-to-User)

Applications where the
Internet supports
collaborative work
between users

E-mail, community, chat,
video conferencing, etc.

Extended Enterprise
(Business-to-Business)

Applications that link two
or more business
processes across
separate enterprises

EDI, supply chain
management, etc.
8 Self-Service Applications using IBM WebSphere V5.0 and IBM MQSeries Integrator

Figure 1-3 Integration patterns

These Business and Integration patterns can be combined to implement
installation-specific business solutions. We call this a Custom design.

Custom design
We can represent the use of a Custom design to address a business problem
through an iconic representation, as shown in Figure 1-4.

Figure 1-4 Patterns representing a Custom design

If any of the Business or Integration patterns are not used in a Custom design,
we can show that using the blocks which are lighter than the others. For
example, Figure 1-5 on page 10 shows a Custom design that does not have a
Collaboration business pattern or an Extended Enterprise business pattern for a
business problem.

Integration Patterns Description Examples

Access Integration
Integration of a number
of services through a
common entry point

Portals

Application Integration

Integration of multiple
applications and data
sources without the user
directly invoking them

Message brokers,
workflow managers

A
cc

es
s

In
te

gr
at

io
n Self-Service

Collaboration

Information Aggregation

Extended Enterprise A
pp

lic
at

io
n

In
te

gr
at

io
n

 Chapter 1. Patterns for e-business 9

Figure 1-5 Custom design with Self-Service, Information Aggregation, Access Integration
and Application Integration

A Custom design may also be a Composite pattern if it recurs many times across
domains with similar business problems. For example, the iconic view of a
Custom design in Figure 1-5 can also describe a Sell-Side Hub composite
pattern.

Composite patterns
Several common uses of Business and Integration patterns have been identified
and formalized into Composite patterns. The identified Composite patterns are
shown in Figure 1-6 on page 11.

A
cc

es
s

In
te

gr
at

io
n Self-Service

Collaboration

Information Aggregation

Extended Enterprise A
pp

lic
at

io
n

In
te

gr
at

io
n

10 Self-Service Applications using IBM WebSphere V5.0 and IBM MQSeries Integrator

Figure 1-6 Composite patterns

The makeup of these patterns is variable in that there will be basic patterns
present for each type, but the Composite can easily be extended to meet
additional criteria. For more information on Composite patterns, refer to Patterns
for e-business: A Strategy for Reuse by Jonathan Adams, Srinivas Koushik,
Guru Vasudeva, and George Galambos.

Composite Patterns Description Examples

Electronic Commerce User-to-Online-Buying www.macys.com
www.amazon.com

Portal

Typically designed to aggregate
multiple information sources and
applications to provide uniform,
seamless, and personalized
access for its users.

Enterprise Intranet portal
providing self-service functions
such as payroll, benefits, and
travel expenses.

Collaboration providers who
provide services such as e-mail
or instant messaging.

Account Access
Provide customers with
around-the-clock account access
to their account information.

Online brokerage trading apps.
Telephone company account
manager functions.

Bank, credit card and insurance
company online apps.

Trading Exchange
Allows buyers and sellers to trade
goods and services on a public
site.

Buyer's side - interaction
between buyer's procurement
system and commerce
functions of e-Marketplace.

Seller's side - interaction
between the procurement
functions of the e-Marketplace
and its suppliers.

Sell-Side Hub
(Supplier)

The seller owns the e-Marketplace
and uses it as a vehicle to sell
goods and services on the Web.

www.carmax.com (car purchase)

Buy-Side Hub
(Purchaser)

The buyer of the goods owns the
e-Marketplace and uses it as a
vehicle to leverage the buying or
procurement budget in soliciting
the best deals for goods and
services from prospective sellers
across the Web.

www.wre.org
(WorldWide Retail Exchange)
 Chapter 1. Patterns for e-business 11

1.2.2 Selecting Application patterns
Once the Business pattern is identified, the next step is to define the high-level
logical components that make up the solution and how these components
interact. This is known as the Application pattern. A Business pattern will usually
have multiple possible Application patterns. An Application pattern may have
logical components that describe a presentation tier for interacting with users, an
application tier, and a back-end application tier.

Application patterns break the application down into the most basic conceptual
components, identifying the goal of the application. In our example, the
application falls into the Self-Service business pattern and the goal is to build a
simple application that allows users to access back-end information. The
Application pattern shown in Figure 1-7 fulfills this requirement.

Figure 1-7 Self -Service::Directly Integrated Single Channel

The Application pattern shown consists of a presentation tier that handles the
request/response to the user. The application tier represents the component that
handles access to the back-end applications and data. The multiple application
boxes on the right represent the back-end applications that contain the business
data. The type of communication is specified as synchronous (one request/one
response, then next request/response) or asynchronous (multiple requests and
responses intermixed).

Suppose that the situation is a little more complicated than that. Let's say that the
automobile policies and the homeowner policies are kept in two separate and
dissimilar databases. The user request would actually need data from multiple,
disparate back-end systems. In this case, there is a need to break the request

Pres.

Presentation
synchronous App.

Web
Application

synch/
asynch Back-End

Application 1

Application node
containing new or
modified components

Application node containing
existing components with
no need for modification
or which cannot be changed

Read/Write data

Back-End
Application 2
12 Self-Service Applications using IBM WebSphere V5.0 and IBM MQSeries Integrator

down into multiple requests (decompose the request) to be sent to the two
different back-end databases, then to gather the information sent back from the
requests, and then put this information into the form of a response (recompose).
In this case, the Application pattern shown in Figure 1-8 would be more
appropriate.

Figure 1-8 Self-Service::Decomposition

This Application pattern extends the idea of the application tier that accesses the
back-end data by adding decomposition and recomposition capabilities.

1.2.3 Review Runtime patterns
The Application pattern can be further refined with more explicit functions to be
performed. Each function is associated with a runtime node. In reality, these
functions, or nodes, can exist on separate physical machines or may co-exist on
the same machine. In the Runtime pattern, this is not relevant. The focus is on
the logical nodes required and their placement in the overall network structure.

As an example, let's assume that our customer has determined that his solution
fits into the Self-Service business pattern and that the Directly Integrated Single
Channel pattern is the most descriptive of the situation. The next step is to
determine the Runtime pattern that is most appropriate for his situation.

Pres.

Presentation
synchronous App.

Decomp/
Recomp

synch/
asynch

Application node
containing new
or modified
components

Application node
containing existing
components with no need
for modification or which
cannot be changed

Read/
 Write data

Transient data
- Work in progress
- Cached committed data
- Staged data (data replication
flow)

Back-End
Application 1

Back-End
Application 2
 Chapter 1. Patterns for e-business 13

The customer knows that he will have users on the Internet accessing his
business data and will therefore require a measure of security. Security can be
implemented at various layers of the application, but the first line of defense is
almost always one or more firewalls that define who and what can cross the
physical network boundaries into his company network.

The customer also needs to determine the functional nodes required to
implement the application and security measures. The Runtime pattern shown in
Figure 1-9 is one of his options.

Figure 1-9 Directly Integrated Single Channel application pattern::Runtime pattern

By overlaying the Application pattern on the Runtime pattern, you can see the
roles that each functional node will fulfill in the application. The presentation and
application tiers will be implemented with a Web application server, which
combines the functions of an HTTP server and an application server. It handles
both static and dynamic Web pages.

Application security is handled by the Web application server through the use of
a common central directory and security services node.

Internal Network
Demilitarized Zone

(DMZ)Outside World

P
ro

to
co

l F
ir

ew
al

l

Existing
Applications

and Data

D
om

ai
n

F
ir

ew
al

lI
N
T
E
R
N
E
T

Public Key
Infrastructure

User

Web
Application

Server

Domain Name
Server

Directory and
Security
Services

Presentation Application Application

Directly Integrated Single Channel application

Application

Existing
Applications

and Data
14 Self-Service Applications using IBM WebSphere V5.0 and IBM MQSeries Integrator

A characteristic that makes this Runtime pattern different from others is the
placement of the Web application server between the two firewalls. The Runtime
pattern shown in Figure 1-10 is a variation on this. It splits the Web application
server into two functional nodes by separating the HTTP server function from the
application server. The HTTP server (Web server redirector) will serve static Web
pages and redirect other requests to the application server. It moves the
application server function behind the second firewall, adding further security.

Figure 1-10 Directly Integrated Single Channel application pattern::Runtime pattern:
Variation 1

These are just two examples of the possible Runtime patterns available. Each
Application pattern will have one or more Runtime patterns defined. These can
be modified to suit the customer’s needs. For example, the customer may want
to add a load-balancing function and multiple application servers.

Internal Network
Demilitarized Zone

(DMZ)Outside World

P
ro

to
co

l F
ir

ew
al

l

D
om

ai
n

Fi
re

w
al

lI
N
T
E
R
N
E
T

Public Key
Infrastructure

User

Web
Server

Redirector

Domain Name
Server

Presentation Application Application

Directly Integrated Single Channel application

Application

Existing
Applications

and Data

Application
Server

Directory and
Security
Services

Existing
Applications

and Data
 Chapter 1. Patterns for e-business 15

1.2.4 Review Product mappings
The last step in defining the network structure for the application is to correlate
real products with one or more runtime nodes. The Patterns Web site shows
each Runtime pattern with products that have been tested in that capacity. The
Product mappings are oriented toward a particular platform, though it is more
likely that the customer will have a variety of platforms involved in the network. In
this case, it is simply a matter of mix and match.

For example, the runtime variation in Figure 1-10 on page 15 could be
implemented using the product set depicted in Figure 1-11.

Figure 1-11 Directly Integrated Single Channel application pattern: Windows 2000 product mapping

Internal networkDemilitarized zone

O
u

ts
id

e
w

o
rl

d

P
ro

to
co

l F
ir

ew
al

l

D
o

m
ai

n
 F

ir
ew

al
l

Web Server
Redirector

Windows 2000 + SP3
IBM WebSphere Application
Server V5.0 HTTP Plug-in
IBM HTTP Server 1.3.26

Directory and
Security
Services

LDAP

 Application
 Server

Windows 2000 + SP3
IBM SecureWay Directory V3.2.1
IBM HTTP Server 1.3.19.1
IBM GSKit 5.0.3
IBM DB2 UDB EE V7.2 + FP5

Database

Existing
Applications

and Data

Windows 2000 + SP3
IBM DB2 UDB ESE V8.1

JMS Option:
Windows 2000 + SP3
IBM WebSphere Application
Server V5.0
IBM WebSphere MQ 5.3
Message-driven bean application

Web Services Option:
Windows 2000 + SP3
IBM WebSphere Application
Server V5.0
IBM HTTP Server 1.3.26
IBM DB2 UDB ESE 8.1
Web service EJB application

JCA Option:
z/OS Release 1.3
IBM CICS Transaction Gateway
V5.0
IBM CICS Transaction Server
V2.2
CICS C-application

Windows 2000 + SP3
IBM WebSphere Application
Server V5.0

JMS Option add:
IBM WebSphere MQ 5.3
16 Self-Service Applications using IBM WebSphere V5.0 and IBM MQSeries Integrator

1.2.5 Review guidelines and related links
The Application patterns, Runtime patterns, and Product mappings are intended
to guide you in defining the application requirements and the network layout. The
actual application development has not been addressed yet. The Patterns Web
site provides guidelines for each Application pattern, including techniques for
developing, implementing, and managing the application based on the following:

� Design guidelines instruct you on tips and techniques for designing the
applications.

� Development guidelines take you through the process of building the
application, from the requirements phase all the way through the testing and
rollout phases.

� System management guidelines address the day-to-day operational
concerns, including security, backup and recovery, application management,
etc.

� Performance guidelines give information on how to improve the application
and system performance.

1.3 Summary
The IBM Patterns for e-business are a collective set of proven architectures. This
repository of assets can be used by companies to facilitate the development of
Web-based applications. They help an organization understand and analyze
complex business problems and break them down into smaller, more
manageable functions that can then be implemented.
 Chapter 1. Patterns for e-business 17

18 Self-Service Applications using IBM WebSphere V5.0 and IBM MQSeries Integrator

Chapter 2. The Self-Service business
pattern

Businesses have traditionally invested a lot of resources into making information
available to customers, vendors, and employees. These resources have taken
the form of call centers, mailings, etc. They have also maintained information
about their customers in the form of customer profiles. Updates to these profiles
were usually handled over the phone or by mail.

The concept of self-service puts this information at the fingertips of the
customers through a user interface, whether that interface is a Web site, a
personal digital assistant (PDA), or some other client interface. An e-business
application makes the information accessible to the right audience in an
easy-to-access manner, thus reducing the need for human interaction and
increasing user satisfaction.

2

© Copyright IBM Corp. 2003. All rights reserved. 19

2.1 Self-Service applications
Key elements of an application that provides self-service for a customer would
include clear navigational directions, extended search capabilities, and useful
links. A popular aspect is a direct link to the online representatives who can
answer questions and offer a human interface if needed.

The following are examples of self-service applications:

� An insurance company makes policy information available to users and
allows them to apply for a policy online.

� A mortgage company publishes information about its loan policies and load
rates online. Customers can view their current mortgage information, change
their payment options, or apply for a mortgage online.

� A scientific organization makes research papers available to interested users
by putting the papers online.

� A bank allows customers to access their accounts and pay bills online.

� A well-known and respected group of technical writers makes its work
available online. The group recruits technical participants for its projects by
listing the upcoming projects online and allowing possible participants to
apply online.

� A company allows its employees to view current human resource policies
online. Employees can change their medical plan, tax withholding
information, stock purchase plan, etc., online without having to call the human
resources office.

2.2 Self-Service application patterns
As you can see in Figure 2-1 on page 21, the Self-Service business pattern
covers a wide range of uses. Applications of this pattern can range from the very
simple function of allowing users to view data built explicitly for one purpose, to
taking requests from users, decomposing them into multiple requests to be sent
to multiple, disparate data sources, personalizing the information, and
recomposing it into a response for the user. For this reason, there are currently
seven defined Application patterns that fit this range of function. We summarize
these for you here. More detailed information can be found in Patterns for
e-business: A Strategy for Reuse, by Jonathan Adams, Srinivas Koushik, Guru
Vasudeva, and George Galambos.
20 Self-Service Applications using IBM WebSphere V5.0 and IBM MQSeries Integrator

Figure 2-1 Self-Service application patterns

1. Stand-alone Single Channel application pattern: Provides for stand-alone
applications that have no need for integration with existing applications or
data. It assumes one delivery channel, most likely a Web client, although it
could be something else. It consists of a presentation tier that handles all
aspects of the user interface, and an application tier that contains the
business logic to access data from a local database. The communication
between the two tiers is synchronous. The presentation tier passes a request
from the user to the business logic in the Web application tier. The request is
handled and a response sent back to the presentation tier for delivery to the
user.

2. Directly Integrated Single Channel application pattern: Provides
point-to-point connectivity between the user and existing back-end
applications. As with the Stand-alone Single Channel application pattern, it
assumes one delivery channel and the user interface is handled by the
presentation tier. The business logic can reside in the Web application tier

6.

7.

CRM
LOB

synch/
asynch

synch/
asynch

Agent

Decomp
synch synch/

asynch

Application node
contain ing new or
modified components

Application node containing
existing components w ith
no need for modification
or which cannot be changed

Read / Write data Read only data

Transient data
- Work in progress
- Cached committed data
- Staged data (data replication flow)

1. Presentation
synch

Application

2.
synch synch/

asynch
Presentation

Web
Application Back-end

Application

Back-end
Application

3.
synch Host

Application

Pres.
synch

4.
Host

Application

5. synch
Router

synch
Back-end

Application

Back-end
Application

Presentation1

Presentation2

Presentation1

Presentation2 Back-end
Application

Back-end
Application

Back-end
Application

Back-end
Application

Presentation1

Presentation2
 Chapter 2. The Self-Service business pattern 21

and in the back-end application. The Web application tier has access to local
data that exists primarily as a result of this application, for example, customer
profile information or cached data. It is also responsible for accessing one or
more back-end applications. The back-end applications contain business
logic and are responsible for accessing the existing back-end data. The
communication between the presentation tier and Web application tier is
synchronous. The communication between the Web application tier and the
back-end can be either synchronous or asynchronous, depending on the
characteristics and capabilities of the back-end application.

3. As-is Host application pattern: Provides simple direct access to existing
host applications. The application is unchanged, but the user access is
translated from green-screen type access to Web browser-based access.
This is very quickly implemented but does nothing to change the appearance
of the application to the user. The business logic and presentation are both
handled by the back-end host. Because the interface is still host driven, this is
more suited to an intranet solution where employees are familiar with the
application.

4. Customized Presentation to Host application pattern: This is one step up
from the As-is Host pattern. The back-end host application remains
unchanged, but a Web application now translates the presentation from the
back-end host application into a more user-friendly, graphical view. The
back-end host application is not aware of this translation.

5. Router application pattern: The Router application pattern provides
intelligent routing from multiple channels to multiple back-end applications
using a hub-and-spoke architecture. The interaction between the user and the
back-end application is a one-to-one relation, meaning the user interacts with
applications one at a time. The router maintains the connections to the
back-end applications and pools connections when appropriate, but there is
no true integration of the applications themselves. The router can use a
read-only database, most probably to look up routing information. The
primary business logic still resides in the back-end application tier.

This pattern assumes that the users are accessing the applications from a
variety of client types such as Web browsers, voice response units (VRUs), or
kiosks. The Router application pattern provides a common interface for
accessing multiple back-end applications and acts as an intermediary
between them and the delivery channels. In doing this, the Router application
pattern may use elements of the Integration patterns.

6. Decomposition application pattern: The Decomposition application pattern
expands on the Router application pattern, providing all the features and
functions of that pattern and adding recomposition/decomposition capability.
It provides the ability to take a user request and decompose it into multiple
requests to be routed to multiple back-end applications. The responses are
recomposed into a single response for the user. This moves some of the
22 Self-Service Applications using IBM WebSphere V5.0 and IBM MQSeries Integrator

business logic into the decomposition tier, but the primary business logic still
resides in the back-end application tier.

7. Agent application pattern: The Agent pattern includes the functions of the
decomposition tier, plus it incorporates personalization into the application to
provide a customer-centric view. The agent tier collects information about the
user, either from monitoring their habits or from information stored in a CRM.
It uses this information to customize the view presented to the user and can
perform cross-selling functions by pushing offers to the user.

2.3 Application patterns used in this book
In this book we used the following two application patterns:

� Router application pattern
� Decomposition application pattern

2.3.1 Router pattern
The Router application pattern provides a structure for applications that require
the intelligent routing of requests from multiple delivery channels to one of
multiple back-end applications.

Figure 2-2 Self-Service Router application pattern

Business and IT drivers
� Reduce the latency of business events
� Adapt easily during mergers and acquisitions
� Integrate across multiple delivery channels
� Minimize total cost of ownership (TCO)
� Leverage existing skills
� Leverage legacy investment
� Integrate back-end applications
� Minimize enterprise complexity
� Be maintainable

synch
Router

synch
Back-end

Application

Back-end
Application

Presentation1

Presentation2
 Chapter 2. The Self-Service business pattern 23

� Be scalable

The primary business driver for choosing the Router application pattern is to
support seamless integration across multiple delivery channels. In this digital
economy, users demand universal access to information. To satisfy this demand,
many corporations support multiple delivery channels including the Internet,
voice recognition units, kiosks, call center applications, and so on. Users expect
to retrieve the same information irrespective of the delivery channel they use to
access the information. For example, it is important for a discount brokerage firm
to ensure that users can retrieve trade execution status consistently either
through a Web site or through a voice recognition unit. At the same time, these
organizations have multiple back-end applications. For example, due to different
tax requirements, discount brokerage firms often maintain IRA (individual
retirement account) and regular investment accounts on different back-end
applications. Because of this, many channels have a need to access the
information from multiple back-end applications.

Applications, over a period of time, evolve either to take advantage of new
technological breakthroughs or to accommodate a changing business
environment. Ideally such changes to one application should be isolated from
another. In other words, if a back-end application is replaced with a new system
to take advantage of a new technology, that replacement should not result in
significant changes to all the delivery channels that access that back-end
applications. At the same time a business decision to support a new delivery
channel such as wireless PDAs should not require major changes to back-end
applications. Such extensibility is especially important for organizations that are
in a highly volatile business environment and have plans for mergers and
acquisitions. The Router application is ideally suited for such organizations.

The primary IT driver for choosing this Application pattern is to minimize
enterprise wide complexity and reduce the total cost of ownership by using a
hub-and-spoke architecture instead of a point-to-point architecture between
delivery channels and back-end applications

Solution
As shown in Figure 2-2 on page 23, the Router application pattern is divided into
at least three logical tiers: presentation, router, and back-end application.

� The presentation tiers of this Application pattern can support many different
presentation styles, including the Internet, call centers, kiosks, and voice
recognition units.

� The router tier receives requests from multiple presentation components and
intelligently routes them to the appropriate back-end transactions. In doing so,
this tier may use a read-only database to look up routing rules. In addition, the
router may be responsible for message transformation, protocol conversion,
24 Self-Service Applications using IBM WebSphere V5.0 and IBM MQSeries Integrator

the management of different levels of security, and session concentration. In
most cases the router tier implements minimal business logic. This routing
capability can also be used for routing requests from one of the back-end
systems to the other.

� The majority of the business logic for this Application pattern is concentrated
in the back-end application tier.

A router providing protocol conversion can isolate back-end transactions from
the details of delivery channel-specific protocols. For example, the Internet
application would typically use HTTP for communication between the browser
and the server-side portion of the presentation tier. This tier, in turn, might use
RMI or IIOP to communicate with the router. In contrast, call center applications
might use RMI or IIOP to send requests directly to the router. The router tier
converts these protocol-specific requests into protocol-independent requests
before invoking the back-end transactions. This approach enables future support
of new types of delivery channels, such as wireless PDAs, without making
changes to the back-end applications.

Different delivery channels require different levels of security. Call center
application users are usually allowed to see certain details about customer
accounts that are not shown to customers when they access their accounts
through, for instance, the self-service Web channel. These different levels of
security are tightly coupled with the requirements of the delivery channel.
Because of this, the back-end application should be isolated from these details.
The router tier is ideally suited for making such security decisions.

In order to achieve high scalability and superior performance, session
management and session concentration can be done on the router tier. The
router tier is thus responsible for establishing a few back-end connections and
pooling them for thousands of users originating from multiple delivery channels,
when the back-end systems’ security capabilities permit it.

The requester interaction between the presentation and router tier is
synchronous, as is the requester interaction between the router tier and the
back-end application. As a result, if the back-end system is not available, the
business function supported by that back-end application would be unavailable
across all delivery channels.

Bear in mind that a synchronous (or blocking) request at the Application pattern
level can be carried over either a synchronous or an asynchronous
communications protocol at the Runtime pattern level.

As described later in the Product mapping portion of this solution design, Web
application servers such as WebSphere Application Server and message
 Chapter 2. The Self-Service business pattern 25

brokers such as WebSphere MQ Integrator are often used to implement this
Application pattern.

Guidelines for use
The availability, scalability, and performance of the delivery channels in this
Application pattern are heavily dependent on the availability, scalability, and
performance of the back-end applications. Because of this, robust transaction
processing systems should be used to implement the back-end applications.
This Application pattern can be used to Web-enable either an existing or a new
transaction processing system.

While developing new back-end applications or changing existing ones,
transactions should be defined to be channel-independent and reusable. This will
make it easier to quickly extend such transactions to newer channels such as
wireless PDA devices.

Benefits
� By using routers to manage session concentration and robust transaction

processing systems for implementing business logic, this Application pattern
delivers high scalability and superior performance. This is often the target
architecture for most of the current high-volume e-business sites.

� This Application pattern isolates back-end implementation details from the
delivery channels and the delivery channel implementation details from
back-end applications. This loosely coupled architecture makes it easy to
change, replace, or add back-end applications and delivery channels without
heavily affecting other applications in the architecture.

� This loosely coupled architecture also increases maintainability and reduces
the total cost of ownership.

� It uses the same back-end transactions across multiple delivery channels,
which avoids duplication of the same business logic on multiple systems. As a
result, changes to business logic can be made in one system. This increases
the maintainability of the overall system.

Limitations
� The availability of certain business functions is heavily dependent on the

availability of the back-end applications. Currently many organizations have
transaction processing systems that are only available for a limited amount of
time every day. During the rest of the time, they are brought down for batch
processing, backup, and maintenance activities. Such systems will have to be
enhanced for 24x7 availability to support delivery channels offering
Self-Service capabilities on the Web. These enhancements to existing
systems can be expensive and time consuming.
26 Self-Service Applications using IBM WebSphere V5.0 and IBM MQSeries Integrator

� The focus is primarily on providing access to back-end applications from
multiple delivery channels. Most back-end applications are product-specific
and the Router application pattern does not address how to move beyond a
product-specific view and into a holistic customer-centric view. Under such
circumstances, one should consider more advanced Application patterns
such as the Decomposition (discussed below) or Agent application pattern.

Putting the Application pattern to use
With presence in four continents, the ITSO Vendor Corporation (IV Corp) can
provide a wide range of products and services related to painting products. From
manufacturing, packaging, warehousing and shipping, it offers all of these to its
customers. Obviously these lines of business activities are very different in
nature and are supported by different back-end applications. Delivery channels
operated by the company include Internet self-service, kiosks, voice recognition
units, and 24-hour call centers.

Currently, different channels use point-to-point connections with back-end
applications. Some of them also duplicate the data, which results in
inconsistency of information across different channels at a given point in time.
Fortunately, most of the product-related back-end applications are robust
transaction processing systems that can be made available on a 24x7 basis.

The company wants to provide consistent access to all product information
through all channels. In addition, the target architecture must be highly scalable,
highly available, and support superior response time. To achieve these goals, the
company chooses the Router application pattern.

2.3.2 Decomposition pattern
The Decomposition application pattern extends the hub-and-spoke architecture
provided by the Router application pattern. It decomposes a single, compound
request from a client into several, simpler requests and intelligently routes them
to multiple back-end applications. Typically the responses from these multiple
back-end applications are recomposed into a single response and sent back to
the client.
 Chapter 2. The Self-Service business pattern 27

Figure 2-3 Self-Service Decomposition application pattern

Business and IT drivers
� Improve organizational efficiency
� Reduce the latency of business events
� Adapt easily during mergers and acquisitions
� Integrate across multiple delivery channels
� Unify customer view across lines of businesses (LOB)
� Minimize total cost of ownership (TCO)
� Leverage existing skills
� Leverage legacy investment
� Integrate back-end applications
� Minimize enterprise complexity
� Be maintainable
� Be scalable

All business and IT drivers listed under the Router application pattern apply here
as well. Additional drivers relate to the fact that many organizations have
back-end applications that are focused on certain product lines. For example,
insurance companies use different systems for supporting health insurance
policies and life insurance policies. Such product-specific silos evolved out of
necessity, since the business logic and data requirements of different products
were vastly different. For the same reason, many companies plan to continue to
use separate systems for separate product lines.

These same companies, however, want to provide a unified customer view when
customers visit the self-service Web sites or contact the call centers, rather than
providing a fragmented, product-specific view. Similarly when changes are made
to customer information in one system, they should be automatically reflected in
other systems. In the above example of an insurance company that sells health
insurance and life insurance policies, changes to address information should be
automatically reflected in both the systems. Such features are increasingly
important since customers often ask for a consolidated view of their multiple
accounts.

Decomp
synch synch/

asynch
Presentation1

Presentation2 Back-end
Application

Back-end
Application
28 Self-Service Applications using IBM WebSphere V5.0 and IBM MQSeries Integrator

Solution
As shown in Figure 2-3 on page 28, this Application pattern is divided into three
logical tiers: presentation, decomposition, and back-end application.

� Please refer to the Router application pattern for a description of the
presentation tier.

� The decomposition tier supports most of the services provided by the router
tier in the Router application pattern, including intelligent routing of requests,
protocol conversion, security, and session concentration. In addition, it
implements the intelligence to break down a single request received from a
presentation client into several, simpler requests that it routes to multiple
back-end applications. In doing so, it typically uses a local Work In Progress
(WIP) database to store routing, decomposition, and re-composition rules and
to cache the results from multiple back-end applications until a re-composition
of the desired response has been generated. The decomposition tier
implements significantly more business logic than a router tier. Such business
logic focuses on providing a unified customer-centric view.

� The majority of the product and function-specific business logic is still
concentrated in the back-end application tier. Some of these back-end
applications are highly available and scalable online transaction processing
systems and others are batch applications.

The requester interaction between the presentation and decomposition tier is
synchronous. The requester interaction between the decomposition tier and the
back-end application tier can be either synchronous or asynchronous.

A synchronous requester interaction is required when the presentation client
expects an immediate answer, as in the case with the insurance company and its
clients. In the insurance company example, a customer logs on to the
self-service Web site and asks to view a consolidated bill. This request is
decomposed into multiple synchronous requests that are targeted towards
multiple product-specific billing systems. The decomposition tier waits for
responses from these systems and combines the results and displays a
consolidated billing view to the customer.

An asynchronous requester interaction between the decomposition tier and
back-end applications is appropriate when the presentation client does not
expect an immediate response. For example, consider the customer who
initiates an electronic transfer of funds to pay for his or her monthly bills using a
self-service Web site. This request can be decomposed into two separate
requests. The first request is targeted towards a confirmation engine that
synchronously provides a confirmation number to the customer for tracking
purposes. At the same time, an asynchronous request can be sent to a batch
system that transmits an electronic funds transfer request to a local bank using
EDI technology.
 Chapter 2. The Self-Service business pattern 29

A variation on this pattern includes caching on the second logical tier to avoid a
high volume of accesses to the back-end application. Another variation is to use
fast asynchronous communications so that multiple parallel requests can be sent
to the third tier in order to improve response times over serial requests.

As discussed in later Product mappings for this Application pattern, advanced
Web application servers such as WebSphere Advanced Edition V5 integrate with
the full range of Message Oriented Middleware (MOM) to enable this Application
pattern.

Considerations
There are a number of possible approaches to doing business request
decomposition into multiple back-end transactions and recombining the
responses into a single business response. These include:

� RYO (roll-your-own) programming that issues multiple asynchronous
requests to back-end systems and combines the responses

� Using a message broker plus a rules engine, possibly with a two-phase
commit (2-PC) or compensations mechanism

� Using a component broker with 2-PC protocols

Guidelines for use
All the guidelines documented under the Router application pattern apply here as
well.

Benefits
This Application pattern provides all the benefits of the Router pattern, and
diagonally:

� It provides a holistic customer-centric view rather than a fragmented
product-centric view of information.

� Executing transactions in batch mode, when appropriate, provides several
benefits including the ability to free up systems resources for more important
tasks at hand. The Decomposition application pattern allows one to
distinguish those transactions and use asynchronous mode for
communication under such circumstances. This is particularly true for
updates that need not be reflected into the appropriate data stores
immediately.

Limitations
The focus of this Application pattern is providing a consolidated customer-centric
view of information. However, such information is gathered only when required
and is discarded at the end of the transaction. Because of this, this Application
pattern does not accumulate all the necessary information in an Operational
30 Self-Service Applications using IBM WebSphere V5.0 and IBM MQSeries Integrator

Data Store (ODS) that can be used for mass customization of services and for
cross-selling purposes.

Putting the Application pattern to use
The ITSO Vendor (IV) retailer company that was considered under the Router
application pattern wants to extend beyond providing consistent access to all
product information through all delivery channels.

The company wants to provide a consolidated customer-centric view through all
its channels rather than providing fragmented product-specific views. For
example, the company wants its customers to see a consolidated view across
order submission and fulfillment. It wants to do so through all delivery channels,
including Internet self-service, kiosks, voice recognition units, and the 24-hour
call centers. To achieve these goals, the company chooses the Decomposition
application pattern.
 Chapter 2. The Self-Service business pattern 31

32 Self-Service Applications using IBM WebSphere V5.0 and IBM MQSeries Integrator

Chapter 3. Runtime patterns

The Router application pattern represents a starting point for delivering a
sophisticated e-business application that delivers information from back-end
systems to multiple delivery channels, while exploiting the data integrity and
performance of legacy applications.

The Decomposition application pattern extends the Router application pattern by
decomposing a single, compound request from a client into several, simpler
requests and intelligently routes them to multiple back-end applications.

The next step is to choose Runtime patterns that most closely match the
requirements of the application. A Runtime pattern uses nodes to group
functional and operational components. The nodes are interconnected to solve a
business problem. Each Application pattern leads to one or more underpinning
Runtime patterns.

3

© Copyright IBM Corp. 2003. All rights reserved. 33

3.1 Nodes
A runtime topology will consist of several nodes representing specific functions.
Most topologies will consist of a core set of common nodes, with the addition of
one or more nodes unique to that topology. To understand the runtime
topologies, you will need to review the following node definitions.

User node
The user node is most frequently a personal computing device (PC) supporting a
commercial browser, for example, Netscape Navigator and Internet Explorer.
The browser is expected to support SSL and some level of DHTML. Increasingly,
designers need to also consider that this node might be a pervasive computing
device, such as a personal digital assistant (PDA).

Public Key Infrastructure (PKI)
PKI is a system for verifying the authenticity of each party involved in an Internet
transaction, protecting against fraud or sabotage, and for non-repudiation
purposes to help consumers and retailers protect themselves against denial of
transactions. Trusted third-party organizations called Certificate Authorities (CA)
issue digital certificates, which are attachments to electronic messages that
specify key components of the user's identity.

During an Internet transaction using signed, encrypted messages, the parties
can verify that the other’s certificate is signed by a trusted Certificate Authority,
before proceeding with the transaction. PKI can be embedded in software
applications, or offered as a service or a product. PKI is critical for transaction
security and integrity, and the software industry is moving to adopt open
standards for their use.

Domain Name System (DNS) node
The DNS node assists in determining the physical network address associated
with the symbolic address (URL) of the requested information. The Domain
Name System node provides the technology platform to provide host-to-IP
address mapping, that is, to allow for the translation of names (URLs) into IP
addresses and vice versa.

Protocol firewall and domain firewall nodes
Firewalls provide services that can be used to control access from a less trusted
network to a more trusted network. Traditional implementations of firewall
services include:

� Screening routers (the protocol firewall in this design)
� Application gateways (the domain firewall)
34 Self-Service Applications using IBM WebSphere V5.0 and IBM MQSeries Integrator

The two firewall nodes provide increasing levels of protection at the expense of
increasing computing resource requirements. The protocol firewall is typically
implemented as an IP router, while the domain firewall is a dedicated server
node.

Load balancer node
The load balancer provides horizontal scalability by dispatching HTTP
connections among several, identically configured Web servers. The load
balancer component distributes interactive traffic across a number of hosts using
dynamically updated rules for load balancing, while providing a single access
point to the client system. It is used to achieve scalability through use of multiple
servers, and high availability through being able to dynamically vary the
algorithms by which a host is selected if one host fails or becomes overloaded.

The load balancer may be required to concurrently provide local or remote load
balancing function for:

� Web servers
� Firewall nodes
� Directory and security servers
� Mail servers

Web server redirector node
In order to separate the Web server from the application server, a so-called Web
server redirector node (or just redirector for short) is introduced. The Web server
redirector is used in conjunction with a Web server. The Web server serves
HTTP pages and the redirector forwards servlet and JSP requests to the
application servers. The advantage of using a redirector is that you can move the
application server behind the domain firewall into the secure network, where it is
more protected than within the DMZ.

Web presentation node
The Web presentation server node provides services to enable a unified user
interface. It is responsible for all presentation-related activity. In its simplest form,
it serves HTML pages and runs servlets and JSPs. For more advanced patterns,
it acts as a portal and provides the access integration services (Single Sign-On,
for example). It interacts with the personalization server node to customize the
presentation based on the individual user preferences or on the user role. The
Web presentation server allows organizations and their users to standardize and
configure the presentation of applications and data in the most efficient way,
while enabling fine-grained access control.
 Chapter 3. Runtime patterns 35

Web application server node
A Web application server node is an application server that includes an HTTP
server (also known as a Web server) and is typically designed for HTTP client
access and to host both presentation and business logic.

The Web application server node is a functional extension of the informational
(publishing-based) Web server. It provides the technology platform and contains
the components to support access to both public and user-specific information by
users employing Web browser technology. For the latter, the node provides
robust services to allow users to communicate with shared applications and
databases. In this way, it acts as an interface to business functions, such as
banking, lending, and human resources (HR) systems.

This node would be provided by the company on company premises, or hosted
in the enterprise network inside a demilitarized zone (DMZ) for security reasons.
In most cases, access to this server would be in secure mode, using services
such as SSL or IPSec.

In the simplest design, this node can provide the management of hypermedia
documents and diverse application functions. For more complex applications or
those demanding stronger security, it is recommended that the application be
deployed on a separate Web application server node inside the internal network.

The node can contain these data types:

� HTML text pages, images, multimedia content to be downloaded to the client
browser

� Servlets, JavaServer Pages

� Enterprise beans

� Application program libraries, such as Java applets for dynamic download to
client workstations

Application server node
The application server node provides the infrastructure for application logic and
can be part of a Web application server. It is capable of running both presentation
and business logic but generally does not serve HTTP requests. When used with
a Web server redirector, the application server node can run both presentation
and business logic. In other situations, it can be used for business logic only. See
also “Web server redirector node” on page 35.

Integration server node
An integration server hosts application logic that can access and use information
from existing databases, transaction functions from transaction monitor systems,
and application capabilities from application packages. The integration server
36 Self-Service Applications using IBM WebSphere V5.0 and IBM MQSeries Integrator

can access back-end applications individually or combine this information and
function in new ways. At a minimum, the integration server acts as an integration
point for multiple presentation tiers (for example, call centers, branch offices, and
Web browsers) so that they can share the infrastructure and applications on tiers
2 and 3.

Directory and security services node
The directory and security services node supplies information on the location,
capabilities, and attributes (including user ID/password pairs and certificates) of
resources and users known to this Web application system. This node can
supply information for various security services (authentication and
authorization) and can also perform the actual security processing, for example,
to verify certificates. The authentication in most current designs validates the
access to the Web application server part of the Web server, but this node also
authenticates for access to the database server.

Existing applications and data node
Existing applications are running and maintained on nodes installed in the
internal network. These applications provide the business logic that uses data
maintained in the internal network. The number and pattern of these existing
application and data nodes is dependent on the particular configuration used by
these legacy systems.

3.2 Basic Runtime pattern for the Router pattern
In the Router application pattern, the router tier serves as an integration point for
delivery channels in the presentation tier, allowing access to individual back-end
applications. In the basic Runtime pattern, the functions of the router tier are
performed by an integration server. The functions of the presentation tier are
performed jointly by an Web server redirector and the application server. Placing
a Web server redirector in the DMZ provides an extra layer of security by putting
all application logic behind the firewall. Only a portion of the presentation function
is left in the DMZ.
 Chapter 3. Runtime patterns 37

Figure 3-1 Basic Runtime pattern for the Router application pattern

The protocol firewall prevents unauthorized access from the Internet to the
demilitarized zone. The role of this node is to allow the Internet traffic access only
on certain ports and block other ports. The domain firewall prevents
unauthorized access from the demilitarized zone to the internal network. The role
of this firewall is to allow the network traffic that originated only from the
demilitarized zone and not from the Internet.

A good security design does not permit any business logic or sensitive data in
the DMZ. Using a Web server redirector helps to meet that goal. The Web server
redirector serves static HTTP pages, while forwarding dynamic servlet and JSP
requests to the application server. The presentation logic, therefore, spans both
nodes. Together, these two provide the presentation tier, capable of handling
multiple, diverse presentation styles. Using a redirector allows you to place the
bulk of the business logic behind the protection of both the protocol and domain
firewalls.

In addition to presentation logic (for example, JSPs), the application server
contains some business logic. This is primarily in the form of the controlling
servlets required to access the back-end applications. The application server
builds a request based on user input and passes it to the integration server. The
primary business logic resides in the back-end applications.

Outside World Demilitarized Zone
(DMZ)

Internal Network

Web
Server

Redirector
Internet

P
ro

to
co

l f
ir

ew
al

l

D
o

m
ai

n
 f

ir
ew

al
l

Directory &
Security
Services

User

Public Key
Infrastructure

Domain
Name Server

Integration
Server

 Existing
Applications

and Data

Application
Server

Presentation2

Presentation1

synch synch
asynch

App 2

App1Router
38 Self-Service Applications using IBM WebSphere V5.0 and IBM MQSeries Integrator

The integration server examines the request, determines the appropriate
destination, and forwards it to the chosen back-end application. This may involve
activities such as message transformation, protocol conversion, security
management, and session concentration. The integration server may use a
database to look up routing information as a caching device.

Access to the application server resources is protected by the application
server’s security features, while access to the integration server’s resources is
protected by the integration server’s security features. User information that is
needed for authentication and authorization by both servers is stored in the
directory and security services node behind the domain firewall in the internal
network. The information may contain user IDs, passwords, certificates, access
groups, and so on.

Benefits and limitations
Since the Web server is separated from the application server, additional security
is available. All business logic and the bulk of the presentation logic is protected
by both the protocol and the domain firewall.

The basic pattern as shown is limited in availability, failover capability, and
scalability. However, the pattern can be extended to use horizontal and vertical
scaling and to take advantage of workload management techniques. For more
information on how to do this, see Patterns for the Edge of Network, SG24-6822.

Since the requests to the application server need to be forwarded, you could see
a performance degradation, depending on the redirector solution chosen.

In our retail company example of the IV Corp, data for each business function
(registration, order process, and order fulfillment) is accessible through back-end
applications. As a first step to integrating their operations, the company uses a
Router application pattern solution that provides access to each back-end
application. An IV Corp employee processing a registration application can
access the customer's credit history before approving the registration. Read-only
data at the router level provides a mapping between the user and the accounts
held.

3.2.1 Variation 1
In this variation, the presentation logic has been split from the application logic
and placed on a Web presentation server.
 Chapter 3. Runtime patterns 39

Figure 3-2 Basic Runtime pattern for the Router application pattern

The Web presentation server runs JSPs and servlets to provide the presentation
logic for the application. The application server runs EJB logic and sends
requests to the integration server. Requests are forwarded from the Web
presentation server to the application server using IIOP.

Using a Web presentation server further delineates the line between
presentation and application logic. It lends itself to scalability by allowing system
resources to be spread across multiple machines and although not shown, can
be extended to implement load balancing among application servers.

3.3 Basic Runtime pattern for Decomposition
On the surface, the Runtime pattern for the Decomposition application pattern
will appear to be the same as that for the Router application pattern. The only
visible difference in the Runtime pattern depiction is in the Application pattern
overlay. However, this one small detail in the graphics represents a much larger
change in the function provided by the integration server.

Outside World Demilitarized Zone
(DMZ)

Internal Network

Web
Server

Redirector

Internet

P
ro

to
co

l f
ir

ew
al

l

Directory &
Security
Services

User

Public Key
Infrastructure

Domain
Name Server

Integration
Server

 Existing
Applications

and Data
Application

Server

D
o

m
ai

n
 f

ir
ew

al
l

Web
Presentation

Server

Presentation2

Presentation1

synch
App 2

App1

synch
asynch Router
40 Self-Service Applications using IBM WebSphere V5.0 and IBM MQSeries Integrator

Figure 3-3 Basic Runtime pattern for the Decomposition application pattern

The integration server still examines messages and routes them to the
appropriate back-end applications. But now, it can go a step further by taking a
single complex message, decomposing it into multiple messages, and routing
those messages to the appropriate back-end applications. It is also capable of
managing these messages such that it can wait for responses and recompose
them into a single response to be sent back to the user. This effectively takes
multiple, diverse back-end applications and unifies them into one interface for the
user.

The integration server can use a local database for the previously described
routing functions, and as a work-in-progress database to store information
required for message decomposition and recomposition.

3.3.1 Variation 1
Variation 1 is the same as Variation 1 in the Router pattern. In this variation, the
presentation logic has been split from the application logic and place on a Web
presentation server.

Outside World Demilitarized Zone
(DMZ)

Internal Network

Web
Server

Redirector
Internet

P
ro

to
co

l f
ir

ew
a

ll

Directory &
Security
Services

User

Public Key
Infrastructure

Domain
Name Server

Integration
Server

 Existing
Applications

and Data

Application
Server

D
o

m
ai

n
 f

ir
ew

al
l

Presentation2

Presentation1
synch synch

asynch

App 2

App1Decomposition
 Chapter 3. Runtime patterns 41

The Web presentation server runs JSPs and servlets to provide the presentation
logic for the application. The application server runs EJB logic and sends
requests to the integration server. Requests are forwarded from the Web
presentation server to the application server using IIOP.

Using a Web presentation server further delineates the line between
presentation and application logic. It lends itself to scalability in by allowing
system resources to be spread across multiple machines and although not
shown, can be extended to implement load balancing among application servers.

3.4 For more information
For more information, please consult:

� Patterns for the Edge of Network, SG24-6822

� IBM WebSphere V5.0 Performance, Scalability and High Availability,
SG24-6891

Outside World Demilitarized Zone
(DMZ)

Internal Network

Web
Server

Redirector

Internet

P
ro

to
co

l f
ir

ew
al

l

Directory &
Security
Services

User

Public Key
Infrastructure

Domain
Name Server

Integration
Server

 Existing
Applications

and Data
Application

Server

D
o

m
ai

n
 f

ir
ew

al
l

Web
Presentation

Server

Presentation2

Presentation1

synch
App 2

App1

synch
asynch Decomposition
42 Self-Service Applications using IBM WebSphere V5.0 and IBM MQSeries Integrator

Chapter 4. Product mapping

The next step after choosing a Runtime pattern is to determine the actual
products and platforms to be used. The open standards and practices of the IBM
e-business strategy let you develop and test an e-business application on your
development runtime platform and easily deploy the application on any other
supported platform. Further, it is common for a company to have a mixture of
platforms within an integrated e-business solution. With their support for these
multiple platforms, the Patterns for e-business solution designs are an appealing
choice when faced with the requirement for integration with a mixed platform
environment.

It is suggested that you make the final platform recommendation based on the
following considerations:

� Existing systems and platform investments
� Customer and developer skills available
� Customer choice

The platform selected should fit into the customer's environment and ensure
quality of service, such as scalability and reliability so that the solution can grow
along with the e-business.

4

© Copyright IBM Corp. 2003. All rights reserved. 43

4.1 Runtime product mappings
The implementation of the Self-Service::Router application pattern and
Decomposition application pattern in this book are done with three primary IBM
products.

� The integration server that performs the Router and Decomposition functions
of the application is implemented using IBM WebSphere MQ Integrator.

� The application server is WebSphere Application Server V5.0. The primary
back-end application is also running on IBM WebSphere Application Server
V5.0.

� The transport between the various servers is using IBM WebSphere MQ.

The product mappings for both the Router and Decomposition patterns are the
same. The difference in patterns is determined by the functions implemented
within IBM WebSphere MQ Integrator, which was used to provide both routing
and decomposition.

IBM WebSphere MQ Integrator has the ability to retrieve a message from a
message queue, parse it according to type, and make logical decisions regarding
the message. In addition, the WebSphere MQ Integrator broker can alter the
message, transform it to a different format, create multiple new messages from it,
store information in a database, and perform many other actions that might be
needed.

As a router, WebSphere MQ Integrator can take a message and route it based
on the message content or input from other sources, such as a local database, to
the appropriate back-end application to handle the request.

As a decomposition node, WebSphere MQ Integrator can take a single input
message and split it (decompose it) into multiple back-end requests. The
WebSphere MQ Integrator waits for the replies and recomposes them into one
response, then sends it back to the user. For example, in our IV Corp sample, an
order that is entered by a customer can have more than one component. This
order is decomposed into sub-orders and each sub-order is routed to a specific
supplier. When the sub-responses from each supplier return, WebSphere MQ
Integrator recomposes them in a single response and returns it to the customer.

WebSphere MQ provides the transport mechanism for the messages. In our
implementation, we use an WebSphere MQ queue manager on each server to
transport the messages. The Java application uses JMS to place messages on
queues. WebSphere MQ is then responsible for ensured delivery of the
messages to the proper destination, in our case, the WebSphere MQ Integrator
broker.
44 Self-Service Applications using IBM WebSphere V5.0 and IBM MQSeries Integrator

Using a Web server redirector node, we can place the majority of the business
logic in the internal network, placing it behind two firewalls. The redirector is
implemented using the WebSphere Application Server HTTP transport plug-in.
The redirector serves static HTML pages and forwards requests for dynamic
content to a WebSphere Application Server via HTTP/HTTPS protocol.

The back-end application in this mapping is represented by a Java application
running on WebSphere Application Server; however, keep in mind that both IBM
WebSphere Application Server and WebSphere MQ provide support for a broad
range of back-end applications.

Windows 2000
Figure 4-1 on page 46 shows a product mapping based on the Windows 2000
operating system platform.

What’s new? In the product mappings for these patterns based on
WebSphere Application Server Version 4.0 (see Self-Service Applications
using IBM WebSphere V4.0 and IBM MQSeries Integrator, SG24-6160-01),
the Enterprise Edition was required on the Existing Applications and Data
node to provide support for asynchronous message processing. WebSphere
Application Server Version 5.0 provides support for message-driven beans to
handle asynchronous messages.
 Chapter 4. Product mapping 45

Figure 4-1 Windows 2000 product mapping

Variation 1
According to the Runtime pattern Variation 1, the following diagram depicts the
Windows 2000 product mapping.

Figure 4-2 Windows 2000 product mapping for Variation 1

Outside World Demilitarized Zone
(DMZ)

Internal Network

Web
Server

Redirector

P
ro

to
co

l f
ir

ew
al

l

D
o

m
ai

n
 f

ir
ew

al
l

Directory &
Security
Services

Integration
Server

 Existing
Applications

and Data

Application
Server

LDAP

Windows 2000 + SP2
IBM WebSphere Application
Server V5.0 HTTP Plug-in
IBM HTTP Server 1.3.26

Windows 2000 + SP2
IBM WebSphere Application
Server V5.0
IBM DB2 UDB ESE 8.1
IBM WebSphere MQ 5.3

Windows 2000 + SP2
DB2 UDB ESE 8.1
IBM WebSphere MQ 5.3
IBM WebSphere MQ
Integrator 2.1

Windows 2000 + SP2
IBM SecureWay Directory V4.1.1
IBM HTTP Server 1.3.26
IBM GSKit 4.0.3
IBM DB2 UDB ESE V8.1

Windows 2000 SP2
IBM WebSphere
Application Server
V5.0
IBM WebSphere
MQ V5.3

User

Public Key
Infrastructure

Domain Name
Server

Internet

Outside World Demilitarized Zone
(DMZ)

Internal Network

Web
Server

Redirector

Internet

P
ro

to
co

l f
ir

ew
al

l

User

Public Key
Infrastructure

Domain Name
Server

Integration
Server

 Existing
Applications

and Data
Application

Server

D
o

m
ai

n
 f

ir
e

w
al

l

Web
Presentation

Server

Directory &
Security
Services

Windows 2000 + SP2
IBM WebSphere Application
Server V5.0
IBM DB2 UDB ESE 8.1
IBM WebSphere MQ 5.3

Windows 2000 SP2
IBM WebSphere
Application Server
V5.0
IBM WebSphere
MQ V5.3

Windows 2000 + SP2
DB2 UDB ESE 8.1
IBM WebSphere MQ 5.3
IBM WebSphere MQ
Integrator 2.1

Windows 2000 + SP2
IBM SecureWay Directory V4.1.1
IBM HTTP Server 1.3.26
IBM GSKit 4.0.3
IBM DB2 UDB ESE V8.1

Windows 2000 + SP2
IBM WebSphere Application
Server V5.0 HTTP Plug-in
IBM HTTP Server 1.3.26

LDAP
46 Self-Service Applications using IBM WebSphere V5.0 and IBM MQSeries Integrator

AIX®
Figure 4-3 shows a product mapping based on the AIX operating system
platform.

Figure 4-3 AIX product mapping

Variation 1
According to the Runtime pattern Variation 1, the following diagram depicts the
AIX product mapping.

Outside World Demilitarized Zone
(DMZ)

Internal Network

Web
Server

Redirector
P

ro
to

co
l f

ir
ew

al
l

D
o

m
ai

n
 f

ir
ew

al
l

Directory &
Security
Services

Integration
Server

 Existing
Applications

and Data

Application
Server

LDAP

AIX 5.1
IBM WebSphere Application
Server V5.0 HTTP Plug-in
IBM HTTP Server 1.3.26

AIX 5.1
IBM WebSphere Application
Server V5.0
IBM DB2 UDB ESE 8.1
IBM WebSphere MQ 5.3

AIX 5.1
DB2 UDB ESE 8.1
IBM WebSphere MQ 5.3
IBM WebSphere MQ
Integrator 2.1

AIX 5.1
IBM SecureWay Directory V4.1.1
IBM HTTP Server 1.3.26
IBM GSKit 4.0.3
IBM DB2 UDB ESE V8.1

AIX 5.1
IBM WebSphere
Application Server
V5.0
IBM WebSphere
MQ V5.3

User

Public Key
Infrastructure

Domain Name
Server

Internet
 Chapter 4. Product mapping 47

Figure 4-4 AIX product mapping for Variation 1

Linux
Figure 4-5 shows a product mapping based on the Linux operating system
platform.

Figure 4-5 Linux product mapping

Outside World Demilitarized Zone
(DMZ)

Internal Network

Web
Server

Redirector

Internet

P
ro

to
c

o
l f

ir
ew

al
l

User

Public Key
Infrastructure

Domain Name
Server

Integration
Server

 Existing
Applications

and Data
Application

Server

D
o

m
ai

n
 f

ir
ew

a
ll

Web
Presentation

Server

Directory &
Security
Services

AIX 5.1
IBM SecureWay Directory V4.1.1
IBM HTTP Server 1.3.26
IBM GSKit 4.0.3
IBM DB2 UDB ESE V8.1

AIX 5.1
IBM WebSphere Application
Server V5.0 HTTP Plug-in
IBM HTTP Server 1.3.26

AIX 5.1
IBM WebSphere Application
Server V5.0
IBM DB2 UDB ESE 8.1
IBM WebSphere MQ 5.3

AIX 5.1
IBM WebSphere
Application Server
V5.0
IBM WebSphere
MQ V5.3

LDAP AIX 5.1
DB2 UDB ESE 8.1
IBM WebSphere MQ 5.3
IBM WebSphere MQ
Integrator 2.1

Outside World Demilitarized Zone
(DMZ)

Internal Network

Web
Server

Redirector

P
ro

to
co

l f
ir

ew
al

l

D
o

m
ai

n
 f

ir
ew

al
l

Directory &
Security
Services

Integration
Server

 Existing
Applications

and Data

Application
Server

LDAP

Linux Red Hat 2.1 AS
IBM WebSphere Application
Server V5.0 HTTP Plug-in
IBM HTTP Server 1.3.26

Linux Red Hat 2.1 AS
IBM WebSphere Application
Server V5.0
IBM DB2 UDB ESE 8.1
IBM WebSphere MQ 5.3

Linux Red Hat 2.1 AS
IBM WebSphere
Application Server
V5.0
IBM WebSphere MQ
V5.3

Linux Red Hat 2.1 AS
IBM SecureWay Directory V4.1.1
IBM HTTP Server 1.3.26
IBM GSKit 4.0.3
IBM DB2 UDB ESE V8.1 + FP4

User

Public Key
Infrastructure

Domain Name
Server

Internet

Windows 2000 + SP2
DB2 UDB ESE 8.1
IBM WebSphere MQ 5.3
IBM WebSphere MQ
Integrator 2.1
48 Self-Service Applications using IBM WebSphere V5.0 and IBM MQSeries Integrator

Variation 1
According to the Runtime pattern Variation 1, the following diagram depicts the
Linux product mapping.

Figure 4-6 Linux product mapping for Variation 1

Note that WebSphere MQ Integrator V2.1 does not exist on Linux, therefore the
product mapping for Linux includes the Windows 2000 version of WebSphere
MQ Integrator V2.1.

4.2 Product summary
The Router and Decomposition application patterns assume a need for
Web-enablement of back-end enterprise applications. Back-end integration
requires a mechanism for applications to be able to talk to each other so
information can be requested and transactions executed from Web-enabled
front-ends to enterprise back-end applications. The need for intermediate action
on these messages, such as determining the appropriate back-end system to
handle the request or the transformation of data from one format to another,
often arises in this situation.

Fulfilling this requirement, the WebSphere MQ family of products provides a
highly scalable Message Oriented Middleware (MOM) infrastructure for
application messaging, brokering, routing, aggregating, and transforming of
business data. It provides the tools needed to apply business rules that act upon
the data to suit the requirements and provides the flexibility to extend and reuse
enterprise applications across a wide variety of platforms.

Outside World Demilitarized Zone
(DMZ)

Internal Network

Web
Server

Redirector

Internet

P
ro

to
c

o
l f

ir
ew

al
l

User

Public Key
Infrastructure

Domain Name
Server

Integration
Server

 Existing
Applications

and Data
Application

Server

D
o

m
ai

n
 f

ir
ew

a
ll

Web
Presentation

Server

Directory &
Security
Services Windows 2000 + SP2

DB2 UDB ESE 8.1
IBM WebSphere MQ 5.3
IBM WebSphere MQ
Integrator 2.1

Linux Red Hat 2.1 AS
IBM SecureWay Directory V4.1.1
IBM HTTP Server 1.3.26
IBM GSKit 4.0.3
IBM DB2 UDB ESE V8.1 + FP4

Linux Red Hat 2.1 AS
IBM WebSphere Application
Server V5.0 HTTP Plug-in
IBM HTTP Server 1.3.26

Linux Red Hat 2.1 AS
IBM WebSphere Application
Server V5.0
IBM DB2 UDB ESE 8.1
IBM WebSphere MQ 5.3

Linux Red Hat 2.1 AS
IBM WebSphere
Application Server
V5.0
IBM WebSphere MQ
V5.3

LDAP
 Chapter 4. Product mapping 49

This book also shows the complementary products for a whole business
integration solution but that are not part of the implementation in our sample
scenario.

WebSphere Application Server V5
As the foundation of the WebSphere software platform, the IBM WebSphere
Application Server Version 5 reinforces its reputation as the premier Java-based
application platform, integrating enterprise data and transactions for the dynamic
e-business world. WebSphere Application Server V5 provides a rich e-business
application deployment environment with a set of application services that
include enhanced capabilities for transaction management in a heterogeneous
comprehensive Web services support, increased security, performance,
availability, connectivity, and scalability. The new version manages and
integrates enterprise-wide applications while leveraging open technologies and
application programming interfaces (APIs).

The new capabilities of WebSphere Application Server V5 translate into four
distinct benefits:

1. Maximized ROI through integration support for Web services

With Web services, you can reduce costs by finding the least expensive
trading partners and sharing applications electronically with other
organizations. SOAP, UDDI Registry, Web Services Invocation Framework
(WSIF), Web Services Gateway, and preview versions of Apache SOAP and
JSR 109 technologies make WebSphere Application Server V5 a
production-ready Web application server for the development and
deployment of enterprise Web services solutions for e-business. In addition,
interoperability between Web services and J2EE enables key solution
offerings for collaboration, B2B, portal serving, content management,
commerce, and pervasive computing.

2. Reduced costs by leveraging existing software assets

WebSphere Application Server V5 lets companies grow while reducing costs
along the way, by allowing them to use the systems in which they have
already invested. J2EE Connector Architecture (JCA) and advanced XML
and data transformations let companies reuse and integrate disparate
systems and applications while allowing for cross-platform support and
connectivity and integration with a variety of brand-name back-end systems.
Native, high-performance JMS and J2EE 1.3 message beans enable
dynamic application interactions, while a comprehensive and extensible
integrated development and deployment platform optimizes development
resources by facilitating reuse of CORBA, Microsoft, Java, and legacy assets.
50 Self-Service Applications using IBM WebSphere V5.0 and IBM MQSeries Integrator

3. Increased productivity

Recognizing that every deployment environment is unique, IBM has
developed a single application server code-base with multiple configuration
options - supporting a wide range of scenarios from simple administration of a
single server to a clustered, highly available, high-volume environment with
edge-of-network services. WebSphere support for JMX allows third-party
products to read and manage WebSphere resources in a standard way.
Additional capabilities are available through the simple, XML-based
administration interface, including the ability to create and manage clusters,
and quickly deploy new components, applications, and services.

4. Industry leading to handle the demands of dynamic e-business

WebSphere Application Server V5 offers expanded database support and
enhanced security. In addition, integrated edge-of-network technology
provides scalability, availability and performance through features such as:

– Dynamic caching
– Content distribution
– Transactional Quality of Service
– Dynamic workload management
– Enhanced multi-domain failover function
– High-availability LDAP support
– ESI-based dynamic fragment caching and invalidation capabilities

Improved system management and integration with best-of-breed
performance management tools let you easily and dynamically manage and
maintain your e-business.

IBM WebSphere Application Server V5 offers the following capabilities:

� Full J2EE (Java 2 Platform, Enterprise Edition) V1.3 compatibility including an
enterprise-ready JMS provider based on technology in IBM WebSphere MQ.

� New packaging based on a single code base offers multiple deployment
options from single server to clustered highly available, high-volume
configurations.

� Improved system management and administration via browser-based
administration, JMX, UI, and XML configuration.

� Tight integration with IBM WebSphere Studio, a highly productive
development environment built on Eclipse, the premiere open systems
development environment.

� Improvements over the performance offered by WebSphere Application
Server V4 via additional distributed workload and enhanced caching
capabilities and the inclusion of Dynamic Work Load Management among
WebSphere Application Servers.
 Chapter 4. Product mapping 51

� Additional automation of distributed system management via centralized
deployment manager and dynamic clustering capability for simplified
administration of all clustered environments.

� Enhanced application availability and elimination of single points of failure
between dispersed data centers with Advanced Multi-Domain
Availability/Failover.

� Content Distribution Framework improves user response times and reduces
bandwidth costs by enabling you to deploy published Web site content,
including Web pages, fragments and application components, to caches and
rehosting servers throughout the network.

� Enhanced user experiences through expedited, personalized page
composition.

� Extended security capabilities for strong authentication security for
client/server applications, using secret-key cryptography.

� Integration with Tivoli® Access Manager (formerly known as Tivoli Policy
Director) software for centralized, site-wide authentication and access control
and open security programming interfaces to support third-party security
solutions.

� Option for in-memory replication of cached information for improved
performance.

� Simplified problem determination with first-failure data capture and automated
collection of system information to assist in remote problem resolution.
Security enhancements include JAAS, CSIv2, and JCE.

� Broad cross-platform support.

For more information, please refer to:

http://www-3.ibm.com/software/webservers/appserv/

WebSphere MQ V5.3
IBM WebSphere MQ connects business software to form one efficient enterprise
by providing an open, scalable, industrial-strength messaging backbone.

WebSphere MQ minimizes time taken to integrate key resources and
applications held in different systems, so companies can respond to the
changing demands of e-business. By connecting business information with
people and other applications, more value can be extracted from existing
investments, and new systems can be quickly integrated to support new market
strategies.

WebSphere MQ does the following:
52 Self-Service Applications using IBM WebSphere V5.0 and IBM MQSeries Integrator

http://www-3.ibm.com/software/webservers/appserv/

� Connects any commercial systems in business today (over 35 platforms
supported)

� Ignores network disruptions – important data is always delivered

� Uses less time and resources to become an e-business

� Allows business to integrate disparate islands of automation

� Provides for time-independent communication

� Assures one-time delivery

� Supports a high-volume throughput customer experience in excess of 250
million messages a day

For more information, please refer to:

http://www-3.ibm.com/software/ts/mqseries/
http://www-3.ibm.com/software/ts/mqseries/messaging/

WebSphere MQ Integrator V2.1
WebSphere MQ Integrator Broker for Multiplatforms allows businesses to shape
information flows according to their specific business needs, as follows:

� Transforms, augments, and applies rules to message-based data, and routes
and distributes it between high performance systems.

� Integrates both existing and new applications with business data using
dynamic content and topic-based publish/subscribe functions.

� Visualizes the application flow through a graphical development environment.

� Allows message formats to be defined through a variety of dictionaries, either
those supplied with the product or from a third party.

� Simplifies support for multiple environments with a variety of application
adapters, templates and tools.

� Provides a fully scalable architecture to meet growing business needs.

� Architected with an open framework that allows the use of built-in
components together with third-party offerings.

For more information, please refer to:

http://www-3.ibm.com/software/ts/mqseries/integrator/broker/.

IBM DB2 V8.1
DB2 Universal Database™ Version 8.1 offers many database and data
management enhancements.
 Chapter 4. Product mapping 53

http://www-3.ibm.com/software/ts/mqseries/
http://www-3.ibm.com/software/ts/mqseries/messaging/
http://www-3.ibm.com/software/ts/mqseries/integrator/broker/

IBM DB2 V8 for Linux, UNIX, and Windows marks the next stage in the evolution
of the relational database. DB2 is the database of choice for the development
and deployment of critical solutions such as:

� e-business
� Business intelligence
� Content management
� Enterprise Resource Planning
� Customer Relationship Management

DB2 UDB Version 8.1 enhancements include:

� Innovative manageability

– Configuration Advisor enhances and makes DBA tasks easier

– Health Center/Monitor keeps your database functioning

– Memory Visualizer lets you dynamically see and control DB2's memory
usage

– Advisors to deliver expert advice on index and materialized query tables
(MQTs)

– Simplified management of large-scale partitioned databases

� New levels of integrated information

– Federated Web Services allows combination of data from Web service
providers

– XML productivity tools simplify integrating XML

� Robust e-business foundation

– Connection Concentrator for more user scalability
– Dynamic configuration
– In-place online reorganization
– Online load
– Online storage management
– Null and default compression
– Replication enhancements
– New client architecture

� Integrated Business Intelligence

– Multidimensional data clustering improves performance of complex
queries

– Real-time and bulk scoring of data

� Enhanced application development productivity

– Development Center
– WebSphere integration
54 Self-Service Applications using IBM WebSphere V5.0 and IBM MQSeries Integrator

– Microsoft integration
– Manageability

DB2 greatly reduces the complexity of data management by eliminating,
simplifying, and automating many tasks traditionally associated with maintaining
an enterprise-class database. Some of these advances are the first
implementation of the Self-Managing and Resource Tuning (SMART) project and
the first steps towards making full autonomic computing a reality for database
implementations.

Performance and scalability enhancements
The Connection Concentrator reduces memory consumption on the database
server by allowing transactions from remote clients to be concentrated or
multiplexed across a small number of persistent database connections.

� Improved performance of databases with multiple partitions
� Multidimensional data clustering
� Prefetching enhancement
� Faster page cleaners
� User-maintained MQTs (or ASTs)
� Support for 64-bit Windows and 64-bit Linux
� New streamlined application drivers (ODBC, OLE DB, JDBC, and SQLj)
� New client architecture
� InfiniBand support

DB2 is the first database to support InfiniBand fabric connectivity for high-speed
interconnections. DB2 V8 includes improved support for the InfiniBand
architecture to deploy partitioned databases on multiple servers while offering
greater scalability and better performance.

For more information, refer to:

http://www-3.ibm.com/software/data/db2/udb/v8/
 Chapter 4. Product mapping 55

http://www-3.ibm.com/software/data/db2/udb/v8/

56 Self-Service Applications using IBM WebSphere V5.0 and IBM MQSeries Integrator

Part 2 Guidelines

Part 2
© Copyright IBM Corp. 2003. All rights reserved. 57

58 Self-Service Applications using IBM WebSphere V5.0 and IBM MQSeries Integrator

Chapter 5. Technology options

In this chapter, we take a look at the Web application technology options you
should consider. The recommendations are guided by the demands of reuse,
flexibility, and interoperability, and subsequently are based on the open industry
standards outlined by Java 2 Platform, Enterprise Edition (J2EE). Many of the
choices continue to evolve and expand as the J2EE specification matures to
include a broader view of the enterprise architecture. These recommendations
are based on the J2EE1.3 specification and parts of the J2EE1.4 specification.

5

© Copyright IBM Corp. 2003. All rights reserved. 59

Our discussion of technology options is organized along the enterprise
application tiers shown in Figure 5-1:

� Web client technologies for providing client-side presentation.

� Web application server technologies for providing server-side presentation
and business logic.

� Integration technologies for providing access to the enterprise tier.

Figure 5-1 Self-Service application tiers

Web Client Web Application Server

Enterprise tier

Application

DB

Application

DB

Browser
W

eb

S
er

ve
r

Application
Server

Server tierClient tier Integration tier

Integration
Server

DB
60 Self-Service Applications using IBM WebSphere V5.0 and IBM MQSeries Integrator

5.1 Web client
Figure 5-2 shows the recommended technologies for Web clients.

Figure 5-2 Web client technology model

The clients are “thin clients” with little or no application logic. Applications are
managed on the server and downloaded to the requesting clients. The client
portions of the applications should be implemented in HTML, dynamic HTML
(DHTML), XML, and Java applets.

The selection of client-side technologies used in your design will require
consideration for the server side, such as whether to store, or dynamically
create, elements for the client side.

The following sections outline some of the possible technologies that you should
consider, but remember that your choices may be constrained by the policy of
your customer or sponsor. For example, for security reasons, only HTML is
allowed in the Web client at some government agencies.

Browser/Web Top

Java VM

Applets
and

JavaBeans

Protocols - HTTP, IIOP, ...

Network Infrastructure

Native Apps
Shrink
Wrapped
Custom

CREDIT CARD

1234 5678 90121234 5678 9012
VALI D FROM GOO D TH RU

XX/X X/XX X X/XX/X X

P AUL FIS CHER

XX /XX/XX XX /XX/XX
PAUL FISCHER

Pervasive

NC

Managed PC

PC

TCP/IP, WAP ...

HTML, DHTML, XML, WML
 Chapter 5. Technology options 61

We also touch on some of the current technology choices in the wireless area.

5.1.1 Web browser
A Web browser is a fundamental component of the Web client. For PC-based
clients, the browser typically incorporates support for HTML, DHTML, JavaScript,
and Java. Some browsers are beginning to add support for XML as well. Under
user control, there is a whole range of additional technologies that can be
configured as “plug-ins”, such as RealPlayer from RealNetworks or Macromedia
Flash.

As an application designer, you must consider the level of technology you can
assume will be available in the user’s browser, or you can add logic to your
application to enable slight modifications based upon the browser level. For
Internet users, this is especially true. With intranet users, you can assume
support for a standard browser. Regarding plug-ins, you need to consider what
portion of your intended user community will have that capability.

Cross-browser strategies are required to ensure robust application development.
Although many of these technology choices are maturing, they continue to be
inconsistently supported by the full range of browser vendors. Developers must
know browser compatibility for all features being exploited by the application. In
general, developers will need to code to a lowest denominator or at least be able
to distinguish among browser types using programmatic techniques. The key
decision here is to determine the application requirements and behavior when
handled by old browsers, other platforms such as Linux and Mac, and even the
latest browsers.

In the J2EE model, the Web browser plays the role of client container. The model
requires that the container provide a Java Runtime Environment as defined by
the Java 2 Platform, Standard Edition (J2SE). However, for an e-business
application that is to be accessed by the broadest set of users with varying
browser capabilities, the client is often written in HTML with no other
technologies. On an exception basis, limited use of other technologies, such as
using JavaScript for simple edit checks, can then be considered based on the
value to the user and the policy of the organization for whom the project is being
developed.

The emergence of pervasive devices introduces new considerations to your
design with regard to the content streams that the device can render and the
more limited capabilities of the browser. For example, WAP (Wireless Application
Protocol) enabled devices render content sent in WML (Wireless Markup
Language).
62 Self-Service Applications using IBM WebSphere V5.0 and IBM MQSeries Integrator

5.1.2 HTML
HTML (HyperText Markup Language) is a document markup language with
support for hyperlinks that is rendered by the browser. It includes tags for simple
form controls. Many e-business applications are assembled strictly using HTML.
This has the advantage that the client-side Web application can be a simple
HTML browser, enabling a less capable client to execute an e-business
application.

The HTML specification defines user interface (UI) elements for text with various
fonts and colors, lists, tables, images, and forms (text fields, buttons,
checkboxes, and radio buttons). These elements are adequate to display the
user interface for most applications. The disadvantage, however, is that these
elements have a generic look and feel, and they lack customization. As a result,
some e-business application developers augment HTML with other
user-interface technologies to enhance the visual experience, subject to
maintaining access by the intended user base and compliance with company
policy on Web client technologies.

Because most Web browsers can display HTML Version 3.2, this is the lowest
common denominator for building the client side of an application. To ensure
compatibility, developers should be unit testing pages against a validator tool.
Free tools are available, such as the W3C HTML Validation Service, available at:

http://validator.w3.org/

5.1.3 Dynamic HTML
DHTML allows a high degree of flexibility in designing and displaying a user
interface. In particular, DHTML includes Cascading Style Sheets (CSS) that
enable different fonts, margins, and line spacing for various parts of the display to
be created. These elements can be accurately positioned using absolute
coordinates. See 5.1.4, “CSS” on page 64 for details on Cascading Style Sheets.

Another advantage of DHTML is that it increases the level of functionality of an
HTML page through a document object model and event model. The document
object enables scripting languages such as JavaScript to control parts of the
HTML page. For example, text and images can be moved about the window, and
hidden or shown, under the command of a script. Also, scripting can be used to
change the color or image of a link when the mouse is moved over it, or to
validate a text input field of a form without having to send it to the server.
 Chapter 5. Technology options 63

http://validator.w3.org/
http://validator.w3.org/

Unfortunately there are several disadvantages with using DHTML. The greatest
of these is that two different implementations (Netscape and Microsoft) exist and
are found only on the more recent browser versions. A small, basic set of
functionality is common to both, but differences appear in most areas. The
significant difference is that Microsoft allows the content of the HTML page to be
modified by using either JScript or VBScript, while Netscape allows the content
to be manipulated (moved, hidden, shown) using JavaScript only.

Due to varying levels of browser support, cross-browser design strategies must
be used to ensure appropriate presentation and behavior of DHTML elements. In
general this technology is not recommended unless its features are needed to
meet usability requirements.

5.1.4 CSS
Cascading Style Sheets (CSS) allow you to define a common look and feel for
HTML documents. This specification describes how Web documents are to be
presented in print and online.

CSS is defined as a set of rules that are identified by selectors. When processed
by the client browser, the selectors are matched to specific HTML tags and then
are applied against the properties of the tag. This allows for global control over
colors, fonts, margins, and borders. More advanced commands allow for control
over pixel coordinates. Related stylesheet commands can be grouped and then
externalized as a separate template file to be referenced by a multitude of Web
pages.

CSS is defined as level1 and level 2 specifications. Level 1 was written with
HTML in mind, while level 2 was expanded to include general markup styles for
XML documents. Developers using CSS should unit test against a validator tool,
such as the W3C CSS Validation Service at:

http://jigsaw.w3.org/css-validator/.

Due to varying levels of browser support, cross-browser design strategies must
be used to ensure appropriate presentation and behavior of CSS elements. In
general, this technology should be used with great attention to support of
specification elements.
64 Self-Service Applications using IBM WebSphere V5.0 and IBM MQSeries Integrator

http://jigsaw.w3.org/css-validator/
http://jigsaw.w3.org/css-validator/

5.1.5 JavaScript
JavaScript is a cross-platform object-oriented scripting language. It has great
utility in Web applications because of the browser and document objects that the
language supports. Client-side JavaScript provides the capability to interact with
HTML forms. You can use JavaScript to validate user input on the client and help
improve the performance of your Web application by reducing the number of
requests that flow over the network to the server.

ECMA, a European standards body, has published a standard (ECMA-262) that
is based on JavaScript (from Netscape) and JScript (from Microsoft), called
ECMAScript. The ECMAScript standard defines a core set of objects for scripting
in Web browsers. JavaScript and JScript implement a superset of ECMAScript.

To address various client-side requirements, Netscape and Microsoft have
extended their implementations of JavaScript in Version 1.2 by adding new
browser objects. Because Netscape's and Microsoft's extensions are different
from each other, any script that uses JavaScript 1.2 extensions must detect the
browser being used, and select the correct statements to run.

One caveat is that users can disable JavaScript on the client browser, but this
can be programmatically detected.

The use of JavaScript on the server side of a Web application is not
recommended, given the alternatives available with Java. Where your design
indicates the value of using JavaScript, for example for simple edit checking, use
JavaScript 1.1, which contains the core elements of the ECMAScript standard.

5.1.6 Java applets
The most flexibility of the user interface (UI) technologies that can be run in a
Web browser is offered by the Java applet. Java provides a rich set of UI
elements that include an equivalent for each of the HTML UI elements. In
addition, because Java is a programming language, an infinite set of UI elements
can be built and used. There are many widget libraries available that offer
common UI elements, such as tables, scrolling text, spreadsheets, editors,
graphs, charts, and so on.

You can use either the awt or the Swing classes to build a Java applet. But while
designing your applet, you should keep in mind that Swing is supported only by
later browser versions.
 Chapter 5. Technology options 65

A Java applet is a program written in Java that is downloaded from the Web
server and run on the Web browser. The applet to be run is specified in the
HTML page using an APPLET tag:

<APPLET CODEBASE="/mydir" CODE="myapplet.class" width=400 height=100>
 <PARAM NAME="myParameter" VALUE="myValue">
</APPLET>

For this example, a Java applet called “myapplet” will run. An effective way to
send data to an applet is with the use of the PARAM tag. The applet has access
to this parameter data and can easily use it as input to the display logic.

Java can also request a new HTML page from the Web application server. This
provides an equivalent function to the HTML FORM submit function. The
advantage is that an applet can load a new HTML page based upon the obvious
(a button being clicked), or the unique (the editing of a cell in a spreadsheet).

A characteristic of Java applets is that they seldom consist of just one class file.
On the contrary, a large applet may reference hundreds of class files. Making a
request for each of these class files individually can tax any server and also tax
the network capacity. However, packaging all of these class files into one file
reduces the number of requests from hundreds to just one. This optimization is
available in many Web browsers in the form of either a JAR file or a CAB file.
Netscape and HotJava support JAR files simply by adding an
ARCHIVE="myjarfile.jar" variable within the APPLET tag. Internet Explorer
uses CAB files specified as an applet parameter within the APPLET tag. In all
cases, executing an applet contained within a JAR/CAB file exhibits faster load
times than individual class files. While Netscape and Internet Explorer use
different APPLET tags to identify the packaged class files, a single HTML page
containing both tags can be created to support both browsers. Each browser
simply ignores the other's tag.

JavaScript can be used to invoke methods on an applet using the SCRIPT tag in
the applet’s HTML page.

A disadvantage of using Java applets for UI generation is that the required
version of Java must be supported by the Web browser. Thus, when using Java,
the UI part of the application will dictate which browsers can be used for the
client-side application. Note that the leading browsers support variants of the
JDK 1.1 level of Java and they have different security models for signed applets.
66 Self-Service Applications using IBM WebSphere V5.0 and IBM MQSeries Integrator

Using Java plug-ins, you can extend the functionality of your browser to support
a particular version of Java. Java plug-ins are part of the Java Runtime
Environment (JRE) and they are installed when the JRE gets installed on the
computer. You can specify certain tags in your Web page, to use a particular
JRE. This will download the particular JRE if it is not found on the local computer.
This can be done in HTML either through the:

� Conventional APPLET tag, or

� OBJECT tag instead of APPLET tag for Internet Explorer or the EMBED tag
with the APPLET tag for Netscape.

A second disadvantage of Java applets is that any classes such as widgets and
business logic that are not included as part of the Java support in the browser
must be loaded from the Web server as they are needed. If these additional
classes are large, the initialization of the applet may take from seconds to
minutes, depending upon the speed of the connection to the Internet.

Using HTTP tunneling, an applet can call back on the server without reloading
the HTML page. For users who are behind a restrictive firewall, HTTP tunneling
offers a bidirectional data connection to connect to a system outside the firewall.

Because of the above shortcomings, the use of Java applets is not
recommended in environments where mixed levels and brands of browsers are
present. Small applets may be used in rare cases where HTML UI elements are
insufficient to express the semantics of the client-side Web application user
interface. If it is absolutely necessary to use an applet, care should be taken to
include UI elements that are core Java classes whenever possible.

5.1.7 XML (client side)
XML allows you to specify your own markup language with tags specified in a
Document Type Definition (DTD) or XML Schema. Actual content streams are
then produced that use this markup. The content streams can be transformed to
other content streams by using XSL (Extensible Stylesheet Language), which is
based on CSS.

For PC-based browsers, HTML is well established for both document content
and formatting. The leading browsers have significant investments in rendering
engines based on HTML and a Document Object Model (DOM) based on HTML
for manipulation by JavaScript.

XML seems to be evolving to a complementary role for active content within
HTML documents for the PC browser environment.
 Chapter 5. Technology options 67

For new devices, such as WAP-enabled phones and voice clients, the data
content and formatting is being defined by new XML schema, WML for WAP
phone and VoiceXML for voice interfaces.

For most Web application designs, you should focus your attention on the use of
XML on the server side. See 5.2.4, “XML” on page 75 for additional discussion of
the server-side use of XML.

5.1.8 XHTML 1.1 (HTML 4.01)
XHTML (Extended HyperText Markup Language) is an extension to HTML 4,
which supports document types that are XML based. It is intended to be used as
a language for XML-conforming content as well as for HTML 4-conforming user
agents.

The advantages of XHTML are:

� Since XHTML documents are XML conforming, they can be viewed, edited,
and validated with standard XML tools.

� XHTML documents can be used to traverse either the HTML Document
Object Model or the XML Document Object Model.

Some issues with XHTML are:

� XHTML documents are not as easy to create as HTML documents because
XHTML is validated more strictly than HTML.

� HTML already used so widely that it is difficult for XHTML to attract the
attention of most Web developers.

� Browser support is not usually an issue as documents can be created using
HTML-compatible XHTML that is understood by most browsers. There are
also utilities that can be used to convert HTML documents to
HTML-compatible XHTML.

� Development tool support for XHTML is also improving. The Page Designer
tool in IBM WebSphere Studio Application Developer V5.0, for example,
allows visual authoring of XHTML pages.

XHTML Basic is designed for Web clients that do not support the full set of
XHTML features. It is meant to serve as a common language and share basic
content across mobile phones, pagers, car navigation systems, vending
machines, etc.
68 Self-Service Applications using IBM WebSphere V5.0 and IBM MQSeries Integrator

Some of the common features found in Wireless Markup Language (WML) and
other subsets of HTML have been used as the basis for developing XHTML
Basic:

� Basic text
� Basic forms and tables
� Hyperlinks

Some HTML 4 features have been found inappropriate for non-desktop devices,
so extending and building on XHTML Basic will help to bridge that gap.

5.1.9 VoiceXML
VoiceXML is a dialog markup language that leverages the other specifications for
creating dialogs that feature synthesized speech, digitized audio, speech
recognition, DTMF (touch tone) input, etc.

5.1.10 XForms
XForms is W3C’s specification for Web forms that can be used with desktop
computers, hand-held devices, etc. The disadvantage of the HTML Web forms is
that there is no separation of purpose from presentation. XForms separates the
data and logic of a form from its presentation. Also, XForms are device
independent.

XForms uses XML for transporting the data that is displayed on the form and the
data that is submitted from the form. HTML is used for the data display.

Currently, the main issue with XForms is it is still an emerging technology so
browser and server support is not yet standard.

5.1.11 XSLT
Extensible Stylesheet Language Transformations (XSLT) is a W3C specification
for transforming XML documents into other XML documents. The XSLT is built
on top of the Extensible Stylesheet Language (XSL) which, is a stylesheet
language for XML. Unlike CSS2, XSL is also a transformation language.

A transformation expressed in the XSLT language defines a set of rules for
transforming a source tree to a result tree and it is expressed in the form of a
stylesheet.
 Chapter 5. Technology options 69

An XSLT processor is used for transforming a source document to a result
document. There are currently a number of XSLT processors available on the
market. DataPower has introduced a XSL just-in-time (JIT) compiler, which
speeds up the time taken for the XSL transformation.

The XSLT processor has a performance overhead, so online processing of larger
documents can be slow.

5.1.12 Mobile clients
Mobile clients include wireless devices such as phones, pagers, and PDAs. The
challenges these devices bring as Web clients are based primarily on the very
limited computer resources of the supporting platform. The goal, however, is to
overcome these limitations to provide access to information and application
services from anywhere by leveraging and extending the existing Web server
architectures.

Devices
Mobile devices include wireless desktop PCs, WAP devices, i-mode devices,
PDAs, and Phone w/Voice. PDA devices cannot run the major operating systems
that run on desktop PCs and consequently there are various mobile
device-specific platforms. Palm devices use Palm-OS. WinCE/PocketPC devices
use a version of Microsoft Windows called Windows CE.

Voice
Voice-enabled applications allow for a hands-free user experience
unencumbered by the limitations of computer interface controls.

Voice technology fall into two categories: those that recognize speech and those
that generate speech. The ability to recognize human voice by computers is
called Automatic Speech Recognition (ASR). The ability to generate speech from
written text is called speech synthesis or Text-to-Speech (TTS).

Architecture
Support for mobile clients impacts the runtime topology and therefore must be
designed and implemented using best practices for system architecture. The
good news is that any past investment in Web architecture to support
Internet-based applications can be extended to support mobile clients.

A Wireless Application Protocol (WAP) gateway is used between the mobile
client device and the Web server. The gateway translates requests from the
wireless protocol into HTTP requests and, conversely, converts HTTP requests
into the appropriate device format.
70 Self-Service Applications using IBM WebSphere V5.0 and IBM MQSeries Integrator

WAP
WAP is the Wireless Application Protocol. This is the standard for presentation
and delivery of information to wireless devices, which are platform, device and
network neutral. The goal of this protocol is to provide a platform for global,
secure access through mobile phones, pagers, and other wireless devices.

Microbrowser
WAP microbrowsers run on mobile clients. They are responsible for the display
of Web pages written in WML and can execute WMLScripts. These play the
same role as HTML browsers that run on a PC.

WML
The Wireless Markup Language (WML) is based on XML and HTML 4.0 to fit
small hand-held devices. It is a tag-based language that handles formatting static
text and images, can accept data input, and can follow hyperlinks.

WMLScript
This is the companion language to WML, in the same way as JavaScript is a
companion language to HTML. WMLScript allows for procedural programming
such as loops, conditional and event handling. It has been optimized for a small
memory footprint and small devices. This language is derived from JavaScript.

Bluetooth
Bluetooth is a set of technical specifications for low-range (up to 30 feet) wireless
devices that define standards such as power use and radio frequency. The goal
of this technology is to connect a wide range of computing and
telecommunication devices easily and simply in a peer-to-peer manner.

5.2 Web application server
Figure 5-3 on page 72 shows the recommended technology model for a Web
application server.
 Chapter 5. Technology options 71

Figure 5-3 Web application server technology model

We assume in this book that you are using a Web application server and
server-side Java. While there have been many other models for a Web
application server, this is the one that is experiencing widespread industry
adoption.

Before looking at the technologies and APIs available in the Web application
programming environment, first let’s have a word about two fundamental
operational components on this node, the HTTP server and the application
server. For production applications, they should be chosen for their operational
characteristics in areas such as robustness, performance, and availability.

We follow the well-known Model-View-Controller (MVC) design structure so often
used in user interfaces. For the Web application programming model:

� The Model represents the data of the application, and the business rules and
logic that govern the processing of the data. In a J2EE application, the model

Native Platform
Services

Web Application Server

Java VM

Dynamic
Content
Services

Enterprise Java
Libraries

e-business Applications

Enterprise JavaBeans

Java Servlets

Java Server Pages

Protocols - HTTP, IIOP, ...

Network Infrastructure

Existing
Data &

Applications

NSF

IMS

CICS

RDB

Persistent Store

File
RDB

Connectors
72 Self-Service Applications using IBM WebSphere V5.0 and IBM MQSeries Integrator

is usually represented to the View and the Controller via a set of JavaBeans
components.

� The View is a visual representation of the model. Multiple views can exist
simultaneously for the same model and each view is responsible for making
sure that it is presenting the most current data by either subscribing to state
change events or by making periodic queries to the model. With J2EE, the
view is generally implemented using JavaServer Pages (JSP).

� The Interaction Controller decouples the visual presentation from the
underlying business data and logic by handling user interactions and
controlling access to the model. It processes the incoming HTTP requests
and invokes the appropriate business or UI logic. Using J2EE, the controller is
often implemented as a servlet.

5.2.1 Java servlets
Servlets are Java-based software components that can respond to HTTP
requests with dynamically generated HTML. Servlets are more efficient than CGI
for Web request processing, since they do not create a new process for each
request.

Servlets run within a Web container as defined by the J2EE model and therefore
have access to the rich set of Java-based APIs and services. In this model, the
HTTP request is invoked by a client such as a Web browser using the servlet
URL. Parameters associated with the request are passed into the servlet via the
HttpServletRequest, which maintains the data in the form of name/value pairs.
Servlets maintain state across multiple requests by accessing the current
HttpSession object, which is unique per client and remains available throughout
the life of the client session.

Acting as an MVC Controller component, a servlet delegates the requested tasks
to beans that coordinate the execution of business logic. The results of the tasks
are then forwarded to a View component, such as a JSP to produce formatted
output.

One of the attractions of using servlets is that the API is a very accessible one for
a Java programmer to master. The specification of J2EE 1.3 platform requires
Servlet API 2.3 for support of packaging and installation of Web applications.

Servlets are a core technology in the Web application programming model. They
are the recommended choice for implementing the Interaction Controller classes
that handle HTTP requests received from the Web client.
 Chapter 5. Technology options 73

5.2.2 JavaServer Pages (JSPs)
JSPs were designed to simplify the process of creating Web pages by separating
Web presentation from Web content. In the page construction logic of a Web
application, the response sent to the client is often a combination of template
data and dynamically generated data. In this situation, it is much easier to work
with JSPs than to do everything with servlets. The JSP acts as the View
component in the MVC model.

The chief advantage JSPs have over standard Java servlets is that they are
closer to the presentation medium. A JavaServer Page is developed as an HTML
page. Once compiled it runs as a servlet. JSPs can contain all the HTML tags
that Web authors are familiar with. A JSP may contain fragments of Java code
that encapsulate the logic that generates the content for the page. These code
fragments may call out to beans to access reusable components and enterprise
data.

JSP technology uses XML-like tags and scriptlets written in Java programming
language to encapsulate the conditional logic that generates dynamic content for
an HTML page. In the runtime environment, JSPs are compiled into servlets
before being executed on the Web application. Output is not limited to HTML but
also includes WML, XML, cHTML, DHTML, and VoiceXML. The JSP API for
J2EE 1.3 is JSP 1.2.

JSPs are the recommended choice for implementing the View that is sent back to
the Web client. For those cases where the code required on the page is be a
large percentage of the page, and the HTML minimal, writing a Java servlet will
make the Java code much easier to read and therefore maintain.

5.2.3 JavaBeans
JavaBeans is an architecture developed by Sun Microsystems, Inc. describing
an API and a set of conventions for reusable, Java-based components. Code
written to Sun’s JavaBeans architecture is called JavaBeans or just beans. One
of the design criteria for the JavaBeans API was support for builder tools that can
compose solutions that incorporate beans. Beans may be visual or non-visual.

Beans are recommended for use in conjunction with servlets and JSPs in the
following ways:

� As the client interface to the Model layer. An Interaction Controller servlet will
use this bean interface.

� As the client interface to other resources. In some cases this may be
generated for you by a tool.
74 Self-Service Applications using IBM WebSphere V5.0 and IBM MQSeries Integrator

� As a component that incorporates a number of property-value pairs for use by
other components or classes. For example, the JavaServer Pages
specification includes a set of tags for accessing JavaBeans properties.

5.2.4 XML
XML (Extensible Markup Language.) and XSL stylesheets can be used on the
server side to encode content streams and parse them for different clients, thus
enabling you to develop applications for both a range of PC browsers and for the
emerging pervasive devices. The content is in XML and an XML parser is used to
transform it to output streams based on XSL stylesheets that use CSS.

This general capability is known as transcoding and is not limited to XML-based
technology. The appropriate design decision here is how much control over the
content transforms you need in your application. You will want to consider when it
is appropriate to use this dynamic content generation and when there are
advantages to having servlets or JSPs specific to certain device types.

XML is also used as a means to specify the content of messages between
servers, whether the two servers are within an enterprise or represent a
business-to-business connection. The critical factor here is the agreement
between parties on the message schema, which is specified as an XML DTD or
Schema. An XML parser is used to extract specific content from the message
stream. Your design will need to consider whether to use an event-based
approach, for which the SAX API is appropriate, or to navigate the tree structure
of the document using the DOM API.

IBM’s XML4J XML parser was made available through the Apache open source
organization under the Xerces name. For open source XML frameworks, see:

http://xml.apache.org/

Defining XML documents
XML documents are defined using DTDs or XML Schemas.

DTDs are a basic XML definition language, inherited from the SGML
specification. The DTD specifies what markup tags can be used in the document
along with their structure.

DTDs have two major problems:

� Poor data typing: In DTDs elements can only be specified as EMPTY, ANY,
element content, or mixed element-and-text content, and there is no standard
way to specify null values for elements.
 Chapter 5. Technology options 75

http://xml.apache.org/
http://xml.apache.org/

Data typing like date formats, numbers, or other common data types cannot
be specified in the DTD, so a XML document may comply with the DTD but
still have data type errors that can only be detected by the application.

� Not defined in XML: DTD uses its own language to define XML syntax, that is
not compliant to the XML specification. This makes it difficult to manipulate a
DTD.

To solve this problems, the World Wide Web Consortium (W3C) defined a new
standard to define XML documents called XML Schema. XML Schema provides
the following advantages over DTDs:

� Strong typing for elements and attributes

� Standardized way to represent null values for elements

� Key mechanism that is directly analogous to relational database foreign keys

� Defined as XML documents, making them programmatically accessible

Even though XML Schema is a more powerful technology to define XML
documents, it is also a lot harder to work with, so DTDs are still widely used to
define XML documents. Additionally, simple, not hard-typified documents can be
easily defined using DTDs with similar results to using XML Schema.

Whether to use one or the other will depend on the complexity of the messages
and the validation requirements of the application. Actually in many cases both (a
DTD and a XML Schema) are provided, so they can be used by the application
depending on its requirements.

XSLT
Extensible Stylesheet Language Transformations (XSLT) is a W3C specification
for transforming XML documents into other XML documents. The XSLT is built on
top of the Extensible Stylesheet Language (XSL) which, like CSS2 seen in 5.1.4,
“CSS” on page 64, is a stylesheet language for XML. Unlike CSS2, XSL is also a
transformation language.

A transformation expressed in the XSLT language defines a set of rules for
transforming a source tree to a result tree and it is expressed in the form of a
stylesheet.

Note: We have to remember that the validation process of a XML document
using XML Schemas is an expensive process. Validation should be performed
only when it is necessary.
76 Self-Service Applications using IBM WebSphere V5.0 and IBM MQSeries Integrator

An XSLT processor is used for transforming a source document to a result
document. There are currently a number of XSLT processors available on the
market. DataPower has introduced a XSL just-in-time (JIT) compiler, which
speeds up the time taken for the XSL transformation.

The XSLT processor has a performance overhead, so online processing of larger
documents can be slow.

XML Security
XML security is an important issue, particularly where XML is being used to by
organizations to interchange data across the Internet. Several new XML security
specifications are working their way through three standards bodies - the W3C
(World Wide Web Consortium), IETF (Internet Engineering Task Force), and
OASIS (Organization for the Advancement of Structured Information Standards).
We highlight a few of them here:

� XML Signature Syntax and Processing is a specification for digitally signing
electronic documents using XML syntax. According to the W3C, “XML
Signatures provide integrity, message authentication, and/or signer
authentication services for data of any type, whether located within the XML
that includes the signature or elsewhere.”

A key feature of the protocol is the ability to sign parts of an XML document
rather than the document in its entirety. This is necessary because an XML
document might contain elements that will change as the document is passed
along or various elements that will be signed by different parties.

WebSphere Studio provides you with the ability to create (using a wizard) and
verify XML digital signatures.

� XML encryption will allow encryption of digital content, such as Graphical
Interchange Format (GIF) images or XML fragments. XML Encryption allows
the parts of an XML document to be encrypted while leaving other parts open,
encryption of the XML itself, or the super-encryption of data (that is,
encrypting an XML document when some elements have already been
encrypted).

� XKMS (XML Key Management Specification) establishes a standard for
XML-based applications to use Public Key Infrastructure (PKI) when handling
digitally signed or encrypted XML documents. XML signature addresses
message and user integrity, but not issues of trust that key cryptography
ensures.

� SAML (Security Assertion Markup Language) is the first industry standard for
secure e-commerce transactions using XML. It aims to standardize the
exchange of user identities and authorizations by defining how this
information is to be presented in XML documents, regardless of the
underlying security systems in place.
 Chapter 5. Technology options 77

For further discussion, see Sun ONE article Riddle Me This: Is Your XML Data
Safe? by Brett Mendel:

http://dcb.sun.com/practices/websecurity/overviews/xmldata.jsp

Advantages of XML
There are many advantages of XML in a broad range of areas. Some of the
factors that influenced the wide acceptance of XML are:

� Acceptability of use for data transfer

XML is a standard way of putting information in a format that can be
processed and exchanged across different hardware devices, operating
systems, software applications and the Web.

� Uniformity and conformity

XML gives you an common format that could be developed upon and is
accepted industry-wide.

� Simplicity and openness

Information coded in XML is human readable.

� Separation of data and display

The representation of the data is separated from the presentation and
formatting of the data for display in a browser or other device.

� Industry acceptance

XML has been accepted widely by the information technology and computing
industry. Numerous tools and utilities are available, along with new products
for parsing and transforming XML data to other data, or for display.

Disadvantages of XML
Some XML issues to consider are:

� Complexity

While XML tags can allow software to recognize meaningful content within
documents, this is only useful to the extent that the software reading the
document knows what the tagged content means in human terms, and knows
what to do with it.

� Standardization

When multiple applications use XML to communicate with each other they
need to agree on the tag names they are using. While industry-specific
standard tag definitions often do exist, you can still declare your own
non-standard tags.

� Large size
78 Self-Service Applications using IBM WebSphere V5.0 and IBM MQSeries Integrator

http://dcb.sun.com/practices/websecurity/overviews/xmldata.jsp

XML documents tend to be larger in size than other forms of data
representation.

5.2.5 Enterprise JavaBeans
Enterprise JavaBeans is Sun's trademarked term for its EJB architecture (or
“component model”). When writing to the EJB specification, you are developing
“enterprise beans” (or, if you prefer, “EJBs”).

Enterprise beans are distinguished from JavaBeans in that they are designed to
be installed on a server, and accessed remotely by a client. The EJB framework
provides a standard for server-side components with transactional
characteristics.

The EJB framework specifies clearly the responsibilities of the EJB developer
and the EJB container provider. The intent is that the “plumbing” required to
implement transactions or database access can be implemented by the EJB
container. The EJB developer specifies the required transactional and security
characteristics of an EJB in a deployment descriptor (this is sometimes referred
to as declarative programming). In a separate step, the EJB is then deployed to
the EJB container provided by the application server vendor of your choice.

There are three types of Enterprise JavaBeans:

� Session beans
� Entity beans
� Message-driven beans

A typical session bean has the following characteristics:

� Executes on behalf of a single client.

� Can be transactional.

� Can update data in an underlying database.

� Is relatively short lived.

� Is destroyed when the EJB server is stopped. The client has to establish a
new session bean to continue computation.

� Does not represent persistent data that should be stored in a database.

� Provides a scalable runtime environment to execute a large number of
session beans concurrently.

A typical entity bean has the following characteristics:

� Represents data in a database.
� Can be transactional.
� Shared access from multiple users.
 Chapter 5. Technology options 79

� Can be long lived (lives as long as the data in the database).
� Survives restarts of the EJB server. A restart is transparent to the client.
� Provides a scalable runtime environment for a large number of concurrently

active entity objects.

A typical Message-Driven Bean has the following characteristics:

� Consumes messages sent to a specific queue.
� Is asynchronously invoked.
� Is stateless.
� Can be transaction aware.
� May update shared data in underlying client message.
� Executes upon receipt of single client message.
� Has no component or home interface.
� Is removed when the EJB container crashes. The container has to

re-establish a new message-driven object to continue computation.

Typically, an entity bean is used for information that has to survive system
restarts. In session beans, on the other hand, the data is transient and does not
survive when the client's browser is closed. For example, a shopping cart
containing information that may be discarded uses a session bean, and an
invoice issued after the purchase of the items is an entity bean.

An important design choice when implementing entity beans is whether to use
Bean Managed Persistence (BMP), in which case you must code the JDBC logic,
or Container Managed Persistence (CMP), where the database access logic is
handled by the EJB container.

The business logic of a Web application often accesses data in a database. EJB
entity beans are a convenient way to wrap the relational database layer in an
object layer, hiding the complexity of database access. Because a single
business task may involve accessing several tables in a database, modeling
rows in those tables with entity beans makes it easier for your application logic to
manipulate the data.

An important change to the specification in EJB 2.0 is the addition of a new
enterprise bean type, the message-driven bean (MDB). The message-driven
bean is designed specifically to handle incoming JMS messages. The EJB
container uses message properties and bean deployment descriptor to select the
bean to invoke when a message arrives, so your application logic only needs to
process the message contents.
80 Self-Service Applications using IBM WebSphere V5.0 and IBM MQSeries Integrator

The J2EE 1.3 platform requires support for EJB 2.0. As a tool provider the
WebSphere Application Server V5.0 supports J2EE 1.3 and therefore supports
EJB 2.0. EJBs are packaged into EJB modules (JAR files) and then combined
with Web modules (WAR files) to form an enterprise application (EAR file). EJB
deployment requires generating EJB deployment code specific to the target
application server.

5.2.6 Additional enterprise Java APIs
The J2EE specification defines a set of related APIs that work together. Here are
the remainder not discussed so far:

� JNDI: Java Naming and Directory Interface. This package provides a
common API to a directory service independent of any directory access
protocol. This allows for easy migration to new directory services. Through
this interface, component providers can store and retrieve Java object
instances by name. Service provider implementations include those for JDBC
data sources, LDAP directories, RMI and CORBA object registries. Sample
uses of JNDI include:

– Accessing a user profile from an LDAP directory
– Locating and accessing an EJB home
– Locating a driver-specific data source

� RMI-IIOP: Remote Method Invocation (RMI) and RMI over IIOP are part of
the EJB specification as the access method for clients to access EJB
services. From the component provider point of view, these calls are local.
The EJB container takes care of calling the remote methods and receiving the
response. To use this API, component providers create an IDL description of
the EJB interface and then compile it to generate the client-side and
server-side stubs. The stubs connect the object implementations with the
Object Request Broker (ORB). ORBs communicate with each other through
the Internet Inter-ORB Protocol (IIOP). RMI can also be used to implement
limited-function Java servers.

� JTA: Java Transaction API. This Java API for working with transaction
services is based on the XA standard. With the availability of EJB servers,
you are less likely to use this API directly.

� JAF: JavaBeans Activation Framework. This API is not intended for typical
application use, but it is required by the JavaMail API.

� JavaMail: This is a set of classes for supporting e-mail. Functionally it
provides APIs for reading, sending, and composing Internet mail. This API
models a mail delivery system and requires the SMTP for sending mail and
POP3 or IMAP for receiving mail. Special data wrapper classes are provided
to view and edit data in the mail content. Support for MIME data is delegated
to the JAF-aware beans.
 Chapter 5. Technology options 81

� JAXP: API for parsing and transforming XML documents.

� JAAS: Java Authentication and Authorization Service.

5.3 Integration technologies
With the continuous progress of enterprise computing, more and more
enterprises are finding the need to quickly adopt new technologies and integrate
with existing applications. Furthermore, it is often not feasible for enterprises to
completely discard their existing infrastructure, due to limitations in cost and
human resources.

Enterprise application integration (EAI) allows disparate applications to
communicate with each other. Some points you should consider while deciding
on the connector technology between your application and the enterprise tier
applications are as follows:

� The current infrastructure

Do you already have a messaging system on the enterprise tier? Then it
makes sense to go for JMS. Or if you have a legacy-system, such as CICS®
or IMS™, J2EE Connectors might be the better choice.

� Time to market

Web service enabling an application is relatively fast with the Web services
development tools available.

� Future expansion plans

If you plan to expand your enterprise systems in the future, you need to keep
in mind the integration with your current infrastructure and your planned
infrastructure. Web services may provide the most cost-effective migration
path in such a case.

� Reliability

JMS with WebSphere MQ, for example, can be used to provide assured
transfer of data, even when the enterprise application is unavailable.

� Transaction support

Web services currently do not offer support for transactions. If your
application needs transactional management, it might be worthwhile
considering either JMS or J2EE Connectors.

5.3.1 Web services
The W3C’s Web Services Architecture Working Group has jointly come to
agreement on the following working definition of a Web service:
82 Self-Service Applications using IBM WebSphere V5.0 and IBM MQSeries Integrator

“A Web service is a software application identified by a URI, whose interfaces
and bindings are capable of being defined, described, and discovered as
XML artifacts. A Web service supports direct interactions with other software
agents using XML based messages exchanged via Internet-based protocols.”

Basic Web services combine the power of two ubiquitous technologies: XML, the
universal data description language, and the HTTP transport protocol widely
supported by browser and Web servers.

Web services = XML + transport protocol (such as HTTP)

Let’s take a closer look:

� Web services are self-contained.

On the client side, no additional software is required. A programming
language with XML and HTTP client support is enough to get you started. On
the server side, merely a Web server and a servlet engine are required. It is
possible to Web service enable an existing application without writing a single
line of code.

� Web services are self-describing.

Neither the client nor the server knows or cares about anything besides the
format and content of request and response messages (loosely coupled
application integration).

The definition of the message format travels with the message. No external
metadata repositories or code generation tools are required.

� Web services are modular.

Web services are a technology for deploying and providing access to
business functions over the Web; J2EE, CORBA and other standards are
technologies for implementing these Web services.

� Web services can be published, located, and invoked across the Web.

The standards required to do so are:

– Simple Object Access Protocol (SOAP) also known as service-oriented
architecture protocol, an XML-based RPC and messaging protocol.

– Web Service Description Language (WSDL) is a descriptive interface and
protocol binding language.

– Universal Description, Discovery, and Integration (UDDI), a registry
mechanism that can be used to look up Web service descriptions.
 Chapter 5. Technology options 83

� Web services are language independent and interoperable.

The interaction between a service provider and a service requester is
designed to be completely platform and language independent. This
interaction requires a WSDL document to define the interface and describe
the service, along with a network protocol (usually HTTP). Because the
service provider and the service requester have no idea what platforms or
languages each other are using, interoperability is a given.

� Web services are inherently open and standards based.

XML and HTTP are the technical foundation for Web services. A large part of
the Web service technology has been built using open source projects.
Therefore, vendor independence and interoperability are realistic goals this
time.

� Web services are dynamic.

Dynamic e-business can become a reality using Web services because, with
UDDI and WSDL, the Web service description and discovery can be
automated.

� Web services are composable.

Simple Web services can be aggregated to more complex ones, either using
workflow techniques or by calling lower-layer Web services from a Web
service implementation.

� Web services are built on proven, mature technology.

There are a lot of commonalities, as well as a few fundamental differences
between Web services and other distributed computing frameworks. For
example, the transport protocol is text based and not binary.

WebSphere V5.0 provides support for Web services. WebSphere applications
can send and receive SOAP messages and also communicate with UDDI
registries to publish and find services.

For detailed information on Web services, check out the following:

� IBM Redbooks:

– WebSphere Version 5 Web Services Handbook, SG24-6891

– Web Services Wizardry with WebSphere Studio Application Developer,
SG24-6292

� The World Wide Web Consortium (W3C) Web site at http://www.w3.org/.
84 Self-Service Applications using IBM WebSphere V5.0 and IBM MQSeries Integrator

http://www.w3.org/

Static and dynamic Web services
There are two ways of binding to Web services: static and dynamic:

� In the static process, the binding is done at design time. The service
requester obtains service interface and implementation description through a
proprietary channel from the service provider (by e-mail, for example), and
stores it into a local configuration file. No private, public, or shared UDDI
registry is involved.

� The dynamic binding occurs at runtime. While the client application is
running, it dynamically locates the service using a UDDI registry and then
dynamically binds to it using WSDL and SOAP.

This requires that the contents of the UDDI registry be trusted. Currently, only
private UDDI networks can provide such control over the contents.

Web services and the service-oriented architecture
Service-oriented architectures (SOA) support a programming model that allows
service components residing on a network to be published, discovered, and
invoked by each other in a platform, network protocol and language independent
manner.

The origin of SOA can be traced back to Remote Procedure Calls (RPC),
distributed object protocols such as CORBA and Java RMI, and component
based architecture such as J2EE/EJBs (Sun) and (D)COM/COM+/.Net
(Microsoft).

Using XML over HTTP, Web services extend the SOA programming model into
the global Internet allowing the publication, deployment, and discovery of service
applications over the Internet.

For more information on SOA and Web services, refer to:

http://www.ibm.com/software/solutions/webservices/resources.html

This Web site provides a collection of IBM resources on this topic. For example,
you can find an introduction to the SOA in a white paper titled Web Services
Conceptual Architecture (WSCA 1.0).

Advantages of Web services
Web services technology enables businesses to:

� Deliver new IT solutions faster and at lower cost by focusing their code
development on core business, and using Web services applications for
non-core business programming.

� Protect their investment in IT legacy systems by using Web services to wrap
legacy software systems for integration with modern IT systems.
 Chapter 5. Technology options 85

http://www.ibm.com/software/solutions/webservices/resources.html

� Integrate their business processes with customers and partners at less cost.
Web services make this integration feasible by allowing businesses to share
processes without sharing technology. With lower costs, even small business
will be able to participate in B2B integration.

� Enter new markets and widen their customer base. Web services listed in
UDDI registries can be “discovered” and thus are “visible” to the entire Web
community.

Disadvantages of Web services
Some Web services issues to consider are:

� Binding to Web services dynamically requires that the contents of the UDDI
registry be trusted. Currently, only private UDDI networks can provide such
control over the contents.

� The SOAP server footprint is significant and the technology is relatively new,
so adding the Web service provider stack to existing enterprise systems can
be a problem.

5.3.2 J2EE Connector Architecture
The J2EE Connector Architecture is aimed at providing a standard way of
accessing enterprise applications from a J2EE-based Java application. It defines
a set of Java interfaces, through which application developers can access
heterogeneous EIS systems, for example legacy systems such as CICS, and
Enterprise Resource Planning (ERP) applications.

J2EE Connector Architecture 1.0 support is a requirement of the J2EE 1.3
specification. It provides access to a range of systems through a common client
interface API (CCI). Application programmers code to the single API rather than
having unique interfaces for each proprietary system. The link from the API to the
enterprise system is called a resource adapter and is provided by a third-party
vendor. This is somewhat analogous to the model for JDBC drivers. Resource
adapters are packaged as resource adapter archive (RAR) files.

IBM WebSphere Application Server V5.0 supports the J2EE Connector
Architecture 1.0, as required by the J2EE 1.3 specification. The administrative
console supports J2EE Connector resource adapter configuration. The
administrative console allows the association of connection factories for the
resource adapter that encapsulate the pooling attributes. Component Providers
request a connection for an enterprise information system (EIS) from the
connection factory through the JNDI lookup mechanism. IBM supplies resource
adapters for enterprise systems such as CICS, HOD, IMS, SAP, and
Crossworlds as separate products.
86 Self-Service Applications using IBM WebSphere V5.0 and IBM MQSeries Integrator

IBM WebSphere Studio Application Developer V5.0 supports application
development using J2EE Connectors, and development of custom J2EE
Connectors.

CICS resource adapter
The CICS Transaction Gateway (CTG) V5 is a set of client and server software
components that allow a Java application to invoke services in a CICS region.

The CTG offers three basic interfaces for Java clients:

� ECI (External Call Interface) for COMMAREA-based CICS applications.
� EPI (External Presentation Interface) for 3270-based transactions.
� ESI (External Security Interface) for password management in order to verify

and change user IDs and passwords.

The CICS resource adapter is covered in detail in the following chapters.

IMS resource adapter
The IMS Connector for Java provides a way to create Java applications that can
access IMS transactions. The IMS Connector for Java uses IMS Connect to
access IMS. IMS Connect is a facility that runs on the host IMS machine and
supports TCP/IP and Local Option communication to IMS. A Java application or
servlet accesses IMS Open Transaction Manager Access (OTMA) through IMS
Connect. IMS Connect accepts messages from its TCP/IP clients and routes
them to IMS OTMA using the Cross-System Coupling Facility (XCF).

The runtime component of IMS Connector for Java is provided as a component
of IMS Connect Version 1 Release 2 (Program Number 5655-E51). The J2EE
connector implementation of this runtime component is also referred to as the
IBM WebSphere Adapter for IMS. It is packaged as a RAR file, imsico.rar, for
deployment into WebSphere Application Server. The RAR file is installed to a
target directory from the IBM IMS Connect, Version 1 Release 2.

Advantages of J2EE Connectors
Some reasons to use J2EE Connectors are:

� The common client interface simplifies application integration with diverse
EISs. This common interface makes it easy to plug third-party or home-grown
resource adapters into your applications.

� Each EIS requires just one implementation of the resource adapter, since
there is no need to custom develop an adapter for every application.

� J2EE Connectors facilitate scalability and provide quality of service features
transparently to the client application.
 Chapter 5. Technology options 87

� J2EE Connector Architecture-compliant resource adapters are portable
across J2EE application servers. If a vendor provides a resource adapter for
WebLogic, for example, it should also work with WebSphere Application
Server.

� J2EE Connectors have low intrusion on the enterprise system, because
native client interfaces are utilized.

Disadvantages of J2EE Connectors
Some J2EE Connector issues to consider are:

� J2EE Connector Architecture has support only for synchronous
communication. (The CICS adapter does offer support for non-blocking calls.)
Support for asynchronous communications is expected in the J2EE
Connector Architecture 1.5 specification.

� The J2EE Connectors standard is still relatively new and performance
compared with previous alternatives has not been firmly established. For
example, some customers may prefer to continue with the well proven
non-J2EE Connector CTG base classes.

� Though J2EE Connector Architecture promises an abstraction to access any
legacy system, with J2EE Connector Architecture 1.0, parts of the client
application need to have resource adapter-specific implementation. This
means that if you have to change the resource adapter (move to a different
enterprise system, which provides a different adapter), the client application
will be impacted.

For more information on J2EE Connectors and CICS, refer to the following
redbooks:

� Java Connectors for CICS: Featuring the J2EE Connector Architecture,
SG24-6401.

� Revealed! Architecting Web Access to CICS, SG24-5466

5.3.3 Java Message Service
Messaging middleware is a popular choice for accessing existing enterprise
systems in an asynchronous manner. A standard way for using messaging
middleware from a Java application is using the Java Message Service (JMS)
interface. JMS offers Java programmers a common way to create, send, receive
and read enterprise messages. The JMS specification was developed by Sun
Microsystems with the active involvement of IBM, other enterprise messaging
vendors, transaction processing vendors, and RDBMS vendors.

In IBM WebSphere Application Server V5.0, the J2EE 1.3 specification is
implemented, which includes JMS 1.0 and EJB 2.0.
88 Self-Service Applications using IBM WebSphere V5.0 and IBM MQSeries Integrator

According to the JMS 1.0 specification a message provider is integrated in
application server. As shown in Figure 5-4, the integrated message provider
makes it possible to communicate asynchronously with other WebSphere
applications, without installing separate messaging software like IBM
WebSphere MQ. WebSphere’s integrated JMS server is based on IBM
WebSphere MQ.

WebSphere Application Server V5 provides support to external messaging
provides too. One specific external provider can be WebSphere MQ, others can
be configured as Generic messaging providers in WebSphere.

Figure 5-4 Integrated JMS Provider

An important new feature of EJB 2.0 is message-driven beans (MDB). As
described in 5.2.5, “Enterprise JavaBeans” on page 79, Message-driven beans
are designed specifically to handle incoming JMS messages.

What is messaging?
Messaging is a form of communication between two or more software
applications or components. One of the strength of messaging is application
integration. Messaging communication is loosely coupled as compared to tightly
coupled technologies such as Remote Method Invocation (RMI) or remote
procedure calls (RPC). The sender does not need to know anything about the
receiver for communication. The message to be delivered is sent to a destination
(queue) by a sender component and the recipient picks it up from there.
Moreover, the sender and receiver do not both have to be available at the same
time to communicate.

JMS has two messaging styles, or in other words two domains:
� One-to-one, or point-to-point model

J2EE ServerJ2EE Server
Message

PUT

Message
GET

J2EE Application

Web

Message
GET

Message
PUT

J2EE Application

Web
 Chapter 5. Technology options 89

� Publish/subscribe model

JMS and IBM WebSphere MQ
When you want to integrate with an application not based on WebSphere
Application Server V5.0 an external JMS provider is needed. IBM WebSphere
MQ V5.3 includes built-in JMS provider support with enhanced performance
features for integrating JMS applications with other applications.

WebSphere MQ enables application integration by allowing business
applications to exchange information across different platforms, sending and
receiving data as messages. WebSphere MQ takes care of network interfaces,
assures once and once only delivery of messages, deal with communications
protocols, dynamically distribute workload across available resources, and
handle recovery after system problems.

Advantages of JMS
The JMS standard is important because:

� It is the first enterprise messaging API that has achieved wide cross-industry
support.

� It simplifies the development of enterprise applications by providing standard
messaging concepts and conventions that apply across a wide range of
enterprise messaging systems.

� It leverages existing, enterprise-proven messaging systems.

� It allows you to extend existing message-based applications by adding new
JMS clients that are integrated fully with their existing non-JMS clients.

� Developers have to learn only one common interface for accessing diverse
messaging systems.

Disadvantages of JMS
Though JMS provides a common interface for Java applications to interact with
messaging systems, it might lose out on some specific functionality offered by
the messaging vendor. In that case, you might still have to write vendor-specific
code to access such functionality.

JMS only provides asynchronous messaging so the design is more complex
when addressing response correlation, error handling and data synchronization.
90 Self-Service Applications using IBM WebSphere V5.0 and IBM MQSeries Integrator

Further information on JMS can be found in IBM Redbook MQSeries
Programming Patterns, SG24-6506.

5.3.4 Message Oriented Middleware
The Message Oriented Middleware (MOM) consists of a transport layer that
deals with the communication (physical) aspects of moving messages between
the origination and the destination points. It takes care of the networking protocol
issues, the message encoding and even translation. It is said to encapsulate the
business of transporting message. At the same time, it provides APIs to enable
application to manipulate (send/receive) messages. It is obviously a very critical
and absolutely necessary part of the messaging-based integration layer.

The transport layer per se does not do any message transformation or handle
message routing.

From the integration layer perspective such basic messaging systems offer
limited value. They were therefore enriched with the additional functionality of
handling the transformation and containing dynamic routing capabilities. This in
turn evolved even further to support not only point-to-point distribution but also
publish/subscribe style scenarios and handling of the complex message flows.
The messaging system components providing this functionality are commonly
known as the message brokers, for example, WebSphere MQ.

Message broker services
A message broker is a server-side service in a message-oriented system. It
manipulates the messages it receives, and performs some or all of the following
functions:

� Routing services

– Content based
– Publish/subscribe style
– Message flow processing

� Data transformation (mapping message to other formats) services

– Syntactic (format driven)
– Semantic (content driven)

� Security (authentication/authorization, encryption/decryption) services

� Transactional service (unit of work support)

� Error handling

� Service invocation (invoking an external function to process message
payload)
 Chapter 5. Technology options 91

A message flow is a sequence of operations on a message, dependent upon the
message content and the current message flow state. Message flows can be
viewed as business services, initiated by receiving a message.

If the broker supports the publish/subscribe style of messaging, subscribing
applications can register their topic subscriptions with the broker. Publishing
applications can then send messages to the broker, who will map the topic to the
registered subscribers and forward the message to all interested parties.

The message-oriented systems providing broker services are “natural”
integration layer technologies for our Self-Service patterns.

A very good example of the messaging system providing an extensive set of the
message broker services is the IBM WebSphere MQ Integrator product.

5.3.5 Others
In this section we briefly touch on a few other integration technologies, including:

� RMI/IIOP
� CORBA

RMI/IIOP
Remote Method Invocation (RMI) APIs allow developers to build distributed
applications in the Java programming language. They enable an object running
in one Java Virtual Machine to access another object running in a different Java
Virtual Machine.

The Internet Inter-ORB (Object Request Broker) Protocol (IIOP) is a protocol
used for communication between CORBA object request brokers. An object
request broker is a library that enables CORBA objects to locate and to
communicate with one another.

RMI/IIOP is an implementation of the RMI API over IIOP that allows developers
to write remote interfaces in the Java programming language.

CORBA
Common Object Request Broker Architecture (CORBA) is a platform-,
language-, and vendor-neutral standard for writing distributed object systems.
The CORBA standard was developed by the Object Management Group (OMG),
a consortium of companies founded in 1989. CORBA offers a broad range of
middleware services, including naming service, relationship service, and so on.
92 Self-Service Applications using IBM WebSphere V5.0 and IBM MQSeries Integrator

CORBA can be used for integration with legacy applications. This is done by
creating a CORBA wrapper for the existing application, which can then be
invoked by other applications.

CORBA is just a specification and there are a number of vendors (such as IONA
or Borland) that implement it. Each vendor will provide additional value-added
services such as persistence, security, and so on, which can be leveraged by
CORBA developers.

The disadvantage of CORBA is in the steep learning curve involved. Also,
CORBA is slow-moving; it takes a long time for the OMG to adopt a new feature.

5.4 Where to find more information
For more information on topics discussed in this chapter, see:

� Redbook Mobile Applications with IBM WebSphere Everyplace Access
Design and Development, SG24-6259

� Redbook WebSphere Version 5 Web Services Handbook, SG24-6891

� Redbook Web Services Wizardry with WebSphere Studio Application
Developer, SG24-6292

� Redbook Java Connectors for CICS: Featuring the J2EE Connector
Architecture, SG24-6401.

� Redbook Revealed! Architecting Web Access to CICS, SG24-5466

� Redbook MQSeries Programming Patterns, SG24-6506

� Flanagan, David, JavaScript: The Definitive Guide, Third Edition, O'Reilly &
Associates, Inc., 1998

� Maruyama, Hiroshi, Kent Tamura and Naohiko Uramoto, XML and Java:
Developing Web Applications, Addison-Wesley 1999

� Flanagan, David, Jim Farley, William Crawford and Kris Magnusson, Java
Enterprise in a Nutshell, O’Reilly & Associates, Inc., 1999

� IBM CICS

http://www.ibm.com/software/ts/cics

� IBM WebSphere MQ

http://www.ibm.com/software/ts/mqseries

� ECMAScript language specification

http://www.ecma.ch/ecma1/STAND/ECMA-262.HTM
 Chapter 5. Technology options 93

http://www.ibm.com/software/ts/cics
http://www.ibm.com/software/ts/mqseries
http://www.ecma.ch/ecma1/STAND/ECMA-262.HTM

� Java APIs and technology

http://java.sun.com/products

� Validator tools

http://validator.w3.org/
http://jigsaw.w3.org/css-validator/

� Bluetooth Web site

http://www.bluetooth.com

� Bluetooth Applications in Pervasive Computing white paper at:

http://www.ibm.com/pvc/tech/bluetoothpvc.shtml

� World Wide Web Consortium (W3C) site

http://www.w3.org/

� Open source XML frameworks

http://xml.apache.org/

� Sun ONE article, Riddle Me This: Is Your XML Data Safe? by Brett Mendel:

http://dcb.sun.com/practices/websecurity/overviews/xmldata.jsp

� Service-oriented architecture and Web services:

http://www.ibm.com/software/solutions/webservices/resources.html
94 Self-Service Applications using IBM WebSphere V5.0 and IBM MQSeries Integrator

http://java.sun.com/products
http://validator.w3.org/
http://jigsaw.w3.org/css-validator/
http://www.bluetooth.com
http://www.ibm.com/pvc/tech/bluetoothpvc.shtml
http://www.w3.org/
http://xml.apache.org/
http://dcb.sun.com/practices/websecurity/overviews/xmldata.jsp
http://www.ibm.com/software/solutions/webservices/resources.html

Chapter 6. Application design

To illustrate the techniques used in building a Self-Service application that uses
router and decomposition, we built a sample application for this project. This
chapter discusses Java design techniques used to build this application.

The information presented here is intended to supplement the information in
Patterns: Self-Service Application Solutions using WebSphere V5.0,
SG24-6591-00. We build on the application design information in that book by
extending the design to include messaging capability.

In this chapter, we will focus on:

� Using Struts to create the front end

� Using JMS to place a message on a queue

� Using container-managed two-phase commit transaction processing

6

© Copyright IBM Corp. 2003. All rights reserved. 95

6.1 Application structure
The Self-Service Web application can be described as a set of interactions
between a Web browser and a Web application server. The interaction begins
with an initial request from the user’s Web browser for the welcome page of the
application. All subsequent interactions are initiated by the user by clicking a
button or a link, causing a request to be sent to the Web application server. The
Web application server processes the request, dynamically generates a results
page, and then sends it back to the client along with a set of buttons and links
that will generate the next request.

6.1.1 Model-View-Controller design pattern
One problem that is sometimes seen with large application development is that
the flow of the application is hard-wired in the presentation layer implementation
itself. This makes later application flow modifications and maintenance difficult
and expensive.

The Model-View-Controller design pattern divides the presentation layer from the
application flow and logic by dividing the application into three layers:

� Model: the Model contains the core application functionality, both business
logic and data. The model is fully decoupled from the View or the Controller.

� View: the View provides the presentation of the model, in other words, how
the application looks from a user’s point of view. The View can access the
Model information but should not make any changes to the Model directly.
Any change in the Model should be passed on to the View.

� Controller: the Controller, as its name suggests, is responsible for the
application flow. It controls how the user’s input is translated into Model
interactions and how the Model is later presented to the user through the
View.

As shown in Figure 6-1 on page 97, the Model represents the application object
that implements the application data and business logic. The View is responsible
for formatting the application results and dynamic page construction. The
Controller is responsible for receiving the client request, invoking the appropriate
business logic and, based on the results, selecting the appropriate view to be
presented to the user.

A number of different types of skills and tools are required to implement various
parts of a Web application. For example, the skills and tools required to design
an HTML page are vastly different from the skills and tools required to design
and develop the business logic part of the application. In order to effectively
leverage these scarce resources and to promote reuse, we recommend
96 Self-Service Applications using IBM WebSphere V5.0 and IBM MQSeries Integrator

structuring Web applications to follow the Model-View-Controller (MVC) design
pattern.

Figure 6-1 Model-View-Controller design

Many GUI-based client/server applications have been designed using the MVC
design pattern. This powerful and well-tested design pattern can be extended to
support Self-Service Web applications. Throughout this chapter, Model is often
referred to as business logic, View is referred to as page constructor or display
page, and Controller is referred to as interaction controller.

6.1.2 Struts
In a Web environment, changes in the Model cannot be passed on to the View
directly. Instead, the View has to re-query the server to discover modifications in
the state of the application. This is called MVC Model 2 or MVC 2. In this
redbook, we use a well-known implementation of the MVC 2 design pattern
called Struts. Struts is an open-source implementation of MVC 2, part of the
Jakarta project in the Apache Software Foundation. Struts is a framework that
implements the MVC 2 pattern by providing a set of classes, servlets, JSP tag
libraries, and a flexible configuration.

The core of the Struts framework is a flexible control layer based on such
standard technologies as Java servlets, JavaBeans, ResourceBundles, and
Extensible Markup Language (XML).

Struts encourages application architectures based on the Model 2 approach, a
variation of the classic Model-View-Controller (MVC) design paradigm. Struts
provides its own Controller component and integrates with other technologies to
provide the Model and the View. For the Model, Struts can interact with any

Interaction
Controller

Controller

Page
Construction

View

Business
Logic

Model

Browser client

Web Application Server
 Chapter 6. Application design 97

standard data access technology, including Enterprise JavaBeans, JDBC, and
Object Relational Bridge. For the View, Struts works well with JavaServer Pages,
Velocity Templates, XSLT, and other presentation systems.

The Struts framework provides the invisible underpinnings every professional
Web application needs to survive. Struts helps you create an extensible
development environment for your application, based on published standards
and proven design patterns.

Struts application design
True to the MVC design pattern, Struts applications have three major
components:

� Controller, implemented using the Struts ActionServlet and classes extending
the Struts Action class

� View, implemented using JavaServer Pages and Struts form beans

� Model, implementing the application's business logic

The ActionServlet routes HTTP requests from the user to the appropriate action
class. Action classes provide access to the application’s business logic and
control how the flow should proceed. Form beans are used to collect and validate
form data from the user.

Figure 6-2 shows an example Struts form bean, TransferFundsForm, that has
been defined in the struts-config.xml file and linked to an action mapping. When
a request calls for the TransferFundsAction Struts action, the ActionServlet
retrieves the form bean (or creates it if it does not exist), and passes it to the
action.

Figure 6-2 Struts action class diagram

Action

ActionForm

ActionServlet TransferFundsAction

TransferFundsForm

«instantiate»
«use»

Business
Logic
98 Self-Service Applications using IBM WebSphere V5.0 and IBM MQSeries Integrator

The action can then check the contents of the form bean before its input form is
displayed, and also queue messages to be handled by the form. When ready, the
action can return control with a forward to its output form, usually a JSP. The
ActionServlet can then respond to the HTTP request and direct the client to the
JSP.
.

Figure 6-3 Struts action sequence diagram

6.1.3 Sample application
The following diagram depicts the two use cases that are implemented in the
sample application.

� Order placement

� Order pickup

 : User : transferFunds
Successful.jsp

 : TransferFunds
Form

 : TransferFunds
Action

 : ActionServ let

1 : doPost (arg0 , arg1)

2 : setAmount (amount)
3 : v alidate ()

4 : perform (mapping , form ,
request , response)

5 : getAmount ()

6 : \Forw ard\

7 : getAmount ()
 Chapter 6. Application design 99

Figure 6-4 Main use case

These two use cases are only a smaller part of a scenario that is not
implemented fully. The implementation provided together with the book is
intended to show the technologies used in this pattern.

Order placement
In this use case, the customer goes to the IV Corp Web site to place an order.
This consists of selecting an item and quantity, then submitting the order.

Figure 6-5 on page 101 is a functional diagram that show the different nodes
(front-end, back-end, integration server, and Supplier application), functional
items (enterprise applications, integration flows) and resources (data sources,
queue connection factories, queues), for the sample application.

Customer
Order pickup

Order placement
100 Self-Service Applications using IBM WebSphere V5.0 and IBM MQSeries Integrator

Figure 6-5 Order placement flow

The order placement process flows in the following way.

View
1. The user accesses the order placement page, order.jsp, on the front-end

server. The requested item and quantity are entered in this page and
submitted for processing.

The product catalog is stored in an XML file for the application. The order.jsp
page generates the catalog page from the XML file using a stylesheet. The
result is a list of products on the HTML page where the user can choose an
item to order.

Controller
2. The Web application executes the OrderProcess Struts action. The

parameters from the HTML form are passed to the action in a form bean
called OrderForm.

QMGR: VENDORBE
O

rd
er

P
ro

ce
ss

L
P

WebSphere Application Server

Back-end server

OrderProcessMDB
message-driven bean

OrderSession
session bean

ITSO.MSGTRX.P2P.
ORDERPROCESS.

REQUEST

ITSO.MSGTRX.P2P.
ORDERPROCESS.

REPLY

Front-end server

WebSphere Application Server

jms/msgtrx/OrderProcessRequest
jms/msgtrx/OrderProcessQ
jms/msgtrx/FEQCF
jms/msgtrx/BEQCF

JNDI name space

OrderProcess
Struts Action

o
rd

er
.js

p

OrderForm
Form bean

getOrderID
JSP

Integration server

ITSO.MSGTRX.
P2P.ORDER

jms/msgtrx/OrderQ
jms/msgtrx/OrderReplyQ

JNDI name space

ITSO.MSGTRX.
P2P.ORDERACK

MQSeries Integrator

Supplier application

ITSO.MSGTRX.
P2P.SUPPLY.REPLY

Order processing flow

Supplier
processing
flow

QMGR: VENDORFE

QMGR: INTSRV01

ITSO.MSGTRX.P2P.SUPPLY.RED
ITSO.MSGTRX.P2P.SUPPLY.GREEN
ITSO.MSGTRX.P2P.SUPPLY.BLUE

1

2 3

4

5

OrderProcessMessenger
session bean

Order
database

5a

5b

6

7

9

5b

5a

5b

8

 Chapter 6. Application design 101

3. OrderProcess creates an XML document based on the request, then sends a
message to the back-end server over JMS with the order details.

OrderProcess then waits for a reply from the back end to confirm the
execution of the order process.

In order to match the reply message with the request message, the JMS
message correlation ID is used in the application. The correlation ID stores
the request message ID. When the response arrives, the sender can
compare the original message ID with the returned correlation ID. If they are
the same, the reply arrived properly; if not, the reply belongs to another
request.

This type of implementation is a message-facade, where the front-end server
sends a message to the back-end server with the requested action and
pertinent parameters. On the back-end server, one message-driven bean
listens to every action request and starts up the appropriate action on the
server. This is very similar to the facade pattern that is commonly used with
session EJBs and entity EJBs.

Model
4. On the back-end server, the OrderProcessLP listener port monitors the queue

for incoming messages.

5. The OrderProcessMDB message-driven bean picks up the message and
instantiates two beans, OrderSession and OrderProcessMessenger. It uses
the local interfaces to call the session beans to improve performance.

a. The OrderSession session bean performs some pre-processing of the
order and then generates a message to be sent to the integration node.

Ordered items can be thought of as a sum of components. The
components are available from individual suppliers and then “assembled”
for delivery to the customer. The pre-processing code locates the item in
the XML-format catalog and determines the components that make up the
item. XML transformation is used to take the catalog information and
generate a message that contains the original order and component
information. The message is sent to the integration node, where it is
decomposed into individual orders to be sent to the suppliers.

Further processing would also be possible here, allowing execution of
other processes on external systems.

OrderSession implements the Singleton pattern to store the queue
connection factory JNDI name space lookup results for later use. The
queue connection factory is used to make connections to queue
destinations in WebSphere. The name space lookup is a significant
overhead for applications, using the Singleton pattern results’ better
runtime performance.
102 Self-Service Applications using IBM WebSphere V5.0 and IBM MQSeries Integrator

b. OrderProcessMessenger sends a reply back to the front-end server,
acknowledging that the order has been placed and providing the order ID.

The order ID is generated from the message ID of the outgoing message
from the back-end server to the integration server.

The front-end server receives the reply and redirects the user to the
getOrderID.jsp, which shows the user the order ID. The ID is needed to
pick up the order.

The integration server uses the order ID to store the order details in the
database.

Integration (decompose)
6. The order processing flow picks up the message on the integration node. The

message is decomposed into multiple orders. In our sample application, the
original order is decomposed into three separate orders, labeled “red”,
“green”, and “blue”.

The new orders are stored as separate records in a database under the same
order ID. As the responses to the orders come back from the suppliers, the
responses will be stored in the same database with the orders.

7. After the decomposition, the individual order requests are sent to the
appropriate supplier queues where each supplier can pick up his request.

This same flow sends a message to OrderSession, acknowledging that the
order has arrived.

Supplier application
8. On the supplier side, the suppliers pick up the message and send back a

reply containing the item they can supply and the amount they can ship.

Integration
9. The incoming messages from the suppliers arrive at the integration node,

where a processing flow picks them up. The flow stores the incoming
messages from the suppliers in the database with the matching order.

An order is complete when all the suppliers have responded. In other words,
each order in the database on the integration node has a reply from the suppliers
stored with it.

Order pickup
This use case is responsible for the pickup process. The user comes to the
corporate Web site to enter the order number (ID) that was returned when the
original order was submitted. In return, the system comes back with the results
based on the responses provided by the suppliers.
 Chapter 6. Application design 103

Figure 6-6 Order pickup flow

The order pickup process flows in the following way.

View
1. The customer goes to the IV Corp Web site to pick up an order, provides an

order number, and submits the form.

Controller
2. The request invokes the OrderPickup Struts action. The action gets the form

information from the OrderPickupForm object.

3. The front-end application sends a message to the back-end, the same way as
it was described in the previous use case, using the message facade.

Model
4. The back-end server performs only message forwarding in this scenario,

towards the Integration server. In a real scenario, the server would perform
further processing or would execute other processes on external systems.

Integration (recompose)
5. The message is picked up by the order pickup flow on the integration server

from the ITSO.MSGTRX.P2P.PICKUP.ORDER queue.

QMGR: VENDORBE

WebSphere Application Server

Back-end server

OrderProcessMDB
message-driven bean

binding

OrderSession
session bean

ITSO.MSGTRX.P2P.
ORDERPROCESS.

REQUEST

ITSO.MSGTRX.P2P.
ORDERPROCESS.

REPLY

Front-end server

WebSphere Application Server

jms/msgtrx/OrderProcessRequest
jms/msgtrx/OrderProcessQ
jms/msgtrx/FEQCF
jms/msgtrx/BEQCF

JNDI name space

OrderPickup
Struts Action

o
rd

er
_p

ic
ku

p
.js

p

OrderPickupForm
Form bean

displayOrder
JSP

Integration server

ITSO.MSGTRX.
P2P.PICKUP.ORDER

jms/msgtrx/OrderQ
jms/msgtrx/OrderReplyQ

JNDI name space

ITSO.MSGTRX.
P2P.PICKUP.REPLY

MQSeries Integrator

Order pick up flow

O
rd

er
P

ro
ce

ss
LP

 (
Li

st
en

er
 p

or
t)

QMGR: VENDORFE

QMGR: INTSRV01
104 Self-Service Applications using IBM WebSphere V5.0 and IBM MQSeries Integrator

The flow collects the order parts from the database and composes the parts
into one message, then the response is sent back to the back-end server to
the ITSO.MSGTRX.P2P.PICKUP.REPLY queue.

Back-end applications
6. The back-end server forwards the reply to the front-end server with the results

of the completed order.

Front-end results
7. The front-end server receives the order and compares it to the original order.

The resulting page shows the original color and the color that can be
supplied. If the order was fulfilled, the suppliers supplied the requested
amount and the two colors are the same. If the order was not fulfilled, the
suppliers could not provide the requested amount and the resulting color can
be different, depending on the difference between the requested and the
supplied substance amounts.

6.2 EJB design guidelines
General EJB design guidelines for self-service applications can be found in
Patterns: Self-Service Application Solutions using WebSphere V5.0, SG24-6591.
The guidelines here are specific to applications that use JMS messaging.

6.2.1 Local and remote home interfaces
In messaging applications, remote method invocations are often replaced using
messaging to invoke remote functions. For example, JMS messages can invoke
remote EJB methods via a message-driven bean, replacing the synchronous
EJB remote method calls. Although remote method calls are not in use in such
an application, EJBs in the same container should be able to call each other
using an efficient method, making local calls.

The most common use of local EJB interfaces in messaging applications is to
invoke session bean methods from message-driven beans. For example, in our
sample application, the OrderProcessMDB bean calls the OrderSession bean
using local interfaces.

Before the EJB 2.0 Specification, the only way to invoke an EJB, be it entity or
session bean, was through its home and remote interfaces. Both interfaces
assumed that the client was a remote client, so any call from the client to the EJB
had to go through the RMI-IIOP invocation stack. While this provides great
flexibility and portability in a multi-tier/distributed environment, when both the
 Chapter 6. Application design 105

caller and the EJB reside in the same JVM, this advantage became a significant
performance overhead.

For performance reasons, EJB 2.0 introduced the local home interface and
component local interface for entity and session beans. The local home interface
and component local interface do not use the RMI-IIOP invocation stack but
instead invoke the EJB directly from the client.

A session or entity bean can have remote interfaces, local interfaces or both,
depending on the use of that bean.

The home interfaces let the user create, remove, and find (in the case of entity
beans) EJBs. The result of these operations will be an instance or instances of
component local interfaces to the EJBs.

Local home interfaces differ from remote home interfaces in such a manner that
they can only be found in the local context. Only the object within the same JVM
can locate this interface in the JNDI context.

Figure 6-7 Local and remote component interfaces

Component local and remote interfaces
Clients never directly access instances of the bean’s class. A client always uses
the bean component interfaces to access the instance. When both the client and
the bean instance exist in the same JVM, the client can use the component local
interface instead of the remote interface to interact with the bean instance.

Remote Local
<<interface>>

EJBHome

<<interface>>
java.rmi.Remote

<<interface>>
MyBeanHome

<<interface>>
EJBLocalHome

<<interface>>
MyBeanHomeLocal
106 Self-Service Applications using IBM WebSphere V5.0 and IBM MQSeries Integrator

Figure 6-8 Local and remote objects

The difference between the two is that the remote interface implements the
EJBObject interfaces, which is an extension of the java.rmi.Remote interface.

Implementing component and home interfaces
The local home interface extends the javax.ejb.EJBLocalHome class, and the
component local interface extends the javax.ejb.EJBLocalObject class.

The container makes local and remote home interfaces available to the client
through JNDI, as shown in the following example.

Example 6-1 Locating local and remote home interfaces

// Locating local home
InitialContext ic = new InitialContext();
myBeanLocalHome = (MyBeanLocalHome) ic.lookup(“java:comp/env/ejb/MyBean“);
MyBeanLocal myBeanLocal = (MyBeanLocal) myBeanLocalHome.create();

// Locating remote home
Properties env=new Properties();
env.put(Context.PROVIDER_URL,"iiop://ejbserver:2809");
env.put(Context.INITIAL_CONTEXT_FACTORY,
"com.ibm.websphere.naming.WsnInitialContextFactory");
InitialContext ic = new InitialContext(env);
Object o = ic.lookup("ejb/MyRemoteBean");
myRemoteBeanHome =(MyRemoteBeanHome) PortableRemoteObject.narrow(o,
MyRemoteBeanHome.class);
MyRemoteBean myRemoteBean=(MyRemoteBean) myRemoteBeanHome.create();

<<interface>>
EJBLocalObject

<<interface>>
EJBObject

Remote Local
<<interface>>

java.rmi.Remote

<<interface>>
MyBeanLocal

<<interface>>
MyBean
 Chapter 6. Application design 107

In our sample scenario, we use both local and remote interfaces for the
Enterprise Beans:

� Entity beans use only local home and component interfaces, since they will
only be called from a session bean (implementing a Session Facade pattern).
This also eliminates the possibility of having unexpected clients interacting
directly with the entity bean, since no remote interface for the entity bean is
available.

� Most session beans implement only the remote home and component
interfaces. This way, remote clients can interact with the session bean, using
it as a facade to the business logic.

� If local objects want to interact with the session bean, they can use the
remote interface, or we can implement the local interfaces for the bean. When
both interfaces are implemented and are meant to look exactly the same, we
can use a business model interface.

The business model interface will allow us to detect inconsistencies between
the local and remote interfaces at build time. The bean, component local and
component remote interfaces will implement this interface, allowing us to
check the consistency at build time. Figure 6-9 shows how this can be
accomplished.

Figure 6-9 Class hierarchy for EJBs

In other cases, the local and remote interfaces do not have to be the same.
The remote interface exposes only the method that can be used by a remote
client, while the local interface does the same for the local clients, as shown in
Figure 6-10 on page 109.

<<interface>>
EJBLocalObject

<<interface>>
EJBObject

<<interface>>
java.rmi.Remote

<<interface>>
MyBeanModel

<<interface>>
MyBean

<<interface>>
MyBeanLocal

MyBeanBean
108 Self-Service Applications using IBM WebSphere V5.0 and IBM MQSeries Integrator

Figure 6-10 Local and Remote interfaces

6.2.2 Using the Singleton pattern
Sometimes it is important for a class to have one and only once instance. This is
the case, for example, of a printer spooler or a caching helper class. This
Singleton pattern ensures that a class has only one instance, and provides a
global point of access to that instance.

The Singleton pattern implementation generally complies with the following
characteristics:

� A public point of access for the class instance

Since we need to provide a global point of access to this unique class
instance, the Singleton class usually provides a getInstance() method that
gives access to the instance.

� No public class constructor

Since the Singleton class can only have one instance, we do not want any
other object to be able to create an instance of this class directly. Instead, a
private class constructor is provided that will be used by the class static
method getInstance().

The following code fragment shows a base Singleton class implementation.

Example 6-2 Singleton patter implementation in Java

class Singleton {
private static instance = null;
/**
 * We can also initialize the instance variable here
 * private static instance = new Singleton();
 */

<<interface>>
MySessionLocal

anotherAction(String)

<<interface>>
MySession

doActionr(...)

MySessionBean

anotherAction(String)
doAction(...)
 Chapter 6. Application design 109

private Singleton() {
// perform some initilization process here

}

public Singleton getInstance() {
if (instance == null) {

instance = new Singleton();
}
return instance;

}
}

As shown in the previous example, the class instance can be created on
demand, or it can be initialized during the class load process.

One of the most common use of the Singleton pattern in the J2EE platform is as
a cache for JNDI references to resources.

For example, when an EJB is accessed by another object (that object can be
another EJB, a servlet or any client class), the object has to locate the EJB Home
(either local or remote) using JNDI to instantiate then invoke the given EJB. This
lookup process can introduce a significant overhead in the EJB invocation
process.

This can be avoided by using a helper class that implements the Singleton
pattern. The Singleton object will look up the EJB Home and add a reference to
the home interface.

The Singleton pattern can also be used to handle the JMS queue/topic
connection process. This process is usually expensive because it requires a
JNDI lookup for the ConnectionFactory and then the connection creation that
actually establishes a connection to the underlying JMS Provider.

The sample scenario uses the Singleton pattern to store the connection factories
for the session beans that are sending JMS messages, for example, the
OrderProcess session bean.

6.2.3 The Facade pattern
The Facade design pattern provides an interface between two layers of an
application. It has two major purposes:

� Hide the complexity of a subsystem by providing an easy-to-use interface.

� Reduce the number of interactions required with the subsystem in a
distributed environment.
110 Self-Service Applications using IBM WebSphere V5.0 and IBM MQSeries Integrator

For example, some business operations may require multiple interactions with
the application subsystem, such as creating records in a database, logging some
information, and returning the results to the client.

A facade provides a single, simple method for the client, so the whole business
operation will be executed with a single method invocation.

Using the Facade pattern
In a multi-tier J2EE application, the Model and the View layers might be
distributed on two or more different application servers, and even in different
machines across the network to provide better security and performance.

With the Facade pattern, we can minimize the number of interactions between
the different layers of an application and, at the same time, provide better
decoupling between these layers.

The Message Facade is a Facade pattern implementation using messaging for
asynchronous interactions. In our scenario, we have used the Message Facade
pattern to invoke remote EJB methods asynchronously via messaging. The caller
component can simply send a message to the receiver component with the
requested command to invoke together with the parameters for the call.

Using the Session Facade pattern
One of the most widely used implementation of the Facade pattern is the
Session Facade pattern. The Session Facade pattern creates a facade for the
Web container that hides the interaction with all the other beans in the EJB
container.

Generally, a session bean will contain multiple business methods related to each
other and each business method will represent a given use case.

Sometimes there is a need to decouple the client event from the business layer,
so the client does not have to know the interface of the session bean explicitly to
invoke it. There are several possible patterns that can help to deal with this
situation, such as the Business Delegate pattern or the Command pattern.

The Business Delegate pattern provides a wrapper on top of the EJB interface,
so any change in the EJB interface will not be reflected to the client. The EJB
home lookup and EJB creation process are handled by the Business Delegate
class, and any call to a method in the EJB is made through corresponding
methods in the business delegate.

For further information about the Command pattern, go to:

http://www-106.ibm.com/developerworks/patterns/index.html
 Chapter 6. Application design 111

http://www-106.ibm.com/developerworks/patterns/index.html

Using the Message Facade pattern
The Message Facade pattern helps to decouple the client completely from the
EJB component that implements the business logic. The only contract required
between the client and the business logic layer is the message format and
semantics.

With this pattern, the client only needs to know the queue connection factory and
queue to send the message to. On the business logic layer, a message-driven
bean is listening to requests from that destination and will process them.

Generally, it is recommended that the message-driven bean not actually perform
any business logic itself but instead delegate this process to a session bean,
which acts as a facade again.

The sample application uses the message facade between the OrderProcess
and OrderProcessMDB to invoke calls in the OrderSession bean. The same
message facade is implemented between the OrderPickup and
OrderProcessMDB beans.

6.3 JMS design guidelines
In this section, we focus on the roles of the J2EE Java Message Service (JMS)
and WebSphere MQ in enterprise messaging applications. JMS applications are
composed of the following parts:

� JMS clients are Java programs that send and receive messages.

� Messages are defined for each application and used for communication.

� A JMS Provider is a message system that implements JMS in addition to the
other administrative and control functionality required for a full-featured
messaging product.

� Administrated objects are preconfigured JMS objects created by an
administrator for JMS clients. There are two types of administrative objects:

– ConnectionFactory is used to create a connection with the provider.
– Destination is used to access a source or destination of messages.

6.3.1 Message models
Each messaging model has a set of interfaces in JMS that define specialized
operations for that model. There are two domains defined in the JMS
specification for messaging applications:

� Point-to-point (PTP)
� Publish/subscribe (pub/sub)
112 Self-Service Applications using IBM WebSphere V5.0 and IBM MQSeries Integrator

Please see Figure 6-11 for the JMS class diagram.

Figure 6-11 JMS classes

JMS is based on some common messaging concepts which are defined in JMS
parent classes. Each messaging domain defines a customized set of these
classes for its own domain. There are also classes defined that are transaction
aware, like XAQueueConnection Factory.

The JMS parent classes define the following basic message concepts:

� ConnectionFactory is an administrative object used by a client to create a
connection.

� Connection is an active connection to a JMS Provider.

� Destination is an administrative object encapsulating the identity of a
message destination.

� Session is a single-threaded context for sending and receiving messages.

Publish/ subscr ibe messagingPoint- to-point messaging

«JavaI nterface»
ConnectionFactor y «JavaInterface»

TopicConnection
Factor y

«JavaI nterface»
XAQueue

ConnectionFactor y

«JavaI nterface»
XAT opicConnection

Factory

«JavaInterface»
QueueConnection

Factor y

«JavaI nterface»
Connection

«JavaI nterface»
QueueConnection«Jav aI nterface»

XAQueue
Connection

«JavaI nterface»
XA TopicConnection

«JavaI nterface»
TopicConnection

«JavaI nterface»
Session

«Jav aI nterface»
QueueSession

«Jav aI nterface»
TopicSession«JavaInterface»

XAQueueSession
«Jav aI nterface»

XA TopicSession

«Jav aI nterface»
Queue

«Jav aI nterface»
Topic

«JavaI nterface»
MessageConsumer

«JavaI nterface»
MessagePr oducer

«Jav aI nterface»
D estination

«JavaInterface»
QueueReceiver

«Jav aI nterface»
QueueSender

«Jav aI nterface»
TopicPublisher

«Jav aI nterface»
TopicSubscr iber

«JavaInterface»
Message
 Chapter 6. Application design 113

� MessageProducer is an object created by a Session for sending messages to
a Destination.

� MessageConsumer is an object created by a Session for receiving messages
from a Destination.

Not all JMS objects can be used concurrently. Table 6-1 shows the objects that
can be used concurrently and those that cannot.

Table 6-1 Concurrent JMS classes

There are two reasons for restricting concurrent access to Sessions. First,
Sessions are the JMS entities that support transactions. It is very difficult to
implement transactions that are multi-threaded. Second, Sessions support
asynchronous message consumption. If a Session has been set up with multiple,
asynchronous consumers, it is important that these separate consumers not
execute concurrently.

6.3.2 JMS point-to-point model
Point-to-point (PTP) messaging involves working with queues of messages. The
sender sends messages to a specific queue to be consumed normally by a
single receiver. In point-to-point communication, a message has at most one
recipient. A sending client addresses the message to the queue that holds the
messages for the intended (receiving) client. You can think of the queue as a
mailbox. Many clients might send messages to the queue, but a message is
taken out by only one client. Like a mailbox, messages remain in the queue until
they are removed. Thus, the availability of the recipient client does not affect the
ability to deliver a message. In a point-to-point system, a client can be a sender
(message producer), a receiver (message consumer), or both. In JMS, PTP
types are prefixed with “Queue”.

Object Concurrent use

ConnectionFactory Yes

Connection Yes

Destination Yes

Session No

MessageProducer No

MessageConsumer No
114 Self-Service Applications using IBM WebSphere V5.0 and IBM MQSeries Integrator

Figure 6-12 JMS point-to-point model

In point-to-point messaging, there are generally three messaging patterns:

� Request/reply
� Send-and-forget model or message producer
� Message consumer

We look at these messaging patterns in more detail in 6.3.5, “Synchronous
versus asynchronous design considerations” on page 121.

6.3.3 JMS publish/subscribe model
In contrast to the point-to-point model of communication, the publish/subscribe
model, shown in Figure 6-13, enables the delivery of a message to multiple
recipients. A sending client addresses, or publishes, the message to a topic to
which multiple clients can be subscribed. There can be multiple publishers, as
well as subscribers, to a topic. A durable (or persistent) subscription, or interest,
exists across client shutdowns and restarts. While a client is down, all objects
that are delivered to the topic are stored and then sent to the client when it
renews the subscription. A non-durable subscription will deliver messages when
the consumer is connected, but discard messages when the consumer is not
connected. In a publish/subscribe system, a client can be a publisher (message
producer), a subscriber (message consumer), or both. In JMS, pub/sub types are
prefixed with “Topic”.

Figure 6-13 Publish/subscribe model

JMS Client
Sends

Sender

Consumes

Receiver

Queue

Msg Msg

JMS Client

Subscribes Subscriber

JMS Client

JMS Client

JMS Client
Publishes

Publisher

Topic
 Chapter 6. Application design 115

JMS also supports the optional durability of subscribers and “remembers” that
they exist while they are inactive. All an application has to do is send information
it wants to share to a standard destination managed by IBM WebSphere MQ
publish/subscribe, and let IBM WebSphere MQ publish/subscribe deal with the
distribution. Similarly, the target application does not have to know anything
about the source of the information it receives.

Another important aspect of the pub/sub model is that there is typically some
latency in all pub/sub systems. This is because messages observed by
subscribers may depend on the underlying JMS Provider’s capability to
propagate the existence of new subscribers and how long the messages are
retained by the provider.

We look at the pub/sub pattern in more detail in 6.3.5, “Synchronous versus
asynchronous design considerations” on page 121.

Integration hub concept
An integration hub provides a single interface for various services and
applications. It significantly reduces the maximum number of interfaces needed
to couple enterprise applications with each other. Without an integration hub,
there may be up to NxN interfaces necessary to connect N different applications
to each other. When using an integration hub, the same connectivity can be
achieved with only N interfaces. With a hub in the middle, it is sufficient to
connect each application to the hub. There must not be interfaces between the
applications.

Figure 6-14 Stovepipe problem without dedicated integration layer

Application A

Application B

Application C

Legacy
Application A Legacy

Application B

Legacy
Application C
116 Self-Service Applications using IBM WebSphere V5.0 and IBM MQSeries Integrator

The number of interfaces in the enterprise is decreased by mapping the various
interfaces to common abstract interfaces. This is particularly useful when the
interfaces that are “wrapped” share common semantics:

� Different “back-end” applications of the same purpose can get a common
(user) interface.

– Integration of national or regional applications into a global self-service
Web application.

– Integration of information technology in a merged company.

– Adaptation of suppliers’ information technology into the supply chain.

� Different access points to the same back-end technology.

Figure 6-15 Integration hub

Integration bus topology
The integration servers in the previous scenario variations were built around the
hub-and-spoke topology. In this way, all unique applications connect through a
central hub. A new application only needs to be connected to the integration
server to be integrated with other systems connected to the integration server.
The integration server acts as a message broker to control the transport, data
translation, and process integration among the connected applications.

Application A

Application B

Application C

Legacy
Application A Legacy

Application B

Legacy
Application C

Integration Hub
 Chapter 6. Application design 117

Figure 6-16 Integration bus topology

In addition to reducing the point-to-point integration, a hub-and-spoke integration
server can be centrally managed, which simplifies the administration. The
disadvantage of the centralized architecture is that it can create performance
bottlenecks and also a single point of failure. We have to address these issues
by adding multiple message brokers and servers, which will introduce additional
architectural and administrative difficulties.

This is not the only model for integration servers. Another approach is to use the
integration bus topology.

In an integration bus topology, all nodes are connected in a sequence in the
direction of a shared communication backbone. Messages that are sent from
interconnected systems go through the bus to the integration server, which
manages the data transformation, transportation, translation, and finally routes to
the receiving nodes.

The bus offers the means for messages to arrive at their destinations. The
physical implementation of this architecture involves housing adapters within
each integrated application, which then uses the integration bus communication
backbone for interacting with the integration server and all other connected
applications.

A comparison of the integration bus with the hub-and-spoke architecture shows
that the integration bus architecture scales better and possibly offers better

Integration Bus Architecture

Integration Bus

Application
Server

Existing
Applications

and Data

Adapter Adapter

Existing
Applications

and Data

Existing
Applications

and Data

Existing
Applications

and Data

Existing
Applications

and Data

Adapter

Adapter Adapter Adapter
118 Self-Service Applications using IBM WebSphere V5.0 and IBM MQSeries Integrator

performance. However, implementation of the integration bus architecture is
more complex and more difficult to manage as the environment expands.

The choice of which architecture to use depends on other factors that demand an
evaluation of the company. The types of applications, their usage, and the
resources available should be considered. Companies that have limited IT
resources and few systems with a moderate volume of transactions are better
addressed with the hub-and-spoke architecture. On the other hand, if the
company has plenty of IT resources and a large number of systems interacting
with a high volume of transactions, the integration bus architecture is better
suited.

When deciding upon an integration server, it is crucial to examine its architecture
and to determine the impact it will have on the applications and the infrastructure
of the company. The hub-and-spoke architecture can easily be implemented
compared to the integration bus, but the scalability is more restricted. You should
also consider the adapters for a particular application that the integration server
might support and measure the work required to get those adapters working with
the existing systems. In this case, process management support will be one of
the most important features a company will implement to automate the business
processes across multiple systems.

6.3.4 JMS messages
Another design choice is the JMS message type. As shown in Figure 6-17 on
page 120, JMS messages are composed of the following parts:

� Header: contains information to identify and route messages.

� Properties: custom values that can optionally be added to messages.
Properties can be:

– Application-specific: properties added to messages, which are used by
JMS applications

– Standard: JMS properties

– Provider-specific: properties that are specific to a messaging provider

� Body: the message data.
 Chapter 6. Application design 119

Figure 6-17 Message content

JMS provides different message types. Each contains specific interfaces
pertaining to its content and allows specific operations on the messages.

The message types that can be used in JMS are:

� BytesMessage: contains operations for storing and accessing a stream of
bytes.

� StreamMessage: contains operations for storing and accessing a stream of
Java primitive values. It is filled and read sequentially.

� ObjectMessage: contains operations for storing and accessing a serialized
Java object. If the application design requires more than one object to be
serialized, then use a Collection object.

� MapMessage: contains operations for storing and accessing a set of
key-value pairs from the message body. The keys must be strings and the
values must be primitive types.

� TextMessage: contains operations for storing and accessing the body of a
message as a string. Text messages can be used to store XML-data. This
type of message can be used for sending messages to non-Java
applications.

A couple of message settings are also important to consider:

� Delivery mode: when delivery needs to be assured by the business
requirements, persistent messages are needed. But when this is not needed,
performance can be gained by the use of non-persistent messages.

� Message expiration: when using non-persistent messages, message
expiration can be used to discard messages that have remained on a queue
or topic for longer than required. This prevents unprocessed messages from
building up over time.

JMS Message

JMS Client

Header

Properties

Body

WebSphere MQ
Message

Mapping

Mapping

Copying

Mapping

Mapping

Copying
Data

MQMD

JMS Message

JMS Client

Header

Properties

Body

RFH
120 Self-Service Applications using IBM WebSphere V5.0 and IBM MQSeries Integrator

6.3.5 Synchronous versus asynchronous design considerations
In the Web application environment, choosing an asynchronous or synchronous
approach to JMS communication will significantly affect the design of the
application. The effects could ripple as far as the user interface interaction (or
user experience), or it could affect only the low-level design and behavior of the
underlying application.

We look at both the user interaction differences and the system design
considerations.

For the purposes of discussion, let us consider an example Web application that
provides Web banking and needs to connect to an enterprise application that is
hosting the bank account data.

First, it is important to go over some basic Web application principles. The Web is
a stateless environment; typically, a request is received and the reply sent back
immediately within the same client session. A Web server is not normally able to
initiate a connection to a Web client out of the blue. Information about the
requesting client is retained while the request is being serviced and not lost until
a reply is sent back. The Web is a typical request/reply model. Most Web
applications are built using this model and this style of user interaction where the
user can expect a reply back from the server that will be the result of making a
request.

Using our Web banking example, let us assume a Web request requires
information from the enterprise application about the bank balance. The JMS
interaction between the Web application and the enterprise application can be
achieved using:

� Request/reply pattern
� Send-and-forget pattern
� Message consumer pattern
� Publish/subscribe pattern

Request/reply pattern
Using this approach, we fit the standard Web model by providing a complete
round trip for the client request that results in a reply. The user does not have to
visit another results page to see the results of his/her request.

Note: IBM WebSphere MQ is a fully asynchronous messaging system. To
achieve request/reply requires coordination between the request queue and
reply queue with the use of correlation IDs.
 Chapter 6. Application design 121

As shown in Figure 6-18, the Web application sends a request message, then
waits for a reply. The response message needs to be linked to the request
message using the request message ID as the correlation ID of the response
message.

The overriding factor in a request/reply pattern is the time delay before a reply
comes back. You should remember that request/reply is a synchronous
communication over an asynchronous transport. For request/reply, two queues
are needed, one for the sender to send messages and one for receiving the
responses back. The request/reply consists of two units of work:

� Putting the message on a queue

� Receiving the response and, for example, inserting the message in a
database

These actions can never be one unit of work because the real put of the
message only takes place after the commit. No message will be sent without a
commit, and when no request message is sent, no reply will arrive.

An example of a request/reply scenario is getting your account balance. A
message is first sent with the account ID, then the application waits until a
response message is sent back with the balance of the account, with the results
logged to an application database.

Figure 6-18 Request/reply pattern

Request/reply design considerations
Applications should not be designed without appropriate timeout or retry
capability. Waiting indefinitely on a queue for the reply message to arrive will
cause at best a poor user experience. At worst, it will result in a consumption of
system resources to a point where the entire application will fail or stop
responding. The application design should therefore cover delayed replies and

Database MQ

WebSphere Application Server

Servlet

EJB

Unit of Work

122
122 Self-Service Applications using IBM WebSphere V5.0 and IBM MQSeries Integrator

no reply at all. Non-persistent messages can become useful in these situations. If
a reply has not been received within a given amount of time, an exception path is
taken by the application, potentially resubmitting the request. When the response
of the first request arrives, this response can be ignored. It is also possible to
include a timeout time in a message. The message will then be destroyed when
the timeout is reached. Typically, the use of non-persistent messages will also
depend on the type of application and business requirements. For example, if the
application is a transfer of monetary funds then it is quite likely that persistent
messages will be used. When a failure occurs, a check back later algorithm is
needed.

However, implementation of this approach presents a few important issues.
Specifically, if the message producer is implemented as a session EJB, then in
the request/reply JMS model, the EJB must wait (or block) until the enterprise
application has replied before it can continue processing. Blocking in an EJB is
not generally recommended because it restricts the EJB container’s ability to
effectively manage its resources. Care must be taken to ensure that the EJB is
not waiting indefinitely and that there is a timeout in place.

Send-and-forget pattern
In Send-and-forget (or fire and forget), shown in Figure 6-19 on page 124, the
Web application will initiate the request to the enterprise application using a JMS
destination, but it will not wait for the outcome. This design has important
repercussions on the user interaction. A message consumer pattern could be
used for receiving the reply from the enterprise application. The user must at
some point go to a result page to see his or her bank balance when it has been
retrieved from the enterprise application.

From an implementation point of view, the blocking EJB dilemma is avoided.
However, a new page is required to allow the customer to come back to check
his/her last balance request from the local database. This design has alleviated
the need for the blocking EJB design. However, the user experience is drastically
different from the request/reply model.
 Chapter 6. Application design 123

Figure 6-19 Send-and-forget pattern

Send-and-forget design considerations
One of the first things you should consider is whether you make use of persistent
or non-persistent messages. Non-persistent messages do not survive process
failure, but because their handling does not incur any disk I/O (for persistence),
they can be processed much more quickly by the JMS Provider. The decision to
use persistent or non-persistent messages will generally be governed by the
business requirements. In the case of getting a balance, no funds transfer
occurs; as such, a lost message has little impact and may not warrant persistent
messages. The application may be sending the message as part of a unit of work
(transaction), which implies that at some point either the application or the
application server will commit the transaction to affect the send.

Another point to consider is the application component used to implement the
message producer. The Model-View-Controller model suggests that access to an
enterprise resource (messaging infrastructure) should occur via session EJBs. If
you want the message sent as part of a transaction that will be coordinated by
the application server (for example, send message and update a local database
within a transaction), then EJBs are required. However, it is not uncommon to
find the message producer being implemented in servlets; this offers a simpler
programming framework (when compared to EJBs), but immediately precludes
the use of global units of work, or access to any other features that the EJB
container may offer.

Message consumer pattern
Message consumers can be implemented by message-driven beans, which are
invoked by the container when a message arrives at a destination. When a
message arrives at the destination, the EJB container passes the message to an
instance of a user-developed message-driven bean.

Database MQ

WebSphere Application Server

Servlet

EJB

Unit of Work

1

124 Self-Service Applications using IBM WebSphere V5.0 and IBM MQSeries Integrator

This pattern can be used by a catalogue application receiving updates for
changes in the online catalogue. In this scenario, a message-driven bean
receives an incoming message and updates a database, as shown in
Figure 6-20. The pattern is typically useful in a business-to-business situation
where no user interaction is needed.

Figure 6-20 Message consumer

Message consumer design considerations
Use message-driven beans only to handle the message. Move the business
logic to another bean that will be invoked by the message-driven bean. This way,
it is also possible to call the business logic out of another channel like a servlet
that has been activated by a user.

Message-driven beans cannot throw exceptions to the user, so exceptions have
to be logged in a error report.

Publish/subscribe pattern
Using this approach, we can provide the user with an immediate reply without the
user explicitly having to go to a separate Web page to see the results. However,
this can only be achieved if a local copy of the data is used.

The Web application will register interest in information from the enterprise
application upon startup. Periodically, the enterprise application will publish
information to the subscribers (Web application). The message consumer pattern
can be implemented at the subscriber site to receive the publications of the
enterprise application. The Web application will store this information in a local
database and use this information when a Web request is being serviced.

Using this approach, the Web application can operate in its native modes
(stateless and request/reply) and the user can see the results of his request

Database MQ

WebSphere Application Server

Servlet

EJB

Unit of Work

11
 Chapter 6. Application design 125

within the same user transaction. However, the information may be slightly
outdated.

Publish/subscribe design considerations
Never cache a non-durable subscription; use durable subscriptions instead.

For further information about how IBM WebSphere MQ can be used in the
pub/sub model, refer to the publication MQSeries Publish/Subscribe
Applications, SG24-6282.

Selecting a messaging pattern
None of these options is incorrect if implemented correctly. The user’s
requirements and experience will dictate which decision is the correct one.

A request/reply JMS communication model is ideal in a Web environment.
However, if EJBs are to be the implementers of the enterprise access, care
needs to be taken during implementation to prevent blocking calls from EJBs. If
the user is willing to accept a different user interaction model, then asynchronous
fire-and-forget is also an acceptable option. The middle ground could be
achieved using full publish and subscribe; however, the accuracy of the
information may be at stake.

For further information, please refer to:

http://java.sun.com/products/jms/tutorial/1_3_1-fcs/doc/jmsj2ee.html

Client identifiers
JMS Providers must support the definition of a client identifier, which links a client
application’s connection to a message service with a state maintained by the
message service on behalf of the client. By definition, a client identifier can only
be used by one user at a time. Client identifiers are used in combination with a
durable subscription name to make sure that each durable subscription
corresponds to only one user.

Note: The request/reply blocking stateless EJB must be implemented such
that appropriate timeout and retry conditions are applied.

The EJB 2.0 specification does point out that only one client will have access
to an instance of a stateless EJB while it is servicing a client-invoked method.
If, however, a blocking wait occurs for an indefinite period, the container may
run short of available instances of the specific EJB to service other clients and
thus slow down the overall performance of the application.
126 Self-Service Applications using IBM WebSphere V5.0 and IBM MQSeries Integrator

http://java.sun.com/products/jms/tutorial/1_3_1-fcs/doc/jmsj2ee.html

The JMS specification allows client identifiers to be set by the client application
through an API method call, but recommends setting it administratively using a
connection factory administered object.

For deployed applications, the client identifier must either be programmatically
set by the client application, using the JMS API, or administratively configured in
the ConnectionFactory objects used by the client application.

Reliable messaging
JMS defines two delivery modes: persistent messages and non-persistent
messages.

� Persistent messages are messages that are guaranteed to be delivered and
successfully consumed once and only once. Reliability is the most valuable
attribute for such messages.

� Non-persistent messages are messages that are guaranteed to be
delivered at most once. Reliability is not a major worry for such messages.

There are two ways of assuring reliability in the case of persistent messages:

� The first is to assure that their delivery to and from a message service is
successful.

� The second is to assure that the message service does not misplace
persistent messages before delivering them to consumers.

Transactions/acknowledgments
Reliable messaging depends on promising that the delivery of persistent
messages to and from a destination is achieved. This reliability can be obtained
using either of two mechanisms supported by a session: transactions or
acknowledgments.

If a session is created as transacted, then the production and/or consumption of
one or more messages can be assembled into an atomic unit, a transaction. The
client can commit the transaction if delivery of all messages is attained. However,
if an anomaly occurs on the performing operations, all the operations in the
transaction are undone or rolled back.

The scope of a transaction is in a single session; a transaction cannot extend
across more than one client session.

A session can also be created as non-transacted. In that case, it will not support
transactions. Instead, the session uses acknowledgments to guarantee that it
had a reliable delivery.
 Chapter 6. Application design 127

From the point of view of a producer, this will imply that the message service will
acknowledge the delivery of a persistent message to its destination before the
producer’s send method returns. From the point of view of a consumer, this will
imply that the client will acknowledge the delivery and consumption of a
persistent message from a destination before the message is deleted from that
destination.

Persistent message storage
Another very important aspect of reliability is the guarantee that once persistent
messages are delivered to their destinations, the message service does not
delete them before they are delivered to consumers. This means that upon
delivery of a persistent message to its destination, the message service must
place it in persistent storage. If the message delivery fails for any reason, it can
recover the message and deliver it to the appropriate consumers.

The message service should also store durable subscriptions. This is because,
to guarantee delivery in the case of topic destinations, it is not sufficient to
recover only persistent messages. The message service must also recover
information about durable subscriptions for a topic. Otherwise, it would not be
able to deliver a message to durable subscribers when they become active.

Messaging applications that are involved in assuring the delivery of persistent
messages must use queue destinations or employ durable subscriptions to topic
destinations.

6.3.6 Where to implement message producers and consumers
There are a number of options when considering where to implement your JMS
message producers and consumers in the J2EE application architecture. We
examine some of these options in this section.

Producers
If the Model-View-Controller (MVC) pattern is invoked, then the model is typically
where the producer would be implemented. In J2EE application architecture, this
is likely to be a session Enterprise JavaBean. However, it is possible to
implement the message producer almost anywhere. A simple JavaBean could
also implement the message producer and fit in with the MVC pattern.

If the producer is participating in a transaction of some kind, then session EJBs
may be a better implementation choice. Transaction creation and management is
gained almost freely within EJBs, whereas it would have to be explicitly created
and managed within other implementation choices such as JavaBeans. In the
same manner, EJBs typically will have access to other facilities or features within
an EJB container.
128 Self-Service Applications using IBM WebSphere V5.0 and IBM MQSeries Integrator

Servlets can also be used as message producers. They offer a simpler
programming model than EJBs. Servlets, however, are usually implementers of
the controller aspect of the MVC pattern, and no advantages can be made of the
container facilities for EJBs. A special case could be made for “utility or helper”
servlets that are not being used as controllers.

Consumers
In the same way as producers, there are a number of implementation choices for
consumers. When consumers are used in request-reply scenarios, it leaves the
choice to implement this in a servlet or an EJB. When implementing the
consumer in an EJB, there is the advantage of transaction management and
security management of the container. The disadvantage is that an EJB thread
will be occupied until a response arrives. Some extra programming is needed to
disregard a response when it takes too much time.

Another option for the consumer is a message-driven bean. When using a
message-driven bean, the request and reply will be loosely coupled, which
makes it more complex. A message-driven bean is a good solution for
subscription and message consumer patterns.

6.3.7 Message-driven beans
A message-driven bean (MBD) is an asynchronous message consumer. The
onMessage method of the message-driven bean is invoked by the container on
arrival of a JMS message on a queue. Rather than writing application code to poll
for messages on a queue, you can use a message-driven bean instead. The
main difference between message-driven beans and other enterprise beans is
that message-driven beans have only a bean class. There is no home or remote
interface for a message-driven bean. Message-driven beans can only be invoked
by the container.

The main components used with message-driven beans are shown in
Figure 6-21 on page 130. The deployed message-driven beans (MDBs1 to 4) are
invoked by listeners. These listeners listen to the ports that are defined for the
different destinations where other applications put their messages. Each listener
port defines the association between a connection factory, destination, and a
deployed message-driven bean. Another component is the message listener
service, which includes a listener for each listener port, all controlled by the same
listener manager.
 Chapter 6. Application design 129

Figure 6-21 Message-driven bean

The message listener service is an extension to the JMS functions of the JMS
Provider. It includes a listener manager, which controls and monitors one or more
JMS listeners. Each listener monitors either a JMS queue destination (for
point-to-point messaging) or a JMS topic destination (for pub/sub messaging).

The connection factory is used to create connections with the JMS Provider for a
specific JMS queue or topic destination. Each connection factory encapsulates
the configuration parameters needed to create a connection to a JMS
destination.

When a deployed message-driven bean is installed, it is associated with a
listener port and the listener for a destination. When a message arrives on the
destination, the listener passes the message to a new instance of a
message-driven bean for processing.

The listener manager is initialized at the start of an application server based on
the configuration data. The listener manager creates a dynamic session thread
pool for use by listeners, creates and starts listeners, and, during server
termination, controls the cleanup of listener message service resources. Each

WebSphere Application Server

Message-Driven Beans

Listener Service

Listeners

JMS Server

Listener
Ports

Connection
Factories

Destinations

ConnectionsMessage

JMS Provider

MDB1

LP1

D1

MDB2

LP2

D2

MDB3

LP3

D3

MDB4

Listener
Manager

CF2

CF1

JMS Destinations
130 Self-Service Applications using IBM WebSphere V5.0 and IBM MQSeries Integrator

listener completes several steps for the JMS destination it is to monitor,
including:

� Creating a JMS server session pool and allocating JMS server sessions and
session threads for incoming messages

� Interfacing with JMS ASF (Application Server Facility) to create JMS
connection consumers to listen for incoming messages

� If specified, starting a transaction and requesting that it be committed (or
rolled back) when the EJB method has completed

� Processing incoming messages by invoking the onMessage() method of the
specified enterprise bean

According to the EJB 2.0 specification, a transactional context may not be carried
by a message, so an MDB will never execute within an existing transaction.
However, a transaction may be started during the onMessage method execution
if one of the following applies:

� The transaction attribute is "required" (container-managed transaction).
� It is explicitly started within the method (bean-managed transaction).

In the second case, the message receipt will not be part of the transaction. In the
first case, the container will start a new transaction before de-queuing the JMS
message (the receipt of which will thus be part of the started transaction) and
enlist the resource manager associated with the arriving message, as well as all
the resource managers accessed by the onMessage method. If the onMessage
method invokes other enterprise beans, the container passes the transaction
context with the invocation. The transaction started at the onMessage method
execution can involve several operations such as accessing a database (via an
entity bean or a JDBC data source), or sending messages (using a JMS
connection factory). A message-driven bean instance has no state for a specific
client. However, the instance variables of the message-driven bean instance can
contain a state across the handling of client messages. Examples of such states
include an open database connection and an object reference to an EJB object.

Message-driven beans design considerations
A message-driven bean should not contain any business logic. It is better to put
the business logic in another enterprise bean, as shown in Figure 6-22 on
page 132, which makes it possible to call the business logic from other
components.
 Chapter 6. Application design 131

Figure 6-22 Message-driven bean development

Some other design issues are:

� The server does not know the client's security identity. Messaging does not
propagate this identity to the message-driven bean. With this kind of bean, all
instances are the same.

� Performance considerations: messaging becomes a middle layer between
the client and the server. Even though message-driven beans are relatively
lightweight, an extra layer can add time to your system response.

� Application complexity: an application that does not need asynchronous
processing can be easier to code and debug.

Our sample application is using message-driven beans in the J2EE applications
to consume asynchronous incoming messages from other applications, for
example from other J2EE applications, or from WebSphere MQ Integrator flows.
Message-driven beans were also used to implement the message-facade
pattern for asynchronous remote calls, as discussed in “Using the Message
Facade pattern” on page 112.

Transactions
Transactions for message-driven beans can be managed in two different ways:

� Container-managed transactions (CMT)

� Bean-managed transactions (BMT)

EJB
Client

Message-Driven
Bean

Enterprise
Application

JDBC

JMS Destination

Business Logic
Bean

Listener
Message

JMS
 Destination

JMS
Client
132 Self-Service Applications using IBM WebSphere V5.0 and IBM MQSeries Integrator

EJB container-managed transaction (CMT) considerations
In container-managed transactions, the EJB container manages the transaction
demarcation. Container-managed transactions include all entity beans and any
session or message-driven beans with a transaction type set to container.

In our sample scenario, we used container-managed transaction support. It is
recommended that you use container-managed transactions for the application
whenever it is possible. This not only makes development easier, but it also
makes the application more reliable, since it is the container’s responsibility to
handle the transaction, not the programmer’s. There are situations, of course,
where the bean-managed transactions are necessary, if the developer cannot
get around them and use purely container-managed transactions.

If the EJB-based application requires transactional support, then the
container-managed transaction demarcation is the easiest and recommended
approach. In addition to being supported by all types of EJB beans, it offers the
following advantages:

� It is controlled declaratively, outside of the bean code, using the transaction
attributes and the EJB deployment descriptor.

� It is set at the bean method level and forces method invocation to be either
completely included or excluded from a transaction (unit of work).

� It simplifies programming, because there is no code to begin and end the
transaction. Transactions do not need to be explicitly started and terminated.

� When used in the message-driven bean, it offers the only way to make the
initial message, an MDB triggering message, part of a transaction.

To achieve this, the transaction attribute of Supported must be specified.

� It is the only choice for the entity beans.

� It offers a way to suspend an existing transaction and initiate a new one when
a method is invoked.

To achieve this, the transaction attribute of RequiresNew must be associated
with the invoked method.

Transaction attributes determine how transactions are managed and
demarcated. The transaction attributes can be specified at the bean or at the
method level. If present in both places, the method attribute will take precedence.
The transaction attributes (EJB 2.0) are as follows.

Important: Care must be taken not to process the JMS Request/Reply type of
scenario within the same transaction scope. The message is not delivered
until the transaction is committed. Therefore, the synchronous receipt of a
reply to such a message within the same transaction will not be possible.
 Chapter 6. Application design 133

� Required
� RequiresNew
� Mandatory
� NotSupported
� Supports
� Never

Table 6-2 Container-managed transaction semantics for message-driven beans methods

EJB bean-managed transaction (BMT) considerations
In bean-managed transactions, the code in the session or message-driven bean
explicitly controls the transaction demarcation. Bean-managed transactions
include any session or message-driven beans with a transaction type set to Bean.

Although the container-managed transactions are usually recommended for the
reasons outlined in the previous section, the bean-managed transaction
demarcation has its place, too.

Note: Message-driven beans can only support the Required or NotSupported
transaction attributes. This is a logical consequence of the fact that MDB is
asynchronously driven by the container and cannot inherit a transaction from
the client nor throw an exception for the client to handle.

Tip: The only way to make the triggering JMS message part of a transaction is
to use the container-managed transaction for the MDB and specify the
transaction attribute of Required. In this case, the container-initiated
transaction includes the receipt of a message and the onMessage method in
the same transaction scope. When onMessage successfully completes, the
container commits the transaction and the JMS message is permanently
removed from the queue. In the case of an onMessage failure or when
rollback is requested, the container performs the rollback and the JMS
message is re-delivered.

EJB method Transaction Context at method invocation time

setMessageDrivenContext Unspecified

ejbCreate Unspecified

ejbRemove Unspecified

onMessage Determined by the transaction attribute
134 Self-Service Applications using IBM WebSphere V5.0 and IBM MQSeries Integrator

In general, it offers an alternative, a programmatic rather than declarative
approach to the transaction demarcation control. However, there are also some
potential advantages. The main features of this approach are as follows:

� It is controlled programmatically from within the bean method code by issuing
explicit Java javax.transaction.UserTransaction interface method calls.

� It offers “finer” granularity of transaction control than the container-managed
options, at a Java statement level versus a method level, which could be
beneficial in the following scenarios:

– It may be desirable to have a method where a transaction is conditionally
initiated or where only part of a method requires transactional protection
(scope).

– It may be desirable to initiate a transaction in one method and commit it in
another method, which works only with the stateful session beans.

� It offers the ability to use JDBC type or JTA type transactions.

� Bean-managed transaction is only supported for the session bean and the
message-driven bean. Entity beans can only use container-managed
transaction.

� A message-driven bean instance onMessage method that has started a
transaction must complete the transaction before returning; this is the same
behavior as for the stateless session bean methods. If the transaction is not
explicitly committed, it will be rolled back by the container.

Table 6-3 Bean-managed transaction semantics for message-driven beans

6.3.8 Managing JMS objects
JMS Connection is the first point of access to JMS objects. JMS Connection is
created from JMS ConnectionFactory. Once a connection is created, one or
more sessions can be created in the context of the connection. JMS Sessions
allow you to create message consumers and producers. When consumers or
producers are created, the connection needs to be started to receive or send

EJB Method Transaction Context at the
method invocation time

Can use
UserTransaction
interface methods?

setMessageDrivenContext Unspecified

ejbCreate Unspecified

ejbRemove Unspecified

onMessage No
 Chapter 6. Application design 135

messages. JMS Connections can be cached, in a similar way that EJB Home
objects are cached, and reused by many clients.

JMS Sessions are designed for synchronous access only. A session can only be
used by a single client and not shared among other clients. Similarly, an instance
of either MessageConsumer and MessageProducer can only be used by a single
client. JMS Sessions are opened for the duration of message sending or
receiving; after this the session can be closed.

When a session is opened, the correct session acknowledgment must be
selected from a performance perspective. In our sample scenario, we selected
AUTO_ACKNOWLEDGE. This policy specifies that the message be delivered
once and only once. The server must send an acknowledgment back, so the
server incurs an overhead to implement this policy. The
DUPS_OK_ACKNOWLEDGE setting resends the message until an
acknowledgment is sent from the server. The server will operate in a lazy
acknowledge mode, thereby reducing the overhead on the server but resulting in
an increase in network traffic. With the most overhead of the three settings,
CLIENT_ACKNOWLEDGE will cause the server to wait until a request for
acknowledgment is sent from the client. Usually, the client calls the sent
message’s acknowledge method.

Upon completion of the interaction with the message producer or consumer
(sender or receiver), the session needs to be closed. If the connection is closed,
the session belonging to this connection is automatically closed as well.

The message producers/consumers must also be closed when you finish
sending/receiving messages. Again, if the connection is closed, the producers
and consumers are automatically closed.

Garbage collection of Java cannot be relied upon to clean out objects in a timely
manner. It is always a good practice to call the close of any resource-bound
object.

For further information, please read the JMS specification at:

http://java.sun.com/products/jms/docs.html

6.3.9 JMS and JNDI
The Java Naming and Directory Interface (JNDI) API implementation provides
directory and naming functionality to programs developed in Java. This allows
Java programs to discover and retrieve objects of any type from the JNDI name
space.
136 Self-Service Applications using IBM WebSphere V5.0 and IBM MQSeries Integrator

http://java.sun.com/products/jms/docs.html

JMS has two types of administered objects:

� ConnectionFactory
� Destination

An administrator can place objects of these types in the JNDI name space to be
accessed by messaging applications.

Figure 6-23 shows the role of JMS and JNDI relative to a Java application. These
two APIs sit above any specific service providers and encapsulate any
vendor-specific information.

As a result, a developer using these technologies in a messaging-enabled
application need only be familiar with the APIs, not the specific messaging
systems.

Figure 6-23 The role of JMS and JNDI relative to an application

So, how does an administrator put these objects in the JNDI name space? This
step is vendor-specific. If you are using WebSphere MQ V5.3 with WebSphere
Application Server V5.0, you can administer these objects right from the
WebSphere Administrative Console. If you are using another application server,
WebSphere MQ V5.3 provides a tool called JMSAdmin for this purpose.

6.3.10 Embedded JMS Provider versus WebSphere MQ
In line with the J2EE 1.3 specification, WebSphere Application Server V5.0 has
an embedded JMS Provider, or messaging service, included in the application
server. This internal JMS Provider can be used for asynchronous JMS
communications with other WebSphere applications. The internal messaging
service cannot be used for messaging with other messaging system, such as
WebSphere MQ. If you need to communicate with other systems using
WebSphere MQ, then you need to install WebSphere MQ as a JMS Provider on
a WebSphere Application Server.

WebSphere MQ MSMQ LDAP CORBA

JNDIJMS

Java Application
 Chapter 6. Application design 137

6.3.11 WebSphere to MQ connection options
A message placed on an IBM WebSphere MQ queue from an application server
may originate directly from a servlet, or may be sent from a command bean or
EJB (we recommend the latter two methods, not so much using servlets).
Regardless of the method used, the messages are sent to a queue manager
using one of the two available WebSphere MQ Java APIs by IBM WebSphere
MQ. Each API has certain characteristics that make it appropriate for a situation,
depending on the priorities you have. However, the API chosen can have an
effect on the options you have for distributing the application components.

The two APIs that we discuss here are:

� The IBM WebSphere MQ for Java Message Service package,
com.ibm.mq.jms.jar and com.ibm.jms

IBM WebSphere MQ for JMS classes implements the J2EE Java Message
Service (JMS) interface to enable JMS programs to access a subset of IBM
WebSphere MQ features from a vendor-neutral point of view, as defined by
the JMS specification. The JMS interface is implemented by a set of IBM
WebSphere MQ classes for JMS.

� The IBM WebSphere MQ for Java package, com.ibm.mq.jar

IBM WebSphere MQ for Java classes enable Java applets, applications,
servlets, and EJBs to issue direct calls and queries to IBM WebSphere MQ
using specific calls designed to take advantage of IBM WebSphere MQ
features.

A JMS Java application uses the vendor-independent JMS interfaces to access
the MQ-specific implementation of the JMS classes.

A key idea in JMS is that it is possible, and strongly recommended, to write
application programs that use only references to the interfaces in javax.jms. All
vendor-specific information is encapsulated in implementations of:

� QueueConnectionFactory
� TopicConnectionFactory
� Queue
� Topic

Coding outside the JMS interface to access WebSphere MQ-specific features
will, of course, reduce the portability of the application, since it is now directly
referencing WebSphere MQ-specific classes. If application portability, vendor
independence, and location transparency are of importance, pure JMS is the
obvious choice. JMS uses abstracted concepts of messaging to provide a
vendor-independent API to messaging, while underneath lies the IBM
WebSphere MQ implementation of the JMS interfaces. The real-world entities
that are IBM WebSphere MQ queue managers and queues are accessed by
138 Self-Service Applications using IBM WebSphere V5.0 and IBM MQSeries Integrator

JMS clients through the use of the Java Directory and Naming Service (JNDI).
The IBM WebSphere MQ entities are published to JNDI from the WebSphere
Administrative Console, or through a tool called JMSAdmin. MQ JMS supports
both the point-to-point and publish/subscribe models of JMS.

MQ base JMS classes provide two connection options to IBM WebSphere MQ:

� Bindings mode to connect to a queue manager directly

� Client mode using TCP/IP to connect to a queue manager (not supported on
z/OS™ or OS/390®)

Both support connection pooling.

Java bindings mode
In binding mode, also known as server connection, the communication to the
queue manager utilizes inter-process communications. One of the key factors
that should be kept in mind is that binding mode is available only to programs
running on the WebSphere MQ server that hosts the queue manager.

The key connection parameter in this case is the queue manager name.

Figure 6-24 Java bindings mode

Connecting to the local queue manager has several major advantages:

� The probability of establishing a connection to a queue manager in your own
host is high, as opposed to a connection with a remote queue manager.

� The time it takes to establish a network connection to the queue manager is
bypassed.

� The local queue manager can distribute the work among multiple brokers. If
connection performance is a high priority in your network, then using bindings
mode is the clear choice.

Application Server

Application

Broker1

Queue Manager

Broker2

Queue Manager

Queue
Manager
 Chapter 6. Application design 139

Using bindings mode, you can also use WebSphere as an XA resource
coordinator for units of work that involve WebSphere MQ updates and database
updates, for databases and drivers that support the XOpen/XA standards.

Java client mode
Client connection uses a TCP/IP connection to the WebSphere MQ Server and
enables communications with the queue manager. Programs using client
connections can run on a WebSphere MQ client machine as well as on a
WebSphere MQ server machine. Client connections use client channels on the
queue manager to communicate with the queue manager. The latest version of
the client supports XA transaction coordination by the queue manager.

Both the WebSphere MQ classes for Java and the WebSphere MQ classes for
JMS are needed to use WebSphere MQ client mode. The key connection
parameters are the host name, TCP/IP port, and server connection channel
name. If your code is using only the JMS interfaces (for maximum portability),
then client mode cannot be achieved since there are no methods exposed in the
JMS interface to select a host or port number.

The client mode is best used when you do not want IBM WebSphere MQ to
reside on the same machine as the application server. It allows you to connect
directly to a remote IBM WebSphere MQ queue manager.

Figure 6-25 Client mode to remote brokers

When you connect directly to a queue manager on a broker, as in Figure 6-25,
you relinquish any workload distribution the queue manager offers. The
application must decide which broker to send the work to and any workload
distribution would have to be done in the application itself, which is not
recommended. Even having the queue managers in a cluster does not help,
since a queue manager will always send the work to the local instance of the
broker. Another pitfall is that XOpen/XA facilities for coordinated commits to

Broker1

Queue Manager

Broker2

Queue Manager

Application Server

Application
140 Self-Service Applications using IBM WebSphere V5.0 and IBM MQSeries Integrator

WebSphere MQ/JMS and databases are no longer available using WebSphere
as the transaction coordinator.

One way around this is to connect to a remote queue manager that does not
have a broker instance, but is there purely for workload distribution, as shown in
Figure 6-26.

Figure 6-26 Client mode to a remote queue manager

You still have to deal with the network connectivity time; in fact, you have made it
a little longer by introducing an intermediate system. But you do have the
advantage of the queue manager workload distribution and the ability to connect
to a remote queue manager. Yet another method would be to use TCP/IP load
balancing, but this is not a function of WebSphere MQ.

The client mode can also be used to connect to the local queue manager by
passing through the internal TCP/IP stack. This is obviously not as efficient as
using the bindings mode, but it does allow your program to be used in a generic
environment where you do not know whether the queue manager will be local.
You can also make the different connection options parameter-driven so that the
application is ready no matter what the connection type. You do need to ensure
that the correct parameters are passed so you get the connection type you
desire. A database table would be a good place to store these if you are
interacting with a database.

Both MQ JMS classes (not the pure JMS interface) and MQ based Java allow
you to put messages from the Java application in WebSphere directly into the
remote broker’s queue. If you are thinking of doing this, you should consider the
performance implications. The cost of creating a network connection is added to
the total cost of each request. For each request, an IBM WebSphere
MQ-to-client session is created. There is no long-lasting network connection.
This will impact the ability to run thousands of sessions in parallel. If you create a
local IBM WebSphere MQ session for each request, the overhead will be much

Broker1

Queue Manager

Broker2

Queue Manager

Application Server

Application
Queue

Manager
 Chapter 6. Application design 141

lower. The network connection is now maintained by a sender-receiver channel
pair and is long running. Ideally, long-running IBM WebSphere MQ sessions are
preferable.

IBM WebSphere MQ clustering
WebSphere MQ offers the ability to create clusters. MQ clusters provide a
number of benefits that are silently utilized by JMS applications. Clusters offer:

� Simpler administration of logically related queue managers

Clustering allows communication between queue managers to publish
information about the queues they offer. Once in a cluster, queues on remote
queue managers are visible to all queue managers if the queues are defined
as cluster queues. The number of explicit definitions within IBM WebSphere
MQ administration is reduced with the use of clusters.

� Workload management

Adding queue managers to clusters allows access to WebSphere MQ
workload and failover features.

As shown in Figure 6-27, QM3 is able to load balance across the queue
named ReplyQ, since it is available on both QM1 and QM2. Similarly, if QM1
is disabled, all messages for ReplyQ are routed to QM2.

Figure 6-27 Cluster workload management

None of these features can be controlled through the JMS interfaces. However,
MQ will automatically utilize the workload and failover under JMS.

These and other features of MQ offer significant benefits and demonstrate that
IBM WebSphere MQ is a reliable, scalable, and mature JMS Provider.

CLUSTER_1

ReplyQ

QM1

ReplyQ

QM2

QM3
142 Self-Service Applications using IBM WebSphere V5.0 and IBM MQSeries Integrator

6.3.12 Best practices for JMS and IBM WebSphere MQ
This section briefly discusses a number of issues and common best practices for
JMS and IBM WebSphere MQ.

Design level
Application design level best practices for JMS and IBM WebSphere MQ include
the following.

� Use message timeouts

Using message timeouts avoids large numbers of messages remaining on a
queue, thus reducing performance overheads. It also allows a relevancy
aspect on the messages. For example, a message may not be relevant after a
certain period of time because the information in the message has been
superseded.

� Use message selectors

JMS provides a useful API that can reduce the need for complex message
browsing code. Message selectors allow the underlying provider (through
JMS) to browse messages before they are retrieved with little application
code.

� Persistent versus non-persistent

The use of durable messages is often necessary when communication takes
place between, for example, systems of a financial nature. However, if
messages do not need to be persisted, then messages need to be explicitly
set to non-persistent, since the default in JMS is persistent.

� Clusters

The use of IBM WebSphere MQ clusters allows simple administration, as well
as automatic workload management and failover.

� Message producers

EJB message producers: in a request/reply scenario, it is important that the
issue of blocking calls be dealt with correctly. Essentially, EJBs should only be
used with appropriate request/reply timeouts and retries.

� Message consumers

Message-driven beans: business logic should not be implemented in the
message-driven bean. Implement the business logic in another component,
such as a session bean, and use message-driven beans only for receiving the
message.

Never throw application exceptions in the onMessage method.
 Chapter 6. Application design 143

� Consider using XML-based messages for inter-application integration

XML is commonly used as a messaging structure that allows for a more
portable inter-application integration model. Although it does add some
overhead to the message payload size and requires XML parsers, it is quickly
becoming a standard for inter-operability.

Code level
Application code level best practices for JMS and IBM WebSphere MQ include
the following.

� Explicitly close JMS resources that are no longer required

Java garbage collection alone cannot release all IBM WebSphere MQ
resources in a timely manner. This is especially true if the application needs
to create many short-lived JMS objects at the Session level or lower. It is
therefore important to call the close() methods of the various classes
(QueueConnection, QueueSession, QueueSender, and QueueReceiver)
when the resources are no longer required.

� Handling errors

Any runtime errors in a JMS application are reported by exceptions. The
majority of methods in JMS throw JMSExceptions to indicate errors. It is good
programming practice to catch these exceptions and report them to suitable
output.

Unlike normal Java exceptions, a JMSException may contain a further
exception embedded in it. For JMS, this can be a valuable way to pass
important details from the underlying transport. In the case of MQ JMS, when
IBM WebSphere MQ raises an MQException, this exception is usually
included as an embedded exception in a JMSException.

The implementation of JMSException does not include the linked exception in
the output of its toString() method. Therefore, it is necessary to check
explicitly for an linked exception and print it out, as shown in Example 6-3.

Example 6-3 Checking for JMSException

try {
// code which may throw a JMSException
...

} catch (JMSException je) {
System.err.println("caught "+je);
Exception e = je.getLinkedException();
if (e != null) {

System.err.println("linked exception: "+e);
}

}

144 Self-Service Applications using IBM WebSphere V5.0 and IBM MQSeries Integrator

� Exception listeners

For asynchronous message delivery, the application code cannot catch
exceptions raised by failures to receive messages. This is because the
application code does not make explicit calls to receive() methods. To cope
with this situation, it is possible to register an ExceptionListener, which is an
instance of a class that implements the onException() method. When a
serious error occurs, this method is called with the JMSException passed as
its only parameter. Further details are in the J2EE JMS specification.

Naming
Each WebSphere MQ network has one or more instances of a queue manager
known by a name within the network of interconnected queue managers. For all
other object types, each object has a name associated with it and can be
referenced by that name.

Since names make up the API of the messaging system, names are not a pure
matter of taste or tradition. Names should be considered as tools. We should
think about names in terms of:

� Ergonomics or ease of use
� Error rates
� Development costs

Namespaces
A queue manager’s name must be unique on the physical machine where the
queue manager resides. However, it is obviously better to use a queue
manager’s name only once in a network, although a good reason to use a queue
manager name twice or even more often in one network is to have a stand-in for
high-availability purposes.

Object names must be unique within one queue manager and object type. For
example, you can have a queue and a process with the same name, but you
cannot have two queues with the same name in a single queue manager.

Consistency
The most important element in naming is consistency. In particular, when you
design queue names, consider carefully the application programming interface
(API) of the system, which is used and known by client applications. Name
changes can be very expensive, and often there will not be much of a chance to
change a naming policy once the system is in productive use.

Some general rules of thumb for naming
Manydiscussed specialists consider naming rules to be a topic of the utmost
importance. Here we discuss only one possible set of rules, and they are not
mandatory. The most important rule you have to remember is: be consistent!
 Chapter 6. Application design 145

� Adopt a set of workable standards and conventions. We recommend the
SupportPac™ found at:

http://www-3.ibm.com/software/integration/support/supportpacs/individual
/md01.html

� Develop common naming conventions across the enterprise.

� Plan ahead to prevent changing names in production environments.

� Use meaningful names whenever possible. Within namespaces, there is no
implied internal structure, in particular no hierarchies, since WebSphere MQ
just compares strings. Nevertheless, you should use hierarchical orders
whenever possible.

� Be consistent with related names. For example, you should not call a queue
manager ROME if it resides on a machine named ROMA, nor LISBOA when its
machine is called LISBON.

� Abbreviations are always a source of confusion, unless they are very well
known. It is better to be verbose whenever possible.

� Queue managers’ names should be short, although they are allowed to be 48
characters long. We recommend a length of no more than eight characters,
for the reason described in the following paragraph. On z/OS, a restriction to
four characters applies since the queue manager has to correspond to a
subsystem of the same name.

Channel names should reflect source and target queue managers of the
channels and allow additional qualifier, flag-encrypted or compressed data
transfer. Since channel names are restricted to 20 characters in length, this
implies the use of short names for the queue manager. ROME/LISBON would be
fine.

� Use underscores to separate suffixes, that is, to distinguish different versions:

PARTY.INVITATION_V21

� Transmission queues have exactly the same name as the queue manager
they are pointing to. Transmission queues for additional channels may be
qualified with a suffix.

� Do not use lowercase letters in names. Object names in WebSphere MQ are
case sensitive. We recommend you use uppercase letters only for naming.

� Do not include types in names. Types may be subject to change, while names
are not. Using such names as LQUEUE.SOME.REQUEST or
QREMOTE.SOME.RESPONSE is strongly discouraged. Using such names would
reveal more internal details to client applications than you need to. Remote
queues may soon become local or vice versa. Remember that both MQSC
and the graphical Explorer interface allow you to sort or filter objects by type.
Thus, there is no need to include object types in names.
146 Self-Service Applications using IBM WebSphere V5.0 and IBM MQSeries Integrator

http://www-3.ibm.com/software/ts/mqseries/txppacs/md01.html

Chapter 7. Application development

In this chapter, we discuss how to develop a solution using the technologies
explained in previous chapters. Our scenario shows a simple, applicable
situation where some of the technologies, and mostly the Self-Service and other
patterns, can be applied to a real-life situation.

This chapter provides guidelines for developing the sample application, rather
than a detailed description of the development process using a specific tool or
technology.

7

© Copyright IBM Corp. 2003. All rights reserved. 147

7.1 MVC development using the Struts framework
This section describes the development cycles for the Model-View-Controller
(MVC) design pattern using the Apache Struts framework.

7.1.1 Creating a Web diagram
WebSphere Studio Application Developer V5 has a built-in plug-in that supports
the development of Web applications using the Struts framework. It has two
major features:

� Visual Web diagram editor for Struts elements.

You can develop interaction diagrams and Struts applications based on these
diagrams. The diagrams look like the one in Figure 7-1.

� Special editor view for the Struts configuration .xml file.

This special editor view simplifies development. Instead of editing the XML
source, the developer can create and configure the Struts elements
interactively in the editor view.

Figure 7-1 Struts Web diagram - OrderPickup process

7.1.2 Coding Struts elements
The following steps are an outline of how a sample Struts flow is created.

1. Create a Web application. In WebSphere Studio, this is done by creating a
Web project (File -> New -> Web Project). The wizard will allow you to select
Web project features. Be sure to include “Add Struts Support”. This will create
a Web application with the necessary framework for Struts, including the
Struts tag libraries, Struts runtime libraries, Struts configuration file and
entries to support Struts in web.xml, and the application resources properties
file.
148 Self-Service Applications using IBM WebSphere V5.0 and IBM MQSeries Integrator

2. Create an input page with an HTML form, for example, input.jsp. Make it a
JSP so it can provide dynamic information, for example, using JSP taglibs, or
provide error messages when validation fails.

The WebSphere Studio wizard that creates JSPs (File -> New -> JSP File)
gives you the option of selecting a model on which to base the JSP. Be sure
to select Struts JSP for this JSP and the next two JSPs. This will include the
taglib directives to the Struts tag libraries.

Example 7-1 input.jsp

<%@ page language="java" %>
<!-- include all the JSP Taglibs needed -->
<%@ taglib uri="/WEB-INF/tlds/struts-html.tld" prefix="html" %>
<%@ taglib uri="/WEB-INF/tlds/struts-bean.tld" prefix="bean" %>
<%@ taglib uri="/WEB-INF/tlds/struts-form.tld" prefix="form" %>
<html>
<body>
<!-- print out the errors, if any -->
<html:errors/>
<!-- create a form -->
<html:form action="/sampleaction.do" focus="userid">
<!-- get the value for prompt.name from the applicationresources.properties -->
<bean:message key="prompt.name"/>:
<!-- create a text input field -->
<html:text property="name" size="20">
<!-- create a submit button -->
<html:submit>Submit</html:submit>
</html:form>
</body>
</html>

3. Create a Results page with dynamic content, for example, results.jsp.

Example 7-2 results.jsp

<html>
<body>
This is the result page.
<!-- Check out the Struts documentation on how to use the form-bean here to
dynamically retrieve information from the bean. Also check the Struts taglibs
-->
</body>
</html>

4. Create an error page to indicate errors, for example, error.jsp.
 Chapter 7. Application development 149

Example 7-3 error.jsp

<html>
<body>
This is the error page.
<!-- Check out the Struts documentation for Struts taglibs -->
</body>
</html>

5. Create a form bean to store the form data for the action, for example,
com.ibm.itso.msgtrx.SampleForm. The FormBean provides access to the
fields within a form submitted on the input page; it also provides validation if
implemented.

WebSphere Studio provides wizards to create Struts elements, including form
beans (File -> New -> Other -> Web -> Struts -> ActionForm Class). The
wizard to create ActionForm classes allows you to select fields from JSPs for
which you want field, setter and getter methods. For example, you would
choose the input fields on input.jsp. The wizard also automatically registers
the form bean in the Struts-config.xml file.

Example 7-4 com.ibm.itso.msgtrx.forms.SampleForm

package com.ibm.itso.msgtrx.forms;
// You will need the following imports at least
import javax.servlet.http.HttpServletRequest;
import org.apache.struts.action.*;

public class RegistrationForm extends ActionForm {
private String name=null;
public String getName() {

return name;
}
public void setName(String name) {

this.name = name;
}

public ActionErrors validate(ActionMapping mapping, HttpServletRequest
request) {

ActionErrors errors = new ActionErrors();
// If the name is empty then add a new error to the error list
// Get the text for the error from the resource file
if ((name == null) || (name.length() < 1)) errors.add("username", new

ActionError("error.username.required"));
return errors;

}
}

150 Self-Service Applications using IBM WebSphere V5.0 and IBM MQSeries Integrator

6. Create an action that is invoked by the application, for example,
com.ibm.itso.msgtrx.actions.SampleAction. The action is the engine behind
the function. It is the core implementation of a function.

WebSphere Studio provides wizards to create Struts elements, including form
beans (File -> New -> Other -> Web -> Struts -> Action Class). The wizard
to create Action classes allows you to define action forwards.

Example 7-5 com.ibm.itso.msgtrx.actions.SampleAction.java

package com.ibm.itso.msgtrx.actions;
// You will need these imports at least
import java.io.IOException;
import javax.servlet.*;
import javax.servlet.http.*;
import org.apache.struts.action.*;
// Import the form-bean also
import com.ibm.itso.msgtrx.forms.SampleForm;

public class RegisterAction extends Action {
public ActionForward perform(ActionMapping mapping,

 ActionForm form,
 HttpServletRequest request,
 HttpServletResponse response)

throws IOException, ServletException {
// get the form data
SampleForm sampleForm=(SampleForm)form;
if(form==null) {

return mapping.findForward("failure");
}
// ...
// Here comes implementation of the action
// ...
// Forward to the success page
return mapping.findForward("success");

}
}

7. Modify the struts-config.xml. Action and form beans must be registered in the
struts-config.xml file and mappings for the action bean must be defined.

WebSphere Studio automatically registers the actions and form beans but
you may need to update the mappings.

The action in Example 7-6 on page 152 defines the Java class for the action:
com.ibm.itso.msgtrx.actions.SampleAction. This refers to the form bean:
sampleForm. It defines the scope: request. It defines the page where the input
came from: input.jsp. It also defines two aliases for forwarding. These aliases
 Chapter 7. Application development 151

can be accessed from the action class to forward the request to a view
component.

Example 7-6 struts-config.xml

...
<form-beans>

...
<form-bean name="sampleForm"

type="com.ibm.itso.msgtrx.forms.SampleForm"/>
...

</form-beans>
<action-mappings>

<action path="/sample"
type="com.ibm.itso.msgtrx.actions.SampleAction"
name="sampleForm"
scope="request"
input="input.jsp">

<!-- define aliases for URLs for different situations -->
<forward name="success" path="results.jsp" />
<forward name="failure" path="error.jsp" />

</action>
</action-mappings>

...
</struts-config>
...

8. Modify the resource bundle file. The resource variables you use in the
application have to be defined in the applicationresource.properties file in the
com.ibm.itso.msgtrx folder in the Web module.

Check the input.jsp. For example, the <bean:message key="prompt.name"/>
line of code reads the prompt.name variable from the resource file.

Example 7-7 applicationresources.properties

...
prompt.name=provide your name
error.username.required=You have to provide your user name
...

7.2 Developing a message-driven bean with WebSphere
Studio

This section explains how to develop message-driven beans using WebSphere
Studio Application Developer. First, we introduce some basic concepts of the
152 Self-Service Applications using IBM WebSphere V5.0 and IBM MQSeries Integrator

MDB implementation and then walk through the development process using
WebSphere Studio.

7.2.1 Message-driven bean implementation
Message-driven beans implement two interfaces:

� javax.ejb.MessageDrivenBean interfaces, which extends the
javax.ejb.EnterpriseBean interface.

� javax.jms.MessageListener interface

From these two interfaces, message-driven beans implement the following
methods:

� getMessageDrivenContext()

This returns the MDB Context object.

� setMessageDrivenContext(javax.ejb.MessageDrivenContext)

This assigns the MDB context to the MDB instance during the creation of the
bean.

� ejbCreate()

This is invoked during the creation of the EJB and can be extended to perform
initialization processes.

� onMessage(javax.jms.Message)

This method contains the bean business logic. The incoming message is
passed to the method as a javax.jms.Message that can later be cast to any
specific kind of JMS message.

� ejbRemove()

This method is invoked during the MDB remove process.

Example 7-8 Message-driven bean base code

public class SampleMDBBean
implements javax.ejb.MessageDrivenBean, javax.jms.MessageListener {
private javax.ejb.MessageDrivenContext fMessageDrivenCtx;
/**
 * getMessageDrivenContext
 */
public javax.ejb.MessageDrivenContext getMessageDrivenContext() {

return fMessageDrivenCtx;
}
/**
 * setMessageDrivenContext
 */
 Chapter 7. Application development 153

public void setMessageDrivenContext(javax.ejb.MessageDrivenContext ctx) {
fMessageDrivenCtx = ctx;

}
/**
 * ejbCreate
 */
public void ejbCreate() {
}
/**
 * onMessage
 */
public void onMessage(javax.jms.Message msg) {
}
/**
 * ejbRemove
 */
public void ejbRemove() {
}

}

7.2.2 Life cycle of a message-driven bean
In order to fully understand how a message-driven bean actually works, it is
useful to have a clear idea of how and when an MDB is created and invoked by
the EJB container.
154 Self-Service Applications using IBM WebSphere V5.0 and IBM MQSeries Integrator

Figure 7-2 Message-driven bean life cycle

The message-driven bean life cycle is completely controlled by the EJB
container. The MDB life cycle is as follows:

1. When the EJB container receives a new message from the queue, it looks for
an available bean in the bean pool.

a. If a bean is available in the pool, the onMessage() method is invoked and
the MDB is then returned to the pool.

b. If there is no bean available, a new bean is created:

i. A new instance of the MDB is created.

ii. The message-driven bean context is passed to the MDB by invoking
the setMessageDrivenContext() method.

iii. The ejbCreate() method on the MDB is invoked.

iv. The onMessage() method is invoked with the corresponding JMS
Message.

v. The MDB is added to the pool, to be reused later.

2. If a bean in the pool is not used for a long period of time or the pool has to be
purged to free space for new beans, the MDB the ejbRemove() method is
invoked and the bean is destroyed.

Queue/Topic

Bean Pool

Destination

(2)
Bean exist

(1)
Get Bean

from the pool

onMessage()

poolled

Does not exist

1. newInstance()
2. setMessageDrivenContext()
3. ejbCreate()

ejbRemove()

 EJB Container
 Chapter 7. Application development 155

7.2.3 Creating an MDB using WebSphere Studio
As with any other EJB, an EJB project must be created before we can begin
developing the MDB.

1. To create an MDB, open the deployment descriptor of the EJB project and go
to the Beans tab, then click Add... .

2. On the Enterprise Bean creation window, let us select the type of EJB, a
message-driven bean, and supply a name and the package of the new EJB,
as shown in the following figure.

Figure 7-3 Create an Enterprise Bean (1) window

3. Once the EJB Type has been selected and the bean name and package have
been provided, click Next.. Continue on the following window and supply the
message-driven bean specific information:

– Transaction type: MDBs can use container- or bean-managed
transactions.

– Message-Driven Bean destination: MDBs can consume messages
arriving from a JMS queue or a topic. If the MDB is consuming
publications from a topic, subscription durability can be set, whether it is a
durable or non-durable subscription.

– MDB supertype: one MDB can be the supertype of another MDB,
meaning that the MDB will extend the supertype class.

– Bean class: the MDB fully qualified class name.

– Message Selector: message-driven beans can use JMS Selector to filter
the message they get from the destination queue.
156 Self-Service Applications using IBM WebSphere V5.0 and IBM MQSeries Integrator

– Listener Port name: this is a WebSphere binding requirement for the
MDB. In WebSphere, the MDBs are connected to a Listener Port, where it
is actually listening for messages at a given queue.

The following figure shows the window for this operation.

Figure 7-4 Create an Enterprise Bean (2) window

4. In the next window, we can define the superclass for the MDB, unless we are
using a Bean supertype, in which case the superclass will be the supertype
MDB class.

5. Click Finish and the MDB will be created and registered in the deployment
descriptor for the project.

This brings us back to the deployment descriptor Beans tab, where we will be
able to modify the MDB settings once it has been created. Additional settings
are also available in this window.

Once the bean creation is finished, go back to the J2EE Hierarchy view and
expand the MDB as shown in the following figure.
 Chapter 7. Application development 157

Figure 7-5 J2EE Hierarchy view in WebSphere Studio

The view shows the MDB, the destination type and the actual Java class for the
bean.

7.2.4 Coding the message-driven bean
The following sample is based on the OrderProcessMDB message-driven bean
from the sample application. It captures the message from the front-end
application and checks for the message. Based on the content, the bean
executes the appropriate business method, either to process an order or to pick
up an order.

In order to minimize the overhead created by the lookup of the session bean in
the context, we will do this in the ejbCreate method of the MDB, as shown in the
following example.

Example 7-9 MDB ejbCreate() method

public void ejbCreate() {
try {

InitialContext ic = new InitialContext();
orderSessionLocalHome = (OrderSessionLocalHome)

ic.lookup(Constants.ORDER_SESSION_BEAN);
orderProcessMessengerLocalHome = (OrderProcessMessengerLocalHome)

ic.lookup(Constants.ORDERPROCESSMESSENGER_SESSION_BEAN);
} catch (javax.naming.NamingException e) {

LogHelper.getInstance().error("Error creating mdb initial context for
ejb lookup.");

e.printStackTrace(System.out);
}

}

158 Self-Service Applications using IBM WebSphere V5.0 and IBM MQSeries Integrator

The onMessage method performs the actual Session Bean creation and finally
calls the business method, as shown in the following example.

Example 7-10 onMessage method

public void onMessage(javax.jms.Message msg) {
String command = null;
MapMessage mmsg = null;
if (msg instanceof MapMessage) {

mmsg = (MapMessage) msg;
try {

command = mmsg.getString("command");
OrderSessionLocal orderSessionLocal = (OrderSessionLocal)

orderSessionLocalHome.create();
OrderProcessMessengerLocal orderProcessMessengerLocal =

(OrderProcessMessengerLocal) orderProcessMessengerLocalHome.create();
if (command.equals("processOrder")) {

String
reply=orderSessionLocal.processOrder(mmsg.getString("request"));

orderProcessMessengerLocal.sendOrderProcessReply(command, reply,
mmsg.getJMSMessageID());

} else if (command.equals("pickupOrder")) {
String reply=orderSessionLocal.pickupOrder(

mmsg.getString("request"));
orderProcessMessengerLocal.sendOrderProcessReply(command, reply,

mmsg.getJMSMessageID());
} else {

LogHelper.getInstance().info("Did not recognize any command from
the message.");

}
} catch (JMSException je) {

LogHelper.getInstance().info("Error getting the command from the
message.");

} catch (CreateException ce) {
LogHelper.getInstance().info("Error creating the OrderSession EJB.");

} catch (GenericApplicationException gae) {
LogHelper.getInstance().info("Application error: "+gae.getMessage());
// this is an unexpected exception, roll back the transaction
fMessageDrivenCtx.setRollbackOnly();

}
}

}

 Chapter 7. Application development 159

The previous example illustrates some general considerations when writing
message-driven beans:

� Messages are received as javax.jms.Message instances, and usually they
have to be cast to another subclass, for example, javax.jms.MapMessage.

This can be done by verifying whether the instance is an instance of another
class and then casting it to the correct subclass, as shown in the example. In
our example, we are using XML messages, so we will be using the
javax.jms.MapMessage class throughout the application.

� Since the onMessage method cannot throw back exceptions, we must catch
all possible exceptions that can occur during the onMessage method
execution.

� When an unexpected or fatal error occurs during the execution of the MDB,
we can roll back the MDB transaction, using the setRollBackOnly() method in
the Context object of the MDB, as long as the MDB is using
container-managed transactions.

7.3 XML and XSLT development
XML is becoming the de facto standard for data representation in the J2EE
environment. Along with the XML standard, there is a set of related standards
that empowers this technology. In this chapter, we discuss some of these
technologies and provide information about how they can be used in a J2EE
application.

7.3.1 XML as data transfer technology
In a message-based multi-tier application, XML can play an important role in
defining the communication contract between the different layers. The
application architect can design a set of messages to transport information
between the layers. These messages can be defined using any XML definition
standard, such as DTDs or schemas. Once the XML documents have been
defined, the application layers can be divided, so different groups can work in
parallel in the development.

Note: For information on deploying message-driven beans in WebSphere V5,
see 12.4, “Deploying message-driven beans in WebSphere V5.0” on
page 253.
160 Self-Service Applications using IBM WebSphere V5.0 and IBM MQSeries Integrator

For example, in our sample scenario, the application was divided into four major
layers:

� The front-end application layer
� The back-end application layer
� The integration layer
� The supplier.

The communication among these layers is done using XML messaging, and the
message formats defined using DTDs.

7.3.2 Guidelines for creating an XML message
Before creating your own message structure from scratch, consider the XML
schemas and DTDs that already exist for many business communities. More
such domain-specific language catalogs are currently being defined by various
industry consortiums and standards bodies. Standard schemas make it easier for
your application to communicate with other services or applications. A good
place to start looking is:

http://www.xml.org.

If you expect your XML-based messaging system to evolve into a large system
between several applications, it might be worth considering a standardized
message model. Standardizing the message model gives you the flexibility, for
example, to implement new XML messages for new application versions. A
generic model can also protect the message system from too many
transformations, which takes a good deal of time. A generic message model will
end in a generic data model of all the data that is used within a company.

A few XML guidelines are:

� Use descriptive names in XML documents.

� Group elements in related sets and decrease the number of choices that can
be made.

� Create a collection element for the context of repeated elements.

� Add elements that can be used in a later stage.

� Separate metadata from the real content. For example, use head and body
elements.

� Include a message version number in the message metadata.

� With large amounts of metadata, put this data in a different document.
 Chapter 7. Application development 161

http://www.xml.org

7.3.3 Performing XML transformations
In our sample application, we used XML transformation for two purposes:

� To generate an HTML page from data stored in XML format. The order.jsp
uses a helper class (FCatalogHelper) to generate the HTML output. The
helper class uses the TransletHelper class to do the XML transformation. The
TransletHelper takes two arguments, the URL for the XML file to transform,
and the transformer object, translet, that is compiled from the XSL file. With
this technique, the data stored in XML can be directly displayed on an HTML
page. Using translets instead of programming an XSLT transformation
increases performance.

� To generate a message from data stored in XML format. The order
pre-processing also uses XML transformation to generate the message sent
to the integration server. To generate the message, the OrderProcess session
bean uses a TransletHelper class to perform the XML transformation. The
XML document is provided from the front-end application as a message; the
stylesheet is complied into a translet called ProcessOrder.

XSLT can be used to perform XML transformations to other XML formats, HTML,
or text. The advantage of using XSLT instead of programming the XML
transformation using the DOM or SAX API is that the input or output message
formats can be changed without affecting the application logic. The
transformation logic is completely decoupled from the business logic, making it
easier to maintain it later.

There are many XSLT parsers available. WebSphere comes with the Apache
Xalan parser.

The Xalan parser provides all the functionalities recommended in the W3C XSL
Transformation (XSLT) and XML Path language (XPath) specifications.
Additionally, it provides an implementation of the Transformation API for XML
interfaces (TRaX) part of the Java API for XML Processing 1.1 Public Review 2.
TRaX provides a modular framework and a standard API for performing XML
transformations, and it utilizes system properties to determine which transformer
and which XML parser to use. It also provides an XSLTC compiler and runtime
processor.

Runtime transformation using Xalan
Transformation can be performed using the TRaX interfaces or the XSLTC
translet objects. The TRaX interfaces provide a standard interface to XSL
implementations like Xalan.
162 Self-Service Applications using IBM WebSphere V5.0 and IBM MQSeries Integrator

To use the TRaX interface, follow the steps below:

1. Create a TransformerFactory, which may directly provide a transformer, or
which can provide templates from a variety of sources.

The Templates object is a processed or compiled representation of the
transformation instructions, and provides a transformer.

2. Use the transformer to process the source according to the instructions found
in the templates, and produce a result.

Examples showing how this interface can be used to transform a given input
document can be found at the Apache Web site:

http://xml.apache.org/xalan-j

7.3.4 Working with XSLTC
XSLTC compiles the style sheets at development time, so the transformation
process will not have to compile the style sheet at runtime. These compiled style
sheets are usually referred to as translets.

WebSphere Studio provides an XSLTC Compiler wizard that uses the Xalan
XSLTC compiler to produce a .jar file with the translet.

To compile a style sheet, select File -> New -> Other -> XML -> Compile XSL.

Figure 7-6 Compile XSL window

In this window, we must specify the following:

� Input folder: the folder where the XSL files are. All the XSL files in this
directory will be compiled and saved to the destination folder.

� Destination folder: the folder where the resulting Java classes or .jar files
will be saved.
 Chapter 7. Application development 163

http://xml.apache.org/xalan-j
http://xml.apache.org/xalan-j

� Java Package: optionally, the package to which the translet classes will
belong.

� Jar File name: optionally, the .jar file name where all the translets are saved.
If not specified, the classes will be saved as individual class files.

After completing these fields, click Finish. Once the translets are compiled, they
can be accessed as any normal Java class.

Translets extend the org.apache.xalan.xsltc.runtime.AbstractTranslet class. The
most used AbstractTranslet class methods are:

� addParameter(String , Object): this method adds parameters to the style
sheet during execution.

� transform(Dom, TransletOutputHandler): this executes the compiled style
sheet and returns the output of the transformation in the
TransletOutputHandler.

To simplify the use of the translets, we developed a TransletHelper class that is
reusable for any application. The helper class has the following interface:

� setTranslet()

This method specifies the translet to be used in the transformation process.
The translet can be passed as a class name or a translet instance.

� getTransformedDoc()

This method returns the resulting string of the transformation process.

� setDocument()

This assigns the input document for the translet. The document can be an
InputStream or a String representation of the XML.

� setURI()

This assigns the URI where the document file can be found if the
setDocument() method is not used.

� setParameter()

This assigns parameter values that will be passed to the translet when the
transformation is executed. This parameter overwrites the default value of the
parameter defined in the style sheet using the <xsl:param/> tag.

� getDocumentInputStream()

This returns the InputStream as it was assigned using the setDocument()
method.
164 Self-Service Applications using IBM WebSphere V5.0 and IBM MQSeries Integrator

� getDocumentString()

This returns the document string as it was assigned using the setDocument()
method.

� getURI()

This returns the document URI as it was assigned using the setURI() method.

7.3.5 WebSphere Studio XML support
WebSphere Studio provides multiple tools to work with XML and XSLT. In this
section, we introduce these tools and explore how they can be used in a
Self-Service application.

The following XML editor tools are available in WebSphere Studio:

� The XML editor is a tool for creating and viewing XML files. You can use it to
create new XML files, either from scratch, from existing DTDs, or from
existing XML schemas. You can also use it to edit XML files, associate them
with DTDs or schemas, and validate them.

� The DTD editor is a tool for creating and viewing DTDs. Using the DTD
editor, you can create DTDs, generate XML schema files, and generate Java
beans for creating XML instances of an XML schema. You can also use the
DTD editor to generate a default HTML form based on the DTDs you created.

� The XML schema editor is a tool for creating, viewing, and validating XML
schemas. You can use the XML schema editor to perform tasks such as
creating XML schema components, importing and viewing XML schemas,
generating DTDs and relational table definitions from XML schemas, and
generating Java beans for creating XML instances of an XML schema.

� The XSL editor can be used to create new XSL files or to edit existing ones.
You can use content assist and various wizards to help you create or edit the
XSL file. Once you have finished editing your file, you can also validate it.
Also, you can associate an XML instance files with the XSL source file you
are editing and use that for guided editing when defining constructions, such
as an XPath expression.

Wizards are also available to simplify some of the common operations; for
example:

� The XPath expression wizard to create XPath expressions, which are used to
search through XML documents, extracting information from the nodes (such
as an element or an attribute).

� The XSL debugging and transformation tool to apply XSL files to XML files,
transforming them into new XML, HTML, or text files. After the transformation
has taken place, the XSL Debug perspective opens, allowing you to visually
 Chapter 7. Application development 165

step through an XSL transformation script, highlighting the transformation
rules. The views in the XSL Debug perspective can help you debug the XML
or XSL files.

� The XML and SQL query wizard to create an XML file from the results of an
SQL query or take an XML file and store it in a relational table. When creating
an XML file from an SQL query, you can optionally choose to create an XML
schema or DTD file that describes the structure that the XML file has for use
in other applications. Two Java class libraries, SQLToXML and XMLToSQL,
are included so you can use them in your applications at runtime.

� The SQL wizard or SQL query builder to create the SQL queries from which
your XML files are generated.

Additionally, WebSphere Studio provides mapping tools, such as:

� The XML to XML mapping editor, used to map one or more XML source files
to a single target XML file. You can add XPath expressions, groupings, Java
methods, or conversion functions to your mapping. Mappings can also be
edited, deleted, or persisted for later use. After defining the mappings, you
can generate an XSLT script. The generated script can then be used to
combine and transform any XML files that conform to the source DTDs.

� The RDB to XML mapping editor, which a tool for defining the mapping
between one or more relational tables and an XML file. After you have
created the mapping, you can generate a document access definition (DAD)
script, which can be run by the DB2R XML Extender to either compose XML
files from existing DB2 data or decompose XML files into DB2 data.

WebSphere Studio also provides a wizard for creating XML JavaBeans.

7.3.6 Using XML JavaBeans
Once you have designed and implemented an XML message structure, you can
create Java classes from this structure. These classes can be used for creating
and validating the messages in a Java application. There are several products on
the market for generating Java classes from the DTD or XML schema. It is
preferable to use a generating tool that is based on a standard DOM or SAX
implementation.

WebSphere Studio provides a wizard to create JavaBeans that will represent an
XML document based on a DTD or schema. The wizard can be initiated from the
context menu of the DTD or schema file by selecting Generate -> JavaBeans....
This brings up the JavaBean wizard window shown in Figure 7-7 on page 167.
166 Self-Service Applications using IBM WebSphere V5.0 and IBM MQSeries Integrator

Figure 7-7 Generating XML JavaBeans

In this window, specify the following parameters:

� Container: the name of the WebSphere Studio container where the
generated JavaBeans will be stored.

� Package: the package name for the generated JavaBeans.

� Root element: the root element of the document represented by the Schema
or DTD.

� Generate sample test program: select this if you want to have a sample
application using the generated JavaBeans.
 Chapter 7. Application development 167

168 Self-Service Applications using IBM WebSphere V5.0 and IBM MQSeries Integrator

Chapter 8. Developing WebSphere MQ
Integrator message flows

.This section discusses the development cycles and considerations for
WebSphere MQ Integrator.

The development of message flows is often considered to be a very complex
task, because it takes a set of quite different skills to get started:

� Information design issues - designing message formats and database tables,
or learning about existing formats or data structures.

� System administration tasks - configuring users, setting up WebSphere MQ
objects and database connections.

� Programming ESQL, the programming language used in WebSphere MQ
Integrator.

The following is simply a quick overview to get you started with WebSphere MQ
Integrator in a simple broker domain.

8

© Copyright IBM Corp. 2003. All rights reserved. 169

8.1 What is a broker domain?
A broker domain is a kind of habitat for the five WebSphere MQ Integrator
components:

� Control Center
� Broker
� Configuration Manager
� User name server
� NNSY rules engine

For the purposes of this book, we will concentrate on the following components:

� Broker - the component that does the productive work, available for Win32,
some UNIX systems, and z/OS. Each broker needs a dedicated WebSphere
MQ queue manager installation to live on.

� Configuration Manager - used for development and administrative purposes
only. It is currently only available for Win32 environments since the
Configuration Manager needs a WebSphere MQ queue manager of its own.

� Control center - implements the graphical user interface to manipulate
WebSphere MQ Integrator objects. Control center is available for Win32
environments only. It will access the Configuration Manager through a
WebSphere MQ client connection using the TCP/IP protocol.

These three components are essential for any WebSphere MQ Integrator
runtime environment. They can coexist on a single physical machine to be used
as the development box.

In practical use, there may be broker domains with hundreds of brokers and
Control Center installations. While these figures may grow, there is always one
single Configuration Manager per broker domain.

Note: The word domain is related to the term dominion, which is a good
mnemonic device since the Configuration Manager governs the brokers.
170 Self-Service Applications using IBM WebSphere V5.0 and IBM MQSeries Integrator

Figure 8-1 A simple WebSphere MQ Integrator broker domain fits on a single physical
machine

8.2 Developing message flows
As reflected in the graphical appearance of the Control Center, WebSphere MQ
Integrator (WMQI) provides three main types of applications which can be used
in combination.

� Message format translation with the Message Repository Manager
� Advanced publish/subscribe functionality, including user management
� Component integration and point to point message routing

The capabilities of a message repository manager and subscription management
are discussed here only in general. In this section, we concentrate on the design
of message flows.

Note: Choose a fast machine with at least 512 MB RAM for the development
scenario. Configurations with less memory are not recommended.

MQ Queuemanager B MQ Queuemanager A

 WMQI Configuration Manager WMQI Broker

 WMQI Control Center
 Database

Note: Please be careful not to confuse the terms message flow and workflow.
A message flow as defined in WebSphere MQ Integrator is on a more
technical layer than the business-related workflow. Indeed, message flows
can be used to implement workflows.
 Chapter 8. Developing WebSphere MQ Integrator message flows 171

8.2.1 Preparations: creating queue managers and defining queues
In order to set up WebSphere MQ Integrator components, basic WebSphere MQ
facilities are required. We need to install queue managers and define certain MQ
objects that WebSphere MQ Integrator relies on, as well as the queues and
channels we need for the sample application. We assume the WebSphere MQ
software is already installed on the system.

On systems running Windows, you can use either the graphical user interface or
the MQ Explorer to create new queue managers. For other operating systems,
similar tools exist. On AIX, there is a plug-in for the system management console
called System Management Interface Tool (SMIT), available as a SupportPac.
The process is mostly self-explanatory. You can keep the default values.

� Do not choose the queue manager as the default queue manager of the
system. We do not recommend choosing a default queue manager at all,
since this is a common source of errors.

� Identify the dead letter queue you wish to use (and keep in mind that this
queue also has to be defined).

� Select Circular logging, which is always a good choice for development
environments.

� Choose Start Listeners, so you do not have to worry about starting the
listeners every time the server starts.

� Select Automatic start, a convenient way to start up the queue manager.

8.2.2 Using the Control Center
WebSphere MQ Integrator message flows are built using the Control Center GUI
interface. The Control Center only runs on Windows but can be used to deploy
and monitor applications to brokers on any MQSI-supported platform.

To begin building an application, start the Control Center by selecting Start ->
Programs -> IBM WebSphere MQ Integrator 2.1 -> Control Center. A
Configuration Manager Connection window should appear as shown in
Figure 8-2 on page 173, prompting you for details required to connect to the
Configuration Manager.

Note: Save the queue manager’s configurations whenever they are changed;
use SupportPac MS03.
172 Self-Service Applications using IBM WebSphere V5.0 and IBM MQSeries Integrator

Figure 8-2 Configuration Manager Connection window

These fields tell the Control Center how to connect to the appropriate
Configuration Manager. These values were determined when the Configuration
Manager was created.

If this window does not appear, you may get an error window that reports a
problem connecting to the Configuration Manager. This can be the case if the
Control Center was used to work with a different Configuration Manager instance
that is no longer active, or if this is the first time you have opened the
Configuration Manager. You may see no window appear at all. This indicates the
connection to the Configuration Manager was successful. If the connection
window has not appeared, you can go to File -> Choose Connection, and the
required window will appear.

Click OK and the Control Center will open.

Note: Before starting the Control Center, you will have to include the user ID
under which you are running the Control Center into the local user
management of the user the Configuration Manager runs on. Be sure to add
the user ID to the WebSphere MQ Integrator groups that match the roles you
will be using.
 Chapter 8. Developing WebSphere MQ Integrator message flows 173

Figure 8-3 Starting the Control Center

8.2.3 Creating message flows
The general process to begin creating message flows is as follows.

1. Click the Message Flows tab.

2. Right-click Message Flows and select Create -> Message Flow Category.
Enter a new name for the category. Creating categories is not necessary but
provides a way of organizing related message flows. It simply makes it easier
to navigate your way through a large number of message flows while working
in the Control Center.

3. Highlight the new category, right-click, and select Create -> Message Flow.

4. Create new nodes in the message flow by copying existing nodes from the
right pane to the left. The properties of the new node can be accessed and
modified by double-clicking the new node.

5. Check in your changes. The next time, you will need to check out the node for
updates.

Sample application message flows
The sample application consists of three WebSphere MQ Integrator message
flows to demonstrate how a one-to-many scenario can be implemented using
WebSphere MQ Integrator. We discuss the three flows generally to illustrate the
design principles.

1. Order Decomposition Flow: a composite order coming from another system is
acknowledged and then decomposed. The parts are routed separately to the
different suppliers.
174 Self-Service Applications using IBM WebSphere V5.0 and IBM MQSeries Integrator

2. Suppliers’ response storage flow: response messages from the suppliers are
gathered in a relational database for persistent storage.

3. Response Composition flow: upon request from the third system, the
responses are aggregated into a single message and returned to this system.

Figure 8-4 Overview on the flows (generic)

The first flow, shown in Figure 8-5 on page 176, is the order submit process. The
customer places an order using the front-end application. The back-end receives
the order, prepares it, then sends it to the integration node. The diagram
illustrates the flow from the moment when the integration node gets the complex
message with the order. There are two actions that the integration node
performs:

� Sends an acknowledgment message back to the back-end system.

� Decomposes the complex order message, which consists of three (or fewer)
elements, the three color components. The order is stored in a database.
Then, each component of the decomposed message is stored as a separate
record in the database. Also, the system creates sub-orders from the order
components and sends them out to the suppliers.

receive request forward

acknowledge forward

 receive status request

receive reply
(repeated)

forward

1

2

3

 send status report

store

update stored

retrieve store

back-end nodeintegration nodefront-end node
 Chapter 8. Developing WebSphere MQ Integrator message flows 175

Figure 8-5 Sending order to the system

The next flow, illustrated in Figure 8-6, takes place after the supplier gets the
sub-order message and sends a reply back to the integration node about the
committed amount of supply. When the integration node receives the message
with the sub-order reply, it looks up the message based on the order ID. If the
message is found, it stores the details of the reply in the same record where the
original sub-order details were stored.

Figure 8-6 Storing the reply from the suppliers

The last flow, illustrated in Figure 8-7 on page 177, is a separate process, where
the customer can pick up the order and find out if it can be fulfilled or not. The
message comes through the front end to the back end, then hits the integration

order

XML

ORDER

Queue

Decompose the order
message

Compute

ORDER.REPLY

Queue
Send the

acknowledgment

SUPPLIER.RED

Queue

SUPPLIER.GREEN

Queue

SUPPLIER.BLUE

Queue

Store the order, each
component as a
separate record

SQL

supplier reply

XML

Lookup: is there an
order with the

provided order ID?
SUPPLIER.REPLY

Queue
SQL

Store the incoming
message

SQL

Order ID does not
exist

Error
176 Self-Service Applications using IBM WebSphere V5.0 and IBM MQSeries Integrator

node. The integration node looks up the order items’ sub-components from the
database and composes a complex message that is sent back to the back-end
system. The back end forwards the message to the front end, which creates the
response window.

Figure 8-7 Order pickup

Input node
Simply set the transaction flag in your database (or compute node) on your data
source to Yes. By default, it is set to Automatic, which means supporting
transactions if the input message was persistent. The only difference with XA
control of WebSphere MQ is that the broker issues two separate commit calls,
one for MQ resources and one for the database connection. Thus, it is a
one-phase commit.

Decomposition of messages
There are two ways to decompose a message within WebSphere MQ Integrator.
Multiplication of a message into different new messages can happen in two
ways:

� Cloning messages in the flow

A straightforward way to clone messages is simply by connecting several
destinations to a single output terminal of a node, as shown in Figure 8-8 on
page 178.

order pickup

XML

Look up the items with
the given order IDORDER.PICKUP

Queue
SQL

PICKUP.REPLY

QueueCompose a response
message for fulfillment

Compute
 Chapter 8. Developing WebSphere MQ Integrator message flows 177

Figure 8-8 Cloning messages in the flow

The advantage of this approach is the graphical visibility in the flow diagram.
The messages that have been generated are equal. This will often not be
suitable for decomposition purposes. If you want to decompose the message
into parts, you will have to remove different parts of it in the branches. This
solution can only be used where the message parts are known. It is not
suitable for a dynamic decomposition because of the undeterminable length
of the elements.

� Decomposition using the ESQL propagate statement

The propagate statement allows us to generate new messages from within
ESQL. While the ESQL program of a compute node executes, it can
propagate messages to the out terminal of that node.

Thus, lists of variable length can be decomposed with ESQL using the
propagate statement in a loop.

Example 8-1 Splitter node ESQL

-- declare a counter variable for the loop
DECLARE i INTEGER;
-- initialize the counter
SET i =1;
-- loop above the items to split
WHILE i <=CARDINALITY(InputRoot.XML.order."order_item"[]) DO

-- to copy all headers into the new message
SET OutputRoot = InputRoot;
-- remove the payload
SET OutputRoot.XML =NULL;
-- copy only one part
SET OutputRoot.XML.order.order_item= InputRoot.XML.order."order_item"[i];
-- add identifier
SET OutputRoot.XML.order.orderid=InputRoot.XML.order.order_id;
--Trial and Error
SET OutputRoot.MQMD.MsgId=OVERLAY(InputRoot.MQMD.MsgId PLACING uuidasblob

FROM 9);
178 Self-Service Applications using IBM WebSphere V5.0 and IBM MQSeries Integrator

-- forwards actual state of message to the output terminanl
PROPAGATE;
-- increase counter
SET i = i+1;

END WHILE;
-- passing it to the failure terminal, which is unconnected
RETURN FALSE;

Routing
There are two approaches to routing:

� Output to destination list

A powerful way to route messages is through manipulation of the
DestinationList in the LocalEnvironment.

Figure 8-9 Dynamic routing by DestinationList values

Configure the computation of the DestinationList in a compute node. If you
use a node only for that purpose, you can set the value of the property
compute mode in the Advanced tab to LocalEnvironment. If there is also other
computation performed in the node, use Message and LocalEnvironment.
The folder has to be called Destination, with a subfolder named either MQ or
MQDestinationList or RouterList, for example:

SET OutputLocalEnvironment.Destination.MQ.DestinationData[1].queueName =
'Q1';

Configure the output node, examine the list of destinations and send the
message to those destinations, then set the property Destination Mode in the
Advanced properties tab to the value Destination List.

� Visible routing through filter nodes

You can perform routing using filter nodes. These branch off to different
destinations. The advantages of this technique are as follows.
 Chapter 8. Developing WebSphere MQ Integrator message flows 179

– The routing is represented graphically
– Different branches may process the message in different ways

The filter node can route a message depending on a value:

– In the message body
– Resulting from a calculation
– True or false, being returned from an expression

This node accepts ESQL statements in the same way as the compute and
database nodes. In the case of the filter node, these should be ended by a
statement such as:

RETURN <boolean expression>

Contrary to compute nodes, the filter node addresses Root and Body
elements. There is no Input/Output- Root or Body, because the node does not
change the message. Filter nodes have boolean results. In the sample flow,
the test is straightforwardly checking for the value of a given element. For
example:

(Body.A = 'red' OR Root.XML.A = 'RED') AND NOT(Body.B = 'transparent')

Note: NULL and UNKNOWN are treated in the same way. References to
missing elements propagate the message to the unknown terminal.
180 Self-Service Applications using IBM WebSphere V5.0 and IBM MQSeries Integrator

Figure 8-10 Cascading filters forming a bus

Generating IDs
If you have no need to store new message IDs, they can be generated when
writing the new message to the queue. Select the MQOutput nodes’
Properties -> Advanced -> New Message ID to have new IDs generated.

If you want to store the message ID to a database or include it in another
message, this option is not sufficient. In this particular case, message IDs have
to be generated with ESQL in a compute node before the message is
propagated to an MQOutput node.

Message IDs (MQMD.MsgId) are 24-byte binary objects (BLOB), basically made
up of a constant string ‘AMQ’, the first eight characters of the queue manager
name, and the 16-byte universally unique identifier (UUID). Only the length of 24
bytes is required; the first eight bytes could also be empty. We wanted to keep
 Chapter 8. Developing WebSphere MQ Integrator message flows 181

the information about the originally sending queue manager provided in the first
part and only generated a new UUID, using the following expression:

SET OutputRoot.MQMD.MsgId=OVERLAY(InputRoot.MQMD.MsgId PLACING uuidasblob
FROM 9);

When reading a message ID and storing, it is casted to a different type. Casting a
BLOB UUID to CHAR results in a hexadecimal string (format
X'0123456789ABCDEF'); a 24-byte BLOB will result in a character string of
length 51 (48 + "X'" + "'").

Keeping context through request/reply cycles
It is often necessary to keep some context between message flows, for example
in request/reply message flows, where both the request message and the reply
message need to be processed by the broker. Typically, the broker will
manipulate the ReplyToQ field of the request message so that any reply
message is redirected to a broker queue for further processing. The problem is
then how to restore the ReplyToQ to its original setting so that the reply message
can be sent to the originator of the request. Various approaches to solving this
problem exist:

� Database tables
� Queues
� Plug-in node

Storing messages
WebSphere MQ Integrator enables you to store and retrieve message contents
to relational databases from database insert or update nodes as well as from
compute nodes.

It is possible to mix the transaction types of nodes that operate on external
databases set by the property Transaction Mode. Some nodes in a message flow
might specify automatic transactionality, meaning that any work they perform is
not committed until the message flow successfully completes. Others might
specify commit transactionality, in which case behavior differs from system to
system:

� On z/OS, commit transactionality in a single node behaves as expected.
Actions taken in this node only are committed regardless of the subsequent
success or failure of the message flow. Any actions taken prior to this node
under automatic transactionality are not committed, but remain within a unit of
work and may either be committed or rolled back, depending on the success
of the message flow.

� On distributed systems, commit transactionality means that any work that has
been performed in this message flow over the same ODBC database
connection to date, including any actions taken in this node, is committed
182 Self-Service Applications using IBM WebSphere V5.0 and IBM MQSeries Integrator

regardless of the subsequent success or failure of the message flow. ODBC
commits connections, not single statements.

Thus, a mix of nodes with automatic and commit transactionality in a single
message flow requires two ODBC connections to the same data source: one for
the nodes that are not to commit until the completion of the message flow, and
one for the nodes that are to commit immediately. The nodes that commit
immediately will also cause all operations carried out by preceding automatic
nodes to be committed as well.

Important: Locking problems can occur when automatic and commit
transactionality are mixed.

In particular, if a node with automatic transactionality carries out an operation,
such as an INSERT or an UPDATE, that causes a database object (such as a
table) to be locked, and a subsequent node tries to access that database
object using a different ODBC connection, an infinite lock (deadlock) occurs.
The second node waits for the lock acquired by the first to be released, but the
first node will not commit its operations and release its lock until the message
flow completes, and this will never happen because the second node is
waiting for the first node’s database lock to be released.
 Chapter 8. Developing WebSphere MQ Integrator message flows 183

Figure 8-11 storeMessage, ESQL script

Sub-flows
Sub-flows in WebSphere MQ Integrator can help to break the complex flow into
smaller modules. These modules can also be reused in other flows.

By using flows, developers can eliminate the “spaghetti code”, the long flows and
codes that handle the whole process.

It also helps to develop the flows step-by-step, maybe even by multiple
developers.

Flows that are built from sub-flows are faster to develop and easier to debug.

Note: For information on how this MQSI message flow was deployed, see
Chapter 13, “Configuring WebSphere MQ and MQ Integrator” on page 259.
184 Self-Service Applications using IBM WebSphere V5.0 and IBM MQSeries Integrator

Chapter 9. Security

As information technology increases in importance, so do the number of threats
directed against this critical infrastructure. A comprehensive security strategy is
essential to protect vital data and to ensure continuity of operations.

An enterprise should be able to deliver a security solution that will protect data
and assets, detect threats and intrusions, and recover from incidents. It should
also be able to provide services to manage the end-to-end security needs.

This chapter discusses the security considerations for end-to-end solutions in the
context of the Patterns for e-business, J2EE messaging applications. The
chapter also includes some of the system management considerations.

The chapter begins with a short introduction to end-to-end security, describing
security principles and concepts.

Using the IV Corp sample application, a high-level security solution design is
presented based on selected patterns.

At the end application security is discussed.

9

© Copyright IBM Corp. 2003. All rights reserved. 185

9.1 End-to-end security
Security is a vast subject. It encompasses a broad expanse of issues and
measures that must be put in place to ensure a safe environment. We start by
reviewing some of the basic principles and recommendations.

Protecting assets is a multi-faceted task in a Self-Service e-business solution.
The ultimate goal in this environment is for users to access business information.
The trick is to protect the assets that need protection, while making that
information available to all who are authorized to access it. A big part of the
challenge is determining what resources need protection, and at what stage.
Optimally, access rights should be determined and denied at the earliest possible
stage, rather than letting a user traverse deep into the network, then deny access
to a resource at the last step, which wastes system resources and the user’s
time.

It is also important to prevent duplicate or unnecessary security checks, which
can impact the performance of the network and applications. Each situation is
highly dependent on the application and the types of resources used. In this
section, we point out the resources that may need protection, the types of
protection to consider, and possible solutions.

The principles of security
These are the five principles of security:

� Confidentiality - Protect data from disclosure, whether the data is being stored
locally or being transmitted on a network.

� Integrity - Detect unauthorized modification of data. Modification could be
inadvertent, for example through hardware or transmission errors, or
deliberate, for example by attack from unauthorized persons.

� Authenticity - Verify a user’s identity and control access. “Users” in this
context can, for example, be program names, transaction IDs, user IDs,
address space and IDs.

� Accountability - Track actions and events to unique individuals or entities.

� Non-Repudiation - Verify with virtually 100% certainty that a particular piece
of data is associated with a particular individual or company, just as a
handwritten signature on a bank check is tied back to the account owner.

In addition to these principles, we always should have in mind some basic rules
to improve the way that we can keep our business secure.
186 Self-Service Applications using IBM WebSphere V5.0 and IBM MQSeries Integrator

Basic rules of security
The following are the basic rules of security:

� Security is policy enabled by technology.

Good security is what the customer’s business rules dictate, so security is
policy enabled by technology. Often customers have policies regarding the
use of data, and other things such as door locks and badge readers on the
physical plant. The existing policies might not extend to the use of data on the
Internet, so a policy review and development project might be in order. Not
having a good policy means that the customer might not understand the
actual value of the data being used in the e-business application. To decide
how much security to apply, or rather to decide how much risk needs to be
reduced, the value of the data used in the application needs to be
understood. The other risk element is the brand name of the company.
Businesses always fear that the company name will appear on the front page
of the newspaper, saying that their Web application was compromised.

� Never spend more solving a problem than it will cost to tolerate it.

The trade-off is the risk assumed for the money spent in reducing that risk,
and perhaps other risks unforeseen. Management can decide these
trade-offs.

� There are management solutions to technical problems, but there are no
technical solutions to management problems.

If management will not make decisions on policy or on what should be done
with the application, all the technology in the world cannot fix the problem.

� Nothing useful can be said about a security mechanism outside the context of
an application.

To be able to discuss specific use of security technology, a specific
application must be the context of the discussion. Specific security function
deployments are made to secure the value of the data in a specific
application. What is good protection in one application, might be too much or
too little in another.

� Application programmers should never write “security code”.

Application programmers should have standard security facilities available for
their use, and should not be responsible for implementing the security of the
application.

Five points for good security policy
These are five good points to have in mind when developing a security policy:

� Good security begins with a good policy: start your end-to-end security by
establishing a good security policy directed to the business requirements.
 Chapter 9. Security 187

� Know the enemy: study and understand the possible attacks that your
business data and process might suffer.

� Minimalism is a virtue: expose and use the minimum assets required for the
business process to exist.

� The price of security is eternal vigilance: never rest thinking that the final
degree of security is reached. Processes change, people change, rules
change, data change. Periodically review your policy and the technology to
enable it.

� Always have an escape plan: prepare your company for an alternative plan in
case you have a breach in security.

The following questions are a good starting point to build a comprehensive
security policy and should be extensively refined to meet your particular needs.

Questions for business management
Questions to ask when developing a security policy:

� What is your business need for security?
� How do you plan for the future?
� What are you protecting yourself from?
� How do you know if you are successful?
� What security policies are implemented and enforced?
� What security controls are in place?
� Do they align with your business requirements? How do you know?
� What processes are in place to support the policies?
� How do you enforce consistency across the organization?

9.2 Applying security to our Runtime patterns
In this section we will extend the product mapping for our Runtime pattern to
include security products.
188 Self-Service Applications using IBM WebSphere V5.0 and IBM MQSeries Integrator

Figure 9-1 Product mappings for the improved security for the IV Corp application
scenario

In this pattern, there are multiple application servers and an integration server.
This implies that we need to have an external security server that will serve as a
security proxy, which intercepts a request in order to map/transform the user
credentials into the appropriate credential format acceptable by the other
servers. To support this part of our design, we can use a Runtime pattern
diagram for heterogeneous servers with external authentication and
authorization servers. For more complex Single Sign-On solutions and detailed
information, refer to the IBM Redbook Access Integration Pattern Using IBM
WebSphere Portal Server, SG24-6267 at:

http://www.redbooks.ibm.com

The technique described in the previous chapter is called Single Sign-On, with
which users can move between applications without re-authenticating every time
they access a new application. Single Sign-On has to be configured for the
domain where this service is used. In our sample application, we do not have
multiple applications, but let’s assume we have a separate Web application for
order fulfilment and payment processing. Single Sign-On would allow us to log in
to the domain using one application, for example order pickup, then access
another application, for example payment processing, without re-authentication.

Outside World Demilitarized Zone
(DMZ)

Internal Network

Internet

P
ro

to
co

l f
ir

e
w

al
l

Directory &
Security
Server

User

Public Key
Infrastructure

Domain Name
Server

Integration
Server

 Existing
Applications

and Data

Application
Servers

Netscape / Internet
Explorer

Tivoli Access
Manager WebSEAL

3.9 on Windows 2000

IBM eNetwork
Firewall 4.2 on

Windows NT 4.0

IBM SecureWay
Directory 3.2.2 on

Windows 2000

IBM DB2 UDB 8.1
Workgroup Edition
on Windows 2000

IBM DB2 UDB 8.1
Enterprise Edition on

AIX 5L

Tivoli Access
Manager V3.9 on
Windows 2000

WebSphere
Application Server

V5 on Windows 2000

WebSphere MQI 2.1
on Windows 2000

IBM eNetwork
Firewall 4.2 on

Windows NT 4.0

 Registry
data

Authentication
Proxy

D
o

m
ai

n
 f

ir
ew

a
ll

Web Server
Redirector

IBM HTTP Server +
plugin
 Chapter 9. Security 189

http://www.redbooks.ibm.com.
http://www.redbooks.ibm.com

The following products support Single Sign-On for Web applications in our
architecture:

� Tivoli Access Manager’s WebSEAL

WebSEAL is a security reverse proxy that is used to authenticate the user,
create and maintain a session with the user, and provide URL-level
authorization. It also hides the internal structure of Web resources through
URL mapping. WebSEAL supports multiple types of authentication and
implements stepping up to a stronger authentication type if necessary.

� IBM HTTP Server

The Tivoli Access Manager can protect any static content on the Web server
including the server itself, so that non-authenticated users will not be able to
communicate with the Web server behind the security reverse proxy,
WebSEAL.

� IBM Directory Server

Access Manager supports numerous LDAP directories. The IBM Directory
Server is shipped with the Tivoli Access Manager; it stores user information
and user privileges, in addition to other application information.

� Tivoli Access Manager

Tivoli Access Manager consists of the following runtime components:

– Management Server

The Management Server manages the Access Manager security policy.
The Management Server receives updates from the console,
Administration API, or Administration command line interface.

– Authorization Server

The Authorization Servers are used by applications in remote mode.
Remote mode means that the application sends a request to the server to
answer the question “Can the user perform the action on the resources?”.
Local mode means that the application has an in-memory cache of the
policy so the application can check this for a decision without sending a
message outside the application; for example, WebSEAL works in local
mode.

For more information on the Tivoli Access Manager product and integration
with WebSphere Application server, please refer to:

http://www.tivoli.com/products/index/access-mgr-e-bus/.
190 Self-Service Applications using IBM WebSphere V5.0 and IBM MQSeries Integrator

http://www.tivoli.com/products/index/access-mgr-e-bus/

The following steps provide a simple technical walkthrough for user
authentication in this example.

1. The customer (application end user) uses a browser to locate the Web
application from the Web.

2. The request hits the protocol firewall, which only allows appropriate traffic.
The HTTP request is passed to the security reverse proxy. An extension to
this can be to implement a network dispatcher that selects the most available
Web reverse proxy at a time.

3. The security reverse proxy is responsible for authentication and for session
establishment and maintenance. The proxy authenticates the user if it is
required for the resource, then establishes the session. Authentication is
checked against the LDAP user registry.

4. Once a session is established, the security reverse proxy will authorize the
user based on the URL the user is trying to access. This authorization is
coarse grained, as it can only affect the URL requested.

5. If the request is authorized, then it is forwarded to the Web server (in this
case, a Web server redirector). The reverse proxy may perform load
balancing across the Web servers. An extension can be introduced here for
managing the load between Web servers by introducing a load balancer
between the security reverse proxy and the Web servers.

6. The request is then sent through the second firewall to the application
servers. The Web application servers execute business logic and call on the
authorization service for finer-grained control. This authorization service is
accessible via an API or through standard J2EE security. If the request is
authorized, then a function is executed on behalf of the authenticated user. If
the function communicates with back-end systems through an integration
server, then it is up to the design of the integration layer to call authorization
service for further authorization.

For additional information on security products, please refer to:

http://www-3.ibm.com/security/index.shtml,
http://www.tivoli.com/products/solutions/security/news.html

9.3 Security guidelines
The following sections point out some common security guidelines that should be
taken into consideration while designing an e-business solution.
 Chapter 9. Security 191

http://www-3.ibm.com/security/index.shtml
http://www.tivoli.com/products/solutions/security/news.html

Securing connections in a solution
On the architecture level (as opposed to the application level), connections
between nodes should be secured. The purpose of securing the communication
is to prevent non-authorized persons and systems from listening to the
communication or to participate in the interaction.

Figure 9-2 illustrates the commonly used and highly recommended secure
communication lines between nodes.

Figure 9-2 Secure connection between nodes

The secure communications are as follows:

� HTTPS is the secure HTTP connection using SSL. Nodes that are
communicating via TCP/IP using the HTTP protocol should use secure SSL
communication. The level of security depends on the options set for the
connection.

� LDAPS is the secure LDAP connection to a directory server using SSL. Since
LDAP directories store essential and sensitive applications and business
information, the communication should be secured.

� JMS/SSL is the secure communication for JMS connections using SSL.

� IIOP/SSL (IIOPS) is the secure communication for IIOP connections using
SSL. Two or more application servers may be communicating via IIOP, for
example the EJB client and the EJB container.

Outside World Demilitarized Zone
(DMZ)

Internal Network

Internet

P
ro

to
co

l f
ir

ew
al

l

Directory &
Security
Server

User

Public Key
Infrastructure

Domain Name
Server

Integration
Server

 Existing
Applications

and Data

 Registry
data

Authentication
Proxy

D
o

m
ai

n
 f

ir
ew

al
l

 HTTPS

 HTTPS HTTPS HTTPS SSL

SSL

SSL

 LDAPS

 LDAPS
 LDAPS

Application
Servers

 JMS / SSL
 IIOP / SSL
192 Self-Service Applications using IBM WebSphere V5.0 and IBM MQSeries Integrator

� SSL is a transport layer security protocol that can be applied to most of the
protocols in use with an e-business application. Other connections without
named protocols can also use SSL to secure the communication.

Other communication channels between nodes can be secured on a transport
layer, for example using IPSec.

System hardening
In addition to protecting the nodes from being attacked from outside, systems
have to be secured from inside attacks as well. Operating systems security is an
essential part of every system and should be mandatory. System hardening is a
global philosophy of system security that focuses not only on detection, but also
on prevention. It involves removing unnecessary services from the base
operating system, restricting user access to the system, enforcing password
restrictions, controlling user and group rights, and enabling system accounting.

System administrators are responsible for following the system and corporate
guidelines to ensure security at every level. System security has to be
maintained and set correctly. Part of system security is hardening the system and
preventing attacks from inside and outside.

System hardening relies on the system management guidelines and the
advanced security settings and functions provided by the system.

Applications have to be in sync with system security. However, sometimes the
applications require some flexibility on the security side, perhaps because of
unresolved design issues or special requirements. These cases can open
security holes or can weaken the system security if they are not monitored nor
maintained correctly.

9.4 Application security
The notion of security has several aspects:

� Identification is the process by which users or programs that communicate
with each other provide their identity.

� Authentication is the process used to validate the identity information
provided by the communication partner.

Note: Two application servers can also communicate via HTTP with SOAP
using the Web services technology. The HTTP communication should be
secured using SSL.
 Chapter 9. Security 193

� Authorization is the process by which a program determines whether a given
identity is permitted to access a resource, such as a file or application
component.

The J2EE specifications describe the concepts to be used for these processes.
Although data integrity, confidentiality, non-repudiation, and auditing are also
important aspects of security, the J2EE specifications do not address them in any
detail.

J2EE specifies a component programming model for security of both application
programming interfaces (APIs) and declared properties. J2EE does not provide a
security policy.

The security APIs used in the logic of application programs are referred to as
programmatic security.

The declared security properties, called declarative security, are found in
components’ deployment descriptors.

One objective of the J2EE programming model is to encourage the use of
declarative security, which is enforced by the container. This removes much of
the responsibility for security from the application developer.

The Java 2 Enterprise Edition (J2EE) specification defines the building blocks
and elements of a J2EE application that builds an enterprise application. The
specification also provides details on security related to the different elements.

The J2EE application consists of multiple modules and components. These
elements are connected to each other and communicate via certain protocols.
This section only discusses the connection on the application level, without going
into details on protocols.

Figure 9-3 on page 195 illustrates most of the elements in a J2EE application
and their relationships. The arrows indicate connections between elements;
these are the connections and connection groups that have to be secured in a
J2EE application.
194 Self-Service Applications using IBM WebSphere V5.0 and IBM MQSeries Integrator

Figure 9-3 J2EE application

For example, the user wants to access a JSP on the application server. This JSP
is a secured resource. In this situation the application server has to authenticate
the user and decide whether the user is authorized to access the JSP or not. In
this instance, the connection between the user’s browser and the JSP required
security.

In another example, a servlet in the Web container on the application server
accesses an EJB in the EJB container on the application server. The application
server has to authenticate the servlet’s request on behalf of the EJB, and then
check the authorization.

When you design an enterprise application or security for an application, you will
have a similar but more detailed diagram for your solution. Make sure that you
have taken every connection into consideration between each element and
module. Security in this context consists of two major parts: authentication and
authorization. Make sure that the access is always authenticated or the security
credentials are propagated. Also make sure that the access is authorized and be
prepared with an action if authorization is not granted.

For more information, read the security-related sections of the Java 2 Platform
Specification V1.3 at:

http://java.sun.com/j2ee/docs.html.

 HTML Page

 JSP Page

 Media files

 Servlet

LEGACY
APPLICATION

 Messaging

 Database

 Entity EJB

 Session EJB

 Message EJB

 Browser
Client

 Application
Client

 Application

 User

 User

 Group

www
 Web Service
 Chapter 9. Security 195

http://java.sun.com/j2ee/docs.html

J2EE container-based security
J2EE containers are responsible for enforcing access control on component
objects and methods. Containers provide two types of security:

� Declarative security
� Programmatic security

Declarative security
Declarative security is the means by which an application’s security policies can
be expressed externally to the application code. At application assembly time,
security policies are defined in an application’s deployment descriptor. A
deployment descriptor is an XML file that includes a representation of an
application’s security requirements, including the application’s security roles,
access control, and authentication requirements

When using declarative security, application developers are free to write
component methods that are completely unaware of security. By making
changes to the deployment descriptor, an application’s security environment can
be radically changed without requiring any changes in application code.

Programmatic security
Programmatic security is used when an application must be “security aware”. For
instance, a method might need to know the identity of the caller for logging
purposes, or it might perform additional actions based on the caller’s role. The
J2EE Specification provides an API that includes methods for determining both
the caller’s identity and the caller’s role.

9.5 Messaging security
Security services are the services within a computer system protecting
resources. There are five security services that are identified in this book
regarding the messaging security:

� Identification and authentication
� Access control
� Confidentiality
� Data integrity
� Non-repudiation

Security mechanisms are technical tools and techniques that are used to
implement security services. A mechanism might operate by itself, or in
196 Self-Service Applications using IBM WebSphere V5.0 and IBM MQSeries Integrator

conjunction with others, to provide a particular service. Examples of common
security mechanisms are:

� Access control lists
� Cryptography
� Digital signatures

When you are planning a messaging implementation, you need to consider
which security services and mechanisms you need. For information about what
to consider, see WebSphere MQ Security, SC34-6079.

For more information about the IBM Security Architecture, see IBM Security
Architecture: Securing the Open Client/Server Distributed Enterprise,
SC28-8135.

Identification and authentication
Identification is being able to identify uniquely a user of a system or an
application that is running in the system. Authentication is being able to prove
that a user or application is genuinely who that person or application claims to
be. For example, consider a user who logs on to a system by entering a user ID
and password. The system uses the user ID to identify the user and, at the time
of logon, authenticates the user by checking that the supplied password is
correct. Here is an example of the identification and authentication service in a
Messaging environment:

� Every message can contain message context information. This information is
held in the message descriptor and can be generated by the queue manager
when a message is put on a queue by an application.

� Alternatively, the application can supply the information if the user ID
associated with the application is authorized to do so. The context information
in a message allows the receiving application to find out about the originator
of the message. It contains, for example, the name of the application that put
the message and the user ID associated with the application.

Access control
The access control service protects critical resources in a system by limiting
access only to authorized users and their applications. It prevents the
unauthorized use of a resource or the use of a resource in an unauthorized
manner.
 Chapter 9. Security 197

Here are some examples of the access control service in a messaging
environment:

� Allowing only an authorized administrator to issue commands to manage
messaging resources.

� Allowing an application to connect to a queue manager only if the user ID
associated with the application is authorized to do so.

� Allowing a user’s application to open only those queues that are necessary
for its function.

� Allowing a user’s application to perform only those operations on a queue that
are necessary for its function. For example, an application might need only to
browse messages on a particular queue, and not to put or get messages.

Confidentiality
The confidentiality service protects sensitive information from unauthorized
disclosure. When sensitive data is stored locally, access control mechanisms
might be sufficient to protect it on the assumption that the data cannot be read if
it cannot be accessed. If a greater level of security is required, the data can be
encrypted.

Sensitive data should be encrypted when it is transmitted over a communications
network, especially over an unsecure network such as the Internet. In a
networking environment, access control mechanisms are not effective against
attempts to intercept the data, such as wiretapping.

Here are some examples of the confidentiality service that can be implemented
in a messaging environment:

� After a sending partner gets a message from a transmission queue, the
message is encrypted before it is sent over the network to the receiving
partner. At the other end of the channel, the message is decrypted before the
receiving partner puts it on its destination queue.

� While messages are stored on a local queue, the access control mechanisms
provided by the message system might be considered sufficient to protect
their contents against unauthorized disclosure. However, for a greater level of
security, their contents can be encrypted as well.

Data integrity
The data integrity service detects whether there has been unauthorized
modification of data. There are two ways in which data might be altered:
accidentally, through hardware and transmission errors, or because of a
deliberate attack. Many hardware products and transmission protocols now have
mechanisms to detect and correct hardware and transmission errors. The
purpose of the data integrity service is to detect a deliberate attack.
198 Self-Service Applications using IBM WebSphere V5.0 and IBM MQSeries Integrator

The data integrity service aims only to detect whether data has been modified. It
does not aim to restore data to its original state if it has been modified.

Access control mechanisms can contribute to data integrity insofar as data
cannot be modified if access is denied. But, as with confidentiality, access control
mechanisms are not effective in a networking environment.

Here are some examples of the data integrity service that can be implemented in
a messaging environment:

� A data integrity service can be used to detect whether the contents of a
message have been deliberately modified while it was being transmitted over
a network.

� While messages are stored on a local queue, the access control mechanisms
provided by the messaging system might be considered sufficient to prevent
deliberate modification of the contents of the messages. However, for a
greater level of security, a data integrity service can be used to detect whether
the contents of a message have been deliberately modified between the time
the message was put on the queue and the time it was retrieved from the
queue.

Non-repudiation
The non-repudiation service can be viewed as an extension to the identification
and authentication service. In general, non-repudiation applies when data is
transmitted electronically - for example, an order to a stock broker to buy or sell
stock, or an order to a bank to transfer funds from one account to another. The
overall goal is to be able to prove, with virtually 100% certainty, that a particular
message is associated with a particular individual.

The non-repudiation service can contain more than one component, where each
component provides a different function. If the sender of a message ever denies
sending it, the non-repudiation service with proof of origin can provide the
receiver with undeniable evidence that the message was sent by that particular
individual. If the receiver of a message ever denies receiving it, the
non-repudiation service with proof of delivery can provide the sender with
undeniable evidence that the message was received by that particular individual.

In practice, proof with virtually 100% certainty, or undeniable evidence, is a
difficult goal. In the real world, nothing is fully secure. Managing security is more
concerned with managing risk to a level that is acceptable to the business. In
such an environment, a more realistic expectation of the non-repudiation service
is to be able to provide evidence that is admissible, and supports your case, in a
court of law.
 Chapter 9. Security 199

Non-repudiation is a relevant security service in a messaging environment
because messaging-based systems are a means of transmitting data
electronically. For example, you might require contemporaneous evidence that a
particular message was sent or received by an application associated with a
particular individual.

9.5.1 Securing WebSphere MQ resources
WebSphere MQ, V5.3 brings new performance levels, enhanced security, and
added features to enhance cross-platform consistency (harmonization).

Security enhancements
Secure Sockets Layer (SSL) provides a comprehensive solution for security
problems with:

� 128-bit encryption to prevent eavesdropping
� Message integrity checking to prevent tampering
� Authentication to prevent impersonation
� A range of cryptographic algorithms
� Support for public/private keys
� No key distribution problems

SSL is a protocol designed to allow the transmission of secure data over an
unsecure network. Widely accepted in the Internet community, SSL has been
subjected to significant testing by the “hacker” community.

SSL makes use of digital certificates to enable authentication of the partner. It
also uses encryption to prevent eavesdropping and hash functions to enable
detection of tampering. SSL can be used on channels in WebSphere MQ through
new parameters introduced in WebSphere MQ V5.3. It can be used with both
MCA channels for queue manager to queue manager communication and MQI
channels for client applications connecting to a queue manager. A digital
certificate must be obtained for each queue manager and each client user ID that
wishes to communicate over an SSL secured channel.

WebSphere MQ now provides built-in functions to solve common security
problems. Users can specify which symmetric key cryptography algorithm and
which hash function to use by providing WebSphere MQ with a CipherSpec.
Digital certificates and public keys are found in a key ring, which can be specified
to WebSphere MQ. Users also can check that they are talking to the partner they
expect to be talking to and can choose to authenticate both ends of the
connection or only the SSL Server end of the connection. Certificate revocation
lists are also available to cancel security certificates.
200 Self-Service Applications using IBM WebSphere V5.0 and IBM MQSeries Integrator

Wildcards can now be used with security settings. With WebSphere MQ V5.3,
you can define groups of objects to which users have access. New objects will
inherit these definitions automatically. The wildcard matching, based on qualifiers
with “.” (dot) separators, is based on RACF®, and migration from the old Object
Access Manager is transparent.

Extensions are provided to the security management commands and to the
interface to the installable service that implements authorization checks, to
display all of the users or groups who have access to particular objects, or to
allow easy cloning of settings to new queue managers.

WebSphere MQ security facilities
WebSphere MQ offers security facilities as part of the distributed services layer,
which can be used or invoked by the application.

The WebSphere MQ facilities include the following:

� Access control

Checks when accessing queue manager resources and commands against
the user ID under which the application program is running. Uses an external
security manager supplied by the application enabling services.

� Message context

Contextual information is contained within the descriptor part of each
message describing who generated the original request and where this
specific message came from.

� MCA exits

Exit programs can be attached to the message channel agents. This exit
facility has been designed to allow security-related functions to be
implemented in the exit routines associated with links between systems.

� Security management and audit

Facilities allow system administrators to set up and manage the various
security operations, and to verify that the security facilities are working in the
expected manner.

Basic considerations
Because WebSphere MQ queue managers handle the transfer of information
that is potentially valuable, you need the safeguard of an authority system. This
ensures that the resources that a queue manager owns and manages are
protected from unauthorized access, which could lead to the loss or disclosure of
the information.
 Chapter 9. Security 201

In a secure system, it is essential that none of the following are accessed or
changed by any unauthorized user or application:

� Connections to a queue manager

� Access to WebSphere MQ objects such as queues, clusters, channels, and
processes

� Commands for queue manager administration, including MQSC commands
and PCF commands

� Access to WebSphere MQ messages

� Context information associated with messages

The basic considerations are those aspects of security you must consider when
implementing WebSphere MQ. On UNIX and Windows systems, if you ignore
these considerations and do nothing, you cannot implement WebSphere MQ. On
z/OS, the most likely effect is that your WebSphere MQ resources are
unprotected. That is, all users can access and change all WebSphere MQ
resources.

Authority to administer WebSphere MQ
WebSphere MQ administrators need authority to:

� Issue commands to administer WebSphere MQ

� Use the WebSphere MQ Explorer and the WebSphere MQ Services snap-in
on Windows systems

� Use the operations and control panels on z/OS

� Use the WebSphere MQ utility program, CSQUTIL, on z/OS

� Access the queue manager data sets on z/OS

This is an aspect of access control. For more information, see “Authority to
administer WebSphere MQ” in WebSphere MQ Security, SC34-6079.

Authority to work with WebSphere MQ objects
Applications can access the following WebSphere MQ objects by issuing MQI
calls:

� Queue managers
� Queues
� Processes
� Namelists

On UNIX and Windows systems, applications can also use Programmable
Command Format (PCF) commands to access these WebSphere MQ objects,
and to access authentication information objects as well. These objects are
202 Self-Service Applications using IBM WebSphere V5.0 and IBM MQSeries Integrator

protected by WebSphere MQ and the user IDs associated with the applications
need authority to access them.

This is another aspect of access control. For more information, see “Authority to
work with WebSphere MQ objects” in WebSphere MQ Security, SC34-6079.

Channel security
The user IDs associated with message channel agents (MCAs) need authority to
access various WebSphere MQ resources. For example, an MCA must be able
to connect to a queue manager. If it is a sending MCA, it must be able to open
the transmission queue for the channel. If it is a receiving MCA, it must be able to
open destination queues. On UNIX and Windows systems, the user IDs
associated with applications need authority to use PCF commands to administer
channels, channel initiators, and listeners.

This is another aspect of access control. For more information, see “Channel
security” in WebSphere MQ Security, SC34-6079.

Additional considerations
The following are aspects of security you need to consider only if you are using
certain WebSphere MQ functions or base product extensions:

� Queue manager clusters
� WebSphere MQ publish/subscribe
� WebSphere MQ Internet Passthrough

Queue manager clusters
A queue manager cluster is a network of queue managers that are logically
associated in some way. A queue manager that is a member of a cluster is called
a cluster queue manager.

A queue that belongs to a cluster queue manager can be made known to other
queue managers in the cluster. Such a queue is called a cluster queue. Any
queue manager in a cluster can send messages to cluster queues without
needing any of the following:

� An explicit remote queue definition for each cluster queue
� Explicitly defined channels to and from each remote queue manager
� A separate transmission queue for each outbound channel

You can create a cluster in which two or more queue managers are clones. This
means that they have instances of the same local queues, including any local
queues declared as cluster queues, and can support instances of the same
server applications.
 Chapter 9. Security 203

When an application connected to a cluster queue manager sends a message to
a cluster queue that has an instance on each of the cloned queue managers,
WebSphere MQ decides which queue manager to send it to. When many
applications send messages to the cluster queue, WebSphere MQ balances the
workload across each of the queue managers that have an instance of the
queue. If one of the systems hosting a cloned queue manager fails, WebSphere
MQ continues to balance the workload across the remaining queue managers
until the system that failed is restarted.

If you are using queue manager clusters, you need to consider the following
security issues:

� Allowing only selected queue managers to send messages to your queue
manager

� Allowing only selected users of a remote queue manager to send messages
to a queue on your queue manager

� Allowing applications connected to your queue manager to send messages
only to selected remote queues

These considerations are relevant even if you are not using clusters, but they
become more important if you are using clusters.

If an application can send messages to one cluster queue, it can send messages
to any other cluster queue without needing additional remote queue definitions,
transmission queues, or channels. It therefore becomes more important to
consider whether you need to restrict access to the cluster queues on your
queue manager, and to restrict the cluster queues to which your applications can
send messages.

There are some additional security considerations, which are relevant only if you
are using queue manager clusters:

� Allowing only selected queue managers to join a cluster
� Forcing unwanted queue managers to leave a cluster

For more information about all these considerations, see WebSphere MQ Queue
Manager Clusters. For considerations specific to WebSphere MQ for z/OS, see
the WebSphere MQ for z/OS System Setup Guide product documentation.

WebSphere MQ publish/subscribe
In a publish/subscribe scenario, there are two types of applications: publisher
and subscriber. Publishers supply information in the form of WebSphere MQ
messages. When a publisher publishes a message, it specifies a topic, which
identifies the subject of the information inside the message.
204 Self-Service Applications using IBM WebSphere V5.0 and IBM MQSeries Integrator

Subscribers are the consumers of the information that is published. A subscriber
specifies the topics it is interested in by sending a subscription request to a
broker in the form of a WebSphere MQ message.

The broker is an application supplied with WebSphere MQ publish/subscribe. It
receives published messages from publishers and subscription requests from
subscribers, and routes the published messages to the subscribers. A subscriber
is sent messages only on those topics to which it has subscribed.

There are additional security considerations if you are using WebSphere MQ
publish/subscribe. The user IDs associated with publishers and subscribers need
authority to access the queues that they use to communicate with a broker. For
more information, see the WebSphere MQ Publish/Subscribe User’s Guide
product documentation.

WebSphere MQ internet Passthrough
WebSphere MQ Internet Passthrough enables two queue managers to exchange
messages, or a WebSphere MQ client application to connect to a queue
manager, over the Internet without requiring a direct TCP/IP connection. This is
useful if a firewall prohibits a direct TCP/IP connection between two systems. It
makes the passage of WebSphere MQ channel protocol flows into and out of a
firewall simpler and more manageable by tunnelling the flows inside HTTP or by
acting as a proxy. Using the Secure Sockets Layer (SSL), it can also be used to
encrypt and decrypt messages that are sent over the Internet.

Link level security and application level security
The remaining security considerations are discussed under two headings: link
level security and application level security.

Link level security
Link level security refers to those security services that are invoked, directly or
indirectly, by an MCA, the communications subsystem, or a combination of the
two working together. This is illustrated in Figure 9-4 on page 206.
 Chapter 9. Security 205

Figure 9-4 Link level security and application level security

Here are some examples of link level security services:

� The MCA at each end of a message channel can authenticate its partner.
This is done when the channel starts and a communications connection has
been established, but before any messages start to flow. If authentication fails
at either end, the channel is closed and no messages are transferred. This is
an example of an identification and authentication service.

� A message can be encrypted at the sending end of a channel and decrypted
at the receiving end. This is an example of a confidentiality service.

� A message can be checked at the receiving end of a channel to determine
whether its contents have been deliberately modified while it was being
transmitted over the network. This is an example of a data integrity service.

Application level security
Application level security refers to those security services that are invoked at the
interface between an application and a queue manager to which it is connected.
These services are invoked when the application issues MQI calls to the queue
manager. The services might be invoked, directly or indirectly, by the application,
the queue manager, another product that supports WebSphere MQ, or a
combination of any of these working together. Application level security is
illustrated in Figure 9-4.

Application level security is also known as end-to-end security or message level
security. Here are some examples of application level security services:

� When an application puts a message on a queue, the message descriptor
contains a user ID associated with the application. However, there is no data
present, such as an encrypted password, that can be used to authenticate the

Security
Services

Security
Services

Security
Services

Security
Services

Node Node

MCAMCA
Comms
 stack

Comms
 stack

Queue Manager Queue Manager

Application

Transmission Queue Destination Queues

Message Channel
Application

Link Level

Application Level
206 Self-Service Applications using IBM WebSphere V5.0 and IBM MQSeries Integrator

user ID. A security service can add this data. When the message is eventually
retrieved by the receiving application, another component of the service can
authenticate the user ID using the data that has travelled with the message.
This is an example of an identification and authentication service.

� A message can be encrypted when it is put on a queue by an application and
decrypted when it is retrieved by the receiving application. This is an example
of a confidentiality service.

� A message can be checked when it is retrieved by the receiving application.
This check determines whether its contents have been deliberately modified
since it was first put on a queue by the sending application. This is an
example of a data integrity service.

9.5.2 Securing WebSphere MQ Integrator resources
WebSphere MQ Integrator exploits WebSphere MQ and the operating system
facilities to control security for components and tasks:

Topic-based security
The WebSphere MQ Integrator User Name Server interacts with the operating
system security system to control user and group access to publications and
subscriptions.

Operational control of components
WebSphere MQ Integrator uses the operating system access control.
Operational roles are used in the Control Center.

Security control of WebSphere MQ Integrator components, resources, and tasks
depends on the definition of users and groups of users (principals) to the security
subsystem of the operating system (the Windows User Manager or the UNIX
user/group database).

When WebSphere MQ Integrator is installed, it automatically creates five groups
in the operating system’s security mechanism:

� mqbrkrs
� mqbrasgn
� mqbrdevt
� mqbrops
� mqbrtpic

Assigning a user to one or more of these groups determines the WebSphere MQ
Integrator tasks they are allowed to perform.

WebSphere MQ Integrator depends on a number of WebSphere MQ resources
to operate successfully. You must control access to these resources to ensure
 Chapter 9. Security 207

that WebSphere MQ Integrator can access the resources it needs, while limiting
access to other users. Some authorizations are granted automatically on your
behalf when commands are issued, primarily the authority to put messages on a
queue and to retrieve (get) messages from a queue. Others depend on the
configuration of your broker domain. The transmission queues handling the
message traffic between the WebSphere MQ Integrator component queue
managers must have put and setall authority granted to the local mqbrkrs group
or to the service user ID of the WebSphere MQ Integrator component. When you
create, assign, and deploy a message flow, you must grant the following:

� GET authority to each input queue identified in an MQInput node, for the
broker’s service user ID.

� PUT authority to each output queue identified in an MQOutput node, or by an
MQReply node, for the broker’s service user ID.

� GET authority to each output queues identified in an MQOutput node or an
MQReply node to the user ID under which a receiving or subscribing client
application runs.

� PUT authority to each input queue identified in an MQInput node to the user
ID under which a sending or publishing client application runs. WebSphere
MQ Integrator security is discussed in more detail in WebSphere MQ
Integrator Administration Guide, SC34-5792.

Database security
The Configuration Manager service user ID must be authorized for create and
update tasks on the database in which both configuration and message
repositories are defined.

Each broker service user ID must be authorized for create and update tasks on
the database that contains the broker internal tables. Each broker service user ID
must also be authorized for the appropriate access for every database
referenced and accessed by a message processing node in any deployed
message flow.

Of course, access to the above databases must be controlled and limited to the
designated Configuration Manager, broker and User Name Server service IDs.

Application security
When you deploy a message flow on one or more brokers, applications can start
to feed messages into the message flow by putting messages to the queue that
is identified as the input queue. You set up the association between the input
node and the queue by setting the queue name as a property of the node.

Similarly, applications access queues to receive messages placed on those
queues by MQOutput or publication nodes, when the message flow has
completed processing for those messages.
208 Self-Service Applications using IBM WebSphere V5.0 and IBM MQSeries Integrator

The user IDs under which applications are executing must therefore be
authorized to write to, or read from, the queues used by the message flow the
applications are interacting with.

9.6 Security design principles summary
The following security guidelines should be used when designing, architecting an
application or infrastructure:

� No business logic, data in DMZ.

� No user state maintained on Internet connected systems (only connection
state).

� Separate authentication domain from authorization domain.

� Use frameworks, standards whenever you can.

� Design for multiple authentication mechanisms.

� Assume that the desktop is untrusted.

� Dual controls, separation of authority.

� Least privilege, role base access controls.

� Isolate systems and networks of different vulnerability levels.
 Chapter 9. Security 209

210 Self-Service Applications using IBM WebSphere V5.0 and IBM MQSeries Integrator

Chapter 10. Performance and availability

In this chapter, we identify some of the most important considerations in
performance when working in transactional and messaging-based applications.

10
© Copyright IBM Corp. 2003. All rights reserved. 211

10.1 Introduction
The use of patterns can have an important impact on performance. In this
chapter, we present some performance gains or losses when using these
different patterns, and offer some general guidelines on how to chose one
pattern over the other.

10.2 Performance analysis
One of the major problems with multiple-tier applications is identifying
performance bottlenecks in a runtime environment. Bottlenecks are usually hard
to identify during the programming of the application, since they might depend on
workloads and concurrency, for example.

WebSphere Studio Application Developer V5 and WebSphere Application Server
V5 offer great profiling capabilities that can help to identify bottlenecks and
eliminate them.

For further information on the profiling functionality in WebSphere Studio, please
refer to the redbook WebSphere Studio Application Developer Programming
Guide, SG24-6585.

10.3 Performance considerations in messaging
This section gives a general overview of performance considerations of
messaging-based applications, and provides information related to Quality of
Service and reliability of messaging applications.

10.3.1 Connection pooling
WebSphere MQ 5.3 provides connection pooling to significantly improve the
underlying performance in getting a connection to a queue manager. When a
connection is no longer required, instead of destroying it, it can be pooled and
later reused. This can provide a substantial performance enhancement for
applications and middleware that connect serially to arbitrary queue managers.

The scope of the pooling is global for the JVM. If many JMS sessions are
simultaneously active, the connections will be pooled between all of them.
However, when the number of sessions falls to zero, the pooling is disabled and
all pooled connections are closed. Hence, if one session at a time is sequentially
used there will be no pooled connections persisted between them.
212 Self-Service Applications using IBM WebSphere V5.0 and IBM MQSeries Integrator

The following code uses the MQSimpleConnectionManager class to replace the
default connection manager. The connection manager constructed will keep up
to 100 unused connections alive for reuse for up to 1000 milliseconds and will
always return a connection to the pool.

myConMgr = new MQSimpleConnectionManager();
myConMgr.setTimeout(1000);
myConMgr.setHighThreshold(100);
myConMgr.setActive(MQSimpleConnectionManager.MODE_ACTIVE);
MQEnvironment.setDefaultConnectionManager(myConMgr);

There is no hard limit on the number of connections in use. It is possible to have
more connections in use than you have your connection pool configured to. This
is because the pool is only keeping unused connections and not keeping track of
any in-use connections. When a connection is closed and returned to the pool, if
the pool is already at maximum size, the oldest connection in the pool is
removed. With no hard limit on the number of connections in use, it is possible to
exhaust system resources if you have too many connections running at one time.

Default connection pool
Consider the following example application:

Example 10-1 MQApp1.java code snippet

import com.ibm.mq.*;
public class MQApp1 {

public static void main(String[] args) throws MQException {
for (int i=0; i<args.length; i++) {

MQQueueManager qmgr=new MQQueueManager(args[i]);
// do something with qmgr
mgr.disconnect();

}
}

}

The above snippet class MQApp1 takes a list of local queue managers from the
command line, connects to each in turn, and performs some operation. However,
when the command line lists the same queue manager many times, it is more
efficient to connect only once, and to reuse that connection many times.

WebSphere MQ base Java provides a default connection pool that you can use
to do this. To enable the pool, use one of the
MQEnvironment.addConnectionPoolToken() methods. To disable the pool, use
MQEnvironment.removeConnectionPoolToken().

The example application, MQApp2, in Example 10-2 on page 214 is functionally
identical to MQApp1, but connects only once to each queue manager.
 Chapter 10. Performance and availability 213

Example 10-2 MQApp2.java

import com.ibm.mq.*;
public class MQApp2 {

public static void main(String[] args) throws MQException {
MQPoolToken token=MQEnvironment.addConnectionPoolToken();
for (int i=0; i<args.length; i++) {

MQQueueManager qmgr=new MQQueueManager(args[i]);
// do something with qmgr
qmgr.disconnect();

}
MQEnvironment.removeConnectionPoolToken(token);

}
}

The addConnectionPoolToken object activates the default connection pool by
registering an MQPoolToken object with MQEnvironment. The
MQQueueManager constructor now searches this pool for an appropriate
connection and only creates a connection to the queue manager if it cannot find
an existing one. The qmgr.disconnect() call returns the connection to the pool for
later reuse. These API calls are the same as the sample application MQApp1.

The removeConnectionPoolToken object deactivates the default connection
pool, which destroys any queue manager connections stored in the pool. This is
important because otherwise the application would terminate with a number of
live queue manager connections in the pool. This situation could cause errors
that would appear in the queue manager logs. The default connection pool stores
a maximum of 10 unused connections, and keeps unused connections active for
a maximum of five minutes.

Instead of using MQEnvironment to supply an MQPoolToken, the application can
construct its own:

MQPoolToken token=new MQPoolToken();
MQEnvironment.addConnectionPoolToken(token);

Some applications or middleware vendors provide subclasses of MQPoolToken
in order to pass information to a custom connection pool. They can be
constructed and passed to addConnectionPoolToken() in this way so that extra
information can be passed to the connection pool.

10.3.2 Multithreaded programs
Multithreaded programs are hard to avoid in Java. The Java runtime environment
is inherently multithreaded. Therefore, your application initialization occurs in one
thread, and the code that executes in response to the button press executes in a
separate thread (the user interface thread).
214 Self-Service Applications using IBM WebSphere V5.0 and IBM MQSeries Integrator

With the “C” based WebSphere MQ client, this would cause a problem, because
handles cannot be shared across multiple threads. WebSphere MQ classes for
Java relaxes this constraint, allowing a queue manager object (and its
associated queue and process objects) to be shared across multiple threads.

The implementation of WebSphere MQ classes for Java ensures that, for a given
connection (MQQueueManager object instance), all access to the target
WebSphere MQ queue manager is synchronized. Therefore, a thread wishing to
issue a call to a queue manager is blocked until all other calls in progress for that
connection are complete. If you require simultaneous access to the same queue
manager from multiple threads within your program, create a new
MQQueueManager object for each thread that requires concurrent access. (This
is equivalent to issuing a separate MQCONN call for each thread.)

10.3.3 Persistent versus non-persistent messages
WebSphere MQ queue can hold persistent and non-persistent messages.
Persistent messages are always written directly to disk, and are restored to the
queue if the queue goes down for some reason. This type of message is resilient,
but there is a performance cost because of the disk access.

The performance of your application is affected when you use persistent
messages; the extent of the effect depends on the performance characteristics of
the machine’s I/O subsystem and how you use the syncpoint options on each
platform.

If you wish to do transactional writing to the queue then you will want this level of
resilience too. JMS does not enforce the type of message it writes in a
transaction so you must ensure that the message is persistent yourself. When
using JMSAdmin, persistent messages are the default. If you do not explicitly set
the persistence property of the queue, it will use the default,
PERSITENCE(APP), that is, the application determines persistence for the
queue in JMSAdmin. The default delivery mode for JMS messages is also
persistent. This property is set on the QueueSender, or specified on the call to
the send method, not directly on the message. If you want to change this, follow
the steps below:

1. Set the persistence in the definition of the Queue, using JMSAdmin and/or

2. Use setDeliveryMode on the QueueSender or on the send method. Setting it
on the message will have no effect when sending messages.

Persistent messaging
When using persistent messaging the likely constraining factor will usually be
WebSphere MQ logging. Table 10-1 on page 216 shows the maximum message
rates achieved in the tests. The number of round trips was very much dependent
 Chapter 10. Performance and availability 215

on the message size. IBM SSA cached disks have been shown to significantly
improve (by up to a factor of two) persistent messaging on WebSphere MQ for
AIX.

Table 10-1 Persistent messaging size

Nonpersistent messaging
The maximum number of clients that can be supported on a single queue
manager is 2300. A design limitation in WebSphere MQ requires that additional
queue managers be used to go beyond this point. The message rates achieved
varied according to the message size and the number of clients being supported.
When using a high number of clients, context switching between clients
consumes CPU.

Assuming the maximum number of clients is not exceeded, it is likely that a CPU
or storage (RAM) constraint will be encountered when using nonpersistent
messages. A combination of the number of clients, the message size, message
rate and amount of RAM indicates the outcome.

Table 10-2 Non-persistent messaging

10.3.4 One-phase commit optimization
Using a two-phase commit transaction incurs a performance overhead. However,
if applicable, WebSphere will optimize this by using one-phase commit where
possible. When a transaction is due to be committed, the WebSphere transaction
coordinator will check to see if, in fact, a transaction is being performed across
two resources. If only one resource is being used, then it will automatically
perform a one-phase commit (1-PC) and so optimize transaction performance.

Message Size Total round trips per second

2K Bytes 25 - 47

20K Bytes 19 - 21

50K Bytes 14 - 14

Message size Total round trips per second

2 KB 78 - 300

20 KB 66 - 140

50 KB 56 - 89
216 Self-Service Applications using IBM WebSphere V5.0 and IBM MQSeries Integrator

10.3.5 Caching WebSphere MQ JMS objects
It is likely that your application will do more than just write one message to a
message queue. Applications that can cache some JMS objects in the beans
would provide some performance enhancements. If you are intending to do this,
then you need to be aware that some of the objects are not thread safe.

Table 10-3 gives the thread safety of JMS objects.

Table 10-3 JMS objects

10.3.6 Message-driven beans performance considerations
Message-driven beans are deployed as clients to a particular topic or queue that
always plays the role of a message consumer. There is no client view to a
message-driven bean, meaning that there are no home and remote interfaces. A
message producer writes to a topic or queue and has no knowledge of the fact
that a message-driven bean is acting as a message consumer. This leads to
loose coupling between JMS-based systems, allowing for more flexibility in
assembling a distributed computing environment.

The life cycle of a message-driven bean corresponds to the lifespan of the EJB
server in which it is deployed. Since message-driven beans are stateless, bean
instances are typically pooled by the EJB server and retrieved by the container
when a message becomes available on the topic or queue for which it is acting
as a message consumer. The container creates a bean instance by invoking the
newInstance() method of the bean instance class object. After the instance is
created, the container creates an instance of javax.ejb.MessageDrivenContext
and passes it to the bean instance via the setMessageDrivenContext() method.
The bean instance is then placed in the pool and is available to process
messages.

JMS Object Thread Safe

Connection Factory Yes

Connection Yes

Queue / Topic Yes

Session No

Message Producer No

Message Consumer No

Message No
 Chapter 10. Performance and availability 217

Message-driven beans - threading and concurrency
A message-driven bean instance is assumed to execute in a single thread of
control, which greatly simplifies the bean developer's task. The EJB server will
guarantee this behavior. In addition, the EJB server may provide a mode of
operation that allows multiple messages to be handled concurrently by separate
bean instances. This deployment option uses “expert level” classes defined in
the JMS specification. The JMS provider is not required to provide
implementations for these classes, so the EJB server may not be able to take
advantage of them with every JMS implementation. Using these classes involves
a trade-off between performance and serialization of messages delivered to the
server.

10.4 High availability with WebSphere MQ
Clusters are not a new concept to IT. We have had High Availability Cluster
Multi-Processing (HACMP) clusters for some time now, and most IT shops
design most of their systems/applications to provide high availability to their
users so that no server or service is unavailable at any given time. The
Distributed Computing Environment (DCE) accomplishes this same availability
using the notion of “cells” and a naming service. A DCE service can be located
on multiple host systems within a DCE cell. Client applications can access or
bind to these services in one of three ways:

� Automatic allows the Remote Procedure Call (RPC) library to find the host
and service to handle your request.

� Implicit will allow the client application some control over where the service is
selected.

� Explicit allows the client application full control over the host and service for
each RPC call made.

Cluster
Clustering in its simplest form means logically grouping two or more components
and making them appear as one to a consumer of the components. There are
two types of clustering available to provide high availability solutions: shared
cluster and shared-nothing cluster.

Shared cluster
A shared cluster generally involves creating redundant, shareable components
for the purpose of high availability, fault tolerance and load balancing. Typically,
system resources that can be shared include disk storage and CPU/applications.
When disk storage is clustered, the operating system must manage locking
conditions across the CPUs to maintain the integrity of the data being accessed.
218 Self-Service Applications using IBM WebSphere V5.0 and IBM MQSeries Integrator

This is no simple task, and is the reason many vendors provide only
shared-nothing clustering solutions.

Shared-nothing cluster
A shared-nothing cluster (such as Microsoft’s Cluster Server) does not share any
components, but usually involves replication of data (in a timely manner) that can
be used by a hot standby system/application. In this scenario, clustering provides
fail-over capabilities, but not load-balancing.

Clustered applications in a shared-nothing environment are a little different than
their shared cluster counterparts. Since no common data is shared among the
applications, each instance of the application has access to a replicated copy of
configuration and/or production data. WebSphere MQ clustering works on this
concept of replicated data. WebSphere MQ object definitions are stored in a
repository queue and replicated, either in full or partially, to replication partners
known as repository queue managers.

Clustering versus distributed queuing
Clustering offers several benefits over distributed queuing. By clustering and
sharing data, the WebSphere MQ network becomes more dynamic and more
manageable. As the WebSphere MQ network grows, the risk of errors increases,
and the flexibility decreases. With clustering however, the risk of errors can be
greatly reduced, while maintaining the flexibility to modify your configuration on
the fly.

Clustering also provides a simple way to provide fault-tolerance and high
availability. The product provides built-in, customizable logic for routing
messages to destination queues. You can use the default method for message
distribution, or create customized “workload exits” for advanced routing
algorithms.

In a distributed queuing architecture, this logic has to be coded into the
applications that are sending the messages. In addition, error-handling routines
need to be developed to manage the condition where one or more queue
managers become unavailable. Furthermore, additional code is needed to
recognize when these unavailable queue managers become available once
again.

WebSphere MQ clustering will dynamically create and destroy certain objects as
needed, further increasing the ease of management. Specifically, the channel
definitions to/from cluster queue managers are created automatically - however,
the first channel pair must be defined manually. These are known as Cluster
Sender (CLUSSDR) and Cluster Receiver (CLUSRCVR) channels. As with all
WebSphere MQ implementations, all channels are uni-directional and therefore
require this pairing. Perhaps the best feature of WebSphere MQ clustering is that
 Chapter 10. Performance and availability 219

existing applications do not need to be modified in order to benefit from the
features of clustering. The entire cluster configuration is handled at the
administration layer - entirely transparent from users and applications.

10.4.1 Overview of WebSphere MQ cluster components
In this section, we describe WebSphere MQ cluster components. Figure 10-1 on
page 221 shows the components of a cluster called CLUSTER.

� In this cluster there are three queue managers: QM1, QM2, and QM3.

� QM1 and QM2 host repositories of information about the queue managers in
the cluster. They are referred to as full repository queue managers. The
repositories are represented in the diagram by the shaded cylinders.

� QM2 and QM3 host some queues that are accessible to any other queue
manager in the cluster. These are called cluster queues.

� As with distributed queuing, an application uses the MQPUT call to put a
message on a cluster queue at any queue manager. An application uses the
MQGET call to retrieve messages from a cluster queue on the local queue
manager.

� Each queue manager has a definition for the receiving end of a channel
called TO.qmgr on which it can receive messages. This is a cluster-receiver
channel. A cluster-receiver channel is similar to a receiver channel used in
distributed queuing, but in addition to carrying messages this channel can
also carry information about the cluster.

� Each queue manager also has a definition for the sending end of a channel,
which connects to the cluster-receiver channel of one of the full repository
queue managers. This is a cluster-sender channel. In Figure 10-1 on
page 221, QM1 and QM3 have cluster-sender channels connecting to
TO.QM2. QM2 has a cluster-sender channel connecting to TO.QM1. A
cluster-sender channel is similar to a sender channel used in distributed
queuing, but in addition to carrying messages this channel can also carry
information about the cluster. Once both the cluster-receiver end and the
cluster-sender end of a channel have been defined, the channel starts
automatically.
220 Self-Service Applications using IBM WebSphere V5.0 and IBM MQSeries Integrator

Figure 10-1 Cluster of queue managers

Cluster workload management algorithm
An application running on QM1 needs to put a message to Q1. But which queue
will be the target? In this case, Q1 on QM1 will always be used. WebSphere MQ
clustering uses a workload management algorithm, which operates according to
the following rules:

� If a local queue exists, the message will always be sent to the local queue.
That is, a queue managed by the same queue manager that is putting the
message.

� If multiple instances of the queue are available, but only on non-local queue
managers, then a round robin approach is used. The state of each sender
channel, as well as the priority associated with the channel (NETPRTY
channel attribute) is used in determining which queue is selected first.

� If an attempt fails to put the message to the selected target queue, each
alternate target is attempted in succession.

� If all target queues fail, then the message is sent to the deal letter queue.

TO QM1

TO QM2

TO QM3

Cluster

Cluster
 Chapter 10. Performance and availability 221

Cluster workload exits
In addition to the workload management algorithm, you can customize how
workload is distributed using cluster workload exits. There are many reasons you
may need to customize. For example:

� If you need to determine which channels use a high-speed connection in
order to favor that channel.

� Perhaps application performance is your primary concern and you want to
send messages to the least busy processor.

� What if your data is partitioned? You may have the same application running
on QM1 and QM2, but each instance is responsible for a certain range of
data, like customer identifier. Your workload exit could examine the message
data first, and then route to the application that handles that specific
customer.

� Perhaps the previous applications are designated by a quality of service
(QOS) and high-value customer requests need to be routed to the system
running the more reliable or faster instance of the application.

Cluster workload exits are called at open or put time. That is, when the sending
application calls MQPUT, MQPUT1 or MQOPEN.

10.4.2 WebSphere MQ simplified management
This section gives a general management practices for WebSphere MQ
regardless of operating system. Any WebSphere MQ administrator will agree
that managing MQ objects in a complex network can be very cumbersome,
especially without a third-party management tool such as Candle Command
Center or Tivoli’s MQ. The fewer the objects, the easier it is to manage both a
static MQ network and a growing one.

Including remote queue definitions, a simple WebSphere MQ network with four
queue managers with two local queues would require a minimum of 68 objects to
be defined, broken down as:

� 3 sender channels per queue manager (12 total)
� 3 receiver channels per queue manager (12 total)
� 3 transmission queues per queue manager (12 total)
� 2 local queue definitions per queue manager (8 total)
� 6 remote queue definitions per queue manager (24 total)

Note: Only one cluster workload exit can be defined for a given queue
manager.
222 Self-Service Applications using IBM WebSphere V5.0 and IBM MQSeries Integrator

In a clustered environment, the number of objects to be defined is reduced to 16.
This is because only one cluster sender and cluster receiver channel is needed,
and no transmission queues or remote queue definitions are necessary.

Therefore the only objects required are:

� 1 cluster sender channel per queue manager (4 total)
� 1 cluster receiver channel per queue manager (4 total)
� 2 local queue definitions per queue manager (8 total)

With this type of configuration, the risk of making errors in defining transmission
queues and remote queue definitions is eliminated.
 Chapter 10. Performance and availability 223

224 Self-Service Applications using IBM WebSphere V5.0 and IBM MQSeries Integrator

Part 3 Implementation

Part 3
© Copyright IBM Corp. 2003. All rights reserved. 225

226 Self-Service Applications using IBM WebSphere V5.0 and IBM MQSeries Integrator

Chapter 11. Technical scenarios

Two scenarios were designed to run the sample application provided with this
book. The scenarios for a development environment and for a runtime
environment are documented in this chapter.

Information about the application from a developers point of view can be found in
6.1.3, “Sample application” on page 99. This chapter will concentrate on runtime
environment.

11
© Copyright IBM Corp. 2003. All rights reserved. 227

11.1 Application flow
The following two sections describe the steps that are performed by the system
during the two process:

� Order placement, the customer places an order.

� Order pickup, the customer comes back and checks for the order; it is a step
prior to order fulfillment.

Order placement
1. The customer goes to the IV Corp Web site to place an order, selects an item,

and sets the amount, then submits the order.

2. The front-end application, that is responsible for the presentation and
interaction with the back-end system, sends a message to the back-end
application with the order details.

3. A message-driven bean at the back-end application receives the message.
The order consists of one item, a color. The application generates a complex
order from this item by breaking it down to sub-components, it calculates the
color components (red, green, blue) for the requested color.

4. The complex message is then sent to the integration node.

5. The integration node decomposes the message, stores each
sub-components in a database under the same order ID, then sends out
sub-orders to the suppliers.

6. The supplier side is simulated with a simple application in this sample
scenario. The application receives the order, and replies accordingly. The
application simulates all three suppliers: red, green, blue color suppliers.

7. The replies from the suppliers are sent back to the integration node, where
each reply is stored in the database where the original sub-component orders
were registered.

Order pickup
1. The customer goes to the IV Corp Web site to pick up an order, provides an

order number, and submits the form.

2. The front-end application sends a message to the back-end, which forwards it
to the integration node. The integration node collects the sub-orders with the
supplier replies from the database and composes a complex message, with
the order reply.

3. The reply is sent back to the back-end, then forwarded to the front-end where
the response page is generated.
228 Self-Service Applications using IBM WebSphere V5.0 and IBM MQSeries Integrator

11.2 System setup
The runtime environment used to prove the Runtime pattern consisted of the
following:

1. A Web application server was used to host the front-end application. This
portion of the application provides the user interface and initiates the
back-end operations.

2. A Web application server was also used to host the back-end application.
This application provides the order processing application logic.

3. An integration node hosts message flows. These flows are responsible for
decomposing complex messages, routing messages to the appropriate
back-end system, and then recomposing the incoming messages into a
complex response.

4. A back-end node hosts the supplier application. This application is a
stand-alone Java application, simulating multiple suppliers to supply goods
for the enterprise to fulfill the incoming orders.

The applications use different databases for operation:

1. The back-end application uses the VENDOR database to store order details.

2. The integration application uses the HUB database to keep track of the
decomposed orders for future re-composition.

3. The integration server also requires some databases for normal operation.

11.2.1 Products used to prove the scenarios
The development environment is a single-machine system, where you will have
the integrated development environment (WebSphere Studio) and all the
external runtime components for testing purposes (DB2, WebSphere MQ,
WebSphere MQ Integrator).

The runtime environment is a multi-system environment with multiple systems
and heterogeneous operating systems on them.

The following products are needed for the scenarios:

� WebSphere Application Server V5

The WebSphere Application Server provides the application server runtime
for the whole solution. It runs two separate applications, one for the front-end
and one for the back-end.

The front-end application is a classic Web application that servers as a user
interface for back-end operations.
 Chapter 11. Technical scenarios 229

The back-end application is a simulated order processing system,
implemented by using EJBs.

� WebSphere MQ V5.3

WebSphere MQ provides the messaging layer for the whole solution. It is
utilized by all the components: application server, integration server,
standalone application.

� WebSphere MQ Integrator Broker 2.1 with CSD 04

The Integrator implements most of the major functions described in this book:
decomposition, routing, re-composition.

� DB2 Universal Database Workstation

DB2 is the database server for the solution. The applications use multiple
databases and they are hosted either locally or remotely on a DB2 database
server.

11.2.2 Development environment
The development environment is a one-machine system with all the necessary
tools and runtime components for application testing and debugging.

Note: WebSphere Application Server V5 has a built-in embedded
messaging server, based on the WebSphere MQ runtime. This embedded
messaging provides messaging capabilities only between application
servers. When the application has to communicate with non-WebSphere
application servers or other applications, using MQ resources, the
embedded messaging becomes a limitation.

In our sample application there is a communication channel built between
the front-end application and the back-end application using JMS over MQ.
It could be implemented using embedded messaging, although all the rest
of the solution demands external messaging. Therefore the whole solution
is built on top of the external messaging provider, WebSphere MQ.
230 Self-Service Applications using IBM WebSphere V5.0 and IBM MQSeries Integrator

Figure 11-1 Development environment

The installation of the system does not require any special step. Follow the
product documentation for each component during installation. The
recommended installation order for the components is:

1. Windows 2000 Workstation

2. Windows 2000 Service Pack 3 and other critical updates

3. DB2 UDB 7.2 Workstation or Enterprise Edition with Fixpak 5 or higher.

Recommended install directory: c:\sqllib

4. WebSphere Studio Application Developer V5

Recommended install directory: c:\wsad5

5. WebSphere MQ 5.3 with Java libraries

Recommended install directory: c:\ibm\webspheremq

6. WebSphere MQ Integrator V2.1 Broker with the components: Broker,
Configuration Manager, Control Center.

Recommended install directory: c:\ibm\wmqi

WebSphere MQ Integrator V2.1 Broker CSD04

11.2.3 Runtime environment
The runtime environment is a four-machine system, where the solution
components are distributed between multiple servers and even multiple
platforms.

Figure 11-2 on page 232 depicts the systems involved in the solution with the
operating system and installed components on them. One of the application
servers and the database server is running an AIX 5L™ operating system, while

 Windows 2000 Workstation + SP3
WebSphere Studio Application Developer V5
DB2 UDB 7.2 + FP5
Websphere MQ 5.3
WebSphere MQ Integrator V2.1 + CSD04

Development workstation
DEVSYS
 Chapter 11. Technical scenarios 231

the other systems are running Windows 2000 Server. Varying the systems is not
necessary, but we did that to prove that the solution can run on multiple platforms
and to show the differences in the configuration.

Figure 11-2 Runtime environment

The installation of the system does not require any special step. Follow the
product documentation for each component during installation. The
recommended installation order for each system follows.

Database server (DBSRV01)
1. AIX 5L

2. AIX 5L Maintenance Level 2

3. DB2 UDB 7.2 Workstation or Enterprise Edition with FixPak 5 or higher.

Recommended install directory: c:\sqllib

Front-end application server (APPSRV01)
1. Windows 2000 Server

2. Windows 2000 Service Pack 3 and other critical updates

 Windows 2000 Server + SP3
WebSphere Application Server V5
Websphere MQ 5.3

 AIX 5L ML 2
WebSphere Application Server V5
Websphere MQ 5.3

 Windows 2000 Server + SP3
Websphere MQ 5.3
WebSphere MQ Integrator 2.1 + CSD04
DB2 UDB 7.2 + FP5

Front-end application
APPSRV01

Back-end application
APPSRV02

Integration Server
INTSRV01

 AIX 5L ML 2
DB2 UDB 7.2 + FP5

Database server

DBSRV01

 Windows 2000 Workstation + SP3
Java 1.3 Runtime Environment

Supplier application
SUPPLIER01
232 Self-Service Applications using IBM WebSphere V5.0 and IBM MQSeries Integrator

3. WebSphere MQ 5.3 with Java libraries

Recommended install directory: c:\ibm\webspheremq

4. WebSphere Application Server V5

Do not install the application server samples and the embedded messaging
components for the server.

Recommended install directory on Windows: c:\websphere\appserver

Back-end application server (APPSRV02)
1. AIX 5L

2. AIX 5L Maintenance Level 2

3. WebSphere MQ 5.3 with Java libraries

Recommended install directory: c:\ibm\webspheremq

4. WebSphere Application Server V5

Do not install the application server samples and the embedded messaging
components for the server.

Recommended install directory on Windows: c:\websphere\appserver

Integration server (INTSRV01)
1. Windows 2000 Server

2. Windows 2000 Service Pack 3 and other critical updates

3. DB2 UDB 7.2 Workstation or Enterprise Edition with FixPak 5 or higher.

Recommended install directory: c:\sqllib

4. WebSphere MQ 5.3 with Java libraries

Recommended install directory: c:\ibm\webspheremq

5. WebSphere MQ Integrator V2.1 Broker with the components: Broker,
Configuration Manager, Control Center.

Recommended install directory: c:\ibm\wmqi

WebSphere MQ Integrator V2.1 Broker CSD04

Supplier application (SUPPLIER01)
1. Windows 2000 Workstation

2. Windows 2000 Service Pack 3 and other critical updates

3. WebSphere MQ 5.3 with Java libraries

Recommended install directory: c:\ibm\webspheremq
 Chapter 11. Technical scenarios 233

4. IBM Java V1.3 Runtime environment.

Optional - Network Deployment Manager (DMGR01)
Organizing the servers into a cell is optional. In this case the two application
servers, the front-end server and back-end server, are attached to the same cell,
managed by a Network Deployment Manager.
234 Self-Service Applications using IBM WebSphere V5.0 and IBM MQSeries Integrator

Chapter 12. Configuring WebSphere

This chapter describes the necessary steps to configure WebSphere Application
Server V5 to use a messaging provider.

The step-by-step instructions apply to the following scenarios:

� Using WebSphere Application server with the embedded JMS provider

� Using WebSphere Application server with an external WebSphere MQ
messaging provider

12
© Copyright IBM Corp. 2003. All rights reserved. 235

12.1 Defining JMS resources to WebSphere
As required by the J2EE 1.3 standard, WebSphere Application Server 5.0
provides an embedded JMS provider.

This embedded JMS provider is fully configured using the WebSphere
Application Server Administrative Console. In this section, we show you how to
define queue connection factories and queues using the Administrative Console.

Three steps are required to define a queue in the embedded JMS provider:

1. Define a queue connection factory.

2. Define a queue destination.

3. Define the queue in the JMS server.

4. Define a listener port for queues that are reusing messages on behalf of the
application server.

12.1.1 Determining the correct scope
In WebSphere the resources, including the connection factories and
destinations, have a scope where they are defined. The scope determines the
visibility of the particular resource for other server processes. The following
scopes are available:

� Server

Server represents the application server in WebSphere. When a resource is
on a server scope, it is only visible for the server it was defined for.

� Node

Node represents the node where the application server(s) are running. One
node, eventually one physical machine, can run multiple application servers.
When a resource is defined on the node scope level, the resource is visible
for each application server on that given node.

� Cell

Cell represents a collection of application servers, that can be from multiple
nodes. When a resource is defined at the cell level, the resource is visible for
all the application servers in that given cell.

When defining a resource, the first step is to point out the scope for the resource.
For example, the WebSphere Administrative Console provides a list of the three
scopes as an option. When you have multiple servers or nodes in your runtime,
you will have to select the actual server or node where you want the resource
defined.
236 Self-Service Applications using IBM WebSphere V5.0 and IBM MQSeries Integrator

12.2 Using the embedded JMS server
This section provides details about configuring WebSphere Application Server to
use WebSphere MQ.

12.2.1 Defining a queue connection factory
The following steps show how to define a queue connection factory in
WebSphere.

1. Start the WebSphere administrative console and log in.

2. To define a queue connection factory, select Resources -> WebSphere JMS
Provider.

Figure 12-1 WebSphere JMS Provider configuration window

3. In the WebSphere JMS Provider configuration window, select the scope
where you want to create the new queue connection factory and queue and
click Apply.

4. Then click WebSphere Queue Connection Factories. This takes you to the
queue connection factories window, shown in Figure 12-2 on page 238.
 Chapter 12. Configuring WebSphere 237

Figure 12-2 WebSphere Queue Connection Factories window

5. In this window, you can create, modify, or delete queue connection factories
defined for the WebSphere JMS provider. To create a new queue connection
factory click New, this will take you to the queue connection factory
configuration window, as shown in Figure 12-3 on page 239.
238 Self-Service Applications using IBM WebSphere V5.0 and IBM MQSeries Integrator

Figure 12-3 Configuration window for a queue connection factory

6. In this window, we can specify the following settings for the queue connection
factory:

– Scope: The scope of the queue connection factory identifies the location
for the configuration file. This value is static and depends on the server
selection made in the WebSphere JMS Provider window.

– Name: This is the required display name for the connection factory.

– JNDI Name: This is the resource name, which is used to locate the queue
connection factory in the JNDI context.

– Description: An optional description for the resource.
 Chapter 12. Configuring WebSphere 239

– Category: An optional category string that can be used to classify or
group the resource.

– Node: The WebSphere node name of the administrative node where the
JMS server runs for this connection factory. Connections created by this
factory connect to that JMS server

– Component-managed Authentication Alias: References authentication
data for component-managed sign-on to the resource.

– Container-managed Authentication Alias: References authentication
data for container-managed sign-on to the resource.

– XA Enable: This attribute indicates whether the JMS provider is
XA-compliant or not.

7. Click OK and save the configuration before continuing.

12.2.2 Defining a queue destination
The following section provides the steps for defining a new queue destination.

1. From the WebSphere JMS Provider window, click WebSphere Queue
Destinations. You will see the following window.

Figure 12-4 WebSphere Queue Destinations window

2. Similar to the Queue Connection Factories window, here you can create,
modify or delete queue destinations defined in the WebSphere JMS provider.
To create a new queue destination, click New. This will take you to the queue
destination configuration window, shown in Figure 12-5 on page 241.

Important: In order to have changes applied to the server configuration, the
changes must be saved, using the Save link that appears at the top of any
window after a change has been made.
240 Self-Service Applications using IBM WebSphere V5.0 and IBM MQSeries Integrator

Figure 12-5 Configuration for a queue destination

3. In this window, you can set the following fields for the queue definition:

– Scope: The scope of the queue destination identifies the location for the
configuration file. This value is static and depends on the server selection
made in the WebSphere JMS Provider window.

– Name: This is the required display name for the queue destination. This
name is used later when defining the queue on the JMS server.

– JNDI Name: This is the resource name, which is used to locate the queue
in the JNDI context.
 Chapter 12. Configuring WebSphere 241

– Description: An optional description for the resource.

– Category: An optional category string that can be used to classify or
group the resource.

– Persistence: This parameter lets you specify whether the messages sent
to the destinations are persistent, non-persistent, or defined by the
application.

– Priority & Specified Priority: This defines the message priority for the
destination if the application is defined or specified. In the last case, the
Specified Priority parameter must be a number in the range 0 through 9,
where 0 is the lowest priority and 9 the highest priority.

– Expiry & Specified Expiry: This defines the conditions when a message
sent to this destination will expire. It accepts three possible values:

• Application defined: the JMS client will be responsible for specifying
the expiry conditions for every message sent to this destination.

• Unlimited: messages to this destination will not expire.

• Specified: messages to this destination will expire after the amount of
milliseconds specified in the Specified Expiry parameter.

12.2.3 Define the queue for the JMS server
The following steps show the queue definition for the embedded JMS server in
WebSphere V5:

1. Start the WebSphere Administrative Console and log in.

2. Queues (as well as topics) are finally defined in the JMS server component.
To define the queue, click Servers -> Application Servers.

3. Select the server you want to create the queue for, for example select
server1.

4. Click the Server Components link.

5. Select the JMS Server component.

6. On the following window, list the queue names you want to use with the JMS
server.
242 Self-Service Applications using IBM WebSphere V5.0 and IBM MQSeries Integrator

Figure 12-6 Embedded JMS Server configuration window

7. You might also want to change the initial state to Started in order to start the
embedded JMS server the next time you start the application server.

8. Click OK, then save the configuration.

12.3 Using WebSphere MQ V5.3
WebSphere Application V5 can also use WebSphere MQ as a JMS provider. The
WebSphere administrative console gives an interface similar to the one provided
for the embedded JMS provider to define WebSphere MQ resources.

Before an external WebSphere MQ JMS provider can be used, we must verify
that the MQJMS_LIB_ROOT variable is set in the environment. This can be done
in the WebSphere Variables configuration window.

12.3.1 Defining a queue connection factory
To configure the WebSphere MQ JMS provider, click Resources -> WebSphere
MQ JMS Provider. This will take you to the window shown in Figure 12-7 on
page 244.
 Chapter 12. Configuring WebSphere 243

Figure 12-7 WebSphere MQ JMS Provider configuration window

To create a queue connection factory, we can follow a procedure similar to the
one used with the embedded JMS provider.

Once we get to the queue connection factory configuration window, we have to
specify some additional WebSphere MQ parameters for the JMS provider, as
shown in Figure 12-8 on page 245.
244 Self-Service Applications using IBM WebSphere V5.0 and IBM MQSeries Integrator

Figure 12-8 WebSphere MQ Queue Connection Factory configuration window
 Chapter 12. Configuring WebSphere 245

In the Queue Connection Factory configuration window, we specify the following
parameters:

� Scope: The scope of the Queue Connection Factory identifies the location for
the configuration file. This value is static and depends on the server selection
made in the WebSphere JMS Provider window.

� Name: This is the required display name for the connection factory.

� JNDI Name: This is the resource name, which will be used to locate the
queue connection factory in the JNDI context.

� Description: An optional description for the resource.

� Category: An optional category string that can be used to classify or group
the resource.

� Component-managed Authentication Alias: References authentication
data for component-managed sign-on to the resource.

� Container-managed Authentication Alias: References authentication data
for container-managed sign-on to the resource.

� Queue Manager: The name of the WebSphere MQ queue manager for this
connection factory. Connections created using this connection factory
connect to that queue manager. The queue manager must be previously
defined using the WebSphere MQ Explorer.

� Host: The name of the host on which the WebSphere MQ queue manager
runs. This is required only for client connections as defined using the
Transport Type properties.

� Port: The TCP/IP port number used to connect to the WebSphere MQ queue
manager as defined in the queue manager creation process. This is required
only for client connections.

� Channel: The name of the channel used to connect to the WebSphere MQ
queue manager. This is required only for client connections.

� Transport Type: Connections to WebSphere MQ can be accomplished using
either client or inter-process bindings connection. For the client connection
the host, port and channel properties must be properly set. Inter-process
binding connection can only be used if the WebSphere MQ resides in the
same physical machine as the WebSphere Application Server.

� Model Queue Definition: The name of the model queue used by the queue
manager to create temporary queues.

� Client ID: The JMS client used for connections to the WebSphere MQ queue
manager.

� CCSID: The coded character set identifier for use with the WebSphere MQ
queue manager.
246 Self-Service Applications using IBM WebSphere V5.0 and IBM MQSeries Integrator

� Message Retention: This property makes unwanted messages stay in the
queue. Otherwise, the messages will be dealt with according to their
disposition options.

� XA Enable: This attribute indicates whether the JMS provider is XA-compliant
or not.

Additionally, we can configure the connection and session pools for the
WebSphere Application Server.

Once configuration is done for the Connection Factory properties, click Apply to
make the changes take effect and then save the configuration.

12.3.2 Define a queue destination
To create queue destinations for WebSphere MQ, we can use the WebSphere
MQ Queue Destinations link from the WebSphere MQ JMS Provider window. In
the Queue Destinations list window, you can create, modify, or delete queue
destination configurations. To add a new queue destination, click New, and it will
take you to the following window.
 Chapter 12. Configuring WebSphere 247

Figure 12-9 WebSphere MQ JMS Provider Queue configuration window
248 Self-Service Applications using IBM WebSphere V5.0 and IBM MQSeries Integrator

In the Queue Destination configuration window, we specify the following
parameters for the queue:

� Scope: The scope of the Queue Destination identifies the location for the
configuration file. This value is static and depends on the server selection
made in the WebSphere MQ JMS Provider window.

� Name: The required display name for the queue destination. This name is
used when defining the queue on the JMS server.

� JNDI Name: The resource name, this name is used to locate the Queue in
the JNDI context.

� Description: An optional description for the resource.

� Category: An optional category string that can be used to classify or group
the resource.

� Persistence: It specifies whether the messages sent to the destinations are
persistent, non-persistent, or defined by the application.

� Priority & Specified Priority: It defines the message priority for the
destination of the application defined or specified. The Specified Priority
parameter must be a number in the range 0 through 9, where 0 is the lowest
priority and 9 the highest priority.

– Expiry & Specified Expiry: This defines the conditions when a message
sent to this destination will expire. It accepts three possible values:

• Application defined: the JMS client will be responsible for specifying
the expiry conditions for every message sent to this destination.

• Unlimited: messages to this destination will not expire.

• Specified: messages to this destination will expire after the amount of
milliseconds specified in the Specified Expiry parameter.

� Base Queue Name: The name of the queue to which messages are sent or
received.

� Base Queue Manager Name: The name of the WebSphere MQ queue
manager where the base queue resides.

� CCSID: The coded character set identifier for use with the WebSphere MQ
queue manager.

� Native Encoding: If checked, the native encoding for the queue manager is
used. Otherwise the Integer, Decimal and Floating Point Encoding settings
will be used.

� Integer Encoding: It defines whether the integer encoding is Normal or
Reversed.

� Decimal Encoding: It defines whether the integer encoding is Normal or
Reversed.
 Chapter 12. Configuring WebSphere 249

� Floating Point Encoding: It defines the type of floating point encoding.

� Target Client: It defines whether the receiving application is JMS-compliant
or a traditional WebSphere MQ application.

If the connection to this queue destination is created without a queue connection
factory, the following settings are required:

� Queue Manager Host: The name of the host for the queue manager where
the queue destination is created.

� Queue Manager Port: The number of the port used by the queue manager
on which the queue is defined.

� Server Connection Channel Name: The name of the channel used to
connect to the queue manager.

� User ID: The user ID used to connect to the queue manager.

� Password: The password for this user ID.

If the WebSphere MQ Queue is a local queue, some queue settings can be
changed using the WebSphere Administration Console by clicking the MQ
Config link at the bottom of the Queue Destination configuration window.
250 Self-Service Applications using IBM WebSphere V5.0 and IBM MQSeries Integrator

Figure 12-10 WebSphere MQ queue configuration window
 Chapter 12. Configuring WebSphere 251

In this window, you configure the following WebSphere MQ queue settings:

� Base Queue Name: The name of the WebSphere MQ queue on the queue
manager, corresponding to the queue destination.

� Base Queue Manager Name: The name of the WebSphere MQ queue
manager where the queue resides.

� Queue Manager Host: The name of the host for the queue manager where
the destination queue is defined.

� Queue Manager Port: The port number for the queue manager on which the
destination queue is defined.

� Server Connection Channel Name: The name of the channel to connect to
the queue manager.

� User ID: The user ID to connect to the queue manager.

� Password: The user password to connect to the queue manager.

� Name: The resource queue name used for display purposes.

� Description: An optional description of the queue.

� Inhibit Put: It defines whether put operations are allowed for this queue.

� Persistence: It defines whether all messages sent to the destination are
persistent, non-persistent, or have their persistence defined by the
application.

� Cluster Name: The name of the cluster where the queue manager belongs.

� Cluster Name List: The name of the cluster name list where the queue
manager belongs.

� Default Binding: The default binding to be used when the queue is defined
as a cluster queue.

� Inhibit Get: It defines whether or not get operations can be performed on this
queue.

� Maximum Queue Depth: The maximum number of messages allowed on the
queue.

� Maximum Message Length: The maximum length, in bytes, of the
messages on this queue.

� Shareability: It defines whether multiple applications can get messages from
this queue simultaneously.

� Input Open Option: The default share option for applications opening this
queue for input.
252 Self-Service Applications using IBM WebSphere V5.0 and IBM MQSeries Integrator

� Message Delivery Sequence: The order in which messages are delivered
from the queue in response to get requests. There are two possible options:
FIFO or Priority.

� Backout Threshold: The maximum number of times that a message can be
backed out. If this threshold is reached, the message is requeued on the
backout queue.

� Backout Requeue Name: The name of the backout queue.

� Harden Get Backout: It defines whether hardening should be used to ensure
that the count of the number of times that a message has been backed out is
accurate.

12.3.3 Define the queue for WebSphere MQ
Once the queue connection factory and queue destination are defined for the
WebSphere Application Server, you will need queue manager(s) and queue(s)
defined for WebSphere MQ. You will probably have queue managers and
queues created earlier than resources defined for WebSphere Application
Server.

You can create these objects for WebSphere MQ using the MQ Explorer
application on the Windows platform, or you can use the MQSC command line
application.

12.4 Deploying message-driven beans in WebSphere
V5.0

Message-driven beans have to be linked to the corresponding queue or topic it
will be listening to. This is accomplished in WebSphere Application Server by a
ListenerPort definition. A ListenerPort contains information regarding the
connection factory and queue (or topic) the MDB will be linked to. Multiple MDBs
can be listening to a single listener port. There can only be one listener port by
queue or topic defined for the server.

The listener port is defined using the WebSphere Application Server V5.0
Administrative Console, as follows:

1. Click Server -> Application Servers and select the server where the listener
port is going to be defined. This will take you to the Application Server
configuration window, as shown in the following figure.
 Chapter 12. Configuring WebSphere 253

Figure 12-11 Application Server Configuration window

2. From this window, click the Message Listener Service link. This will take you
to the following window.
254 Self-Service Applications using IBM WebSphere V5.0 and IBM MQSeries Integrator

Figure 12-12 Message Listener Service Configuration window

3. On this window you have access to the Listener Ports definition window, the
thread pool settings for the service, and additional custom properties. Click
the Listener Ports link, which will take you to the Listeners Ports list window,
as shown in the following figure.

Figure 12-13 Listener Ports list window

In this window we create, modify and delete listener ports. Additionally, we can
start or stop a specific listener port.

4. To create a new listener port, click New. This will take you to the Listener Port
configuration window shown in Figure 12-14 on page 256.
 Chapter 12. Configuring WebSphere 255

Figure 12-14 Listener Port configuration window

Configure the listener port parameters:

� Name: The name for the listener port. This name will be use in the
deployment of a enterprise application to link an MDB with its corresponding
listener port.

� Initial State: Started or stopped.

� Description: Optional description for the item.

� Connection factory JNDI name: JNDI resource name for the connection
factory.

� Destination JNDI name: JNDI resource name for the destination.

� Maximum sessions: The maximum number of concurrent sessions.

� Maximum retries: The maximum number of retries to deliver a message to
an MDB before the listener stops.

� Maximum messages: Maximum number of messages processed at one
time.
256 Self-Service Applications using IBM WebSphere V5.0 and IBM MQSeries Integrator

5. Click OK and save the configuration.

12.5 Testing, logging, debugging
Log files are the primary target for testing and debugging. Applications should
use the standard log files within the applications to provide additional information
in runtime. The runtime environment itself provides log information that can help
to ensure the proper operation of the runtime environment.

The WebSphere Application Server’s log files can be found in the
<WebSphere_root>/logs directory. In this directory each managed process
(application server, JMS server, Node agent) has a sub-directory where the
processes put their log files.
 Chapter 12. Configuring WebSphere 257

258 Self-Service Applications using IBM WebSphere V5.0 and IBM MQSeries Integrator

Chapter 13. Configuring WebSphere MQ
and MQ Integrator

This chapter provides details about configuring WebSphere MQ and WebSphere
MQ Integrator.

The steps provided in the chapter apply to any particular solution similar to the
one described in the sample scenario.

13
© Copyright IBM Corp. 2003. All rights reserved. 259

13.1 WebSphere MQ objects
WebSphere MQ administration tasks include creating, starting, altering, viewing,
stopping, and deleting WebSphere MQ objects, including:

� Messages
� WebSphere MQ queues
� WebSphere MQ queue managers and associated listener ports
� Channels
� Queue manager clusters
� Namelists

These object types are summarized in the following text.

Messages
Messages consist of a payload, which is the content to be transported, and one
or more headers that contain metadata, which describes the message.

Queues
A queue is obviously a central concept in WebSphere MQ. A queue is more than
a location for temporary storage or a gateway for delivery to a certain endpoint. A
queue usually is also the command to process the queued contents in a
particular way. From the perspective of a client application, the queue and its
symbolic name represents the whole process.

WebSphere MQ has four basic types of queue definitions:

� Local queues, used to store and retrieve messages.

� Remote queues are local queues of a remote queue manager. You can only
write to remote queues.

� Alias queues are definitions used to hide the actual names of local or remote
queues from client applications.

� Transmission queues are specialized local queues. These transmission or
xmit queues temporarily store messages put to remote queues until these
messages have been delivered to their destination.

Queue manager
The WebSphere MQ server is called the queue manager. Applications connect to
a queue manager in order to make use of the messaging and queuing service,
either as a producer or as a consumer of messages. WebSphere MQ can run
several queue managers on a single machine. If so, the different queue

Important: There is no way to read from a remote queue.
260 Self-Service Applications using IBM WebSphere V5.0 and IBM MQSeries Integrator

managers will be independent of each other, each of them establishing a
namespace of its own.

Listener ports
The basic connectivity needed to connect to other queue managers is provided
by one or more listener processes associated with the queue manager. It is
possible to handle all traffic of a single queue manager through one listener port.
Listeners have to be dedicatedly assigned to one particular queue managers.
There is no way for a queue manager to share a listener port.

Connecting client applications
There are two different ways for a client application to use a queue manager:
binding mode and client mode.

� Binding mode is available locally on the same physical machine. Client
applications connect to WebSphere MQ by using original code libraries of
WebSphere MQ and thus sharing physical data store with the WebSphere
MQ Server. Binding mode provides full functionality to the application,
including distributed transactions.

� Client mode allows access to WebSphere MQ queue managers on local as
well as on remote machines. The client application establishes a synchronous
connection with the queue manager via TCP/IP. The client application can
manipulate most of the queue manager resources in the same way as in
binding mode while connected, but there is no message store at the client
side of the remote connection. Furthermore, applications connected in client
mode cannot use XA-enabled distributed transactions.

A major design consideration depends on whether there is a need to queue
messages for deferred delivery when there is temporarily no network connection
to a particular destination system. This is not possible in client mode. If deferred
delivery is an issue or if there is an unreliable network connection, for example
via dialed line, the use of local queue managers should be considered.

Note: Queue managers in security-aware environments should separate
administrative and payload to different listeners to make special internal
security checks and apply different firewall rules for each.

Restriction: Applications that need syncpoint coordination with resource
managers other than WebSphere MQ (distributed transactions) cannot
connect to WebSphere MQ in client mode.
 Chapter 13. Configuring WebSphere MQ and MQ Integrator 261

MQ channels
Queue managers communicate through channels. In general, you will need to
define a pair of channels in a connection between two queue managers. Each
definition has to be made on both endpoints of the connection to become
effective.

Figure 13-1 Queue managers connected through a channel pair

Queue manager clusters
Queue manager clusters are useful for reducing administration effort in medium
sized or large networks of queue managers, in particular when there is a
dynamic landscape.

� Writing to queues in the cluster is possible without defining remote queues,
no matter which cluster queue manager hosts the queue.

� Inter-queue manager connections are established automatically by the cluster
software after minimal configuration.

� Cluster software manages workload between instances of a queue hosted on
several systems.

A queue manager cluster does not change the application programming interface
of WebSphere MQ. Please consult the WebSphere MQ manual to learn more
about queue manager clusters. Also, refer to Chapter 10, “Performance and
availability” on page 211.

QM a

a/b
SENDER

b/a
RECEIVER

QM b

b/a
SENDER

a/b
RECEIVER
262 Self-Service Applications using IBM WebSphere V5.0 and IBM MQSeries Integrator

13.2 WebSphere MQ system management
The WebSphere MQ objects are managed by MQ administration tasks that can
be performed by using any of the following MQ interfaces:

� Control commands
� WebSphere MQ commands (MQSC)
� Programmable Command Format (PCF)
� WebSphere MQ Administration Interface (MQAI)
� WebSphere MQ Explorer (available on Windows only)
� WebSphere MQ Services Console (available on Windows only)

Control commands
You use control commands to perform operations on queue managers, command
servers, and channels. Control commands can be divided into three categories
as shown in Table 13-1.

Table 13-1 Control command categories

MQSC commands
MQSC commands are used to perform operations on queue manager objects.
They are issued using the runmqsc command. This can be done interactively from
a keyboard, or by redirecting the standard input device (stdin) to run a sequence
of commands from an ASCII text file. In both cases, the format of the commands
are the same.

WebSphere MQ Explorer
WebSphere MQ for Windows provides an administration interface called the
WebSphere MQ Explorer to perform administration tasks as an alternative to
using control or MQSC commands.

Category Description

Queue manager
commands

-Creating, starting, stopping, and deleting queue managers
and command servers

Channel commands -Starting and ending channels and channel initiators

Utility commands - Running MQSC commands
- Conversion exits
- Authority management
- Recording and recovering media images of queue
 manager resources
- Displaying and resolving transactions
- Trigger monitors
- Displaying the file names of WebSphere MQ objects
 Chapter 13. Configuring WebSphere MQ and MQ Integrator 263

The WebSphere MQ Explorer allows you to perform remote administration of
your network from a computer running Windows simply by pointing the
WebSphere MQ Explorer at the queue managers and clusters you are interested
in.

The platforms and levels of WebSphere MQ that can be administered using the
WebSphere MQ Explorer, and the configuration steps you must perform on
remote queue managers to allow the WebSphere MQ Explorer to administer
them, are outlined in 13.2.1, “Remote administration” on page 266.

Figure 13-2 WebSphere MQ Explorer

With the WebSphere MQ Explorer, you can:

� Start and stop queue managers.

� Define, display, and alter the definitions of WebSphere MQ objects such as
queues and channels.

� Browse the messages on a queue.

� Start and stop a channel.

� View status information about a channel.

� View queue managers in a cluster.

� Create a new queue manager cluster using the Create New Cluster wizard.

� Add a queue manager to a cluster using the Add Queue Manager to Cluster
wizard.

� Add an existing queue manager to a cluster using the Join Cluster wizard.
264 Self-Service Applications using IBM WebSphere V5.0 and IBM MQSeries Integrator

WebSphere MQ Services Console
The WebSphere MQ Services Console can be used to administer local or remote
WebSphere MQ for Windows servers. It also allows you to monitor alerts created
by problems in the local system.

Figure 13-3 WebSphere MQ Services Console

With the WebSphere MQ Services Console, you can:

� Start or stop a queue manager.

� Start or stop the command servers, channel initiators, trigger monitors, and
listeners.

� Create and delete queue managers, command servers, channel initiators,
trigger monitors, and listeners.

� Set any of the services to start up automatically or manually during system
start up.

� Modify the properties of queue managers. This function replaces the use of
stanzas in configuration (mqs.ini and qm.ini) files.

� Change the default queue manager.

� Modify the parameters for any service, such as the TCP port number for a
listener, or a channel initiator queue name.

� Modify the behavior of WebSphere MQ if a particular service fails, for
example, retry starting the service x number of times.

� Start or stop the service trace.
 Chapter 13. Configuring WebSphere MQ and MQ Integrator 265

13.2.1 Remote administration
WebSphere MQ Explorer and the WebSphere MQ Services Console all offer
some form of remote administration. With the create queue manager wizard of
the WebSphere MQ Explorer you can select to create a listener and a suitable
server connection channel at the same time, to enable remote administration. If
you wish to enable a pre existing queue manager please follow the guidelines
below.

The WebSphere MQ Explorer can remotely administer WebSphere MQ on the
following platforms.

Table 13-2 Remote management

The platform and command level headings of Table 13-2 refer to the platform and
command level queue manager attributes. Both must be used to determine
which system control commands are supported. You can see the platform and
command level attributes in the WebSphere MQ Explorer window, shown in
Figure 13-2 on page 264.

To remotely administer a queue manager from any of the WebSphere MQ
administration interfaces, proceed as:

1. A command server running for any queue manager being administered.
Command server is one of the services administrated through the
WebSphere MQ Services Console. From UNIX or Windows command lines,
you can start the command server issuing the following command:

strmqcsv <QueuemanagerName>

2. A suitable TCP/IP listener for every remote queue manager. This may be the
WebSphere MQ listener or the INETD daemon as appropriate.

3. A server connection channel, called SYSTEM.ADMIN.SVRCONN, on every
remote queue manager. This channel is mandatory for every remote queue
manager being administered.

4. Authentication and sufficient authorization. In a system that is uncritical in
terms of security, you might wish to allow remote administration to any remote
users by assigning an authorized user as MCAUSER of the channel. In MQI
(runmqsc) commands, be sure to mask the user name with single quotes.

alter channel (SYSTEM.ADMIN.SVRCONN) CHLTYPE(SVRCONN)
MCAUSER(‘Administrator’)

Platform Minimum Command Level

AIX and UNIX variants 221

Windows systems 201
266 Self-Service Applications using IBM WebSphere V5.0 and IBM MQSeries Integrator

13.3 Creating the WebSphere MQ Integrator databases
The WebSphere MQ Integrator Configuration Manager and broker services use
databases for administration. In our scenario we chose to create a distinct DB2
database for each component, message repository, configuration repository, and
broker persistent store.

These databases can be local to the WebSphere MQ Integrator component or
remote. We chose to put all of these databases on the integration server (broker)
node. There are performance implications to consider when deciding where to
locate the WebSphere MQ Integrator databases. In our test lab, performance
was not an issue, but in a real network, performance is one of the most important
issues.

Creating and binding databases
After creating the databases, you must bind each to the CLI package. On both
the Windows and the AIX systems we used the following DB2 commands to
create the databases and bind them.

Example 13-1 Create broker databases on Windows

create db mqsicmdb
connect to mqsicmdb
bind c:\sqllib\bnd\@db2cli.lst blocking all grant public
connect reset

create db mqsimrdb
connect to mqsimrdb
bind c:\sqllib\bnd\@db2cli.lst blocking all grant public
connect reset

create db mqsibkdb
connect to mqsibkdb
bind c:\sqllib\bnd\@db2cli.lst blocking all grant public
connect reset

Note: DB2 on AIX does not have a native DB2 Control Center, but you can
easily add remote systems, including AIX DB2 systems, to a Windows DB2
Control Center. We did this and used the Windows DB2 Control Center to give
access to MQSIBKDB to root and mqm. This was also very convenient during
testing. We could check whether our message flows were working by
inspecting the contents of the broker application databases.
 Chapter 13. Configuring WebSphere MQ and MQ Integrator 267

Granting authorities to the databases
The following privileges need to be granted for the user ID that the WebSphere
MQ Integrator service will run under to each database:

� connect
� createtab
� bindadd
� create_not_fenced

In our test lab, we used the same user ID (MQSIUSER) to create the databases
as we will use to run the WebSphere MQ Integrator service, so this is done
automatically.

If the WebSphere MQ Integrator service will be running on a different user ID
from the one used to create the database, you can use the DB2 command in
Example 13-2 to grant the proper access to the WebSphere MQ Integrator
service ID.

Example 13-2 Grant database access

connect to database
grant connect, createtab, bindadd, create_not_fenced on database to user MQSIUSER
connect reset

Registering the databases to ODBC
WebSphere MQ Integrator accesses these databases using ODBC, so they must
be registered as ODBC resources.

In Windows, this can be done using the DB2 Client Configuration Assistant.
When you open the tool, select the database and click Properties. Select
Register this database for ODBC and As a system datasource.

In AIX, you need to modify the .odbc.ini file. To do this, find the .odbc.ini file for
the user, mqsi in this case. For us this was in /var/mqsi/odbc/.odbc.ini.

You will need to add two entries for each database. For example, the following
two entries were added for the WMQIBK2 database:

[ODBC Data Sources]
MQSIBKDB=IBM DB2 ODBC Driver

[MQSIBKDB]
Driver=/home/db2inst1/sqllib/lib/db2.o
Description=MQSIBKDB DB2 ODBC Database
Database=MQSIBKDB
268 Self-Service Applications using IBM WebSphere V5.0 and IBM MQSeries Integrator

13.4 Creating the WebSphere MQ Integrator
Configuration Manager

There is one Configuration Manager per broker domain and it must run on
Windows NT or Windows 2000. It maintains configuration information in the
configuration repository, manages the initialization and deployment of brokers
and message processing operations in response to actions initiated through the
Control Center, and checks the authority of defined user IDs to initiate those
actions.

We have already defined the WebSphere MQ Integrator Configuration Manager
databases and the WebSphere MQ queue manager so the Configuration
Manager can be created.

First, make sure that the new Configuration Manager will be able to access its
databases. If the databases are on a remote system, they need to be defined to
the system that will host the WebSphere MQ Integrator Configuration Manager.
In our case, the database and the Configuration Manager reside on the same
system so nothing needs to be done. If this is not the case, the DB2 Client
Configuration Assistant or DB2 catalog commands can be used to make this
connection.

Now that we have all the underlying components installed and configured, we
can create an WebSphere MQ Integrator Configuration Manager. The
Configuration Manager is created using the mqsicreateconfigmgr command. You
can enter this from a DOS prompt, or you can use the WebSphere MQ Integrator
Command Assistant to build and execute the command. We elected to have the
Command Assistant generate the Configuration Manager:

1. Select Start -> Programs -> WebSphere MQ Integrator Version 2.1 ->
Command Assistant -> Create Configuration Manager.
 Chapter 13. Configuring WebSphere MQ and MQ Integrator 269

Figure 13-4 Create Configuration Manager window (1)

The darker boxes indicate the required parameters. As you enter the
parameters, you can see the command that will execute being built at the
bottom of the window.

For our scenario, we will use the queue manager created in the previous step,
SOLARSYS.QM.CM.

The Configuration Manager runs as a Windows service. The user ID specified
here needs to be a member of the mqbrkrs group.

Click Next to continue.

2. The next window configures the database names and the user ID/password
used to access them.
270 Self-Service Applications using IBM WebSphere V5.0 and IBM MQSeries Integrator

Figure 13-5 Create Configuration Manager window (2)

Click Next to continue.

3. The final window shows the mqsicreateconfigmgr command that will
execute. Click Finish to run the command and create the Configuration
Manager.

Now we can start the Configuration Manager, from either a DOS prompt or from
the Windows services window. The service will be set to start automatically, so
this is the only time you will need to start it manually.

From a DOS prompt enter:

mqsistart configmgr
 Chapter 13. Configuring WebSphere MQ and MQ Integrator 271

13.4.1 Creating the brokers
The next step is to build one or more WebSphere MQ Integrator brokers to
execute the message flows. Your applications communicate with the broker to
take advantage of the services provided by these message flows.

You can install, create, and start any number of brokers within a broker domain.
In our scenario, we are installing and configuring a single broker on the
integration server node.

Before getting started, make sure you have defined the broker database, run the
bind, and registered it to ODBC. Also make sure you have defined the queue
manager for the broker.

Creating brokers on Windows
Creating the WebSphere MQ Integrator broker is similar to creating the
Configuration Manager. The command used is the mqsicreatebroker command
and can be entered from a DOS prompt, or can be created with the WebSphere
MQ Integrator Command Assistant. We chose to use the Command Assistant.

1. Select Start -> Programs -> IBM MQSeries® Integrator 2.0 -> Command
Assistant -> Create Broker.

Note: If there are errors during the creation or startup of the Configuration
Manager, you will find detailed information about the error in the Windows
Event Viewer under the application log.
272 Self-Service Applications using IBM WebSphere V5.0 and IBM MQSeries Integrator

Figure 13-6 Creating a broker - window (1)

The darker boxes in Figure 13-6 indicate the required fields. Each broker has
a unique name assigned. We will call this one BROKER1. The user ID and
password to be used to run the service are required, as is the WebSphere
MQ queue manager name to be used. We will use
SOLARSYS.QM.BROKER1.

Click Next to continue.

2. Enter the name of the broker database created earlier.
 Chapter 13. Configuring WebSphere MQ and MQ Integrator 273

Figure 13-7 Creating a broker - window (2)

Click Next to continue.

3. The last window shows the mqsicreatebroker command that will execute.
Click Finish to create the broker.

4. Start the broker service from the Windows Services window. The service will
start automatically at reboot, so this is the last time you need to start it
manually.

Creating brokers on AIX
In AIX, you do not have the option of using the WebSphere MQ Integrator
Command Assistant. Also, there is some initial setup for WebSphere MQ
Integrator that you will need to perform before using the broker.

1. Configure syslog for user messages by doing the following:

cd /var
mkdir log
touch /var/log/syslog.user

Common error: If you receive ODBC return code -1, make sure the bind was
done for the broker database.
274 Self-Service Applications using IBM WebSphere V5.0 and IBM MQSeries Integrator

chown root:mqbrkrs /var/log/syslog.user
chmod 750 /var/log/syslog.user

Add the following line to /etc/syslog.conf:

user.debug /var/log/syslog.user

Note: Values can be error, information, debug, warning.

2. Create a .profile file for the mqm user. Take the sample from
/usr/opt/mqsi/sample/profiles/profile.aix and copy it to /home/mqm.profile.
Add an export LIBPATH statement directly under the line that sets the
LIBPATH variable. Uncomment the line that executes the DB2 .profile.

Example 13-3 .profile

The following will set up the NLS environment
NLSPATH=/usr/lib/nls/msg/%L/%N:/usr/lib/nls/msg/en_US/%N:$NLSPATH
export NLSPATH

Set ODBCINI to pick up the ODBC ini file
ODBCINI=/var/mqsi/odbc/.odbc.ini
export ODBCINI

CLASSPATH=/usr/jdk_base/lib/classes.zip:$CLASSPATH
export CLASSPATH
LIBPATH=$LIBPATH:/usr/opt/mqsi/merant/lib
export LIBPATH

If DB2 is used, the 'db2profile' script should also be run
. ~db2inst1/sqllib/db2profile

#
MQSI_REGISTRY=/var/mqsi
export MQSI_REGISTRY
export LIBPATH
export PATH

set -o vi

PS1='$PWD> '
export PS1 #shows the directory you are in

3. Create the broker:

mqsicreatebroker BROKER2 -i mqm -a mqm -q SOLARSYS.QM.BROKER2 -n MQSIBK2

4. Install the Aggregator node. Follow the installation notes in the IA72
SupportPac.
 Chapter 13. Configuring WebSphere MQ and MQ Integrator 275

5. Create user mqsiuser, and add this user to the mqbrkrs and mqm groups.
mqsiuser is the user ID that we used to log on to the Configuration Manager
machine to deploy message flows.

6. Start the broker:

mqsistart BROKER2

Check for messages in the /var/log/syslog.user file. This is where we directed
WebSphere MQ Integrator-specific error messages to go in AIX from a previous
step.

13.4.2 Transaction behavior
A tag in the deployment properties of the message flow controls whether it is
processed as a global transaction, coordinated by WebSphere MQ. Such a
message flow is said to be fully globally coordinated. The default value is No.

Use coordinated transactions only where you need the message and any
database updates performed by the message flow to be processed in a single
unit of work, using a two-phase commit protocol. This means that both the
message is read and the database updates are performed, or neither is done.

Figure 13-8 Toggle coordinated transaction

If you change this value, you must ensure that the broker’s queue manager is
configured to manage distributed transactions with your database. If you do not
set up the queue manager correctly, a message is generated by the broker when
a message is received by the message flow to indicate that although the
276 Self-Service Applications using IBM WebSphere V5.0 and IBM MQSeries Integrator

message flow is to be globally coordinated, the queue manager configuration
does not support this.

See the WebSphere MQ Integrator Administration Guide for information about
which databases are supported as participants in a global transaction, and the
WebSphere MQ System Administration Guide for how to configure WebSphere
MQ and the database managers.

There are several tasks that you must perform before a database manager can
participate in global units of works coordinated by the queue manager:

Create an XA switch load file for the database manager. An XA switch load file is
a dynamically loaded object that enables the queue manager and the database
manager to communicate with each other. Define the database manager in the
queue manager's configuration information. This information includes the name
of the switch load file. WebSphere MQ comes with a sample makefile, used to
build switch load files for the supported database managers. This makefile,
together with all the associated files required to build the switch load files, is
installed in the following directories:

� For WebSphere MQ for Windows, in the
<WebSphereMQ_root>\tools\c\samples\xatm\ directory.

� For WebSphere MQ for UNIX systems, in the /opt/mqm/samp/xatm/ directory
(/usr/mqm/samp/xatm on AIX).

Refer to your WebSphere MQ installation documentation for more information
about the installation procedure.

Testing message flows during development
The WebSphere MQ IH03 SupportPac, the RFHUtil application, is a utility to
monitor WebSphere MQ queues. It has every feature for managing the queues:

� Creating messages and putting them into a queue. It supports multiple types
of messages, with all the parameters.

� Reading messages from queues.

� Browsing messages in a queue.

This utility can be used for testing purposes to put test messages into a queue. A
huge advantage of the utility is that every possible field of a message is
configurable with the tool. It is also a big help to debug a messaging application
by using the browse function.

Figure 13-9 on page 278 shows the RFHUtil application.
 Chapter 13. Configuring WebSphere MQ and MQ Integrator 277

Figure 13-9 RFHUtil application

13.5 Testing, logging, debugging

Event Viewer
The standard logging mechanism for WebSphere MQ on the Windows platform
is the operating system’s logging facility. Using the Windows’ Event Viewer,
developers can determine the problems with the application when errors occur
on the WebSphere MQ runtime level.

MQ Services
MQ Explorer is a standard WebSphere MQ application on the Windows platform
to manage WebSphere MQ queue managers.

MQ Explorer
MQ Explorer is a standard WebSphere MQ application on the Windows platform
for managing WebSphere MQ objects.
278 Self-Service Applications using IBM WebSphere V5.0 and IBM MQSeries Integrator

RFHUtil application, SupportPac IH03
RFHUtil is a utility to read from, write into, and browse WebSphere MQ queues.
You can find more information about the utility at “Testing message flows during
development” on page 277.
 Chapter 13. Configuring WebSphere MQ and MQ Integrator 279

280 Self-Service Applications using IBM WebSphere V5.0 and IBM MQSeries Integrator

Appendix A. Additional material

This redbook refers to additional material that can be downloaded from the
Internet as described below.

Locating the Web material
The Web material associated with this redbook is available in softcopy on the
Internet from the IBM Redbooks Web server. Point your Web browser to:

ftp://www.redbooks.ibm.com/redbooks/SG246875

Alternatively, you can go to the IBM Redbooks Web site at:

ibm.com/redbooks

Select the Additional materials and open the directory that corresponds with
the redbook form number, SG246875.

A

© Copyright IBM Corp. 2003. All rights reserved. 281

ftp://www.redbooks.ibm.com/redbooks/SG246875
http://www.redbooks.ibm.com/
http://www.ibm.com/redbooks/
http://www.ibm.com/redbooks/

Using the Web material
The additional Web material that accompanies this redbook includes the
following files:

File name Description
SG246875.zip The sample application and configuration instructions

Zipped

System requirements for downloading the Web material
The following system configuration is recommended:

Hard disk space: 5MB for the code
Operating System: Windows 2000 Server with Service Pack 3
Processor: 1 GHz or higher
Memory: 1 GB or more

How to use the Web material
Create a subdirectory (folder) on your workstation, and unzip the contents of the
Web material zip file into this folder. The contents of the .zip file are organized in
directories, you will find further instructions about installing and configuring the
application in Chapter 11, “Technical scenarios” on page 227.

Load the application into WebSphere Studio
The workspace for WebSphere Studio is packaged in the downloadable .zip file,
unzip the file to a directory, for example: C:\SG246875.

You will find the install directory after unpacking the .zip file, open the index.html
under this directory to get detailed information about the development and
runtime environment configuration.

The development environment requires the following configuration steps in order
to work:

1. Start WebSphere Studio with the following command:

wsappdev -data C:\SG246875\Resources\Workspace

The directory is where the workspace for the project can be found.

Note: If you do not want to configure everything step-by-step, you can use the
scripts, with some modifications from the runtime environment configuration
manual.
282 Self-Service Applications using IBM WebSphere V5.0 and IBM MQSeries Integrator

2. Select Window -> Preferences -> Java -> Classpath Variables, then create
a new variable with the name MQ_JAVA and the path
<WebSphereMQ_root>\java\lib.

3. Import the projects to the workspace. Select File -> Import -> Existing
Project into Workspace. Click Next.

4. Click Browse next to the Project Contents field, then select the
CommonUtility folder under the workspace directory
(C:\SG246875\Resources\Workspace).

5. Click Finish.

6. Repeat steps 3 and 4 with the following projects:

– VendorFrontEndUtility
– VendorFrontEndWeb
– VendorFrontEnd
– VendorBackEndUtility
– VendorBackEndEJB
– VendorBackEnd
– SupplierApplication
– WMQIMessageFlows

7. After importing all existing projects, select Project -> Rebuild All from the
menu. At the very end you should see only four warnings under the Tasks
view. If there are more, make sure that all the projects are imported.

8. Regenerate the deployed code for the EJBs. On the J2EE perspective, J2EE
Hierarchy view select EJB Modules -> VendorBackEndEJB. Right-click the
item and select Deploy and RMIC code...

9. On the next window click Select all, which selects all the EJBs, then click
Finish to generate the code.

10.Check the Tasks view to see if there is any error. There should be only four
warnings. If you find one or more, make sure you fix them before you
proceed.

11.The application assumes that your Web application can be found at the
http://localhost:9080/ivcorp URL. If that is not the case you have to modify an
XSL file accordingly and re-compile the translets belonging to this XSL.

a. Open the ProcessOrderReply.xsl file from the VendorFrontEndUtility -> xsl
folder.

b. Change the http://localhost:9080/ivcorp/catalog/catalog.xml in the file
according to your environment.

There are two places in the file where you can find this string! This string
tells the style sheet where it can find the catalog.xml file to build the
 Appendix A. Additional material 283

catalog for the presentation. If you have the .xml file at another URL, for
example under an HTTP server, you can also use that URL.

c. Also change the URL in the file. Click CommonUtility ->
com.ibm.itso.msgtrx.Constants.java, and look for the CATALOG_URI
variable.

d. Delete the frontendtranslets.jar file from the VendorFrontEnd folder.

e. Select File -> New -> Other from the menu, then select XML -> Compile
XSL. Click Next.

f. Provide the following information for the compiler:

Input folder: /VendorFrontEndUtility/xsl

Destination folder: /VendorFrontEnd

Java package: com.ibm.itso.msgtrx.frontend.translets

Jar file name: frontendtranslets.jar

Click Finish.

12.Follow the steps from the configuration guide distributed in HTML format
together with the sample application.

13.5.1 Supplier application configuration
The following is a sample .xml configuration file for the supplier application.

Example: A-1 supplier-conf.xml

<?xml version="1.0" encoding="UTF-8"?>
<supplier-conf>

<runmode>point2point</runmode>
<supplier-entity name="Red supplier">

<supply>red</supply>
<queuemanager>SUPPLIER01</queuemanager>
<queue>ITSO.MSGTRX.P2P.SUPPLY.RED</queue>
<reply-queue>ITSO.MSGTRX.P2P.SUPPLY.REPLY</reply-queue>

</supplier-entity>
<supplier-entity name="Green supplier">

<supply>green</supply>
<queuemanager>SUPPLIER01</queuemanager>
<queue>ITSO.MSGTRX.P2P.SUPPLY.GREEN</queue>
<reply-queue>ITSO.MSGTRX.P2P.SUPPLY.REPLY</reply-queue>

</supplier-entity>
<supplier-entity name="Blue supplier">
284 Self-Service Applications using IBM WebSphere V5.0 and IBM MQSeries Integrator

<supply>blue</supply>
<queuemanager>SUPPLIER01</queuemanager>
<queue>ITSO.MSGTRX.P2P.SUPPLY.BLUE</queue>
<reply-queue>ITSO.MSGTRX.P2P.SUPPLY.REPLY</reply-queue>

</supplier-entity>
</supplier-conf>

The configuration elements:

� <runmode> sets the mode to point2point. At this stage only point2point is the
supported running mode.

� <supplier-entity> has the details of each supplier. The application starts
multiple threads, as many entities are defined.

� <supply> refers to the supplied product.

� <queuemanager> is the name of the queue manager, the listener is listening
on.

� <queue> is the name of the queue, the listener is listening on.

� <reply-queue> is the name of the queue where the reply is sent.

The supplier application is a stand-alone Java application. You can start it from
the command line using the runsupplier.bat script. Before you run it, open it and
make sure that the JAVA_HOME and MQ_HOME variables are set correctly.

The application sends log messages to the standard output. You should be able
to see the incoming messages from the integration node and the outgoing
messages from the supplier replying to the orders.

13.5.2 Running
Running the sample is quite simple.

1. Once the servers, the broker, and the supplier application are up and running,
open a browser and access the application on the front-end server at the
following URL: http://<server_name>/ivcorp.

2. Select the order link and place an order with the system. Select a color, set
the ordered amount, and submit the form.

3. As a result, a page should come up with the order ID. It is a long string with
numbers. Copy the ID to the clipboard.

If there was an error, then start checking the system where the error occurred.
You can find information about testing, logging, and debugging in the next
section.
 Appendix A. Additional material 285

4. Go back to the main page, select the order pickup link, provide the order ID
(paste it from the clipboard), then submit the form.

5. The resulting page should come up and show the original color of the order
and the resulting color that can be fulfilled.
286 Self-Service Applications using IBM WebSphere V5.0 and IBM MQSeries Integrator

acronyms
API Application Programming
Interface

BI Business Intelligence

BMT Bean-managed Transaction
Demarcation

BPM Business Process
Management

CA Certificate Authority

CICS Customer Information Control
System

CMT Container-managed
Transaction Demarcation

CSS Cascading Stylesheet

DCE Distributed Computing
Environment

DHTML Dynamic HTML

DMZ DeMilitarized Zone

DNS Domain Name System

DOM Document Object Model

DSS Decision support systems

DTD Document Type Definition

EDI Electronic Data Interchange

EIS Executive Information System

EJB Enterprise JavaBean

ERP Enterprise Resource Planning

HACMP High Availability Cluster
Multi-Processing

HTML HyperText Markup Language

HTTP HyperText Transfer Protocol

IBM International Business
Machines Corporation

IIOP Internet Inter-ORB Protocol

ITSO International Technical
Support Organization

Abbreviations and
© Copyright IBM Corp. 2003. All rights reserved.
J2EE Java 2 Enterprise Edition

JAAS Java Authentication and
Authorization Service

JCA J2EE Connector Architecture

JCE Java Cryptography Extension

JCL Job Control Event

JMS Java Messaging Service

JNDI Java Naming and Directory
Interface

JSP JavaServer Page

JSR Java Specification Request

JTA Java Transaction API

JTS Java Transaction Service

JVM Java Virtual Machine

LDAP Lightweight Directory Access
Protocol

LOB Line Of Business

MDB Message-driven bean

MIS Management Information
System

MOM Message Oriented
Middleware

MQ Message Queue

MVC Model-View-Controller

ODS Operation Data Storage

OLTP On-Line Transaction
Processing

OMG Object Management Group

OO Object Oriented

ORB Object Request Broker

PDA Personal Digital Assistant

PKI Public Key Infrastructure

RDBMS relational database
management systems
 287

RMI Remote Method Invocation

RPC Remote Procedure Call

RYO Roll-Your-Own

SGML Standard Generalized Markup
Language

SOAP Simple Object Access
Protocol

SQL Structured Query Language

SSL Secure Socket Layer

TCO Total Cost of Ownership

UDDI Universal Description,
Discovery and Integration

UI User Interface

VSAM Virtual Storage Access
Method

W3C World Wide Web Consortium

WSIF Web Services Invocation
Framework

XHTML EXtensible HyperText Markup
Language

XML eXtensible Markup Language

XSL eXtensible Stylesheet
Language

XSL-FO XSL Formatting Objects

XSLT XSL Transformation
288 Self-Service Applications using IBM WebSphere V5.0 and IBM MQSeries Integrator

Related publications

The publications listed in this section are considered particularly suitable for a
more detailed discussion of the topics covered in this redbook.

IBM Redbooks
For information on ordering these publications, see “How to get IBM Redbooks”
on page 291.

� Access Integration Pattern Using IBM WebSphere Portal Server, SG24-6267

� MQSeries Publish/Subscribe Applications, SG24-6282

� WebSphere Studio Application Developer Programming Guide, SG24-6585

Other resources
These publications are also relevant as further information sources:

� Patterns for e-business: A Strategy for Reuse, by Jonathan Adams, Srinivas
Koushik, Guru Vasudeva, George Galambos, published by IBM Press,
ISBN 1-931182-02-7

� The Five Axes of Business Application Integration by Charles Brett, published
by Spectrum Reports Ltd., 2002, ISBN 0-954518-1-X

� IBM Security Architecture: Securing the Open Client/Server Distributed
Enterprise, SC28-8135

� WebSphere MQ Integrator Administration Guide, SC34-5792

� An Introduction to Messaging and Queuing, GC33-0805

� WebSphere MQ Queue Manager Clusters, SC34-6061

� WebSphere MQ for z/OS System Setup Guide, SC34-6052

� WebSphere MQ Publish/Subscribe User’s Guide, GC34-5269

� WebSphere MQ Security, SC34-6079
© Copyright IBM Corp. 2003. All rights reserved. 289

Referenced Web sites
These Web sites are also relevant as further information sources:

� Patterns for e-business Web site

http://www.ibm.com/developerWorks/patterns

� WebSphere Application Server

http://www-3.ibm.com/software/webservers/appserv/

� WebSphere MQ

http://www-3.ibm.com/software/ts/mqseries/
http://www-3.ibm.com/software/ts/mqseries/messaging/

� WebSphere MQ Integrator

http://www-3.ibm.com/software/ts/mqseries/integrator/broker/

� IBM DB2 8.1

http://www-3.ibm.com/software/data/db2/udb/v8/

� CrossWorlds

http://www-3.ibm.com/software/integration/cw/

� HOLOSOFX

http://www-3.ibm.com/software/ts/mqseries/workflow/holosofx/

� Sun’s Java Web site

http://java.sun.com

� Apache’s XML Web site

http://xml.apache.org

� MD01 SupportPac for WebSphere MQ

http://www-3.ibm.com/software/ts/mqseries/txppacs/md01.html

� JSR 156

http://www.jcp.org/jsr/detail/156.jsp

� BTP specification

http://www.oasis-open.org/committees/business-transactions

� Middleware Spectra’s Web site

http://www.middlewarespectra.com

� Apache Jakarta’s Struts Web site

http://jakarta.apache.org/struts/index.html
290 Self-Service Applications using IBM WebSphere V5.0 and IBM MQSeries Integrator290 Self-Service Applications using IBM WebSphere V5.0 and IBM MQSeries Integrator

http://www.ibm.com/developerWorks/patterns
http://www-3.ibm.com/software/webservers/appserv/
http://www-3.ibm.com/software/ts/mqseries/
http://www-3.ibm.com/software/ts/mqseries/messaging/
http://www-3.ibm.com/software/ts/mqseries/integrator/broker/
http://www-3.ibm.com/software/data/db2/udb/v8/
http://www-3.ibm.com/software/integration/cw/
http://www-3.ibm.com/software/ts/mqseries/workflow/holosofx/
http://java.sun.com
http://xml.apache.org
http://www-3.ibm.com/software/ts/mqseries/txppacs/md01.html
http://www.jcp.org/jsr/detail/156.jsp
http://www.oasis-open.org/committees/business-transactions
http://www.middlewarespectra.com
http://jakarta.apache.org/struts/index.html
http://www.ibm.com/developerWorks/patterns
http://www-3.ibm.com/software/webservers/appserv/
http://www-3.ibm.com/software/ts/mqseries/
http://www-3.ibm.com/software/ts/mqseries/messaging/
http://www-3.ibm.com/software/ts/mqseries/integrator/broker/
http://www-3.ibm.com/software/data/db2/udb/v8/
http://www-3.ibm.com/software/integration/cw/
http://www-3.ibm.com/software/ts/mqseries/workflow/holosofx/
http://java.sun.com
http://xml.apache.org
http://xml.apache.org
http://www-3.ibm.com/software/ts/mqseries/txppacs/md01.html
http://www.jcp.org/jsr/detail/156.jsp
http://www.oasis-open.org/committees/business-transactions
http://www.middlewarespectra.com
http://jakarta.apache.org/struts/index.html

� Apache’s Xalan Web site

http://xml.apache.org/xalan-j

� Command pattern article at the IBM developerWorks Web site

http://www-106.ibm.com/developerworks/patterns/index.html

� IA0H SupportPack for WebSphere MQ Web site

http://www-3.ibm.com/software/ts/mqseries/txppacs/ia0h.html

� Tivoli Access Manager’s Web site

http://www.tivoli.com/products/index/access-mgr-e-bus/

� IBM’s security Web site

http://www-3.ibm.com/security/index.shtml

� Tivoli’s security solutions Web site

http://www.tivoli.com/products/solutions/security/news.html

� Sun’s J2EE Web site

http://java.sun.com/j2ee/docs.html

How to get IBM Redbooks
You can order hardcopy Redbooks, as well as view, download, or search for
Redbooks at the following Web site:

ibm.com/redbooks

You can also download additional materials (code samples or diskette/CD-ROM
images) from that site.

IBM Redbooks collections
Redbooks are also available on CD-ROMs. Click the CD-ROMs button on the
Redbooks Web site for information about all the CD-ROMs offered, as well as
updates and formats.
 Related publications 291

http://www.redbooks.ibm.com/
http://www.ibm.com/redbooks/
http://www.ibm.com/redbooks/
http://xml.apache.org/xalan-j
http://www-106.ibm.com/developerworks/patterns/index.html
http://www-3.ibm.com/software/ts/mqseries/txppacs/ia0h.html
http://www.tivoli.com/products/index/access-mgr-e-bus/
http://www-3.ibm.com/security/index.shtml
http://www.tivoli.com/products/solutions/security/news.html
http://java.sun.com/j2ee/docs.html
http://xml.apache.org/xalan-j
http://www-106.ibm.com/developerworks/patterns/index.html
http://www-3.ibm.com/software/ts/mqseries/txppacs/ia0h.html
http://www.tivoli.com/products/index/access-mgr-e-bus/
http://www-3.ibm.com/security/index.shtml
http://www.tivoli.com/products/solutions/security/news.html
http://java.sun.com/j2ee/docs.html

292 Self-Service Applications using IBM WebSphere V5.0 and IBM MQSeries Integrator292 Self-Service Applications using IBM WebSphere V5.0 and IBM MQSeries Integrator

Index

Numerics
1-PC 216
2-PC 216
80/20 situation 3

A
Accountability 186
Agent application pattern 23
APPLET tag 67
Application level security 206
Application patterns 5, 12, 20
Application server node 36
As-is Host application pattern 22
ASR See Automatic Speech Recognition
Asynchronous messaging 121
Authentication 193
Authenticity 186
Authorization 194
Automatic Speech Recognition 70

B
Back-end application tier 25
Bean Managed Persistence 80
bean-managed transaction 134
Best practices 5

Java Message Service 143
WebSphere MQ 143

Best-practices 17
Binding databases 267
Binding mode 261
Bindings mode 139
Bluetooth 71
BMP See Bean Managed Persistence
Broker 170
Broker domain 170
broker persistent store 267
Business patterns 5, 7
BytesMessage 120

C
Cascading Style Sheets 63

Validator tools 64
© Copyright IBM Corp. 2003. All rights reserved.
Cell scope 236
cHTML 74
Client container 62
Client mode 140, 261
Cluster Workload Exits 222
Cluster Workload Management Algorithm 221
Clustering 142, 262
CMP See Container Managed Persistence
Collection object 120
Command Assistant 269, 272
Common Object Request Broker Architecture See
CORBA
Component integration 171
Composite patterns 5, 10
Confidentiality 186
Configuration Manager 172–173, 267, 269–271
Connection manager 213
Connection Pooling 212
ConnectionFactory 137
Container Managed Persistence 80
container-managed transaction 133
Control Center 172–174, 269
control commands 263
Controller 73
CORBA 81, 92
Correlation ID 121
CSS See Cascading Style Sheets
Customer Information Control System

Resource adapters 87

D
Data Transformation 91
Database

ODBC 268
DB2 V8.1 53
Declarative Security 196
decomposition 41
Decomposition application pattern 22, 40
Decomposition pattern 27
Decomposition tier 29
Destination 137
DHTML 74
Directly Integrated Single Channel application pat-
 293

tern 21
Directory and security services node 37
Distributed queuing 219
DOM API 162
Domain firewall 38
Domain firewall node 34
Domain Name System node 34
DTD editor 165
Durable subscriptions 128
Dynamic HTML

DHTML 61, 63
Dynamic Web services 85

E
EAI See Enterprise Application Integration
ECMA-262 65
ECMAScript 65
EJB

Local interface 105
Remote interface 105

EJB container 79
EJB interfaces 105
EJB modules 81
EJB See Enterprise JavaBeans
EMBED tag 67
Enterprise application 81
Enterprise Application Integration 82
Enterprise JavaBeans 79

Bean Managed Persistence
Container Managed Persistence
Entity beans 79
Message-Driven Beans 79
Message-driven beans 124, 129
Session beans 79

Enterprise Resource Planning 86
Entity EJBs 79
ERP See Enterprise Resource Planning
Existing applications and data node 37
Extensible Stylesheet Language Transformations
69, 76

F
Facade Pattern 110
Five points for security 187

G
Guidelines 5, 17

H
HTML 61, 63

Validator tools 63
HTTP tunneling 67
hub-and-spoke 117

I
IBM Directory Server 190
IMAP 81
i-mode 70
IMS JCA resource adapter 87
INETD 266
Integration Bus Topology 117
Integration hub 116
Integration patterns 5, 8
integration server 41
Integration server node 36, 272
Integrity 186
Interaction Controller 73

J
J2EE 59, 62, 73, 86
J2EE 1.3 88
J2EE Connector Architecture 86

Advantages 87
Disadvantages 88
IMS resource adapter 87

JAF See JavaBeans Activation Framework
Java 2 Platform, Enterprise Edition See J2EE
Java applets 65

Disadvantages 66
Java Message Service 88

Advantages 90
Asynchronous 121
Best practices 143
Consumers 129, 143
Disadvantages 90
Error handling 144
Java bindings mode 139
Java client mode 140
JNDI 136
Message models 112
Message types 119
MQSeries support 90
Point-to-point messaging 114
Producers 128, 143
Publish /subscribe messaging 115
Synchronous 121
294 Self-Service Applications using IBM WebSphere V5.0 and IBM MQSeries Integrator

Java Naming and Directory Interface 81, 136
Java Runtime Environment 67
Java Transaction API 81
JavaBeans 74
JavaBeans Activation Framework 81
JavaMail 81
JavaScript 62, 65
JavaServer Pages 74
JMS

Acknowledgements 127
Client identifier 126
Message 260
Queue 260
Queue manager 260
Transactions 127

JMS Provider
WebSphere Application Server 236

JMSException 144
JNDI See Java Naming and Directory Interface
JRE See Java Runtime Environment
JScript 64–65
JTA See Java Transaction API

L
LDAP 81, 190
Link level security 205
listener 266
Load balancer node 35
Local home interface 105

M
Macromedia Flash 62
MapMessage 120
message 277
Message Broker services 91
Message Facade Pattern 112
Message flow 92

Testing 277
message flow category 174
Message format translation 171
Message models 112
Message Oriented Middleware 91
Message selector 143
Message timeout 143
MessageConsumer 136
Message-Driven Bean 218

Deployment 253
Development 152

Implementation 152
Life cycle 154
onMessage 153

Message-Driven Beans 79
Message-driven beans 124, 129
MessageProducer 136
Messaging 89

Access control 197
Confidentiality 198
Data integrity 198
Non-repudiation 199

Microbrowser 71
MIME 81
Mobile clients 70
Model 72
Model-View-Controller 72, 96, 128, 148

Controller 96
Model 96
View 96

MOM 91
MQ Channels 262
MQAI 263
MQSC 263
MQSeries

JMS support 90
MQSeries Explorer 263–264, 266
MQSeries Services 263
mqsicreatebroker 272, 274–275
mqsicreateconfigmgr 269, 271
mqsistart 271
Multithreaded programs 214
MVC See Model-View-Controller

N
Namespaces 145
Naming 145
Node scope 236
Nodes

Application server 36
Directory and security services 37
Domain firewall 34
Domain Name System 34
Existing applications and data 35, 37
Integration server 36
Load balancer 35
Protocol firewall 34
Web application server 36

Non-persistent messages 143
 Index 295

Nonpersistent messaging 216
Non-Repudiation 186

O
Object Management Group 92
Object Request Broker 81
ObjectMessage 120
ODBC 268, 272, 274
OMG See Object Management Group
One-phase commit 216
Operational Data Store (ODS) 30
OTMA 87

P
Palm-OS 70
Patterns for e-business 3

Application patterns 5, 12
Best practices 5, 17
Business patterns 5, 7
Composite patterns 5, 10
Guidelines 5, 17
Integration patterns 5, 8
Product mappings 5, 16
Runtime patterns 5, 13
Web site 6

PCF 263
Persistent Message Storage 128
Persistent messages 143
Persistent messaging 215
Point-to-point messaging 114
POP3 81
presentation tier 24, 37
Product mappings 5, 16
Profiling 212
Programmatic Security 196
Protocol firewall 38
Protocol firewall node 34
Public Key Infrastructure 34, 77
Publish/subscribe 115, 125
publish/subscribe

advanced functionality 171

Q
Queue Manager Clusters 262

R
RDB to XML 166

RealPlayer 62
recomposition 41
Redbooks Web site 291

Contact us xiv
Reliable Messaging 127
Remote home interface 105
Remote Method Invocation 81
repository 267, 269
Request/reply 121
Resource adapters

CICS 87
Resource scope 236
RMI See Remote Method Invocation
RMI/IIOP 81, 92
Router application pattern 22, 33, 37, 40
Router pattern 23
Router tier 24
router tier 37
Routing services 91
Runtime pattern

Security 188
Runtime patterns 5, 13
Runtime product mapping 44
RYO (roll-your-own) programming 30

S
Sample application

Generating IDs 181
Keeping context 182
Order Decomposition Flow 174
Response Composition flow 175
Storing messages 182
Supplier response flow 175

sample scenarios
Development environment 230
Runtime environment 231

SAX API 162
SCRIPT tag 66
Securing connections 192
Security 37, 188

Connections 192
Rules 187

Self-Service business pattern 20
Send-and-forget 123
Server scope 236
Service oriented architecture 85
Servlets 73
Session EJBs 79
296 Self-Service Applications using IBM WebSphere V5.0 and IBM MQSeries Integrator

Session Facade Pattern 111
Shared Cluster 218
Shared-Nothing Cluster 219
SMTP 81
SOA See Service oriented architecture
SQL wizard or SQL query builder 166
Stand-alone Single Channel application pattern 21
Static Web services 85
stdin 263
StreamMessage 120
Struts 97, 148

Action 151
FormBean 150
Resource bundle 152

Struts-config.xml 150–151
SupportPac MS03 172
Swing 65
Synchronous messaging 121
System hardening 193
SYSTEM.ADMIN.SVRCONN 266

T
TextMessage 120
Text-to-Speech 70
Thin clients 61
Threading and concurrency 218
Tiers

Back-end 25
Decomposition 29
Presentation 24
Router 24

Tivoli
WebSEAL 190

Tivoli Access Manager 190
Topic-based security 207
Transaction

Attributes 133
Transaction Mode 182
Transactional service 91
TTS See Text-to-Speech
Two-phase commit 216

U
User node 34

V
Validator tools

CSS 64
HTML 63

VBScript 64
View 73
Voice-enabled applications 70
VoiceXML 74

W
WAP See Wireless Application Protocol
Web application server 71
Web application server node 36
Web browser 62
Web client 61
Web container 73
Web diagram 148
Web modules 81
Web server redirector node 35
Web services

Advantages 85
Disadvantages 86
Dynamic 85
Static 85

WebSEAL 190
WebSphere Application Server

JMS provider 236
V5 50

WebSphere JMS
Queue 242
Queue Connection Factory 237
Queue Destination 240

WebSphere MQ 143, 145
Best practices 143
Caching 217
Cluster 218
Clustering 142–143
Exits 222
High Availability 218
Management 222

WebSphere MQ classes for Java 138
WebSphere MQ classes for JMS 138
WebSphere MQ Integrator

Broker 170
Cloning messages 177
Configuration manager 170
Control center 170
Create queue managers 172
Decomposition of messages 177
Decomposition using ESQL 178
 Index 297

Define queues 172
Filter nodes 179
Input node 177
Routing 179
Sample application 174
Storing messages 182
Sub-flows 184
Transaction behavior 276
V2.1 53

WebSphere MQ JMS 243
Queue 247, 253
Queue Connection Factory 243

WebSphere MQ V5.3 52
WebSphere resource scope 236
Windows CE 70
Wireless Application Protocol 62, 70–71

Microbrowser 71
Wireless Markup Language 62, 71, 74
WML See Wireless Markup Language
WMLScript 71

X
XA resource coordinator 140
Xalan parser 162
XCF 87
XForms 69
XHTML

Extended HTML 68
XML 61, 71, 74, 160

DTD editor 165
Encryption 77
RDB to XML 166
schema editor 165
SQL wizard or SQL query builder 166
transformation 162
XML and SQL query wizard 166
XML schema editor 165
XML to XML mapping 166
XPath expression wizard 165
XSL debugging and transformation tool 165
XSL editor 165

XPath expression wizard 165
XSL

debugging and transformation tool 165
editor 165

XSLT 160
XSLT See Extensible Stylesheet Language Trans-
formations

XSLTC 162
Compiler 163
298 Self-Service Applications using IBM WebSphere V5.0 and IBM MQSeries Integrator

(0.5” spine)
0.475”<

->0.875”
250 <

-> 459 pages

Self-Service Applications using IBM
 W

ebSphere V5.0: and IBM
 M

QSeries Integrator

®

SG24-6875-00 ISBN 0738427764

INTERNATIONAL
TECHNICAL
SUPPORT
ORGANIZATION

BUILDING TECHNICAL
INFORMATION BASED ON
PRACTICAL EXPERIENCE

IBM Redbooks are developed by
the IBM International Technical
Support Organization. Experts
from IBM, Customers and
Partners from around the world
create timely technical
information based on realistic
scenarios. Specific
recommendations are provided
to help you implement IT
solutions more effectively in
your environment.

For more information:
ibm.com/redbooks

Self-Service Applications
using IBM WebSphere V5.0
and IBM MQSeries Integrator

Self-Service
applications using
Router and
Decomposition
patterns

WebSphere
Application Server
V5, MQ V5.3, MQ
Integrator V2.1

Patterns for
e-business solution
design

This IBM Redbook introduces the Router and Decomposition
application patterns for Self-Service e-business applications.
The book discusses the messaging and transactional
capabilities of an application. This redbook is a valuable
source for IT architects, IT specialists, application designers,
application developers, system administrators, and
consultants.

Part 1, “Patterns for e-business”, introduces the Patterns for
e-business concept, focusing particularly on the Self-Service
business pattern and the Router and Decomposition
application patterns.

Part 2, “Guidelines”, provides guidelines for messaging and
transactional applications, including application design and
development and some of the non-functional requirements
for such applications, including security and system
management and performance.

In the Appendix, you will find details on how to set up and
configure both the development and runtime environments for
the sample application discussed in this book.

Back cover

	Front cover
	Contents
	Notices
	Trademarks

	Preface
	The team that wrote this redbook
	Become a published author
	Comments welcome

	Part 1 Patterns for e-business
	Chapter 1. Patterns for e-business
	1.1 The Patterns for e-business layered asset model
	1.2 How to use the Patterns for e-business
	1.2.1 Selecting a Business, Integration, or Composite pattern, or a Custom design
	1.2.2 Selecting Application patterns
	1.2.3 Review Runtime patterns
	1.2.4 Review Product mappings
	1.2.5 Review guidelines and related links

	1.3 Summary

	Chapter 2. The Self-Service business pattern
	2.1 Self-Service applications
	2.2 Self-Service application patterns
	2.3 Application patterns used in this book
	2.3.1 Router pattern
	2.3.2 Decomposition pattern

	Chapter 3. Runtime patterns
	3.1 Nodes
	3.2 Basic Runtime pattern for the Router pattern
	3.2.1 Variation 1

	3.3 Basic Runtime pattern for Decomposition
	3.3.1 Variation 1

	3.4 For more information

	Chapter 4. Product mapping
	4.1 Runtime product mappings
	4.2 Product summary

	Part 2 Guidelines
	Chapter 5. Technology options
	5.1 Web client
	5.1.1 Web browser
	5.1.2 HTML
	5.1.3 Dynamic HTML
	5.1.4 CSS
	5.1.5 JavaScript
	5.1.6 Java applets
	5.1.7 XML (client side)
	5.1.8 XHTML 1.1 (HTML 4.01)
	5.1.9 VoiceXML
	5.1.10 XForms
	5.1.11 XSLT
	5.1.12 Mobile clients

	5.2 Web application server
	5.2.1 Java servlets
	5.2.2 JavaServer Pages (JSPs)
	5.2.3 JavaBeans
	5.2.4 XML
	5.2.5 Enterprise JavaBeans
	5.2.6 Additional enterprise Java APIs

	5.3 Integration technologies
	5.3.1 Web services
	5.3.2 J2EE Connector Architecture
	5.3.3 Java Message Service
	5.3.4 Message Oriented Middleware
	5.3.5 Others

	5.4 Where to find more information

	Chapter 6. Application design
	6.1 Application structure
	6.1.1 Model-View-Controller design pattern
	6.1.2 Struts
	6.1.3 Sample application

	6.2 EJB design guidelines
	6.2.1 Local and remote home interfaces
	6.2.2 Using the Singleton pattern
	6.2.3 The Facade pattern

	6.3 JMS design guidelines
	6.3.1 Message models
	6.3.2 JMS point-to-point model
	6.3.3 JMS publish/subscribe model
	6.3.4 JMS messages
	6.3.5 Synchronous versus asynchronous design considerations
	6.3.6 Where to implement message producers and consumers
	6.3.7 Message-driven beans
	6.3.8 Managing JMS objects
	6.3.9 JMS and JNDI
	6.3.10 Embedded JMS Provider versus WebSphere MQ
	6.3.11 WebSphere to MQ connection options
	6.3.12 Best practices for JMS and IBM WebSphere MQ

	Chapter 7. Application development
	7.1 MVC development using the Struts framework
	7.1.1 Creating a Web diagram
	7.1.2 Coding Struts elements

	7.2 Developing a message-driven bean with WebSphere Studio
	7.2.1 Message-driven bean implementation
	7.2.2 Life cycle of a message-driven bean
	7.2.3 Creating an MDB using WebSphere Studio
	7.2.4 Coding the message-driven bean

	7.3 XML and XSLT development
	7.3.1 XML as data transfer technology
	7.3.2 Guidelines for creating an XML message
	7.3.3 Performing XML transformations
	7.3.4 Working with XSLTC
	7.3.5 WebSphere Studio XML support
	7.3.6 Using XML JavaBeans

	Chapter 8. Developing WebSphere MQ Integrator message flows
	8.1 What is a broker domain?
	8.2 Developing message flows
	8.2.1 Preparations: creating queue managers and defining queues
	8.2.2 Using the Control Center
	8.2.3 Creating message flows

	Chapter 9. Security
	9.1 End-to-end security
	9.2 Applying security to our Runtime patterns
	9.3 Security guidelines
	9.4 Application security
	9.5 Messaging security
	9.5.1 Securing WebSphere MQ resources
	9.5.2 Securing WebSphere MQ Integrator resources

	9.6 Security design principles summary

	Chapter 10. Performance and availability
	10.1 Introduction
	10.2 Performance analysis
	10.3 Performance considerations in messaging
	10.3.1 Connection pooling
	10.3.2 Multithreaded programs
	10.3.3 Persistent versus non-persistent messages
	10.3.4 One-phase commit optimization
	10.3.5 Caching WebSphere MQ JMS objects
	10.3.6 Message-driven beans performance considerations

	10.4 High availability with WebSphere MQ
	10.4.1 Overview of WebSphere MQ cluster components
	10.4.2 WebSphere MQ simplified management

	Part 3 Implementation
	Chapter 11. Technical scenarios
	11.1 Application flow
	11.2 System setup
	11.2.1 Products used to prove the scenarios
	11.2.2 Development environment
	11.2.3 Runtime environment

	Chapter 12. Configuring WebSphere
	12.1 Defining JMS resources to WebSphere
	12.1.1 Determining the correct scope

	12.2 Using the embedded JMS server
	12.2.1 Defining a queue connection factory
	12.2.2 Defining a queue destination
	12.2.3 Define the queue for the JMS server

	12.3 Using WebSphere MQ V5.3
	12.3.1 Defining a queue connection factory
	12.3.2 Define a queue destination
	12.3.3 Define the queue for WebSphere MQ

	12.4 Deploying message-driven beans in WebSphere V5.0
	12.5 Testing, logging, debugging

	Chapter 13. Configuring WebSphere MQ and MQ Integrator
	13.1 WebSphere MQ objects
	13.2 WebSphere MQ system management
	13.2.1 Remote administration

	13.3 Creating the WebSphere MQ Integrator databases
	13.4 Creating the WebSphere MQ Integrator Configuration Manager
	13.4.1 Creating the brokers
	13.4.2 Transaction behavior

	13.5 Testing, logging, debugging

	Appendix A. Additional material
	Locating the Web material
	Using the Web material
	System requirements for downloading the Web material
	How to use the Web material
	13.5.1 Supplier application configuration
	13.5.2 Running

	Abbreviations and acronyms
	Related publications
	IBM Redbooks
	Other resources

	Referenced Web sites
	How to get IBM Redbooks
	IBM Redbooks collections

	Index
	Back cover

