

ibm.com/redbooks

Patterns: Pervasive and
Rich Device Access
Solutions

Peter Kovari
Phillip Dermody

Daniel Ehrle
Stefan Fassmann

Richard Jacks
George Kroner

LindaMay Patterson
Sami Serpola

Using Patterns for e-business to design
pervasive solutions

WebSphere Everyplace Access
and related products

Sample applications for
various scenarios

Front cover

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

Patterns: Pervasive and Rich Device Access
Solutions

March 2005

International Technical Support Organization

SG24-6315-00

© Copyright International Business Machines Corporation 2005. All rights reserved.
Note to U.S. Government Users Restricted Rights -- Use, duplication or disclosure restricted by GSA ADP
Schedule Contract with IBM Corp.

First Edition (March 2005)

This edition applies to WebSphere Everyplace Access V5.0 on Windows 2000 Server and AIX
5.2 platforms; WebSphere Studio Application Developer V5.0 on Windows and Linux platforms;
WebSphere Studio Device Developer V5.7 on Windows platform; and Worplace Client
Technology, Micro Edition on Windows platform.

Note: Before using this information and the product it supports, read the information in
“Notices” on page xi.

Contents

Notices . xi
Trademarks . xii

Preface . xiii
The team that wrote this redbook. xiii
Become a published author . xvi
Comments welcome. xvi

Part 1. Pervasive solution patterns . 1

Chapter 1. Patterns for e-business . 3
1.1 The Patterns for e-business layered asset model . 5
1.2 How to use the Patterns for e-business . 6

1.2.1 Business, Integration, or Composite pattern, or a custom design. . . . 7
1.2.2 Selecting Application patterns. 12
1.2.3 Review Runtime patterns . 13
1.2.4 Review Product mappings . 16
1.2.5 Review guidelines and related links . 16

1.3 Summary . 17

Chapter 2. Application patterns for pervasive solutions. 19
2.1 Pervasive access applications . 20
2.2 Pervasive Device Adapter application pattern. 21
2.3 Rich Device application patterns . 25
2.4 Other Access Integration patterns. 28

2.4.1 Single sign-on . 28
2.4.2 Extended Single Sign-On application patterns 30
2.4.3 Personalized Delivery application pattern . 31

Chapter 3. Runtime pattern . 35
3.1 An introduction to the node types . 36

3.1.1 User node . 36
3.1.2 Client node . 36
3.1.3 Pervasive client services node . 36
3.1.4 ISP Gateway (Pervasive services) node. 36
3.1.5 Protocol firewall node . 36
3.1.6 Connectivity and access for pervasive services node. 37
3.1.7 Web server redirector node. 37
3.1.8 Telephony connector. 37
© Copyright IBM Corp. 2005. All rights reserved. iii

3.1.9 Voice gateway node . 38
3.1.10 Presentation server node . 38
3.1.11 Personalization server node . 38
3.1.12 Directory and security services node . 38
3.1.13 Application server node. 39
3.1.14 Pervasive extension services node. 39
3.1.15 Existing data and applications node . 39
3.1.16 Database node . 39
3.1.17 Collaboration server node . 40

3.2 Runtime patterns for pervasive access . 40
3.2.1 Pervasive Device Adapter::Runtime pattern (composed with Portal

runtime pattern) . 40
3.2.2 Pervasive Device Adapter=Voice::Runtime pattern 41
3.2.3 Rich Device::Runtime pattern . 42
3.2.4 Rich Device=Online::Runtime pattern . 43
3.2.5 Rich Device=Store and forward::Runtime pattern. 44
3.2.6 Rich Device=Store and forward::Runtime pattern variation 1 45
3.2.7 Composite Rich Device=Online and PDA=Voice::Runtime pattern . 46
3.2.8 Pervasive Connectivity::Runtime pattern . 47
3.2.9 Composite Pervasive and Rich Device solution::Runtime pattern . . 48

Chapter 4. Product mappings . 51
4.1 Overview of IBM pervasive software products . 52

4.1.1 WebSphere Everyplace Access V5.0 . 52
4.1.2 WebSphere Everyplace Connection Manager 59
4.1.3 WebSphere MQ Everyplace . 59
4.1.4 WebSphere Client Technology, Micro Edition. 60
4.1.5 Domino Server V6.5.1. 60
4.1.6 WebSphere Voice Server . 62
4.1.7 WebSphere Voice Application Access Server 62
4.1.8 Voice Response Server . 63

4.2 Pervasive Device Adapter::Product mappings . 63
4.3 Pervasive Device Adapter=Voice::Product mapping. 65
4.4 Rich Device::Product mapping=Pervasive device OS. 69
4.5 Rich Device=Online::Product mapping=Device Management 69
4.6 Rich Device=Store and forward::Product mapping 71
4.7 Rich Device=Store and forward::Runtime mapping=PIM and e-mail 74
4.8 Pervasive Connectivity runtime pattern::Product mapping 77
4.9 Pervasive Solutions composite pattern::Product mapping 80

Chapter 5. ITSO Railway sample overview . 87
5.1 ITSO Railway . 88

5.1.1 Business value to ITSO Railways . 88
iv Patterns: Pervasive and Rich Device Access Solutions

5.2 General requirements . 89
5.3 Provide executive PIM and e-mail support . 89

5.3.1 Key requirements . 89
5.3.2 Example application scenario . 90

5.4 Mobile customer access . 90
5.4.1 Key requirements . 91
5.4.2 Example application scenario . 91

5.5 Mobile inventory management . 91
5.5.1 Key requirements . 92
5.5.2 Example application scenario . 92

5.6 Monitor critical equipment . 93
5.6.1 Key requirements . 93
5.6.2 Example application scenario . 93

5.7 Alerts to maintenance workers . 94
5.7.1 Key requirements . 94
5.7.2 Example application scenario . 94

5.8 Automated on-train ticketing . 95
5.8.1 Key requirements . 95
5.8.2 Example application scenario . 95

5.9 Provide voice access to customers . 96
5.9.1 Key requirements . 96
5.9.2 Example application scenario . 97

5.10 Maintain the mobile devices . 97
5.10.1 Key requirements . 97
5.10.2 Example application scenario . 98

5.11 Secure mobile device . 98
5.11.1 Key requirements . 98
5.11.2 Example application scenario . 99

Chapter 6. Pervasive application types. 101
6.1 Application types . 102

6.1.1 Solution space. 102
6.1.2 Application types mapped to Runtime patterns. 104
6.1.3 Scenario implementations using various pervasive technologies . . 107

Part 2. Guidelines . 111

Chapter 7. Technology options . 113
7.1 Client-side technologies . 114

7.1.1 Devices . 114
7.1.2 Operating systems . 115
7.1.3 Device Platforms/Frameworks . 117

7.2 Server-side technologies. 120
7.2.1 Services . 120
 Contents v

7.2.2 Java-based technologies . 121
7.3 The mobile Web . 124

7.3.1 HTML . 125
7.3.2 cHTML. 125
7.3.3 XML. 126
7.3.4 XML Device-Independent Markup Extensions (XDIME) 126
7.3.5 XForms . 126
7.3.6 XHTML 1.1 (HTML 4.01). 127
7.3.7 XSLT . 128
7.3.8 WML . 128
7.3.9 SyncML DS and DM . 128
7.3.10 VoiceXML and X+V. 129

7.4 Connectivity technologies . 130
7.4.1 Wireless technologies . 130
7.4.2 Wired technologies . 131
7.4.3 Issues with connectivity. 132

7.5 IBM-specific pevasive-related technologies . 132
7.5.1 Service Management Framework (SMF) . 132
7.5.2 Workplace Client Technology, Micro Edition (WCTME) 133
7.5.3 Extension Services for WebSphere Everyplace (ESWE) 134

Chapter 8. Application development toolkits . 135
8.1 Pervasive tool strategy . 136

8.1.1 WebSphere Studio and pervasive toolkits 136
8.2 Everyplace Toolkit . 138
8.3 Multimodal Toolkit for WebSphere Studio . 141
8.4 Voice Toolkit for WebSphere Studio . 142
8.5 WebSphere Studio Device Developer. 144

8.5.1 SMF Bundle Development Kit . 145
8.5.2 Application Tools for Extension Services . 146

Part 3. Scenario implementations . 149

Chapter 9. PIM and e-mail synchronization . 151
9.1 Overview . 152

9.1.1 Customer requirements. 153
9.1.2 Functional requirements and use case model 154
9.1.3 Non-functional requirements . 163
9.1.4 Solution approach . 167

9.2 Architectural overview . 167
9.3 System design overview . 172

9.3.1 General considerations for synchronized enabled applications . . . 172
9.4 Runtime configuration and deployment. 175

9.4.1 Enable PIM and e-mail server to support synchronization server
vi Patterns: Pervasive and Rich Device Access Solutions

connection . 175
9.4.2 Configure PIM and e-mail synchronization 176
9.4.3 Configure Everyplace Client and synchronization on client side. . . 183
9.4.4 Using the PIM and e-mail synchronization 184

9.5 Summary . 186

Chapter 10. Web access to ITSO Railway’s timetables 189
10.1 Overview . 190

10.1.1 Customer requirements. 192
10.1.2 Use case model . 192
10.1.3 Key requirements . 193

10.2 Architectural overview . 194
10.3 System design overview . 195

10.3.1 Application flow diagram . 195
10.3.2 Design considerations. 197

10.4 Application development . 200
10.4.1 Create the portlet application project framework. 201
10.4.2 Add supporting files and business logic . 202
10.4.3 Add connectivity to the existing train schedule database 203
10.4.4 Customize and add JSPs for specific markup languages 204
10.4.5 Test and debug the application . 205

10.5 Summary . 209

Chapter 11. Mobile Inventory Management with offline forms 211
11.1 Overview . 212

11.1.1 Customer requirements. 213
11.1.2 Functional requirements and use case model 214
11.1.3 Non-functional requirements . 223
11.1.4 Solution approach . 226

11.2 Architectural overview . 226
11.3 System design overview . 228

11.3.1 General considerations for intermittently connected applications . 228
11.3.2 Mobile Supply Tracking System solution outline. 230
11.3.3 Component model. 232
11.3.4 Object model . 233

11.4 Application development . 234
11.4.1 Introduction to WebSphere Everyplace Toolkit 234
11.4.2 Development of forms-based applications for mobile devices . . . 237

11.5 Deployment and runtime configuration . 253
11.5.1 Configuration for offline forms-based applications 253
11.5.2 Using the application. 258

11.6 Summary . 260

Chapter 12. Using Intelligent Notification Services 263
 Contents vii

12.1 Business context . 264
12.2 Architectural overview model . 264
12.3 System design overview . 266

12.3.1 Component model. 269
12.3.2 Object model . 270

12.4 Sample application development . 271

Chapter 13. Using Workplace Client Technology, Micro Edition. 283
13.1 Architectural overview model . 284
13.2 System design overview . 286

13.2.1 Component model. 288
13.2.2 Object model . 289

13.3 Application design . 294
13.4 Sample application development . 295

13.4.1 Creating the application . 297
13.4.2 Creating the service interface . 298
13.4.3 Create the servlet . 299
13.4.4 Creating a user interface. 301
13.4.5 Accessing the database . 304
13.4.6 Creating messages . 305
13.4.7 Setting up the launch configuration. 306
13.4.8 Deploying the application . 307
13.4.9 Launching the application . 308
13.4.10 Using the ITSO Railways Ticketing application. 309

13.5 Deploying the application . 312

Chapter 14. Timetable information by Voice . 313
14.1 Business requirements . 314
14.2 High-level architectural overview. 319
14.3 Activity diagram . 320
14.4 Components . 322
14.5 Interface for call flow . 324

14.5.1 Dialogue design . 324
14.5.2 Persona selection . 325
14.5.3 Usability design . 325

14.6 Development of timetable access . 327
14.7 Voice portlet development. 328

14.7.1 Setting up Voice Toolkit V5.0 for WebSphere Studio 329
14.7.2 Application grammar development . 330
14.7.3 Creating a database for the application . 334
14.7.4 Creating a call flow for the application . 335
14.7.5 Creating speech output . 338
14.7.6 Generating basic VoiceXML code structure from call flow 343
viii Patterns: Pervasive and Rich Device Access Solutions

14.8 Testing the Timetable application . 351
14.9 Preparing voice portlet for implementation . 356

14.9.1 Deploying the voice portlet in WebSphere Portal 357
14.10 Meeting ITSO Railways future multi-channel requirements 358

Chapter 15. Connectivity and access . 359
15.1 Business initiatives and environment . 360

15.1.1 Mobile environment . 361
15.1.2 Security environment . 362
15.1.3 Network environment . 363
15.1.4 Application environment . 369
15.1.5 Device environment . 371

15.2 Non-functional requirements for mobile access 373
15.3 Architectural decisions . 375
15.4 ITSO Railways sample application . 376

15.4.1 Mobile environment . 376
15.4.2 Security environment . 378
15.4.3 Network environment . 379
15.4.4 Application environment . 381
15.4.5 Device environment . 382
15.4.6 Non-functional requirements . 383

15.5 Mapping ITSO Sample application requirements 384
15.5.1 Requirement mapping. 385

Chapter 16. Maintaining mobile devices . 393
16.1 Overview . 394

16.1.1 Customer requirements. 395
16.1.2 Functional requirements and use case model 396
16.1.3 Non-functional requirements . 408
16.1.4 Solution approach . 412

16.2 Architectural overview . 412
16.3 System design overview . 414

16.3.1 General device management considerations 414
16.3.2 ITSO Railway device management solution outline 418

16.4 Deployment and runtime configuration . 418
16.4.1 Overview . 418
16.4.2 Creation of the software package . 418
16.4.3 Creation and assignment of the software distribution job 425
16.4.4 Running the software distribution job . 427

Part 4. Appendixes . 433

Appendix A. Additional material . 435
Locating the Web material . 435
 Contents ix

Using the Web material . 435
System requirements for downloading the Web material 436
How to use the Web material . 436

Related publications . 437
IBM Redbooks . 437
Additional publications . 437
Online resources . 437
How to get IBM Redbooks . 439
Help from IBM . 439

Index . 441
x Patterns: Pervasive and Rich Device Access Solutions

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult
your local IBM representative for information on the products and services currently available in your area.
Any reference to an IBM product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product, program, or service that
does not infringe any IBM intellectual property right may be used instead. However, it is the user's
responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document.
The furnishing of this document does not give you any license to these patents. You can send license
inquiries, in writing, to:
IBM Director of Licensing, IBM Corporation, North Castle Drive Armonk, NY 10504-1785 U.S.A.

The following paragraph does not apply to the United Kingdom or any other country where such provisions
are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES
THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer
of express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made
to the information herein; these changes will be incorporated in new editions of the publication. IBM may
make improvements and/or changes in the product(s) and/or the program(s) described in this publication at
any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in any
manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of the
materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Information concerning non-IBM products was obtained from the suppliers of those products, their published
announcements or other publicly available sources. IBM has not tested those products and cannot confirm
the accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on
the capabilities of non-IBM products should be addressed to the suppliers of those products.

This information contains examples of data and reports used in daily business operations. To illustrate them
as completely as possible, the examples include the names of individuals, companies, brands, and products.
All of these names are fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:
This information contains sample application programs in source language, which illustrates programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs in
any form without payment to IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating platform for which the
sample programs are written. These examples have not been thoroughly tested under all conditions. IBM,
therefore, cannot guarantee or imply reliability, serviceability, or function of these programs. You may copy,
modify, and distribute these sample programs in any form without payment to IBM for the purposes of
developing, using, marketing, or distributing application programs conforming to IBM's application
programming interfaces.
© Copyright IBM Corp. 2005. All rights reserved. xi

Trademarks
The following terms are trademarks of the International Business Machines Corporation in the United States,
other countries, or both:

AIX®
Approach®
Cloudscape™
DB2®
developerWorks®
Domino®
DPI®
Eserver®
eServer™

Eserver™
Everyplace®
ibm.com®
IBM®
Lotus Notes®
Lotus®
Notes®
PartnerWorld®
Perform™

Rational®
Redbooks (logo) ™
Redbooks™
Sametime®
Tivoli®
TME®
ViaVoice®
WebSphere®
z/OS®

The following terms are trademarks of other companies:

Intel, Intel Inside (logos), MMX, and Pentium are trademarks of Intel Corporation in the United States, other
countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the
United States, other countries, or both.

Java and all Java-based trademarks and logos are trademarks or registered trademarks of Sun
Microsystems, Inc. in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

SET, SET Secure Electronic Transaction, and the SET Logo are trademarks owned by SET Secure
Electronic Transaction LLC.

Other company, product, and service names may be trademarks or service marks of others.
xii Patterns: Pervasive and Rich Device Access Solutions

Preface

This IBM Redbook is part of the Patterns for e-business series. The focus of this
book is to provide an in-depth overview of the currently available pervasive
solutions using various IBM products.

Part 1, “Pervasive solution patterns” on page 1, discusses the application
patterns, runtime patterns, and runtime Product mappings for each of the
scenarios introduced in the third part of the book. Pervasive solutions are Access
Integration solutions that focus on front-end integration. The infrastructure with
which pervasive solutions must integrate can be thought of as a “black box,”
which can be implemented in a number of ways. For example, it can be a Web
server, a Web application server, or a portal server. The black box used in this
book was implemented as a portal server and color-coded blue in the figures.
Readers with a different black box implementation should be able to apply the
delta orange nodes and Product mappings to their own configurations.

Part 2, “Guidelines” on page 111, is a collection of application design and
development guidelines that can be applied to each of the scenarios.

Part 3, “Scenario implementations” on page 149, consists of eight different
pervasive scenairos. Each scenario provides technical details and samples for
implementation.

This book is primary a source for IT architects and IT specialists planning to
design or implement pervasive solutions.

The team that wrote this redbook
This redbook was produced by a team of specialists from around the world
working at the International Technical Support Organization, Raleigh Center.
© Copyright IBM Corp. 2005. All rights reserved. xiii

The Team (lef to right): Phillip Dermody, Stefan Fassmann, Sami Serpola, Daniel Ehrle, LindaMay
Patterson, Richard Jacks, Peter Kovari, George Kroner

Peter Kovari is a WebSphere Specialist at the International Technical Support
Organization, Raleigh Center. He writes extensively about all areas of
WebSphere. His areas of expertise include e-business, e-commerce, security,
Internet technologies, and mobile computing. Before joining the ITSO, he worked
as an IT Specialist for IBM in Hungary.

Phillip Dermody is a Speech Solutions Specialist working in Technical Sales in
Pervasive Computing, Software Group, ANZ. He joined IBM in 2003 and has
been working with the full range of WebSphere voice and speech products with
both financial groups and with Telecoms. Prior to joining IBM, Phillip was an
R&D manager in speech technology and speech user interfaces, and also
worked as a consultant designing and technically managing a range of
speech-based projects, including the development of voice portals. Phillip works
with customers on underlying speech technology and interface requirements,
architectures for speech deployment, and product solutions. He has a PhD from
the University of NSW.

Daniel Ehrle is an IT Specialist in the software group for pervasive computing in
Switzerland. After he received his degree in computer science in 1996, he joined
IBM as a Security Specialist in the security services group of IBM Global
Services. He changed to the software group as technical presales for
WebSphere in 2000 and specialized in pervasive computing in 2002. Since then
he has been engaged in various customer pilots and proof of concepts.

Stefan Fassmann is an IT Specialist in the Pervasive Computing service group
at the IBM Lab Boeblingen, Germany. After he received his degree in electrical
xiv Patterns: Pervasive and Rich Device Access Solutions

engineering in 1996, during which he specialized on radio networks, he started
working on mobile workforce and remote access solutions in the mobile
computing group of IBM Global Services. He changed to the Pervasive
Computing service group in the IBM Lab in Boeblingen in 2000. Since then he
has been engaged in various customer projects using embedded software client
technology.

Richard Jacks is an IT specialist in the Pervasive Comupting services group at
the IBM Lab in Hursley, UK. After he received his degree in Computer Science in
2001, he started working on WebSphere MQ products within IBM Software
Group. In 2003 he moved to the Pervasive Computing services group. He has
since been engaged in various customer projects using the WebSphere
Everyplace suite of products.

George Kroner is a second year Co-op IT Specialist at the IBM ITSO Center in
Raleigh, North Carolina. He is currently pursuing a Bachelor of Science degree in
Information Sciences and Technology at Pennsylvania State University. His
interests include mobile computing, Web applications, and intelligent interfaces.

LindaMay Patterson is an IT Consultant for the IBM Eserver Custom
Technology Center in Rochester, MN. She currently works with the IBM
Pervasive Computing Division and provides technical support to the Product
Management Team. She has worked in a wide variety of organizations including
PartnerWorld, Information Systems, and Advanced Technology. She has written
various papers and articles on pervasive computing, XML, and XML-related
technologies and has contributed to various IBM Redbooks.

Sami Serpola is a IT Architect in Helsinki. He has over five years of experience
with mobile architectural infrastructure design. Sami has worked closely with
Customers and Business Partners to integrate and migrate their existing
environments and solutions towards the WebSphere family. Sami's areas of
expertise include Internet technologies and protocols, mobile infrastructures with
an emphasis on remote synchronization, authentication and authorization, and
mobile solutions usability and interfaces.

Thanks to the following people for their contributions to this project:

Juan Rodriguez
Margaret Ticknor
Jeanne Tucker
International Technical Support Organization, Raleigh Center

Julie Czubik
International Technical Support Organization, Poughkeepsie Center
 Preface xv

Jonathan Adams
Joan Boone
Curtis Ebbs
Bill Glendenning
Joe Hansen
Nichelle Hopson
Christian L Hunt
Christian Kirsch
David Lection
Peggy Nethery
Eric Otchet
Jake Palmer
Dr. Werner Schollenberger
Kermit Taylor
Dave Van Voorhis

Become a published author
Join us for a two- to six-week residency program! Help write an IBM Redbook
dealing with specific products or solutions, while getting hands-on experience
with leading-edge technologies. You'll team with IBM technical professionals,
Business Partners and/or customers.

Your efforts will help increase product acceptance and customer satisfaction. As
a bonus, you'll develop a network of contacts in IBM development labs, and
increase your productivity and marketability.

Find out more about the residency program, browse the residency index, and
apply online at:

ibm.com/redbooks/residencies.html

Comments welcome
Your comments are important to us!

We want our Redbooks to be as helpful as possible. Send us your comments
about this or other Redbooks in one of the following ways:

� Use the online Contact us review redbook form found at:

ibm.com/redbooks

� Send your comments in an Internet note to:

redbook@us.ibm.com
xvi Patterns: Pervasive and Rich Device Access Solutions

http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/contacts.html

� Mail your comments to:

IBM Corporation, International Technical Support Organization
Dept. HZ8 Building 662
P.O. Box 12195
Research Triangle Park, NC 27709-2195
 Preface xvii

xviii Patterns: Pervasive and Rich Device Access Solutions

Part 1 Pervasive
solution
patterns

Part 1
© Copyright IBM Corp. 2005. All rights reserved. 1

2 Patterns: Pervasive and Rich Device Access Solutions

Chapter 1. Patterns for e-business

This publication is part of the Patterns for e-business series. In this introductory
chapter we provide an overview of how IT architects can work effectively with the
Patterns for e-business.

The role of the IT architect is to evaluate business problems and to build
solutions to solve them. To do this, the architect begins by gathering input on the
problem, an outline of the desired solution, and any special considerations or
requirements that need to be factored into that solution. The architect then takes
this input and designs the solution. This solution can include one or more
computer applications that address the business problems by supplying the
necessary business functions.

To enable the architect to do this better each time, we need to capture and reuse
the experience of these IT architects in such a way that future engagements can
be made simpler and faster. We do this by taking these experiences and using
them to build a repository of assets that provides a source from which architects
can reuse this experience to build future solutions, using proven assets. This
reuse saves time, money, and effort, and in the process helps ensure delivery of
a solid, properly architected solution.

The IBM Patterns for e-business helps facilitate this reuse of assets. Their
purpose is to capture and publish e-business artifacts that have been used,
tested, and proven. The information captured by them is assumed to fit the
majority, or 80/20, situation.

1

© Copyright IBM Corp. 2005. All rights reserved. 3

The IBM Patterns for e-business are further augmented with guidelines and
related links for their better use.

The layers of patterns plus their associated links and guidelines allow the
architect to start with a problem and a vision for the solution, and then find a
pattern that fits that vision. Then by drilling down using the pattern’s process, the
architect can further define the additional functional pieces that the application
will need to succeed. Finally he can build the application using the coding
techniques outlined in the associated guidelines.
4 Patterns: Pervasive and Rich Device Access Solutions

1.1 The Patterns for e-business layered asset model
The Patterns for e-business approach enables architects to implement
successful e-business solutions through the reuse of components and solution
elements from proven successful experiences. The Patterns approach is based
on a set of layered assets that can be exploited by any existing development
methodology. These layered assets are structured in a way such that each level
of detail builds on the last. These assets include:

� Business patterns that identify the interaction between users, businesses,
and data.

� Integration patterns that tie multiple Business patterns together when a
solution cannot be provided based on a single Business pattern.

� Composite patterns that represent commonly occurring combinations of
Business patterns and Integration patterns.

� Application patterns that provide a conceptual layout describing how the
application components and data within a Business pattern or Integration
pattern interact.

� Runtime patterns that define the logical middleware structure supporting an
Application pattern. Runtime patterns depict the major middleware nodes,
their roles, and the interfaces between these nodes.

� Product mappings that identify proven and tested software implementations
for each Runtime pattern.

� Best-practice guidelines for design, development, deployment, and
management of e-business applications.

These assets and their relation to each other are shown in Figure 1-1 on page 6.
 Chapter 1. Patterns for e-business 5

Figure 1-1 The Patterns for e-business layered asset model

Patterns for e-business Web site
The Patterns Web site provides an easy way of navigating top down through the
layered Patterns’ assets in order to determine the preferred reusable assets for
an engagement.

For easy reference to Patterns for e-business refer to the Patterns for e-business
Web site at:

 http://www.ibm.com/developerWorks/patterns/

1.2 How to use the Patterns for e-business
As described in the last section, the Patterns for e-business is a layered structure
where each layer builds details on the last. At the highest layer are Business
patterns. These describe the entities involved in the e-business solution.

Best-Practice Guidelines

Application Design
Systems Management
Performance
Application Development
Technology Choices

Customer
requirements

Product
mappings

Any M
ethodology

Runtime
patterns

Application
patterns

Composite
patterns

Business
patterns

Integration
patterns
6 Patterns: Pervasive and Rich Device Access Solutions

http://www.ibm.com/developerWorks/patterns/

Composite patterns appear in the hierarchy shown in Figure 1-1 on page 6 above
the Business patterns. However, Composite patterns are made up of a number of
individual Business patterns, and at least one Integration pattern. In this section,
we discuss how to use the layered structure of Patterns for e-business assets.

1.2.1 Business, Integration, or Composite pattern, or a custom
design

When faced with the challenge of designing a solution for a business problem,
the first step is to get a high-level view of the goals you are trying to achieve. A
proposed business scenario should be described and each element should be
matched to an appropriate IBM Pattern for e-business. You may find, for
example, that the total solution requires multiple Business and Integration
patterns, or that it fits into a Composite pattern or custom design. For example,
suppose an insurance company wants to reduce the amount of time and money
spent on call centers that handle customer inquiries. By allowing customers to
view their policy information and to request changes online, they will be able to
cut back significantly on the resources spent handling this by phone. The
objective is to allow policy holders to view their policy information stored in
legacy databases.

The Self-Service business pattern fits this scenario perfectly. It is meant to be
used in situations where users need direct access to business applications and
data. Let us take a look at the available Business patterns.

Business patterns
A Business pattern describes the relationship between the users, the business
organizations or applications, and the data to be accessed.
 Chapter 1. Patterns for e-business 7

There are four primary Business patterns, as explained in Figure 1-2.

Figure 1-2 The four primary Business patterns

It would be very convenient if all problems fit nicely into these four slots, but
reality says that things will often be more complicated. The patterns assume that
most problems, when broken down into their most basic components, will fit
more than one of these patterns. When a problem requires multiple Business
patterns, the Patterns for e-business provide additional patterns in the form of
Integration patterns.

Integration patterns
Integration patterns allow us to tie together multiple Business patterns to solve a
business problem. The Integration patterns are outlined in Figure 1-3 on page 9.

Business Patterns Description Examples

Self-Service
(User-to-Business)

Applications where users
interact with a business
via the Internet or
intranet

Simple Web site
applications

Information Aggregation
(User-to-Data)

Applications where users
can extract useful
information from large
volumes of data, text,
images, etc.

Business intelligence,
knowledge management,
Web crawlers

Collaboration
(User-to-User)

Applications where the
Internet supports
collaborative work
between users

E-mail, community, chat,
video conferencing, etc.

Extended Enterprise
(Business-to-Business)

Applications that link two
or more business
processes across
separate enterprises

EDI, supply chain
management, etc.
8 Patterns: Pervasive and Rich Device Access Solutions

Figure 1-3 Integration patterns

These Business and Integration patterns can be combined to implement
installation-specific business solutions. We call this a custom design.

Custom design
We can represent the use of a custom design to address a business problem
through the iconic representation shown in Figure 1-4.

Figure 1-4 Patterns representing a custom design

Integration Patterns Description Examples

Access Integration
Integration of a number
of services through a
common entry point

Portals

Application Integration
Integration of multiple
applications and data
sources without the user
directly invoking them

Message brokers,
workflow managers

Ac
ce

ss
 In

te
gr

at
io

n Self-Service

Collaboration

Information Aggregation

Extended Enterprise Ap
pl

ic
at

io
n

In
te

gr
at

io
n

 Chapter 1. Patterns for e-business 9

If any of the Business or Integration patterns are not used in a custom design, we
show that in the figures by making a block or blocks lighter than another. For
example, Figure 1-5 shows a custom design that does not have a Collaboration
business pattern or an Extended Enterprise business pattern for a business
problem.

Figure 1-5 Custom design with Self-Service, Information Aggregation, Access
Integration, and Application Integration

A custom design may also be a Composite pattern if it recurs many times across
domains with similar business problems. For example, the iconic view of a
custom design in Figure 1-5 can also describe a Sell-Side Hub composite
pattern.

Composite patterns
Several common uses of Business and Integration patterns have been identified
and formalized into Composite patterns. The identified Composite patterns are
shown in Figure 1-6 on page 11.

Ac
ce

ss
 In

te
gr

at
io

n Self-Service

Collaboration

Information Aggregation

Extended Enterprise Ap
pl

ic
at

io
n

In
te

gr
at

io
n

10 Patterns: Pervasive and Rich Device Access Solutions

Figure 1-6 Composite patterns

The makeup of these patterns is variable in that there will be basic patterns
present for each type, but the Composite can easily be extended to meet
additional criteria. For more information on Composite patterns, refer to Patterns
for e-business: A Strategy for Reuse by Jonathan Adams, Srinivas Koushik,
Guru Vasudeva, and George Galambos.

Composite patterns Description Examples

Electronic Commerce User-to-online-buying. www.macys.com
www.amazon.com

Portal

Typically designed to aggregate
multiple information sources and
applications to provide uniform,
seamless, and personalized
access for its users.

Enterprise intranet portal
providing self-service functions
such as payroll, benefits, and
travel expenses

Collaboration providers who
provide services such as e-mail
or instant messaging

Account Access
Provides customers with
around-the-clock account access
to their account information.

Online brokerage trading apps.
Telephone company account
manager functions

Bank, credit card and insurance
company online apps

Trading Exchange
Allows buyers and sellers to trade
goods and services on a public
site.

Buyer's side: Interaction
between buyer's procurement
system and commerce
functions of e-Marketplace

Seller's side: Interaction
between the procurement
functions of the e-Marketplace
and its suppliers

Sell-Side Hub
(Supplier)

The seller owns the e-Marketplace
and uses it as a vehicle to sell
goods and services on the Web.

www.carmax.com (car purchase)

Buy-Side Hub
(Purchaser)

The buyer of the goods owns the
e-Marketplace and uses it as a
vehicle to leverage the buying or
procurement budget in soliciting
the best deals for goods and
services from prospective sellers
across the Web.

www.wre.org
(WorldWide Retail Exchange)
 Chapter 1. Patterns for e-business 11

1.2.2 Selecting Application patterns
Once the Business pattern is identified, the next step is to define the high-level
logical components that make up the solution and how these components
interact. This is known as the Application pattern. A Business pattern will usually
have multiple possible Application patterns. An Application pattern may have
logical components that describe a presentation tier for interacting with users, an
application tier, and a back-end application tier.

Application patterns break the application down into the most basic conceptual
components, identifying the goal of the application. In our example, the
application falls into the Self-Service business pattern, and the goal is to build a
simple application that allows users to access back-end information. The
Self-Service::Directly Integrated Single Channel application pattern shown in
Figure 1-7 fulfills this requirement.

Figure 1-7 Self-Service::Directly Integrated Single Channel

The Application pattern shown in Figure 1-7 consists of a presentation tier that
handles the request/response to the user. The application tier represents the
component that handles access to the back-end applications and data. The
multiple application boxes on the right represent the back-end applications that
contain the business data. The type of communication is specified as
synchronous (one request/one response, then next request/response) or
asynchronous (multiple requests and responses intermixed).

Presentation synchronous Web
Application

synch/
asynch Back-End

Application 1

Application node
containing new or
modified components

Application node containing
existing components with
no need for modification
or that cannot be changed

Read/Write data

Back-End
Application 2
12 Patterns: Pervasive and Rich Device Access Solutions

Suppose that the situation is a little more complicated than that. Let us say that
the automobile policies and the homeowner policies are kept in two separate and
dissimilar databases. The user request would actually need data from multiple,
disparate back-end systems. In this case there is a need to break the request
down into multiple requests (decompose the request) to be sent to the two
different back-end databases, then to gather the information sent back from the
requests, and then put this information into the form of a response (recompose).
In this case the Self-Service::Decomposition application pattern shown in
Figure 1-8 would be more appropriate.

Figure 1-8 Self-Service::Decomposition

This Application pattern extends the idea of the application tier that accesses the
back-end data by adding decomposition and recomposition capabilities.

1.2.3 Review Runtime patterns
The Application pattern can be further refined with more explicit functions to be
performed. Each function is associated with a runtime node. In reality these
functions, or nodes, can exist on separate physical machines or may coexist on
the same machine. In the Runtime pattern this is not relevant. The focus is on the
logical nodes required and their placement in the overall network structure. As an
example, let us assume that our customer has determined that his solution fits
into the Self-Service business pattern and that the Directly Integrated Single
Channel pattern is the most descriptive of the situation. The next step is to
determine which Runtime pattern is the most appropriate for his situation.

Presentation synchronous Decomp/
Recomp

synch/
asynch

Application node
containing new
or modified
components

Application node
containing existing
components with no need
for modification or which
cannot be changed

Read/
 Write data

Transient data
- Work in progress
- Cached committed data
- Staged data (data replication
flow)

Back-End
Application 1

Back-End
Application 2
 Chapter 1. Patterns for e-business 13

He knows that he will have users on the Internet accessing his business data,
and he will therefore require a measure of security. Security can be implemented
at various layers of the application, but the first line of defense is almost always
one or more firewalls that define who and what can cross the physical network
boundaries into his company network.

He also needs to determine the functional nodes required to implement the
application and security measures. The Runtime pattern shown in Figure 1-9 is
one of his options.

Figure 1-9 Directly Integrated Single Channel application pattern::Runtime pattern

By overlaying the Application pattern on the Runtime pattern, you can see the
roles that each functional node will fulfill in the application. The presentation and
application tiers will be implemented with a Web application server, which
combines the functions of an HTTP server and an application server. It handles
both static and dynamic Web pages.

Application security is handled by the Web application server through the use of
a common central directory and security services node.

Internal Network
Demilitarized Zone

(DMZ)Outside World

Pr
ot

oc
ol

 F
ire

w
al

l

Existing
Applications

and Data

D
om

ai
n

Fi
re

w
al

lI
N
T
E
R
N
E
T

Public Key
Infrastructure

User

Web
Application

Server

Domain Name
Server

Directory and
Security
Services

Presentation Application Application

Directly Integrated Single Channel application

Application

Existing
Applications

and Data
14 Patterns: Pervasive and Rich Device Access Solutions

A characteristic that makes this Runtime pattern different from others is the
placement of the Web application server between the two firewalls. The Runtime
pattern shown in Figure 1-10 is a variation of this. It splits the Web application
server into two functional nodes by separating the HTTP server function from the
application server. The HTTP server (Web server redirector) will serve static
Web pages and redirect other requests to the application server. It moves the
application server function behind the second firewall, adding further security.

Figure 1-10 Directly Integrated Single Channel application pattern::Runtime pattern:
Variation 1

These are just two examples of the possible Runtime patterns available. Each
Application pattern will have one or more Runtime patterns defined. These can
be modified to suit the customer’s needs. For example, she may want to add a
load-balancing function and multiple application servers.

Internal Network
Demilitarized Zone

(DMZ)Outside World

Pr
ot

oc
ol

 F
ire

w
al

l

Do
m

ai
n

Fi
re

w
al

lI
N
T
E
R
N
E
T

Public Key
Infrastructure

User

Web
Server

Redirector

Domain Name
Server

Presentation Application Application

Directly Integrated Single Channel application

Application

Existing
Applications

and Data

Application
Server

Directory and
Security
Services

Existing
Applications

and Data
 Chapter 1. Patterns for e-business 15

1.2.4 Review Product mappings
The last step in defining the network structure for the application is to correlate
real products with one or more runtime nodes. The Patterns Web site shows
each Runtime pattern with products that have been tested in that capacity. The
Product mappings are oriented toward a particular platform, though more likely
the customer will have a variety of platforms involved in the network; in that case,
it is simply a matter of mix and match. For example, the runtime variation in
Figure 1-10 on page 15 could be implemented using the product set depicted in
Figure 1-11.

Figure 1-11 Directly Integrated Single Channel application pattern: Windows 2000 Product mapping

1.2.5 Review guidelines and related links
The Application patterns, Runtime patterns, and Product mappings are intended
to guide you in defining the application requirements and the network layout. The
actual application development has not been addressed yet. The Patterns Web
site provides guidelines for each Application pattern, including techniques for
developing, implementing, and managing the application based on the following:

� Design guidelines give you tips and techniques for designing the applications.

Internal networkDemilitarized zone

O
ut

si
de

 w
or

ld

Pr
ot

oc
ol

 F
ire

w
al

l

D
om

ai
n

Fi
re

w
al

l

Web Server
Redirector

Windows 2000 + SP3
IBM WebSphere Application
Server V5.0 HTTP Plug-in
IBM HTTP Server 1.3.26

Directory and
Security
Services

LDAP

 Application
 Server

Windows 2000 + SP3
IBM SecureWay Directory V3.2.1
IBM HTTP Server 1.3.19.1
IBM GSKit 5.0.3
IBM DB2 UDB EE V7.2 + FP5

Database

Existing
Applications

and Data

Windows 2000 + SP3
IBM DB2 UDB ESE V8.1

JMS Option:
Windows 2000 + SP3
IBM WebSphere Application
Server V5.0
IBM WebSphere MQ 5.3
Message-driven bean application

Web Services Option:
Windows 2000 + SP3
IBM WebSphere Application
Server V5.0
IBM HTTP Server 1.3.26
IBM DB2 UDB ESE 8.1
Web service EJB application

JCA Option:
z/OS Release 1.3
IBM CICS Transaction Gateway
V5.0
IBM CICS Transaction Server
V2.2
CICS C-application

Windows 2000 + SP3
IBM WebSphere Application
Server V5.0

JMS Option add:
IBM WebSphere MQ 5.3
16 Patterns: Pervasive and Rich Device Access Solutions

� Development guidelines take you through the process of building the
application, from the requirements phase all the way through the testing and
rollout phases.

� System management guidelines address the day-to-day operational
concerns, including security, backup and recovery, application management,
etc.

� Performance guidelines give information on how to improve the application
and system performance.

1.3 Summary
The IBM Patterns for e-business are a collective set of proven architectures. This
repository of assets can be used by companies to facilitate the development of
Web-based applications. They help an organization understand and analyze
complex business problems and break them down into smaller, more
manageable functions that can then be implemented.
 Chapter 1. Patterns for e-business 17

18 Patterns: Pervasive and Rich Device Access Solutions

Chapter 2. Application patterns for
pervasive solutions

The Access Integration application patterns for pervasive solutions show
application topologies for a wide spectrum of pervasive devices and applications.

The Application patterns introduced in this book (a subset of the Access
Integration patterns) focus on pervasive solutions and enable the front-end
integration of applications with pervasive and rich client devices.

2

© Copyright IBM Corp. 2005. All rights reserved. 19

2.1 Pervasive access applications
Pervasive access applications are those that allow you to access your business
resources on the road from pervasive devices such as PDAs or cellular
telephones.

Pervasive access applications have a common set of features to fulfill the
business and IT requirements required by an organization desiring mobile
access to its resources. These include:

� Online and/or offline application capabilities for maintain access to certain
resources even without network connectivity

� A client-side repository such as a database or file directory to store data to be
used and updated on the road

� A means of synchronizing data on the mobile devices with a back-end
resource

� Mechanisms for securing the data and applications accessed via the device,
including authentication, authorization, and secure communication

� Content adaptation based on the device and/or customer behavior

� Access to existing back-end data or applications

Typical examples for pervasive access applications could be:

� Synchronizing the company’s Personal Information Management (PIM) and
e-mail databases to allow employees to maintain current schedule, e-mail,
and other information wherever they are.

� The use of PDAs by mobile workers to load information relating to their daily
tasks from the enterprise server. These mobile workers can work offline all
day and can synchronize their updated/new data from their PDAs back into
Enterprise applications.

� In rail transportation, the railway switching system is critical to the movement
of trains within the train yard. A malfunction causes additional work for the
yard workers because they must find alternate ways to move cars and
connect to the right trains. Sensors can monitor these switches and alert
workers whenever anything is not functioning properly.

� Stock brokers want to be instantly notified when any of their stocks rise above
14 percent or drop more than 10 percent of their previous value.

� Commuters may want to access the most recent scheduling information for a
railway system using a voice application from their telephone when they leave
the office.
20 Patterns: Pervasive and Rich Device Access Solutions

2.2 Pervasive Device Adapter application pattern

The Access Integration pattern is used to provide consistent access to various
applications using multiple device types. In order to allow pervasive devices to
access an existing Business pattern, we therefore need to use an Access
Integration application pattern. The Pervasive Device Adapter application pattern
brings a new tier into the architecture. This tier is responsible for the pervasive
extensions to the original application. The function of this tier is to convert the
HTML issued by the application presentation logic into a format appropriate for
the pervasive device. In this way, the Pervasive Device Adapter application
pattern provides a structure for extending the reach of individual applications
from browsers and fat clients to pervasive devices such as PDAs and mobile
phones.

The Pervasive Device Adapter application pattern is shown in Figure 2-1. This
Application pattern represents the applications where the capabilities of the
pervasive clients are limited and the focus is on how to enable the application
and back-end data for pervasive access.

Note: This application pattern was formerly called Pervasive Device Access
pattern. The name has changed because the primary function of this pattern is
not accessing the content but adapting the content. Content access is a
general requirement and function of the Access Integration patterns, including
the Rich device application pattern and its variations.
 Chapter 2. Application patterns for pervasive solutions 21

Figure 2-1 Pervasive Device Adapter application pattern

Because the pervasive client does not have any specific application running and
the capabilities are not relevant, the client node is represented with an empty
infrastructural (no application) node.

Application patterns for pervasive solutions are discussed in this book under two
particular solution types:

� Pervasive devices

� Rich devices

In the Pervasive Devices Adapter application pattern an intermediary application
node provides the necessary services for pervasive devices to access back-end
applications and data. The pervasive devices vary in many aspects, including
display size, memory size, networking functionality, etc. The pervasive device
adapter tier provides the broadest set of services possible to match the pervasive
devices on one side to the applications on the other.

The pervasive device adapter tier provides the following services, among others:

� Connectivity
� Security
� Synchronization
� Content adaptation
� Access to enterprise resources

Pervasive
device

adapter tier
Presentation/
Application

Client tier
synch/
async

synch

Metadata

Read/Write data Application node containing
new or modified components

Application node containing
existing components with no
need for modification or which
cannot be changed
22 Patterns: Pervasive and Rich Device Access Solutions

Business and IT drivers
These:

� Provide universal access to information and services.
� Time to market.
� Reduce Total Cost of Ownership (TCO).

Striving to provide universal access to information and applications is often the
primary business driver for choosing this Application pattern.

The primary IT driver for choosing this Application pattern is to quickly extend the
reach of applications to new device types without having to modify every
individual application to enable its use by additional device types.

Solution
The Pervasive Device Adapter application pattern is built using three logical tiers:
Pervasive device, pervasive device adapter, and application.

� The pervasive device tier represents devices such as PDAs and mobile
phones that can render data formats such as WML and iMode.

� The pervasive device adapter tier receives requests from pervasive devices
and converts them into the appropriate requests that can be understood by
existing applications and converts the response from these existing
applications into formats that can be rendered by the pervasive device. The
rules that govern the transcoding from one format to the other are captured by
the metadata data shown in the above diagram.

In providing pervasive device support, this tier implements the device support
service for protocol adaptation and data stream transcoding and the security
and administration service to ensure that the pervasive device users can
achieve a single sign-on to existing applications.

� The application tier may represent a new application, a modified existing
application, or an unmodified existing application. Predominantly these are
browser-based applications that must be made available on wireless devices.
They may represent applications that automate Self-Service, Collaboration,
or Information Aggregation.

As an example, consider extending a browser-based application to be accessed
by a WAP-enabled mobile phone that can render a WML data format over a
cellular network. In this scenario the pervasive device adapter tier can be
implemented using packages such as WebSphere Everyplace Suite. The
pervasive device adapter tier can be further divided into a WAP gateway and a
transcoding node.
 Chapter 2. Application patterns for pervasive solutions 23

In this case the WAP gateway is responsible for protocol conversion from WAP
to HTTP and vice versa. The gateway must also handle state management
issues since today’s WAP devices do not support cookies.

The content adaptation node is responsible for converting the HTML response
from the existing browser-based application into a WML response to be sent to
the pervasive device. In doing so, this node usually uses device-specific style
sheets to determine what type of information can be made available on this
device. For example, an HTML page that displays "Breaking News" items with
headline, summary, and a link to a detailed report obviously does not render
itself well on a mobile phone display. Under this scenario one may select only the
headline and the link to be displayed on the mobile phone. Similarly,
downloading large graphics icons and images over the wireless network may not
be the best use of the low bandwidth available. Here one may decide to either
completely eliminate graphics or to convert them into image formats that are
optimized such as WBMP. Device-specific style sheets can capture such content
selection, conversion, and elimination criteria.

Guidelines for use
The implementation of this Application pattern calls for a careful examination of
the placement of the content adaptation logic and its influence on the dialogue
mapping. The content adaptation logic placed within an enterprise’s
infrastructure (on its Web server) allows flexible or tight control over the mapping
of a dialogue to the form and size of the access device, such as a mobile phone
or a Personal Digital Assistant. This placement assumes a tight linkage of the
user community to the enterprise and some IT sophistication to run a wireless
infrastructure.

Alternatively, the logic can be placed on the ISP infrastructure, supporting a
loose coupling with the target informational Web site (the device user may
access many sites using the same mapping service). In this case the owner of
the dialogues (the enterprise) provides a device-specific sequence of the
dialogue, which is then transcoded by the ISP service.

Benefits
This Application pattern gives users a considerable choice of devices to access
their applications and data sources.

Limitations
This Application pattern is unlikely to optimize the user interface for any particular
device type. If this is required, additional application changes will be necessary.
24 Patterns: Pervasive and Rich Device Access Solutions

Putting the Application pattern to use
An insurance company has a team of claims assessors visiting policyholders to
check the validity and value of their insurance claims. The claims assessors
need frequent and fast access to the policyholder policies, claims details, and so
on, plus they need to initiate contacts with garages and rental car companies
through their extended enterprise applications. On the road their preferred
access is through a wireless-connected palmtop device. At home or in the office
they use a laptop computer for general activities like writing reports. Hence, the
insurance company chooses the Pervasive Device Adapter application pattern to
extend the existing claims applications to be accessed through palmtop devices.

2.3 Rich Device application patterns
The second Application pattern, and its variations, addresses the rich device
application set. Rich devices are running specific rich client applications
supported by a broad set of services. There are many different pervasive devices
on the market— it is difficult to find the common denominator and provide a
solution for an intermediary node to serve all the different clients. Rich devices,
therefore, try to overcome this problem by targeting a smaller set of devices and
defining a common client framework. The framework provides:

� Graphical User Interface API
� General application API
� Pervasive application API
� Access to the device hardware

The basic Rich Device application pattern consists of only one node, the client
application. This node is capable of providing all the business functionality
required.

Figure 2-2 Rich Device application pattern

A client application by itself is simply not sufficient in most cases without
connectivity to back-end applications. There are two variations to the Rich
Device application pattern.

Presentation /
Application
 Chapter 2. Application patterns for pervasive solutions 25

Application pattern variations
The first variation covers the scenario where the client is always (at least for the
application execution) connected.

Figure 2-3 Rich Device = Online variation

The second variation represents the client scenarios with offline (not always
online, or occasionally connected) capabilities. These types of clients process
data in a store and forward mode where the data is stored locally until a
connection can be made and the data can be transmitted to the server for
onward processing.

Figure 2-4 Rich Device = Store and forward variation

Business and IT drivers
Business and IT drivers:

� Provide universal access to information and services.
� Richer and more advanced user experience.
� Time to Market.
� Reduce Total Cost of Ownership (TCO).

Solution
The key in rich device applications is the application itself. As opposed to other
Web-based solutions (see 2.2, “Pervasive Device Adapter application pattern” on
page 21), this application pattern focuses on one logical tier: The client tier.

Presentation/
Application Application

synch/asynch

Presentation/
Application Application

store and forward
26 Patterns: Pervasive and Rich Device Access Solutions

The client application uses services and accesses components on the server
side. It is built on top of a common runtime and common framework that can run
on numerous hardware devices and operating systems.

Many rich client applications are capable of operating in both online and offline
mode. These applications are always available for the user with full functionality,
even if the network is down for any reason. Once the network is available, the
data and information can be updated on the server and on the client side. Note
that only the business function is available all the time, not the most current data.

Guidelines for use
Rich clients are similar to the clients of client-server times. These devices
provide fat client functionality with the advantage of server-based management.
Some of the application logic is implemented on the client side where they can
use services that are not available for thin clients, for example, transactionality,
reliability, security, offline data store, and so on.

Rich device applications do not have the usability constraints that thin clients
have. Interactions can be longer and more complex. Rich clients can have
controls (user interface components) that are not available to thin clients.

Beyond the rich user experience, there are various quality of services available
to these clients. For example, a client and a server can exchange information
over a reliable communication, and the user can make sure that the interaction
was successful.

Rich applications should ideally be designed in a way so that they can operate
both in online and offline networking mode. Imagine the online operation as a
special case of the offline operation where information is exchanged
(synchronized) instantaneously, not in a long-running store and forward manner.

Benefits
The rich device applications provide a richer and better user experience with
extended functionality. Rich device applications can enable clients to operate in
both online and offline mode. The applications can also use additional services,
including transactionality, reliability, security.

Limitations
The rich device applications are limited to a set of devices that are capable of
operating the runtime environment together with the framework required by the
clients.
 Chapter 2. Application patterns for pervasive solutions 27

Putting the Application pattern to use
An example use of the Application pattern would be the PIM and e-mail
synchronization scenario. Users can access calendar, e-mail, and other personal
applications on their pervasive devices and use these applications in a
connected or disconnected environment. You can find more information about
this sample in Chapter 9, “PIM and e-mail synchronization” on page 151.

2.4 Other Access Integration patterns
The Access Integration pattern can be used to enable more complex e-business
solutions composed of multiple Business patterns. For example, a
browser-based, personalized portal can be developed by combining applications
that automate the Self-Service business pattern and the Collaboration business
pattern. Additionally, this personalized portal might add accessibility to mobile
devices.

In the rest of this section you will find details about the remaining Access
Integration application patterns that are not discussed in further detail in this
book.

2.4.1 Single sign-on
The single sign-on application patterns provide a framework for seamless
application access through unified authentication services. Two Application
patterns for single sign-on are shown below: A basic pattern where the single
sign-on functions are performed in the Web tier, and an extended pattern where
the security context is extended to include the back-end systems.

Figure 2-5 Web Single Sign-On application pattern

Single
sign-on tier

Application
tier 1

Client tier
synch synch

Application
tier 2
28 Patterns: Pervasive and Rich Device Access Solutions

Business and IT drivers
Business and IT drivers:

� Provide single sign-on across multiple applications.
� Reduce Total Cost of Ownership (TCO).
� Reduce user administration cost.

The primary business driver for choosing this Application pattern is to provide
seamless access to multiple applications with a single sign-on while continuing to
protect the security of enterprise information and applications.

Simplification and increased efficiency of user profile management is the main IT
driver for single sign-on.

Solution
The Single Sign-On application pattern uses the security and administration
service discussed above.

This Application pattern is built using three logical tiers: Client, Single Sign-On,
and Application.

� The client tier represents the user interface client such as a browser, mobile
phone, or PDA.

� The Single Sign-On tier implements the security and administration service,
which provides a seamless sign-on capability across multiple applications.
This tier uses a user profile data store, which is primarily read-only. However,
this data store can also be used in a read/write manner to keep track of the
last sign-on, the number of invalid sign-on attempts, and so on. The SSO tier
intercepts all sign-on requests, authenticates the user, and establishes a user
credential upon successful authentication. Subsequently, if the user tries to
access another application that also requires a sign-on, this service
automatically passes the user credential on to that application. The target
application recognizes the user credential established by the security service
and uses it for authorization locally. As a result, users can sign on once to
access all the applications integrated using this Application pattern.

� The application tier may represent a new application, a modified existing
application, or an unmodified existing application.

Guidelines for use
Some guidelines are:

� Having a single source for authentication services could create a single point
of failure for dependent applications. Care must be taken to provide for high
availability of this service.
 Chapter 2. Application patterns for pervasive solutions 29

� Typically, single sign-on works well to support authentication services only,
leaving the supported applications to handle their own authorization as
appropriate. Combining these services is generally possible only with new
applications that can make use of the common services from the start.

Benefits
Some benefits are:

� Users can access their application portfolio easily and securely.

� User profile information is centralized in a common directory, simplifying
profile management and reducing costs.

� Application development cost is reduced by providing a standard security
solution.

Limitations
Many existing applications are not capable of accepting a standard set of user
credentials as a substitute for local authentication. Integration with such systems
can be difficult or even impossible.

Putting the Application pattern to use
An insurance company wants to create an Enterprise Information Portal (EIP)
that consolidates various applications and information sources. Such a portal
must provide single sign-on capability. To implement the requirement the
insurance company chooses the Single Sign-On application pattern.

2.4.2 Extended Single Sign-On application patterns
Extending the security context to include the back-end systems enables
non-repudiation of back-end system transactions. For solutions with strong
privacy and/or audit requirements, this approach is needed. As shown in the
figure below, these solutions almost always require a centralized user
administration model. Examples include financial services transactions and
access to health care clinical document systems.
30 Patterns: Pervasive and Rich Device Access Solutions

Figure 2-6 Extended Single Sign-On application pattern

2.4.3 Personalized Delivery application pattern
The Personalized Delivery application pattern provides a framework for giving
access to applications and information tailored to the interests and roles of a
specific user or group. This pattern extends basic user management by
collecting rich profile data that can be kept current up to the user’s current
session. Data collected can be related to application, business, personal,
interaction, or access device-specific preferences.

Figure 2-7 Personalized delivery

Single
sign-on tier

Application
1

Application
2

Enterprise
Application

Security
Integration

Client tier

Client tier
synch

Application
tier 1

Application
tier 2

Personalization
rules
 Chapter 2. Application patterns for pervasive solutions 31

Business and IT drivers
The primary business driver for choosing this Application pattern is to increase
usability and improve the efficiency of Web applications by tailoring their
presentation to the user’s role, interests, habits, and/or preferences.

Solution
The Personalized Delivery application uses three of the previous four common
services for Integration business patterns discussed above:

� Personalization
� Security and administration
� Pervasive device support

This Application pattern is built using three logical tiers: Client, Personalization,
and Application.

� The client tier represents the user’s access device, such as a browser, PDA,
phone, etc.

� The Personalization tier works in concert with the application or portal in
question to tailor the application components and data presented to the user
based on the desired approach (participatory, predictive, prescriptive).
Personalization services typically provide a centralized repository for user
profile information related to preferences, access history, and aggregate use
statistics. The services also give developers the capability to define and store
rules and filters, which can be used by applications to provide personalized
delivery of content and applications.

This tier implements the personalization service for data/rule/preference
storage and collection and the security and administration service to
determine a user’s identity.

� The application tier may represent a new application, a modified existing
application, or an unmodified existing application.

Guidelines for use
Successful implementation of the Personalized Delivery pattern requires a
careful examination of business rules, business objectives, and applications’
ability to interact with the personalization services. Without defining clear,
measurable success criteria for implementation and careful results tracking,
costs can quickly spiral beyond those planned for, without recognizing tangible
benefits.

Benefits
The benefits are:
32 Patterns: Pervasive and Rich Device Access Solutions

� Users’ interaction with the site is benefited because of increased perception
of control and efficiency.

� Fine-grained control of users’ access to applications is enabled according to
role and preferences by the enterprise.

� Improved user effectiveness is enabled by adapting the complexity and detail
of content to a user’s skill level.

Limitations
Personalized delivery can be very complex and expensive to fully implement.

Putting the Application pattern to use
The insurance company introduced in the Single Sign-On application above
wants to extend their Enterprise Information Portal (EIP) such that it provides a
managed window for all customer-facing employees such as customer service
reps, agents, and brokers. Such a portal must personalize the welcome screen of
the portal based on the user’s identity. To implement these requirements the
insurance company chooses the Personalized Delivery application pattern.
 Chapter 2. Application patterns for pervasive solutions 33

34 Patterns: Pervasive and Rich Device Access Solutions

Chapter 3. Runtime pattern

For many audiences, it is difficult to get a clear understanding of how the different
types of applications can fit into the existing environment and, furthermore, how
to implement them. Runtime patterns exist to help these audiences realize how
they can harness and implement a pervasive environment based on their
business and IT requirements.

Runtime patterns use nodes to group functional and operational components
together and display those components at an abstract level. The nodes are
interconnected to solve specific business problems. Each of the pre-defined
Application patterns leads to one or more underlying Runtime pattern.

3

© Copyright IBM Corp. 2005. All rights reserved. 35

3.1 An introduction to the node types
A Runtime pattern consists of several nodes that represents specific functions.
Most Runtime patterns consist of a core set of common nodes with the addition
of one or more nodes unique to that pattern. To understand the Runtime pattern,
you need to review the node definitions described in the following sections.

3.1.1 User node
The user node is most commonly a person who wants to use a specific device for
accessing a business application from his local device and has either online or
offline access to a back-end server. The user node could also be another client
or a form of automated component such as a signaling sensor.

3.1.2 Client node
The client node could be any device that provides the network connectivity such
as LAN, WAN, mobile networks (GSM/GPRS/CDMA, etc.), or telephone
networks (h.323, etc.). Clients usually contain a user interface (UI), CPU, and
storage to process, interact with, and store the data and request. Most
frequently, the client node is a personal computer (PC), Personal Digital
Assistant (PDA), smartphone, or another handheld device.

3.1.3 Pervasive client services node
This node contains those components that are designed to support device
applications and interactions. The pervasive client services node is linked very
tightly with the pervasive extension services. It contains those components that
interact with the server side. This node also includes the layer that is responsible
for running the pervasive applications on the device.

3.1.4 ISP Gateway (Pervasive services) node
The Internet Service Provider Gateway provides a network access point to
certain types of devices. An example would be using a GPRS connection on a
Blackberry device. ISP Gateways can contain the device recognition and user
authentication information or they could act as a proxy to provide a
communication channel between the device and the server.

3.1.5 Protocol firewall node
A firewall is a hardware and software system that manages the flow of
information between the Internet and an organization's private network. Firewalls
36 Patterns: Pervasive and Rich Device Access Solutions

can prevent unauthorized Internet users from accessing private networks that
are connected to the Internet and can block some virus attacks. A firewall can
also separate two or more logical parts of a local network to control data
exchange between departments. Components of firewalls include filters or
screens, each of which controls the transmission of certain classes of traffic.
Firewalls provide the first line of defense for protecting private information, but
comprehensive security systems combine firewalls with encryption and other
complementary services, such as content filtering and intrusion detection.

Firewalls control access from a less trusted network to a more trusted network.
Traditional implementations of firewall services include:

� Screening routers (the protocol firewall)
� Application gateways (the domain firewall)

A pair of firewall nodes provides increasing levels of protection at the expense of
increasing computing resource requirements. The protocol firewall is typically
implemented as an IP router.

3.1.6 Connectivity and access for pervasive services node
This node allows an encrypted, secured, and trusted channel between client
devices and corporate back-ends. It also offers seamless roaming to the
corporate intranet from any location. In certain cases, this node can be used for
decreasing data transmission over the wireless networks through various
compression techniques. This is not a mandatory service, but security and
connectivity requirements may make it necessary.

3.1.7 Web server redirector node
In order to separate the Web server from the application server, a so-called Web
server redirector node (or just redirector for short) is introduced. The Web server
redirector is used in conjunction with a Web server. The Web server servers
HTTP pages and the redirector forwards servlet and JSP requests to the
application servers. The advantage of using a redirector is that you can move the
application sever behind the domain firewall into the secure network, where it is
more protected than within the DMZ.

3.1.8 Telephony connector
The telephony connector node is used to maintain voice-related information such
as vocabularies of words, pronunciations of words, and statistics on how certain
words are used. It also contains the logic for speech recognition and can convert
audio into text.
 Chapter 3. Runtime pattern 37

This node is required to connect the telephony network to enterprise telephony.
The node would include any switch (PBX) and might support analogue, digital
(E1/T1), and VoIP connectivity depending on enterprise requirements.

3.1.9 Voice gateway node
The voice gateway node supports the call control and management via an IVR
and speech technology set (speech recognition and TTS). In our current
partnerships we support Genesys Enterprise Edition, Avaya IR, and a range of
Cisco products. We also support WebSphere Voice Response V3.1. There are
other partners who are also providing IVR connectivity to IBM’s speech
resources. It is valid to say that any VoiceXML 2.0 and MRCP client compatible
system can be supported on this node.

3.1.10 Presentation server node
The presentation server node provides services to enable a unified user
interface. It is responsible for all presentation-related activity independent of local
client-based applications. In its simplest form, it serves HTML pages and runs
servlets and JSPs. For more advanced patterns, it acts as a portal and provides
the access integration services (single sign-on, for example). It interacts with the
personalization server node to customize the presentation based on the
individual user preferences or based on the user’s role.

3.1.11 Personalization server node
The personalization server node works with the Web presentation server node to
customize the presentation with data that matches the users interests. The
personalization server identifies the type or class of the user based on
information available about the user. Based on this classification, data taken
from a content datastore either in the Personalization tier or from other back-end
sources is selected for presentation to the user. It provides the mapping function
of user classification to content data.

3.1.12 Directory and security services node
The directory and security services node supplies information on the location,
capabilities, and attributes (including user ID/password pairs and certificates) of
resources and users known to the Web-based application system. This node can
supply information for various security services (authentication and
authorization) and can also perform the actual security processing, for example,
to verify certificates. The authentication in most current implementations
validates the access to the Web application server part of the Web server, but
38 Patterns: Pervasive and Rich Device Access Solutions

this node also authenticates for access to the database server and
synchronization services.

3.1.13 Application server node
The application server node provides the infrastructure for application logic and
can be part of a Web application server. It is capable of running both
presentation and business logic but generally does not serve HTTP requests.
When used with a Web server redirector, the application server node can run
both presentation and business logic. In other situations, it can be used for
business logic only. This application server node is the base for the pervasive
extension services node.

3.1.14 Pervasive extension services node

This node contains all of the pervasive components on the server side. This node
is required to communicate with the pervasive client services on pervasive
devices. It takes care of data transfer, content adaptation, rendering (cHTML,
PDA, VoiceXML), synchronization, device management, etc. Components for
notification are also included in this node. Pervasive extension services act as a
server for the services and actions that are performed on the client side. This
node is invoked based on the commands that the pervasive client services node
sends, and returns the needed responses back to the client. Examples of this
include data updates, query results, instant notifications, and confirmations.

3.1.15 Existing data and applications node
Existing applications are run and maintained on nodes that are installed on the
internal network. These applications provide for business logic that uses data
maintained in the internal network. The number and topology of these existing
application and data nodes is dependent on the particular configuration used by
these legacy systems.

3.1.16 Database node
The function of this node is to provide persistent data storage and retrieval in
support of the user-to-business transactional interaction. The data stored is
relevant to the specific business interaction, for example, bank balance,
insurance information, and current purchases by the user.

Note: This node was formerly called the Pervasive devices services node in
previous redbooks.
 Chapter 3. Runtime pattern 39

It is important to note that the mode of database access is perhaps the most
important factor determining the performance of this Web application in all but
the simplest cases. The recommended approach is to collapse the database
accesses into a single or a few calls. One approach for achieving this is by
coding and invoking stored procedure calls on the database.

3.1.17 Collaboration server node
This node represents the existing e-mail and PIM repository. In most cases this
would be a Lotus Domino or Microsoft Exchange server. In a pervasive
environment, this node talks with the application server node and the Pervasive
extension server node. In some cases it is also possible to connect to this node
without any other nodes. An example of this is that it is possible to configure
many smartphones to use the IMAP protocol, which can directly connect into the
collaboration server node to retrieve e-mail messages if it supports IMAP
connections.

3.2 Runtime patterns for pervasive access
Runtime patterns detail at an abstract level those components (nodes) required
to enable the pervasive extensions to an existing environment.

We are going to follow the notation of Access Integration::Application
pattern::Runtime pattern=(variation), but leaving the Access Integration part out
to make the names shorter.

Pervasive solutions are Access Integration solutions that focus on front-end
integration. The infrastructure with which pervasive solutions must integrate can
be thought of as a “black box,” which can be implemented in a number of ways.
For example, it can be a Web server, a Web application server, or a portal
server. The black box used in this book was implemented as a portal server and
color-coded blue in the figures. Readers with a different black box
implementation should be able to apply the delta orange nodes and Product
mappings to their own configurations.

3.2.1 Pervasive Device Adapter::Runtime pattern (composed with
Portal runtime pattern)

This Runtime pattern allows users to access online portal information through
their pervasive devices. This is also the most commonly used access type for
users who want to log into their environment using pervasive devices.
40 Patterns: Pervasive and Rich Device Access Solutions

The goal of mobile computing is to make business data and applications
available on different mobile devices. Figure 3-1 describes the Pervasive Device
Adapter::Runtime pattern (composed with the Portal runtime pattern) and the
nodes that are required for the implementation.

Figure 3-1 Pervasive Device Adapter::Runtime pattern (in orange) composed with Portal (in blue)

3.2.2 Pervasive Device Adapter=Voice::Runtime pattern
The Pervasive runtime pattern for voice is used when enterprises would like to
extend their applications to support voice interaction.

The Figure 3-2 on page 42 shows a basic set of nodes to consider for voice
solutions. There are two different clients shown on the diagram.

� One client is the traditional phone client. It could be any type of phone,
including cell phone, landline phone, etc.

� The other client is a rich client application with VoIP support. The client can
make phone calls over the IP protocol. In this case VoIP service providers
need to provide switching from the IP network to the phone network.

ISP Gateway
(Pervasive
services)

User

Outside World
Demilitarized Zone

(DMZ) Internal Network

Client

Data servicesData services
Web

server
redirector

Pervasive
client

services

Pr
ot

oc
ol

 F
ire

w
al

l

D
om

ai
n

Fi
re

w
al

l
Pervasive

device
adapter tier

Presentation /
Application

synch/
asynch

synch

Pervasive Device Adapter application pattern

Personalization
Server

Directory
and Security

Services

Database

Existing data
and

Applications
Application

Server
Presentation

Server

Collaboration
server

Pervasive
extension
services
 Chapter 3. Runtime pattern 41

Figure 3-2 Pervasive Device Adapter=Voice::Runtime pattern

3.2.3 Rich Device::Runtime pattern
This Runtime pattern is only a starting point for more complex Runtime patterns
for the variations of the Rich Device application pattern.

The basic pattern only includes the client tier and focuses on one particular node,
the rich device client. The diagram also includes the “outside”, public network
with data services.

This pattern depicts the scenario when the user is running a standalone client
application on the pervasive device, and it is not connected to any server
component.

Note that the network is available even for standalone applications. It is possible
for these applications to communicate with each other in a peer-to-peer manner
without involving any server component (for example, direct connection via
Bluetooth).

User

Outside World
Demilitarized Zone

(DMZ) Internal Network

Client

Voice and/or
Data services

(VoIP)

Voice and/or
Data services

(VoIP)

Pervasive
client

services

Pr
ot

oc
ol

 F
ire

w
al

l

Voice
gateway

Telephony
connector

D
om

ai
n

Fi
re

w
al

l

Telephony
client

User

Personalization
Server

Directory
and Security

Services

Database

Existing data
and

Applications
Application

Server
Presentation

Server

Collaboration
server

Pervasive
extension
services

Pervasive Device Adapter application pattern

Pervasive
device

adapter tier
Presentation /

Application
synch/
asynch

synch
42 Patterns: Pervasive and Rich Device Access Solutions

Figure 3-3 Rich Device::Runtime pattern

3.2.4 Rich Device=Online::Runtime pattern
Rich client applications can also operate in an online environment, where the
application has a live connection to the network.

User

Outside World

Client

Data servicesData services
Pervasive

client
services

Pr
ot

oc
ol

 F
ire

w
al

l

Presentation /
Application

Rich Device
application pattern
 Chapter 3. Runtime pattern 43

Figure 3-4 Rich Device=Online::Runtime pattern

This Runtime pattern is a nice fit for Device management solutions. Device
management requires online connection to the central management system to
perform system and application updates and configurations on the client side.

Another example for this Runtime pattern is instant messaging, including the
intelligent notification services using instant messaging scenario. In this case the
client communicates with a server application or with another client using instant
messaging.

3.2.5 Rich Device=Store and forward::Runtime pattern
The following Pervasive Runtime pattern can be used for any offline applications
that use a local repository (either a database, a file, or a message queue) to
access back-end services through the pervasive extension services node.

This Runtime pattern can be a realization for many different scenarios. The store
and forward mechanism does not necessarily imply offline operation. An
application performing store and forward operations in an online environment
(instant replication, synchronization, or forward) can be considered as an online

User

Outside World
Demilitarized Zone

(DMZ) Internal Network

Client

Data servicesData services
Pervasive

client
services

Pr
ot

oc
ol

 F
ire

w
al

l

D
om

ai
n

Fi
re

w
al

l

ISP Gateway
(Pervasive
services)

Presentation/
Application Application

synch/asynch

Personalization
Server

Directory
and Security

Services

Database

Existing data
and

Applications
Application

Server
Presentation

Server

Collaboration
server

Pervasive
extension
services

Rich Device=Online application pattern

Web
server

redirector
44 Patterns: Pervasive and Rich Device Access Solutions

application. So basically this pattern can operate in both online and offline
environments.

Figure 3-5 Rich Device=Store and Forward::Runtime pattern (in orange) composed with Portal (in blue)

3.2.6 Rich Device=Store and forward::Runtime pattern variation 1
The PIM and e-mail synchronization service is generally a service included in
pervasive solutions software packages. PIM and e-mail synchronization is an
application type using the store and forward type of operation. It allows remote
access to existing e-mail and calendar information, which can be used in e-mail
and calendar applications on the pervasive devices.

There are different ways to alter the PIM and e-mail runtime pattern for scalability
purposes, decreasing response times, and providing high-availability support for
multiple users. The most efficient way to do this is to give users access to
multiple different physical collaboration servers. The following diagram shows
the separated pervasive extension services where PIM and e-mail support is
distributed over multiple nodes.

ISP Gateway
(Pervasive
services)

User

Outside World
Demilitarized Zone

(DMZ) Internal Network

Client

Data servicesData services
Pervasive

client
services

Pr
ot

oc
ol

 F
ire

w
al

l

D
om

ai
n

Fi
re

w
al

l

Presentation/
Application Application

store and forward

Rich Device=Store and forward application pattern

Personalization
Server

Directory
and Security

Services

Database

Existing data
and

Applications
Application

Server
Presentation

Server

Collaboration
server

Pervasive
extension
services

Web
server

redirector
 Chapter 3. Runtime pattern 45

Figure 3-6 Rich Device=Store and forward::Runtime pattern variation 1 (in orange) coupled with Portal (in
blue)

3.2.7 Composite Rich Device=Online and PDA=Voice::Runtime
pattern

This section describes the variation of a Runtime pattern for a voice solution that
can be used for a multimodal approach. Multimodality allows a user to utilize
multiple means of interaction (for example, voice and Web browser) with an
application at the same time. Using this pattern, an environment could use
applications either through data or voice. The application itself could also support
both behaviors at the same time; for example, users could send requests through
the voice channel (using speech for request) and get results through the data
channel (getting the response in WML, for example). An example scenario of
using a multimodal application:

1. The user logs onto the application using voice recognition.

2. The voice application that uses the existing back-end system asks what
actions the user would like to perform. The options are: Users account
statement, latest bank transactions, loans, and customer service.

3. The user selects the latest bank transactions and sends a query using voice.
This query could contain the day’s information or describe the days for those
transactions, for example, the past ten days’ bank transactions.

Collaboration
ServerISP Gateway

(Pervasive
serv ices)

User

Outside World
Demilitarized Zone

(DMZ) Internal Network

Client

Data servicesData services
Pervasive

client
serv ices

Pr
ot

oc
ol

 F
ire

w
al

l
Pervasive
extension
serv ices

Personalization
Server

Directory
and Security

Services

Database

Existing data
and

Applications
Application

Server
Presentation

Server

Collaboration
server

Pervasive
extension
services

D
om

ai
n

Fi
re

w
al

l

W eb
server

redirector
46 Patterns: Pervasive and Rich Device Access Solutions

4. The voice service transforms requests into a data format. Using this format,
the request passes through the backend presentation layer, which can read
the request and launch an existing application to create a response.

5. When the application is ready to send the response, it will check if the user is
logged in using a Web browser. When the application knows that the user is
using a Web browser, it will send the response through the data gateway. The
presentation server node takes care of the content translation based on the
device and routes that content through the proper gateway.

6. The user will then get his latest bank transactions for the past ten days shown
in the Web browser.

Figure 3-7 Composite Rich Device=Online and PDA=Voice::Runtime pattern

Voice solutions allow the user to query the system naturally using voice and
retrieve this information efficiently by receiving it visually on a device. The
multimodal approach is a good combination to take advantage of both channels,
voice and data. It allows a very flexible and user-friendly approach.

3.2.8 Pervasive Connectivity::Runtime pattern
This Runtime pattern focuses on establishing a secured and trusted connection
between the client and server. Security and roaming are two very important
issues when designing and implementing a mobile environment. Today, the
devices themselves do not possess a means to secure a connection to the

User

Outside World
Demilitarized Zone

(DMZ) Internal Network

Client

Voice and/or
Data services
Voice and/or

Data services

Pervasive
client

services

Pr
ot

oc
ol

 F
ire

w
al

l

Voice
gateway

Telephony
connector

D
om

ai
n

Fi
re

w
al

l

Data
gateway

Personalization
Server

Directory
and Security

Services

Database

Existing data
and

Applications
Application

Server
Presentation

Server

Collaboration
server

Pervasive
extension
services
 Chapter 3. Runtime pattern 47

Internet that meets generally accepted company policies. Because of this,
companies are forced to find solutions that fit their business requirements.

Figure 3-8 describes the nodes that are required for the Runtime pattern for
pervasive connectivity. The connectivity and access for pervasive services node
could be divided into two parts. The first handles the security and authorization
towards the network. The second is used for accessing the application data
based on the user authentication and authorization as per the directory and
security services node.

Figure 3-8 Pervasive Connectivity::Runtime pattern

3.2.9 Composite Pervasive and Rich Device solution::Runtime
pattern

This Runtime pattern collects all the nodes that are available within the pervasive
environment. Figure 3-9 on page 49 describes all of these pervasive nodes in
one Runtime pattern.

User

O utside W orld
Dem ilitarized Zone

(DM Z) Internal Network

Client

Data servicesData services
Pervasive

client
services

Pr
ot

oc
ol

 F
ire

w
al

l

Connectiv ity
and Access

for Pervasive
services

D
om

ai
n

Fi
re

w
al

l

ISP Gateway
(Pervasive
serv ices)

W eb
serv er

redirector

Company
private

intranet

Company
private

in tranet

Directory
and Security

Serv ices
48 Patterns: Pervasive and Rich Device Access Solutions

Figure 3-9 Composite Pervasive and Rich Device solution::Runtime pattern

Pervasive runtime patterns provide a controlled and secure environment by
locating all sensitive and persistent data behind firewalls. It does not provide
scalability or failover capabilities, but it is a good starting point from which to
provide this functionality. It also describes those nodes that are related to
Internet Service Providers, which are not often clear when starting pervasive
projects.

Composite Pervasive and Rich Device solution::Runtime
pattern variation 1

For performance reasons, it is also possible to divide and distribute the pervasive
extension services node into multiple different nodes and direct certain specific
functions away from each other. This is an effective way if one group will use
only PIM and e-mail synchronization, another group will only use data
synchronization, and another group only uses online capabilities.

Figure 3-10 describes the variation of the Runtime pattern that is used for high
availability and load balancing based on different group-related behaviors.

Outside World
Demilitarized Zone

(DMZ) Internal Network

Voice and/or
Data services
Voice and/or

Data services

User

Client

Pervasive
client

services

Pr
ot

oc
ol

 F
ire

w
al

l

Voice
gateway

Telephony
connector

ISP Gateway
(Pervasive
services)

Connectivity
and Access

for Pervasive
services

Personalization
Server

Directory
and Security

Services

Database

Existing data
and

Applications
Application

Server
Presentation

Server

Collaboration
server

Pervasive
extension
services

Telephony
client

User

Pervasive device
adapter tier

Presentation /
Application

synch/asynch synch

Presentation/
Application

synch/asynch/store and forward/none

Presentation /
Application

Pervasive Device Access application pattern

D
om

ai
n

Fi
re

wa
ll

Rich Device application pattern

Web
server

redirector
 Chapter 3. Runtime pattern 49

Figure 3-10 Composite Pervasive and Rich Device solution::Runtime pattern variation 1

Outside World
Demilitarized Zone

(DMZ) Internal Network

Voice and/or
Data services
Voice and/or

Data services

Personalization
Server

Directory
and Security

Services

Database

Existing data
and

Applications

Pr
ot

oc
ol

 F
ire

w
al

l

Application
Server

Presentation
Server

Voice
gateway

Telephony
connector

D
om

ai
n

Fi
re

w
al

l

Connectivity
and Access

for Pervasive
services

Collaboration
server

Pervasive
extension
services
(PIM &
e-mail
sync.)

Pervasive
extension
services

(database
sync.)

Pervasive
extension
services

ISP Gateway
(Pervasive
services)

User

Client

Pervasive
client

services

W eb
server

redirector
50 Patterns: Pervasive and Rich Device Access Solutions

Chapter 4. Product mappings

After we have found a suitable Runtime pattern and customized, it we need to
find actual products and platforms that will support the planned environment. It is
recommended that the final platform selection be based on the following
considerations:

� Existing systems and platform investments
� Customer and developer skills that are available
� Customer choice
� Supported platforms for each component
� New extensions that will fit with the existing customer environment

The selected platform should fit into the customer's environment and ensure
quality of service, scalability, and reliability so that the solution can grow along
with the businesses and remain in line with the company’s on demand strategy.

4

© Copyright IBM Corp. 2005. All rights reserved. 51

4.1 Overview of IBM pervasive software products
For the sample scenario, ITSO Railways, introduced in this book, the following
products were used:

� On the server side:

– IBM WebSphere Application Server V5.0

– Websphere Everyplace Access V5.0

– WebSphere Portal Server V5.02

– WebSphere MQe 2.0.1

– Lotus Domino 6.5.1

– Sametime 3.0 and Sametime Everyplace 3.1 in Microsoft Windows 2000
environment on a server side

� On the client side:

– WebSphere Everyplace Access client V5.0

– WebSphere Client Technology, Micro Edition V5.7

– Sametime Connector 3.1 in Pocket PC 2003 and 2002

We will create a Product mapping for each Runtime pattern based on our
scenarios and recommend different platform alternatives for each: One for
Windows and one for AIX or Linux.

The scenarios that we use for the Product mappings are:

� Online pervasive portal
� PIM and e-mail synchronization
� Device-based solutions
� Voice application
� Device management
� Connectivity
� Pervasive solution and protocol mapping

This chapter introduces the major products used in this application and provides
an overview of the products.

4.1.1 WebSphere Everyplace Access V5.0
WebSphere Everyplace Access provides a platform for mobile employees to
have access to the information they need. For example, think of a field sales
professional getting remote access to Personal Information Management (PIM)
data and information about customers, inventory, and delivery times. Employees
52 Patterns: Pervasive and Rich Device Access Solutions

are able to confirm delivery times and then check their own calendar to set up a
follow-up appointment. This shortens cycle time and makes sales calls more
effective, in turn leaving the customer more satisfied.

Everyplace Access makes information available to mobile employees based on
connectivity and the type of data they want to access on a selected set of mobile
clients.

WebSphere Application Server
IBM WebSphere Application Server Enterprise V5.0 provides the features in IBM
WebSphere Application Server Network Deployment V5.0 plus programming
model extensions for sophisticated application designs.

It offers advanced capabilities such as application adapters, application workflow
composition and choreography, extended messaging, dynamic rules-based
application adaptability, internationalization, and asynchronous processing.

WebSphere MQ is bundled with the package (except on z/OS).

More information about IBM WebSphere Application Server Enterprise V5.0 can
be found at:

http://www.ibm.com/software/webservers/appserv/enterprise/

WebSphere Portal Server
The IBM WebSphere Portal allows you to build your own custom portal Web site.
Users can sign on to the portal and receive personalized Web pages providing
access to the information, people, and applications they need. This personalized
single point of access to all necessary resources reduces information overload,
accelerates productivity, and increases Web site usage. WebSphere Portal
Server allows you to:

� Build multiple types of portals on a single integrated infrastructure based on
the WebSphere Portal Architecture.

� Provide a scalable, single point of access for data, people, and applications.

� Deliver an easy-to-use graphical interface suitable for both occasional and
expert users.

� Crawl and categorize intranet and Internet repositories.

� Execute a federated search against all forms of data, structured and
unstructured.

� Aggregate and summarize content for users.

� Customize the look and content of home page displays by user.
 Chapter 4. Product mappings 53

http://www.ibm.com/software/webservers/appserv/enterprise/

� Build rules-based and collaborative filtering personalization using WebSphere
Personalization server.

� Integrate applications and workflow systems into the portal.

� Add collaborative services such as e-mail, shared places, and instant
messaging.

� Add pervasive wireless device support for remote and mobile users.

� Provide multiple levels of security and authentication services.

� Leverage syndicated information from over 50,000 databases for news and
research.

� Add modules from Independent Software Vendors or custom-developed
modules.

� Leverage Web site tools for JSP page building, performance monitoring,
caching, etc.

� Build next-generation Web sites with standards such as XML, SOAP,
CORBA, and LDAP.

� Manage users as individuals or within groups.

� Access control at the portlet level.

� Access Lotus and Microsoft Office applications via portlets.

� Implement a distributed, heterogeneous search across disparate data
sources.

� Use a flexible architecture that enables integration with your current directory,
database, and security infrastructure.

IBM DB2
IBM's DB2 database software is a full-featured, robust, scalable, and easy-to-use
relational database. DB2 provides the foundation of information on demand on
Linux, UNIX, and Windows platforms.

Innovative manageability DB2 Version 8.1 provides automation capabilities,
including self-configuring, self-optimizing, and self-managing capabilities.

� New levels of integrated information across the entire enterprise leverage
federated Web Services and XML to help solve critical business problems.
New federated capabilities enable customers to integrate information as Web
Services. XML enhancements make it easier for programmers to integrate
DB2 and XML information.

� Robust e-business foundation: Performance, scalability, and availability
enhancements continue with cross-workload and cross-platform leadership,
54 Patterns: Pervasive and Rich Device Access Solutions

improving overall application performance and making information highly
available.

DB2 Everyplace
DB2 Everyplace is a relational database and enterprise synchronization system
for mobile and embedded devices. DB2 Everyplace enables enterprise
application functionality and enterprise data to be extended to mobile devices
such as personal digital assistants (PDAs).

Using DB2 Everyplace users can synchronize data stored in any
JDBC-compliant relational database with the Everyplace Client application on
the mobile device. To demonstrate this functionality, a sample DB2 Everyplace
application is provided with the Everyplace Client. Everyplace Access allows
application developers to create custom relational database synchronization
applications using DB2 Everyplace and the DB2 Everyplace SDK

DB2 Everyplace is part of IBM's solution for pervasive computing. With DB2
Everyplace, mobile professionals (such as sales people, inspectors, auditors,
field service technicians, doctors, realtors, and insurance claim adjusters) can
keep in touch with vital data that they need access to when away from the office.

Organizations are able to deliver their DB2 enterprise data to mobile and
embedded devices. With DB2 Everyplace, you can access and perform updates
to a database on your mobile device. With DB2 Everyplace Sync Server, you can
synchronize data from the mobile device to other data sources in your enterprise.
The file adapter capability enables you to distribute files and applications to
mobile users.

Everyplace Synchronization Server
Everyplace Synchronization Server enables handheld computing devices to link
remotely to desktop applications. Mobile users can easily synchronize data with
Microsoft Exchange, Lotus Notes. The mobile device can synchronize using
modem, cellular phone, Internet, Wireless, intranet, local area network (LAN), or
wide area network (WAN).

Synchronization Server and Everyplace Client enable users to synchronize
back-end Personal Information Manager (PIM) data such as e-mail, calendar,
tasks, and memos between supported mobile devices and Lotus Notes and
Microsoft Exchange databases. Users customize synchronization preferences
using the provided synchronization settings portlet. Synchronization enables
users to connect, synchronize, and go. They can view their e-mail, calendar, or
other PIM data later, when they are no longer connected. From their mobile
devices, users can respond to messages when they are offline. During the next
synchronization session, their responses are copied to the server.
 Chapter 4. Product mappings 55

Everyplace Intelligent Notification Services
A notification is a message sent to the user by Intelligent Notification Services.
This message can either be a simple notification originating from another user or
application, or it can be a subscription-based notification notifying groups of
users of information events to which they subscribed. Notifications are sent to
users via delivery channels. Delivery channels are mechanisms for receiving
messages, such as portlets, Lotus Sametime, e-mail, and Short Messaging
Service (SMS). Intelligent Notification users can set preferences that effect when,
how, by whom, and with which delivery channels the users are notified.

� Simple notifications are messages, such as personal messages or reminders
that originate from other users or applications. Intelligent Notification users
can send simple notifications to one another using the Message Center
portlet. Subscription-based notifications are messages that are triggered by
events to which the user subscribes. For example, users can subscribe to a
stock notification that alerts them when the stock price for a specific company
has gone above a set number. Another example is where users subscribe to
Web news services and receive notifications when any articles are published
by the Associated Press that relate to a company, product, or subject that the
users define.

� Delivery channels are the mechanisms through which users of Intelligent
Notification receive messages. Intelligent Notification Services supports the
following types of delivery channels:

– Message Center - A user portlet with which users view messages, delete
messages, and send simple notifications to other Intelligent Notification
users.

– Lotus Sametime - Channel for sending messages through Lotus
Sametime's instant messaging server and client pair.

– Pager Wireless Communication Transfer Protocol (WCTP) - Channel for
sending messages to pagers using the WCTP protocol. E-mail channels
can also be used to send notifications to pagers.

– E-mail Simple Mail Transfer Protocol (SMTP) - Channel for sending e-mail
messages using the Simple Mail Transfer Protocol.

– Short Message Service (SMS) - Channel for sending short text messages
to mobile devices.

– Wireless Application Protocol (WAP) - Channel for sending messages to
wireless devices such as cell phones and Personal Digital Assistants
(PDAs).

– Voice - Channel for sending messages to a telephone through the voice
server.
56 Patterns: Pervasive and Rich Device Access Solutions

– Server-Initiated Actions - Delivery channel that is used to push commands
from the server to a client; for example, the command to synchronize
e-mail can be initiated by the server.

– AOL Instant Messenger - Channel for sending messages on America
On-Line Instant Messenger service.

– BlackBerry - Channel for sending messages to a BlackBerry device.

� Preferences and subscription settings

– Intelligent Notification Services allows subscribers to specify many types
of preferences and subscription settings. These parameters affect with
what, where, when, and how the subscribers are notified. The following list
details the notification parameters that subscribers can set.

– Delivery channel information - Delivery channel properties such as name,
e-mail address, Sametime user ID, phone number, and time periods when
the user does not want messages delivered.

– User-defined groups - Groups of Intelligent Notification users that the user
creates.

– Group members - Which Intelligent Notification users belong to a
user-defined group.

– Message rules - The priority level of messages that are allowed to be
delivered from the members within a group to each of the user's delivery
channels.

– Subscription settings - The criteria used to match content for a particular
subscription, and the delivery preferences used when a match is made.

Device Manager
Device Manager is device management technology that helps enterprises and
private networks, or providers, manage devices.

For Device Manager, devices are personal digital assistants (PDAs), handheld
PCs, PCs, sub-notebooks, cellular phones, set-top boxes, in-vehicle information
systems, and other devices used in pervasive computing.

Device Manager is used to enroll devices into a database and perform many
tasks for managing devices, such as configuration, inventory collection,
distribution of software, and initial provisioning of devices. Device Manager is
used with a subscription manager component to control access to the user
interfaces for administrators and device users.

Management actions are referred to by Device Manager as jobs. Jobs may be
applied to (or targeted to) a single device or a group of devices. Groups of
devices are defined by a list of devices, or by characterizing the group. A group
 Chapter 4. Product mappings 57

of devices is characterized by the device owner or owner group, or by some
attributes of the device inventory, or both.

Jobs are targeted to a device and the job is run when the device connects to the
Device Manager server. The server maintains a history of jobs status for all jobs
and all devices. For certain device types, the server can notify the device that a
job is waiting for the device.

Device Manager is built on a Web application server model. The Device Manager
server is a set of J2EE servlets, running on WebSphere Application Server.
Device management data storage is in a relational database, such as DB2 or
Oracle. The Device Manager server requires an agent on the managed device.
The agent can be a Device Manager supplied agent, such as Pocket PC,
Windows 32-bit, and PalmOS, or can be supplied by a device manufacturer.

Device agents communicate with the Device Manager server using HTTP or
HTTPS. The protocol running on top of HTTP is either a proprietary protocol,
which is used with Pocket PC and PalmOS devices, or a standard protocol, such
as the OMA DM protocol used with OSGi devices. With HTTP and HTTPS
communications between devices and Device Manager, requests and responses
can pass through various network elements, such as firewalls.

Device Manager provides an OMA DM Management Server that is an OMA DM
V1.1.2 implementation. Available management functions for SyncML DM devices
include inventory collection, device configuration, and running custom-built
SyncML DM command jobs.

Device Manager also supports software bundle management for OSGi-enabled
devices.

Everyplace Client
Everyplace Client provides the client application that is needed on the mobile
device to accomplish synchronization and access to the back-end system. The
Everyplace Client provides a single user interface for multiple client
synchronization functions. The provided synchronization applications currently
include the following.

� E-mail and PIM is provided for PIM data synchronization with Lotus Notes
and Microsoft Exchange. Synchronization server provides the required
interface with the backend databases.

� Database synchronization is provided for relational database synchronization
with supported back-end JDBC and ODBC compliant databases. DB2
Everyplace provides the required interface with the backend relational
database.
58 Patterns: Pervasive and Rich Device Access Solutions

� Offline Portal Pages is provided to synchronize designated offline browsing
content and forms to the device. The WebSphere Everyplace Access offline
browsing feature provides the required interface with the portal.

4.1.2 WebSphere Everyplace Connection Manager
WebSphere Everyplace Connection Manager can help boost the productivity of
mobile workers by giving them highly secure, uninterrupted access to the data
they need. Offering a distributed, scalable, multipurpose communications
platform, WebSphere Everyplace Connection Manager V5 can help enterprises
optimize bandwidth, reduce costs, and ensure security by efficiently extending
their existing applications to workers in the field over many different wireless and
wireline networks. This:

� Provides compression and other network optimizations that decrease user
response time and lower network costs.

� Features seamless cross-network roaming, making it possible to dynamically
switch network connections without interrupting applications.

� Encrypts data over vulnerable wireless LAN and wireless WAN connections.
It provides a Virtual Private Network (VPN) between communicating partners.

� Integrates standard Internet Protocols (IPs) and non-IP wireless bearer
networks, server hardware, device operating systems, and mobile security
protocols.

� WebSphere Everyplace Access provides an entry-level starting point so your
enterprise can start small and expand to richer wireless application functions
to meet your company’s needs.

� WebSphere Everyplace Connection Manager allows service providers to offer
highly encrypted, optimized, and scalable solutions to enterprise customers.

WebSphere Everyplace Connection Manager also ships client-side components
for numerous different devices. The client component provides connectivity and
security services for the client.

4.1.3 WebSphere MQ Everyplace
WebSphere MQ Everyplace V2.0 connects mobile and wireless applications with
the enterprise using secure and dependable application messaging. MQ
Everyplace provides the mobile transport for the IBM enterprise integration bus
and connects seamlessly with WebSphere Business Integration offerings. It
 Chapter 4. Product mappings 59

extends robust messaging to fragile mobile and wireless networks to address the
problem of intermittent network connectivity. It supports:

� Broad mobile device support: Supports a wide range of devices with small,
customizable footprint. Offers a choice of languages, APIs, and environments
including Java, C, JMS, and J2ME.

� Robust mobile integration: Once-only messaging so transactions are not lost
or duplicated between mobile applications. Peer-to-peer, synchronous, and
asynchronous support. Rich encryption, non-repudiation, and authentication
features.

� Extensive customizablility: Configure rules to transmit during off-peak rates or
at specific times. Suitable for unmanaged networks. Message caching and
compression features help lower communication costs. JMX support for
increased systems management.

4.1.4 WebSphere Client Technology, Micro Edition
Workplace Client Technology, Micro Edition is a platform onto which the next
generation of e-business applications can be deployed. It provides a
server-managed Java-powered platform with access to many enterprise
applications, data, and transactions.

Workplace Client Technology, Micro Edition uses industry standards and
middleware to combine the convenience of pervasive devices with the power of
e-business and the productivity of IBM Workplace. Several elements can be
applied to a wide array of device types, including desktop computers, laptop
computers, mobile handsets, PDAs, controllers, gateways, set-top boxes, and
others to deliver the right combination of productivity and integrity required for a
specific application.

Customers can quickly select the data services that enhance the productivity of
end users. IBM and its business partners are ready to assist you in the
development of pilot applications and services for any new and existing device,
as well as offering the end-to-end device-to-services expertise that can deliver
integrity to the device.

4.1.5 Domino Server V6.5.1
Lotus Notes is a workgroup computing environment that helps people work
together more effectively. With Notes, people can work together regardless of
computer platform or technical, organizational, or geographical boundaries.
Notes-based information can be shared across any distance, at any time.
60 Patterns: Pervasive and Rich Device Access Solutions

The Domino server provides services to Notes workstation users and other
Domino servers including storage of shared databases and mail routing.

Domino server has the ability to transform Lotus Notes databases into interactive
World Wide Web applications. It supports security from standard user name and
password authentication to Secured Socket Layer (SSL) encryption.

Domino allows users to rapidly develop World Wide Web (WWW) applications
using Lotus Notes' built-in database design features. Once created, users on
both Notes and the WWW can access and interact with these databases. The
Access Control that Notes provides is carried to the Web, allowing simple, and
very flexible control of who can access the site, the views, and even the
individual documents. And because Domino creates all the HTML code on the
fly, all document and view updates are immediately exported to the Web.

Sametime Server V3.1
Lotus Sametime is a family of products that allow organizations to share and
collaborate on documents as well as immediately find and converse with
colleagues and partners worldwide in real time. Lotus Sametime, which also
includes secure, reliable management features, enables organizations to exploit
the knowledge that exists within the organization by providing a cost-effective,
secure method of instantly exchanging knowledge with others, regardless of their
geographic location.

Sametime Everyplace Server V3.1
IBM Lotus Sametime Everyplace V3 is a wireless instant messaging solution and
the latest member of the industry-defining Lotus Sametime family of instant
messaging solutions. Sametime Everyplace extends the instant messaging
capabilities and presence awareness of Sametime to mobile phones and a wide
range of wireless devices including Pocket PC, Palm, and MIDP devices.

As presence awareness and instant messaging become a core component of a
company's communications infrastructure, mobile access to that infrastructure is
critical. Sametime Everyplace helps mobile employees to be more accessible to
each other and to co-workers at the office—without sacrificing the security of
their company's network. In addition, mobile access to presence awareness and
instant messaging opens the door for the next generation of wireless
applications, such as smart notifications and access to interactive agents (often
called bots), which allow employees to tap mission-critical applications and
information immediately. With bots, users of Sametime Everyplace will be able to
send simple queries to office applications such as the corporate directory. The
information is then automatically sent back to their supported wireless device of
choice, all without having to modify back-end applications.
 Chapter 4. Product mappings 61

4.1.6 WebSphere Voice Server
WebSphere Voice Server provides speech recognition and speech synthesis
(Text-To-Speech or TTS) engines, voice application development tools, and
telephony platform connections to develop and deploy applications for use over
telephones.

IBM WebSphere Voice Server for Multiplatforms V4.2 extends WebSphere Voice
Server V3.1.1 with an array of new features and enhancements. It allows
companies to leverage their existing Web infrastructures to enable easy voice
access to existing Web applications by wireline and wireless phones. The
software includes tools that enable developers to quickly develop and deploy
voice-enabled e-business solutions, using industry standard technology such as
Java technologies and VoiceXML.

WebSphere Voice Server for Multiplatforms V4.2 includes:

� Connection to many telephony platforms, including both WebSphere Voice
Response for AIX and WebSphere Voice Response for Windows, Intel
Dialogic, Cisco or Siemens HiPath, and Voice Server Speech Technologies
for Windows and Linux.

� Voice Toolkit V4.2 for WebSphere Studio, which includes a VoiceXML editor,
grammar editor, and a pronunciation builder, allows application developers to
easily add voice technology to middleware applications. Tools for prototyping
VoiceXML applications on a PC without a telephony server, and the
necessary speech recognition and TTS engines for testing applications.

4.1.7 WebSphere Voice Application Access Server
WebSphere Voice Application Access (WVAA) V5 extends the popular
WebSphere Portal infrastructure and programming model to a voice user
interface (VUI), enabling users to access a wide range of business applications
and data through a standard telephone or cell phone. The WebSphere Voice
Application Access voice portal platform supports VoiceXML 2.0 using the
WebSphere Voice Response for AIX VoiceXML 2.0 browser or other interactive
voice response (IVR) platforms approved by IBM and compatible with VoiceXML
2.0.

WebSphere Voice Application Access V5 allows users to take advantage of the
personalization features of WebSphere Portal to tailor their individual voice
portals to fit their needs.

For the administrator, it provides a consistent framework for administering users
and extending the same portal security features for authentication and
authorization across multiple channels.
62 Patterns: Pervasive and Rich Device Access Solutions

For the developer, WebSphere Voice Application Access V5 leverages the same
Eclipse-based programming model as WebSphere Portal to build applications
using VoiceXML technology.

With WebSphere Voice Application Access V5, developers can reuse existing
code, business logic, and infrastructure, and enhance the development process
to build VoiceXML applications.

4.1.8 Voice Response Server
WebSphere Voice Response is capable of supporting simple to complex
applications and can scale to thousands of lines in a networked configuration.
Applications can be developed using the native development environment or
using standards-based development tools for Java or VoiceXML. WebSphere
Voice Response Server is used to link the telephony users into the corporate
Web environment.

4.2 Pervasive Device Adapter::Product mappings
This section describes the software components needed to move from designing
a pervasive environment using patterns for the online pervasive portal scenario
to implementing it.

To use this approach effectively, there are several questions that you need to
consider:

� What kind of service would I like to offer? Does it require online access or
could it also be used remotely when no connection is available (offline
browsing)?

� What kind of back-end infrastructure is available? Usually online mobile
device implementations are based on existing J2EE applications.

� How well would I like to support different devices? Select and target devices
to focus on. It is more difficult to cover a wide range of different devices and
their operations.

� What applications do I want to support? It is good to specify a subset of
applications that will be mobilized. There is no need to enable all existing
Web applications onto handheld devices.

� Are there enough skills to mobilize existing applications in my organization?
Developing mobile applications requires knowledge of mobile-specific APIs
and a focus on developing user-friendly interfaces to existing Web-based
applications.
 Chapter 4. Product mappings 63

Pervasive Device Adapter::Product mapping=Windows
Figure 4-1 describes the products that are suitable for online pervasive portal
solutions on the Windows platform.

Figure 4-1 Pervasive Device Adapter::Product mapping=Windows

In addition to the network security provided by the firewalls, application-level
security is provided by the Web application server node. The user information
required for authentication and authorization is stored in the directory and
security services node behind the domain firewall in the internal network.

By using a Web server redirector node, we can place the majority of the business
logic on the internal network behind two firewalls. The redirector is implemented
using the IBM HTTP Server and WebSphere Application Server Web server
plug-in. The redirector serves static HTML pages and forwards requests for
dynamic content to a WebSphere application server using the HTTP protocol.

The pervasive extension services node is used to extend the presentation server
node. The pervasive extension services node contains the functions that
interpret device platform and configuration information, and based on that
information adapt and render the content for the specific device. It includes a
PDA aggregator that extends the regular portal environment. PDA aggregation
can customize existing portlets for display on PDA devices.

The back-end services like collaboration, database, and existing applications do
not have any particular software mappings. In the case of the collaboration node,

ISP Gateway
(Pervasive
services)

User

Outside World
Demilitarized Zone

(DMZ) Internal Network

Client

Data servicesData services

Personalization
Server

Directory
and Security

Services

Pervasive
extension
services

Pervasive
client

services

DatabaseCollaboration
Server

Existing
Data and

Applications

Pr
ot

oc
ol

 F
ire

w
al

l

Application
Server

Presentation
Server

D
om

ai
n

Fi
re

wa
ll

Windows Mobile 2003

•WebSphere Client Technology,
Micro Edition
•Opera Browser

Windows 2000 + SP4
•IBM WebSphere Application Server
V5.0 HTTP Plug-in

•IBM HTTP Server V1.3.26

Windows 2000 + SP4
•WebSphere Everyplace Access V5.0
•PDA Aggregation Extension

Windows 2000 + SP4
•WebSphere Portal Server V5.0.2.1
•Domino Server 6.5.1
•WebSphere Application Server
Enterprise V5.0.2.3

Web
server

redirector
64 Patterns: Pervasive and Rich Device Access Solutions

the software used could be Lotus Domino server or Microsoft Exchange server.
The Database node could be DB2, Oracle, or Sybase, for example. Existing
applications could be any enterprise application.

Pervasive Device Adapter::Product mapping=AIX
Figure 4-2 shows the same implementation using AIX as the primary platform.

Figure 4-2 Pervasive Device Adapter::Product mapping=AIX

4.3 Pervasive Device Adapter=Voice::Product mapping
Voice-based solutions allow access to an enterprise and its data through the
telephone networks. Companies have already made significant investments in
developing their legacy applications and their e-business framework. By
voice-enabling these already existing applications, companies can extend these
same applications and databases to everyone, including customers and
employees who may not have had access previously due to lack of access to the
Internet. To make this implementation possible, we developed the Runtime
pattern for voice solutions; see 3.2.2, “Pervasive Device Adapter=Voice::Runtime
pattern” on page 41.

This scenario requires that the following issues be addressed:

� The structure of the voice application has to be designed carefully. The voice
user interface and its usability are especially important issues in voice
applications. There must be an easy way to access the data. This means that

ISP Gateway
(Pervasive
services)

User

O utside World
Demilitarized Zone

(DM Z) In ternal Network

Client

Data servicesData services

Personalization
Server

Directory
and Security

Services

Pervasive
extension
serv ices

Pervasive
client

serv ices

DatabaseCollaboration
Server

Ex isting
Data and

Applications

Pr
ot

oc
ol

 F
ire

w
al

l

Application
Server

Presentation
Server

D
om

ai
n

Fi
re

w
al

l

•W ebSphere Client
Technology, M icro Edition

•O pera Browser

AIX 5.2
•IBM W ebSphere Application Server
V5.0 HTTP Plug-in

•IBM HTTP Server V1.3.26

AIX 5.2
•W ebSphere Everyplace Access V5.0
•PDA Aggregation Extension

AIX 5.2
•W ebSphere Portal Server V5.0.2.1
•Dom ino Server 6.5.1
•IBM W ebSphere Application Server
Enterprise V5.0.2.3

W indows M obile 2003

W eb
serv er

redirector
 Chapter 4. Product mappings 65

the application should not contain too many selections or have too deep a
hierarchy tree.

� The speech recognition infrastructure can be a complex process that relies on
understanding the vocabulary and grammar usage for the application
including the particular pronunciation of the vocabulary required.

� It is important to understand the iterative nature of application development.
This involves incorporating as much data as possible about what users will
say to the system and then gradually “tuning” the recognition to adjust to the
full variation of speaker interactions with the system. Speaker variation can
be the result of the “persona” of the system (how the user interprets the way
the prompts are spoken), the user’s understanding of the requirements of the
application, and the success of the system in providing error correction, etc.

� The use of text-to-speech versus recorded natural speech needs to be
carefully evaluated in the application particularly for its use with mobile phone
users.

� There is enough hardware power. Voice recognition requires significant
processor speed and memory for operation. It is important to use the
appropriate capacity planning tools for the application.

Pervasive Device Adapter=Voice::Product mapping=Windows
Figure 4-3 on page 67 describes the products that can be used to create voice
solutions based on this pattern.
66 Patterns: Pervasive and Rich Device Access Solutions

Figure 4-3 Pervasive Device Adapter=Voice::Product mapping=Windows

The most important nodes that are used in voice applications are the voice
gateway, voice services, and pervasive extension services nodes.

� Voice gateway node is responsible for establishing, connecting, and routing
the incoming phone calls from the phone network (analog, digital, or Voice
over IP), and permitting access to the backend system. The telephony
gateway node connects the phone input to the system and triggers a
VoiceXML application based on the rules for the call and the user requests.
The VoiceXML controls the call flow and manages the voice services to
present prompts to the user and interprets user requests via voice services.

� Telephony connector is responsible for recognizing the user’s selections and
clarifying what the user would like to do. The telephony connector node has
its own database where data is stored that is used for voice recognition
purposes. For example, it contains a large vocabulary of words, their
pronunciations, and their grammars. This node is used to send recognized
requests to the application. Voice service contains two different engines:

– Speech recognition recognizes caller utterances by means of one or more
application-specific grammars or statistical language models.

– Text-To-Speech is used to convert dynamic text into audible speech.
Concatenative TTS uses short duration natural speech to create speech
output. This technology sounds more natural because it is comprised of
pre-recorded information from both a male and female voice.

User

O utside World
Dem ilitarized Zone

(DM Z) In ternal Network

Client
Personalization

Server

Directory
and Security

Services

Pervasive
extension
services

Pervasive
client

serv ices

Database

Existing data
and

Applications

Pr
ot

oc
ol

 F
ire

w
al

l

Application
Server

Presentation
Server

Voice
gateway

Telephony
connector

D
om

ai
n

Fi
re

w
al

l

W indows 2000 + SP4
•IBM W ebSphere Voice Response V3.1
•IBM W ebSphere Voice Server V3.1
- Tex t-To-Speech Engine
- Voice Recognition Engine

Collaboration
Server

W indows 2000 + SP4
•W ebSphere Portal Server V5.0.2.1
•Dom ino Server 6.5.1
•IBM W ebSphere Application Server
Enterprise V5.0.2.3

W indows 2000 + SP4
•W ebSphere Voice Application Access V5.0
•VoiceXM L Browser

Voice and/or
Data services

(VoIP)

Voice and/or
Data serv ices

(VoIP)

Telephony
client

User

VoIP application
 Chapter 4. Product mappings 67

� The pervasive extension services node is used to extend the presentation
node. It means that the pervasive extension services node contains
components that can be used for enabling voice support for the existing
applications. Most often it means that a component can send and render the
incoming and outgoing requests into the format that is suitable for voice
services, for example, VoiceXML. The extension is basically an aggregator
that transforms standard HTML pages and content into the VoiceXML format
when the requests come through the Telephony gateway and vice-versa
when responses need to be sent through that telephony channel.

The Presentation node and pervasive extension services node are connected to
an existing application node using the application server node. Using this model,
it is possible to reach a much larger audience—anyone with a telephone. With
this pattern, company employees and customers can access information and
conduct transactions without connecting to the Internet. Using a telephone, they
can fully interact with the applications and Web site.

Pervasive Device Adapter=Voice::Product mapping=AIX
Figure 4-4 shows the same implementation using AIX as the primary platform.

Figure 4-4 Pervasive Device Adapter=Voice::Product mapping=AIX

User

Outside W orld
Demilitarized Zone

(DM Z) Internal Network

Client
Personalization

Server

Directory
and Security

Services

Pervasive
extension
services

Pervasive
client

serv ices

Database

Ex isting data
and

Applications

Pr
ot

oc
ol

 F
ire

w
al

l

Application
Server

Presentation
Server

Voice
gateway

Telephony
connector

D
om

ai
n

Fi
re

w
al

l

Collaboration
Server

AIX 5.2
•W ebSphere Portal Server V5.0.2.1
•Dom ino Server 6.5.1
•IBM W ebSphere Application Server
Enterprise V5.0.2.3

AIX 5.2
•W ebSphere Voice Application Access V5.0
•VoiceXM L Browser

Telephony
client

User

Voice and/or
Data serv ices

(VoIP)

Voice and/or
Data services

(VoIP)

VoIP application

AIX 5.2
•IBM W ebSphere Voice Response V3.1
•IBM W ebSphere Voice Server V3.1
- Tex t-To-Speech Engine
- Voice Recognition Engine
68 Patterns: Pervasive and Rich Device Access Solutions

4.4 Rich Device::Product mapping=Pervasive device OS
It would be impossible to list all the device and operating system combinations on
this diagram, and it is not the objective of this book anyway. Deciding on the client
device and operating system for a company is one of the most difficult decisions
when designing pervasive solutions.

Windows Mobile 2003 and Palm OS are the two major pervasive device
operating systems supported by most of the IBM pervasive products. IBM and its
pervasive products also support a few other devices and operating systems.
Their support and availability vary product by product.

Figure 4-5 Rich Device::Product mapping=Pervasive device OS

Take the diagram as a starting point for other Product mappings.

4.5 Rich Device=Online::Product mapping=Device
Management

Device management is used to manage mobile devices and maintain their
applications by performing such actions as updating software, downloading
configurations, and inventorying devices.

Device management is usually a complex task because of the wide range of
devices that can be used and the rapidly changing nature of pervasive
computing.

User

Outside World

Client

Data servicesData services
Pervasive

client
services

Pr
ot

oc
ol

 F
ire

w
al

l

•WebSphere Client Technology, Micro Edition

Windows Mobile 2003
 Chapter 4. Product mappings 69

When planning this Runtime pattern, consider the following:

� How many different devices should we support? Explore how the devices will
be used and what capabilities the devices will need. Supporting five types of
devices is much easier than supporting 25. Realize that device management
will cut costs in the long run.

� What are the applications that we need to implement? List all the applications
that require some form of management operation.

� How can we standardize the company’s device profile? To make device
management easy, create different software and hardware profiles for the
devices and standardize the supported devices in a manageable way.

� How are we going to control the devices? There should be a way to inventory
the devices.

IBM WebSphere Everyplace Access offers a device management tool that is
used for inventorying, packaging, updating software, and remotely installing
software on mobile devices. This component can be migrated to the existing
Tivoli Configuration Manager.

Rich Device=Online::Product mapping=Device Management,
Windows

The following diagram shows Product mapping for the Windows platform.

Figure 4-6 Rich Device=Online::Product mapping=Device Management, Windows

User

O utside World
Demilitarized Zone

(DM Z) In ternal Network

Client

Data servicesData services

Personalization
Server

Directory
and Security

Services

Pervasive
extension
serv ices

Pervasive
client

serv ices

Pr
ot

oc
ol

 F
ire

w
al

l

Application
Server

Presentation
Server

D
om

ai
n

Fi
re

w
al

l

ISP G ateway
(Pervasive
serv ices)

• Everyplace Client for Pocket PC
- IBM Dev ice M anagem ent Agent

W indows 2000 + SP4
•IBM W ebSphere Application Server
V5.0 HTTP Plug-in

•IBM HTTP Server V1.3.26

W indows 2000 + SP4
•W ebSphere Everyplace Access V5.0
- Dev ice M anagem ent

Collaboration
Server

W indows 2000 + SP4
•W ebSphere Portal Server V5.0.2.1
•Dom ino Server 6.5.1
•IBM W ebSphere Application Server
Enterprise V5.0.2.3

W indows M obile 2003

W eb
serv er

redirector
70 Patterns: Pervasive and Rich Device Access Solutions

The pervasive client services node receives any update or inventory requests
from the pervasive extension services node and updates the device applications
or device operating systems.

Rich Device=Online::Product mapping=Device Management,
AIX

Figure 4-7 shows this same implementation using AIX as the primary platform.

Figure 4-7 Rich Device=Online::Product mapping=Device Management, AIX

4.6 Rich Device=Store and forward::Product mapping
When using this pattern you need to consider the following:

� What devices do you intend to support? Focus on a specific set of devices
that suit the business requirements and support the technology used in your
particular implementation.

� What are the business-critical applications that you need to support? For
example, you do not want to mobile-enable an entire CRM application. You
only want to enable those parts that could promote and extend the
application.

� How can you ensure data security and trusted synchronization between the
client and server? You should consider how the data is transferred between
the client and server.

User

O utside W orld
Demilitarized Zone

(DM Z) Internal Network

Client

Data servicesData services

Personalization
Server

Directory
and Security

Serv ices

Pervasive
extension
services

Pervasive
client

services

Pr
ot

oc
ol

 F
ire

w
al

l

Application
Server

Presentation
Server

D
om

ai
n

Fi
re

w
al

l

ISP Gateway
(Pervasive
serv ices)

AIX 5.2
•IBM W ebSphere Application Server
V5.0 HTTP Plug-in

•IBM HTTP Server V1.3.26

AIX 5.2
•W ebSphere Everyplace Access V5.0
- Dev ice M anagem ent

Collaboration
Server

AIX 5.2
•W ebSphere Portal Server V5.0.2.1
•Dom ino Server 6.5.1
•IBM W ebSphere Application Server
Enterprise V5.0.2.3

• Everyplace Client for Pocket PC:
- IBM Device M anagem ent Agent

W indows M obile 2003

W eb
serv er

redirector
 Chapter 4. Product mappings 71

� What is the complexity of the applications you would like to implement? You
need to consider the structuring of your application. Which business logic is
suitable to include on the client side and what should be left on the server
side?

The rich device application could contain a client-based local application with
business logic in it and a local repository for accessing the data. It could also be
a very simple offline forms application that allows users to input the data in offline
mode through the form and submit it to a local repository (usually it is file
system). The data, which is stored into the local database or file system is later
synchronized with the back-end server. It is also possible to use a verified
transaction messaging operation for sending data. This scenario is
recommended if the data requires once-only messaging. This kind of mechanism
is used when the data is very critical, for example, credit card information.

This pattern can be used to describe a very complex pervasive application that is
used by businesses to support their mobile sales force workers in their daily
routines. It is made up of the following parts:

� Rich device application: This contains the user interface, business logic, and
local repository on the device side. Sales workers could find their customer
data, create future tasks based on their selections, and store this data for
future handling. These functions are described in the user, client, and
pervasive client services nodes.

� Pervasive services: This takes care of transferring and synchronizing data
between the client device and the back-end server. This function needs to
authenticate and authorize the user and client towards the existing corporate
environment and update the existing back-end application with the data that
is being sent from the client. It is also responsible for sending updated data
back to the client.

More information about this simple offline forms scenarios can be found in 13.4,
“Sample application development” on page 295.

This same Runtime pattern could also be used to simplify implementations for
offline applications. The next example describes the workflow steps for simple
offline applications, which would use this Runtime pattern.

1. User fills in an offline-based form using his pervasive device.

2. After filling in that form, he can submit it and continue to fill in the next offline
form with different content.

3. The data from the filled-in and submitted forms is stored in the device’s local
storage location (file or database) for future handling.
72 Patterns: Pervasive and Rich Device Access Solutions

4. When the device is connected to the network, the user could synchronize that
device with the server-side application by sending the completed form data
from the client to the server.

5. The server accepts the incoming data and sends a confirmation that the data
has been received as well as any additional responses back to the client.

More information about this simple offline forms scenario can be found in 11.3.1,
“General considerations for intermittently connected applications” on page 228.

If the data being used on the mobile devices is very crucial or high availability is
needed, then clustering your servers is an appropriate solution. Clustering
distributes certain logical nodes onto different physical machines. The following
Runtime pattern illustrates an effective way to visualize the environment by
building up the functional and operational nodes. This makes it easy to pinpoint
which nodes require splitting and which parts might require clustering to solve
high-availability problems.

Rich Device=Store and forward::Product mapping=Windows
The following diagrams shows the Product mapping for the Windows 2000
platform.

Figure 4-8 Rich Device=Store and forward::Product mapping=Windows

The pervasive client services node contains a lot of components that are used to
support rich device applications. WebSphere Client Technology, Micro Edition
can support many standardized technologies that are used in the pervasive
world. DB2e and MQe can support alternative transactional quality of service

ISP Gateway
(Pervasive
serv ices)

User

Outside W orld
Demilitarized Zone

(DM Z) Internal Network

Client

Data servicesData services

Personalization
Server

Directory
and Security

Services

Pervasive
extension
serv ices

Pervasive
client

serv ices

Existing data
and

Applications

Pr
ot

oc
ol

 F
ire

w
al

l

Application
Server

Presentation
Server

D
om

ai
n

Fi
re

w
al

l

•Everyplace Client for Pocket PC:
- DB2 Everyplace 8.1
- Offline form s
- MQ Everyplace

•W ebSphere Client Technology,
Micro Edition

W indows 2000 + SP4
•IBM W ebSphere Application
Server V5.0 HTTP Plug-in
•IBM HTTP Server V1.3.26

W indows 2000 + SP4
•W ebSphere Everyplace Access V5.0
•DB2 Everyplace 8.1
•M Q Everyplace

Collaboration
Server

W indows 2000 + SP4
•W ebSphere Portal Server V5.0.2.1
•Dom ino Server 6.5.1
•IBM W ebSphere Application Server
Enterprise V5.0.2.3

W indows M obile 2003

W eb
serv er

redirector
 Chapter 4. Product mappings 73

between client and server. Offline forms can be used to gather data on the client
side. When a network connection is available, these stored offline forms are sent
to the server.

On the server side, the pervasive extension services node handles the incoming
data that is sent from the client. The pervasive extension services then treat the
data and sends it to an existing application or database for further processing.

Rich Device=Store and forward::Product mapping=AIX
Figure 4-9 shows the same implementation using AIX as the primary platform.

Figure 4-9 Rich Device=Store and forward::Product mapping=AIX

4.7 Rich Device=Store and forward::Runtime
mapping=PIM and e-mail

Because synchronization requires a lot of I/O capacity for the server, the
pervasive extension services node is split into two different nodes. By splitting
that node, we get a more reliable and scalable environment. By dividing the node
into separate nodes we could offer online portal users, and PIM and e-mail users
a better response time and separate environments. Because of this, if the
synchronization service goes down, it does not affect the portal side, and vice
versa.

ISP Gateway
(Pervasive
services)

User

Outside W orld
Demilitarized Zone

(DM Z) Internal Network

Client

Data servicesData services

Personalization
Server

D irectory
and Security

Serv ices

Pervasive
extension
services

Pervasive
client

serv ices

Ex isting data
and

Applications

Pr
ot

oc
ol

 F
ire

w
al

l

Application
Server

Presentation
Server

D
om

ai
n

Fi
re

w
al

l

A IX 5.2
•IBM W ebSphere Application Server
V5.0 HTTP P lug-in
•IBM HTTP Server V1.3.26

AIX 5.2
•W ebSphere Everyplace Access V5.0
•DB2 Everyplace 8.1
•M Q Everyplace

Collaboration
Server

AIX 5.2
•W ebSphere Portal Server V5.0.2.1
•Dom ino Server 6.5.1
•IBM W ebSphere Application Server
Enterprise V5.0.2.3

•Everyplace Client for Pocket PC:
- DB2 Everyplace 8.1
- Offline form s
- MQ Everyplace

•W ebSphere C lient Technology,
M icro Edition

W indows M obile 2003

W eb
serv er

redirector
74 Patterns: Pervasive and Rich Device Access Solutions

There are several questions that you need to consider with this pattern:

� Do we need to support offline access? In many cases, online PIM and e-mail
access is adequate and offline access is not needed.

� Who is the targeted audience for using this service? In many cases this
service is not extended to everyone within a company. We want to limit the
users who have access based on certain criteria.

� What are the effects of extending synchronization capabilities into the existing
environment? We want to make sure that this service does not harm the
existing environment. For example, synchronization can be affected by
unstable mail servers and slow or overloaded networks.

� Should I use both online and offline access for accessing PIM and e-mail
data? In some cases there might be a reason to use partial online
capabilities. You need to consider this option if this kind of connection is
needed and how this will impact data synchronization services.

� What are the specific devices that you are going to consider in your
implementation? We need to specify the devices and make sure that those
devices can properly support these functions.

Rich Device=Store and forward::Runtime mapping=PIM and
e-mail, Windows

The following diagram shows the Product mapping for the Windows 2000
platform.
 Chapter 4. Product mappings 75

Figure 4-10 Rich Device=Store and forward::Runtime mapping=PIM and e-mail, Windows

By using a Web server redirector node, we can place the majority of the business
logic on the internal network behind two firewalls. The redirector is implemented
using the IBM HTTP Server and WebSphere Application Server Web server
plug-in. The redirector serves static HTML pages and forwards requests for
dynamic content to a WebSphere Application Server using the HTTP protocol.

In this case, we do not use WebSphere Everyplace Connection Manager V5 to
tunnel the requests between the client and server, although it is the
recommended way to access a corporate network from the outside world.

In a real-world scenario, allocating resources in this manner is a good idea for
those companies that intend to serve PIM and e-mail services to their employees
without giving full access to other portal-based online solutions. In that case,
there would be a resulting bottleneck at the synchronization server, which offers
offline access to employers PIM and e-mail databases.

Rich Device=Store and forward::Runtime mapping=PIM and
e-mail, AIX

Figure 4-11 on page 77 shows the same implementation using AIX as the
primary platform.

ISP G ateway
(Pervasive
serv ices)

User

Outside World
Demilitarized Zone

(DM Z) Internal Network

Client

Data servicesData services

Personalization
Server

Directory
and Security

Services

Pervasive
extension
serv ices

Pervasive
client

serv ices

Collaboration
ServerCollaboration

Server

Pr
ot

oc
ol

 F
ire

w
al

l

Application
Server

Presentation
Server

D
om

ai
n

Fi
re

w
al

l

Pervasive
Extension
serv ices

W indows M obile 2003
•Native Inbox
•Native Calendar
•Native To-Do
•Native Contacts

•Everyplace Client for
Pocket PC:
- SyncM L 1.1 Client

W indows 2000 + SP4
•IBM W ebSphere Application
Server V5.0 HTTP Plug-in
•IBM HTTP Server V1.3.26

W indows 2000 + SP4
•W ebSphere Everyplace Access V5.0
*Adm inistration Portlets for Synchronization

W indows 2000 + SP4
•W ebSphere Everyplace Access V5.0
- Synchronization Server: SyncM L V1.1.1

W indows 2000 + SP4
•Dom ino Server 6.5.1

W indows 2000 + SP4
•W ebSphere Portal Server V5.0.2.1
•Dom ino Server 6.5.1
•IBM W ebSphere Application Server
Enterprise V5.0.2.3

W eb
serv er

redirector
76 Patterns: Pervasive and Rich Device Access Solutions

Figure 4-11 Rich Device=Store and forward::Runtime mapping=PIM and e-mail, AIX

4.8 Pervasive Connectivity runtime pattern::Product
mapping

This section describes the products that are used for encrypted, trusted, and
securely tunnelled connections between the device and server. When planning
for this pattern, consider the following:

� What kind of security and connections will we support? Usually, business
data is critical, and customers require a secured and encrypted method of
accessing it. The most common way to do this is to create a virtual private
network (VPN) connection. A VPN creates a secure tunnel on the public
Internet to support the transactions between the client and back end.

� How can we cover areas with little or inconsistent network coverage? We
need to cover and maintain the user’s sessions and provide for a user-friendly
experience if the network is not available all the time.

� Do we have to authenticate our users to the network and the device? We
need to consider the level of authentication and authorization. Usually it is the
case that companies require authentication for both the applications and the
network as well.

� Of all connectivity options available at a particular location, can we offer the
most appropriate network? We would like to offer the most suitable network
that is available for the device. If a device notices that it is now on a corporate

ISP G ateway
(Pervasive
serv ices)

User

Outside World
Dem ilitarized Zone

(DM Z) Internal Network

Client

Data servicesData services

Personalization
Server

Directory
and Security

Serv ices

Pervasive
extension
serv ices

Pervasive
client

services

Collaboration
ServerCollaboration

Server

Pr
ot

oc
ol

 F
ire

w
al

l

Application
Server

Presentation
Server

D
om

ai
n

Fi
re

w
al

l

Pervasive
Extension
serv ices

AIX 5.2
•IBM W ebSphere Application Server
V5.0 HTTP Plug-in

•IBM HTTP Server V1.3.26

AIX 5.2
•W ebSphere Everyplace Access V5.0
*Adm inistration Portlets for Synchronization

AIX 5.2
•W ebSphere Everyplace Access V5.0
- Synchronization Server: SyncM L V1.1.1

AIX 5.2
•Dom ino Server 6.5.1

AIX 5.2
•W ebSphere Portal Server V5.0.2.1
•Dom ino Server 6.5.1
•IBM W ebSphere Application Server
Enterprise V5.0.2.3

W indows M obile 2003
•Native Inbox
•Native Calendar
•Native To-Do
•Native Contacts

•Everyplace Client for
Pocket PC:
- SyncM L 1.1 Client

W eb
server

redirector
 Chapter 4. Product mappings 77

wireless LAN, we can allow the device to use that network rather than a
slower and potentially more expensive cellular network.

The IBM WebSphere Everyplace Connection Manager V5 does not create a
tunnel for every application. It secures the whole communication between the
client and the server. This means that the user is able to use multiple different
applications (for example, Instant Messaging, mobile enabled online portlets,
data synchronization, and PIM and e-mail synchronization) through the tunneled
connection without configuring each application’s security settings separately.

Pervasive Connectivity runtime pattern::Product
mapping=Linux

Figure 4-12 describes how the connectivity products are mapped into the
Runtime pattern for Connectivity using the Linux platform.

Figure 4-12 Pervasive Connectivity runtime pattern::Product mapping=Linux

The connectivity and access for pervasive services node lies in the DMZ to
provide a more secure implementation for the whole pervasive environment. The
Pervasive client services is needed because it communicates with the
connectivity and access for pervasive services node using a tunneled
connection.

Pervasive Connectivity runtime pattern::Product mapping=AIX
Figure 4-13 shows this same implementation using AIX as the primary platform.

User

O utside W orld
Dem ilitarized Zone

(DM Z) In ternal Network

Client

Data servicesData services
Pervasive

client
serv ices

Pr
ot

oc
ol

 F
ire

w
al

l

Connectiv ity
and Access

for Pervasive
serv ices

D
om

ai
n

Fi
re

w
al

l
ISP Gateway

(Pervasive
serv ices)

Voice and/or
Data services
Voice and/or
Data services

Directory
and Security

Serv ices

W indows M obile 2003

•W ebSphere Everyplace
Connection M anager V5
Client

Linux SuSe 8.0
•IBM W ebSphere Application Server
V5.0 HTTP P lug-in
•IBM HTTP Server V1.3.26

Linux SuSe 8.0
•Dom ino Server 6.5.1

Linux 8.0
•W ebSphere Everyplace
Connection M anager V5

W eb
serv er

redirector
78 Patterns: Pervasive and Rich Device Access Solutions

Figure 4-13 Pervasive Connectivity runtime pattern::Product mapping=AIX

The connectivity and access for pervasive services node is added in front of the
Web server redirector node. This is done so that all incoming requests will be
routed from the client to the corporate intranet through the trusted tunnel. The
connectivity and access for pervasive services node controls the user and device
network authentication and authorization. When the network access is trusted,
the client can authenticate towards the application layer and can get the access
to the backend applications. The single sign-on (SSO) mechanism is also
possible. Single sign-on means that the network layer and application layer
authentication and authorization is done inside the connectivity and access for
pervasive services node. If this is the case, the connectivity and access for
pervasive services node sends the application layer authentication request to the
existing directory and security services node automatically and the user does not
have to insert her application layer authentication information.

To enable the single sign-on between the connectivity server and existing
authentication and security server you could use the following technologies:

� Trust Association Interceptor (TAI) to enable companies to incorporate their
IBM WebSphere environments, including IBM WebSphere Application Server
and IBM WebSphere Portal, into a unified and centrally managed security
infrastructure. Connection Manager V5 provides a TAI plug-in for use with
WebSphere Application Server. This allows single sign-on from mobility
clients connecting to WebSphere Application Server through a VPN.

� Lightweight Third Party Authentication (LTPA), a mechanism for achieving
single sign-on across the Internet domain that contains users’ resources.

User

Outside W orld
Dem ilitarized Zone

(DMZ) Internal Network

Client

Data servicesData services
Pervasive

client
services

Pr
ot

oc
ol

 F
ire

w
al

l

Connectiv ity
and Access

for Pervasive
serv ices

D
om

ai
n

Fi
re

w
al

l

ISP G ateway
(Pervasive
serv ices)

Voice and/or
Data services
Voice and/or
Data services

Directory
and Security

Serv ices
AIX 5.2
•IBM W ebSphere Application Server
V5.0 HTTP P lug-in
•IBM HTTP Server V1.3.26 AIX 5.2

•Dom ino Server 6.5.1

AIX 5.2
•W ebSphere Everyplace
Connection M anager V5

•W ebSphere Everyplace
Connection M anager V5
Client

W indows Mobile 2003

W eb
serv er

redirector
 Chapter 4. Product mappings 79

Connection Manager is able to generate LTPA tokens that may be used as
the mechanism for establishing single sign-on between Connection Manager
and other supported applications for HTTP Access Services using HTTP
access client authentication method. This is supported by both RADIUS and
LDAP-bind type authentication profiles.

4.9 Pervasive Solutions composite pattern::Product
mapping

This section discusses a full mapping for products with the Pervasive Solutions
Runtime pattern.

This Runtime pattern is very powerful when the customer also would like to use
certain kinds of intelligent notification messaging such as that which could be
used to send notifications to employees when they receive an urgent e-mail
message. Notification services could also trigger an alert to a user whenever a
stock price reaches a certain level.

Notification works as follows:

1. Notification tracking checks via an existing database or Web services
application that a current value has gone past a certain threshold. These
functions are described in nodes: Existing data and application, application
server.

2. It then triggers an action that launches the notification. These functions are
described in nodes: Application server, pervasive extension services.

3. Now the notification engine knows what to send, but it still needs to find the
proper device to send that data to. This operation is done inside the pervasive
extension services node.

4. The final step is to deliver that notification to the proper device application
using SMS, e-mail, or an Instant messaging application where the user can
receive that message. These functions are described in nodes: Pervasive
extension services and Pervasive client services.

When notification services are used within the environment, there must be
well-defined interfaces for channels to display these notifications. For example,
Instant Messaging requires a supported PDA or mobile phone and a
Web-enabled cellular network connection. Voice-based notifications require a
network connection with which to dial a phone or cellular phone. These need to
be in place for any notifications to be sent through these channels.
80 Patterns: Pervasive and Rich Device Access Solutions

Implementation considerations
When someone starts thinking about implementing a pervasive environment, the
user should be aware of certain issues:

� What devices is your organization going to support? Although many
middleware implementations can support multiple devices, it is always a good
practice to consider the most important features that will be used and ensure
that the selected devices support these features. Deciding to support a
variety of different devices usually means that you must make some
compromises on application support.

� How do you manage the devices? Distributing updated applications and
device management are two major issues to be considered when building a
properly functioning and easily maintainable pervasive environment. It is no
use having a good client-based application if it is hard to distribute and update
on many devices.

� Internet Service Provider services and the network connections into the
corporate DMZ must be in place. In many cases there is little focus on this
aspect of the project. Only at the end of the project do certain issues arise,
such as having proper gateways to support different channels such as
Blackberry, GPRS, or voice.

� Have security and authorization issues been completely and adequately
addressed? Security is one of the most crucial aspects of a pervasive
environment. Usually very critical information is exchanged through many
different channels. There must be a way to create a secure and encrypted
tunnel from the device to the corporate network. Furthermore, it is very
common for employees to lose or misplace their handheld devices or have
them stolen. Because of these cases, there should always be a well-defined
client and device authentication method provided on the server-side.

� Building a pervasive environment usually means that we want to extend the
existing environment to serve different devices. This means that we want to
take advantage of the existing components that are in place already. This
includes aspects such as user authentication and interfaces to ERP and CRM
applications. Very careful and exact definition and implementation of these
allows an organization to benefit from these components without any major
changes to the existing environment or architecture.

Pervasive Solutions composite pattern::Product
mapping=Windows

Figure 4-14 describes the products that you can use to implement a
comprehensive pervasive environment on the Windows 2000 platform.
 Chapter 4. Product mappings 81

Figure 4-14 Pervasive Solutions composite pattern::Product mapping=Windows

Pervasive Solutions composite pattern::Product mapping=AIX
Figure 4-10 shows the same implementation using AIX as the primary platform.

g

User

Outside World
Demilitarized Zone

(DMZ) Internal Network

Client

Voice and/or
Data services
Voice and/or

Data services

Personalization
Server

Directory
and Security

Services

Pervasive
client

services
Database

Existing data
and

Applications

Pr
ot

oc
ol

 F
ire

w
al

l

Application
Server

Presentation
Server

Voice
gateway

Telephony
connector

D
om

ai
n

Fi
re

w
al

l

ISP Gateway
(Pervasive
services)

Connectivity
and Access

for Pervasive
services

Collaboration
server

Pervasive
extension
services

Windows Mobile 2003

Windows 2000 + SP4
•IBM WebSphere Voice Response
•IBM WebSphere Voice Server
- Text-To-Speech Engine
- Voice Recognition Engine

Windows 2000 + SP4
•WebSphere Everyplace Access V5.0
- Pervasive Administration Portlets
- Everyplace Synchronization Server

(ESS)
- Offline Caching Server
- PDA Aggregation Extension
- DB2 Everyplace 8.1
- Device Manager Server
- Intelligent Notification Server
- MQ Everyplace WebSphere

•Voice Application Access

Linux SuSe 8.0
•WebSphere Everyplace
Connection Manager V5 W indows 2000 + SP4

•WebSphere Portal Server V5.0.2.1
•Domino Server 6.5.1
•IBM WebSphere Application Server
Enterprise V5.0.2.3

•Everyplace Client for Pocket PC:
- SyncML Client
- DB2 Everyplace 8.1
- Offline Forms
- Device Management Agent

•MQ Everyplace Instant Messaging
Client
- Sametime Connect

•Everyplace Connection Manager
Client
•WebSphere Client Technology, Micro
Edition

W eb
server

redirector

Windows 2000 + SP4
•IBM WebSphere Application
Server
V5.0 HTTP Plug-in

•IBM HTTP Server V1.3.26
82 Patterns: Pervasive and Rich Device Access Solutions

Figure 4-15 Pervasive Solutions composite pattern::Product mapping=AIX

In order to get a good understanding of the protocols that are used for Pervasive
solutions, Figure 4-16 on page 85 describes the network protocols used for the
Windows 2000/AIX 5.2 and Windows Mobile 2003, Palm OS implementations:

� GPRS/UMTS: General Packet Radio Service (GPRS) and Universal Mobile
Telecommunications Service (UMTS) carry the end user's packet data from
mobile devices to external packet data networks and visa versa.

UMTS is a third-generation (3G) broadband, packet-based transmission of
text, digitized voice, video, and multimedia at data rates up to 2 megabits per
second (Mbps) that offers a consistent set of services to mobile computer and
phone users no matter where they are located in the world.

� HTTP/HTTPS: Hypertext Transfer Protocol (HTTP V1.1), or Hypertext
Transfer Protocol Secure (HTTPS - HTTP V1.1/SSL V3), is used from the
user’s Web browser to the HTTP server in the Web server redirector node.

HTTP, or HTTPS, is also used from the WebSphere Web server plug-in in the
Web server redirector node to the Web container in the application server
node.

User

Outside World
Demilitarized Zone

(DMZ) Internal Network

Client

Voice and/or
Data services
Voice and/or

Data services

Personalization
Server

Directory
and Security

Services

Pervasive
client

services
Database

Existing data
and

Applications

P
ro

to
co

l F
ire

w
al

l

Application
Server

Presentation
Server

Voice
gateway

Telephony
connector

D
om

ai
n

Fi
re

w
al

l

ISP Gateway
(Pervasive
services)

Connectivity
and Access

for Pervasive
services

Collaboration
server

Pervasive
extension
services

W indows Mobile 2003

•Everyplace Client for Pocket PC:
- SyncML Client
- DB2 Everyplace 8.1
- Offline Form s
- Device Management Agent

•MQ Everyplace Instant Messaging
Client
- Sametime Connect

•Everyplace Connection Manager
Client
•W ebSphere Client Technology, Micro
Edition

AIX 5.2
•IBM W ebSphere Application Server
V5.0 HTTP Plug-in
•IBM HTTP Server V1.3.26

AIX 5.2
•W ebSphere Everyplace Access V5.0
- Pervasive Administration Portlets
- Everyplace Synchronization Server (ESS)
- Offline Caching Server
- PDA Aggregation Extension
- DB2 Everyplace 8.1
- Device Manager Server
- Intelligent Notification Server
- MQ Everyplace

•W ebSphere Voice Application Access

AIX 5.2
•W ebSphere Everyplace
Connection Manager V5 AIX 5.2

•W ebSphere Portal Server V5.0.2.1
•Domino Server 6.5.1
•IBM W ebSphere Application
Server Enterprise V5.0.2.3

AIX 5.2
•IBM W ebSphere Voice Response
•IBM W ebSphere Voice Server
- Text-To-Speech Engine
- Voice Recognition Engine

W eb
server

redirector
 Chapter 4. Product mappings 83

� LDAP: The application server uses Lightweight Directory Access Protocol
(LDAP V3) to access the LDAP server in the directory and security services
node.

� JDBC: The application server uses a Java Database Connectivity (JBDC
V2.0) driver to access the database.

� IMAP: Internet Message Access Protocol is a method of accessing electronic
mail or bulletin board messages that are kept on a (possibly shared) mail
server. In other words, it permits a "client" e-mail program to access remote
message stores as if they were local.

� IIOP: The IIOP (Internet Inter ORB Protocol) specification defines a set of
data formatting rules, called Common Data Representation (CDR), which is
tailored to the data types supported in the CORBA Interface Definition
Language (IDL). Using the CDR data formatting rules, the IIOP specification
also defines a set of message types that support all of the ORB semantics
defined in the CORBA core specification. It provides a single protocol for
interoperability between the Enterprise and the Web.

� DIIOP: Domino IIOP allows Domino and the browser client to use the Domino
Object Request Broker (ORB) server program. The Domino ORB processes
the applet requests and transmits the information to the browser client to
communicate.

� OMA DM is a specification created by the Open Mobile Alliance (OMA)
organization for device management of wireless devices. It is a
standardization that allows Device Manager to write one protocol engine to
encode and decode the messages passed between Device Manager and the
OMA DM device agent.

� Voice over Internet Protocol (VoIP) is a protocol that allows you to make
telephone calls using a computer network, over a data network like the
Internet. VoIP converts the voice signal from a user’s telephone into a digital
signal that travels over the Internet and then converts it back at the other end.
This allows the user to speak to anyone with a regular phone number.

� Mobile Internetworking Control Protocol (MICP) is a protocol that is used to
exchange control information between the voice gateway and voice service.

Figure 4-16 on page 85 shows the protocol and technology mappings for
pervasive solution solutions.
84 Patterns: Pervasive and Rich Device Access Solutions

Figure 4-16 Network protocol mapping for pervasive solutions

Personalization
Server

Directory
and Security

Serv ices

HTT
P/S

 o
r

Syn
cM

L OMA
DM

HTTP/S or
SyncM L OMA

DM

ISP G ateway
(Pervasive
serv ices)

User

O utside W orld
Demilitarized Zone

(DM Z) Internal Network

Client

Pervasive
client

serv ices

HTTP/S or
SyncM L OMA

DM

G
PR

S
/ U

M
TS

An
d

Sy
nc

M
L

O
M

A
D

M

Voice and/or
Data services
Voice and/or

Data services

Pervasive
extension
serv ices

Voice
gateway

Connectiv ity
and Access

for Pervasive
serv ices

Telephony
connector

HTTP/S or
SyncM L OMA

DM

HTTP/S or
SyncM L O MA

DM

Pr
ot

oc
ol

 F
ire

w
al

l
M ICP

Analog
Digital
VoIP

HTTP/S
Database

Collaboration
Server

LDAP/HTTP

Existing
Data and

Applications

LDAP

IIOP

D
om

ai
n

Fi
re

w
al

l

IM AP

DIIOP

JDBC

HTTP/S

LDAP

Application
Server

Presentation
Server

W eb
serv er

redirector
 Chapter 4. Product mappings 85

86 Patterns: Pervasive and Rich Device Access Solutions

Chapter 5. ITSO Railway sample
overview

This chapter provides an overview of the business domain used in the technical
scenario chapters in this section. This chapter identifies the enterprise and the
business problems they intend to solve by incorporating pervasive computing
technology into their business environment. A subset of these business problems
is detailed in the technical scenario chapters, which further defines and
implements a portion of the mobile solution.

5

© Copyright IBM Corp. 2005. All rights reserved. 87

5.1 ITSO Railway
ITSO Railway, a fictitious company, wants to modernize various aspects of their
business and take advantage of the capabilities pervasive computing has to
offer. They want to give their mobile workers and customers mobile/wireless
access to enterprise applications and data. ITSO Railways has a variety of
mobile employees such as traveling executives, delivery personnel, and train
conductors. ITSO Railways analysis has identified the following situations that
will benefit from pervasive computing technology:

� Mobilize inventory management by replacing existing paper-based Train
Supply forms with mobile solution.

� Provide executives mobile PIM and e-mail support while they are on the road.

� Monitor critical equipment for potential problems or malfunctions.

� Alert maintenance personnel of potential equipment problems or
malfunctions.

� Provide mobile customers access to railway information by extending existing
railway portal to mobile devices.

� Automate ticketing on train by providing train conductors with a mobile
ticketing application.

� Maintain mobile devices easily by providing remote maintenance of mobile
devices.

� Secure mobile devices by providing security for critical data and applications
on the mobile device.

� Provide voice access to railway information to customers using phones
(voice) to obtain information.

5.1.1 Business value to ITSO Railways
ITSO Railways believes the business value of using pervasive computing
technology will improve their business and their bottom line. The overall business
values provided by using the technology are:.

� Automate and stream line various business processes

� Increase data accuracy and reduce data latency.

� Increase mobile worker productivity by providing them with immediate access
to information.

� Increase customer satisfaction and quality of service by providing them with
various types of access to frequently requested information.

� Reduce paper forms and paper handling by automating manual processes.
88 Patterns: Pervasive and Rich Device Access Solutions

� Enable mobile workers to work more efficiently and effectively by providing
them with access to enterprise applications and data.

� Reduce call center costs generated by mobile phone users calling in to get
timetable data with peaks occurring at specific times of the day.

5.2 General requirements
ITSO Railways has established the following general requirements for any
mobile solutions being created.

The key requirements are:

� Enhance existing applications and methodologies currently available.

� Use standards-based technologies and products wherever possible.

� Integrate all new solutions with the existing business applications and
databases.

� Use the techniques and the technology appropriate to the end-user needs.

� Provide devices and applications that are user friendly and easy to learn, use,
and maintain.

� Ensure the security of the enterprise and any business-critical data and
applications wherever they are located within the ecosystem.

� Use tools and automated techniques in any development projects that
streamline and support the development life cycle.

5.3 Provide executive PIM and e-mail support
ITSO Railway executives need access to their Personal Information
Management (PIM) and e-mail while traveling. Because executives have very
dynamic information needs, they must have access to their schedules and mail
whenever and wherever the need arises. They must be able to maintain a single
copy of their e-mail and be assured the PIM updates will be posted to their office
PIM application server.

5.3.1 Key requirements
Key business requirements for giving executives mobile access to PIM and
e-mail are:

� Provide executives with access to office services such as PIM and e-mail.
 Chapter 5. ITSO Railway sample overview 89

� Ensure that any modifications are handled so the executives only work with
the information once.

� Protect the user from any technical details

Key IT requirements are:

� The pervasive solution integrates with the existing PIM and e-mail system.
� Provide an easy-to-use and learn user interface that is familiar to them.
� Buy an existing mobile PIM and e-mail solution.
� Ensure that the new PIM and e-mail solution is easy to install and maintain.

5.3.2 Example application scenario
Peter, a railway executive, has a very dynamic schedule and is constantly getting
e-mail that he needs to respond to quickly. Peter uses the ITSO Railways PIM
applications to keep his business files up to date. Peter is constantly getting
requests from his superiors to create reports for them. In order to keep track of
these requests Peter uses the To Do list PIM application. When he is in the office
he uses his desktop computer to review, update, and track these to-do list items.
He wants the list to be in sync and accurate on both his mobile device and his
office computer.

Example use case
In this example use case:

1. Peter logs onto his mobile device.

2. Peter selects his To Do list application.

3. Peter reviews the existing items.

4. Peter updates the status of an item to done.

5. Peter adds a new item to the to-do list.

6. Occasionally the mobile device is synchronized with the server, so Peter’s
updates are processed on the PIM application server.

5.4 Mobile customer access
Customer satisfaction is key to ITSO Railways success. They would like to give
customers mobile access to railway schedules, time tables, price changes, and
any promotions currently available.
90 Patterns: Pervasive and Rich Device Access Solutions

5.4.1 Key requirements
The key business requirements are:

� Increase customer satisfaction by providing them anywhere access to railway
information using a variety of devices.

� Provide customers with mobile access to railway information.

� Reduce calls to customer service.

� Make information available 24 hours a day 7 days a week.

� Provide the latest information to allow customers to make informed decisions.

The key IT requirements are:

� Integration with and extend existing railway information system and train
scheduling system.

� Make the application easy to use and learn.

� Extend the existing Web/portal system to mobile devices.

� Use tools that support the end-to-end development process and simplify
development.

5.4.2 Example application scenario
George uses the railway systems frequently. He recently purchased a PDA and
uses it to access various Web sites. He would like to use the PDA to access the
railway information so he can use his time better when he is out adventuring.

Example use case
In our example use case:

1. George logs on to his PDA.
2. He accesses the ITSO Railways Web site.
3. He selects train schedules.
4. He looks for the train schedule for trains from Raleigh to Charlotte.
5. He reviews the train tables available.

5.5 Mobile inventory management
ITSO Railways delivery personnel provide supplies such as food, dining ware,
soap, and toiletries to each train when it enters a station. As the delivery person
replenishes the supplies, he fills out a paper form indicating the quantity for each
item provided to that train. At the end of the day, these forms are turned into the
 Chapter 5. ITSO Railway sample overview 91

station office, then input into the Inventory management system. Sometimes the
delivery trucks do not have all the necessary supplies for a train, causing
unnecessary delays or trains in transit without the necessary supplies for their
customers.

5.5.1 Key requirements
Key business requirements are:

� Automate record keeping for train supplies by eliminating paper forms.
� Streamline inventory management process.
� Provide a user-friendly application for the delivery personnel.
� Provide delivery personnel with their own truck’s item inventory.
� Increase inventory accuracy by reducing entry errors.

Key IT requirements are:

� Integration with existing inventory management system.

� Provide simple user-friendly interface and application.

� Minimize the programming and technical skills to create and maintain the
solution.

� Make the application easy to administer.

5.5.2 Example application scenario
Dan, the train delivery person, provides supplies to trains when they enter the
Raleigh station. He is responsible for checking the supplies in each passenger
car of the train and replenishing any storage bins that are low on supplies. He
must document the number of supplies he replenishes on each car of each train
he services. As he replaces the supplies he updates the Train Supply Form with
the exact item and the item’s quantity for each car on a train. Because Dan is
very busy going from train to train all day long, Dan turns in his Train Supply
Forms at the end of each day. The information on the forms is then entered into
the inventory management system so the supply inventory in the station
warehouse can be kept accurate and supply orders can be made as needed.
When Dan does not have enough supplies for a particular train, he must call
another delivery person to provide the needed supplies or allow the train to leave
the station without all the supplies it should have.

Example use case
In this example use case:

1. Dan (the delivery person) logs onto his mobile device.

2. Dan accesses the Train Supply Application.
92 Patterns: Pervasive and Rich Device Access Solutions

3. Dan sees the Train Supply Form and enters the train number.

4. As Dan goes through the train, he checks each car’s supply bins to see if any
particular items are needed. As he replaces each item, he updates the online
form with the quantity of each item replenished in each car.

5. Occasionally the mobile device is synchronized with the server, so Dan’s
updates can be processed.

5.6 Monitor critical equipment
Various equipment is critical to the railway, such as trains with complex engines
and rail lines with very sophisticated electrical systems. This equipment must be
operational at all times. ITSO Railways would like to place sensors at key
locations in their railway system and on trains to collect data and monitor the
equipment for potential malfunctions before they happen.

5.6.1 Key requirements
The key business requirements are:

� Provide sensors that monitor railway business-critical equipment.

� Sensors must signal any changes in equipment status.

� Sensors must be reliable and available 24 hours a day for 7 days a week.

� Sensors must identify the particular piece of equipment they are associated
with and clearly state the situation as it occurs.

� Sensors must be roughed and inexpensive.

The key IT requirements are:

� Integration with maintenance system.
� Sensors must be easy to install and maintain.
� Sensors must be programmable so they can be reused.

5.6.2 Example application scenario
The railway switching system is critical to the movement of trains within the train
yard. If a switch malfunctions it can delay the movement of trains and cars. A
malfunction causes additional work for the yard workers because they must find
alternate ways to move cars so they can be connected to the right trains.
Sensors can monitor these switches and create signals when anything is not
functioning properly.
 Chapter 5. ITSO Railway sample overview 93

Example use case
In this example use case:

1. The sensor monitors various aspects of the switch.

2. When the sensor identifies a problem or the potential for a malfunction, it
sends a message to the maintenance system.

5.7 Alerts to maintenance workers
The railway maintenance teams must be notified of any train or railway problems
as soon as possible. This time-critical data allows the maintenance team to
provide immediate service at the point of need and to ensure the proper
person(s) is dispatched to resolve the problem.

5.7.1 Key requirements
The key business requirements are:

� Enable preventive maintenance on business-critical equipment.

� Reduce down time of equipment.

� Ensure the right (skilled) personnel are dispatched to perform the
maintenance.

� Provide the maintenance personnel with specifics on the equipment
malfunction to aid in diagnosis and resolution.

The key IT requirements are:

� Provide an extension to the existing maintenance system.

� Use existing communication channels or convenient channels to send alerts,
preferably using Sametime.

� Incorporate generalized software to ensure flexibility in service provider
selection.

5.7.2 Example application scenario
Steven, a railway maintenance man, must be immediately informed when a
switching system is in the wrong position. The message must identify the location
of the switch, so he can go to that specific location within the railway yard. The
message is sent to Steven’s device and displayed as a Sametime message.
94 Patterns: Pervasive and Rich Device Access Solutions

Example use case
In this example use case:

1. Steven receives a Sametime message about an equipment failure.

2. He reads the message and immediately notifies the dispatcher that he is on
his way.

3. He heads off to the location of the switch that is about to malfunction.

5.8 Automated on-train ticketing
There are various ways customers buy ITSO Railway tickets, such as using the
online ticket purchasing system, buying them from the ticket agents at the train
station, and buying them from the conductor on the train. The conductor needs a
mobile solution that allows him to sell tickets and accept customer credit cards.
The conductor’s mobile devices may be occasionally connected to the ticketing
system.

5.8.1 Key requirements
The key business requirements are:

� Increase customer satisfaction by using mobile devices to sell tickets and
collect customer credit card information.

� Streamline on-train ticket selling and payment collection process.

� Validate customer credit card information against the credit card black list.

The key IT requirements are:

� Integration with and extend existing ticketing application.

� Make the application easy to use and learn.

� Use tools that support the end-to-end development process and simplify
application development.

5.8.2 Example application scenario
Richard, a train conductor, walks through the train cars checking tickets and
selling tickets to anyone who does not have a ticket. Richard uses a paper-based
system to record the customer name, credit card information, and signature. With
the new system Richard will use a PDA to select the route (which then
determines the price of the ticket), collect the customer credit card information
and the credit card PIN number, and validate the credit card information over
 Chapter 5. ITSO Railway sample overview 95

wireless connection. At the end of the transaction, the mobile device will
generate a paper ticket for the customer.

Example use case
In this example use case:

1. Richard logs on to his PDA.

2. He accesses the ITSO Railways Ticket Application.

3. With the customer travel plans, he selects the departure and arrival station
and number of tickets.

4. The application displays the ticket price. Richard enters the customer credit
card information and submits the ticket transaction.

5. Occasionally the mobile device is synchronized with the server, so Richard’s
updates are processed by the Train Station Ticketing application.

5.9 Provide voice access to customers
The ITSO Railway has many calls to its timetable call center at peak periods from
mobile phone users who want to check the availability of trains because they
need to re-schedule their journeys to accommodate meeting changes, etc.
Because of the large number of call center consultants needed at the peak times
the call center costs have a significant impact even though they remain
under-utilized at less busy times of the day. ITSO Railways is keen to reduce this
cost but wants to maintain an easy-to-use alternative. In addition to automating
the current timetable information access, they want to be able to extend it in the
future using the same framework and technologies for booking and payment
transactions.

5.9.1 Key requirements
The key business requirements include:

� Easy access to railway timetable information from phones

� Effective and efficient system for use by mobile phone users

� Technology solution to provide future extensibility to additional services
including booking, payment, booking reviews, etc. using the same underlying
technology infrastructure

� Technology solution to provide extensibility for common data and interface for
use by customers on the Internet, mobile devices, and phones
96 Patterns: Pervasive and Rich Device Access Solutions

The key IT requirements are:

� Framework and infrastructure to permit current requirements and future
additions using a portal approach

� Tools for application development that are open source and standards based

5.9.2 Example application scenario
Marion has finished a meeting early and wants to know whether she should rush
to catch an early train home if available or complete some notes over a coffee.

Example use case
In this example use case:

1. Marion uses her mobile phone to connect to the ITSO Railways information
line.

2. Marion responds to the queries for departure and destination locations and
obtains a readout of available times of trains for the afternoon.

5.10 Maintain the mobile devices
Many ITSO Railways mobile workers are away from the office for long periods of
time. However, the applications and operation environments on these mobile
devices must be maintained on a continual basis. ITSO Railways needs a way to
roll out, update, maintain, and inventory software on the mobile devices while
they are in the field.

5.10.1 Key requirements
The key business requirements are:

� Ensure mobile devices have the correct levels of software.
� Inventory software on the devices.
� Update and remove software on mobile devices as needed.

The key IT requirements are:

� Provide the administrator with tools to provision software to mobile devices.

� Provide the administrator with a tool to inventory mobile devices.

� Provide the administrator with tools to remotely update the device operating
system.
 Chapter 5. ITSO Railway sample overview 97

5.10.2 Example application scenario
Steven, a system administrator, determines which software levels are to be
provisioned to the mobile devices. He selects the users and groups to receive
software updates and submits the jobs to provision the selected mobile devices.
He can monitor the progress of these jobs. As needed, Steven requests an
inventory of the devices to review the software levels on the devices.

Example use case
In this example use case:

1. Steven logs on to the mobile device management system.

2. He selects the software to be provisioned to the device.

3. He submits a job to perform the provisioning.

4. When a mobile worker connects to the enterprise, the device is checked to
see if software updates are required. If updates are required, a job executes
to send those updates to the device.

5. Once the updates are on the device, a device agent processes the software
updates.

5.11 Secure mobile device
Many of the mobile devices used by ITSO Railways mobile workers have
business-critical and business-sensitive data and applications on them.
Therefore, ITSO Railways wants to ensure the security of these devices and the
data and applications on the device, in case the device gets lost or stolen.

5.11.1 Key requirements
The key business requirements are:

� Ensure that business-critical and business-sensitive data is secure on the
mobile devices.

� Notify the server if the login is unsuccessful after X tries.

� Wipe devices that have been lost or stolen.

The key IT requirements are:

� Provide the administrator with tools to wipe lost or stolen devices.
� Provide the administrator with tools to track down lost devices.
� Automate the clearing/wiping of the device.
98 Patterns: Pervasive and Rich Device Access Solutions

5.11.2 Example application scenario
Steven, a system administrator, is notified that a device has been lost and the
user does not think she will be able to find the device. Steven will issue a request
to have the device locked and access to the enterprise network revoked. He will
then issue the user a new device.

Example use case
In this example use case:

1. Steven accesses the administration system.

2. He determines the user and device in question.

3. He submits a job to lock and wipe the device as soon as it connects to the
network.
 Chapter 5. ITSO Railway sample overview 99

100 Patterns: Pervasive and Rich Device Access Solutions

Chapter 6. Pervasive application types

The previous chapters discussed how patterns can help to define and clarify
application and middleware components and functions. The goal of this chapter
is to give a high-level overview of the different pervasive applications that can be
implemented.

Our purpose with this book is to help simplify the implementation of such an
environment. Patterns can help you to understand how any new mobile
applications and connections will fit into and affect your existing environment.

6

© Copyright IBM Corp. 2005. All rights reserved. 101

6.1 Application types
What are the types of online and offline applications? What are the scenarios
that demonstrate such pervasive application types? What are the common
design patterns for offline and online implementations of the appropriate
application types?

These are the questions we are looking to answer in this chapter.

6.1.1 Solution space
Figure 6-1 on page 103 shows the different application sets in the solution space
for pervasive applications. A pervasive application to be implemented will most
likely fall into one of the application sets:

� Standalone applications refers to the applications running on a device without
the need to connect to a server application.

� PIM and e-mail applications - This is really a specific implementation of the
general applications.

� General applications - This includes almost all of the pervasive solutions.

� Voice applications - These are specific pervasive applications where the user
uses voice, natural speech to interact with the system.

� Multimodal applications - This is a combination of voice applications and
general application solutions. The user can interact with the system using
voice and can receive the response in a visual form (for example, Web page).

� Pervasive services - There could be additional components to a pervasive
solution. These are also represented in the diagram:

– Device management - This takes care of the various device and
application management tasks on the pervasive clients.

– Device connectivity - This provides connectivity services for the pervasive
devices, including security and roaming.
102 Patterns: Pervasive and Rich Device Access Solutions

Figure 6-1 Application sets

We are going to use the application sets and services described above to
provide more details about the available options to design a pervasive
application. An application set can contain many application types. Each
application set and its application types are discussed below.

The following is a list of the application types corresponding to the application
sets:

� Standalone applications are not in the scope of this book.

� PIM and e-mail applications:

– Online and offline PIM/e-mail

� General applications:

– Online browser
– Online browser (using stored pages)
– Online and offline forms (using browser and a proxy)
– Online and offline applications including transactions
– Online instant messaging
– Online notification (shared service)
– Online location-aware application

� Voice application

– Alternative user experience (voice)

� Multimodal application

– Alternative user experience (multimodal)
 Chapter 6. Pervasive application types 103

Each application type is shown under the upcoming section, and they are
mapped to Application and Runtime patterns. You will also find a list of valid
devices for each application type.

Pervasive services are a different set of application types. These services relate
to system management and they are always supporting other application types.
The pervasive services types include:

� Device management
� Device connectivity

6.1.2 Application types mapped to Runtime patterns
The upper part of the following table represents the various devices that are
capable of running the different variations of PIM and e-mail applications. At the
bottom you can find the Application and Runtime patterns that you can apply to
the solution.

Table 6-1 PIM and e-mail applications

Devices Online PIM and e-mail Online and offline PIM
and e-mail

Windows client T R

Linux client T R

Pocket PC T R/N

Palm OS T R/N

Blackberry T R/N

Symbian T R/N

Smartphone - -

Patterns

Application and Runtime
patterns

Pervasive Device Adapter Rich Device=Store and
forward variation
104 Patterns: Pervasive and Rich Device Access Solutions

The next application set is General applications. The next table includes several
application types. The structure of the table is identical to the previous one.

Table 6-2 General application solutions

Note: The T in the table means that the solution is supported by the thin client
on the device listed on the left side (first column). The R means rich client
support. The N means native application support. The different client
application supports (thin, rich, native) can be combined.

The minus sign (-) indicates that the solution is not supported on the device.

The question marks (?) in Table 6-2 mean that there is no known solution for a
certain device, but technically it is a possible solution. There could be
third-party solutions.

Devices

O
n

lin
e

b
ro

w
se

r

O
ff

lin
e

b
ro

w
se

r
(u

si
n

g
 s

av
ed

 p
ag

es
)

O
n

lin
e

+
o

ff
lin

e
fo

rm
s*

O
n

lin
e

+
o

ff
lin

e
ap

p
lic

at
io

n
in

cl
u

d
in

g
 t

ra
n

sa
ct

io
n

al

O
n

lin
e

in
st

an
t

m
es

sa
g

in
g

O
n

lin
e

n
o

ti
fi

ca
ti

o
n

(s
h

ar
ed

 s
er

vi
ce

)

O
n

lin
e

lo
ca

ti
o

n
-a

w
ar

e
ap

p
lic

at
io

n

A
lt

er
n

at
iv

e
u

se
r

ex
p

er
ie

n
ce

(m
u

lt
i-

m
o

d
al

)

Windows client T T T/R R R R R R

Linux client T T T/R R R R R R

Pocket PC T T T/R R R R R R

Palm OS T T T/R R R R R R

Blackberry T ? T ? ? ? ? ?

Symbian T ? T ? ? ? ? ?

Smartphone T - T - - N - N

Patterns
 Chapter 6. Pervasive application types 105

Voice applications are also represented here in one column. It is a bit different
from previous tables, although it is represented the same way. On the client side,
voice applications really just require a phone for user interaction; therefore,
listing a bunch of pervasive devices does not make much sense. The reason why
these devices are still there is because some of them have either native phone
connection built in, or they are capable of running applications with VoIP support
to use voice interactions.

As shown in 3.2.9, “Composite Pervasive and Rich Device solution::Runtime
pattern” on page 48, a composite pervasive network can support any
combination of the Application and Runtime patterns shown in these tables.

Table 6-3 Voice applications

Application and
Runtime patterns

Pervasive Device Adapter Rich
Device
=Store
and
forward
variation

Rich Device=Online variation. For last
column add Voice

Devices

O
n

lin
e

b
ro

w
se

r

O
ff

lin
e

b
ro

w
se

r
(u

si
n

g
 s

av
ed

 p
ag

es
)

O
n

lin
e

+
o

ff
lin

e
fo

rm
s*

O
n

lin
e

+
o

ff
lin

e
ap

p
lic

at
io

n
in

cl
u

d
in

g
 t

ra
n

sa
ct

io
n

al

O
n

lin
e

in
st

an
t

m
es

sa
g

in
g

O
n

lin
e

n
o

ti
fi

ca
ti

o
n

(s
h

ar
ed

 s
er

vi
ce

)

O
n

lin
e

lo
ca

ti
o

n
-a

w
ar

e
ap

p
lic

at
io

n

A
lt

er
n

at
iv

e
u

se
r

ex
p

er
ie

n
ce

(m
u

lt
i-

m
o

d
al

)

Note: The online + offline forms application type can be implemented using
either a thin client solution or a rich client solution. With certain technologies
you can implement the same thin client application (browser) in both online
and offline environments.

Devices Alternative user experience (Voice)

Windows client T/R (with VoIP support)

Linux client T/R (with VoIP support)

Pocket PC T/R (with VoIP support)

Palm OS T/R (with VoIP support)
106 Patterns: Pervasive and Rich Device Access Solutions

The last table shows the Pervasive services solutions: Device management and
Device connectivity. Read the table as described before.

Table 6-4 Pervasive services

Having reviewed the options we can now map the ITSO Railway scenarios to the
appropriate application type, device type, and matching patterns.

6.1.3 Scenario implementations using various pervasive
technologies

The following two tables are two parts of the same scenario - solution mapping
table. Because of the extensive horizontal size of the table, it has been cut into
two parts for improved readability.

Blackberry ?

Symbian T/R (with VoIP support)

Smartphone T/R/N

Patterns

Application and Runtime patterns Pervasive Device Adapter=Voice
variation, Rich Device=online variation

Devices Device management Device connectivity

Windows client R R

Linux client R R

Pocket PC R R

Palm OS R R

Blackberry - -

Symbian R -

Smartphone - N

Patterns

Application patterns Rich Device=Online variation Pervasive Device Adapter,
Rich Device=Online variation

Runtime pattern Rich Device=Online variation Connectivity runtime pattern

Devices Alternative user experience (Voice)
 Chapter 6. Pervasive application types 107

The heading lists the different pervasive application types that we have defined
in the previous section. The first column is a list of scenarios (use cases) we
have chosen in this particular book. The table is a mapping between the
scenarios and application types to show which approach could be used to
implement each scenario. As you will see, there is more than one option in some
cases. In these cases the business and IT requirements can decide which
solution is the best choice for implementation. The options that we selected are
shown by the chapter number in the associated cell of the table.

Table 6-5 Scenario implementation options - 1

The following table continues the list of solutions.

Scenario

O
n

lin
e

+
o

ff
lin

e
P

IM
/e

-m
ai

l

O
n

lin
e

b
ro

w
se

r

O
ff

lin
e

b
ro

w
se

r
(u

si
n

g
 s

to
re

d
 p

ag
es

)

O
n

lin
e

+
o

ff
lin

e
fo

rm
(u

si
n

g
 b

ro
w

se
r

+
p

ro
xy

)

O
n

lin
e

+
o

ff
lin

e
ap

p
lic

at
io

n
in

cl
u

d
in

g
 t

ra
n

sa
ct

io
n

al

Inventory
management

T -
Chapter

10
R -

Chapter 11

R

Executive PIM
and e-mail

T/R/N -
Chapter 9

T

Sensor
notification

R/N (using
e-mail)

R (using
MQe)

Look-up train
schedule

T -
Chapter

10

T/N -
Chapter

10

Ticket
purchasing

R/N T T/N T/R/N R -
Chapter

13

Device
management
108 Patterns: Pervasive and Rich Device Access Solutions

Table 6-6 Scenario implementation options - 2

Connectivity
You may have noticed that the connectivity scenario is not listed on any of the
previous two tables. The reason is that connectivity can be applied to any of the
scenarios. Connectivity is an infrastructural service that comes into consideration
with networking, either online or offline operation. Remember that the offline
applications have to go online sometime to perform synchronization or other data

Scenario

O
n

lin
e

in
st

an
t

m
es

sa
g

in
g

O
n

lin
e

n
o

ti
fi

ca
ti

o
n

(s
h

ar
ed

 s
er

vi
ce

)

O
n

lin
e

lo
ca

ti
o

n
-a

w
ar

e
ap

p
lic

at
io

n

A
lt

er
n

at
iv

e
u

se
r

ex
p

er
ie

n
ce

(v
o

ic
e)

A
lt

er
n

at
iv

e
u

se
r

ex
p

er
ie

n
ce

(m
u

lt
i-

m
o

d
al

)

O
n

lin
e

d
ev

ic
e

m
an

ag
em

en
t

Inventory
management

Executive PIM
and e-mail

Sensor
notification

R (using
IM)

R -
Chapter

12

Look-up train
schedule

T/R/N T/N -
Chapter

14

R/N

Ticket
purchasing

Device
management

R -
Chapter

16

Note: T means thin client solution. R means rich client solution. N means
native client solution.

IM stands for Instant Messaging.

MQe stands for the IBM technology called MQ Everyplace.
 Chapter 6. Pervasive application types 109

exchange tasks. For more information about Device connectivity refer to
Chapter 15, “Connectivity and access” on page 359.

Content adaptation
A corner-stone technology for pervasive solutions is transcoding (as defined
before) or content adaptation (the new term). For more information about content
adaptation refer to the IBM Redbooks Mobile Applications with IBM WebSphere
Everyplace Access Design and Development, SG24-6259; and Patterns:
Pervasive Portals Patterns for e-business Series, SG24-6876.

Solutions using the content adaptation technology can be found under the online
browser application type and occasionally under the alternative user experience
(voice) application type.
110 Patterns: Pervasive and Rich Device Access Solutions

Part 2 Guidelines

Part 2
© Copyright IBM Corp. 2005. All rights reserved. 111

112 Patterns: Pervasive and Rich Device Access Solutions

Chapter 7. Technology options

To mobilize your business, you must consider which technologies are used on
the client side, on the server side, and which technologies can be used to
connect and support the two.

These include options such as what mobile device types to use, which options
there are to develop and host wireless Web applications for these devices, which
technologies can be used to access these applications from the devices, and
which services your pervasive environment will support.

As an emerging technology, pervasive computing is an area that is constantly
evolving. It is important to consider your existing infrastructure as well as new
technologies to make a best decision for your implementation.

7

© Copyright IBM Corp. 2005. All rights reserved. 113

7.1 Client-side technologies
Client-side technologies are those that can be used by your employees and
customers to access your business’s mobile applications.

7.1.1 Devices
There are many devices that can be used to access your business’s mobile
applications. It is important to consider which devices may be used to access
your content to ensure that it is rendered correctly on the devices.

Cellular telephone
Cellular telephones are becoming more common as a way for customers to
access information from your company. All major cellular telephone providers
offer connectivity to the Web via cellular telephone.

Because they are in such widespread use, cellular telephones may offer a way to
mobilize your business’s workforce without the purchase of additional devices.

Access to the Web on a cellular telephone is provided via a microbrowser. A
standard cellular phone includes voice capabilities, messaging features (SMS or
WAP push), and data functionality (you can access Internet content through a
microbrowser).

Laptop PC
With wireless Internet access becoming more common at home and on-the-go,
the wireless laptop PC is considered a mobile device.

This category includes laptops, notebooks, or portable PC browser clients that
have a wireline-connected or wireless interface to the network for Internet
access. These clients use standard TCP/IP protocols and a standard browser,
such as Netscape Navigator or Microsoft Internet Explorer. The wireless
connection is usually much slower than wireline-based network clients.

Personal Digital Assistant (PDA)
PDAs are handheld computers, usually with a wireless interface, that serve as an
organizer for personal information. PDAs often have a pen-based stylus to tap
selections on menus and to enter text. The PDA might also support handwriting
as a means to interact with the device. The unit may also include a small
on-screen keyboard that is tapped with the pen or with your thumbs.

The PDA offers the convenience of a small device with a comparatively larger
screen than the cellular telephone.
114 Patterns: Pervasive and Rich Device Access Solutions

Data is synchronized between the PDA and desktop computer via cable or
wireless transmission. We are interested in PDAs that have wireless
transmission capability and include a Web browser. The major operating
systems for PDAs are Palm OS, Symbian OS (formerly EPOC), and Windows
CE.

When developing mobile applications for certain industries, you should consider
some industry-specific ruggedized devices. They have functionality that is similar
to PDAs, but they are more robust and designed to work in hazardous
environments. Symbol and Intermec are two manufacturers specializing in these
devices.

Smartphone
This is a generic name for voice-centric mobile phones with information
capability. Smartphones attempt to combine the functionality of the PDA and of
the cellular telephone into one device.

Tablet PC
The tablet PC attempts to combine the handwriting capabilities of the PDA and
the versatility of the Laptop PC into a large screen device than can be written on
and read like a sheet of paper.

Telephone
With the increasing use of Interactive Voice Response (IVR) systems to handle
business activities such as customer service, the telephone and the cellular
telephone should each be considered as a pervasive device.

Sensors
Sensors can be connected to an enterprise network to collect data from the field.
Depending on the type of the sensor data, a signal can be transmitted into the
system for further processing.

Actuators
As opposed to sensors, actuators out on the field receive signals and data from a
system and take actions based on the input. These devices can be integral parts
of an enterprise system and can be controlled as pervasive devices.

7.1.2 Operating systems
These devices can run on a wide array of operating systems. However, in many
cases, user interaction with a mobile application will be through a Web browser
or via a Java-based application and will not be directly affected by the choice of
operating system.
 Chapter 7. Technology options 115

Linux
Linux is an open-source operating system based on UNIX. Versions used on
mobile devices are smaller versions of the full Linux operating system. It is not
currently in widespread use on pervasive devices but is experiencing growth in
this area—especially on PDAs and on smartphones.

Palm OS
The Palm OS is used with a wide range of devices, including the Palm, Sony,
and HandSpring devices. This device has built-in mobile capabilities, and works
as a mobile phone with a data connection.

Like many other operating systems on the market, the Palm OS comes in
different editions, the latest being Palm OS 5. It is important to note that some
Palm software relies on a specific version of the OS.

For more information, you can visit the Palm OS official Web site at:

http://www.palmsource.com

Symbian OS
Symbian OS is an open standard operating system for data-enabled mobile
phones. It includes a multi-tasking multithreaded core, a user interface
framework, data services enablers, application engines, and integrated PIM
functionality and wireless communications. It is used primarily in smartphones.

For more information, you can visit the Symbian Web site at:

http://www.symbian.com

Windows Mobile for Pocket PC
The PocketPC operational system is based on the Microsoft Windows CE 3.0
(WinCE) operating system. It is similar to the well-known Windows operating
system, but optimized and developed especially for PocketPC mobile devices.

For more information, you can visit the Microsoft Web site at:

http://www.microsoft.com/mobile

Windows Mobile for SmartPhone
Like PocketPC, Microsoft has a smartphone platform also based on Windows CE
V3.0. It combines voice and text communication and data applications with a
similar look and feel. Like the J2ME and BREW platforms, it can run online and
on disconnected applications.
116 Patterns: Pervasive and Rich Device Access Solutions

http://www.palmsource.com
http://www.symbian.com
http://www.microsoft.com/mobile

For more information, you can visit the Microsoft Web site at:

http://www.microsoft.com/mobile

Windows XP Tablet PC Edition
Windows XP Tablet PC Edition is a popular choice for tablet PCs. It provides the
familiarity of the Microsoft Windows operating system with the ability to interact
with the device with a stylus.

For more information, you can visit the Microsoft Web site at:

http://www.microsoft.com/windowsxp/tabletpc

7.1.3 Device Platforms/Frameworks
There are many platforms and frameworks on which mobile applications can be
built and run.

J2ME
J2ME stands for Java 2 Platform Micro Edition. It is a very small Java application
environment suitable for several segments such as a TV set-top box, mobile
phones, and PDAs. The J2ME platform is composed of standard Java APIs and
a runtime environment to handle the user interface, security, and network
protocols.

Prior to Java on the mobile device, applications for mobile devices were created
in device-specific languages. These device languages provide performance
advantages because they are tuned to the device; however, they had limited
portability, and the application components had limited reusability across devices
or applications.

J2ME allows the enterprise to create mobile applications that are easily
migratable to multiple devices and types of devices. J2ME addresses portability
issues by providing Java packages via configurations and profiles targeted at
specific device configurations. J2ME consists of a customized subset of J2SE
technology components (which will be discussed in “J2SE” on page 121), a set of
standard hardware configurations, and profiles for targeting small devices.
 Chapter 7. Technology options 117

http://www.microsoft.com/mobile
http://www.microsoft.com/windowsxp/tabletpc

Figure 7-1 J2ME configurations and profiles

J2ME has two configurations:

� Connected Limited Device (CLDC), the smaller of the two J2ME
configurations, is targeted for devices with intermittent network connectivity,
slow processors (16 to 32 bit processors), and limited available memory (as
low as 160 kilobytes).

� Connected Device (CDC), a full feature (J2ME) JVM, is much closer to the full
J2SE functionality. CDC supports devices with a minimum of 2 megabytes of
memory, including both RAM and flash or ROM available for the JVM and the
Java applications, 32-bit processors, and greater network bandwidth. The
CDC target devices include TV set-top boxes, residential gateways, in-vehicle
telematics systems, and high-end mobile devices such as personal digital
assistants (PDAs).

Any number of profiles can be made based on these two configurations. These
profiles extend the configurations and define the class libraries available for
building applications. In the above diagram, we can see the following profiles:

� Mobile Information Device (MIDP) profile for any limited capability device
such as mobile phones and low-end PDAs

� Personal Digital Assistant (PDAP) profile for mid-range to upper-end PDAs

� Point of Sale (POS) profile for embedded point of sale devices

Java Virtual Machine (J9)

Profiles

Configurations CDC CLDC

Personal

Personal Basic

Foundation

PDAP MIDP POS
118 Patterns: Pervasive and Rich Device Access Solutions

� Foundation profile for more powerful non-graphic devices

� Personal profile (extends the Foundation Profile) for more powerful devices
with GUI support

For more information, you can visit the SUN Microsystems J2ME Web site at:

http://java.sun.com/j2me

Microsoft’s .NET Compact Framework
Microsoft also provides a framework to develop applications for mobile devices
such as PDAs and smartphones. The .Net Compact Framework is a subset of
the .NET Framework. It aims to simplify the process or create and deploy
applications for mobile devices.

For more information on the .NET Compact Framework, see:

http://msdn.microsoft.com/mobility/prodtechinfo/devtools/netcf

QUALCOMM's BREW
BREW stands for Binary Runtime Environment for Wireless, and it is an
application platform execution environment for wireless devices developed by
QUALCOMM. The BREW platform is part of an end-to-end solution for wireless
applications development, device configuration, application distribution, and
billing, which will enable services providers and carriers’ customers, for example,
to download new applications over the air and pay for them.

For more information, you can visit the Qualcomm BREW official Web site at:

http://brew.qualcomm.com

OSGi
The OSGi Alliance is an industry group that defines and promotes an open
standard for the networked delivery of managed services to local networks and
devices. Open standards enable different manufacturers to adhere to the same
set of standards, which minimizes the number of products that are incompatible.
The OSGi standard complements other residential standards and is open to
most other protocols and transport and device layers.

The OSGi Service Platform Release 3 specification defines a Framework on
which applications can run. Developers can write new applications and adapt
existing applications to run on the Framework. The Framework enables
operators to deploy multiple applications on a single Java Virtual Machine.
Application developers partition applications into services and other resources.
Services and resources are packaged into bundles, which are files that serve as
 Chapter 7. Technology options 119

http://brew.qualcomm.com
http://java.sun.com/j2me
http://msdn.microsoft.com/mobility/prodtechinfo/devtools/netcf

the delivery unit for applications. These bundles have manifests with special
headers that enable you to share classes and services at the package level.

For more information on OSGi, refer to:

http://www.osgi.org

7.2 Server-side technologies
The services that the client devices connect to will reside on a server. Here we
discuss the many options available on the server side.

7.2.1 Services
The following technologies are used to host and serve content to mobile devices
and manage data exchange with mobile devices.

Application server
An application server allows devices to access and use the applications and
other backend resources managed by the application server. In a mobile
environment, an application server may host Web applications that allow devices
to access information from servlets or portlets, or it might be used to provide
mobile devices with access to services such as device management or
synchronization.

Device management
Device management allows you to distribute software to mobile devices, update
software on mobile devices, and collect inventory information such as
application, hardware, and configuration information in a centralized manner.

Notification services
Notification services allows you to deliver notifications to users based on user
preferences and subscriptions. These can be sent via a delivery channel such as
SMS, e-mail, or instant messaging. Notifications can also be configured to alert
certain groups of users to certain events. For example, server administrators can
be alerted when a database server goes down, or financial brokers can be
alerted when a stock falls below a certain price.

Synchronization
Synchronization allows the user to maintain accurate copies of data on both the
server and on her device. For instance, synchronization of e-mail ensures that
the most recent messages display on the device and synchronization of calendar
120 Patterns: Pervasive and Rich Device Access Solutions

http://www.osgi.org

information ensures that a user’s most recent appointments are viewable on both
the device and the PC. Synchronization may also extend to replicating
databases or processing message queues between the device and a server.

Transcoding/content adaptation
Transcoding (also referred to as content adaptation) allows standard
HTML-based Web content to be transformed into a size and markup language
appropriate for the type of mobile device trying to access this content.

Location Aware Services
Applications using the Location Aware Services are taking advantage of the
location of the client device. Based on the location, applications have an
additional input data to combine into the processing.

Voice services
Special “voice servers” provide voice services for the system, including:

� Automatic Speech Recognition (ASR)
� Text-to-Speech (TTS)
� Natural Language Understanding (NLU)

7.2.2 Java-based technologies
Because Java allows developers to write an application once and run it
anywhere, Java-based technologies are very significant in the area of pervasive
computing where there are many varied devices on which to run the same or
similar applications.

J2SE
Java 2 Platform Standard Edition (J2SE) is an edition of Sun’s Java platform
designed to allow applications to be written once and run anywhere. It defines
the Java Virtual Machine and core class libraries, and it provides the foundation
for building applications, browser-based applets, and other Web applications.

For more information on J2SE and the following Java-based technologies, refer
to Sun’s Web site:

http://java.sun.com

J2EE
Java 2 Platform Enterprise Edition (J2EE) is a superset of J2SE that enables the
development of robust and complex server-based enterprise applications. J2EE
 Chapter 7. Technology options 121

http://java.sun.com

provides such technology components as Enterprise JavaBeans (EJBs) and
Web application services.

Servlets
Servlets are Java-based software components that can respond to HTTP
requests with dynamically generated HTML. Servlets are more efficient than CGI
for Web request processing since they do not create a new process for each
request.

Servlets run within a Web container as defined by the J2EE Model and therefore
have access to the rich set of Java-based APIs and services.

One of the attractions of using servlets is that the API is a very accessible one for
a Java programmer to master. The specification of the J2EE 1.3 platform
requires Servlet API 2.3 for support of packaging and installation of Web
applications.

JavaServer Pages
JSPs were designed to simplify the process of creating Web pages by separating
the Web presentation from Web content. In the page construction logic of a Web
application, the response sent to the client is often a combination of template
data and dynamically generated data. In this situation, it is much easier to work
with JSPs than to do everything with servlets. The JSP acts as the View
component in the MVC model.

The chief advantage JSPs have over standard Java servlets is that they are
closer to the presentation medium. A JavaServer Page is developed as an HTML
page. Once compiled, it runs as a servlet. JSPs can contain all the HTML tags
that Web authors are familiar with. A JSP may contain fragments of Java code
that encapsulate the logic that generates the content for the page. These code
fragments may call out to beans to access reusable components and enterprise
data.

JSP technology uses XML-like tags and scriptlets written in Java programming
language to encapsulate the conditional logic that generates dynamic content for
an HTML page. In the runtime environment, JSPs are compiled into servlets
before being executed on the Web application. Output is not limited to HTML but
also includes WML, XML, cHTML, DHTML, and VoiceXML. The JSP API for
J2EE 1.3 is JSP 1.2.

JSPs are the recommended choice for implementing the view that is sent back to
the Web client. For those cases where the code required on the page is to be a
large percentage of the page, and the HTML minimal, writing a Java servlet will
make the Java code much easier to read and therefore maintain.
122 Patterns: Pervasive and Rich Device Access Solutions

JavaBeans
JavaBeans are an architecture developed by Sun Microsystems, Inc. describing
an API and a set of conventions for reusable, Java-based components. Code
written to Sun’s JavaBeans architecture is called JavaBeans or just beans.

Beans are recommended for use in conjunction with servlets and JSPs in the
following ways:

� As the client interface to the Model layer. An Interaction Controller servlet will
use this bean interface.

� As the client interface to other resources. In some cases this may be
generated for you by a tool.

� As a component that incorporates a number of property-value pairs for use by
other components or classes. For example, the JavaServer Pages
specification includes a set of tags for accessing JavaBeans properties.

Enterprise JavaBeans
Enterprise JavaBeans is Sun's trademarked term for its EJB architecture (or
component model). When writing to the EJB specification, you are developing
enterprise beans (or, if you prefer, EJBs).

Enterprise beans are distinguished from JavaBeans in that they are designed to
be installed on a server, and accessed remotely by a client. The EJB framework
provides a standard for server-side components with transactional
characteristics. The EJB developer specifies the required transactional and
security characteristics of an EJB in a deployment descriptor (this is sometimes
referred to as declarative programming). In a separate step, the EJB is then
deployed to the EJB container provided by the application server vendor of your
choice.

There are three types of Enterprise JavaBeans:

� Session beans
� Entity beans
� Message-driven beans

The J2EE 1.3 platform requires support for EJB 2.0. As a tool provider,
WebSphere Application Server V5.0 supports J2EE 1.3 and therefore supports
EJB 2.0. EJBs are packaged into EJB modules (JAR files) and then combined
with Web modules (WAR files) to form an enterprise application (EAR file). EJB
deployment requires generating EJB deployment code specific to the target
application server.
 Chapter 7. Technology options 123

Java Message Service (JMS)
Java Message Service is an API that allows developers to create Java-based
applications that can exchange data with an enterprise messaging system in a
standardized way.

JMS defines a set of common enterprise messaging concepts in order to
maximize portability of the same code base among different enterprise
messaging systems.

For more information on JMS, see Sun’s Web site:

http://java.sun.com/jms

Portlets
Portlets are reusable components that provide access to Web-based contents,
applications, and other resources. Web pages, Web Services, applications, and
syndicated content feeds can be accessed through portlets.

Companies can create their own portlets or select portlets from a catalog of
third-party portlets. Portlets are intended to be assembled into a larger portal
page, with multiple instances of the same portlet displaying different data for
each user.

From a user's perspective, a portlet is a window on a portal site that provides a
specific service or information, for example, a calendar or news feed. From an
application development perspective, portlets are pluggable modules that are
designed to run inside a portlet container of a portal server.

Portlets are coded against the portlet API. The portlet components are part of the
portal application. The portal application is deployed on the portal server.

For more information about portlets and portlets programming, you can refer to
the IBM Redbook entitled IBM WebSphere Portal V5: A Guide for Portlet
Application Development, SG24-6076.

7.3 The mobile Web
There are many technologies that relate to the area of the mobile Web. Some of
these are markup languages. Others play a role in user interaction or controlling
how data is exchanged with mobile devices.
124 Patterns: Pervasive and Rich Device Access Solutions

http://java.sun.com/jms

7.3.1 HTML
HyperText Markup Language (HTML) is a document markup language with
support for hyperlinks that is rendered by the browser. It includes tags for simple
form controls. Many e-business applications are assembled strictly using HTML.

This has the advantage that the client-side Web application can be a simple
HTML browser, enabling a less capable client to execute an e-business
application.

The HTML specification defines user interface (UI) elements for text with various
fonts and colors, lists, tables, images, and forms (text fields, buttons,
checkboxes, and radio buttons). These elements are adequate to display the
user interface for most applications. The disadvantage, however, is that these
elements have a generic look and feel, and lack customization. As a result, some
e-business application developers augment HTML with other user-interface
technologies to enhance the visual experience, subject to maintaining access by
the intended user base and compliance with company policy on Web client
technologies.

Because most Web browsers can display HTML V3.2, this is the lowest common
denominator for building the client side of an application. To ensure compatibility,
developers should be unit testing pages against a validator tool. Free tools, such
as the W3C HTML Validation Service, are available at:

http://validator.w3.org/

7.3.2 cHTML
cHTML stands for Compact HTML and is a subset of the HTML specifications
targeting small appliances such as smartphones and mobile PDAs. The cHTML
tries to bypass several hardware restrictions by providing a standard markup
language and small browser that could be executed in a constrained
environment with a small memory, low power CPU, a small display, etc.

Since the Compact HTML is based on standard HTML recommendations from
W3C, we can develop and apply software tools to adapt pure HTML to cHTML,
making Internet information available and adequately formatted to new classes
of devices and appliances. Basically, cHTML excludes JPEG images, tables,
image maps, multiple character fonts and styles, background color or images,
frames, and cascading style sheets from the HTML specification.

cHTML is the markup language of i-Mode. i-Mode is a wireless service
developed by NTT DoCoMo in Japan. It is designed to provide mobile phone
voice service, and Internet and e-mail access. For more information about
 Chapter 7. Technology options 125

http://validator.w3.org/

Compact HTML, you can read the document submitted to W3C, World Wide
Web Consortium, at:

http://www.w3.org/TR/1998/NOTE-compactHTML-19980209

7.3.3 XML
XML allows you to specify your own markup language with tags specified in a
Document Type Definition (DTD) or XML Schema. Actual content streams are
then produced that use this markup. The content streams can be transformed to
other content streams by using Extensible Stylesheet Language (XSL), which is
based on CSS.

For PC-based browsers, HTML is well established for both document content
and formatting. The leading browsers have significant investments in rendering
engines based on HTML and a Document Object Model (DOM) based on HTML
for manipulation by JavaScript.

XML seems to be evolving to a complementary role for active content within
HTML documents for the PC browser environment.

For new devices, such as WAP-enabled phones and voice clients, the data
content and formatting is being defined by new XML schema, WML for WAP
phone, and VoiceXML for voice interfaces.

For most Web application designs, you should focus your attention on the use of
XML on the server side.

7.3.4 XML Device-Independent Markup Extensions (XDIME)
XDIME is a markup language that attempts to enable developers to code an
application once and run it on any device.

7.3.5 XForms
XForms is W3C’s specification for Web forms that can be used with desktop
computers, hand-held devices, etc. The disadvantage of the HTML Web forms is
that there is no separation of purpose from presentation. XForms separates the
data and logic of a form from its presentation. Also, XForms are
device-independent.
126 Patterns: Pervasive and Rich Device Access Solutions

http://www.w3.org/TR/1998/NOTE-compactHTML-19980209

XForms uses XML for transporting the data that is displayed on the form and the
data that is submitted from the form. HTML is used for the data display. For more
information on XForms, see:

http://www.w3.org/TR/xforms

7.3.6 XHTML 1.1 (HTML 4.01)
Extended HyperText Markup Language (XHTML) is an extension to HTML 4,
which supports document types that are XML-based. It is intended to be used as
a language for XML-conforming content as well as for HTML 4-conforming user
agents.

The advantages of XHTML are as follows:

� Since XHTML documents are XML conforming, they can be viewed, edited,
and validated with standard XML tools.

� XHTML documents can be used to traverse either the HTML Document
Object Model or the XML Document Object Model.

Some issues with XHTML are:

� XHTML documents are not as easy to create as HTML documents because
XHTML is validated more strictly than HTML.

� HTML is already used so widely that it is difficult for XHTML to attract the
attention of most Web developers.

� Browser support is not usually an issue since documents can be created
using HTML-compatible XHTML that is understood by most browsers. There
are also utilities that can be used to convert HTML documents to
HTML-compatible XHTML.

� Development tool support for XHTML is also improving. The Page Designer
tool in IBM WebSphere Studio Application Developer V5.0, for example,
allows visual authoring of XHTML pages.

XHTML Basic is designed for Web clients that do not support the full set of
XHTML features. It is meant to serve as a common language and share basic
content across mobile phones, pagers, car navigation systems, vending
machines, etc.

Some of the common features found in Wireless Markup Language (WML) and
other subsets of HTML have been used as the basis for developing XHTML.

Basic:

� Basic text
� Basic forms and tables
 Chapter 7. Technology options 127

http://www.w3.org/TR/xforms

� Hyperlinks

Some HTML 4 features have been found inappropriate for non-desktop devices,
so extending and building on XHTML Basic will help to bridge that gap.

7.3.7 XSLT
Extensible Stylesheet Language Transformations (XSLT) is a W3C specification
for transforming XML documents into other documents, including other XML
documents, HTML documents, and WML documents. The XSLT is built on top of
the Extensible Stylesheet Language (XSL), a stylesheet language for XML (such
as CSS2 for HTML). Unlike CSS2, XSL is also a transformation language.

A transformation expressed in the XSLT language defines a set of rules for
transforming a source tree to a result tree, and it is expressed in the form of a
stylesheet.

7.3.8 WML
The Wireless Markup Language (WML) is based on XML and HTML 4.0 to fit
small hand-held devices. It is a tag-based language that handles formatting static
text and images, can accept data input, and can follow hyperlinks. WML also
uses WMLScript, a compact JavaScript-like language that runs in limited
memory. WML is the markup language of WAP.

The WML specification is maintained by The Open Mobile Alliance. The Open
Mobile Alliance has been established by the consolidation of the WAP Forum
and the Open Mobile Architecture Initiative, two industry-wide consortiums
concerned about the development of an open standard for the wireless industry.

For more information, you can visit The Open Mobile Alliance Web site at:

http://www.openmobilealliance.org or http://www.wapforum.org

7.3.9 SyncML DS and DM
SyncML stands for Synchronization Markup Language. It is a an open standard
protocol that comes in two flavors: One for data synchronization and one for
device management.

The goal of SyncML DS is to enable synchronization of any type of data, from
any application, on any device, and over any network. It has been designed to
cope well with the specificities of mobile phones such as low bandwidth,
unreliable connections, and high network latency.
128 Patterns: Pervasive and Rich Device Access Solutions

http://www.openmobilealliance.org
http://www.wapforum.org

SyncML DM is based on the SyncML protocol and is designed to enable the
customization, personalization, and servicing of mobile device, taking into
account the same limitations as SyncML DS does for mobile environments.

For more information, you can visit the SyncML Official Web Site at:

http://www.openmobilealliance.org/tech/affiliates/syncml/syncmlindex.ht
ml

7.3.10 VoiceXML and X+V
The Voice eXtensible Markup Language (VoiceXML) is an XML-based industry
standard language for creating voice applications, much as HTML is a language
for developing visual applications.

VoiceXML is defined and promoted by an industry forum, the VoiceXML Forum,
founded by AT&T, IBM, Lucent, and Motorola, and currently supported by more
than 570 member companies.

VoiceXML was designed to create audio dialogs that feature text-to-speech,
digitized as well as prerecorded audio, recognition of both spoken and dual-tone
multi-frequency (DTMF) key input, recording of spoken input, telephony, and
mixed-initiative conversations. Its goal is to provide voice access to Web-based
content and applications. It enables the development of voice applications via the
use of a familiar markup style and Web server-side logic to deliver applications
over telephone lines. The resulting applications allow conversational access to
Web-based data, and can also interact with existing back-end business data and
logic.

A VoiceXML application is capable of retrieving information from a Web server
and, by making use of scripts and appropriate grammars, the application can
interact with the customer through spoken words.

For more information, you can visit the VoiceXML Forum Official Web site at:

http://www.voicexml.org

X+V
X+V is an abbreviation of XHTML + VoiceXML. and it is a markup language
specification submitted to the World Wide Web Consortium (W3C) by IBM,
Motorola, and Opera Software to simplify the development of multimodal
applications.

Multi-modal access will give users of pervasive devices (smartphones, PDAs,
kiosks, set-top-boxes, etc.) a range of options for interacting with an application.
 Chapter 7. Technology options 129

http://www.voicexml.org
http://www.openmobilealliance.org/tech/affiliates/syncml/syncmlindex.html

To input information, they might use some combination of voice, keypad, stylus,
touchscreen, and the application would deliver information using a combination
of speech synthesis, text, graphics, A/V, etc.

X+V allows you to operate in a voice-only environment; in a visual-only
environment; and if you want, in a multimodal environment.

7.4 Connectivity technologies
There are also many options to connect the client devices to their server
counterparts. In a mobile environment, wireless technologies are the ones most
often considered.

7.4.1 Wireless technologies
In a mobile environment, wireless connectivity technologies are the most likely to
be used. When choosing which wireless connectivity technology, it is important
to factor speed, cost, and coverage into your decision.

Cellular
Cellular networks provide the greatest areas of coverage. There are many
different cellular technologies that allow Web access to wireless devices such as
GPRS, GSM, CDMA, and UMTS. Because this area is always changing and
evolving, it is hard to give exact specifications on cellular coverage currently
offered by wireless providers. Current speeds are near that of a 56-k modem. In
the near future, these speeds should approach near-broadband speed in
metropolitan areas.

Wireless Ethernet
Wireless Ethernet (802.11x) is the most popular technology for providing
wireless access in buildings, shops, homes, and workplaces. It is faster than
cellular, but not as fast as wired Ethernet. It is reliable and can be easily added to
an existing wired network infrastructure. Speeds range from 11mbps to 54 mbps
but can degrade the farther a user gets from a wireless access point.

Wireless Ethernet standards such as 802.16 are currently under development for
wide-scale implementations of wireless Ethernet in the form of a Metropolitan
Area Network.

More information on wireless Ethernet can be found at:

http://www.ieee802.org
130 Patterns: Pervasive and Rich Device Access Solutions

http://www.ieee802.org

Bluetooth and Infrared (IR)
Bluetooth is another wireless standard used to allow devices within relatively
close proximity to exchange data.

For more information, see the Bluetooth Web site:

http://www.bluetooth.org

Infrared uses a beam of infrared light to exchange data in the same way a
remote control is used to change a television channel. It is slower than Bluetooth,
and the devices must be positioned in direct line-of-sight from each other to
communicate.

Other
Other means to connect wirelessly to the Internet include packet radio and
satellite. These can be useful in areas that do not gave good cellular or other
wireless coverage. These technologies can be expensive.

7.4.2 Wired technologies
Below is a list of wired technologies used in today’s networks.

Plain Old Telephony Services (POTS)
Telephony services can be used to connect to IT networks, for example, modem
connection from a desktop. Even though this is an old technology, it is still a valid
and working method today.

Digital Subscriber Line (DSL), Cable
On digital networks data can be transmitted with a higher rate. DSL is a a
successor of the analog phone network, and makes a digital connection between
subscriber and provider. Cable networks are based on the digital Cable TV
networks.

Cradle
Mobile devices such as PDAs come with cradles that connect to a PC to
synchronize data. Often, this same connection can enable the device to access
other network resources and the Internet. For situations where wireless
connectivity is not an option, the cradle will provide an opportunity for the user to
synchronize data with a network server or PC.
 Chapter 7. Technology options 131

http://www.bluetooth.org
http://www.bluetooth.org

Ethernet
Some devices can be connected to a network via Ethernet in the same way that
many PC workstations are. Ethernet provides relatively inexpensive connectivity,
easy integration with an already existing wired network, and high speeds.

7.4.3 Issues with connectivity
When implementing a mobile environment, you must give due consideration for:

� Network security - Who is authorized to use your services, how are they
authenticated, and if your Data needs to be encrypted.

� Connectivity management - Will users roam between different wireless and
wired networks?

� Bandwidth - How much bandwidth will be used and how expensive will this
be?

7.5 IBM-specific pevasive-related technologies
The following technologies are IBM proprietary technologies.

7.5.1 Service Management Framework (SMF)
Service Management Framework is an implementation of the OSGi Service
Platform Release 3 specification described in “OSGi” on page 119. It is a
production-ready software management framework for network-delivered
applications.

The OSGi specification defines a set of services for application bundles to use.
Of those services, Service Management Framework implements the following:

� Configuration Admin Service - Enables an operator to set the configuration
information of deployed bundles

� Device Access - Supports automatic detection of attached and detached
hardware devices and can automatically download and start appropriate
device drivers

� HTTP Service - Provides an embedded HTTP server that is capable of
serving HTML and servlets

� Log Service - Provides a general purpose message logger for the OSGi
environment

� Package Admin Service - Enables a management bundle to provide the
policies for package sharing
132 Patterns: Pervasive and Rich Device Access Solutions

� Permission Admin Service - Enables a management bundle to administer a
bundle's permissions and provides defaults for all bundles

� Preferences Service - Provides a persistent data store for bundles

� User Admin Service - Provides minimum authentication functionality

� Start Level Service - Enables a management agent to control the relative
starting and stopping order of bundles

� URL Handlers Service Support - Enables you to dynamically register multiple
URL and content handler services, which shield bundles from Java limitations

Service Management Framework Bundle Developer does not implement the
following OSGi Release 3 specifications:

� IO Connector Service
� Wire Admin Service
� Namespace
� Jini
� UPnP
� Initial Provisioning

7.5.2 Workplace Client Technology, Micro Edition (WCTME)
Workplace Client Technology, Micro Edition (WCTME) provides developers with
an integrated development environment based on WebSphere Studio and allows
Java developers to leverage their existing skills to create mobile applications.

Workplace Client Technology, Micro Edition provides a Java runtime
environment that offers the ability to extend new and existing Web applications to
mobile devices. This platform provides a programming model, which
incorporates the following technology and services:

� Approach based on Java 2 Enterprise Edition (J2EE) open standard
programming model.

� Component-based architecture via Service Management Framework (SMF),
IBM's implementation of the Open Services Gateway Initiative (OSGi) Service
Platform Release 3 specification. The OSGi Alliance defines and promotes
this open standard for network delivery of managed services to local networks
and devices.

� IBM's J9 small footprint Java Virtual Machines (JVMs) and WebSphere
Studio Micro Environment Foundation or WebSphere Studio Custom
Environment Max and RM class libraries.

� Data storage capabilities by incorporating the IBM DB2 Everyplace and IBM
Cloudscape small footprint local databases. Java Database Connection
(JDBC) 2.0 Data Access APIs are used to access and manage the data within
 Chapter 7. Technology options 133

these databases. Also included is DB2 Everyplace's bi-directional
synchronization service, which synchronizes the data between the device and
the enterprise data store.

� SyncML Data Synchronization (DS) protocol, an XML dialect, providing an
alternative way to synchronize data between the mobile device and the
enterprise server.

� Transactional messaging service via MQ Everyplace Version 2.0 and Java
Messaging Service (JMS) for situations where the server application
architecture expects all data updates and changes as transactions. MQ
Everyplace provides a secure and dependable transport mechanism for once
and only once (single) delivery of transactions to the enterprise.

7.5.3 Extension Services for WebSphere Everyplace (ESWE)
IBM's Extension Services for WebSphere Everyplace (ESWE) provides the Java
runtime environment needed to create mobile applications and extend enterprise
applications to mobile devices.

Extension Services for WebSphere Everyplace (ESWE), currently an IBM
technology, extends the "write once, run anywhere" Java mantra from the
server-to-mobile devices. ESWE has affinity to J2EE, which means that ESWE
supports selected J2EE components and services. In particular, ESWE extends
the J2EE Web application model, Servlet 2.3, and Java Server Pages 1.2
capabilities to mobile devices.

The ESWE platform provides a component-based Java runtime environment that
incorporates Service Management Framework, and extends IBM's J2ME and
WebSphere Custom Environment offerings. WCE is a complete Java runtime
environment for embedded applications used in real-time control systems and on
various devices in closed networks. WCE should be considered for applications
where code size or runtime speed is more important than the cross-device
compliance J2ME provides.
134 Patterns: Pervasive and Rich Device Access Solutions

Chapter 8. Application development
toolkits

This chapter provides an overview of IBM’s toolkits for developing pervasive
solutions. The chapter shows how these toolkits integrate with WebSphere
Studio’s family of products and the specific tools that are provided by each
toolkit.

This chapter includes:

� The pervasive tools strategy
� The toolkits and how they relate to WebSphere Studio
� The toolkit definition and an overview of the tools that are within each toolkit

8

© Copyright IBM Corp. 2005. All rights reserved. 135

8.1 Pervasive tool strategy
The pervasive tools are charged with accomplishing these three key goals:

� Extend IBM’s application development framework to mobile workers by
providing tools to enable developers to create mobile On Demand solutions.

� Make it easy to extend existing applications to the pervasive environment and
to create new pervasive solutions.

� Provide tools that empower developers to deliver pervasive solutions.

The objectives for the tools are to:

� Support open standards based technologies.

� Support the complete application development life cycle.

� Increase the productivity of the development team building the pervasive
solution(s) by providing Rapid Application Development (RAD) support,
wizards, cheat sheets, and easy-to-use tools.

� Enable a wide variety of developers and business professionals with diverse
skills to create mobile solutions.

� Provide state-of-the-art tools and toolkits that enable developers to build
server-based, device-based, and end-to-end mobile applications.

� Support a same or similar programming model regardless of the target
runtime environment (server-based, device-based, or multi-device mobile
application models).

8.1.1 WebSphere Studio and pervasive toolkits
The WebSphere Studio product offering provides an integrated development
environment (IDE) that supports WebSphere and J2EE application development,
including Web services, Web applications, XML-based applications, and portlets.
WebSphere Studio provides tools that support the complete development life
cycle featuring an end-to-end test environment for applications that can be
created using the IDE.

As shown in Figure 8-1 on page 137, the Eclipse-powered WebSphere Studio
family provides the foundation for the pervasive toolkits. WebSphere Studio
products are built on top of Eclipse, an open extensible universal tools platform,
which is open source and managed by the eclipse.org. Eclipse enables third
parties and open source developers to create additions to the framework and
customize and integrate additional tools, utilities, APIs, and plug-ins to meet their
needs.
136 Patterns: Pervasive and Rich Device Access Solutions

Figure 8-1 WebSphere Studio family and product-specific toolkits

Figure 8-1 shows the various WebSphere (pervasive) toolkits built on top of
WebSphere Studio products. The pervasive toolkits are:

� Portal Toolkit, which provides an IDE for creating a portal and portlets. The
IDE includes capabilities to create, test, debug, and deploy individual portlets
and Web content.

� Everyplace Toolkit, which provides tools to enable developers to build a
variety of mobile applications (both the server and device-based
applications).

� Multimodal Toolkit, which provides tools to create XHTML combined with
Voice XML (X+V) applications and speech-related tools.

� Voice Toolkit, which provides tools to create, debug, test and deploy voice
(Voice XML) based applications.

Other IBM products, such as Tivoli, Lotus, DB2, and Rational provide
development tools and toolkits based on the WebSphere Studio’s offering, as
shown in Figure 8-1.

WebSphere Studio

eclipse Software Platform

3rd Party &
Open Source

WebSphere

To
ol

s,
 U

t il
iti

es
AP

Is
, P

lu
g-

i n
s

Partner Tools

Po
rta

l T
oo

lk
it

Ev
er

yp
la

ce
 T

oo
lk

it

Vo
ic

e
To

ol
ki

t

M
on

ito
rin

g
W

or
kb

en
ch

D
om

in
o

To
ol

ki
t

D
at

ab
as

e
To

ol
s

XD
E

D
es

ig
n

To
ol

s

Tivoli Lotus DB2 Rational
 Chapter 8. Application development toolkits 137

8.2 Everyplace Toolkit
The Everyplace Toolkit provides development tools for developers creating a
variety of pervasive applications. The Everyplace Toolkit plugs into either
WebSphere Studio Site Developer or WebSphere Studio Application Developer.

The Everyplace Toolkit supports an end-to-end development experience. It
consists of tools that support server application development, device applications
development, and a variety of examples showcasing services within WebSphere
Everyplace Access, WebSphere Everyplace Mobile Portal, and WebSphere
Client Technology, Micro Environment. Figure 8-2 shows the various tools and
examples provided in the Everyplace Toolkit.

Figure 8-2 Everyplace Toolkit

The Everyplace Toolkit includes the Portal Toolkit, which provides tools to create,
test, debug, and deploy portlets. The Everyplace Toolkit has tools to aid in
server-based application development, such as:

� Java Portlet Wizard - A wizard that creates a mobile portlet based on the
developer answers to a few questions. The portlet applications can be
debugged using the WebSphere Studio Unit Test Environment. Completed

Micro Environment Tools
Tools for developing Enterprise
Applications that run on the
Extension Services Platform
Tools for developing Enterprise
Applications that run on MIDP 2.0

Examples
DB2/E Application
INS Application
LAS Application
Extension Services
Order Entry Application
XDIME Based Portlet
Application

Java Portlet Wizard
ERP/CRM Portlet Wizard
DB2 Portlet Wizard
Multi-device Authoring Tools
WML Visual Editor
HTML/XHTML Visual Editor
Reusable Forms Wizard
PDA/Javascript Forms Tools
Multimodal Application Tools
XDime Development Tools
(WebSphere Everyplace Mobile Portal)

 End to End
Application Tools

Server Application Tools Device Application Tools
138 Patterns: Pervasive and Rich Device Access Solutions

applications are easily deployed to production servers from WebSphere
Studio.

� ERP/CRM Portlet Wizard - Creates mobile portlet applications that extend
ERP or CRM application access from PDA class mobile devices.

� DB2 Portlet Wizard - Creates DB2-based mobile portlet applications that
access DB2 tables and display information in the designated report format.

� Multi-device Authoring Tool - Visually develop portal and Web applications
and adapt those applications for multiple mobile devices. It supports
device-specific application flows, and custom device formatting or branding
may be applied to the applications. It provides a very simple process for
specifying new devices for support. The application is generated at design
time for maximum runtime performance. It includes a rich set of device
profiles allowing generation for all popular PDAs, cell phones, and other
hand-held devices. The tool is shown in Figure 8-3 on page 140.

� WML Visual Editor - Supports WYSIWYG development of WML-based
applications.

� HTML/XHTML Visual Editor - Supports WYSIWYG development of HTML
and/or XHTML-based applications.

� Reusable Forms Wizard - A wizard used to quickly develop forms-based
applications using the quick start or template-based approach.

� PDA/Javascript Forms Tool - A tool used to create forms in either PDA
markup or Java script.

� Multimodal Tools - Tools to create XHTML and Voice XML (X+V)-based
applications.

� XDIME Development Tools (for WebSphere Everyplace Mobile Portal) -
Tools to create applications that can be dynamically tuned to the target
device.
 Chapter 8. Application development toolkits 139

Figure 8-3 Multi Device Authoring Tool

The Everyplace Toolkit has tools to aid in device-based application development,
that rely on the WebSphere Studio Device Developer and tools that support
Workplace Client Technology, Micro Edition. These tools support developing
applications that run on the Extension Services Platform or the MIDP 2.0 runtime
environment.

The Everyplace Toolkit provides a variety of examples the developer can
leverage in their application development. The examples support these services:

� DB2 Everyplace
� Intelligent Notification Service (INS)
� Location Aware Service (LAS)
� Extension Services Order Entry (a device-based example)
� XDIME based Portlet (for WebSphere Everyplace Mobile Portal)

For more details on the Everyplace Toolkit go to:

http://www-306.ibm.com/software/pervasive/everyplace_toolkit/
140 Patterns: Pervasive and Rich Device Access Solutions

http://www-306.ibm.com/software/pervasive/everyplace_toolkit/

8.3 Multimodal Toolkit for WebSphere Studio
The Multimodal Toolkit for WebSphere Studio is an IDE that plugs into
WebSphere Studio. It uses the XHTML + VoiceXML (X+V) proposed standard
and Embedded ViaVoice speech recognition and speech synthesis to enable
both visual and voice access to Web applications. It contains these tools:

� Multimodal X+V Editor - For creating and editing XHTML and VoiceXML
within the same application.

� Grammar Editor - A text editor that provides syntax checking based on
Speech Recognition Grammar Specification (SRGS) standards. It provides
the ability to specify a user-provided Document Type Definition (DTD) used in
content assist and validation and provides an ‘Unknown Pronunciation’ view
to show those words that are not recognized within the grammar. Also, It
provides the ability to generate SRGS grammars for VoiceXML applications,
provides conversion capability from other grammars to SRGS and allows you
to customize grammar compilation options. The graphical grammar test tools
work with compiled grammar to provide debug assistance.

� Pronunciation Builder - A generator to create pronunciations from keyboard
input, microphone input, or audio files builder. It includes a pop-up to assist in
generating pronunciations based on phonemes defined by the International
Phonetic Association. It offers multiple choices for default pronunciation
generated using the recognition and Text to Speech (TTS) engines. It
generates pronunciation files for recognition and TTS engines (exception
dictionaries) and provides audio assistance to hear the generated
pronunciation and tuning prior to application testing.

� Audio recorder - Allows for the creation of audio files from microphone input
and provides a means to play a previously recorded audio file.

� Multimodal Browser Launcher - A tool that launches the browser used to test
multimodal applications.

� Application Deployment capabilities - Extends WebSphere Studio’s
deployment tools to publish a multimodal application.

� Reusable Dialog Components - Pre-written X+V building blocks of code that
provide common functions for use in application development.

For more details on the Multimodal go to:

http://www-128.ibm.com/developerworks/subscription/descfiles/mmtk4122.h
tm
 Chapter 8. Application development toolkits 141

http://www-128.ibm.com/developerworks/subscription/descfiles/mmtk4122.htm
http://www-128.ibm.com/developerworks/subscription/descfiles/mmtk4122.htm

8.4 Voice Toolkit for WebSphere Studio
The Voice Toolkit for WebSphere Studio is an IDE that plugs into WebSphere
Studio. It contains these tools:

� Call Flow Builder - A graphical tool used to visually compose speech
applications. It provides a drag-and-drop means of building the application
from a palette of common speech dialog components. It includes support for
call flow simulation to test the call design and anticipated dialogs. The tool
facilitates the creation of a visual application flow, as well as the creation of
associated dialog scripts, prompts, and audio files. It generates
standards-based VoiceXML for deployment, and allows for text or recording
as input to prompts. This tool is shown in Figure 8-4 on page 144.

� CCXML Editor - A text editor that provides syntax checking of call control. It
provides content assist through pop-ups with valid CCXML elements and
attributes. It assists with code development through color coding the CCXML
elements. It supports code formatting and provides the ability to specify a
user-provided DTD for use in content assist and validation.

� VoiceXML Editor - A text editor that provides syntax checking based on
VoiceXML 2.0 standards. It provides content assist through pop-ups with valid
VoiceXML elements and attributes. It provides a conversion capability from
VoiceXML 1.0 to 2.0 and source code formatting with color coding of
VoiceXML elements. It provides the ability to specify a user-provided DTD
used in content assist and validation. It has an integrated VoiceXML simulator
to test and debug your code. It can verify pronunciations for unknown words
and creates custom pronunciations. It launches the grammar editor to define
application grammars or the RDC Wizard to import reusable code or the
audio recorder to record and play audio files.

� Reusable Dialog Components (RDC) - Pre-written VoiceXML building blocks
of code that provide common functions for use in application development.

� RDC Wizard - A wizard allowing the user to select and customize Reusable
Dialog Components (RDC). This fully integrates with the VoiceXML Editor.

� Pronunciation Builder - A generator to create pronunciations from keyboard
input, microphone input, or audio files builder. It includes a pop-up to assist in
generating pronunciations based on phonemes defined by the International
Phonetic Association. It offers multiple choices for default pronunciation
generated using the recognition and Text to Speech (TTS) engines. It
generates pronunciation files for recognition and TTS engines (exception
dictionaries), and provides audio assistance to hear the generated
pronunciation and tuning prior to application testing.

� Grammar Editor - A text editor that provides syntax checking based on
Speech Recognition Grammar Specification (SRGS) standards. It provides
the ability to specify a user-provided Document Type Definition (DTD) used in
142 Patterns: Pervasive and Rich Device Access Solutions

content assist and validation, and provides an ‘Unknown Pronunciation’ view
to show those words that are not recognized with the grammar. Also, It
provides the ability to generate SRGS grammars for VoiceXML applications,
provides conversion capability from other grammars to SRGS and can allow
you to customize grammar compilation options. The graphical grammar test
tools work with compiled grammar to provide debug assistance.

� Voice Portlet tools - Adds a Voice portlet perspective that brings the portlet
and the voice application creation together. It provides creation and validation
of fragment VoiceXML portlet content. To aid in problem determination, log
viewers are available to show what occurs when the voice portlet is running.
Portlet wizard creates the framework for a voice portlet and provides local test
and debug support that mirrors the WebSphere Voice Application Access
environment.

� Audio recorder - Allows for the creation of audio files from microphone input
and provides a means to play a previously recorded audio file.

� Analysis Tools - Provides the ability to examine recognition log files for call
analysis and the ability to verify audio quality of audio files.

� National Language Understanding Tools - Provides the ability to train an NLU
application to understand free-form user interactions, using an integrated,
database-driven environment. It includes a testing environment for trying out
the NLU statistical models using a keyboard or microphone.

� Lexicon Editor - A development tool for Lexicon markup, for purposes of
creation and modification of pronunciation files. This editor provides a set of
functions similar to the VoiceXML editor except that it is based on proposed
Lexicon standards.
 Chapter 8. Application development toolkits 143

Figure 8-4 Call Flow Builder

For more details on the Voice Toolkit for WebSphere Studio go to:

http://www-128.ibm.com/developerworks/subscription/descfiles/vtws51wx.h
tm

8.5 WebSphere Studio Device Developer
WebSphere Studio Device Developer, an integrated development environment,
is used to develop, test, debug, and deploy standalone Java applications that run
on pervasive devices. For creating embedded applications WebSphere Studio
Device Developer can be used alone or as a plug-in to either WebSphere Studio
Site Developer or WebSphere Studio Application Developer. In conjunction with
144 Patterns: Pervasive and Rich Device Access Solutions

http://www-128.ibm.com/developerworks/subscription/descfiles/vtws51wx.htm

WebSphere Studio, WebSphere Studio Device Developer can be used to create
Web applications targeting pervasive devices.

WebSphere Studio Device Developer includes various tools:

� MicroAnalyzer - Gathers dynamic application runtime information for analysis
and review, which helps pinpoint problems in the code and areas in the code
where optimization is needed.

� SmartLinker - Helps to tune the code and removes unnecessary objecting,
making the application as small as possible before it is deployed to devices.

� Test support for multiple devices and emulators.

� Just-in-time and ahead-of-time compilation - Technology that speeds up
applications in the runtime environment.

� Web Services Toolkit for Mobile Devices - Both development tools for
creating Web services and a Web Services runtime simulation environment.
This toolkit supports development of bundle applications and services that
consume and publish Web Services.

8.5.1 SMF Bundle Development Kit
SMF Bundle Development Kit Version 5.7 is used to develop, test, and deploy
OSGi bundles. This toolkit provides a runtime and tools to develop applications
and services that run on IBM’s implementation of the OSGi framework, Service
Management Framework (SMF). The SMF Bundle Development Kit adds the
SMF perspective to WebSphere Studio. The SMF perspective contains wizards,
views, and editors that collectively provide an SMF bundle developer with the
tools needed to perform the essential tasks, such as:

� Identifying a bundle package and service imports and exports

� Constructing the OSGi manifest to include package and service imports and
exports

� Tagging the bundle with device characteristics that enable the SMF Bundle
Server to differentiate target devices

� Submitting bundles to the SMF Bundle Server for testing

� Connecting to any number of SMF Bundle Servers to view the contents of the
server's repository

� Launching an SMF runtime from the IDE

� Launching an SMF Bundle Server from the IDE

� Connecting and managing an existing SMF runtime located anywhere on the
network
 Chapter 8. Application development toolkits 145

8.5.2 Application Tools for Extension Services
The Application Tools for Extension Services V5.7 extends existing WebSphere
Studio tools enabling you to develop, test, and deploy Web applications targeting
pervasive devices. Figure 8-5 shows the Extension Services Web application
development with WebSphere Studio, and Figure 8-6 on page 147 shows
Extension Services test environment.

The Platform Builder tool allows you to create multiple platform projects that
target different device configurations or contexts.

Figure 8-5 Extension Services Web application development
146 Patterns: Pervasive and Rich Device Access Solutions

Figure 8-6 Extension Services testing

For more details on the WebSphere Studio Device Developer, the SMF Bundle
Development Kit, and Application Tools for Extension Services go to:

http://www.ibm.com/software/pervasive/products/wsdd/index.shtml
 Chapter 8. Application development toolkits 147

http://www.ibm.com/software/pervasive/products/wsdd/index.shtml

148 Patterns: Pervasive and Rich Device Access Solutions

Part 3 Scenario
implementations

Part 3
© Copyright IBM Corp. 2005. All rights reserved. 149

150 Patterns: Pervasive and Rich Device Access Solutions

Chapter 9. PIM and e-mail
synchronization

The executive PIM and e-mail support scenario describes the architectural
approach to synchronize Personal Information Management (PIM) and e-mail
data from servers to mobile devices. Starting from the business case of ITSO
Railways, as described in Chapter 5, “ITSO Railway sample overview” on
page 87, example use cases are created. Based on these examples, use cases
and the Pervasive runtime patterns from Chapter 3, “Runtime pattern” on
page 35, an architectural overview diagram and a component model are
developed. Furthermore, necessary considerations, administration steps, and
the final setup of the PIM and e-mail synchronization are documented.

9

© Copyright IBM Corp. 2005. All rights reserved. 151

9.1 Overview
This chapter is a summary of requirements that are needed to support PIM and
e-mail synchronization on mobile devices in the ITSO Railway’s scenario. It is an
implementation based on the following Runtime pattern.

Figure 9-1 Runtime pattern for the PIM and e-mail scneario

The Product mapping for the Runtime pattern we use for this book is found in the
following diagram.

ISP Gateway
(Pervasive
services)

User

Outside World
Demilitarized Zone

(DMZ) Internal Network

Client

Data servicesData services
Pervasive

client
services

Pr
ot

oc
ol

 F
ire

wa
ll

D
om

ai
n

Fi
re

wa
ll

Presentation/
Application Application

store and forward

Rich Device=Store and forward application pattern

Personalization
Server

Directory
and Security

Services

Database

Existing data
and

Applications
Application

Server
Presentation

Server

Collaboration
server

Pervasive
extension
services

Web
server

redirector
152 Patterns: Pervasive and Rich Device Access Solutions

Figure 9-2 Rich Device=Store and forward::Runtime mapping=PIM and e-mail, Windows

9.1.1 Customer requirements
The ITSO Railway company example was created to explain general approaches
for mobilizing applications. Examples for customer requirements are described
and listed in Chapter 5, “ITSO Railway sample overview” on page 87.

The following business context was identified for the PIM and e-mail
synchronization access:

� Currently, ITSO Railway executives need to access their PIM and e-mail data
while traveling. They must be able to maintain a single copy of their e-mail
and be assured that the PIM updates will be posted to their office PIM
application server.

� The current system should extend the access of mobile devices such as
PDAs or cell phones without interference with existing PIM and e-mail
services.

� The following chapters list the captured functional and non-functional
requirements to define the baseline according to which the business system
must be designed. A sample use case model with the most important use
cases is also created.

The next figure represents the business functions and actors that are related to
PIM and e-mail synchronization process. The picture also defines the connectors
that are used to link the individual symbols together. The picture provides a

ISP G ateway
(Pervasive
serv ices)

User

Outside World
Demilitarized Zone

(DM Z) Internal Network

Client

Data servicesData services

Personalization
Server

Directory
and Security

Services

Pervasive
extension
serv ices

Pervasive
client

serv ices

Collaboration
ServerCollaboration

Server

Pr
ot

oc
ol

 F
ire

w
al

l

Application
Server

Presentation
Server

D
om

ai
n

Fi
re

w
al

l

Pervasive
Extension
serv ices

W indows M obile 2003
•Native Inbox
•Native Calendar
•Native To-Do
•Native Contacts

•Everyplace Client for
Pocket PC:
- SyncM L 1.1 Client

W indows 2000 + SP4
•IBM W ebSphere Application
Server V5.0 HTTP Plug-in
•IBM HTTP Server V1.3.26

W indows 2000 + SP4
•W ebSphere Everyplace Access V5.0
*Adm inistration Portlets for Synchronization

W indows 2000 + SP4
•W ebSphere Everyplace Access V5.0
- Synchronization Server: SyncM L V1.1.1

W indows 2000 + SP4
•Dom ino Server 6.5.1

W indows 2000 + SP4
•W ebSphere Portal Server V5.0.2.1
•Dom ino Server 6.5.1
•IBM W ebSphere Application Server
Enterprise V5.0.2.3

W eb
serv er

redirector
 Chapter 9. PIM and e-mail synchronization 153

comprehensive way of representing key aspects of the proposed solution and
gives a foundation for identifying and applying the components that are required
to implement the ITSO Railway PIM and e-mail support to executives.

Figure 9-3 ITSO Railway PIM and e-mail example business context: Business, users, and connectors

9.1.2 Functional requirements and use case model
The functional requirements of the ITSO Railway PIM and e-mail support
example are extracted from the customer requirements. They provide the main
input for the use case model. The use case model work product is used to
describe the functional requirements of the system under development. The
model uses graphical symbols and text to specify how users in specific roles will
use the system (that is, use cases). The textual descriptions describing the use
cases are from a user's point of view; they do not describe how the system works
internally or its internal structure or mechanisms.

Actor names and descriptions; use case numbers, names, business events, and
overviews; and communication associations between the actors and the use
cases provide an overview of the functional requirements. The other constructs
of the model document the expected usage, user interactions, and behaviors of
the system in different styles and depth.
154 Patterns: Pervasive and Rich Device Access Solutions

We simplify the use case model for the ITSO Railway PIM and e-mail support
example and reduce the use case description to the following constructs:

� Actors (name, description, status, superclass, subclass, and associations)

� Use cases (number, subject area, business event, name, overview,
preconditions, description, associations, inputs, outputs, traceable to,
usability index, and notes)

� Communication Association diagram

The presented project approach for the ITSO Railway PIM and e-mail support
example is mainly based on the IBM Global Services Method recommendation.

Actors
The following actors are interested in using this new mobile-enabled PIM and
e-mail support:

� Executive
� Administrator
� Internal employee

Figure 9-4 ITSO Railway PIM and e-mail support - Use case actors

The executive is the main actor in this example. He must have the ability to
access PIM and e-mail information from a PDA. He also must be able to maintain
a single copy of his e-mail and PIM data and synchronize that data with his office
PIM application server.

The Administrator is a general system administrator who is responsible for the
deployment, maintenance, and management of the synchronization and existing
PIM and e-mail services. One of his responsibilities is that he also maintains the
 Chapter 9. PIM and e-mail synchronization 155

user and device accounts that are required for the synchronization and existing
mail services.

The internal employee is a actor who can use the existing mail services inside
the ITSO Railway network. This actor and its services are not directly related to
the mobile device services. The only requirement is that these actors must have
continuous access to their e-mail databases even without a mobile connection.
The actor could be any ITSO Railway employee, even the executive when he
works in his office.

The following tables describe the actors of the ITSO Railway PIM and e-mail
support example (see Table 9-1 and Table 9-2 and Table 9-3 on page 157).

Table 9-1 Use case actor executive

Table 9-2 Use case actor administrator

Actors name

Brief description

Executive

The ITSO Railway executive who needs to have access to his
PIM and e-mail data whenever and wherever he is through the
PDA. The data must be synchronized towards the existing office
PIM and e-mail application.

Status Primary.

Relationship

Inheritance Subclass: Administrator, internal employer.

Superclass: None.

Association to use
cases

Start application, create a new memo and/or entry and/or item,
submit memo and/or entry and/or item, synchronize inbox
and/or calendar and/or to-do.

Actors name

Brief description

Administrator

The administrator for the synchronization of PIM and e-mail
services. Maintains the system, deploys, and makes it available
for the PDA devices and users.

Status Secondary.

Relationship

Inheritance Subclass: None.

Superclass: Executive and internal employee.
156 Patterns: Pervasive and Rich Device Access Solutions

Table 9-3 Use case actor internal ITSO employer

Use cases
Use cases describe functional requirements. They are used as input for the
system and application design. Furthermore, use cases show the key
functionality for the solution delivered to the customer. The final solution test runs
utilize the use cases that the customer and the system provider agreed to at
project start.

The following use cases were considered in the ITSO Railway PIM and e-mail
synchronization support:

1. Start Application.
2. Create and submit new memo and/or entry and/or item.
3. Synchronize inbox and/or calendar and/or to-do.
4. Maintain accesses and services.

The following tables describe these use cases (see IBM Global Services
Method).

Association to use
cases

Maintain accesses and services.

Actors name

Brief description

Internal ITSO employee

The internal employee can use his PIM and e-mail applications
online through the corporate network.

Status Secondary.

Relationship

Inheritance Subclass: Administrator, executive.

Superclass: None.

Association to use
cases

Use PIM and e-mail services online inside the corporate network
(same as executive, but online).
 Chapter 9. PIM and e-mail synchronization 157

Table 9-4 Use case 1: Start application

Use case #1

Subject area

Start application

Data input

Business event Executive starts his working day, logs into the PDA, and starts
to read his memos, entrie,s and tasks.

Actors Executive.

Use case overview Executive starts the native inbox, calendar, and to-do’s
applications on the PDA, which is used to keep the executives
up-to-date. Executive gets requests from his superior to create
reports for them.

Preconditions - PDA is fully charged,
- Authentication was successful,
- E-mail and PIM data was synchronized,

Termination
outcome

Condition effecting termination outcome

1) PIM and e-mail
data loaded
properly

- PDA fully charged.
- Authentication successful.
- Mobile connection was enabled.
- PIM and e-mail data was synchronized successfully.

2) PIM and e-mail
data not loaded
properly

- PDA cannot be switched on.
- Authentication was not successful.
- PIM and e-mail data was not synchronized.

Use case
description

ITSO Railway executive starts his work day and logs into the
PDA, which is fully charged and synchronized during the night.
Executive switches on the PDA and authenticates himself. He
opens the e-mail and PIM applications and reviews the existing
items and tasks for today.

Use case
association

- Used by create new memo and/or entry and/or item use case.
- Needs the Submit memo and/or entry and/or item and Sync
inbox and/or calendar and/or to-do use case.

Inputs summary - Authentication data.

Output summary

Usability index

Use case notes Use case provides the security features for this application and
it is tightly related for the successful synchronization.
158 Patterns: Pervasive and Rich Device Access Solutions

Table 9-5 Use case 2: Create and submit memo and/or entry and/or item

Use case #2

Subject area

Submit memo and/or entry and/or item

Data input

Business event Executive updates the status and adds an item.

Actors Executive.

Use case overview Executive creates the reports based on his superior’s requests
and tracks these requests using to-do lists. After he has creates
those requests he can submit and store the data.

Preconditions Start PIM and e-mail applications on PDA.

Termination
outcome

Condition effecting termination outcome

1) Validation
successful

- Data were entered in the correct format. The validation function
returns successful when the SUBMIT button is pressed.
- The submit button is pressed and the data is locally stored for
further synchronization event purposes.

2) Validation
unsuccessful

- Data were entered in the wrong format. The validation function
returns a failure when the button SUBMIT is pressed.
- Data cannot be stored.

Use case
description

Executive creates a report based on his superior’s requests using
the device’s native e-mail application. To keep track of these
requests, he uses the to-do list PIM application. If there is any
reason to create a new calendar entry to arrange a meeting, he
could create that as well. When the executive has finalized
responses, updated his to-do lists, and created calendar entries,
he could submit those forms. Forms and data are stored in a local
database until the next synchronization.

Use case
association

- Used by Create and Submit new memo and/or entry and/or item
use case.
- Needs the Start Application use case.

Inputs summary Memo will contain the following fields: From, To, Subject, Body.
To-do will contain the following fields: Subject, When, Priority,
Status, Description, Category.
Calendar entry will contain the following fields: Type, Subject,
Chair, When to start, When to end, Where, Invites, Category,
Description.

Output summary -Responses to executive’s superiors.
-New calendar entries.
-Updated to-do list.
 Chapter 9. PIM and e-mail synchronization 159

Table 9-6 Use case 3: Synchronize inbox, calendar, and to-do

Usability index This is the most important use case for the end user (executive)
point of view.

Use case notes Use case is a base for the synchronize inbox, calendar, and to-do
use case.

Use case 3#

Subject area

Synchronize inbox, calendar, and to-do

Data input

Business event Executive sends out and synchronizes his PDA with the office
PIM and e-mail applications.

Actors Executive.

Use case overview Executive starts the synchronization client and sends out the
stored responses, calendar events, and to-do list updates.

Preconditions Authentication was successful.

Termination
outcome

Condition effecting termination outcome

1) PIM and e-mail
synchronized

- Authentication was successful.
- Connection is established.
- The data was exchanged between the client and server.
- PIM and e-mail data were successfully synchronized.

2) PIM and e-mail not
synchronized

- Authentication was not successful.
- Connection is not available or connection is unstable.
- Data was not entered on forms successfully (that is, used
some special characters).
- Server could not synchronize the data in a reasonable
amount of time.

Use case description Executive synchronizes his PDA at certain times during his
working day to sent and to receive the latest responses and
updates.

Use case association - Used by Start Application use case.
- Needs the Create and Submit new memo and/or entry and/or
item use case for synchronization to make sense.

Inputs summary Synchronize the stored local data and receive the latest
updates from the office PIM and e-mail application.

Output summary Send out the calendar entries and responses to his superiors.
160 Patterns: Pervasive and Rich Device Access Solutions

Table 9-7 Use case 4: Maintain accesses and PIM and e-mail services

Usability Index Without this use case the executive could not update and
maintain his personal PIM and e-mail data as up to date on the
PDA.

Use case notes Use case relies on a robust, scalable middle ware for PIM and
e-mail synchronization.

Use case 4#

Subject area

Maintain accesses and PIM and e-mail services

System maintenance, user administration

Business event It is possible to serve PIM and e-mail accesses for the PDA
devices. Executives are able to keep their office PIM and
e-mail content up to date whenever and wherever they are.

Actors Administrator.

Use case overview Administrator deploys mobile application for ITSO Railway
executives and makes available for them to access their
personal PIM and e-mail content.

Preconditions -Mobile connections are available.
-Devices are customized and able to serve PIM and e-mail
synchronization.
-PDAs, PIM, and e-mail users and their access rights are
defined.

Termination
outcome

Condition effecting termination outcome

1) PIM and e-mail
synchronization
successfully
deployed and user
assigned

- Client side contains the synchronization services.
- Authentication successful.
- Application was installed successfully.
- User access rights are assigned to executive members.

2) PIM and e-mail
synchronization not
deployed and is not
available to users.

- Authentication was not successful.
- Application could not be installed.
- Device does not support such synchronization services.
- User access rights have not been assigned to delivery staff
members.

Use case description Administrator logs on to administration server, configures the
synchronization services, and customizes the users profiles.
Administrator assigns user access rights to be able to use PIM
and e-mail synchronization services.

Use case association This use case is a precondition for all other use cases.
 Chapter 9. PIM and e-mail synchronization 161

Use case communication-association diagram
Use cases also describe the communication style. This communication is
modeled as a communication-association, as shown in Figure 9-5 on page 163.
The direction of the arrow shows the direction in which the communication is
initiated. In addition, Figure 9-5 on page 163 includes the application workflow for
the executive as well as the relationship between the use cases.

For example, the executive starts the native PDA PIM and e-mail applications to
read his e-mails and reply to those e-mails. The executive also maintains his
personal to-do lists in order to keep track of those entries. During the day after
certain periods of time, he synchronizes the locally stored data towards the office
PIM, e-mail applications, and databases.

The administrator’s workflow and relationship between use cases is also
described in Figure 9-5 on page 163. The administrator starts the user access
management application and gives the proper rights for the executives. Without
those rights, the executives cannot use the PIM and e-mail synchronization
services.

Inputs summary Existing PIM and e-mail services must be in place.
Synchronization servers must be able to connect to the
existing PIM and e-mail services.

Output summary

Usability index PIM and e-mail synchronization service will not be accessible
for ITSO Railway executives if this use case is not successful.

Use case notes
162 Patterns: Pervasive and Rich Device Access Solutions

Figure 9-5 Use case communication-association diagram for PIM and e-mail support

9.1.3 Non-functional requirements
This section lists non-functional requirements that apply mostly to applications on
mobile devices.

The non-functional requirements for a business system address those aspects of
the system that do not directly affect the functionality of the system as seen by
the users. Nevertheless, they can have a profound effect on how that business
system is accepted by both the users and the people responsible for supporting
that system.

The non-functional aspects of a business system cover a broad range of themes.
The major non-functional themes identified by the AED Technical Council are
listed below:

� Performance
� Scalability
 Chapter 9. PIM and e-mail synchronization 163

� Availability (including recoverability ability and reliability)
� Maintainability (including Flexibility and portability)
� Security
� Manageability
� Environmental (including safety)
� System usability
� Data integrity (including currency, locality of updating, and data retention)

Generally, all the requirements of the system to be delivered must be understood
in each of the listed areas. They are presented in a way that helps to design,
develop, and manage the operational model. The operational model defines the
involved computers, networks, and other platforms on which the application will
execute and by which it is managed. The non-functional requirements also feed
into the design of technical and application components. For example, service
level requirements may imply component performance requirements.

In our simple ITSO Railway PIM and e-mail support example we are looking at
these non-functional requirements from a more generalized view. Many of those
are addressed already through the choice of WebSphere Everyplace Access as
the middleware for our PIM and e-mail support example. Mainly the WebSphere
Portal Server running on WebSphere Application Server covers scalability,
availability, security, and data integrity.

The non-functional requirements we are concentrating on in our example are not
all inclusive. From our perspective, we focused on most important ones.

Performance
Performance is considered when the PIM and e-mail synchronization capability
is used. When the PDA’s native PIM and e-mail applications are used without a
back-end connection, the performance of the back-end system does not
influence the performance experienced by the user. System performance will
only be noticed during the synchronization process when PIM and e-mail data is
sent back and forth with the office PIM and e-mail applications and client PIM
and e-mail applications.

The following response times of the application and system are required:

� Frequency of usage/data complexity:

– High frequency (10–20 times/per day) / 30 sec
– Low frequency (1–10 times/per day) / 60 sec

Availability
Availability is frequently an important Service Level Requirement. The table
below lists the specification of the desired availability. Availability requirements
164 Patterns: Pervasive and Rich Device Access Solutions

typically vary by use case and component; each row represents a collection of
use cases grouped by common availability requirements.

Table 9-8 Availability requirements

Maintainability
All application components (PIM and e-mail synchronization client,
synchronization server, and office PIM and e-mail application and database)
must be independent of each other from a development and maintenance point
of view. The following components can be designed, tested, and maintained
independently of each other:

� Client side (client software for PIM and e-mail synchronization and native PIM
and e-mail applications)

� Synchronization server (middle ware component between client and server)

� Office PIM and e-mail application and database (back-end)

Security
The PDA should be protected with a power-on password. The executive must
also authenticate against the local PIM and e-mail synchronization client and
against the synchronization server and existing office PIM and e-mail application

Availability requirement impact of not being met

Component view

Handheld device (PDA) During working time of ITSO
Railway executive (7 days a
week, 8 hours a day).

Critical.
Without devices, executive
does not have the
opportunity to read his mail
information whenever and
wherever he is.

PIM and e-mail
applications

During working time of
delivery personal (7 days a
week, 8 hours a day).

Critical.
To be able to read the
latest requests from
superiors and to react,
executives must have
access to their PIM and
e-mail data.

PIM and e-mail
synchronization server

Fully available on the working
days (5 days a week,
minimum 6:00–20:00)
On a weekends 9:00–20:00.

High.
Critical responses must
send and synchronize
outside of the regular
working hours.
 Chapter 9. PIM and e-mail synchronization 165

on the server side (these three different authentications can be separated or
combined into one).

Manageability
Manageability focuses on the application management, which includes
synchronization profiles. For example, this could be the range of the calendar
entries that can be synchronized (last 30 days), amount of data that can be sent
(max 200 K/message or attachments are not allowed to synchronize). This could
also cover if there is any reason to automate the synchronization mechanism
using server-initiated actions.

The PIM and e-mail synchronization devices must be remotely deployable,
configurable, and manageable.

System constraints
System constraints are mainly defined by the used handheld device (PDA) and
the support of PIM and e-mail synchronization (SyncML client availability).

The specifications of a chosen PDA define the capabilities for the application and
include screen size, resolution, browser capabilities, battery lifetime, and weight.

The example constraints shown on Table 9-9 apply to a Window Mobile 2003
PDA.

Table 9-9 Constraints defined by our chosen PDA

System usability
This section covers the usability of the PIM and e-mail support example from the
user’s perspective.

Constraint Value

Screen size 240 x 310 pixel

Battery lifetime 8 hours

Browser JavaScript capable Yes

Mobile connection Yes

Wireless connection Yes

Cradle for synchronization and battery
charging

Yes

Power-on password available Yes
166 Patterns: Pervasive and Rich Device Access Solutions

The synchronization must be easily understood and easy to use. A device’s
native PIM and e-mail application should be used. Easy log information for the
synchronization results should be available.

Data integrity
The data entered using the devices must be accurately transferred to the
back-end system. The WebSphere Everyplace Access, Everyplace
Synchronization service takes care of this function.

We will look at these non-functional requirements and how they are fulfilled in the
following sections in more detail.

9.1.4 Solution approach
The fictive ITSO Railway customer requirements above (see “Functional
requirements and use case model” on page 154 and “Non-functional
requirements” on page 163) were the input for the example solution described in
the following sections. The following approach was taken to get to a PIM and
e-mail synchronization support solution:

� Identify the problem that has to be solved by considering the requirements
and use cases to derive an architectural overview.

� Choose a suitable technology and Runtime pattern to create a component
model for the solution.

� Deployment of solution and roll-out of application to users. Installation and
configuration of solution on the pervasive server as well as on the handheld
device must be performed. This includes setup of user access configuration
to the application as well as software distribution to the handheld device.

� Maintenance and operation of the solution. Changes and updates of
handheld applications as well as middleware components must be centrally
managed.

The solution configuration and technology that are used on the server side are
described in the upcoming chapters. The deployment and maintenance of the
application is covered in more detail in Chapter 16, “Maintaining mobile devices”
on page 393.

9.2 Architectural overview
According to the ITSO Railway customer requirements, the ITSO Railway
executives must be able to get and process the latest PIM and e-mail data
without a constant connection to the ITSO Railways existing office PIM and
 Chapter 9. PIM and e-mail synchronization 167

e-mail applications. The data is stored on the local device where it can be
modified if it is needed. Occasionally, the mobile device will be synchronized with
the server so the executive’s updates are processed on the railway office PIM
and e-mail application server. The synchronization is done by middle ware.

With this conclusion in mind, the Pervasive runtime pattern for PIM and e-mail
synchronization can be applied (refer to “Rich Device=Store and
forward::Runtime pattern” on page 44). The high-level solution architecture was
derived from the Runtime pattern in Figure 3-5 on page 45. To make a fully
understandable and descriptive presentation of how the PIM and e-mail
synchronization support example could fit into the selected pattern, we use the
required Runtime pattern nodes along with the architecture overview picture.
This architecture overview contains five parts:

� Devices

Devices instantiate the user and client including the pervasive client services
node (PIM and e-mail synchronization client) of the applied Runtime pattern
in Figure 3-5 on page 45. The device is a tool that allows executives to update
their PIM and e-mail data through a handheld device (PDA). The executives
could use PDA’s native PIM and e-mail applications to create responses to
their superiors and to update their personal to-do lists. Furthermore, they are
able to create calendar entries to arrange meetings with their peers. The
entered data is stored locally and the data is ready to synchronize towards the
existing office PIM and e-mail application. The PDA runs a pervasive client
services (PIM and e-mail synchronization client) application that
communicates and synchronizes the data back and forth between the client
and server. Using this function, executives could see their latest e-mail data
and react in a short period of time for the critical requests that they might get
from their superiors.

An online connection to the existing office PIM and e-mail application in the
back-end was not considered appropriate. The reason for that was that the
executives might be in a place where a network connection is not available.
The other issue was the response time. Executives must have a good
response time to their personal PIM and e-mail data. The most convenient
way is to use the PDA’s native applications to create new memos, events, or
items, and in the end synchronize the data.

� External network services

External network services are the network services that are used for
synchronization purposes. The executives and their PDAs use the existing
communication services that are offered by the Internet Service Providers
(ISPs). ISPs maintain their Wireless Wide Area Transport Network services
that are used for wireless connection purposes (such as GPRS and UMTS).
ISPs provide a gateway to the Internet that is used to transfer the
synchronization data from the client into the server. In the Runtime pattern for
168 Patterns: Pervasive and Rich Device Access Solutions

PIM and e-mail synchronization this is represented in nodes ISP Gateway
and Voice and/or data services; see Figure 3-5 on page 45

� Web server redirector

Web server redirector is placed in the de-militarized zone (DMZ), which is
used to cover and protect the ITSO Railways intranet network against any
possible attacks. There is a Web server redirector service that routes the
incoming synchronization requests from the client to the synchronization
server that lies in the high security zone area (internal network).

� Pervasive server

The pervasive server instantiates the directory and security services,
personalization server, presentation server, and application server nodes,
including the pervasive extension services node of the Runtime pattern in
Figure 3-5 on page 45. It acts as a middleware between the device side and
the existing office PIM and e-mail application (Collaboration server). It is
responsible for the consistent data synchronization from the device to the
office PIM and e-mail application.

� Office PIM and e-mail service

The office PIM and e-mail services represents the existing PIM and e-mail
application and databases in the runtime environment (instance of
Collaboration services node of Runtime pattern in Figure 3-5 on page 45).
This is the backbone that is used for PIM and e-mail data synchronization.
The administrator maintains the existing PIM and e-mail environment and
gives access rights to executives who would like to use synchronization
services.
 Chapter 9. PIM and e-mail synchronization 169

Figure 9-6 Architecture overview diagram for PIM and e-mail synchronization

Taking into account the ITSO Railway business, IT requirements, and use cases,
as well as considerations that were described in 3.2.5, “Rich Device=Store and
forward::Runtime pattern” on page 44, and mapping proper software into it; see
4.7, “Rich Device=Store and forward::Runtime mapping=PIM and e-mail” on
page 74. We can create a more accurate overview of the PIM and e-mail
synchronization solution. Figure 9-7 on page 171 shows the necessary
components for a WebSphere Everyplace Access based PIM and e-mail
synchronization solution, which is presented in solution overview.
170 Patterns: Pervasive and Rich Device Access Solutions

Figure 9-7 WebSphere Everyplace Access PIM and e-mail synchronization content solution components

There are three major blocks involved in this model (3-tier architecture):

� Office PIM and e-mail service

The office PIM and e-mail service is the existing PIM and e-mail service that
stores the ITSO Railways employer’s personal PIM and e-mail data. This
service is used as a base to synchronize PIM and e-mail data to PDA
devices.

The existing service is used for daily PIM and e-mail transactions by the ITSO
railway employees. It must be very stable, and these new synchronization
services must not interfere with it in any way.

� WebSphere Everyplace Access (WEA) with WebSphere Portal Server and
Synchronization server

This block is the middleware tier. It contains WebSphere Everyplace Access,
including the WebSphere Portal Server, Synchronization server, and
Everyplace Synchronization enterprise application. The Everyplace
Synchronization enterprise application contains a SyncML servlet that
handles the synchronization process. Portal server is used to maintain the
user’s personalization and authentication information. It is also used to
 Chapter 9. PIM and e-mail synchronization 171

manage the synchronization services (connections to the back-end and
synchronization profiles) between the client and existing office PIM and e-mail
services.

� Device

The device is the interface to the user’s personal PIM and e-mail data.
Devices contain native PIM and e-mail applications that are used for
accessing this data. By using these, the user is able to review his e-mails and
entries and create new ones. Device native PIM and e-mail applications take
care of the data that is locally stored on the device. The Everyplace Client and
synchronization client are the counterparts of the WebSphere Everyplace
Access server on the device side. Together they ensure that the user’s
personal PIM and e-mail data are synchronized properly with the server side.
The Everyplace Client also makes sure that the user is properly authenticated
and the data information is transferred correctly to the back-end.

This component model uses existing features from WebSphere Everyplace
Access and Portal Server. To enable the PIM and e-mail synchronization into the
existing environment, the configuration and maintenance is the only effort. No
development experience is needed:

� Configuration effort: Configure the existing PIM and e-mail service to support
WebSphere Everyplace Access server. Make sure that there are existing
network connections in place. Give proper access rights for the users and
create new synchronization profiles if needed.

� Effort on the device: Installation and configuration of the Everyplace Client.

9.3 System design overview
This section discusses the chosen solution design of the ITSO Railway PIM and
e-mail support for their executives.

9.3.1 General considerations for synchronized enabled applications
There are certain questions that have to be considered when enabling a
synchronization-based solution with an existing environment. Taking the
questions from the applied Runtime pattern in 3.2.5, “Rich Device=Store and
forward::Runtime pattern” on page 44, the following five decision points were
addressed in the ITSO Railway PIM and e-mail synchronization support
example.

� Decision about the connectivity:

– Interview your corporate employees and ask for their opinion regarding
offline support.
172 Patterns: Pervasive and Rich Device Access Solutions

– Quite often, online capability is good enough if it is available outside the
corporate private network.

– How much we have to pay for an online connection versus an offline
connection.

– It is good to consider what network connections will be used. Should you
use partial or completely mobile networks that are more expensive than
normal Ethernet service?

� Decision about handheld devices:

– Consider customer requirements (usability, security, weight, battery
lifetime, screen size, etc.).

– This decision leads to a device with certain computing capabilities
(operating system, Web browser, RAM/ROM size, CPU performance,
etc.). For example, the screen size and the CPU performance influence
the battery capacity, which is proportional to the device’s weight. In order
to meet a certain battery lifetime the battery capacity has to be adjusted,
which again effects the weight of the device.

� What is the targeted audience? Who is going to use this service?

Usually there are certain units or groups that need PIM and e-mail
synchronization services for their business needs. Identifying those groups
and units and customizing the required services based on their needs can
reduce the implementation expenses. You must also consider the company’s
on demand strategy: “Pay only for what you use and extend your services
together with your business.”

� What is the affect of extending the synchronization mechanism into the
existing environment?

Synchronization services must not affect or harm an existing environment, for
example, by increasing network response time, causing existing mail services
crashes, or introducing questionable security decisions.

� Which security level must be addressed on the device and through the
existing office PIM and e-mail applications?

– This influences the handheld device selection and software choice
(password capabilities).

– Security on the application level could be managed by the pervasive
server. How is this managed over insecure networks?

Basically, there are two different approaches for accessing user e-mail
databases:

� Partially online and synchronization access for user e-mail databases
 Chapter 9. PIM and e-mail synchronization 173

This type of behavior allows users to synchronize some of their e-mail content
data with the client side. For example, a user would like to synchronize only
the title’s information into his device. When the user opens a specific memo
by clicking the title, the network connection is initiated and will access that
memo in online mode. This technique can be achieved by using an Internet
Mail Application Protocol (IMAP) based protocol. There are still many
restrictions for using that technique. One is that users are not a able to
synchronize their PIM data (to-do’s, contacts) because IMAP does not
support it. The other issue is that this requires the IMAP server to run on the
back-end side, which will increase the mail servers I/O load and may increase
the response times for existing e-mail services (even for those users who use
their e-mail databases through the corporate intranet network). This could
also be a security issue. Some companies do not want to allow IMAP
connections into the existing e-mail services.

� Offline PIM and e-mail access and synchronization

The offline PIM and e-mail access and synchronization service between client
and server is one of the most often used mobile device applications. This
means that the users are able to read and create new e-mails, calendar
entries, and to-do lists; and update their contact databases when they are not
connected into the existing PIM and e-mail servers. Everything is done locally
in their devices, using the device’s own PIM and e-mail applications. When
users want to send the changes that they made into the server side to
maintain e-mail and PIM information, they start the synchronization client,
which connects to the network and sends that data to the back-end
synchronization server, which authenticates the incoming user/device
request. After successful authentication, the data is sent to the existing PIM
and e-mail applications. After updating, the server could send new updates
back to server, for example, new calendar or e-mail events that the user
might have received.

PIM and e-mail synchronization between client and server uses a
standardized SyncML protocol. It is a protocol that is designed to send users
e-mail and PIM information over the air and to keep a single copy of the data
without any duplications.

On the client side, the SyncML requires its own client that communicates with
the device’s native PIM and e-mail applications. Furthermore, the SyncML
client is used for sending the data to the back-end synchronization server.

On the server side, SyncML uses a synchronization server that is responsible
to get the incoming requests from the SyncML client, authenticating the
incoming requests, and sending PIM and e-mail data into the existing PIM
and e-mail application on the server side.
174 Patterns: Pervasive and Rich Device Access Solutions

The offline capability gives a more user-friendly experience without any
network delays. Synchronization is a very effective way to keep a single copy
of PIM and e-mail data up to date both on the server and client side.

9.4 Runtime configuration and deployment
This section explains the necessary steps to enable the PIM and e-mail
synchronization for mobile devices. The configuration is divided into two different
parts: Server configuration and client configuration. To deploy PIM and e-mail
synchronization, we go through one synchronization step previously described in
a use case—see Table 9-6 on page 160.

9.4.1 Enable PIM and e-mail server to support synchronization server
connection

To enable the synchronization services towards an existing corporate e-mail
server, there are few steps that need to be configured and checked.

� The network connection between the synchronization server and the existing
e-mail server is enabled, and servers can connect with each other using fully
qualified host names.

� Access rights are in place and the synchronization server can access the
existing e-mail server.

� The proper ports are opened for data transaction purposes (1352, DIIOP, 80).

� The fully qualified Internet hostname must be entered in the names.nsf file for
each Lotus Domino Server that synchronizes with the synchronization server,
such as your authentication server and any Lotus Domino e-mail database
servers.

� Add the Domino administration ID that the synchronization server uses to
read and write to the Domino server to the ACL of the mail.box database on
the Domino server.

Note: This chapter uses a Domino 6.5.1 server as an e-mail server. A
synchronization server is used with WebSphere Everyplace Access 5.0 for
Windows 2000 with Service Pack 4. The Everyplace client is installed on top
of a Pocket PC 2003. More information on how to configure synchronization in
your environment can be found in the WebSphere Everyplace Access V5.0
InfoCenter.
 Chapter 9. PIM and e-mail synchronization 175

9.4.2 Configure PIM and e-mail synchronization

After installation and basic configuration of Everyplace Access Services, there
are certain steps needed to configure for enabling the PIM and e-mail
synchronization between client and server.

WebSphere Everyplace Access is used as a middleware integration layer to
enable the synchronization between the client and existing e-mail and PIM
server. This middleware layer perspective is a very modular and effective way to
extend existing corporate environments to support mobile devices. One of its
advantages is that WebSphere Everyplace Access is a separate component that
can be added quite easily without interference to existing services that run in the
corporate environment.

The administrator has four basic tasks to enable the PIM and e-mail
synchronization:

� Configure the synchronization server and existing back-end e-mail services.
� Give proper access rights for users that use the PIM and e-mail services.
� Create a new synchronization profile that is used for synchronization.
� Configure Everyplace Client and synchronization on th eclient side.

Configure server towards existing back-end e-mail server
The Everyplace Synchronization Server contains two main server components:
The synchronization server and the Everyplace Synchronization Server
enterprise application. The synchronization server contains the PIM adapters for
connecting to the back-end servers. The Everyplace Synchronization enterprise
application contains the SyncML servlet, which handles the synchronization
process. For users to be able to synchronize, these two components must be
running along with the supporting servers.

The synchronization server is managed by the synchronization service, which
you can access through the Manage Servers portlet. This service is used to start
and stop the synchronization server and monitor the synchronization server
activity. You can use the Manage Server portlet to monitor all installed
synchronization servers and their active users through the service. You can start
and stop synchronization servers from this portlet as needed.
176 Patterns: Pervasive and Rich Device Access Solutions

Figure 9-8 Everyplace Synchronization Server - Manage Servers display: Synchronization server

The portlet displays the current status for each synchronization server. It
provides the following status states:

� Starting is displayed when the server is loading.

� Running is displayed when the server is operational.

� Stopping is displayed when the server is shutting down.

� Stopped is displayed when the server is not operational but can be restarted.

� Not available is displayed when the portlet cannot get status from the server.
Administrator services are not available and the portlet cannot restart the
server. When a server is not available, verify that the synchronization server
is running.

This section provides an overview of the procedures for configuring and
administering the PIM adapter for Lotus Domino. Other adapters like the
Microsoft Exchange 5.5 Adapter and the Microsoft Exchange 2000 Adapter are
also available. More information about these adapters and how to configure
those using WebSphere Everyplace Access server can be found in the
WebSphere Everyplace Access V5.0 InfoCenter.

Use the Lotus Domino Adapter portlet to configure the synchronization server to
work with Lotus Domino servers. The Lotus Domino Adapter allows data to be
synchronized between Lotus Domino servers and mobile devices. A single Lotus
Domino Adapter can support multiple Lotus Domino servers and domains.
 Chapter 9. PIM and e-mail synchronization 177

Figure 9-9 Lotus Domino Adapter

It is possible to view the status of any PIM server configured to use the PIM
adapter using the Manage Server portlet. The portlet displays a description of the
PIM servers and the state of the server. The possible states are Stopped,
Running, Starting, Stopping, and Not available.

Figure 9-10 WebSphere Everyplace Access - Manage Servers display: PIM adapter

The Lotus Domino adapter requires that the Lotus Notes client is installed on the
same computer as WebSphere Everyplace Access. The synchronization server
and the Lotus Domino Adapter use this Lotus Notes client to communicate with
the Lotus Domino e-mail database that the users synchronize with.

When you have managed to configure these steps and are able to see the
synchronization server and Domino PIM adapter in running mode, you can give
access to users to use this service.
178 Patterns: Pervasive and Rich Device Access Solutions

Access rights for PIM and e-mail synchronization users
WebSphere Everyplace Access V5 provides administrators with the functionality
to create multiple users at the same time. This is a very convenient way to create
and handle users that already exist in a corporate environment and who would
like to extend synchronization services onto their daily business package’s
application selection.

Using the Bulk Load Users portlet, the administrator can create new
synchronization users from existing WebSphere Portal users or from a user list
imported from Microsoft Exchange or Lotus Domino.

Figure 9-11 Bulk load portlet

The Bulk Load Users portlet lets you create new synchronization users from a
user list you import from Microsoft Exchange or from Lotus Domino, and then
notify each user of their new WebSphere Portal username and password by
e-mail. For information about how to export a user list from Microsoft Exchange
or Lotus Domino and use it to create new users, see the portlet help for the Bulk
Load portlet on the Administration page and exporting users for use in the Bulk
Load portlet.

Create synchronization profiles
There are basically three different ways to create synchronization profiles. One
option is to use Bulk Load portlet. The second option is for an administrator to
create their own, corporate standard based profile. The last is to allow users to
create their own profiles.

� Using the Bulk Load portlet, the administrator can assign a device profile to
multiple new or existing users. He can create a new device profile or edit an
existing bulk load profile and assign the profile to existing synchronization
users or new users created from an imported user list. In addition, the
administrator can send the users an e-mail informing them of the new device
profile. For more information about using the Bulk Load portlet to assign
administrator profiles, see the portlet help for the Bulk Load portlet on the
Administration page.
 Chapter 9. PIM and e-mail synchronization 179

� The second option is to allow the administrator to create his own
synchronization profile for using the Synchronization Administrator Profiles
portlet.

Figure 9-12 Synchronization Administrator Profiles

By creating a new profile, the administrator could specify more detailed
behavior that can be used for different devices. Most often, this is very useful
to do due to different device functions and their requirements. For example,
users who use devices with very limited memory will not want to receive their
whole calendar entries and mail attachments on the client side. They only
want to view the current week’s entries.

Figure 9-13 Synchronization Administrator Profiles: Create new profile
180 Patterns: Pervasive and Rich Device Access Solutions

Figure 9-14 Synchronization Administrator Profiles: New profile with calendar filter in it

After the administrator has created the profile, he has to determine if there are
any conflicts between client data or server data. After these steps are
configured, there is one new synchronization profile that can be used for your
implementation.
 Chapter 9. PIM and e-mail synchronization 181

Figure 9-15 Synchronization Administrator Profiles: PocketPC 2003 profile

� The third option to create synchronization profiles is to let users create their
own profiles. This is good for users who would like to use personalized
synchronization preferences instead of using the default corporate profiles.
To do this, users have to go to the Mobile setup tab and open the
Synchronization User profiles-portlet.

A user has to identify that the current profile is his own by typing the user
name and password.

Figure 9-16 Synchronization User Profiles

After the user has inserted his user name and password, he can see the
existing profiles that the administrator has created previously. Users could
choose existing ones or create his own. The steps for creating a new
personal profile is the same as it is in the administrator synchronization
182 Patterns: Pervasive and Rich Device Access Solutions

profile. After the user has finished his profile and selected the appropriate
locations, he should get the information in his portlet, as shown in Figure
11-14.

Figure 9-17 Synchronization User Profiles: Personal profile

9.4.3 Configure Everyplace Client and synchronization on client side
This section describes the configuration steps that are needed to be done on the
client side.

Everyplace Client software is easy to install, configure, and operate. All you have
to do is start the setup program for your device type and put your PDA in the
docking cradle. The installation program copies the files to the PC. Everyplace
Client files are installed on your PDA the next time you synchronize.

WebSphere Everyplace Access contains different Everyplace clients for different
devices. This chapter will cover only the Pocket PC device. More information
about the Everyplace Client and how to install and configure it can be found in
the WebSphere Everyplace Access V5.0 InfoCenter.

The Everyplace Client can be launched using the Setup.exe in the appropriate
directory for your device type located on the Everyplace Client installation CD.
After language selection, a Welcome to the Install Shield panel is displayed.
Select Next to continue. Remember that you accept the terms of the Software
License Agreement by selecting Yes. If you choose No, the installation will be
terminated. Select the destination where the installed files will be located and
 Chapter 9. PIM and e-mail synchronization 183

select Next to continue. At this point, you should be able to see the Components
panel that allows you to select all the components that you want to install.

For synchronization purposes, you only need the PIM and e-mail synchronization
component. Select that current component and select Next. On the Start
Copying the Files panel select Next, and on the InstallShield Wizard Complete
panel select Finish.

You then need to perform these steps on the Pocket PC side:

1. Put your Pocket PC on the docking cradle and perform the Activesync.

2. Input the username and password (twice) for Everyplace Client, and select
OK.

3. Input the name and e-mail address for the e-mail application on the Sync
Client panel, and select OK.

9.4.4 Using the PIM and e-mail synchronization
Everyplace Client uses a browser-based user interface. In order to open the
Everyplace Client user interface, click the Everyplace Client icon and enter your
username and password on the login panel. The main view will open.

Figure 9-18 Everyplace Client: Main view

The Everyplace Client enables you to synchronize data with WebSphere
Everyplace Access servers using industry-standard SyncML technology. The
Everyplace Client uses the term Refresh instead of Synchronize. Click the
Refresh icon on the PDA device to refresh the data.
184 Patterns: Pervasive and Rich Device Access Solutions

After clicking the Refresh icon, the Everyplace Client communicates with the
server to determine which synchronization type the client should use. The
Everyplace Client supports two types of synchronization: Slow synchronization
and normal synchronization.

� Slow synchronization

During a slow synchronization, all the items in the client databases are
compared with all the corresponding items in the server databases on a
field-by-field basis. Everyplace Client sends all the client data to the server,
and the server does a field-by-field analysis, comparing its own data with the
data received from the client. After analyzing the data, the server returns all
the modified information to the client. Because a slow synchronization is a
time-consuming process, you should only use this method when the PDA
device is connected via a high-speed method such as in the docking cradle. A
slow synchronization occurs in the following situations:

– The first time you synchronize the Everyplace Client

When the server requests a slow synchronization as a result of data
inconsistency after the client has initiated a normal synchronization. This
can occur if the server encounters synchronization errors.

– When you request a full refresh from configure PIM and e-mail settings

Before initiating a slow synchronization, the Everyplace Client displays a
confirmation pop-up. To start the slow synchronization process, select
Refresh in the pop-up window to begin the slow synchronization.

� Normal synchronization

During a normal synchronization, the client and server exchange information
about any modifications to the data on the client and the server. Therefore,
only new and changed information is synchronized from the server to the
client and from the client to the server. The Everyplace Client always requests
a normal synchronization except under the circumstances noted above for a
slow synchronization. Since only modified information is exchanged, a normal
synchronization is less time consuming than a slow synchronization.

The My Settings (user preferences) provides quick access to user settings. From
this page, users can personalize their Everyplace Client interface and settings.
This section provides the following information:

� The Overview provides a starting point where users can modify their
Everyplace settings.

� Working with custom categories allows users to create new categories to
organize the user’s information and application data as needed.

� Personalizing shortcuts is used to add up to eight applications that are most
used by the user into the shortcut bar.
 Chapter 9. PIM and e-mail synchronization 185

� Working with themes allows users to personalize and customize the look of
the interface and choose from several different installed themes.

� The Synchronization Settings allow you to change the time and the way the
synchronization is handled. There are three different options:

– Timed refresh - When connected, the device will refresh based on the
user-defined interval, set in minutes.

– Cradled - The device is refreshed only when connected.

– Manually only - The device is refreshed only when the user taps the
connection status and refresh button in the main view.

It is also possible to get information for each synchronization by enabling the
radio boxes.

� Working with network profiles lets users control how many items get
synchronized during a refresh and to which servers to synchronize. Users can
switch profiles using the profile drop-down selector under My Settings. To
work with profiles, users need to click Network profiles. On the Network
profiles page, users can add, edit, and delete profiles, similar to working with
Categories. Click the Edit icon to modify the name of a profile.

� Mobility Client allows users to configure the Connection Manager settings.

� Security defines the username and password for accessing the client on the
device and for accessing your portal. Changing the username and password
on the client does not change the user’s portal username and password.

� Replace Data gives options to replace device data or configure free memory.

� Using Software Update, you can update the Everyplace Client and device
software.

� Servicing enables or disables tracing for field support.

9.5 Summary
This chapter summarizes the basic steps to add PIM and e-mail functionality into
an existing e-mail environment.

Customizing and extending the existing enterprise environment to cover PIM and
e-mail synchronization is very often a straightforward process. It rarely requires
development experience because there are a lot of existing products that support
PIM and e-mail synchronization. PIM and e-mail synchronization is based on the
SyncML Data Synchronization standard. SyncML has been an initiative recently
consolidated into the Open Mobile Alliance (OMA).
186 Patterns: Pervasive and Rich Device Access Solutions

More information about SyncML can be found at:

http://www.openmobilealliance.org/tech/affiliates/syncml/syncmlindex.html

The following table describes the actions in high level that you need to consider
when researching and implementing PIM and e-mail synchronization
functionalities. The table below also describes all those parties who are related to
those actions.

Table 9-10 Enable PIM and e-mail synchronization and related parties

It is not necessary to load users for installing and configuring their devices. That
can also be done remotely by using the Device Management services. More
information about the Device Management can be found in Chapter 16,
“Maintaining mobile devices” on page 393.

Task/action Supplier
services

Administ-
rator

Security ISP CTO User

Define used
channels and
create contracts

X X X

Create and
configure needed
channels

X X X X

PIM and e-mail
sync. installation

X X

Enable access in
existing PIM and
e-mail services

X X

Configure PIM
and e-mail sync.
towards existing
e-mail services

X X X

Access rights for
PIM and e-mail
sync. users

X

Create sync.
profiles

X X

Install sync. client
on user devices

X X

Configure sync.
clients

X X
 Chapter 9. PIM and e-mail synchronization 187

http://www.openmobilealliance.org/tech/affiliates/syncml/syncmlindex.html

The table above describes the high-level tasks that need to be in place and the
interested parties that are related to achieve the final goal.

The PIM and e-mail synchronization requires a client-to-server connection. It
means that each client has to have a SyncML-based client application. The client
needs to be able to send and get messages from the server and route them to
the client’s native PIM and e-mail applications. On the server side, there must be
a synchronization server that handles the incoming and outgoing requests and
routes the data to existing e-mail servers.

To extend the enterprise environment to use PIM and e-mail synchronization, we
highly recommend discussing the solution with all involved parties (security and
system administrators and the users).

You should also carefully consider the possible extra loads that this new service
generates. An enterprise does not want to degrade its existing services by
bringing new services into it. This has been covered in 3.2.6, “Rich Device=Store
and forward::Runtime pattern variation 1” on page 45.

Further information for how to enable PIM and e-mail synchronization and the
configuration steps can also be found in the WebSphere Everyplace Access
InfoCenter and other WebSphere Everyplace Access IBM Redbooks.
188 Patterns: Pervasive and Rich Device Access Solutions

Chapter 10. Web access to ITSO
Railway’s timetables

Using a mobile portal approach is potentially the least difficult way to make
information available to users of pervasive devices. It is useful for displaying
content that has been adapted for smaller screens to customers without requiring
them to log in.

This scenario describes an approach to make train schedule information
available to ITSO Railways customers who use Web browsers, PDAs, and
Web-enabled cellular telephones. This is accomplished by using an existing time
table database and by developing a single Web application that can display this
content on multiple devices.

The approach takes into account customer wants, needs, and options for
implementation of such a system. System architecture and system design are
discussed. At the end of this chapter is a description of the steps needed to
develop such an application.

10
© Copyright IBM Corp. 2005. All rights reserved. 189

10.1 Overview
ITSO Railways wants to provide access to train schedules to its customers in
their homes, offices, and on the go. Realizing that these customers may be using
a wide range of devices to access this information from Web browsers on their
PCs to micro-browsers on their Web-enabled mobile phones, ITSO Railways has
decided to implement a Web application that will accommodate many devices
and markup languages.

ITSO Railways wants to be able to show a customer the times that a train is
scheduled to depart from a particular station.

In the future, ITSO Railways also wants to be able to extend this application to
show the most recent data in the ITSO Railways train schedule database so that
customers will know if a train is running ahead of schedule, slightly behind
schedule, or on schedule in real-time. We keep this in mind when developing the
sample application.

The following diagram is the Runtime pattern we used for the implementation of
this scenario.
190 Patterns: Pervasive and Rich Device Access Solutions

Figure 10-1 Runtime pattern for the Pervasive Web access scenario

The runtime mapping that we used for this book is seen on the following diagram.

ISP Gateway
(Pervasive
services)

User

Outside World
Demilitarized Zone

(DMZ) Internal Network

Client

Data servicesData services
Web

server
redirector

Pervasive
client

services

Pr
ot

oc
ol

 F
ire

w
al

l

D
om

ai
n

Fi
re

w
al

l

Pervasive
device

adapter tier
Presentation /

Application

synch/
asynch

synch

Pervasive Device Adapter application pattern

Personalization
Server

Directory
and Security

Services

Database

Existing data
and

Applications
Application

Server
Presentation

Server

Collaboration
server

Pervasive
extension
services
 Chapter 10. Web access to ITSO Railway’s timetables 191

Figure 10-2 Pervasive Device Adapter::Product mapping=Windows

10.1.1 Customer requirements
Typical ITSO Railways customers vary and can include frequent users,
occasional users, business users, vacationers, and commuters. These users all
desire accurate and timely information of train schedule data.

Some users may use a standard Web browser to access this information from
their home or office computers. Other users may desire access to this
information from a Web-enabled cellular telephone or their PDA while they are
on the go.

10.1.2 Use case model
A customer uses the railway systems frequently. The customer recently
purchased a PDA and uses it to access various Web sites. The customer would
like to use her PDA to access the railway information so that she can manage
her time better when travelling.

Example use case
In our example use case:

1. The customer logs onto the PDA.
2. The customer accesses the ITSO Railways Web site.

p pp g

ISP Gateway
(Pervasive
services)

User

Outside World
Demilitarized Zone

(DMZ) Internal Network

Client

Data servicesData services

Personalization
Server

Directory
and Security

Services

Pervasive
extension
services

Pervasive
client

services

DatabaseCollaboration
Server

Existing
Data and

Applications

Pr
ot

oc
ol

 F
ire

w
al

l

Application
Server

Presentation
Server

D
om

ai
n

Fi
re

wa
ll

Windows Mobile 2003

•WebSphere Client Technology,
Micro Edition
•Opera Browser

Windows 2000 + SP4
•IBM WebSphere Application Server
V5.0 HTTP Plug-in

•IBM HTTP Server V1.3.26

Windows 2000 + SP4
•WebSphere Everyplace Access V5.0
•PDA Aggregation Extension

Windows 2000 + SP4
•WebSphere Portal Server V5.0.2.1
•Domino Server 6.5.1
•WebSphere Application Server
Enterprise V5.0.2.3

Web
server

redirector
192 Patterns: Pervasive and Rich Device Access Solutions

3. The customer selects the train schedules.
4. The customer selects her departure and destination locations.
5. The customer selects when she wants to ride.
6. The customer reviews the trains schedule.

Figure 10-3 Use case scenario

10.1.3 Key requirements
Following is a list of business and IT requirements.

Business requirements
These are:

1. Increase customer satisfaction by providing customers with anywhere access
to railway schedule information.

2. Provide customers with mobile access to railway schedule information.

3. Reduce information-only customer requests.

4. Make information available 24 hours a day, 7 days a week.

5. Provide the latest information relating to the train schedules.

IT requirements
These are:

1. Integration with and extending existing railway information systems and train
schedule systems.

2. Make the application easy to use and learn.

3. Extend the existing Web/portal system to mobile devices.

4. Use tools that support the end-to-end development of such an application and
simplify development.

Customer

Query
Train Schedules
 Chapter 10. Web access to ITSO Railway’s timetables 193

10.2 Architectural overview
This system is designed and implemented much like that of a standard Web
server or Web portal. Instead of a Web server, ITSO Railways would host and
serve this content from a pervasive access server. This server would be able to
determine what type of device is accessing the railway timetable application
based on the header information sent when the device attempts to connect to the
server. It would then be able to offer to the device content encoded in a markup
language supported by the requesting device.

In between the pervasive server and the Internet resides a load balancing and
connection management server. This server would be responsible for distributing
heavy loads and could be responsible for managing connections with devices
that have the capability of connecting to the Internet via more than one type of
connection (for instance, when roaming from a cellular connection to wireless
Ethernet/802.11x).

Figure 10-4 Architecture

In this arrangement, mobile devices can connect to the pervasive server by any
means that they can connect to the Internet. Cellular telephones and
cellular-enabled PDAs connect to the Internet on a cellular network through a
device called a WAP Gateway. A WAP gateway is responsible for encoding
content in such a way that it is usable by mobile devices. PDAs, laptop PCs, and
194 Patterns: Pervasive and Rich Device Access Solutions

other devices can connect directly to the Internet via wireless Ethernet (802.11x),
wired Ethernet, cradle, or other means.

10.3 System design overview
In this scenario, we concentrate on developing the content to be hosted on the
pervasive access server for the mobile devices shown in the above architecture.
We want to enable our application to query a database of train schedule data that
resides on the internal corporate network. The application introduced here
consists of a series of JSP files that have been specially modified to display
content correctly according to the markup languages used by Web browsers
(HTML), PDAs (PDA markup), and Web-enabled cellular telephones (WML,
cHTML). Each of these pages allows the customer to query train schedule
information based on departure location, arrival location, and the time of day that
the customer wants to use the train.

10.3.1 Application flow diagram
Mobile applications developed for WebSphere Everyplace Access are portlets
just like those in WebSphere Portal that are extended to use multiple markup
languages. They use the same business logic and event handling as WebSphere
Portal portlet applications with certain constraints.

In this scenario, querying the train schedule is conducted as a series of four
steps:

1. Selecting a departure location
2. Selecting an arrival location
3. Selecting a time to leave
4. Reviewing the train schedule based on the previous selections
 Chapter 10. Web access to ITSO Railway’s timetables 195

Figure 10-5 Event handling

The sequence flow for this scenario through the application is as follows:

1. Initially, the doView() method is executed. It is the responsibility of the
doView() method to display a portlet to the user in view mode.

2. The doView() method calls the getJspExtension() method. This enables the
portlet to determine which set of JSPs to use when rendering the content
based on the markup languages supported by the requesting device.

3. The view.jsp file is called to render an initial screen.

4. The view.jsp calls the sessionBean to get a listing of departure locations.

5. The sessionBean accesses a listing of departure locations by using the
database utilities and database results classes to query the ITSO Railways
database.

6. This information is returned to the view.jsp for processing.

7. The portlet is shown in view mode to the user. In this scenario, it lists a series
of links showing the available departure locations for ITSO Railways.

8. The user selects the desired departure location. The action is sent as part of
the portlet URI. Upon submission, the actionPerformed() method is executed
to process this action.

doView() action
Performed()

sessionBeanview.jsp
DB Utilities

DB Results

View Mode
(Select

Departure)

View Mode
(Select
Arrival)

View Mode
(Select Time)

View Mode
(Review

Schedule)

getJspExtension()
Portlet Application

Se
rv

er
 s

id
e

C
lie

nt
 s

id
e

5

9

810

2

1

3

6

4

7
196 Patterns: Pervasive and Rich Device Access Solutions

9. The data sent with the action indicating the desired departure location is
passed to and stored in the sessionBean.

10.The doView() method is called again to perform step number two of the
process used to query the train schedule.

The sequence flow above is iterative. The same process occurs when the user
chooses an arrival location and is shown the resulting train schedule information.

10.3.2 Design considerations
There are several ways to adapt existing information to mobile devices. When
designing your application, you will want to consider the capabilities of each
method.

Transcoding technology/content adaptation
One common approach is to adapt pre-existing Web content using transcoding
technology (sometimes referred to as content adaptation). The transcoding
technology included with WebSphere Everyplace Access transforms content
based on the capabilities of the devices accessing the content. For example,
devices with a small screen will receive a scaled-down version of the information,
and devices requiring a different markup language (for instance, WML on cellular
phones) will receive the information in the markup best suited for that device.
Features included with these transcoding technologies allow you to adapt and
customize content in a variety of ways.

It is important to note that transcoding technology has limited capabilities,
especially when it comes to user interaction with a mobile application.

Customized markup-specific JavaServer Pages
A second approach for developing content for mobile devices is to create an
application with a set of customized JSPs for each markup language used to
access and interact with the content. This allows the developer to customize his
mobile Web applications for the devices used to access the content. Currently,
the WebSphere Everyplace Toolkit allows the developer to create custom JSPs
for HTML (for Web browsers), cHTML (for iMode-capable mobile phones), WML
(for Web-enabled mobile telephones), and PDA markup (for PDA devices).

Attention: See the chapter on Transcoding Technology in WebSphere
Everyplace Access Version 4.3 Handbook for Developers, SG24-7015-01, for
more information on transcoding technology.
 Chapter 10. Web access to ITSO Railway’s timetables 197

Customized device-specific JavaServer Pages
Maintaining Web applications for such a wide variety of screen sizes, markup
languages, display capabilities, and means of interactivity on each supported
device is very complex.

To further the concept of developing markup-specific applications, the
Multi-Device Authoring Tools included with the Everyplace Toolkit allow you to
automatically convert a generic mobile application into device-specific
applications. These multi-device applications are based on Struts, which is
based on the Model-View-Controller (MVC) paradigm. A multi-device application
consists of a controller.xml file; a DLG file for each of the views; generated JSP
files for each supported device; and Java Source that contains the business
logic, methods, and beans.
198 Patterns: Pervasive and Rich Device Access Solutions

Figure 10-6 Selecting supported devices

The Multi-Device Authoring Tools also include an editor to allow you to define
both a generic and a target-specific application flow diagram.
 Chapter 10. Web access to ITSO Railway’s timetables 199

Figure 10-7 Application flow editor

10.4 Application development
Here we describe the development of a sample application that meets the
customer requirements described previously. The source code to this application
can be found in Appendix A, “Additional material” on page 435.

For this application, we use the Everyplace Toolkit to create a framework for our
mobile application that supports HTML, PDA, and WML markup languages. We
then test this application using a Web browser, PDA simulator, and a
Web-enabled mobile telephone simulator.

Tip: For more information on developing multi-device portlet projects, refer to
the section titled “Developing multi-device applications” in the WebSphere
Studio Site Developer InfoCenter.

Tip: For more information on developing applications for mobile devices, refer
to WebSphere Everyplace Access Version 4.3 Handbook for Developers,
SG24-7015-01.
200 Patterns: Pervasive and Rich Device Access Solutions

10.4.1 Create the portlet application project framework
To create the application framework, create a Portlet Application Project using
the Everyplace Toolkit wizard. On the screen that asks you to select the
supported markup languages for the project, select the WML and PDA markup
languages. You can optionally select cHTML markup for iMode-capable devices.

Figure 10-8 Supported markup language selection

The wizard will generate a framework for your project. It will generate a separate
folder for each set of JSPs corresponding to each markup language supported
by the project.
 Chapter 10. Web access to ITSO Railway’s timetables 201

Figure 10-9 Portlet application framework highlighting markup-specific JSP folders

10.4.2 Add supporting files and business logic
To support your application, you will need to add and modify files to handle the
business logic and data management. For this application, we have added a
JavaBean to store data from user input and navigation, and a database utilities
class to manage interaction with the ITSO Railways train schedules database.
202 Patterns: Pervasive and Rich Device Access Solutions

Figure 10-10 Adding support files

10.4.3 Add connectivity to the existing train schedule database
The sample database that we are using for this scenario contains two tables:
One for locations and one for times. They are structured as follows.

The locations table has three records for location names: Raleigh, Durham, and
Wilmington.

Table 10-1 The times table contains entries for possible schedule information

Note: The files needed to create this database are in Appendix A, “Additional
material” on page 435. Please follow the steps described in the sample
application’s directory to set up the database.

NAME1 NAME2 TIMEOFDAY TIMES

Raleigh Durham am 6 am

Raleigh Durham am 8 am

Raleigh Durham pm 6 pm

Raleigh Durham pm 8 pm
 Chapter 10. Web access to ITSO Railway’s timetables 203

The database utilities class can be modified to point to any database on any
supported database management system. WebSphere Studio Site Developer
provides the Cloudscape database management system for local development
of database-driven applications.

10.4.4 Customize and add JSPs for specific markup languages
When all business logic and connectivity to the database is in place, it is time to
customize the JavaServer pages to display information to the user of the
application.

As shown in Figure 10-9 on page 202, there are separate folders for each
supported markup language. You should add to and modify these files in
accordance with the specifications for each markup language used to build your
applications. For markup languages such as WML it is extremely important to
correctly code the markup, or the content will not display and/or function correctly
on the device. The following sample shows the code used to dynamically
generate a listing of departure locations for ITSO Railways in WML. In WML, all
text to be displayed on a phone display must come between <p> and </p> tags.
In addition, line breaks are indicated by
.

Example 10-1 Sample dynamically generated WML

<% sessionBean.setDb_sqlstring("SELECT NAMES FROM APP.LOCATIONS");
sessionBean.getJDBCResult();%>

<p>
Welcome to ticket portlet, please select your departure location:
<% for(int x=0; x<sessionBean.getDb_rowCount(); x++){%>

<a href="<portletAPI:createURI><portletAPI:URIAction
name="submitDeparture"/><portletAPI:URIParameter name="start"
value="<%=sessionBean.getDb_SQLresult(0,x)%>"/></portletAPI:createURI>">
<%=sessionBean.getDb_SQLresult(0,x)%>

<% } %>
</p>

Raleigh Wilmington am 7 am

etc etc etc etc

NAME1 NAME2 TIMEOFDAY TIMES

Tip: See http://www.w3schools.com/wap/ for more information on the WML
markup language.
204 Patterns: Pervasive and Rich Device Access Solutions

http://www.w3schools.com/wap/
http://www.w3schools.com/wap/
http://www.w3schools.com/wap/

10.4.5 Test and debug the application
You can test and debug the application as you would a normal portlet
development project by running it in the WebSphere Portal Test Environment.

Running the portlet application project loads the portlet into the Web browser in
the WebSphere Studio Site Developer IDE. By selecting a departure location, an
arrival location, and a time of day, a user can view the trains scheduled to depart.

Figure 10-11 Sample application in Web browser

Tip: See IBM WebSphere Portal V5: A Guide for Portlet Application
Development, SG24-6076, for help setting up the WebSphere Portal Test
Environment and running your application.
 Chapter 10. Web access to ITSO Railway’s timetables 205

While the WebSphere Portal Test Environment is running, you can also access
this portlet through any external PDA or cell phone simulators by entering the
following URL:

http://localhost:9081/wps/portal/!ut/p/.cmd/LoginUserNoAuth?userid=wpsadmin&pas
sword=wpsadmin

For testing applications that have been developed for the PDA markup, you can
use a simulator such as the Palm OS simulator, which is downloadable from:

http://www.palmsource.com/developers/

Microsoft also has SDKs and emulators available for download for Pocket
PC-based PDAs at:

http://msdn.microsoft.com/windowsmobile

After configuring the simulator to access the Internet, you can enter the above
URL to access your portlet application’s content.

Figure 10-12 Entering URL into Palm Simulator

After clicking the Go button, you can interact with your application just as if you
were using it on a real Palm OS-based device.
206 Patterns: Pervasive and Rich Device Access Solutions

http://www.palmsource.com/developers/
http://msdn.microsoft.com/windowsmobile

Figure 10-13 Sample application running in Palm Simulator

The same can be done when developing applications for Web-enabled mobile
telephones. Companies such as Nokia offer several development tools that can
help you test your content. By downloading the Nokia Mobile Internet Toolkit and
the Series 40 Developer Platform SDK, you can run a test environment such as
the one shown below.

First, enter the URL above to access the content.
 Chapter 10. Web access to ITSO Railway’s timetables 207

Figure 10-14 Phone simulator, entering the URL

Once the portlet application loads, you can interact with it in the simulator as you
would on the actual phone.

Figure 10-15 Sample application running in Nokia Series 40 Simulator
208 Patterns: Pervasive and Rich Device Access Solutions

While navigating through your application, some tools allow you to see the data
and source code that is generated. This is especially useful for locating errors in
the source code and correcting markup language syntax errors where
necessary.

Figure 10-16 Diagnostic data

10.5 Summary
In this chapter, we have discussed various methods to display information on
mobile devices. We then discussed the steps necessary to develop an
application for ITSO Railways to make train timetable information available to its
customers.

Using a mobile portal solution is an easy and effective way to make content
available to users and customers on the go.
 Chapter 10. Web access to ITSO Railway’s timetables 209

210 Patterns: Pervasive and Rich Device Access Solutions

Chapter 11. Mobile Inventory
Management with offline
forms

The Mobile Inventory Management scenario for inventory stock tracking of used
train supplies is used to describe the architectural approach for forms-based
applications on mobile devices. Starting from the fictive business case of ITSO
Railway, this example’s use cases are created (see Chapter 5, “ITSO Railway
sample overview” on page 87). An architectural overview diagram and a
component model are developed based on these example use cases and the
Pervasive runtime patterns from Chapter 3, “Runtime pattern” on page 35.
Furthermore, necessary application development steps and the final setup of the
new mobile extension of the inventory system (Mobile Supply Tracking System)
are documented.

11
© Copyright IBM Corp. 2005. All rights reserved. 211

11.1 Overview
This section is a summary of the requirements extracted from ITSO Railway’s
inputs for the mobile extension of their inventory management system. This
mobile extension will be called Mobile Supply Tracking System (MSTS).

The following diagram is the Runtime pattern we implemented in this particular
scenario.

Figure 11-1 Runtime pattern for the offline forms scenario

The runtime mapping with the products described in this chapter can be found in
the following diagram.

ISP Gateway
(Pervasive
services)

User

Outside World
Demilitarized Zone

(DMZ) Internal Network

Client

Data servicesData services
Pervasive

client
services

Pr
ot

oc
ol

 F
ire

wa
ll

D
om

ai
n

Fi
re

wa
ll

Presentation/
Application Application

store and forward

Rich Device=Store and forward application pattern

Personalization
Server

Directory
and Security

Services

Database

Existing data
and

Applications
Application

Server
Presentation

Server

Collaboration
server

Pervasive
extension
services

Web
server

redirector
212 Patterns: Pervasive and Rich Device Access Solutions

Figure 11-2 Rich Device=Store and forward::Product mapping=Windows

11.1.1 Customer requirements
The ITSO Railway company was created as a way to explain the general
approaches for mobilizing applications through a series of scenarios. Examples
for customer requirements are described and listed in Chapter 5, “ITSO Railway
sample overview” on page 87.

The following business context for the inventory stock tracking of used train
supplies was identified (see Figure 11-3 on page 214). Currently, the ITSO
Railway delivery staff tracks train supplies on paper forms. At the end of the day,
this paper form is delivered to the service station. The data entry clerks use these
forms to enter the amount of used supplies into the inventory system. This allows
ITSO Railways to track the amount of supplies leaving the existing stock in the
inventory system. Supplies running out of stock can be automatically identified
and re-ordered (for example, by the ERP system).

In order to improve the existing inventory stock tracking business process, it is
planned to equip the delivery staff with PDAs. This implies that the existing
inventory system must be extended with a Mobile Supply Tracking System,
which consists of a mobile extension to the inventory system (server part of the
MSTS) and a Mobile Supply Tracking client application (client part of the mobile
extension running on the PDA). By doing this, a faster, more stable process will
be achieved.

ISP Gateway
(Pervasive
serv ices)

User

Outside W orld
Demilitarized Zone

(DM Z) Internal Network

Client

Data servicesData services

Personalization
Server

Directory
and Security

Services

Pervasive
extension
serv ices

Pervasive
client

serv ices

Existing data
and

Applications

Pr
ot

oc
ol

 F
ire

w
al

l

Application
Server

Presentation
Server

D
om

ai
n

Fi
re

w
al

l

•Everyplace Client for Pocket PC:
- DB2 Everyplace 8.1
- Offline form s
- MQ Everyplace

•W ebSphere Client Technology,
Micro Edition

W indows 2000 + SP4
•IBM W ebSphere Application
Server V5.0 HTTP Plug-in
•IBM HTTP Server V1.3.26

W indows 2000 + SP4
•W ebSphere Everyplace Access V5.0
•DB2 Everyplace 8.1
•M Q Everyplace

Collaboration
Server

W indows 2000 + SP4
•W ebSphere Portal Server V5.0.2.1
•Dom ino Server 6.5.1
•IBM W ebSphere Application Server
Enterprise V5.0.2.3

W indows M obile 2003

W eb
serv er

redirector
 Chapter 11. Mobile Inventory Management with offline forms 213

The following sections list the functional and non-functional requirements to
define the baseline by which the new Mobile Supply Tracking System must be
designed to extend the existing inventory system. A sample use case model with
the most important use cases is also created.

Figure 11-3 ITSO Railway Business Context for inventory stock tracking process of used
train supplies

11.1.2 Functional requirements and use case model
The functional requirements of the ITSO Railway Mobile Supply Tracking System
example are extracted from the customer requirements. They provide the main
input for the use case model. The use case model work product is used to
describe the functional requirements of the system under development. The
model uses graphical symbols and text to specify how users in specific roles will
use the system (that is, use cases). The textual descriptions define the use
cases from a user's point of view. They do not describe how the system works
internally or its internal structure or mechanisms.

Actor names, actor descriptions, use case numbers, use case names, use case
business events, use case overviews, and the communication associations
between the actors and the use cases provide an overview of the functional

Networked
Workstation

Networked
Workstation

Delivery
Person

Supply
Form

Data Entry
Clerk

Administrator

Electronic
Supply Form

ERP System
Backend

Inventory System
(Backend)

Current System (Data entry in
paper form, forwarded to the
Data Entry Clerk)
New System (Data entry in
electronic form on PDA)

Business Context
214 Patterns: Pervasive and Rich Device Access Solutions

requirements. The other constructs of the model document the expected usage,
user interactions, and behaviors of the system in different styles and depth.

We simplified the use case model for the ITSO Railway Mobile Supply Tracking
System example and reduced the use case description to the following
constructs:

� Actors (name, description, status, superclass, subclass, and associations)

� Use cases (number, subject area, business event, name, overview,
preconditions, description, associations, inputs, outputs, usability index, and
notes)

� Communication Association diagram

The presented project approach for the ITSO Railway Mobile Supply Tracking
System example is mainly based on the IBM Global Services Method
recommendation.

Actors
The following actors are of interest for the new Mobile Supply Tracking System:

� Delivery person
� Administrator

Figure 11-4 ITSO Railway Mobile Supply Tracking System

The delivery person is the main actor in this example. At the beginning of the
working shift the user picks up his fully charged PDA containing the Mobile
Supply Tracking client application (the electronic Train Schedule page and the
Supply Consumption Record forms). The Train Schedule page contains the
information of trains needing to be equipped with the new supplies during their

Networked
Workstation

Delivery
Person

Data Entry
ClerkAdministrator

Inventory System
(Backend)

Extends
Using

Actors
 Chapter 11. Mobile Inventory Management with offline forms 215

stop at the station. The delivery person uses this schedule to check the supplies
of the trains assigned to him. If during these checks supplies needed to be
restocked, the consumed amount must be entered onto the electronic forms
(Supply Consumption Record). At the end of the working shift, the electronic
forms are synchronized back to the Mobile Supply Tracking System server
where these forms can be further processed. The PDA is placed in its networked
cradle for this synchronization and is charged at the same time.

The administrator is a general system administrator who is responsible for the
deployment, maintenance, and consistent operation of the inventory system and
its supply tracking application for the delivery staff. This person is a user
administrator in the sense that he provides the delivery staff with access to this
application.

The following tables describe the actors of the ITSO Railway Mobile Supply
Tracking System example (see Table 11-1 and Table 11-2).

Table 11-1 Actor delivery person

Table 11-2 Actor Administrator

Actors name

Brief description

Delivery person

The delivery person equips the train with supplies to replace
those used up during a train journey (for example, hand towels,
soap). He must record the amount of used supplies for the
inventory system.

Status Primary.

Relationship

Inheritance Subclass: Administrator.

Superclass: None.

Association to use
cases

Start application, input data and submit form, sync forms.

Actors name

Brief description

Administrator

The administrator of the inventory system maintains the
system, deploys the Mobile Supply Tracking client application
(electronic train schedule, supply consumption record, and
synchronization), and makes it available to the delivery
person’s PDA.

Status Secondary.
216 Patterns: Pervasive and Rich Device Access Solutions

Use cases
Use cases describe functional requirements. They are used as input for the
system and application design. Furthermore, use cases are the key proof points
for the solution delivered to the customer. The final solution test runs utilize the
use cases to which the customer and the system provider agreed to at the
project’s start.

The following use cases were considered in the ITSO Railway inventory system
example:

� Start application
� Input data and submit form
� Synchronize forms
� Deploy and manage application

Table 11-3 on page 218 through Table 11-6 on page 222 contain more detailed
descriptions.

Use case diagram
Actors and use cases communicate to execute the interaction described in the
use case. This communication is modeled as a communication-association,
shown in Figure 11-5 on page 218. The direction of the arrow shows the direction
in which the communication is initiated. In addition, Figure 11-5 on page 218
includes the application workflow for the delivery person as well as the
relationship between the use cases.

The administrator makes the Mobile Supply Tracking System application
available to the appropriate delivery people. Each delivery person starts the
client application on the PDA at the beginning of their shift (working day). The
delivery people enter the amount of used supplies onto the Supply Consumption
Record forms in their PDAs and submit them locally (the submitted forms are
stored locally in the PDA in a file or database). At the end of the shift, the locally
submitted forms are transmitted through the Mobile Supply Tracking System
server to the inventory system through synchronization.

Relationship

Inheritance Subclass: None.

Superclass: Delivery person.

Association to use
cases

Deploy and manage application.
 Chapter 11. Mobile Inventory Management with offline forms 217

Figure 11-5 Mobile Supply Tracking System application use cases

The following tables describe use cases for the new ITSO Railway Mobile Supply
Tracking System in detail.

Table 11-3 Use case 1: Start application

Use case #1

Subject area

Start application

Data input

Business event Delivery person starts his working day and equips the first train
car with additional supplies.

Actors Delivery person.

Use case overview Delivery person starts the Mobile Supply Tracking client
application on the PDA, which is used to record the amount of
used supplies.

Preconditions - PDA is fully charged.
- Mobile Supply Tracking client application successfully
deployed on PDA.

Sync FormInteraction
Workflow

Delivery
Person

Administrator

Submit
Form

Deploy and
Manage

Application

Start
Application

Input Data
in Form
218 Patterns: Pervasive and Rich Device Access Solutions

Table 11-4 Use case 2: Input data and submit form

Termination
outcome

Condition effecting termination outcome

1) Train Supply
Consumption form
loaded

- PDA password entered correctly.
- Authentication with Mobile Supply Tracking client application
was successful.

2) Supply
Consumption form
not loaded

- PDA cannot be switched on (not charged).
- PDA password incorrect.
- Authentication with application was not successful.

Use case
description

Delivery person starts the shift with picking up the PDA from the
service station (fully charged and synchronized). He switches on
the PDA, enters the PDA password, and starts the Mobile
Supply Tracking client application (authentication necessary):
- Delivery person opens up train schedule page to find out which
train on which platform must be checked.
- First supply consumption record form is loaded.

Use case
association

- Relies on deploy and manage application use case.
- Used by Input Data and Submit Form and Sync Forms use
cases.
- Needs sync forms use case.

Inputs summary - PDA password and application authentication data.

Output summary -

Usability index -

Use case notes Use case provides the device and application access security
features for the Mobile Supply Tracking client application.

Use case #2

Subject area

Input data and submit form

Data input

Business event Delivery person equips and refills trains with the supplies needed.

Actors Delivery person.

Use case overview Delivery person enters amount of used supplies into the Supply
Consumption Record form.

Preconditions Start application on PDA (Mobile Supply Tracking client
application).

Termination
outcome

Condition effecting termination outcome
 Chapter 11. Mobile Inventory Management with offline forms 219

Table 11-5 Use case 3: Sync forms

1) Validation
successful and
form submitted

- Data entered in correct format. Validation function returns
successful when Submit button is clicked.
- Form is locally stored for synchronization.

2) Validation
unsuccessful, form
not submitted

- Data entered in wrong format. Validation function returns failure
when Submit button is clicked.
- Form cannot be submitted and locally stored.

Use case
description

Delivery person equips the train car with additional supplies
according to train schedule form. He opens up the Supply
Consumption Record form and enters the train number and the
amount of used supplies.
The form on the PDA must provide the supply’s name and a data
input field for the used amount of the supply. The amount must
be entered as a numeric number.
The Submit button invokes a validation function for the amount
field. If the validation is successful, the form is stored locally. It is
ready to be sent to the inventory system in the backend during
Mobile Supply Tracking System synchronization.

Use case
association

- Relies on Deploy and Manage Application use case.
- Used by Sync Forms use case.
- Needs Start Application use case.

Inputs summary Supply consumption record form:
- Train number (numeric, 1 letter + 5 digits, fixed label preferred)
- Item type (fixed label) and corresponding used amount of this
item (numeric, min. 1 digit): soap, hand towels, paper rolls,
tissues

Output summary - Supply consumption record form (all validated input data ready
to be sent to the backend).

Usability index Data input must be easy to understand and to handle for user.

Use case notes This is the most important use case for the end user (delivery
person). It is tightly coupled with the Sync Forms use case.

Use case #3

Subject area

Sync forms

Data input

Business event Delivery person finishes supplying scheduled trains (end of a
working shift).

Actors Delivery person.
220 Patterns: Pervasive and Rich Device Access Solutions

Use case overview Delivery person synchronizes the submitted supply
consumption records with the backend inventory system.

Preconditions - Authentication with Mobile Supply Tracking client application
was successful (see use case #1)
- PDA placed in network-attached cradle

Termination
outcome

Condition effecting termination outcome

1) Train Supply
Consumption Record
forms synchronized

- Mobile Supply Tracking System (synchronization
middleware), inventory system, and network connection are
available and functioning.
- Locally provided username and password are correct.

2) Forms not
synchronized

- Mobile Supply Tracking System (synchronization
middleware), inventory system, and network connection are
not available and/or functioning.
- Locally provided username and password are incorrect.

Use case description Delivery person finishes the day and all filled-in forms were
successfully submitted (stored locally).
Delivery person puts PDA in network-attached cradle in
service station and synchronizes forms (inventory data is sent
to the backend).
Mobile Supply Tracking client application is stopped and PDA
is left in the cradle for recharging.

Use case association - Relies on Deploy and Manage Application use case.
- Used by Start Application use case.
- Needs Input Data and Submit Form use case for
synchronization.

Inputs Summary Filled-in supply consumption record forms.

Output Summary Data entered in supply consumption record forms is
transmitted to inventory system.

Usability Index Synchronization should be possible by pressing a button.

Use Case Notes This case is the most important use case from the inventory
systems point of view. All data entered by the delivery person
must be transmitted to the inventory system without errors
(relies on a robust, scalable middleware for forms
synchronization).
 Chapter 11. Mobile Inventory Management with offline forms 221

Table 11-6 Use case 4: Deploy and manage application

Use case #4

Subject area

Deploy and manage application

System maintenance, user administration

Business event New Mobile Supply Tracking client application for delivery staff
is available and/or delivery staff members have changed.

Actors Administrator.

Use case overview Administrator deploys Mobile Supply Tracking client
application for delivery staff and makes it available to
appropriate staff members.

Preconditions Mobile Supply Tracking client application was developed and
is available. Application users and their access rights have
been defined.

Termination outcome Condition effecting termination outcome.

1) Mobile Supply
Tracking client
application
successfully
deployed and users
are assigned

- Authentication successful.
- Mobile Supply Tracking client application was installed
successfully.
- User access rights were assigned to delivery staff members.
- Forms have been made available as offline content.

2) Application not
deployed and is not
available to users

- Authentication not successful.
- Mobile Supply Tracking client application could not be
installed.
- User access rights were not assigned to delivery staff
members.
- Train Schedule page and Supply Consumption Record form
are not made available as offline content.

Use case description Administrator logs on to administration server, installs Mobile
Supply Tracking System and starts it.
Administrator assigns user access rights to delivery staff
members.
Makes Mobile Supply Tracking client application available for
delivery staff members.

Use case association This use case is a precondition for all other use cases.

Inputs summary Mobile Supply Tracking client application has to be provided.

Output summary Mobile Supply Tracking client application is available.

Usability index User administration should be conform to existing user
management.
222 Patterns: Pervasive and Rich Device Access Solutions

11.1.3 Non-functional requirements
This section lists non-functional requirements that apply mostly to applications on
mobile devices.

The non-functional requirements for a business system address those aspects of
the system that do not directly effect the functionality of the system as seen by
the users. Nevertheless, they can have a profound effect on how that business
system is accepted by both the users and the people responsible for supporting
that system.

The non-functional aspects of a business system cover a broad range of topics.
The major non-functional themes identified by the AED Technical Council are
listed below:

� Performance
� Scalability
� Availability (including recoverability and reliability)
� Maintainability (including flexibility and portability)
� Security
� Manageability
� Environmental (including safety)
� System usability
� Data integrity (including currency, locality of updating, data retention)

In the ITSO Railway Mobile Supply Tracking System example, we are looking at
these non-functional requirements from a more generalized view. Many of those
are addressed already through the choice of WebSphere Everyplace Access as
the Mobile Supply Tracking System middleware for our forms-based Mobile
Supply Tracking client application example. The WebSphere Portal Server
running on WebSphere Application Server covers scalability, availability,
security, and data integrity.

Performance
Performance is considered to be addressed through the offline forms capability
of the Mobile Supply Tracking client application itself. Since the Supply
Consumption Record form can be filled-in without a backend connection, the
performance of the backend system does not influence the performance
experienced by the user. System performance will only be noticed during the
synchronization process of the filled form with the backend system.

Use case notes Mobile Supply Tracking client application will not be accessible
for delivery staff members if this use case is not successful.
 Chapter 11. Mobile Inventory Management with offline forms 223

The following response times of the Mobile Supply Tracking client application
and system are required.

Table 11-7 Target end-to-end and local response time

Availability
Availability is frequently an important Service Level Requirement. The table
below lists the specification of the desired availability. Availability requirements
typically vary by use case and component; each row represents a collection of
use cases in the form of a component with common availability requirements.

Table 11-8 Availability requirements

Maintainability
All application components (Mobile Supply Tracking client application, Mobile
Supply Tracking System server and backend) must be independent of each

Target end-to-end and local response time

Frequency of usage High frequency
(5–10 times/per day)

Low frequency
(1–5 times/per day)

Locally entered data in form 2 sec. 1 sec.

End-to-end synchronization of form Not applicable 300 sec.

Component view Availability requirement impact of failure

Handheld device (PDA) During working time of
delivery personal (7 days a
week, 8 hours a day)

High

- Used supplies would not
be recorded with PDA
- Work around: Old paper
forms could be used, data
must be entered manually

Mobile Supply Tracking
client application
(supply consumption
record, train schedule)

During working time of
delivery personal (7 days a
week, 8 hours a day)

High

- Used supplies would not
be recorded with PDA
- Work around: Old paper
forms could be used, data
must be entered manually

Mobile Supply Tracking
System server
(Synchronization)

Fully available at the end of
each shift of the delivery staff
(7 days a week, minimum
6:00-7:00, 14:00-15:00,
22:00-23:00)

High, forms can be
synchronized at the
beginning of the next shift,
trolley with supplies might
not be adequately filled
224 Patterns: Pervasive and Rich Device Access Solutions

other from a development and maintenance point of view. The following
components can be designed, developed, tested, and maintained independently
of each other:

� Middleware components (client and server software for offline forms
applications and synchronization)

� Offline forms application (supply consumption record and train schedule
forms)

� Inventory system (backend)

Security
The PDA should be protected with a power-on password. The delivery person
must also authenticate against the local Mobile Supply Tracking client
application.

Manageability
Manageability mainly concentrates on the application management. It contains
the way the forms-based application is managed from an administrators point of
view.

The Mobile Supply Tracking client application must be remotely deployable,
configurable, and manageable.

System constraints
System constraints are mainly defined by the used handheld device (PDA) and
the size of the Mobile Supply Tracking client application.

A chosen PDA defines capabilities for the application, such as screen size,
resolution, browser capabilities, battery lifetime, and weight. The browser
capabilities heavily influence the design of the offline forms application (Supply
Consumption Record). It is beyond the scope of this book to investigate all the
different types of devices and their constraints.

System usability
We are covering the usability of the Mobile Supply Tracking System example
from the user’s perspective. The Mobile Supply Tracking client application
including the Supply Consumption Record form must be easily understood and
easy to navigate for the user.

Data integrity
Data entered in the Supply Consumption Record form must be stabley
transferred to the backend system. The WebSphere Everyplace Access Offline
 Chapter 11. Mobile Inventory Management with offline forms 225

forms Synchronization service as part of the Mobile Supply Tracking System
server takes care of this requirement.

We will look at these non-functional requirements and how they are fulfilled in the
following chapters in more detail.

11.1.4 Solution approach
The ITSO Railway customer requirements were the input for the example
solution of the Mobile Supply Tracking System described in the following
sections. The following approach was taken to get to a forms-based solution.

� Identification of the problem that has to be solved by considering the
requirements and use cases to derive an architectural overview.

� Choice of suitable technology and Runtime pattern to create a component
model for the solution.

� Application software development. Choice of a client programming model.
Adaptation of this model to the customer use cases, identification of
programming tools, and choice of software technology.

� Deployment of solution and roll-out of application to users. Installation and
configuration of solution on the pervasive server as well as on the handheld
device must be performed. This includes setup of user access configuration
to the application as well as software distribution to the handheld device.

� Maintenance and operation of the solution. Changes and updates of
handheld applications as well as middleware components must be centrally
managed.

The solution development and deployment on the server side (Mobile Supply
Tracking System server) are described in the following chapters. The roll-out and
maintenance of the Mobile Supply Tracking client application is covered in more
detail in Chapter 16, “Maintaining mobile devices” on page 393.

11.2 Architectural overview
Regarding the ITSO Railway customer requirements (see 11.1, “Overview” on
page 212), the Mobile Supply Tracking client application for the delivery person
must be able to work without a constant connection to the Mobile Supply
Tracking System sever and Inventory system. The used supplies must be
recorded by entering the consumed amount on the handheld device. This implies
that a local repository must be present on the device. Data stored in this
repository must be transmitted to the inventory system at a certain time via some
middleware.
226 Patterns: Pervasive and Rich Device Access Solutions

With this conclusion in mind, the Pervasive runtime pattern for Device-based
solutions can be applied (please refer to “Rich Device=Store and
forward::Runtime pattern” on page 44). The high-level solution architecture in
Figure 11-6 on page 228 was derived from the Runtime pattern in Figure 3-5 on
page 45. This architecture for the replacement of the paper forms for tracking
used train supplies consists of three parts:

� Device running the Mobile Supply Tracking client application

It instantiates the client including the pervasive client services node of the
applied Runtime pattern in Figure 3-5 on page 45. The device is the physical
replacement of the paper form through a handheld device (PDA). The Mobile
Supply Tracking client application running on the PDA provides an electronic
form with nearly the same look and feel as the paper form. The user (delivery
person) will enter the amount of the used supplies into this electronic form
(Supply Consumption Record). The entered data is stored locally (Offline
Content Cache in Figure 11-6 on page 228). An online connection to the
inventory system in the backend was not considered as appropriate because
it would have implied an always available radio network connection.
Unfortunately, the coverage of radio networks cannot be guaranteed within a
train passenger car. It must be possible to enter data in disconnected mode.

� Pervasive server (mobile supply tracking system server)

The pervasive server instantiates the directory and security services,
personalization server, presentation server, and application server nodes
including the pervasive extension services node of the Runtime pattern in
Figure 3-5 on page 45. It acts as middleware between the device side and the
inventory system in the backend (enterprise server). It is responsible for the
consistent data transmission from the device to the inventory system
(synchronization of cache content).

� Enterprise server

The enterprise server represents the runtime environment of the inventory
system (instance of existing data and applications node of Runtime pattern in
Figure 3-5 on page 45). Data entry clerks have direct access to this system to
enter all data from the paper supply consumption record. This data is stored
and maintained in a local data storage. Other applications, for example,
Enterprise Resource Planning applications, could track all changes and
trigger further activities (for example, order low-running supplies).
 Chapter 11. Mobile Inventory Management with offline forms 227

Figure 11-6 Architectural overview diagram

The pervasive server accesses the inventory system in the same way as the
data entry clerks do. In doing this, it extends the inventory system access to
mobile clients (delivery staff). Data is entered offline in the electronic form
(Supply Consumption Record) on the handheld device and transmitted to the
inventory system later on. For this data transmission, the handheld device is
placed in a cradle with a network connection to the pervasive server (for
example, directly through Ethernet or a network-attached service PC).

11.3 System design overview
This chapter discusses the chosen solution design of the ITSO Railway Mobile
Supply Tracking System solution for the delivery staff. After a more detailed
architectural overview, examples for a component and an object model are also
given.

11.3.1 General considerations for intermittently connected
applications

The following three decision points were addressed in the ITSO Railway
inventory system example:

� Decision about handheld device

Architectural Model

Enterprise ServerDevice

Offline
Content

Cash

Mobile Supply
Tracking Client
Application for

Delivery Person Mobile Supply
Tracking

System Server
Pervasive

Server
(Offline Content

Sync Server)

Storage

Inventory System
228 Patterns: Pervasive and Rich Device Access Solutions

Consider customer requirements (usability, security, weight, battery lifetime,
screen size, etc.). This decision leads to a device with certain computing
capabilities (operating system, Web browser, RAM/ROM size, CPU
performance, etc.).

� What intelligence needs to be implemented in the application on the device?
Which business-critical processes must be covered?

– These questions also influence the handheld decision.

– Some applications allow having more computing power on the server side
rather then on the client side (also see Figure 11-12 on page 238).

– The amount of data entered in the handheld device and the amount
transmitted back and forth between the handheld and the server must be
considered.

� Which security level must be addressed on the device and through the
application?

– This influences the handheld hardware and software choices (password
and encryption capabilities).

– Security on an application level could be managed by the pervasive
server. How is this managed over insecure networks?

Two approaches for offline capable applications on handheld devices were
introduced in 3.2.5, “Rich Device=Store and forward::Runtime pattern” on
page 44.

� Complex applications on handheld device with appropriate computing power
(with more client-side application logic in Figure 11-12 on page 238).

This includes powerful local data storage, such as a relational database (such
as IBM DB2e). This database would contain data copies of the backend
database. Data is kept consistent between backend database and device
database by an advanced synchronization mechanism. Comprehensive
application logic is implemented and managed by an application framework
on the device, such as OSGi. Secure transaction and data exchange between
device and backend can be handled through an extension of the backend
messaging system (such as IBM WebSphere MQ).

Refer to Chapter 13, “Using Workplace Client Technology, Micro Edition” on
page 283, where such a solution approach is described in detail.

� Simple offline forms actions-based applications for data entry (with more
server-side application logic in Figure 11-12 on page 238)

What does it mean for form actions to be performed offline? Form actions can
either be performed server-side or client-side. Form actions that are
performed client-side can be referred to as being performed offline. The client
 Chapter 11. Mobile Inventory Management with offline forms 229

does not have to be connected to the server for offline actions to be
performed.

Simple applications for data input without needing a database for storing and
retrieving data in offline mode can be addressed by an offline forms action
approach. The handheld device can be less powerful than the one needed for
the first solution since only HTML forms are used to collect data on the
device. The handheld device must provide a forms-capable Web browser. It
also needs the possibility to store the filled-in and submitted forms locally. A
pervasive client or agent must be present to synchronize the local cache
content (locally submitted forms) with the originator of the form. This can be
applied to many low-performance mobile devices with Web browsers.

In addition, validations for field entries are a good choice to be performed
offline, because the validation function takes a small amount of computing
power and is performed without exchanging information with the database.
Offline validations utilize a light-weight JavaScript validation library file that is
cached on the device. For instance, a user connects to the Web and
downloads a form that contains offline field validation capability. When the
user downloads the form, the validation library is cached on the device. The
user can then disconnect from the Web and continue working with the form,
entering values into fields and having those values validated offline (for more
information about form field validations, refer to 11.4.2, “Development of
forms-based applications for mobile devices” on page 237.)

The first approach is feasible for the relatively complex applications (see the
ticketing application from Chapter 13, “Using Workplace Client Technology, Micro
Edition” on page 283). The second approach is suitable for the simple ITSO
Railway Mobile Supply Tracking System for the delivery staff. The technology
used is also referred to as mobile access using offline forms actions. Details
about the different client programming models can also be found in Chapter 6,
“Pervasive application types” on page 101.

11.3.2 Mobile Supply Tracking System solution outline
Taking into account the ITSO Railway customer requirements and use cases as
well as considering the two possible approaches (see 11.3.1, “General
considerations for intermittently connected applications” on page 228), a solution
based on offline forms is an appropriate solution option for the Mobile Supply
Tracking System. Figure 11-7 on page 231 shows a detailed architectural
overview based on WebSphere Everyplace Access.
230 Patterns: Pervasive and Rich Device Access Solutions

Figure 11-7 ITSO Railway Mobile Supply Tracking System solution outline using WebSphere Everyplace
Access

There are three major blocks involved in this model (a 3-tier architecture):

� Inventory system and Web server

The inventory system is the legacy application that stores the amount of used
supplies in a relational database. The database content is maintained through
a Web interface.

The Web server stands for any HTML content serving source in the ITSO
Railway network. In our example, it contains the Web page with the train
schedule and the trains that have to be supplied by the delivery staff (daily
schedules for all delivery people).

� WebSphere Everyplace Access with WebSphere Portal Server (Mobile
Supply Tracking System Server)

This block is the middleware tier. It contains WebSphere Everyplace Access
including the WebSphere Portal Server. Portlets can display any content from
the Web Server. Forms-based portlets, such as the ITSORailwayInventory
portlet, are used to access the inventory system. They contain the
ITSORailwayInventory application with the Supply Consumption Record form,

Retrieve
Page or

Form
(Get)

Submit
Form
(Post)

Mobile Supply Tracking System Server
WebSphere Everyplace Access

WebSphere
Portal Server

Offline Capable Portlets
for Mobile Supply
Tracking System

Inventory
System

Database

Cache

Web
Server

WebCache
(Offline
Content
Servlet)

WebCache
(Offline
Content

Synchronization
Servlet)

Everyplace
Client

Web
Browser

Retrieves Web page from content source and provides Web page
including concatenating pages up to the configured link depth.
Retrieves form from portlet. After submitting the form on the client
the submitted content is sent back to the ITSORailwayInventory
portlet for further processing.

Form
(ITSO Railway Supply
Consumption Record)

Static HTML Page
(Train Schedule for
Delivery Person)

Mobile Supply Tracking Client
Application

Device

Web
ContentWebSphere

Everyplace Offline
Portal Page
 Chapter 11. Mobile Inventory Management with offline forms 231

which is made available to the mobile workers (delivery staff). WebSphere
Everyplace Access simply manages this mobile extension by retrieving the
Web content from the Web Server and the forms on behalf of the user.

11.Device (Mobile Supply Tracking client application)

The Mobile Supply Tracking client application provides the human interface to
the portal content provided by the portlets (HTML pages and forms). The
Everyplace Client is the counterpart of the WEA server on the device.
Together they assure that the portlet-generated HTML content and forms are
locally stored on the device (train schedule HTML page and Supply
Consumption Record form). To assure offline browsing of the HTML pages
with a configured link depth, the URLs included in the chosen Web pages
(placed on the offline page of the WebSphere Everyplace Access portal) are
rewritten and pointed to the locally stored sub pages. The Web browser on
the device can now retrieve the HTML pages and forms directly from the local
cache. The Everyplace Client on the device and the WebCache on the
WebSphere Everyplace Access server take care of the submitted ITSO
Railway Supply Consumption Record forms.

11.3.3 Component model
The component model was derived from the solution outline in Example 11-7 on
page 231. It uses existing features from WebSphere Everyplace Access:

� WebSphere Portal Server (existing component)

The ITSO Railway Mobile Supply Tracking application was implemented
based on portal technology. It follows the Model-View-Controller pattern (see
ITSORailwayInventoryPortlet, ViewBean, SessionBean, and View JSP). The
ITSO Railway Supply Consumption Record is a form contained in the
ITSORailwayInventoryView JSPs. Two JSPs are necessary for the two
supported device classes, one for PDA browsers supporting PDA markup and
one for HTML browsers. Both browsers must support JavaScript to utilize the
field validation function (also contained in the JSP code).

� WebSphere Everyplace Access Offline Forms Support

The support of offline browsing and offline forms is achieved by the offline
content feature shipped with WebSphere Everyplace Access (WebCache and
the Everyplace client components). Portlets placed on the Offline Page in
WebSphere Everyplace Access are made available for offline viewing on the
PDA.
232 Patterns: Pervasive and Rich Device Access Solutions

Figure 11-8 ITSO Railway Mobile Supply Tracking System components

The following tasks must be carried out for the Mobile Supply Tracking System
implementation:

� Development effort: Portlet development for access to the inventory system
(Mobile Supply Tracking System portal application: ITSORailwayInventory).

� Configuration effort: Developed portlets and Web pages must be configured
as offline content on the WebSphere Everyplace Access server.

� Effort on the device: Installation and configuration of the Mobile Supply
Tracking client application (Everyplace Client and the Offline Page/Forms
applications).

11.3.4 Object model
The following classes are necessary for the Mobile Supply Tracking System
portal application (ITSORailwayInventory):

� ITSORailwayInventoryPortlet

Inventory
System

Supply
Consumption

Record
Form

View.jsp
(for PDA)

ITSORailwayInventory
ViewBean

Select

ITSORailwayInventoryPortlet
(Controller)

Request/
Submit

Cache

Everyplace
Client

WebCache
(Offline
Content
Servlet)

WebCache
(Offline
Content
Servlet)

Request

Field
Validation

Supply Consumption Record Forms
rendered for PDA

Supply Consumption Record Forms
rendered for HTML browsers

Web Browser
(with JavaScript

Support)

Synchronization

ITSORailwayInventoryPortlet
(Controller)

Using

ITSORailwayInventory
SessionBean

Write

Supply
Consumption

Record
Form

View.jsp
(for HTML)

Response

Set/Get

Get

Get

Set/Get

ModelView
 Chapter 11. Mobile Inventory Management with offline forms 233

This portlet is the controller and receives the HTTP requests. It selects the
appropriate View JSP depending on the user agent field. The PDA View JSP
is for PDA browsers and the HTML View JSP is for full HTML browsers.

� ITSORailwayInventoryViewBean

The view bean saves the action URI and the actions that are performed on
the form for later evaluation.

� ITSORailwayInventorySessionBean

The session bean captures the data entered in the form after the form was
submitted. For our example, the database access to the ITSO Railway
Inventory system is also included in here.

Furthermore, two JSPs, one for each supported browser type (PDA or HTML),
must be available to provide the appropriate HTTP response to the requesting
client. The JSPs create the content for displaying the form on the user’s browser.
They also capture the entered data (TRAIN_NO, SUPPLY_1, AMOUNT_1) and
evaluate the data entered in Amount field (JavaScript function validate()) after
clicking the Submit button on the form:

� ITSORailwayInventoryView JSP for HTML
� ITSORailwayInventoryView JSP for PDA

11.4 Application development
In this section, the implementation of a sample application which meets the ITSO
Railway customer requirements is described. After a short introduction to the
development tools and their usage, the process of the generation of the sample
application for the Mobile Supply Tracking System is explained in more detail.

11.4.1 Introduction to WebSphere Everyplace Toolkit
The WebSphere Everyplace Toolkit helps developers write portlet applications
for wireless and mobile clients. Details about the toolkit’s functions have already
been introduced in 8.2, “Everyplace Toolkit” on page 138.

Version 5.0.1of the toolkit, which was used for this book, contains support for the
following markup languages:

� WML 1.1, 1.2 and 1.3
� XHTML Basic 1.0, XHTML Mobile Profile 1.0
� HTML 3.2 and 4.01
� i-mode HTML 1.0
234 Patterns: Pervasive and Rich Device Access Solutions

The Everyplace Toolkit also supports various device emulators. Refer to the
release notes for supported versions. We used the Palm Simulator V5.3, which is
available for free download from PalmOne’s Web site:

http://www.palmone.com

Version 5.0.1 of WebSphere Everyplace Toolkit was successfully installed with
the following method (refer to InstallGuide.htm shipped with the toolkit):

1. Install WebSphere Studio Application Developer V5.1.1.

Use a short path name (less than eight characters, for example, c:\wsad511
for the installation directory).

Choose to install the Integrated Test Environments for WebSphere
Application Server 5.0.2.

Select Examples for Eclipse Plug-in Development under Additional
Features (leave the other options unchecked; see Figure 11-9).

Figure 11-9 WebSphere Studio Installation Features

2. Install Interim Fix 002 for WebSphere Studio
(WebSphereStudioInterimFix002.zip). Follow the installation instructions and
do not change any default settings.

3. Install interim fixes for WebSphere Application Server (WASInterimFixes.zip).

4. Install WebSphere Everyplace Toolkit (EveryplaceToolkit501.exe).
 Chapter 11. Mobile Inventory Management with offline forms 235

http://www.palmone.com

a. The toolkit needs WebSphere Portal Toolkit. Choose to install it (see the
screen shot in Figure 11-10), including the WebSphere Portal Test
Environment (Figure 11-11).

b. Leave all directories to the suggested defaults.

c. Mounting of reference CDs into the local file system is recommended.

d. Choose Typical Install.

Figure 11-10 Everyplace Toolkit must install Portal Toolkit

Figure 11-11 Everyplace Toolkit installation options

5. Install WebSphere Portal 5.0 FixPack 2 for local debugging option
(updatePortalTestEnv502.bat).

6. Install WebSphere Portal 5.0.2 Cumulative Fix 1
(updatePortalTestEnv5021.bat).
236 Patterns: Pervasive and Rich Device Access Solutions

7. Optionally install device emulators for PocketPC and Palm OS.

11.4.2 Development of forms-based applications for mobile devices
This section provides information about developing form based applications.

Forms and business logic
Forms-based applications offer a high potential of reusability. They are very
flexible in terms of the amount of business and application logic, which they have
to cover. The goal is to avoid changes in existing applications or keep changes
as minimal as possible and reuse them. Figure 11-12 on page 238 shows the
relationship between business logic and forms. It explains that the application
logic can be flexibly deployed on either the client or the server side (enterprise
application side). In the case that the mobile device is not capable of running
complex client application logic, an application connector is used on the server
side to support forms. The application connector is the piece of software that
adopts existing enterprise applications to be forms compatible (see the first row
in Figure 11-12 on page 238). If the mobile device is a more powerful device
capable of running application logic, the application logic can be directly
implemented on the device (client) to make the existing enterprise application
accessible with forms (see the bottom row in Figure 11-12 on page 238). The
middle row in Figure 11-12 on page 238 shows an in-between approach. Some
logic is implemented on the client, and other logic is done by the application
connector.

A suitable approach out of the three possibilities for an application is chosen
depending on the device’s capabilities. The main advantage is that in all three
cases the form is the same. This makes it very flexible and portable. The same
forms application can run on different devices with different capabilities.
Depending on the customer and the device requirements, the application logic is
implemented through the application connector or the client application or
through both (according to Figure 11-12 on page 238).
 Chapter 11. Mobile Inventory Management with offline forms 237

Figure 11-12 Relationship between forms and business logic

Offline forms for WebSphere Everyplace Access
The following steps describe step-by-step the creation of an example for the
electronic Supply Consumption Record form used in the ITSO Railway Mobile
Supply Tracking System (refer to “Introduction to WebSphere Everyplace Toolkit”
on page 234 for installation details of WSAD):

1. Run the project wizard and create a new portlet project. Choose Portlet
Development and Portlet Application Project and click Next.

2. Assign a name to project: ITSORailwayInventory (Figure 11-13 on page 239).
Click Next using the default settings on the upcoming screens until the event
handling screen appears.

Simple
Form

Forms
Manager

Enterprise
Application

Form or Field
Invalid

Application
Connector

Converts form data to
application format

Implements all
business logic for
Enterprise application

Sync Channel

Form, Field or Transaction Data Invalid

Form and Field Validations

Client
Application Implements some business

logic for customer application

Simple
Form

Forms
Manager

Enterprise
Application

Form or Field
Invalid

Sync Channel

Form, Field or Transaction Data InvalidForm and Field Validations

Converts form data to
application format

Implements some
business logic for
Enterprise application

Client
Application

Application defined/managed
communications channel

Simple
Form

Forms
Manager

Enterprise
Application

Form or Field
Invalid

Form and Field Validations
Implements little
Enterprise application
business logic on the
server

Implements most business
logic for customer application

Forms and Business Logic
More Server-Side Application Logic

Form or
Field
Invalid

Application
Connector

More Client-Side Application Logic
Flexible placement of application components in the end-to-end continuum supports high reuse
238 Patterns: Pervasive and Rich Device Access Solutions

Figure 11-13 Enter project name in WebSphere Studio Portlet Project wizard

3. Add an action listener and forms example (see Figure 11-14 on page 240).
Click Next.
 Chapter 11. Mobile Inventory Management with offline forms 239

Figure 11-14 Add action listener and form sample in WebSphere Studio Portlet Project
wizard

4. Check PDA markup support and click Finish (Figure 11-15 on page 241).
240 Patterns: Pervasive and Rich Device Access Solutions

Figure 11-15 Add PDA markup support in WebSphere Studio Portlet Project wizard

The wizard automatically creates the whole project including the EAR files
and the portlet.xml file. The PDA markup support was automatically included
in the portlet.xml file (see Figure 11-16 on page 242).
 Chapter 11. Mobile Inventory Management with offline forms 241

Figure 11-16 Automatically created portlet.xml

All necessary Java and Web resource templates including JSPs for the PDA
markup are also automatically provided (see Figure 11-17 on page 243).
242 Patterns: Pervasive and Rich Device Access Solutions

Figure 11-17 Automatically created file templates

5. Run this wizard-generated code on the integrated WebSphere Portal Server
test environment. (Right-click the project folder, and choose Run on Server
from the context menu; see Figure 11-18 on page 244.) Create a new server
for WebSphere Portal v5.0 Test Environment using port 9081 (see
Figure 11-18 on page 244).
 Chapter 11. Mobile Inventory Management with offline forms 243

Figure 11-18 Run code created by the wizard in the integrated WebSphere Portal test
environment

6. Test the wizard-generated template code in the test environment. Enter a
number in the order id field and notice that this number is processed after
clicking the Submit button (displayed in the line above the order id field; see
Figure 11-19 on page 245 and Figure 11-20 on page 245). This code runs in
the integrated test environment. It was changed for the ITSO Railway Supply
Consumption Record form.
244 Patterns: Pervasive and Rich Device Access Solutions

Figure 11-19 View of automatically generated forms portlet

Figure 11-20 View of forms portlet after entering 123456789 in order ID field and clicking
Submit button

7. Change this code so that the used supplies from the ITSO Railway Mobile
Supply Tracking System example can be recorded with a Supply
Consumption Record form. Just change the layout of the form with
WebSphere Studio. The JSP editor provides a design view that allows adding
HTML and JSP-specific tags by dragging and dropping them onto the form
screen. In our example (ITSORailwayInventory project), only the form’s title
was changed. A drop-down list for the train numbers and a drop-down list for
the supplies, as well as an input field for the amount of the used supplies,
were added (changes in the ITSORailwayInventoryView.jsp; see listing in
Example 11-1).

Example 11-1 Layout changes in the ITSORailwayInventoryView.jsp

<FORM method="POST" action="<%=viewBean.getFormActionURI()%>" name="myForm_0"
onsubmit="return validate()">

<LABEL class="train_Num" for="<portletAPI:encodeNamespace
 Chapter 11. Mobile Inventory Management with offline forms 245

value='<%=ITSORailwayInventoryPortlet.TRAIN_NO%>'/>">train number: </LABEL>
<SELECT class="Train_no" name="<portletAPI:encodeNamespace

value='<%=ITSORailwayInventoryPortlet.TRAIN_NO%>'/>" id="train_no">
<OPTION>IC 2393</OPTION>
<OPTION>IR 481</OPTION>
<OPTION>EC 101</OPTION>
<OPTION>CIS 259</OPTION>

</SELECT>

<TABLE border="1"><TBODY><TR>
<TD width="98"> Supply
 (select name)</TD>

<TD width="83"> Amount
 (packages)</TD>
</TR>
<TR>

<TD width="98">
 <SELECT name="<portletAPI:encodeNamespace

value='<%=ITSORailwayInventoryPortlet.SUPPLY_1%>'/>" id="supply_1">
<option value="Soap">Soap</option>
<option value="Hand towels">Hand towels</option>
<option value="Toilet roles">Toilet roles</option>
<option value="Tissues">Tissues</option>

</select></TD>
<TD width="83">

 <INPUT class="wpsEditField" name="<portletAPI:encodeNamespace
value='<%=ITSORailwayInventoryPortlet.AMOUNT_1%>'/>" type="text"
size="3" maxlength="3"/><!--Validate-->

</TD>
</TR>

</TBODY>
</TABLE>

<INPUT class="wpsButtonText" name="<portletAPI:encodeNamespace

value='<%=ITSORailwayInventoryPortlet.SUBMIT%>'/>"
value="Submit" type="submit" />

</FORM>

Furthermore, the entered data (train number, type of used supply, and
amount of the used supply) are stored in the session bean after clicking the
Submit button on the handheld device (bold in Example 11-1 on page 245).
This data is stored in the ITSORailwayInventorySessionBean by the
ITSORailwayInventoryPortlet (see code changes in Example 11-2 and
Example 11-3 on page 247).

Example 11-2 ITSORailwayInventorySessionBean: Setter and getter method example
for storage and retrieval of form data (here the train number)

// store train number
public void setTrainNum(String trainNum) {

this.trainNum = trainNum;
246 Patterns: Pervasive and Rich Device Access Solutions

/* Here, a database connection should be added
 * to store the entered data from the form into
 * the ITSO Railway inventory system database.
 */

}
// return train number
public String getTrainNum() {

return this.trainNum;
}
// store the typ of the supply
public void setSupply_1(String string) {

supply_1 = string;
/* Here, a database connection should be added
 * to store the entered data from the form into
 * the ITSO Railway inventory system database.
 */

}
// return typ of the supply
public String getSupply_1() {

return supply_1;
}
// store the amount the supply
public void setAmount_1(String string) {

amount_1 = string;
/* Here, a database connection should be added
 * to store the entered data from the form into
 * the ITSO Railway inventory system database.
 */

}
// return amount of supply
public String getAmount_1() {

return amount_1;
}

Example 11-3 Changes in the actionPerformed() method of ITSORailwayInventoryPortlet
for storing forms data in session bean

if(FORM_ACTION.equals(actionString)) {
// Set form text in the session bean
sessionBean.setTrainNum(request.getParameter(TRAIN_NO));
sessionBean.setSupply_1(request.getParameter(SUPPLY_1));
sessionBean.setAmount_1(request.getParameter(AMOUNT_1));

}

8. Finally, a field validation was added to the Supply Consumption Record form
using the WebSphere Studio field validation wizard. The form can only be
submitted if the entered amount of supplies is a digit. An error message is
displayed if a non digit character (for example, a letter) is entered into the
 Chapter 11. Mobile Inventory Management with offline forms 247

amount field. It must be remembered that the validation function is a
JavaScript implementation that only works on JavaScript-capable browsers.

The validation function is easily added by right-clicking the amount field in the
design window of the ITSORailwayInventoryView.jsp (see Figure 11-21).
Right-clicking the amount field shows a context menu from which Create
Field Validation is chosen (Figure 11-21).

Figure 11-21 Add field validation to ITSORailwayInventoryView.jsp

Select Create New Pattern and enter the pattern appropriately (see
Figure 11-22 on page 249; refer to “Validation patterns” on page 252 or the
WEA InfoCenter for details). We added \d+ so that a value of a minimum of
one digit must be entered before the form can be submitted. If this
248 Patterns: Pervasive and Rich Device Access Solutions

requirement is not met, an error message is fired (see Figure 11-36 on
page 260).

Figure 11-22 Create new validation pattern dialog

Note that the JavaScript code for the validation function was automatically
created by the WebSphere Studio (see Example 11-4). The call of function
validate() was also automatically added to the Submit button (Example 11-5).

Example 11-4 Automatically generated field validation script

<SCRIPT type="text/javascript">
function validate() {

var form = document.forms["myForm_0"];
if (!pattern('\\d+',form.elements["<portletAPI:encodeNamespace

value='<%=ITSORailwayInventoryPortlet.AMOUNT_1%>'/>"].value)) {
return false;
}
return true;

}
</SCRIPT>

Example 11-5 Created field validation is automatically integrated in POST method

<FORM method="POST" action="<%=viewBean.getFormActionURI()%>" name="myForm_0"
onsubmit="return validate()">

The error message (alert) that is displayed if the validation of the amount fails
was included manually (see Example 11-6).

Example 11-6 Alert added to validation function

<SCRIPT type="text/javascript">
function validate() {

var form = document.forms["myForm_0"];
if (!pattern('\\d+',form.elements["<portletAPI:encodeNamespace

value='<%=ITSORailwayInventoryPortlet.AMOUNT_1%>'/>"].value)) {
 Chapter 11. Mobile Inventory Management with offline forms 249

alert (form.elements["<portletAPI:encodeNamespace
value='<%=ITSORailwayInventoryPortlet.AMOUNT_1%>'/>"].value + "
is an invalid amount.");

return false;
}
return true;

}
</SCRIPT>

9. Export the portlet containing the Supply Consumption Record form for
deployment on the WebSphere Everyplace Access Server. Select the
ITSORailwayInventoryProject in the project navigator view of WSAD,
right-click, and choose Export from the context menu. Select the WAR file
format as the destination, click Next to enter a WAR file name, and click
Finish to finally create the file (remember the destination; see Figure 11-23).

Figure 11-23 Export portlet application as WAR file for later deployment on WebSphere
Everyplace Access server

This was a short summary of how the mobile forms-based ITSO Railway Mobile
Supply Tracking System example application was created. Refer to 11.5.1,
“Configuration for offline forms-based applications” on page 253, for the
deployment; and to 11.5.2, “Using the application” on page 258, for screen shots
of this application.

Further considerations for offline forms applications
Not all portlets work well offline. Only portlets that adhere to the guidelines
specified in this topic should be used offline. To prevent administrators and users
from selecting portlets that are not intended for offline use, you must add an
offline-capable parameter to the portlet.xml file. Note that administrators can add
this parameter to portlets using the Manage Portlets portlet. However, they are
instructed to verify that the portlet adheres to the guidelines below before adding
the parameter.
250 Patterns: Pervasive and Rich Device Access Solutions

When you develop a new portlet and want to make it available for offline use, add
the offline-capable parameter. The portlet will not be available for administrators
or users to select until this parameter is defined. Add the following to the
portlet.xml file for the portlet you developed.

<config-param>
<param-name>offline-capable</param-name>
<param-value>true</param-value>
</config-param>

Offline content development guidelines
Consider the following guidelines when creating portlets for offline use:

� Check the JavaScript support.

It is important to note that not all clients can support identical levels of
JavaScript. Therefore, while the offline functionality does not impose
restrictions on JavaScript versions and tag support, the browser software on
the client's device may. Please refer to client browser support statements to
determine what may or may not be used regarding JavaScript.

� Do not use PortletActions.

PortletActions are implemented on the Portal server using server-side
processing. When the user is browsing these pages offline, this processing
cannot be completed in real-time; thus, the resulting link may not be valid.
Instead, where state-based decision making was once done with
PortletActions, now save that state variable in the request/response object
and execute business logic flow decisions internally based on the value of this
parameter.

� Avoid action buttons.

When an offline client synchronizes to obtain the current offline pages, it
traverses every link until the link depth is reached. Therefore, if the portlet has
a list of items, and beside each item is a button that deletes that individual
item, every time the page is processed by the offline servlet, all items will be
deleted. Instead, if it is necessary to surface this delete functionality, put the
items into a form with check boxes next to each one and then use the offline
forms support to delete items in that manner.

� Enable PDA markup.

The PDA markup must be explicitly supported. When the client connects to
the servlet, the servlet then makes a request to the portal for all offline portlets
for a given user. The portal responds to this by invoking the offline aggregator
to collect all offline-able portlets. For a portlet to be viewable while offline, it
must exist on the offline page and it must support the PDA markup. You must
update the portlet.xml file to enable PDA markup support. This process is
 Chapter 11. Mobile Inventory Management with offline forms 251

detailed in the “Adding PDA support to other portlets” section of the
WebSphere Everyplace Access InfoCenter.

� Support for cascading forms.

Forms may now be directly submitted to a URL without having the previous
form being submitted in the current session. In other words, the offline servlet
will simply post the form data to a URL. Assuming the portlet has been
developed such that this URL can accept form submissions that are not
dependent on previous session information, the desired functionality will work
while offline.

� Use the POST method.

Only the POST method is supported for submitting forms. Users can only
submit one form per page. Embedded forms are not supported, so portlets
with embedded forms should not be developed for offline use.

Validation patterns
A validation pattern is a pattern that can be applied to a field in a form. When the
form is submitted, the value in the field is evaluated to determine if it follows the
pattern. If it follows the pattern, the field value is determined to be valid. If the
value does not follow the pattern, the value is determined to be invalid and is
rejected; usually an error message is displayed telling the user what is wrong
with the value her entered, and the user is given another chance to enter a valid
value.

Validation pattern syntax overview (refer to the WebSphere Everyplace Access
InfoCenter for details):

� General syntax

A pattern string follows the XForms pattern validation syntax and consists of a
combination of escape sequences, operators, quantifiers, and literals. For
example, to specify that any numeric character can be used, type \d. To
specify that any alpha character can be used, type \w.

� Examples:

– Social security number in the form 123-45-6789, type
\d{3}\-\d{2}\-\d{4}.

– Seven-digit phone number in the form 123-4567, type \d{3}\-\d{4}.

– Simple e-mail in the form xxx@xxx.xxx, type \w+@\w+\.\w+.
252 Patterns: Pervasive and Rich Device Access Solutions

11.5 Deployment and runtime configuration
This chapter explains the necessary steps to get the developed forms-based
ITSO Railway Mobile Supply Tracking client application example running in a
WebSphere Everyplace Access environment. Taking a suggested operational
model, the configuration and setup steps are described.

11.5.1 Configuration for offline forms-based applications
After installation and configuration of Everyplace Access Services, there are a
few steps needed to configure Offline Portal Content. Administrators will need to
configure the link depth and select which portlets can be used offline.
Administrators set up and select offline portlets for an offline portal list using the
Offline Browsing administrator portlet in the Administrator page group. Then
users can select their offline portlets from the administrator-created offline portal
list. Users select the portlets they need to use when disconnected using the
Offline Browsing user portlet. The user portlet is setup on the Mobile Setup page
by default.

Offline Portal Content usage: Administrators and developers
Administrators must configure offline portal content and define which portlets are
available for offline use. Administrators will use the Offline Browsing
administrator portlet to set up offline portal content. Developers that are creating
portlets for offline use need to be aware of offline portal content usage
limitations. Administrators and developers should take note of the following
points (also see 11.4.2, “Development of forms-based applications for mobile
devices” on page 237):

� The Offline Browsing user portlet itself should not be made available for
offline browsing. The portlet will not work once it is synchronized to the
device.

� Once a portlet has been enabled for offline use, changes to the portlet can
cause errors. If changes are made, users may encounter failures when trying
to post form submissions. If a failure occurs on the device during
synchronization of offline forms data, users should synchronize the offline
data and attempt to resubmit the form.

� Users can only submit one form per page. Embedded forms are not
supported, so do not select portlets with embedded forms for offline use.

� Only static pages are supported. A dynamically created page with a form
cannot be successfully completed while offline. Also, any pages that users
must browse in order to get to the form cannot include dynamically generated
links.

� Only portlets that support PDA markup can be used with offline portal content.
 Chapter 11. Mobile Inventory Management with offline forms 253

� Only the POST method is supported for submitting forms.

Summary of administrator (ID) steps necessary for offline viewing:

1. Installation of offline portlet.

2. Define access rights to installed offline portlet for offline users.

3. Allow offline portlet being viewed offline by adding it to the WEA offline portal
content.

4. Offline content user steps necessary for offline viewing: Add offline portlet to
the users offline portal content.

The following example uses the ITSO Railway Supply Consumption Record
offline forms of the Mobile Supply Tracking client application developed in 11.4.2,
“Development of forms-based applications for mobile devices” on page 237, to
explain the necessary configuration steps. (Tip: Log on using your WEA
administrator ID for all administrative steps):

1. Log on as administrator, go to Administration, choose Portlets and Install.
Browse to the location of the previously exported offline portlet (WAR file from
11.4.2, “Development of forms-based applications for mobile devices” on
page 237) and click Install (see Figure 11-24).

Figure 11-24 Installation of ITSO Railway portlet containing the Supply Consumption
Record form in WebSphere Everyplace Access

2. Create the user group (for example, offlineformsusers), which contains all
users with access rights to the mobile inventory application (refer to the
WebSphere Portal InfoCenter for details).

3. Assign access rights to the installed ITSO Railway inventory portlet. Go to
Administration, Access, User and Group Permissions. Search for the offline
users group (for example, offlineformsusers), and click the Select Resource
Type icon (see Figure 11-25 on page 255).
254 Patterns: Pervasive and Rich Device Access Solutions

Figure 11-25 Assign ITSO Railway portlet access rights to offline users (1)

Click Portlets on the next screen. Search for ITSO to find the installed ITSO
Railway inventory portlet containing the Supply Consumption Record form.
Click the Assign Access icon on the displayed inventory portlet (see
Figure 11-26).

Figure 11-26 Assign ITSO Railway portlet access rights to offline users (2)

Check the Privileged User and User role check boxes.

Figure 11-27 Assign ITSO Railway portlet access rights to offline users (3)
 Chapter 11. Mobile Inventory Management with offline forms 255

Click OK and Done until the access right assignment was successful.

4. Configure the offline browsing content server and the default link depth. Make
the ITSO Railway inventory portlet with the Supply Consumption Record form
available as offline content to other users. Go to Administration, WebSphere
Everyplace and Offline Browsing (see Figure 11-28) and click on the
configure icon of the Offline browsing administration portlet. Enter the server
name and the link depth appropriately (see Figure 11-29).

Figure 11-28 WebSphere Everyplace offline browsing configuration

Figure 11-29 Configure offline browsing administration portlet

5. Make the Supply Consumption Record form provided by the
ITSORailwayInventory portlet available for offline viewing to users. Check
whether the portlet has the parameter offline-capable set to true. For this, go
to Administration, Manage Portlet, choose the ITSORailwayInventory portlet
and click Modify parameters (see Figure 11-30).

Figure 11-30 Offline portlets must have offline-capable set to true
256 Patterns: Pervasive and Rich Device Access Solutions

The Administrator must allow offline viewing for the Supply Consumption
Record (ITSORailwayInventory portlet). For this, go to Administration,
WebSphere Everyplace, Offline Browsing, and check ITSORailwayInventory
portlet (see Figure 11-31).

Figure 11-31 Administrator allows offline viewing of the ITSORailwayInventory portlet

6. Offline portlet users must configure their own offline content. Log in as a
delivery person, for example, Dan Delivery (an offline content user), who
must be a member of the offlineformsusers group (defined under point 2). Go
to the Mobile Setup page group and the Offline Browsing page. Check the
ITSORailwayInventory portlet in the displayed Offline Browser User Portlet
and click OK to make it and the included Supply Consumption Record form
available for offline synchronization (see Figure 11-32).

Figure 11-32 User configuration in WEA to make portlet available offline
 Chapter 11. Mobile Inventory Management with offline forms 257

Now the user Dan Delivery is able to use the ITSORailwayInventory portlet
offline.

11.5.2 Using the application
The offline content made available through the Offline browsing user portlet is
displayed on the PDA of the delivery person using a device browser, such as
Pocket Internet Explorer on Pocket PC devices. The delivery person must enter
a power-on password when the PDA is switched on as well as user name and
password to access the Mobile Supply Tracking client application. The latter is
the WEA client user authentication to assure authorized access to the Mobile
Supply Tracking System and the inventory system. This, for example, allows
disconnected viewing of a train schedule portlet that produces static HTML
fragments. The portal content is downloaded to the device from the network
during synchronization if it was configured appropriately (see 11.5.1,
“Configuration for offline forms-based applications” on page 253). Each time the
portal offline content is synchronized, any new information is retrieved from the
portal (for example, changes in the schedule of trains that must be equipped with
new supplies).

Since the train schedule for the delivery person is provided as offline portal
content as well (offline page), he synchronizes this schedule down to the PDA at
the beginning of a shift (PDA is cradled at the service station to connect to the
WEA server). For this synchronization, the WEA client is used (see
Figure 11-33).

Figure 11-33 WebSphere Everyplace Client: Log on, client menu and synchronization of offline content

The delivery person uses the received train schedule in order to find the train that
has to be equipped with new supplies. The used supplies can be recorded
immediately in the Supply Consumption Record form on the PDA (see
258 Patterns: Pervasive and Rich Device Access Solutions

Figure 11-34 and Figure 11-35). It is assured that the delivery staff can complete
and submit the Supply Consumption Record form while being offline.

Figure 11-34 ITSO Railway Supply Consumption Record form on a PalmOS device (first screen: start
screen, second screen: choose train, third screen: enter used supply and amount)

Figure 11-35 ITSO Railway Supply Consumption Record form on a PPC 2003 device (first screen: start
screen, second screen: choose train, third screen: enter used supply and amount)

Field validation functions can also be used offline. The handheld device’s
browser must support JavaScript for this (see Figure 11-36 on page 260).
 Chapter 11. Mobile Inventory Management with offline forms 259

Figure 11-36 Field validation example for offline forms on a PalmOS device with a
JavaScript capable browser (only digits are allowed)

The supply data that was entered in the Supply Consumption Record form is
stored on the device and then submitted to the server the next time the delivery
person connects to the WEA server (for example, at the end of his working shift;
see synchronization menu in Figure 11-33 on page 258). The user receives the
same confirmation as when submitting the form online. If a failure occurs on the
device during the synchronization of offline forms data, WEA will try to
synchronize the offline data again (attempt to re-submit the form). Also, if the
delivery person’s cradled and connected PDA should loose its connection to the
WEA server before the form is submitted to the inventory system, WEA attempts
to re-submit the form again during the next synchronization. If the connection is
lost before the delivery person receives a confirmation for the submitted form, the
WEA server will store the confirmation and send it to the user after the next
synchronization.

11.6 Summary
This chapter summarized the basic steps for the enablement of existing
applications for mobile devices using forms. It also gave an outlook to upcoming
technology and discussed other implementation approaches for the ITSO
Railway use cases.

The inventory system can be seen as the representative of a general existing
legacy application in an enterprise. It is important to understand that no changes
260 Patterns: Pervasive and Rich Device Access Solutions

to the existing ITSO Railway inventory system were made. Of course, this
example is very simple, but nevertheless the introduced approach applies to any
application that is made available to mobile users.

Two approaches are discussed in this book:

� A complex application on a handheld device with appropriate computing
power (see Chapter 13, “Using Workplace Client Technology, Micro Edition”
on page 283)

� A simple offline forms actions-based applications for data entry

The second approach was discussed in this chapter. Enterprises, which already
use WebSphere Portal Server as their consolidated user front-end for application
access, face minor changes and/or extensions to portlets for mobile accessibility
in most cases with this approach. 11.3.1, “General considerations for
intermittently connected applications” on page 228, and 11.4.2, “Development of
forms-based applications for mobile devices” on page 237, explain in detail
guidelines that must be considered.

It is highly recommended to discuss the mobile enablement of an application with
all involved parties (security and system administrators, application developers,
and users). The application is extended with view modes for mobile devices. If
the existing application follows the Model-View-Controller design pattern already,
an extension to mobile devices will be easier. For example, the portlet must be
changed to use forms rather then PortletActions. Additionally, PDA view JSPs as
well as PDA markup support must be added (read 11.4.2, “Development of
forms-based applications for mobile devices” on page 237, for details). Keep in
mind that online interactions between the user and the system are not possible
during offline mode. Field validation, for example, can be used in offline mode for
simple field content checks.

The technical community is working on a standard for forms-based applications,
called xForms. This includes standard validation functions based on XML as well
as server-side support for offline forms. Scripting will also be considered for
appropriate devices.

Further information for development of forms-based applications can also be
found in the WebSphere Everyplace Access InfoCenter and the WebSphere
Everyplace Access Handbooks.
 Chapter 11. Mobile Inventory Management with offline forms 261

262 Patterns: Pervasive and Rich Device Access Solutions

Chapter 12. Using Intelligent Notification
Services

The objective of this chapter is to describe how to build a pervasive solution that
notifies maintenance workers about new maintenance orders. This chapter
discusses how to use the Intelligent Notification System (hereafter called INS) of
WebSphere Everyplace Access and WebSphere Studio to create this solution.

This chapter discusses the following topics:

� Business context
� Architectural overview model
� The system design overview
� Sample application development
� Deployment and runtime configuration

12
© Copyright IBM Corp. 2005. All rights reserved. 263

12.1 Business context
The railway maintenance teams must be notified of any train or railway problems
as soon as possible. This is time-critical data and allows the maintenance team
to provide immediate service at the point of need and to ensure that the proper
persons are dispatched to resolve the problem.

Intelligent Notification System (INS) enhances the ITSO Railways maintenance
and support system to notify the maintenance team when a critical event occurs.
The maintenance system is responsible for collecting and maintaining all service
data from different resources like sensors, service systems, and support centers.
INS enhances the existing maintenance system with the capability of alerting a
service technician when an urgent service request occurs. INS delivers the
messages to the service technician based on his subscription preferences.

Figure 12-1 ITSO notification business context diagram

12.2 Architectural overview model
This section describes how the Intelligent Notification System extends the
existing maintenance system to notify a service technician when a new service
request was issued. The architectural overview model covers the entire system
and shows the high-level components involved in the overall system.

The following diagram is the Runtime pattern we implemented in this particular
scenario.

Notification System

Notification
Management

Service
Technician

Subscription
Management

Maintenance System

Service
Management

Alerting
Resources
264 Patterns: Pervasive and Rich Device Access Solutions

Figure 12-2 Runtime pattern for the intelligent notification scenario

The maintenance system contains the complete support and service
infrastructure such as a call center for end-user support, a service request
system to manage service requests, and a sensor data collection system to
collect and process data from the sensors. In our scenario we assume these
systems are in place to trigger the maintenance database for new service
requests. A new service request can be created either manually through the call
center support or automatically through the sensor system.

The notification system contains both subscription and notification management.
The subscription manager allows the service technician to subscribe to new
service requests in the maintenance database. It specifies filters to direct service
requests received from the content adapter. The content adapter is an
application that captures data from the maintenance database and converts that
data into a format that the subscription manager can read. The content adapter
publishes the data to the subscription manager to match against user
subscriptions. When a match occurs, the Subscription Manager calls the
appropriate trigger handler, which notifies the targeted service technician
through the Notification Manager. The Notification Manager is a component of
Intelligent Notification Services that delivers notifications to the service
technician based on their preferences.

ISP Gateway
(Pervasive
services)

User

Outside World
Demilitarized Zone

(DMZ) Internal Network

Client

Data servicesData services
Pervasive

client
services

Pr
ot

oc
ol

 F
ire

wa
ll

D
om

ai
n

Fi
re

wa
ll

Presentation/
Application Application

store and forward

Rich Device=Store and forward application pattern

Personalization
Server

Directory
and Security

Services

Database

Existing data
and

Applications
Application

Server
Presentation

Server

Collaboration
server

Pervasive
extension
services

Web
server

redirector
 Chapter 12. Using Intelligent Notification Services 265

Figure 12-3 ITSO notification architectural overview model

The products we used for this scenario can be seen on the following Product
mapping diagram.

Figure 12-4 Rich Device=Store and forward::Product mapping=Windows

12.3 System design overview
The Intelligent Notification System will be used to monitor the maintenance
database for new incoming service requests. A service technician can subscribe

Message
Dispatching

Notification
System

Subscription
Management

Notification
Management

Content
Adapter

Call Center

Maintenance System

Service Center

Sensor Data
Collcetor

Service
Requests

Instant
Messaging

Channel System

E-mail

...

WLAN

Network

LAN

...

Service Technician

Mobile
Device,
Browser

and
Rich
Client

Subscribe and
Online Services

Maintenance
Database

Caller

Sensors
& Actors

Legacy
System

Database

ISP Gateway
(Pervasive
serv ices)

User

Outside W orld
Demilitarized Zone

(DM Z) Internal Network

Client

Data servicesData services

Personalization
Server

Directory
and Security

Services

Pervasive
extension
serv ices

Pervasive
client

serv ices

Existing data
and

Applications

Pr
ot

oc
ol

 F
ire

w
al

l

Application
Server

Presentation
Server

D
om

ai
n

Fi
re

w
al

l

•Everyplace Client for Pocket PC:
- DB2 Everyplace 8.1
- Offline form s
- MQ Everyplace

•W ebSphere Client Technology,
Micro Edition

W indows 2000 + SP4
•IBM W ebSphere Application
Server V5.0 HTTP Plug-in
•IBM HTTP Server V1.3.26

W indows 2000 + SP4
•W ebSphere Everyplace Access V5.0
•DB2 Everyplace 8.1
•M Q Everyplace

Collaboration
Server

W indows 2000 + SP4
•W ebSphere Portal Server V5.0.2.1
•Dom ino Server 6.5.1
•IBM W ebSphere Application Server
Enterprise V5.0.2.3

W indows M obile 2003

W eb
serv er

redirector
266 Patterns: Pervasive and Rich Device Access Solutions

to one or more resources. A subscription means to compare a trigger value with
the actual value. When a match occurs, a notification will be sent.

In this scenario, we will monitor a database field called Origin. Origin will tell the
system from where the alert were issued. S indicates an alert from a Switch
(mechanical component in the railway industry) and C indicates a service
request created by the Call Center.

The service technician has created a subscription that will trigger the database
field Origin of the maintenance database. The notification system will periodically
check if there is a new record with the trigger value = “Sx” (where x is the switch
number).

When a match occurs, the subscription manager will proceed with the notification
and start a trigger handler, which creates the notification and hands it over to the
notification manager. The notification manager will send the message to the
service technician based on his preferences and channel availability. In our
example we send a Sametime message (instant messaging product) if the user
is online, and an e-mail if the user is offline.
 Chapter 12. Using Intelligent Notification Services 267

Figure 12-5 ITSO Railways - INS system design overview

Figure 12-5 shows a basic system design consisting of:

� The maintenance database where the new services requests will be placed

� The notification system with its components

– The subscription manager

– The notification manager

– The intelligent notification database, which holds all meta information for
the notification system (subscriptions, notifications, and configurations)

� The delivery channels, which are existing mail and instant messaging
systems like Lotus Domino and Sametime server

Req_Id Status Description (D) Origin

0106062004 Open Switch 12 malfunction S12

0506062004 Open Light System defect C2

0106072004 Closed Broken Windows C2

 Maintenance Database

Content Source

Notification
Manager

Subscription
Manager

Content Adapter

Tr
ig

ge
r H

an
dl

er

Delivery
Channels

C
ha

nn
el

 A
da

pt
er IF Origin="S12" THAN

 notify User XY()()IF User XY = online THAN
 notify = sametime
ELSE notify = E-Mail

New Service
Request1.

2.
3.4.

 Notification System

Intelligent Notification
Database
268 Patterns: Pervasive and Rich Device Access Solutions

12.3.1 Component model
This section shows the various components of the notification system and their
interaction. The context diagram, Figure 12-1 on page 264, shows the two main
systems and their surrounding components. The maintenance system has three
interfaces for creating and managing service requests. These include the Service
Center (self-service and telephone support), a switch monitoring system that will
control and maintain the switch sensor functionality, and the maintenance
database as central storage for all service requests.

The notification system has two different interfaces for the user and one for the
maintenance database. There a two user interfaces supported in our example,
the rich browser access to subscribe and access all notification services such as
subscriptions, channel configuration, message center, etc. and limited browser
access for pervasive devices.

Figure 12-6 ITSO Railways - INS system context diagram

In this example we focus on the notification system. The component interaction
diagram, Figure 12-7 on page 270, shows how a possible workflow would look.

Existing
Maintenance

System

Notification
System

Maintenance
Database

Railways
Switch
Sensor
System

Service
Center

Pervasive
Computing

Device

Rich Client

 Control and
maintenance

Limited browser access
 for online access to the
 notification systemNotification

message based
on user preferences
and device
cababilites

Rich browser
access to manage
subscriptions
and messages

Tiggering
 the maintenance
 database for new
 service request
 entries

Value of
the triggered
database
fields

 Notification
 message
 based on user
 preferences and
available clients

Service request
 status

New service
 requests

Push
Altert

 Malfunction
alert

 Add and
 update of
new service
requests
 Chapter 12. Using Intelligent Notification Services 269

Figure 12-7 ITSO Railways - INS component interaction diagram

12.3.2 Object model
The following classes are descriptions of the classes most frequently used for
Intelligent Notification Services development:

� SubscriptionServicesBean - This class contains methods for adding,
updating, querying, and removing subscriptions, and publishing content to
Subscription Manager.

� TriggerHandler - This class is used to write a custom trigger handler. It
contains methods for subscribing to content, activating a subscription, and
handling content matches.

� NotificationServiceBean - This class contains methods for sending and
canceling notifications to the Notification Manager.

� NmClientFactory - This class creates a local EJB or remote EJB.

� SmClientFactory - This class creates a local EJB or remote EJB.

� PrefMgr - This class contains methods needed to add, delete, retrieve, and
update preference data in the database.

Pervasive
Computing

Device
Rich Client

1. Add a new subscribtion to monitor
the service requests database

2. The notification system triggers
the maintenance database in a
regular base

3. The sensor in a switch detects as
malfunction

4. The maintenance system creates
an urgent service request

5. The service request will be stored
in the maintenance database

6 .Trigger will be hit and the
notification systems sends a
message based on user preferences
to the user

7. User use his browser or client
application to get more details about
the alert

Subscribe

Check trigger value

Trigger value get hit

Alert malfunction

Update

Notification is send

Check trigger value

Notification
System

Maintenance
Database

Railways
Switch
Sensor
System

existing
Maintenance

System
270 Patterns: Pervasive and Rich Device Access Solutions

12.4 Sample application development
This section discusses the creation of the necessary sample code for the ITSO
Railway Intelligent Notification System sample and the development environment
used to build it.

Intelligent Notification Services (INS) is an install option of the WebSphere
Everyplace Access. After INS is installed, it must be configured correctly. Please
see the WebSphere Everyplace Access InfoCenter for detailed information on
how to install and configure INS.

A developer for Intelligent Notification Services can develop custom
subscriptions, custom content adapters, custom trigger handlers, custom
channel adapters, and applications that send simple notifications.

To develop a custom subscription, we need to complete the following tasks:

1. Write a content adapter for the new content source.
2. Deploy the new content adapter.
3. Write a subscription portlet for the new content source.
4. Write a custom trigger handler.
5. Deploy the new subscription portlet.

Developers can create new subscriptions in order to utilize other types of content
sources. In order to develop a subscription, a developer must create a
subscription portlet, a trigger handler, and a content adapter. The subscription
application allows the subscriber to subscribe to the content source and set
subscription/matching parameters. The content adapter retrieves data from the
content source, transforms it, and sends it to the Subscription Manager. The
content adapter APIs are designed to make it as simple as possible for a user to
publish data from new content sources as they become available. The content
adapter APIs enable the developer to focus on writing code to retrieve data from
the content source rather than writing code to interface with the Subscription
Manager.

Trigger handlers are also considered part of the subscription because they
control what happens when an action is performed on a subscription, such as on
add, on update, on query, or when a subscription matches content that is
published to the system.

Write the content adapter
The code (.java files) for the following content adapters are packaged in the .ear
files found in the <WEA_INS_root>/samples/sm directory, where WEA_INS_root
is the root Intelligent Notification Services installation directory. Each .ear file
contains a .jar file that contains the .java file for the content adapter. For more
 Chapter 12. Using Intelligent Notification Services 271

information about packaging and deploying content adapters, see Deploying a
custom content adapter in the InfoCenter.

1. Create a content adapter file or copy an existing one.

2. Import the required package files into the class.

import com.ibm.pvc.ins.sm.client.*;
import com.ibm.pvc.ins.sm.server.SubscriptionService;
import java.io.URL

These packages are located in /INS/lib/insSmClient.jar.

3. Create the content adapter class.

public class MyNewsContentAdapter()

4. Create the variables.

5. Retrieve the host name of the Subscription Manager and create a
Subscription Manager remote EJB client connection.

try {
smClient = SmClientFactory.createRemoteSmClient();

} catch (IQueueException ce) {
// ...

}

6. Get data from the content source.

7. If necessary, transform the incoming data into an XML document. Then
translate the XML document into a format that is acceptable by the
Subscription Manager using an XSL style sheet.

8. Publish the XML document to the Subscription Manager.

Deploy the new content adapter
To communicate with Subscription Manager, custom content adapters need to
be deployed as one of the following:

� WebSphere Application Server J2EE Client Application
� WebSphere Application Server Enterprise Application

To run a content adapter packaged as a WebSphere Application Server J2EE
Client Application, issue the following command:

<WebSphere_root>\bin\launchclient.bat
<content_adapter_directory>\<CustomContentAdapter.ear>
-CCclasspath=%INS_HOME%\lib\insSmClient.jar

Write a subscription portlet for the new content source
Intelligent Notification Services users use subscription portlets to subscribe to
content source notifications. Each subscription portlet displays a list of
272 Patterns: Pervasive and Rich Device Access Solutions

subscriptions for the content source to which it corresponds. The subscriber
adds, edits, and deletes subscriptions from that list. When a user adds a
subscription, he specifies a criteria for the matching content. Then the
subscription portlet builds a Subscription Bean, from which the Subscription
Manager retrieves content matching criteria and passes them to the Subscription
Manager with the add() method of the SubscriptionServiceBean. The
Subscription Manager monitors the content source for a content match and
notifies the user when a match has occurred.

To develop a custom subscription portlet, you must follow these steps:

1. Compose and maintain a properties file to contain display strings and images.

2. Extend the Subscription Base Controller class.

3. Extend the base Subscription Bean class.

4. Write a JSP front-end, based on the Subscription View template.

5. Write a JSP front-end, based on the Subscription Configuration template.

6. Write a custom trigger handler for the custom subscription portlet.

7. Write a Web.xml file to define the portlet as a Web application with
WebSphere Application Server.

8. Write a portlet.xml file to define the portlet as a portlet with the WebSphere
Portal.

Compose a properties file for display strings and images
If you are going to make your custom portlet available in different languages,
create a properties file to contain key value pairs for all of the translatable strings.

Extend the Subscription Base Controller class
The SubscriptionBaseController class is the Controller in the MVC architecture of
the subscription portlets. All the logic for handling action events from the user
interface is implemented here. Import the following packages:

//portlet libraries
import org.apache.jetspeed.portlets.*;
import org.apache.jetspeed.portlet.*;
import org.apache.jetspeed.portlet.event.*;
import com.ibm.wps.portlets.*;
//java libararies
import java.util.*;
import java.io.*;
import java.text.*;

Create a class that extends SubscriptionBaseController and implements
ActionListener. For example:
 Chapter 12. Using Intelligent Notification Services 273

public class MySubscriptionBaseController extends SubscriptionBaseController
implements ActionListener { ... }

Create an initialization method that calls the initialization method of the
superclass and initializes all of the instance variables.

Example 12-1 Initialization method

public void init(PortletConfig portletConfig) throws UnavailableException {
super.init(portletConfig);
contentSource = "myContentSource";
triggerHandlerURN = "/samples/MyTriggerHandler";
subKeys = new String[]{

SubscriptionBean.KEY_NOTIFICATION_OPTION,
SubscriptionBean.KEY_CONTENT_STORAGE,
SubscriptionBean.KEY_DEVICE_NAMES,
NewsSubscriptionBean.NEWS_SOURCE,
NewsSubscriptionBean.SUBJECT

};
config_jsp = jspBaseDir + "/MySubscriptionConfig.jsp";
help_jsp = jspBaseDir + "/MySubscriptionHelp.jsp";
view_jsp = jspBaseDir + "/MySubscriptionView.jsp";
//...

}

You must override the following methods: doAddSubscriptionAction(),
doModifySubscriptionAction(). The doAddSubscriptionAction() method is called
by the ActionPerformed() method when an "add" action is performed. The
doModifySubscriptionAction() method is called by the ActionPerformed() method
when a "modify" action is performed.

Override the doAddSubscriptionAction() method.

1. Get parameters from the JSP, including the core subscription parameters and
parameters specific to the custom subscription portlet. For example:

String mySubscriptionParameter = request.getParameter("myParameter");

Refer to the file NewsSubscriptionBaseController.java to see how the sample
controller gets each of the core subscription parameters and the sample
news-specific parameters from the JSP.

2. Get an instance of SubscriptionManager from the subscription manager
factory.

SubscriptionManager subManager =
SubscriptionManagerFactory.createSubscriptionManager(userID,
log,contentSource,triggerHandlerURN);

3. Create a new subscription bean and populate it with the subscription
parameters from the JSP.
274 Patterns: Pervasive and Rich Device Access Solutions

Example 12-2 New subscription bean

SubscriptionBean newSub = new SubscriptionBean();
if (notificationOption != null && contentStorageOption != null

&& newsSource != null && subject != null) {
newSub.setNotificationOption(notificationOption);
newSub.setContentStorage(contentStorageOption);
newSub.setDeviceNames(selectedDCNames);
newSub.putProperty(MySubscriptionBean.MY_PARAMETER,
mySubscriptionParameter);

}
//...

4. Pass the populated subscription bean to the subscription manager via the
SubscriptionManager.addSubscription() method. For example:

subManager.addSubscription(newSub);

Override the doModifySubscriptionAction() method. Perform the same basic
steps used in overriding the doAddSubscriptionAction() method with the
following exceptions:

� Instead of creating a new subscription bean to populate, find the bean that is
being modified and populate that bean with the subscription parameters from
the JSP.

SubscriptionIndexBean[] indexBeans = (SubscriptionIndexBean[])
request.getPortletSession().getAttribute(SUB_INDEX_BEANS);
String subscriptionIndex = request.getParameter(SUB_BEAN_INDEX);
Integer subIndex = new Integer(subscriptionIndex);
int index = subIndex.intValue();
SubscriptionBean subBean = indexBeans[index].getSubscriptionBean();

� Instead of calling the SubscriptionManager.addSubscription() method, call
the SubscriptionManager.modifySubscription() method. For example,

subManager.modifySubscription(subBean);

You can optionally override the doView(), doAdd(), doModify(), and doHelp()
methods. These methods are called for each of the "modes" that the portlet can
be in. The doView() method is called when the portlet is in its default "view"
mode. The doAdd() method is called when the portlet is in "add" mode, when a
user is adding a subscription. The doModify() method is called when the portlet is
in "modify" mode, when a user is modifying the parameters of a subscription.

To override the doView() method, follow these steps.

1. Create a subscription manager.

SubscriptionManager subManager =
SubscriptionManagerFactory.createSubscriptionManager(userID,
log,contentSource,triggerHandlerURN);
 Chapter 12. Using Intelligent Notification Services 275

2. Create an array of subscription beans by calling the getSubscriptions()
method of the subscription manager class.

SubscriptionBean[] subBeans =
subManager.getSubscriptions(contentSource, myKeys);

3. Cache the array of subscription beans. The doModify() method later retrieves
the array from the portlet session in order to determine which subscription
bean to modify.

To override any of the "mode" methods, register the corresponding JSP to be
displayed by the portlet. For example:

includeJSP("/WEB-INF/INS/NewsSubscriptionView.jsp",request, response);

If you want to perform more specific actions than the default actions of the
superclass, you must override the actionPerformed() method of the
ActionListener interface.

public void actionPerformed (ActionEvent event) throws PortletException { ... }

Get an instance of SubscriptionManager from the subscription manager factory.

SubscriptionManager subManager =
SubscriptionManagerFactory.createSubscriptionManager(userID,

log,contentSource,triggerHandlerURN);

Write code segments to handle an "add" event, a "modify" event, and a "delete"
event. Create conditional expressions to test for and handle each of these cases.
Add events happen when the action name is "add." Modify events happen when
the action name is "modify." Delete events happen when the action name is
ACTION_DELETE.

Get the action name by calling getName() on the result of a call to
ActionEvent.getAction(). For example:

DefaultPortletAction action =
(DefaultPortletAction)event.getAction();

if (action != null && action.getName().equals("add")) { ... }

When the action name is "add," call the subscription bean constructor method to
create a new subscription bean to add.

SubscriptionBean newSub = new SubscriptionBean();

Then populate the new subscription bean with parameters from the subscription
request. For example:

String notificationOption = request.getParameter("notificationOption");
if (notificationOption != null) {

newSub.setNotificationOption(notificationOption);
}

276 Patterns: Pervasive and Rich Device Access Solutions

Then call SubscriptionManager.addSubscription(), passing in the new
subscription bean.

subManager.addSubscription(newSub);

When the action name is "modify," find the subscription bean.

SubscriptionIndexBean[] indexBeans = (SubscriptionIndexBean[])
request.getPortletSession().getAttribute(SUB_INDEX_BEANS);

String subscriptionIndex = request.getParameter(SUB_BEAN_INDEX);
Integer subIndex = new Integer(subscriptionIndex);
int index = subIndex.intValue();
SubscriptionBean subBean = indexBeans[index].getSubscriptionBean();

Then populate the subscription bean with new parameters from the subscription
request. For example:

String notificationOption = request.getParameter("notificationOption");
if (notificationOption != null) {

subBean.setNotificationOption(notificationOption);
}

Then call SubscriptionManager.modifySubscription(), passing in the modified
subscription bean.

When the action name is ACTION_DELETE, find the subscription bean.

SubscriptionIndexBean[] indexBeans = (SubscriptionIndexBean[])
request.getPortletSession().getAttribute(SUB_INDEX_BEANS);

String subscriptionIndex = request.getParameter(SUB_BEAN_INDEX);
Integer subIndex = new Integer(subscriptionIndex);
int index = subIndex.intValue();
SubscriptionBean subBean = indexBeans[index].getSubscriptionBean();

Then call SubscriptionManager.removeSubscription(), passing in the
subscription bean to be deleted.

subManager.removeSubscription(subBean);

Extend the base Subscription Bean class
The Subscription Bean class is the Model in the MVC architecture of the
subscription portlets. The SubscriptionBean superclass contains variables for the
core subscription properties including the notification option, the content storage
option, the names of the preferred delivery channels, the trigger ID (subscription
name), and the content source. The subscription bean also contains getter and
setter methods for each of these properties.

When you extend the SubscriptionBean class, specify any additional properties
that are specific to your custom subscription portlet. For example, the
NewsSubscriptionBean class specifies the NewsSource and Subject variables,
 Chapter 12. Using Intelligent Notification Services 277

which are additional information items that the subscriber provides to help
determine which news stories he wants to subscribe to. You can also specify
getter and setter methods for each of your custom subscription properties.

Declare this subclass to be part of the following package:

package com.ibm.pvc.we.ins.portlets;

Import the following packages:

import java.util.*;
import java.io.Serializable;

Create a class that extends the SubscriptionBean superclass and implements
the Serializable interface. For example:

public class MySubscriptionBean extends SubscriptionBean implements
Serializable { ... }

Declare property keys for the subscription properties specific to the custom
subscription portlet.

You can optionally write getter and setter methods for each of the custom
subscription properties. If you do not write getter and setter methods for each of
the custom subscription properties, you can instead access the properties from
the subscription controller by calling the getProperty and putProperty methods of
the superclass of subscription bean.

Compile the new java source code.

The .java source code must be compiled into .class files before it can be
executed by the portlet. Use the same java compiler that is used by your version
of WebSphere Application Server, which is installed in <WebSphere_root>\java.
Several jar files will need to be included in the compiler's classpath. From the lib
directory of the Intelligent Notification Services Portlets
<WPS_root>\installedApps\INSPortlet_PA_xxxx.ear\INSPortlet.war\WEB-INF\lib
(where the xxxx will be different for each installation) you will need:

� INSPortlet.jar
� insSmClient.jar
� insUtil.jar

From the <WebSphere_root>\lib directory, you will need:

� dynacache.jar

Note: The trigger handler for this subscription portlet must handle these
properties.
278 Patterns: Pervasive and Rich Device Access Solutions

From <WPS_root>\shared\apps directory, you will need:

� portlet.jar
� portlet-api.jar
� wps.jar
� wpsportlets.jar
� servlet.jar

Write a JSP front-end, based on the Subscription View template
Use the Subscription Configuration template to write a JSP that lets the user edit
the parameters for a subscription. This JSP is displayed when the user selects to
add or modify a subscription. This JSP can be used for both cases, because the
subscription parameters are the same whether a user is specifying parameters
for a new subscription or editing the parameters of an existing subscription.
Users can also use this page to delete the subscription. The template is in the file
SubscriptionConfig.jsp. Copy the contents into a new file, and complete the
specific sections, as indicated by the comments within the file. Use the code
walkthrough below as a guide. Refer to the file NewsSubscriptionConfig.jsp for
an example of how the Configuration JSP is implemented for the news sample.

1. Import necessary libraries and beans.

<%@ page import="com.ibm.pvc.we.ins.portlets.*" %>
<%@ page import="org.apache.jetspeed.portlet.*" %>
<%@ page import="java.util.*" %>

2. Create variables for all of the subscription parameters. The news sample,
NewsSubscriptionConfig.jsp, gets a list of available delivery channels and
their names from the portlet session.

3. Get the selected subscription bean from the portlet request object. For
example:

SubscriptionBean subBean =
SubscriptionBean)portletRequest.getAttribute("selectedSubBean");

4. If there is a selected subscription bean, then the user is modifying an existing
subscription. Use the getter methods of the subscription bean class to
populate the subscription parameter variables. For example:

notificationOption = subBean.getNotificationOption();

5. If no selected subscription bean exists, then the user is adding a new
subscription. Leave the parameter variables blank.

6. Create the OK and Cancel buttons.

Example 12-3 JSP code snippet

input type="image" name="<portletAPI:encodeNamespace value='OK'/>"
 VALUE="<portletAPI:text key="Sub_OK" bundle="nls.INS.PortletMessages"
/>"
 Chapter 12. Using Intelligent Notification Services 279

 SRC= "<%=portletResponse.encodeURL("/images/INS/header_ok.gif")%>"
 align="absmiddle"

 alt="<portletAPI:text
 key="Sub_OK"
 bundle="nls.INS.PortletMessages" />"

 border="0"/>
 <a style="text-decoration: none;"

href="javascript:document.forms.<portletAPI:encodeNamespace
value='NewsSubscriptionConfig'/>.submit()">

 <portletAPI:text key="Sub_OK" bundle="nls.INS.PortletMessages" />

 <img src="<%= portletResponse.encodeURL("/images/INS/divider2.gif")%>"

align="absmiddle" border="0" alt=""/>
 <a style="text-decoration: none;" href="<%= cancelURI %>">
 <img src="<%= portletResponse.encodeURL

("/images/INS/header_cancel.gif") %>"
align="absmiddle"
border="0"
alt="<portletAPI:text
key="Sub_Cancel"
bundle="nls.INS.PortletMessages"/>"/>

 <portletAPI:text key="Sub_Cancel"

bundle="nls.INS.PortletMessages"/>

7. If there is a selected subscription bean, then the user is modifying or deleting
an existing subscription. Create a Delete button.

Example 12-4 JSP code snippet

<% if (subBeanIndex != null) { %>
 <img src="<%= portletResponse.encodeURL

("/images/INS/divider2.gif")%>"
align="absmiddle"
border="0"
alt=""/>

 <a style="text-decoration: none;" href="<%= deleteURI %>">
 <img src="<%= portletResponse.encodeURL

("/images/INS/delete_box.gif") %>"
align="absmiddle"
border="0"
alt="<portletAPI:text
key="Sub_Delete_Subscription"
bundle="nls.INS.PortletMessages"/>"/>

280 Patterns: Pervasive and Rich Device Access Solutions

 <portletAPI:text key="Sub_Delete_Subscription"
bundle="nls.INS.PortletMessages"/>

8. Display text entry or other type of input widget for each subscription
parameter setting. Populate the input with the value of the corresponding
variable. If the user is adding a new subscription, the variable value is blank. If
the user is modifying an existing subscription, the variable value is that of the
subscription and will be modified by the user.

Example 12-5 JSP code snippet

<portletAPI:text key="notification_option" bundle="nls.INS.PortletMessages" />
<INPUT TYPE="radio" VALUE="once", NAME="notificationOption"
<%=notifyOnce%>>
<portletAPI:text key="notification_once" bundle="nls.INS.PortletMessages" />
<INPUT TYPE="radio" VALUE="always", NAME="notificationOption"
<%=notifyAlways%>>
<portletAPI:text key="notification_always" bundle="nls.INS.PortletMessages" />

Write a custom trigger handler
When a content match occurs, Subscription Manager uses trigger handlers to
notify the appropriate user via the Notification Manager. Trigger handlers
process the matched content according to subscription criteria and rules,
sending a notification request to Notification Manager. The specifics of how,
where, and when the user is notified are controlled by the trigger handler. Each
subscription has a trigger handler associated with it.

To develop a custom trigger handler, you must write a Java class that extends
the TriggerHandler class. You can view the source code for the sample stock or
weather trigger handlers to see an example of how to extend TriggerHandler.
The easiest way to create a custom trigger handler is to modify one of the
sample trigger handlers to match your needs.

To write a custom trigger handler, complete the following:

1. Create a trigger handler file or copy an existing one.

2. Import the required package files into the class.

3. Create a class that extends the Trigger Handler class.

4. Create variables for resource bundles, delivery options, subscription
matching parameters, and strings for constructing the notification.

5. Implement the doGet() method to retrieve information from the request
parameters and put them in the response object.
 Chapter 12. Using Intelligent Notification Services 281

6. Implement the doPut() method to add a new subscription to Subscription
Manager.

a. In the doPut() method, create the matching selector statement for the
subscription variables.

b. In the doPut() method, create the subscription using the subscribe method
and activate the subscription using the activate method.

7. Implement the doPost() method to enable Intelligent Notification Services to
update an existing subscription, which consists of updating the correct
parameters and saving the subscription.

8. Implement the handleMatch() method to build the notification request when a
match occurs.

– In the handleMatch() method, create the Notification Manager client, build
the delivery notification object, and submit the message to Notification
Manager.

9. Deploy the trigger handler.

Deploy the new subscription portlet
An Intelligent Notification Services administrator must follow these steps to
deploy a custom subscription application:

1. Once the war file has been completed, log on to the WebSphere Portal as an
administrative user, and install the new .war file using the Administration
page.

2. Give Intelligent Notification Services users access to the new subscription
portlet by giving the user group access to the new portlet.

3. Add the new portlet to the My Subscriptions page, and lock it down.

4. Sign on as a test user to make sure the page and new portlet display
properly.
282 Patterns: Pervasive and Rich Device Access Solutions

Chapter 13. Using Workplace Client
Technology, Micro Edition

The objective of this chapter is to describe the design and implementation of the
ITSO Railways Ticketing application, a pervasive solution that operates in an
intermittently connected environment. This chapter provides an overview of the
development of this application built using Workplace Client Technology, Micro
Edition.

This chapter describes the following:

� The architecture of the ITSO Railways Ticketing application

� The design of the ITSO Railways Ticketing application

� The implementation of the ITSO Railways Ticketing application

� Key aspects of developing the ITSO Railways Ticketing application

� Testing and running the ITSO Railways Ticketing application in the
development environment

13
© Copyright IBM Corp. 2005. All rights reserved. 283

13.1 Architectural overview model
The following diagram is the Runtime pattern we implemented in this particular
scenario.

Figure 13-1 Runtime pattern for the ticketing scenario implementation using Workplace Client Technology,
Micro Edition

This chapter describes how the Train Station Ticketing application is extended
for use by mobile workers, in this case train conductors. The architectural
overview model, shown in Figure 13-2 on page 285, demonstrates the entire
system and shows the high-level components involved in the system. The user
interacts with the ITSO Railways Ticketing application that runs standalone on
the mobile device. The ITSO Railways Ticketing application accesses the local
database, and when a ticket is purchased, adds a ticket purchase record to the
local database. Also, when tickets are purchased the application places a
message on the message queue. Any data updates that occur on the mobile
device are synchronized to the pervasive server (when the device connects to
the network). These data changes are then forwarded to the enterprise
application (Train Station Ticketing) for processing.

ISP Gateway
(Pervasive
services)

User

Outside World
Demilitarized Zone

(DMZ) Internal Network

Client

Data servicesData services
Pervasive

client
services

Pr
ot

oc
ol

 F
ire

wa
ll

D
om

ai
n

Fi
re

wa
ll

Presentation/
Application Application

store and forward

Rich Device=Store and forward application pattern

Personalization
Server

Directory
and Security

Services

Database

Existing data
and

Applications
Application

Server
Presentation

Server

Collaboration
server

Pervasive
extension
services

Web
server

redirector
284 Patterns: Pervasive and Rich Device Access Solutions

This chapter focuses on the client-based application, which is highlighted in
Figure 13-2.

Figure 13-2 Architectural overview model

This scenario is based on the Pervasive runtime pattern for Robust Device
Based Solutions runtime pattern and it is implemented using the Workplace
Client Technology, Micro Edition, along with DB2 Everyplace, which provides a
local database and data synchronization between the device and the server and
MQ Everyplace, which provides the messaging service.

We chose Workplace Client Technology, Micro Edition because the ITSO
Railways wanted:

� The solution to be able to operate in a standalone mode, which means the
application will contain complex business logic.

� The solution to be able to access a local data store.

� The solution to be implemented using a standards based technology, in this
case Java.

� The solution be portable across a variety of devices including laptops and
PDAs.

� To reuse the existing Java skills the development team already had and
possibly to reuse existing Train Station Ticketing application artifacts.

� A robust user interface that Java Server Pages (JSPs) provide.

� The solution to integrate with the existing back-end application, which
currently uses a messaging model and has well-defined interfaces.

Enterprise Server

ITSO
Railways
Ticketing

Application

Train
Station

 Ticketing
Application

Pervasive
Server

Device
 Chapter 13. Using Workplace Client Technology, Micro Edition 285

The ticket prices change frequently because of promotions and discounts. This
information is stored in the ITSO Railways enterprise database. To simplify the
management of the data used by the new Ticketing application, the team
decided to provide a local database and synchronize the enterprise data with the
data on the device. DB2 Everyplace meets these needs by providing both a local
database (for a variety of pervasive devices) and a data synchronization server.

Ticket purchases are defined as messages and processed by the Train Station
Ticketing application. ITSO Railways wanted to extend that model to the
pervasive solution. MQ Everyplace provides the messaging service that fits this
model. The new Ticketing application will create the ticket purchase messages
required by the Train Station Ticketing application.

The actual Product mapping for this scenario can be found on the following
diagram.

Figure 13-3 Rich Device=Store and forward::Product mapping=Windows

13.2 System design overview
The ITSO Railways Ticketing application will be used by the train conductor while
the train travels between stations. The conductor will use this application when
he sell tickets to passengers that have boarded the train without previously
purchasing a ticket. After determining the passenger’s destination, the train
conductor will use the Ticketing application to obtain the ticket price(s) for that
destination and to enter credit card information as the means of payment. In the

ISP Gateway
(Pervasive
serv ices)

User

Outside W orld
Demilitarized Zone

(DM Z) Internal Network

Client

Data servicesData services

Personalization
Server

Directory
and Security

Services

Pervasive
extension
serv ices

Pervasive
client

serv ices

Existing data
and

Applications

Pr
ot

oc
ol

 F
ire

w
al

l

Application
Server

Presentation
Server

D
om

ai
n

Fi
re

w
al

l

•Everyplace Client for Pocket PC:
- DB2 Everyplace 8.1
- Offline form s
- MQ Everyplace

•W ebSphere Client Technology,
Micro Edition

W indows 2000 + SP4
•IBM W ebSphere Application
Server V5.0 HTTP Plug-in
•IBM HTTP Server V1.3.26

W indows 2000 + SP4
•W ebSphere Everyplace Access V5.0
•DB2 Everyplace 8.1
•M Q Everyplace

Collaboration
Server

W indows 2000 + SP4
•W ebSphere Portal Server V5.0.2.1
•Dom ino Server 6.5.1
•IBM W ebSphere Application Server
Enterprise V5.0.2.3

W indows M obile 2003

W eb
serv er

redirector
286 Patterns: Pervasive and Rich Device Access Solutions

future, the conductor will be able to verify the credit card is not on the credit card
black list. We did not implement that portion of the application.

Figure 13-4 shows the high-level system design, which includes the pervasive
device and the server environment. Three tiers shown in Figure 13-4 are:

� The ITSO Railways Ticketing application (in Tier 1) runs on the mobile device.
This application interacts with the local database and the messaging service.

� The pervasive server (logical tier) contains the runtime middleware, which
supports the sharing of data and messages between the device and the
enterprise server. It contains the DB2 Everyplace Synchronization Server and
MQ Everyplace. The DB2 Everyplace sync server is used to synchronize
enterprise data (for this application) to the device. The MQ Everyplace queue
manager gets messages from the mobile device’s message queue.

� The third tier is the ITSO Railways enterprise server environment, which
contains the business application and the business data. This tier contains
the Train Station Ticketing application, which processes the ticket purchase
messages, creates interfaces to other business applications, and updates the
enterprise database as needed.

In this scenario the data synchronization and the message transfer occur over
the air whenever a connection is available.

Figure 13-4 System overview

Pervasive Server Enterprise ServerDevice

Train Station
Ticketing

Application

ITSO
Railways
Ticketing

Application

Local
Database

DB2 Everyplace
Synchronization

 Server

MQ Everyplace

Message
Queue

ITSO Railways
Database

Message
Queue
 Chapter 13. Using Workplace Client Technology, Micro Edition 287

13.2.1 Component model
This component model shows a breakdown of the client application. In this
sample application the Ticketing application follows the Model View Controller
paradigm, where the controller is a servlet, the view is provided by Java Server
Pages (JSPs), and the model consists of classes that interact with the database
and the messaging service.

Figure 13-5 shows the component diagram of the sample application. In the
sample application, the Ticketing Servlet parses the request from the client
browser and determines the actions to take. The TicketingServlet invokes
methods on the TicketingService to retrieve data from the local database, update
the local database, and to put messages on the message queue.

Figure 13-5 Component model

MQ Everyplace is the messaging service used in this application, and DB2
Everyplace provides the small footprint database and the data synchronization
service.

ITSO Railways Ticketing Application

Ticketing
Servlet

Ticketing
JSP(s)

Ticketing
Service
288 Patterns: Pervasive and Rich Device Access Solutions

13.2.2 Object model
This section provides an object model for our ITSO Railways Ticketing
application. The class diagrams show the classes used within the application.
The interaction diagram shows the classes directly involved when the conductor
starts the application in order to sell a ticket.

Class diagram
Figure 13-6 on page 290 and Figure 13-7 on page 292 show the class diagrams
for the ITSO Railways Ticketing application.

The classes shown in Figure 13-6 on page 290:

� TicketingServlet - Controls the flow of the application and drives the
interaction with the view, the database, and the message service.

� selectorigin.jsp - Displays the possible origins for the ticket to the user.

� selectdestination.jsp - Displays the possible destinations for the ticket to the
user.

� purchasetickets.jsp - Displays the types of ticket that can be purchased and
accepts the purchaser’s credit card information.

� orderconfirmed.jsp - Displays the summary of the ticketing information and is
used to submit the ticket purchase.

� TicketingService - Is an interface defining the methods available for
interacting with the database and the message queue.

� ManagedService - (From the OSGi framework) is a service that receives
configuration data from a Configuration Admin service.

� Messages - Retrieves strings from the Resource Bundle and formats them.

� TicketingPresentationBundle - Is the activator bundle. At startup time the
framework creates an instance of this class and calls its start() method. The
activator can then publish services, start its own threads, etc. When the
bundle shuts down, the framework calls the activator’s stop() method. While
the bundle is shutting down, the activator can release resources that were
obtained after the start method was called and revoke any services it has
published.

� TicketingServiceTracker - Acts as a pass through for the TicketingService to
allow an implementation to always exist, but will not attempt to invoke the
service unless actually installed.

� ServiceTracker - (From the OSGi framework) a class that simplifies using
services from the framework’s service registry. It can be used to track all
services in the framework’s service registry that match the specified search
criteria.
 Chapter 13. Using Workplace Client Technology, Micro Edition 289

� TicketingServiceImpl - Implements the TicketingService methods and
provides access to the database and the MQe message service.

Figure 13-6 Class diagram - 1

The classes shown in Figure 13-7 on page 292 are associated with the
TicketingServiceImpl:

� TicketingTransportListener - A listener for messages being sent by the MQ
server.

� TicketingMessage - (Implements IMessage and extends MQeMsgObject)
provides the getters and setters for this specific message object:

– IMessage - Defines the basic methods required for messaging to be used

– MQeMsgObject - The basic message object within MQe used to convey
information from one application to another via a sequence of queue
managers

� TicketingSystemConstants - An interface that defines the constants used to
access system properties as well as those constants used to define queue
and queue manager names.

� TicketingMsgConstants - An interface that defines the fields in a message.

TicketingService
Impl

Ticketing.jsp

TicketingService
Tracker

ServiceTracker

TicketingServlet

MessagesTicketingService Ticketing
Presentation

Bundle

ManagedService

orderconfirmed.jsp

selectorigin.jsp
selectdestination.jsp

purchasetickets.jsp
290 Patterns: Pervasive and Rich Device Access Solutions

� BaseMQeTransport - (Implements ITransport and MQeMessageInterface and
extend MQe) an implementation of the ITransport using MQ Everyplace as
the transport.

– ITransport - Defines the basic methods expected of a transport interface

– MQeMessageInterface - MQe’s message interface

– MQe - Base MQ Everyplace class containing various useful symbolic
constant definitions and utility methods to assist with MQe programming

� ServiceRegistration - (From the OSGi framework) an object for the private
use of the registering bundle, which should not be shared with other bundles.

� BundleContext - (From the OSGi framework) the context is used to grant
access to other methods so that this bundle can interact with the framework.

� TicketingDatabase - Is the database access wrapper providing the methods
for accessing and updating of the local database.

� Origin - A class that reflects the elements from the Origin table, which are
used in the application.

� Destination - A class that reflects the elements from the Destination table,
which are used in the application.

� BaseMessageEnvelope - Implementation of the IMessageEnvelope.

� IMessageEnvelope - Defines the methods required of a message container.

� ServiceReference - (From the OSGi framework) the framework returns
ServiceReference objects from the BundleContext.getServiceReference and
BundleContext.getServiceReference methods. It may be shared between
bundles and can be used to examine the properties of the service and to get
the service object.

� ConfigruationAdmin - (From the OSGi framework) this interface is used to
store bundle configuration data persistently.

� Configuration - (From the OSGi framework) contains a configuration
dictionary and allows the properties to be updated via this object.
 Chapter 13. Using Workplace Client Technology, Micro Edition 291

Figure 13-7 Class diagram - 2

Interaction diagram
The interaction (sequence) diagram, shown in Figure 13-8 on page 294, depicts
the conductor using the ITSO Ticketing application. Once the conductor starts,
the application flow of controls occurs, as follows:

1. The TicketingServlet invokes the TicketingService’s getOriginList() method.

2. The Ticketing Service invokes the TicketingDatabase’s getOriginList()
method, which retrieves the origins from the Origin table.

3. The TicketingServlet invokes the ServletContext’s getRequestDispatcher()
method to display the selectorigin view to the conductor. The conductor then
selects the appropriate origin and clicks Accept. The action is set to
SelectDestination.

4. The TicketingServlet invokes the TicketingService’s
getDestinationForOrigin().

5. The TicketingService invokes TicketingDatabase’s getDestinationForOrigin(),
which retrieves the possible destinations from the Destination table.

6. The TicketingServlet invokes the ServletContext’s getRequestDispatcher()
method to display the selectdestination view to the conductor. The conductor

TicketingService
Impl

Ticketing
Message

Ticketing
Transport
Listener

Service
Registration

Bundle
Context

TicketingMsg
Constants

Ticketing
System

Constants

BaseMQe
Transport

Destination

Ticketing
Database

Origin

Base
Message
Envelope

IMessage
Envelope

Service
Reference

Configuration
Admin

Configuration
292 Patterns: Pervasive and Rich Device Access Solutions

then selects the appropriate destination and clicks Accept. The action is set to
PurchaseTickets.

7. The TicketingServlet invokes the TicketingService’s getJourneyPrice().

8. The TicketingService invokes TicketingDatabase’s getJourneyPrice(), which
retrieves the prices from the Destination table.

Note that the TicketingServlet invokes the getJourneyPrice() sequence
twice—once to determine the prices for singles and once for returns.

9. The TicketingServlet invokes the ServletContext’s getRequestDispatcher()
method to display the purchaseticket view. The conductor then selects the
ticket type and collects the customer’s credit card information and clicks
Submit. The action is set to SubmitOrder.

10.The TicketingServlet invokes the TicketingService’s getJourneyPrice()
method to obtain the actual price for this ticket using the selected origin and
destination as input.

11.The TicketingService invokes the TicketingDatabase’s getJourneyPrice()
method, which retrieves the price from the Destination table specific to the
selected origin and destination.

12.The TicketingServlet invokes the TicketingService’s submitOrder() method
with the ticket information.

13.The TicketingService invokes TicketingDatabase’s storeTicketOrder()
method, which invokes the getNextOrderID() to obtain an order ID and then
creates a new ticket purchase in the Tickets table. Once the Tickets table has
been updated successfully, a message is created and put on the message
queue, which is discussed later in this document.

14.The TicketingServlet invokes the ServletContext’s getRequestDispatcher()
method to display the orderconfirmed view to the conductor. The conductor
can then reuse the application for other ticket purchases.
 Chapter 13. Using Workplace Client Technology, Micro Edition 293

Figure 13-8 Interaction diagram

13.3 Application design
This section describes the architecture and design decisions that went into
building our sample application. This sample application is an extension to the
Train Station Ticketing application and is targeted to run on mobile devices that
operate in an intermittently connected mode. The sample application must
therefore be able to operate in standalone mode, thereby allowing the conductor
to use the application when connectivity is not available.

There are various architectural decisions that went into designing this
application. These include:

� Integration pattern

Ticketing
Servlet

Servlet
Context

Ticketing
Database

Select
destination

Purchase
tickets

Order
confirmed

Ticketing
Service

Start application

14. getRequestDispatcher()

11. getJourneyPrice()10. getJourneyPrice()

5. getDestinationForOrigin()4. getDestinationForOrigin()

12. submitOrder() 13. storeTicketOrder()

2. getOriginList()

6. getRequestDispatcher()

9. getRequestDispatcher()

3. getRequestDispatcher()
Select
origin

Called twice
to get the single and
the return prices

Create message
and put it on the
message queue

1. getOriginList()

8. getJourneyPrice()7. getJourneyPrice()
294 Patterns: Pervasive and Rich Device Access Solutions

� Application pattern and Pervasive access pattern
� Design pattern

Integration pattern
The first high-level architectural decision was to select the Access Integration
pattern because it met both the business and IT requirements for the solution.
We found the pervasive device support service within the access integration
services to be particularly appropriate for this architecture. The pervasive device
Support service targets the needs introduced by pervasive devices.

Application pattern
The application pattern selected for this scenario is the Pervasive Device
Adapter pattern, which provides a structure for extending the reach of the
enterprise application (Train Station Ticketing) to pervasive devices.

This scenario uses both the Client to Pervasive Device Interaction pattern and
the Pervasive Device to Server Exchange pattern. The client to pervasive device
interaction is used because the client, in this case the train conductor, interacts
with the application located on the device. The Pervasive Device to Server
Exchange pattern is used because the device must exchange data (in the local
database) and messages (stored in the message queue) with the server when
network connectivity is available.

Design pattern
The classic Model-View-Controller design pattern maps nicely to this application,
as was shown in Figure 13-5 on page 288. The model represents the application
object that implements the access to the application data and business logic. The
View is responsible for formatting the application results and dynamic page
construction. The Controller is responsible for receiving the client request,
invoking the appropriate business logic, and (based on the results) selecting the
appropriate view to be presented to the user.

13.4 Sample application development
This section discusses the creation of the sample application, the IBM products,
and the development environment used to build it. This is a standalone Web
application running on the mobile device using Workplace Client Technology,
Micro Edition.

WebSphere Client Technology, Micro Edition is a platform for deploying mobile
applications that can operate in a standalone mode on the pervasive device.
WebSphere Client Technology, Micro Edition incorporates WebSphere
 Chapter 13. Using Workplace Client Technology, Micro Edition 295

Everyplace Micro Environment, which provides a Java 2 Micro Edition (J2ME)
powered runtime environment that supports most popular devices, and for
smaller devices WebSphere Everyplace Micro Environment delivers a Java
Runtime Environment (JRE) that meets Connected Limited Device Configuration
(CLDC) and Mobile Information Device Profile (MIDP 2.0) specifications. For
larger devices such as PDAs and handheld computers, WebSphere Everyplace
Micro Environment includes the Connected Device Configuration (CDC)
Foundation Profile and Personal Profile. WebSphere Client Technology, Micro
Edition also provides the ability to use custom profiles for applications where
footprint and performance are of major importance.

WebSphere Client Technology, Micro Edition contains a component-based
architecture provided by Service Management Framework (SMF). SMF is IBM’s
implementation of the Open Service Gateway Initiative (OSGi) Service Platform
Release 3 specification. The OSGi Alliance defines and promotes this open
standard framework for network delivery of managed services to local networks
and devices. This approach allows devices to easily be maintained wherever
they are and whenever they connect to the network.

WebSphere Client Technology, Micro Edition supports assured messaging by
supporting MQ Everyplace and Java Messaging Service (JMS). It also supports
IBM DB Everyplace, which provides a local database; and a synchronization
service, which allows the local database to sync with the enterprise database
when a network connection is available.

To create a WebSphere Client Technology, Micro Edition based application, first
set up the development environment with the essential WebSphere Studio
products, plug-ins, and features. For this sample, we used WebSphere Studio
Application Developer Version 5.1.1 as the base. Next WebSphere Studio
Device Developer Version 5.7 was installed as an extension to WebSphere
Studio Application Developer. During the WebSphere Studio Device Developer
installation you will see this question displayed: WebSphere Studio Application
Developer is installed on the system. The function in WebSphere Studio
Device Developer can be enabled in WebSphere Studio Application
Developer. To incorporate the two products, select Yes, enable it and click
Next.

Please note that WebSphere Studio Site Developer could have been used
instead of WebSphere Studio Application Developer as the base development
environment.

Because we are creating a WebSphere Client Technology, Micro Edition Web
based application, we installed the following WebSphere Client Technology,
296 Patterns: Pervasive and Rich Device Access Solutions

Micro Edition features on the base (consisting of WebSphere Studio Application
Developer and WebSphere Studio Device Developer) in this order:

1. SMF Bundle Development Kit V5.7
2. Extension Services V5.7
3. Application Tools for Extension Services V5.7

Because we are using MQe and DB2e we also installed (from the technologies
directory):

� DB2 Everyplace V8.1.4
� MQ Everyplace V2.0.1

13.4.1 Creating the application
The projects for the application artifacts were created using WebSphere Studio
Application Developer. The two projects are named ITSO Railways Ticketing
Web Application and ITSO Railways Ticketing Service. To create the project
select File → New → Other, which invokes the New Project wizard. To create
the ITSO Railways Ticketing Web Application project with the New Project
wizard, select Extension Services with a project type of Extension Services
Web Project. Select the Platform Profile of Extension Services: jclFoundation
(5.7.0) and use the default application services. Because this application is
similar to the Order Entry example included with the product, we mirrored their
approach and package structure, and reused many of the artifacts that existed in
the Order Entry application.

An Extension Services project is different from a standard Java project because
the Java Build Path is automatically updated to reflect the project’s Platform
Profile and Application Service settings. Also, the manifest file located in the
Extension Services Content folder is automatically updated with the appropriate
OSGi metadata for the project and a bundle activator is created, which is
required for registering the Web application with the Web container at runtime.
Included is a default bundle activator for this purpose.

The Ticketing Web application relies on numerous classes within the ITSO
Railways Ticketing Service Project to interact with the OSGi Framework, SMF
services, and the MQ Everyplace messaging services. Even though they are
important to this application, we will be focusing primarily on the Java classes
with the ITSO Railways Ticketing Web application. As stated earlier, we used the
Order Entry example that comes with WebSphere Client Technology, Micro
Edition as the base for our sample.
 Chapter 13. Using Workplace Client Technology, Micro Edition 297

13.4.2 Creating the service interface
The TicketingService is an interface that defines various services that the
TicketingServlet uses to interact with the database and the messaging service.
The TicketingService interface is created within the ITSO Railways Ticketing
Service project and within the com.ibm.itsorailways.ticketing.service package we
created. To create the interface select File → New → Interface. Figure 13-9
shows the Java Interface wizard. Enter the interface name TicketingService and
click Finish.

Figure 13-9 Create interface

The methods within this interface are shown in Example 13-1.

Example 13-1 TicketingService methods

/**
submits the purchase ticket transaction
**/
public void submitOrder(String origin, String destination, String singles,
String returns, String cardHolder, String cardNumber, String expireMonth,
String expireYear, String totalCost);
298 Patterns: Pervasive and Rich Device Access Solutions

/**
get the possible origins form the Origin table
@return Vector with the possible origins
**/
public Vector getOriginList();
/**
gets the destinations from the Destination table
@return Vector with the possible destinations
**/
public Vector getDestinationsForOrigin(String origin);
/**
get the price for the journey from the destination table
@return an integer with the amount
public int getJourneyPrice(String origin, String destination);
/**
Set the configuration for the service. The method is used for external
configuration of the service. The new configuration information is used to
update our current configuration, and that new current configuration is saved
via the ConfigurationAdmin service
@param props The new configuration properties
*/
public void setConfig(java.util.Dictionary config);
/**
Return a copy of our current configuration
@return Dictionary A copy of our current configuration values
*/
public Dictionary getConfig();

13.4.3 Create the servlet
The heart of the application is the TicketingServlet, which controls the application
flow and drives the interaction between the application and the user (in this case
a train conductor). Within the ITSO Railways Ticketing Web Application project
open the JavaSource and then open and select the
com.ibm.itsorailways.client.gui.servlet package we already created. From the
Toolbar menu select File → New → Other. In the New wizard select Web in the
left window and Servlet in the right window. Give the new servlet the name
TicketingServlet and click Finish.

The doRequest() method provides the control flow for the application. Each user
request is a parameter, which is put into the string named action. The action is
used to inform the servlet of the user’s response to the screen previously
displayed. The possible action values are:

� SelectOrigin
� SelectDestination
� PurchaseTickets
 Chapter 13. Using Workplace Client Technology, Micro Edition 299

� SubmitOrder

The TicketingServlet uses the TicketingService to obtain data from the local
database for display by the appropriate JSP. The doRequest() method is shown
in Example 13-2, which nicely maps to the interaction diagram shown in
Figure 13-8 on page 294.

Example 13-2 TicketingServlet doRequest()

protected void doRequest(HttpServletRequest request,
HttpServletResponse response) throws ServletException, IOException {
String nextpage = "/index.jsp";
//get the browser's locale
Final Locale locale = Util.getLocale(request);
Messages.setLocale(locale);
//
// get the action selected by the user
//
String action = (String) request.getParameter("action");
//
// for the SelectOrigin action, get the journey origins from the databse
// and prepare the selectorigin.jsp for display
//
If (action.equals("SelectOrigin")) {

request.setAttribute("OriginList", service.getOriginList());
nextpage = "/selectorigin.jsp";

//
// for the SelectDestination action, get the possible destinations from the
// database and prepare the selectdestination.jsp for display
//
} else if (action.equals("SelectDestination")){

String origin = (String)request.getParameter("Origin");
request.setAttribute("DestinationList",

service.getDestinationsForOrigin(origin));
nextpage = "/selectdestination.jsp";

//
// for the PurchaseTickets action, get the possible prices from the
// database and prepare the purchasetickets.jsp for display
//
} else if (action.equals("PurchaseTickets")){

String origin = request.getParameter("Origin");
String destination = request.getParameter("Destination");
request.setAttribute("SinglePrice",

Integer.toString(service.getJourneyPrice(origin,destination)));
request.setAttribute("ReturnPrice",

Integer.toString(2*service.getJourneyPrice(origin,destination)));
nextpage = "/purchasetickets.jsp";

//
// for the SubmitOrder action, get the parameters from the request,
300 Patterns: Pervasive and Rich Device Access Solutions

// get the price from the database, update the data base with the ticket and
// place a message on the queue and prepare the orderconfirmed.jsp for display
//
} else if (action.equals("SubmitOrder")) {

String origin = request.getParameter("Origin");
String destination = request.getParameter("Destination");
String singles = request.getParameter("Singles");
String returns = request.getParameter("Returns");
String customerName = request.getParameter("CardHolder");
String cardNumber = request.getParameter("CardNumber");
String expireMonth = request.getParameter("ExpireMonth");
String expireYear = request.getParameter("ExpireYear");
int price = service.getJourneyPrice(origin,destination);
int totalCost = (Integer.parseInt(singles) * price) +

(Integer.parseInt(returns) * 2 * price);
request.setAttribute("TotalPrice", Integer.toString(price));
service.submitOrder(origin, destination, singles, returns,

customerName, cardNumber, expireMonth, expireYear,
Integer.toString(totalCost));

nextpage = "/orderconfirmed.jsp";
// not used currently
}else if (action.equals("NewOrder")){

nextpage = "/neworder.jsp";
}

RequestDispatcher rd = sc.getRequestDispatcher(nextpage);
rd.forward(request, response);

} // end method

13.4.4 Creating a user interface
The Ticketing application uses various JSPs to display data to the user. Within
the ITSO Railways Ticketing Web Application project and within the
WebContent/Theme create the JSP by selecting File → New → Other to invoke
the New Wizard. Within the New Wizard select Web in the left column and JSP
in the right column, then click Next. Enter the JSP name selectorigin and click
Finish. The selectorigin.jsp was developed using Page Designer. Figure 13-10
on page 302 shows a preview of the JSP, so you can see its structure.
 Chapter 13. Using Workplace Client Technology, Micro Edition 301

Figure 13-10 selectorigin.jsp preview

Figure 13-11 shows the design view of the JSP.

Figure 13-11 selectorigin.jsp design view

Example 13-3 on page 303 shows the code generated for the selectorigin.jsp.
The setting of the action parameter is highlighted. The JSP uses the originVector
to load the drop-down list with the possible ticket origins.
302 Patterns: Pervasive and Rich Device Access Solutions

Example 13-3 selectorigin.jsp code

<%@ page contentType="text/html;charset=UTF-8"%>
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<HTML>
<HEAD>
<%@ page import="com.ibm.itsorailways.ticketing.common.Origin" %>
<%@ page import="com.ibm.itsorailways.ticketing.common.Messages"%>
<%@ page import="java.util.Vector" %>
<%

Vector originVector = (Vector)request.getAttribute("OriginList");
%>
<META http-equiv="Content-Type" content="text/html; charset=UTF-8">
<meta http-equiv="Expires" content="Wed, 01-Jan-2003 12:00:01 GMT">
<META name="GENERATOR" content="IBM WebSphere Studio">
<META http-equiv="Content-Style-Type" content="text/css">
<LINK href="theme/Master.css" rel="stylesheet"

type="text/css">
<TITLE><%= Messages.getString("SELECT_ORIGIN_TITLE") %></TITLE>
</HEAD>
<BODY>
<center>
<%= Messages.getString("SELECT_ORIGIN_TITLE")
%>

<form action="TicketingServlet" method="post">
<select name="Origin">
<%

{
int count = originVector.size();
for (int counter = 0;counter < count;counter++) {

Origin o = (Origin)originVector.elementAt(counter);
if (counter == 0) {

%>
<option selected="selected" value="<%=o.getName()%>">

<%
} else {

%>
<option value="<%=o.getName()%>">

<%
}

%>
<%=o.getName()%>
</option>

<%
}

}

 Chapter 13. Using Workplace Client Technology, Micro Edition 303

%>
</select>

<input type=hidden name=action value="SelectDestination" />
<input type="submit" id="Submit" name="Submit" value="<%=
Messages.getString("SELECT_ORIGIN_OK") %>" />
</form>

</center>
</BODY>
</HTML>

13.4.5 Accessing the database
The TicketingServlet invokes methods on the TicketingService to access and
update the database and to create messages. The TicketingService is
implemented by the TicketingServiceImpl. To access and update the database,
the TicketingServiceImpl invokes methods on the TicketingDatabase class.
Figure 13-4 shows the getOriginList() method (in the TicketingDatabase class),
which returns a vector of Origin objects. The Origin object has two elements,
which are:

� Id - The ID for the origin
� Name - The literal name of the origin

Example 13-4 Access Origin table

public Vector getOriginList() throws IOException {
Vector originVector = new Vector(8);
Connection con = null;
Statement st = null;
ResultSet rs = null;
try {

con = getConnection();
st = con.createStatement();
rs = st.executeQuery("SELECT ORIGIN_ID, NAME FROM origins");
while (rs.next())
{

Origin o = new Origin();
o.setId(rs.getString(1));
o.setName(rs.getString(2));
originVector.addElement(o);

}
}catch (Exception e){

System.out.println("******* ERROR " + e);
e.printStackTrace();
throw new IOException("EXCEPTION -- Error getting origin list");

}finally {
304 Patterns: Pervasive and Rich Device Access Solutions

close(rs);
close(st);
close(con);

}
return originVector;

}

13.4.6 Creating messages
The Ticketing application creates messages for the message queue once a ticket
has been purchased. The TicketingServlet invokes the TicketingService’s
submitOrder() method, passing it the information from the ticket purchase. First
the ticket purchase is recorded (by the TicketingDatabase’s storeTicketOrder()
method) in the ticket table and then a message is created. Example 13-5 shows
the code for the submitOrder() method in the TicketingServiceImpl class.

Example 13-5 TicketServiceImpl submitOrder()

public void submitOrder(String origin, String destination,String singles,
String returns,String cardHolder,String cardNumber,String

expireMonth,String expireYear,String totalCost) {
String id = getDatabase().storeTicketOrder(origin, destination, singles,

returns, cardHolder, cardNumber, expireMonth, expireYear, totalCost);
if (id != null)
{

BaseMQeTransport transport = getListener().getTransport();
try {

//** create an instance of the TicketingMessage and set its element values
TicketingMessage msg = new TicketingMessage();
msg.setMessageReasonCode(TicketingMsgConstants.CUST_DATA_REQ_CODE);
msg.setMessageID("ID01");
msg.setOrderId(id);
msg.setOrigin(origin);
msg.setDestination(destination);
msg.setSingles(singles);
msg.setReturns(returns);
msg.setCardHolder(cardHolder);
msg.setCardNumber(cardNumber);
msg.setExpireMonth(expireMonth);
msg.setExpireYear(expireYear);
msg.setTotalCost(totalCost);

//** identify the queue manager and put the message on the message queue
 msg.setReplyToQueueManagerName(transport.getDefaultQueueManagerName());
msg.setReplyToQueueName(transport.getReplyQueueName());
log("DEBUG -- SUBMIT ORDER [" + msg.getDisplayString() + "]");
IMessageEnvelope env = new

BaseMessageEnvelope(transport.getServerQueueManagerName(),
transport.getRequestQueueName(), msg);
 Chapter 13. Using Workplace Client Technology, Micro Edition 305

getListener().getTransport().send(env);
}catch (Exception e){

e.printStackTrace();
}//* end catch

}//* end if null
}//* end method

For more details on using MQ Everyplace look at the IBM Web site:

http://www.ibm.com/software/wmqe

13.4.7 Setting up the launch configuration
The Ticketing application is a standalone Java application. The following steps
must be completed to set up a launch configuration for the program that starts
the Ticketing server:

1. In the SMF Perspective, select Run → Run... to display the Launch
Configuration window.

2. Select Java Application. Click New and provide a name for the application,
in this case Ticketing.

3. If the Project field is empty, select Browse and choose the ITSO Railways
Ticketing Service project.

4. Click Search next to the Main class field to find the
com.ibm.itsorailways.ticketing.server.Server server, as shown in Figure 13-12
on page 307.
306 Patterns: Pervasive and Rich Device Access Solutions

http://www.ibm.com/software/wmqe

Figure 13-12 Launch configuration

5. In the Choose Main Type window, select Server and click OK.

6. Select the JRE tab.

7. Select the Extension Services Generated JRE (JCL Foundation) and click
Run.

A J9 console window displays after you click Finish. Minimize the window and
return to WebSphere Studio. If you close the window, the server terminates and
the sample application will not function correctly.

13.4.8 Deploying the application
The following steps set up the Extension Services Local Server:

1. Select File → New → Other. The New Window is displayed.
 Chapter 13. Using Workplace Client Technology, Micro Edition 307

2. Select Server in the left pane and Server and Server Configuration in the
right pane. Click Next. The Create a new server and server configuration
window is displayed.

3. Specify a name of Ticketing in the Server field. In the Server type field,
select Extension Services → Local Server. Accept the default values for
the other fields. Click Next.

If you have not already created a Server Project you might be prompted to
create one. Click Yes to create a new server project.

4. Accept all default values and click Next.

5. Select Extension Services: jclFoundation (5.7.0) as the Platform Profile,
and click Finish.

6. Change to the Server perspective by selecting Window → Perspective →
Other → Server and open the Server window and verify that the status of the
server is Stopped.

7. Right-click your server in the Server configuration window and select Start.

Perform the following steps to submit the ITSO Railways Ticketing Service
bundles to the Extension Services Local Server:

1. In the SMF perspective, right-click the ITSO Railways Ticketing Service
project and select SMF → Submit Bundle.

2. In the resulting Target Submission window, select Submit Jar.

3. Select Admin@localhost:8080/smf in the Export Targets box.

4. Click Finish to submit the bundle to the bundle server.

5. Switch to the Bundle Server view and open Admin@localhost:8080/smf →
Bundles. Verify that bundle names TicketingCommon and TicketingService
are listed.

13.4.9 Launching the application
The following instructions are used to launch the Ticketing Web Application:

1. Change to the Server perspective.

2. In the Server Configuration window, right-click the Ticketing server and
select Add and remove projects.

3. Select ITSO Railways Ticketing Web Application from the Available
projects and click Add. Then click Finish.

4. In the Servers window, right-click Ticketing and select Restart to start the
bundle server, the SMF runtime, and to load the Ticketing Web Application
into the SMF runtime.
308 Patterns: Pervasive and Rich Device Access Solutions

5. In the Navigator window, right-click ITSO Railways Ticketing Web
Application and select Run on Server to launch a browser window that
loads the application.

13.4.10 Using the ITSO Railways Ticketing application
You can use the Ticketing application to purchase tickets from the journey origin
to a particular destination.

When the application starts it displays an initial splash screen. On this screen,
click Start to begin the application.

Figure 13-13 Start Ticketing application

Next the ticketing Select your Origin screen displays. Select the origin of your trip
from the drop-down list and click Accept.
 Chapter 13. Using Workplace Client Technology, Micro Edition 309

Figure 13-14 Ticketing origin selection

Now the Select your Destination screen displays. Select the destination from the
drop-down list and click Accept.

Figure 13-15 Ticketing destination

The Purchase Tickets screen displays. Select a single ticket type and a return
ticket type from the drop-down lists. Enter the card holder’s name, the credit card
number, and the expiry date (month and year). Any values for credit card
information will be acceptable. Click Submit.
310 Patterns: Pervasive and Rich Device Access Solutions

Figure 13-16 Ticketing purchase

When the ticketing purchase is processed, the Order Confirmed screen is
displayed. Your can click New order to purchase more tickets.

Figure 13-17 Ticketing order confirmation
 Chapter 13. Using Workplace Client Technology, Micro Edition 311

13.5 Deploying the application
This assumes you have installed the WebSphere Everyplace Client, Micro
Edition runtime environment. To deploy the ITSO Railways Ticketing application
to the target pervasive device perform the following general steps:

1. First define the directory location in the file system to store the application.

2. The ITSO Railways Ticketing Service project contents will be exported as
SMF bundles using the SMF Bundle tool. There will be two bundles created,
one for the common package and one for the service package.

3. The ITSO Railways Ticketing Web Application project is exported to the same
directory as a WAB file.

4. Next a Platform Builder project is created that contains the application
bundles. The Platform Builder project can be used to build a target platform
for a specific device type that will run the application. To locate the Platform
Builder tool select File → New → Project → Extension Services →
PlatformBuilder. This tool is used to resolve any dependencies on other
services or bundles.This tool will create the TicketingPlatformBuilder project
in the workspace and will immediately launch a build to generate a target
platform.

5. To run the target platform (created above) on your device, install the target
platform using steps specific to the device. For example, if the output format
was a zip file, unpack the platform package into a location in the device file
system. Next execute the platform startup script, which is named StartSMF.
This script launches the Extension Service platform and installs the
application.

6. Once the platform is installed, you must configure the application and
possibly modify the configuration for the runtime environment. After the
configuration is done, open a browser and enter the location of the Ticketing
application to start the application.
312 Patterns: Pervasive and Rich Device Access Solutions

Chapter 14. Timetable information by
Voice

This chapter describes the rationale, design, and development of a voice access
application to ITSO Railways timetable information by customers using phones.
The pervasive solution provides ubiquitous access for customers over any
telephone devise. The solution is based on the application of WebSphere Voice
technologies including WebSphere Voice Response and WebSphere Voice
Server as base technologies supporting WebSphere Voice Application Access.
The solution approach is compatible with potential extensions to a broad range of
services accessible by multi-channels including voice.

This chapter describes:

� Business requirements as use cases for the timetable application

� The Pattern for Voice Access

� The architecture of the ITSO Railways timetable information application

� Design information about the timetable information application and issues in
developing a voice access application

� Development of the timetable information application using Toolkits available
in WebSphere Studio Application Developer V5.1

14
© Copyright IBM Corp. 2005. All rights reserved. 313

14.1 Business requirements
The business requirements are for ITSO Railways to minimize the need for a call
center to provide customers with information about its timetables. ITSO has
provided a range of printed and Web-based materials for customers but
recognizes that customers in transit may need to update their train schedules.

For this purpose ITSO Railways employs a call center operation, but because of
potentially large volumes of calls at particular times of the day with only minimum
use at other times the call center represents a major cost for ITSO Railways.

In order to meet its current requirements for cost-reduction, ITSO Railways
intends to automate the phone access to its timetables. However, it also wants to
develop a solution that will in the future provide a common interface for
customers regardless of their access channel. In particular, it wants to ensure
that the interface to its timetables is similar across phone, visual information
presented on mobile devices and on the Internet (as well as potentially
information kiosks in the stations).

The following diagram is the Runtime pattern we implemented in this particular
scenario.
314 Patterns: Pervasive and Rich Device Access Solutions

Figure 14-1 Runtime pattern for the Voice scenario

The Product mapping for the scenario that we used in this chapter can be seen in
the following diagram.

User

Outside World
Demilitarized Zone

(DMZ) Internal Network

Client

Voice and/or
Data services

(VoIP)

Voice and/or
Data services

(VoIP)

Pervasive
client

services

Pr
ot

oc
ol

 F
ire

w
al

l

Voice
gateway

Telephony
connector

D
om

ai
n

Fi
re

w
al

l

Telephony
client

User

Personalization
Server

Directory
and Security

Services

Database

Existing data
and

Applications
Application

Server
Presentation

Server

Collaboration
server

Pervasive
extension
services

Pervasive Device Adapter application pattern

Pervasive
device

adapter tier
Presentation /

Application
synch/
asynch

synch
 Chapter 14. Timetable information by Voice 315

Figure 14-2 Pervasive Device Adapter=Voice::Product mapping=Windows

The high-level requirements are captured in the next figure. This shows a
high-level use case for the application.

User

O utside W orld
Demilitarized Zone

(DM Z) Internal Network

Client
Personalization

Server

Directory
and Security

Serv ices

Pervasive
extension
serv ices

Pervasive
client

serv ices

Database

Ex isting data
and

Applications

Pr
ot

oc
ol

 F
ire

w
al

l

Application
Server

Presentation
Server

Voice
gateway

Telephony
connector

D
om

ai
n

Fi
re

w
al

l

Collaboration
Server

AIX 5.2
•W ebSphere Portal Server V5.0.2.1
•Dom ino Server 6.5.1
•IBM W ebSphere Application Server
Enterprise V5.0.2.3

AIX 5.2
•W ebSphere Voice Application Access V5.0
•VoiceXM L Browser

Telephony
client

User

Voice and/or
Data serv ices

(VoIP)

Voice and/or
Data serv ices

(VoIP)

VoIP application

AIX 5.2
•IBM W ebSphere Voice Response V3.1
•IBM W ebSphere Voice Server V3.1
- Tex t-To-Speech Engine
- Voice Recognition Engine
316 Patterns: Pervasive and Rich Device Access Solutions

Figure 14-3 Use case diagram

The customer initiates a query by dialing a specific timetable information line.
The call is answered (in this case by the IVR) and prompts the customer to enter
her request (by collecting information about the caller’s departure, destination,
and required time). This information is sent to the automated speech recognition
system that processes and verifies the input. The collected information is sent as
a text request to the timetable application that generates a database request for
location and timetables (and in the future for related information, for instance, the
fare could be provided as well as duration of the journey depending on the
database organization and completeness). The timetable information is
generated as text for a speech production system to speak the data to the
customer.

The current application requirements could be met by deploying a voice gateway
and voice services for recognition and text to speech. However, the other
business requirements indicate the need for a utilization of the Pattern for Voice
Access because of future requirements for extensibility and multi-channel re-use
 Chapter 14. Timetable information by Voice 317

of the timetable data. The business decisions that impact the selection of the
pattern components include:

� The application requires a telephone answer capability. This could be a PBX
that links directly to a speech recognition component. In this case ITSO
Railways wants extensibility to other potential applications in the future and
therefore wants the system implemented by an Interactive Voice Response
(IVR) that would provide the option to offer the customer a range of potential
future services from ITSO Railways based on the same underlying
infrastructure. So in this use case the IVR is the primary agent for call control,
but would link to the existing ITSO Railway PBX system.

� The deployment could utilize either a grammar-based or natural language
understanding (NLU) approach. In this case a standard grammar approach
could work quite well because the timetable implementation could follow a
standard visual application approach (select departure location, select
destination location, select approximate time of travel). Alternatively, the
interface could simply ask the customer for her travel details and, using an
NLU approach, the system could understand a customer who said, “I want to
go from Raleigh to Durham at 3 o’clock”. ITSO Railways is interested in NLU
interfaces for the future but has decided to build the application using
grammars using a menu-driven approach based on its current databases for
locations and times. This will avoid the need to collect a range of user
responses for the NLU and can be implemented with standard grammar
constructions (for example, adding “please” etc. at the end of sentences).

� Another issue is related to the persona for the application and how speech
should be presented to the user. The successful interaction of the caller with
the automated technology will depend on a range of input variables (clarity of
caller’s speech, background noise, etc.). The motivation of the user to “work”
with the system will depend on their reaction to the persona of the interface.
Different persona are required for different applications and company
branding. In the case of ITSO Railways it believes that a natural human voice
could meet their requirements more than text-to-speech (TTS) systems.
However, they also note the value of TTS in the future for presenting more
dynamic database information (for example, cause of delays, etc.) in which
the information could not be recorded because it would vary. In the case of
timetables, however, it is possible to record all locations and times and
concatenate them in a naturally sounding presentation.

� Another business issue relates to the type of information that can be provided
to the customer from the existing databases. There could be a range of
possibilities including some simple value additions such as provision of
duration of journey. There could also be a range of extensible services that
could permit the customer to book a ticket and pay for it online. ITSO wants to
test the application for provision of timetable information in the first instance
and, after establishing the return on investment (ROI) for that investment,
318 Patterns: Pervasive and Rich Device Access Solutions

wants to ensure that related applications could be supported using the same
application approach and infrastructure as the initial application.

� Related to the mandatory business requirement for extensibility, ITSO
Railways wants to ensure that the approach to its voice interface is
generalizable across the full range of customer interfaces to timetable
information. These could include visual interfaces for mobile devices (PDAs),
multimodal interfaces (voice and visual interaction) for a range of devices
(smartphones, etc.), as well as access by Internet or local information kiosks.
Therefore a mandatory requirement is that the application solution
demonstrates multi-channel re-use of approach.

While the initial requirements (IVR with grammar-based approach for speech
recognition) could be met by use of a standard IVR/speech recognition system,
the requirements (including direct extensibility for multiple applications and
multi-channel re-use) indicate the need for an alternative approach that
guarantees these requirements.

14.2 High-level architectural overview
The use case analysis indicates the need for several high-level architectural
components. These are presented on the next diagram.

Figure 14-4 High-level architecture diagram

The architecture requirements show that the system would be responsive to any
telephony device (landline, mobile, VoIP, etc.) and would require a telephony
server for call control and management, and a voice server to respond to
customer queries and provide speech responses based on the query. In order to
 Chapter 14. Timetable information by Voice 319

find and aggregate the information required by the caller, an application server
would need to access the ITSO Railway database and aggregate the information
for output by the voice server.

14.3 Activity diagram
An activity diagram shows the dynamic interaction of a system in the flow across
the application. Activities of classes across the system show a change in the
state of the class. Activity diagrams are useful in voice applications because they
provide a representation that is intermediate between the call flow of the
interface and the objects required by the system. The activity diagram in the
figure shows the flow of activities for the ITSO Railway timetable access
requirements.

Figure 14-5 Activity diagram

The activity diagram shows a generalizable solution for the call flow and can be
extended to meet most information access requirements for callers into the ITSO
Railway automated information system.

The caller initiates the call and is given a greeting by the call manager that also
initiates an VoiceXML script to handle the call. The greeting and subsequent
320 Patterns: Pervasive and Rich Device Access Solutions

queries to the caller are managed via the speech output system that uses local
text data as required.

There are two options for this speech output. The greeting and subsequent
queries could be written “in-line” in the VoiceXML code or could be called from a
local database. In this case the solution could be met by in-line data, but a more
generalizable solution is implemented to provide extensibility for future
requirements.

The text for presentation is sent to the speech output system for presentation. In
this case there are also two options. One is to present the speech as
text-to-speech (TTS) from the voice server. The other is to call a speech file (for
example, .wav) from the local database for presentation to the caller. In this case
ITSO Railways has elected to use natural speech from a selected speaker and
so .wav files will need to be presented via the call management system (although
any compression format could be supported depending on the network
requirements). However, for development the TTS files can be used.

After presenting the prompts to the user, the system collects responses from the
caller to the queries. This could be handled in a sequential manner with each
query given an answer (what is the departure location, what is your destination
location, etc.), or the system could ask a general question (for example, please
tell us what journey you want to make), and could recognize the natural language
response. These options differ in complexity.

In the first case the approach is based on a prepared grammar. Knowledge
about what the user is likely to say is coded into expected utterances by the
caller (the grammar) and the input by the caller is matched to the grammar. In the
case of the timetable information the grammar would also consist of potential
prefixes and suffixes to the utterance (for instance, the caller might say, “Oh, I
would like to leave from Raleigh, please”) and the grammars would have to
include these potential additions to the target information “Raleigh” to recognize
it. In a reasonably constrained application such as the timetable requirements,
the actual usage utterances will be reasonably predictable.

The second option is to collect a range of data about the way callers ask for
timetable information. For instance, to the general question “Please tell us what
journey you want to make,” a caller might say, “I want to go from Raleigh to
Durham at around 3 p.m.” Once a sufficient number of potential user utterances
to the query have been collected, a statistical language model (SLM) can be built
that is used to determine the action intention of the caller. This approach is
referred to as a Natural Language Understanding (NLU) approach.

Technologies exist for both approaches (menu/grammar or NLU) as well as
mixes of them, and decisions about which to implement will depend on the
complexity of the task and the cost benefit analysis. Obviously, callers prefer to
 Chapter 14. Timetable information by Voice 321

speak as naturally as possible to the system. However, it is also true that users
find a form-filling approach quite effective because it makes it clear what needs
to be done. However, for a grammar/menu approach the number of fields needs
to be limited to maintain user satisfaction.

In the present requirements, because the queries to the caller can be well
structured (“where do you want to leave from?”), and there are only three
queries, ITSO Railways has decided on the basis of cost benefit to implement a
grammar-based approach. However, it recognizes that once the system is in
place it could easily collect the required data for the SLM (by initially prompting
the caller with “Just say where you would like to go and at what time”) and use
the menu presentation as a backup while it collected the data for the necessary
SLM. This approach would permit ITSO Railways to extend its automated
service to a range of other activities (such as including booking and itinerary
checking applications) using more natural dialogue interactions.

In the menu/grammar-based approach adopted here the voice interface
components obtain the required information from the caller, and the timetable
application interrogates the caller for times of departure for the requested
locations. This information is then sent to the timetable application via an
VoiceXML script, and after the information has been returned the VoiceXML
initiates its outputs to the speech generator (TTS or audio file) for presentation to
the caller.

14.4 Components
In order to satisfy the architecture and activity requirements the following set of
components can be assembled.
322 Patterns: Pervasive and Rich Device Access Solutions

Figure 14-6 Component diagram

Given ITSO Railways requirements for extensibility in the future to both more
complex applications and to multichannel re-use of information, WebSphere
Voice Application Access was selected as the core technology.

WebSphere Voice Application Access provides:

� A full application development environment - The Voice Toolkit based on the
Eclipse platform for the development of VoiceXML and voice portlets

� A VoiceXML interpreter for controlling both the call and voice resources

� WebSphere Application Server for running the application and providing
legacy database connectivity

WebSphere Voice Application Access also includes the WebSphere Voice
Server that contains both the necessary speech recognition capability as well as
TTS for dynamic database presentation. However, these components have been
presented separately in the figure to emphasise their specific roles in the
application.
 Chapter 14. Timetable information by Voice 323

WebSphere Voice Application Access does not include the WebSphere Voice
Response (WVR) server that provides both connectivity to most PBX systems for
call control or that can function independently for call input. WVR is just one of a
range of options for managing the call control requirements and any
VoiceXML-compatible system could be deployed. WVR provides robust, scalable
performance for the ITSO requirements and has options for complete re-use of
development if ITSO Railways decides to change from PSTN to Voice over IP
(VoIP) in the future (WVR accomplishes this by changing the T1/E1 cards for
PBX connectivity to SIP cards for VoIP connectivity). This means that any
development completed by ITSO Railways for its current requirements will be
available within a VoIP environment.

WebSphere Voice Application Access is a component of WebSphere Portal
Server. This provides extensibility to ITSO Railways for presenting future visual
information to users via the Web for timetable and other information. Users could
experience a similar structured interface when they visit the Web for information
or when they call on the phone. In addition, utilization of WebSphere portal
information provides access of the timetable information by mobile devices for
visual presentation onto PDAs, etc., via WebSphere Everyplace Access (WEA),
as well as via multimodal presentation using both visual and voice presentation.
Adopting the portlet framework for voice provides a straightforward extensiblity
by ITSO Railways into the other devices in the future, as required.

14.5 Interface for call flow
Having determined that ITSO Railway’s requirements can be met by available
technology, the detailed requirements for ITSO Railway’s interface need to be
considered.

There are a number of issues to consider in completing a call flow design. These
are described below.

14.5.1 Dialogue design
This needs to provide an efficient and effective interface to the information
access by the caller. Issues will depend on complexity of menu items if using a
grammar-based approach and potential for error recovery if the user becomes
lost in the application or if the speech recognition is inaccurate and produces an
incorrect response.

Error recovery strategies will depend on the accuracy of the speech recognition
engine for the application. All automated speech recognition technologies
produce errors, and the ability to recover from them will determine the user
satisfaction with the application. If the application is likely to be error-prone
324 Patterns: Pervasive and Rich Device Access Solutions

(because of complexity of the task and grammars used), then it is usually best to
provide an error recovery system at the start of the system (for example, “If you
need assistance at any time just say help. If you want to go to the previous
selection say go back.” Etc.).

However, if the system has low complexity and grammar requirements, then an
initial announcement about error recovery systems delays the dialogue flow and
reduces user satisfaction. This means that it is useful to obtain test data for the
operation of the system before incorporating a full error recovery system, basing
the design decisions for the error recovery approach on the accuracy of the
recognition.

Other options to include are error recovery options within the main menu choices
(for example, “If you need more information just say help.”).

14.5.2 Persona selection
Selecting a persona for the application is more complex than just selecting a
“voice” that is suitable for branding for the organization. The way the voice
resources interact with the customer is strongly influenced by the customer
motivation, which is in turn a direct result of the way the customer responds to
the “personality” of the presentation.

Many factors can go into successful persona creation including understanding
the branding requirements of the organization, the age groups that might be the
predominant users of the system, as well as the nature of the task to be
completed. Sometimes the persona might need to sound authoritative to give a
sense of confidence about the information, and sometimes it might suggest “fun”
to encourage the user to enjoy the application.

After an application persona has been developed, the “voice” for the application
that matches both the persona criteria and provides clear presentation over a
telephone can be selected. Audio prompts are developed from the dialogue
design, grammar predictions, and persona criteria.

14.5.3 Usability design
The most critical user requirement for an automated system is to access
information (or transactions) effectively (without error) and efficiently (straight
access to required information). Voice interfaces need to be as minimal as
possible to provide this efficiency and effectiveness. Any delays to explain things
to users often lead to frustration. Again a lot of things go into appropriate usability
design, but all rely on effective evaluation of the interface before release. This
type of testing can be done off-line to ensure that a group of potential users
 Chapter 14. Timetable information by Voice 325

understands the prompts as they were intended and that the users provide
responses that are consistent with the dialogue and grammar designs.

The basic information around which these decisions are made is the design of
the interface call flow. An example call flow for the ITSO Railways is presented in
Figure 14-7.

Figure 14-7 Call flow

The decisions made in the design of the call flow include:

� Callers will receive a welcome to the ITSO Railway Timetable Information
Service.

� They are asked to speak their responses. (Users can still assume that they
might be entering a DTMF IVR system for information, so it is remains useful
to emphasise a speech response.)
326 Patterns: Pervasive and Rich Device Access Solutions

� If the caller does not respond (silent responses to speech recognition are still
prevalent) then it is advisable to repeat the instructions after silence detection
(or if recognition confidence is very low).

� In the ITSO Railway design it has been decided to check the user input
against station location information. This is because the task puts the burden
on the user to know the station location names. It is possible that they might
not select a location at which there is a railway station. If a non-match is
detected then the user is prompted for another input. This strategy may be
acceptable and can be confirmed after usability testing, but in the future after
ITSO has established the usage of the system it has the option of including
context location information into the system that could suggest the closest
station for any locations input by the caller without a station.

� After input of the departure and destination locations the user is prompted to
indicate the time of departure or the period over which they would like to hear
the times for departure.

� In order to ensure the correct departure and destination locations the caller is
prompted with the selections. If there is an error the user is redirected to the
start of the queries, otherwise they are given the departure information. An
alternative error checking strategy would be to confirm the locations
separately so that the user might need to only repeat one of the options if it
had not been correctly recognized.

� If the caller receives the information she needs then she is asked if she needs
further assistance. For this simple application, if the caller does have other
requirements, she is simply redirected to the start of the queries. However, in
more complex applications they could select other options for assistance. In
particular, a logical extension of the current application would be to include a
booking option, a review of the booking option, and a payment option. These
would all be straightforward extensions of the activity and call flow patterns
discussed in this application.

14.6 Development of timetable access
Following the selection of WebSphere Voice Application Access, the
development stage for ITSO Railway’s timetable access by phone application
can be based on the included voice-related Toolkits for WebSphere Studio.

The toolkits are add-ons for either WebSphere Studio Site Developer V5.1 or
WebSphere Studio Application Developer V5.1.

WebSphere Voice Application Access provides a development environment for
WebSphere Voice Response (WVR) V4.2 for telephone connectivity and call
control functionality using VoiceXML, for WebSphere Voice Server (WVS) V4.2
 Chapter 14. Timetable information by Voice 327

for speech recognition and text to speech capability, and for WebSphere Voice
Application Access V5.0.

The functionality of Voice Toolkit 5.0 that will be deployed for this application
includes:

� The Graphical Call Flow Builder providing drag-and-drop call flow design as
well as scripts and VoiceXML structures for development.

� A VoiceXML Editor that includes a wizard for selecting and customizing
Reusable Dialog Components. These components can provide significant
effort savings if they contain the vocabulary and grammar options. For
instance, one re-usable grammar contains the names of major US cities. In
this case the ITSO Timetable information resides in a proprietary database
that will be used to develop the vocabulary with standard grammar
constructions added for implementation. In future applications for ITSO the
developed grammar will be added to their Re-Usable Dialog Components and
re-used for subsequent applications.

� VoiceXML.

� A grammar editor supporting VoiceXML 2.0 formats for building grammar
requirements for the timetable application.

� A IBM extension to VoiceXML (based on the International Phonetc
Association Representation) Pronunciation Builder that permits modification
and creation of vocabulary pronunciations. This is an important component
for dealing with names of stations, etc., that might vary from normal language
pronunciation of the items. In the current development this tool will be used to
add to the vocabulary recognition values (to accommodate multiple
pronunciations of station names) and over-ride standard TTS values to
approximate local pronunciation usage.

� Audio recorder that will permit recording and testing of user prompts for the
application as well as for recording the timetable database and time
information.

14.7 Voice portlet development
The ITSO Railway application will run as a voice portlet in the WebSphere
Application Access server. In order to develop the voice portlet for the
application, the functionality of the Voice Toolkit is employed. This section
describes how to set up the Voice Toolkit for developing a VoiceXML application.
The application requires grammars to match to the user’s utterances in the
application, and their development is also outlined.
328 Patterns: Pervasive and Rich Device Access Solutions

14.7.1 Setting up Voice Toolkit V5.0 for WebSphere Studio
For the ITSO Railways application the project used WebSphere Studio
Application Developer Version 5.1 and the Voice Toolkit Version 5.0. After
installing these tools you can access the Voice Toolkit. Our development is for
WebSphere Voice Application Access and the application will be built as a voice
portlet for WebSphere Voice Application Access.

1. Open Websphere Studio Application Developer and specify a new
workspace.

2. After WebSphere has loaded select Window → Open Perspective → Voice
Portlet.

The voice portlet uses the portlet application development so it is necessary
to open a portlet application project.

Figure 14-8

3. Select File → New → Portlet Application Project → Finish.
 Chapter 14. Timetable information by Voice 329

14.7.2 Application grammar development
This section assumes the use of Pronunciation Tools in the toolkit to modify the
standard recognition based on local pronunciation of stations as required. This
may require input by linguistic resources to establish the correct pronunciation
requirements. The present application development assumes that the database
for station names to be used for speech recognition have been linguistically
analyzed and the necessary alternative pronunciations have been prepared
using the Voice Toolkit.

The application can be developed using the Voice Toolkit tools described in the
following sections.

Before creating the application we can construct a grammar for the
requirements.

In order for a JSP to be constructed to utilize an external grammar (compared to
an in-line grammar used in the VoiceXML script) it is necessary to construct the
external grammar in a standardized format. For all but the simplest applications it
is necessary to develop an external grammar approach, and this is described
here.

In order to consolidate a number of grammar options that have been available for
grammar development (Nuance GSL, IBM BNF, Java Speech Grammar Format)
the W3C has proposed two main grammar formats for VoiceXML 2.0. This
includes the Augmented Backus-Naur Format (ABNF) and an XML form of a
Speech Recognition Grammar Specification (SRGS). ABNF has been used for a
long time (for example, HTTP is specified in ABNF) and provides an
easy-to-read, compressed view of grammars. SRGF is hierarchically arranged
text strings encapsulated in XML elements. This makes the XML considerably
longer and more difficult to read. The VoiceXML 2.0 standard only requires
SRGF. This is the option employed here and provides portability across a range
of applications.

Constructing an SRGF for either in-line or external grammars is similar. The
process includes:

� Construct grammar header.

– Grammar description and version (the grammar description in this case is
xml version=1.0 with encoding to be used for English - ISO-8859-1.

– Language, in this case English - En.

– Mode of operation (DTMF or voice).

– Root grammar (grammars can contain subgrammar rules in a single file so
it is important to identify the main grammar when the grammar is called).
330 Patterns: Pervasive and Rich Device Access Solutions

� Grammar rules.

Each grammar rule in a file is identified with a unique name. In order to
construct a grammar rule for the application we specify the grammar scope
(private means only local reference within the grammar file, while public
provides a global reference from another VoiceXML dialog or grammar).

� Creating optional items and lists.

The creation of grammars is an iterative process that involves using existing
knowledge about what users might say (many callers say “um” before
answering or finish with a “please” or “thank you”) as well as attempting to
constrain the prompts presented to the caller to encourage them to answer
precisely. Grammars benefit from collecting “Wizard of Oz” data from
potential users to build the initial grammar as well as iterative tuning after
implementation to ensure that the richness of the user’s responses is
captured by the grammar. Natural Language approaches are differentiated by
needing to collect a reasonable amount of user data initially to create the
statistical language modelling on which the NL processing is based.

The ITSO Railway application is a reasonably constrained application (users
could just say the station name), but it needs “normal usage” grammar
components to take into account typical caller utterances.

These issues can be reflected in the grammar by including optional grammar
elements at the start of the potential utterance (for example, “um”) and at the
conclusion of the caller response (for example, “please”). “Tuning” the
grammars after implementation will involve additions to these typical usage
elements depending on the way users actually respond to the prompts.

The target words can be differentiated from the optional grammar
components by forming a list that is used to search for the requested station
for departure and arrival.

SRGF provides the options for handling repeated options with an extension to
the <item> tag:

<item repeat=”0-1”>

And a list tag <one-of> to create a list of potential targets for the ITSO
Railway stations:

<one-of>
<item>Raleigh</item>
<item>Durham</item>
</one-of>

The one-of tag can also be used for indicating that only one option will be
accepted.

From these guidelines a grammar is developed and created as a file for
calling during the application using the Voice Toolkit Grammar.
 Chapter 14. Timetable information by Voice 331

Creating the grammar file
To create the grammar file:

1. Select File → New → SRGS XML Grammar File from the menu.

Figure 14-9

2. After naming the grammar select Next.

In normal operation, Text File would be selected (ITSO Railways would have
a text list of all their stations available). In this case we list three stations and
include them as a list.

3. Click Finish.
332 Patterns: Pervasive and Rich Device Access Solutions

Figure 14-10 .grxml editor view

This shows that the basic grammar file is created with a list of grammar items
providing station locations.

For practical applications we need to extend this grammar to include the range of
possible usage utterances that users will respond with to the prompt. As an
example, in the next example options for “um, I want to go to” are added prior to
the target list and “please, thank you” are added as a suffixes to the grammar. In
actual practice there could be a range of possible usage grammars that might
need to be added to the ensure reliable recognition.

An example of a final grammar file to incorporate some likely usage utterances is
shown in the following example.

Example 14-1 Grammar XML source

<?xml version="1.0" encoding="iso-8859-1"?>
<!DOCTYPE grammar PUBLIC "-//W3C//DTD GRAMMAR 1.0//EN"
"http://www.w3.org/TR/speech-grammar/grammar.dtd">
<grammar version="1.0" xmlns="http://www.w3.org/2001/06/grammar"
tag-format="semantics/1.0" mode="voice" root="locations">
<rule id="locations" scope="public">

<ruleref uri="#optionalin"/>
<ruleref uri="#stations"/>
<ruleref uri="#optionalout"/>

</rule>
<rule id="optionalin">

<item repeat ="0-1">
<one-of>

<item> um </item>
 Chapter 14. Timetable information by Voice 333

<item> I want to go to </item>
</one-of>

</item>
</rule>
<rule id="stations">

<one-of>
<item> Raleigh </item>
<item> Durham </item>
<item> Wilmington </item>

</one-of>
</rule>
<rule id="optionalout">

<item repeat="0-1">
<one-of>

<item> thankyou </item>
<item> please </item>

</one-of>
</item>

</rule>
</grammar>

The rule stations is included here to show what items would be added. However,
for the ITSO Railways application these target items for the grammar would be
available from an ITSO Railways database that will be called as a Java Server
Page to create dynamic availability of the database. This will be demonstrated in
the application development.

This section has described only those grammar components necessary to
implement the ITSO Railways application. Additional functionality is possible in
the SRGF and the details can be found in W3C Speech Recognition Grammar
Specification Version 1.0. W3C Recommendation 16 March 2004:

http://www.w3.org/TR/speech-grammar/

14.7.3 Creating a database for the application
In most applications, such as the ITSO Railways application, the target data (in
this case station locations) will be stored in a separate DB2 database for access
by the application during runtime. Development of the application can proceed
with a trial database (for example, constructed as a flat-file in Cloudscape that is
used to test the application in the present development).

For the ITSO Railways development a trial database is constructed based on the
following table.
334 Patterns: Pervasive and Rich Device Access Solutions

http://www.w3.org/TR/speech-grammar/

Table 14-1 Database content for the stations

14.7.4 Creating a call flow for the application
Call Flow Builder is a graphical editor with which to create and test call flow
models for the application. It also builds the basic code from the call flow design
and creates the voice application.

1. To create a call flow design select File → New → Other from the menu, then
provide the file name as shown below.

Departure
location

Arrival location Segment of day Departure time

Raleigh Durham AM 6

Raleigh Durham AM 10

Raleigh Durham PM 4

Raleigh Durham PM 6

Raleigh Wilmington AM 8

Raleigh Wilmington PM 10
 Chapter 14. Timetable information by Voice 335

Figure 14-11 New Call Flow Builder file

2. On the next page select Voice Tools → Call Flow Builder.
336 Patterns: Pervasive and Rich Device Access Solutions

Figure 14-12 New call flow

3. Click Next.

4. Switch to the call flow perspective by selecting Window → Open
Perspective → Callflow.
 Chapter 14. Timetable information by Voice 337

Figure 14-13 Call flow perspective with the call flow editor

In this call flow the dynamic grammar presentation will be added in the “put
grammar here” container. In the call flow the time of day request has been
constructed as an in-line grammar because, in the example, only two options are
presented. If more times were required (for example, every 5 minutes of the day),
the grammar would be created as a dynamic external grammar application. This
application might, for example, calculate the current time and offered selections
based on the criteria of "trains in one hour from now".

14.7.5 Creating speech output
The following picture is an empty call flow in the editor.
338 Patterns: Pervasive and Rich Device Access Solutions

Figure 14-14 Empty call flow

The application can use natural speech recorded from a selected speaker or
text-to-speech output from the voice technology platform (WebSphere Voice
Server).

ITSO Railways have selected a natural spoken voice for their application. For the
full implementation this will involve recording each station name, and each time
of departure so they can be played back in response to the user request. The
current development of the application will use the TTS option in the call flows
(which is automatically invoked for VoiceXML if an audio file is not available).
This section briefly describes the process for speech file creation for the prompts
for the development and for the prompts and responses in the final
implementation.

1. From the Call Builder Perspective open the Audio File tool by selecting File
→ New → Audio File.
 Chapter 14. Timetable information by Voice 339

Figure 14-15 New audio file

2. Select the working folder and the appropriate path.

3. Click Next.
340 Patterns: Pervasive and Rich Device Access Solutions

Figure 14-16 Selecting the audio source

4. Select Record from Microphone → Finish.
 Chapter 14. Timetable information by Voice 341

Figure 14-17 Recording Tool in Eclipse

5. Before starting recording the microphone needs calibration. To set the level
select the Microphone icon, then select Script.
342 Patterns: Pervasive and Rich Device Access Solutions

Figure 14-18 Microphone testing

6. After completing calibration click Close.

7. On the main recording screen use the controls for recording.

8. On completion of recording select Analyse Audio.

The analysis tool provides an automatic rating of quality of the recording.

The Audio File tool could be used to record the prompts during the development
as well as for implementation. To construct the natural speech responses to the
caller queries (for example, “The next train leaves at ..”, etc.), natural speech files
would need to be concatenated to produce the necessary statements. This
would require an audio tool with this functionality.

14.7.6 Generating basic VoiceXML code structure from call flow
The next step is to generate the VoiceXML from the flow.

1. When the call flow is completed, the code for the project can be generated by
right-clicking the blank space in the diagram.
 Chapter 14. Timetable information by Voice 343

Figure 14-19 Final call flow

2. Select Generate Code → Voice Portlet. This generates the .jsv page for the
project. This can be viewed from the Project Navigator.

Example 14-2 Call flow source

<?xml version="1.0" encoding="iso-8859-1"?>
<!DOCTYPE vxml PUBLIC "-//W3C//DTD VOICEXML 2.0//EN" "vxml20-1115.dtd">
<vxml xmlns="http://www.w3.org/2001/vxml" version="2.0" xml:lang="en-US">

<%@ page contentType="application/voicexml+xml" %>
<!-- Call Flow Model -->
<!--Begin Call Flow-->
<property name="universals" value="help cancel" />
<property name="audiomaxage" value="1" />
<var name="mode" expr="'speech'" />
<var name="previousResult" />
<form id="S00010">

<block>
<audio src="./grammar%20audio/S00010s.wav">Welcome to train time

portlet</audio>
<goto next="#P00010" />

</block>
</form>
<var name="P00010" />
<form id="P00010">
344 Patterns: Pervasive and Rich Device Access Solutions

<field name="fP00010">
<option value="Put grammar here">Put grammar here</option>
<prompt cond="mode == 'speech'" bargein="true">

<audio src="./grammar%20audio/P00010s.wav">Where do you want to
depart from?</audio>

</prompt>
<prompt cond="mode == 'dtmf'" bargein="true">

<audio src="./grammar%20audio/P00010d.wav">Where do you want to
depart from?</audio>

</prompt>
<filled>

<assign name="P00010" expr="fP00010" />
<assign name="previousResult" expr="fP00010" />
<goto next="#P00020" />

</filled>
</field>

</form>
<var name="P00020" />
<form id="P00020">

<field name="fP00020">
<option value="Put grammar here">Put grammar here</option>
<prompt cond="mode == 'speech'" bargein="true">

<audio src="./grammar%20audio/P00020s.wav">Where do you want to
go?</audio>

</prompt>
<prompt cond="mode == 'dtmf'" bargein="true">

<audio src="./grammar%20audio/P00020d.wav">Where do you want to
go?</audio>

</prompt>
<filled>

<assign name="P00020" expr="fP00020" />
<assign name="previousResult" expr="fP00020" />
<if cond="fP00020 == 'Put grammar here'">

<goto next="#P00030" />
</if>

</filled>
</field>

</form>
<var name="P00030" />
<form id="P00030">

<field name="fP00030">
<option value="am">am</option>
<option value="pm">pm</option>
<prompt cond="mode == 'speech'" bargein="true">

<audio src="./grammar%20audio/P00030s.wav">When do you want to
leave?</audio>

</prompt>
<prompt cond="mode == 'dtmf'" bargein="true">
 Chapter 14. Timetable information by Voice 345

<audio src="./grammar%20audio/P00030d.wav">When do you want to
leave?</audio>

</prompt>
<filled>

<assign name="P00030" expr="fP00030" />
<assign name="previousResult" expr="fP00030" />
<goto next="#S00020" />

</filled>
</field>

</form>
<form id="S00020">

<block>
<audio src="./grammar%20audio/S00020s.wav">The next train leaves

_</audio>
</block>

</form>
<!--End Call Flow-->

3. To complete our application we need to include dynamic grammar generation
from a database using Java Server Pages and a JavaBean database
application to calculate the available times for selected departure and arrival
selections. We use the basic code generated from the Call Builder to
complete these requirements and convert them to JSP files.

This process generates the following .jsv file for the voice application.

Example 14-3 .jsv file generated from the flow

<%@ page session="false" contentType="text/x-vxml" import="java.util.*,
ticketvoice.*" %>
<%@ taglib uri="/WEB-INF/tld/portlet.tld" prefix="portletAPI" %>
<portletAPI:init/>
<var name="start" />
<var name="end" />
<var name="timeLeave" />
<%

TicketVoicePortletSessionBean sessionBean =
(TicketVoicePortletSessionBean)portletRequest.getPortletSession().getAttribute(
TicketVoicePortlet.SESSION_BEAN);
%>

<property name="universals" value="help cancel" />
<property name="audiomaxage" value="1" />
<var name="mode" expr="'speech'" />
<var name="previousResult" />

<%if((sessionBean.getStart().equals(""))){%>
<form id="welcome">

<block>
346 Patterns: Pervasive and Rich Device Access Solutions

<audio
src="<%=portletResponse.encodeURL("grammar_audio/S00010s.wav")%>">Welcome to
train time portlet</audio>

<goto next="#Departure" />
</block>

</form>
<form id="Departure">

<field name="fDepartureLocation">
<jsp:include page="departureLocations.jsp"/>

<prompt cond="mode == 'speech'" bargein="true">
<audio

src="<%=portletResponse.encodeURL("grammar_audio/P00010s.wav")%>">Where do you
want to depart from?</audio>

</prompt>
<nomatch>

No trains depart from that city. Please try another.
<reprompt />

</nomatch>
</field>

<filled>
<assign name="start" expr="fDepartureLocation" />
<submit next="<portletAPI:createURI><portletAPI:URIAction

name="submitDeparture"/></portletAPI:createURI>" namelist="start"
method="post"/>

</filled>
</form>

<% } %>
<% if(!(sessionBean.getStart().equals("")) &&
sessionBean.getEnd().equals("")){%>

<form id="Arrival">
<field name="fArrivalLocation">

<jsp:include page="arrivalLocations.jsp"/>
<prompt cond="mode == 'speech'" bargein="true">

<audio
src="<%=portletResponse.encodeURL("grammar_audio/P00020s.wav")%>">Where do you
want to go?</audio>

</prompt>
<nomatch>

No trains arrive at that city. Please try another.
<reprompt />

</nomatch>
<filled>

<assign name="start" expr="'<%=sessionBean.getStart()%>'"/>
<assign name="end" expr="fArrivalLocation" />
<submit next="<portletAPI:createURI><portletAPI:URIAction

name="submitArrival"/></portletAPI:createURI>" namelist="start end"
method="post"/>

</filled>
</field>
 Chapter 14. Timetable information by Voice 347

</form>
<% } %>
<% if(!(sessionBean.getStart().equals("")) &&
!(sessionBean.getEnd().equals("")) && sessionBean.getTimeLeave().equals("")){%>

<form id="leaveWhen">
<field name="fTimeToGo">

<grammar version="1.0" xml:lang="en" mode="voice" root="TimeOptions">
<rule id="TimeOptions" scope="public">

<one-of>
<item>am</item>
<item tag="am">morning</item>
<item>pm</item>
<item tag="pm">afternoon</item>

</one-of>
</rule>

</grammar>
<prompt cond="mode == 'speech'" bargein="true">

<audio
src="<%=portletResponse.encodeURL("grammar_audio/P00020s.wav")%>">When do you
want to go?</audio>

</prompt>
<nomatch>

Please say am or pm.
<reprompt />

</nomatch>
<filled>

<assign name="start" expr="'<%=sessionBean.getStart()%>'" />
<assign name="end" expr="'<%=sessionBean.getEnd()%>'" />
<assign name="timeLeave" expr="fTimeToGo" />
<submit next="<portletAPI:createURI><portletAPI:URIAction

name="submitTime"/></portletAPI:createURI>" namelist="start end timeLeave"
method="post"/>

</filled>
</field>

</form>
<%}%>
<% if(!(sessionBean.getEnd().equals("")) &&
!(sessionBean.getTimeLeave().equals(""))){%>

<form id="sayTimes">
<block>

The times your train leaves are:
<% sessionBean.setDb_sqlstring("SELECT TIMES FROM APP.TIMES WHERE

NAMES1 = '"+sessionBean.getStart()+"' AND NAMES2 = '"+sessionBean.getEnd()+"'
AND TIMEOFDAY = '"+sessionBean.getTimeLeave()+"'");

sessionBean.getJDBCResult();%>
<jsp:include page="getTimes.jsp"/>

</block>
</form>
348 Patterns: Pervasive and Rich Device Access Solutions

This file incorporates the VoiceXML controls for handling prompts and
requests, but also adds the dynamic includes required to access the
database components. The includes are presented, showing the call to the
departure grammar and database (Example 16-4), the arrival departure
database (with the requested departure station removed) (Example 16-5),
and the sort for available times for requested locations and the period of the
day (collected from the in-line grammar in the .jsv file) (Example 16.6).

Example 14-4 Included grammar file

<%@ page session="false" contentType="text/x-vxml" import="java.util.*,
ticketvoice.*"%>
<%@ taglib uri="/WEB-INF/tld/portlet.tld" prefix="portletAPI" %>
<portletAPI:init/>
<%

TicketVoicePortletSessionBean sessionBean =
(TicketVoicePortletSessionBean)portletRequest.getPortletSession().getAttribute(
TicketVoicePortlet.SESSION_BEAN);
%>
<grammar version="1.0" xml:lang="en" mode="voice" root="dlocations">

<rule id="dlocations" scope="public">
<!--Optional grammars can be added at this point
See section on generating grammar-->
<one-of>

<% sessionBean.setDb_sqlstring("SELECT NAMES FROM APP.LOCATIONS");
sessionBean.getJDBCResult();%>

<% for(int x=0; x<sessionBean.getDb_rowCount(); x++){%>
<item><%=sessionBean.getDb_SQLresult(0,x)%></item>

<% } %>
</one-of>
<!--Optional grammars can be added at this point
See section on generating grammar-->

</rule>
</grammar>

4. As indicated in the comments, it is possible to add optional grammar
components similar to those shown in the grammar development section that
would account for real utterances by users (“um”, “thank you”). These could
be either included as an in-line grammar directly in the .jsv file (similar to the
time of day requests) if there were only a few likely instances, or included as a
static external file called from the .jsv file. The actual grammar file for the
optional grammars would be developed using the grammar editor.

A similar component is added to activate the arrival grammar. This grammar
is the same as the departure grammar except that it does not include the
location requested as a departure. (This is a refinement that might be more
applicable to other applications—in this case the user is unlikely to ask for the
same location for departure and arrival.)
 Chapter 14. Timetable information by Voice 349

Example 14-5 Arrival grammar

<%@ page session="false" contentType="text/x-vxml" import="java.util.*,
ticketvoice.*"%>
<%@ taglib uri="/WEB-INF/tld/portlet.tld" prefix="portletAPI" %>
<%@ taglib uri="/WEB-INF/lib/jspsql.jar" prefix="dab" %>
<portletAPI:init/>
<%

TicketVoicePortletSessionBean sessionBean =
(TicketVoicePortletSessionBean)portletRequest.getPortletSession().getAttribute(
TicketVoicePortlet.SESSION_BEAN);
%>
<grammar version="1.0" xml:lang="en" mode="voice" root="alocations">

<rule id="alocations" scope="public">
<!--Optional grammars can be added at this point
See section on generating grammar-->
<one-of>

<% sessionBean.setDb_sqlstring("SELECT NAMES FROM APP.LOCATIONS WHERE
NAMES <> '"+sessionBean.getStart()+"'");

sessionBean.getJDBCResult();%>
<% for(int x=0; x<sessionBean.getDb_rowCount(); x++){%>

<item><%=sessionBean.getDb_SQLresult(0,x)%></item>
<% } %>

</one-of>
<!--Optional grammars can be added at this point
See section on generating grammar-->

</rule>
</grammar>

5. Finally, we need to add an application that sorts the database relative to
departure time available for the selected locations and period of the day.

Example 14-6 Database tasks code snippet

<%@ page session="false" contentType="text/x-vxml" import="java.util.*,
ticketvoice.*"%>
<%@ taglib uri="/WEB-INF/tld/portlet.tld" prefix="portletAPI" %>
<%@ taglib uri="/WEB-INF/lib/jspsql.jar" prefix="dab" %>
<portletAPI:init/>
<%

TicketVoicePortletSessionBean sessionBean =
(TicketVoicePortletSessionBean)portletRequest.getPortletSession().getAttribute(
TicketVoicePortlet.SESSION_BEAN);
%>
<% for(int x=0; x<sessionBean.getDb_rowCount(); x++){

if(x>0){%>and<%}%>
<%=sessionBean.getDb_SQLresult(0,x)%>

<% } %>
350 Patterns: Pervasive and Rich Device Access Solutions

14.8 Testing the Timetable application
In order to test the application we use the Call Simulator running in the WSAD
Portal Test Environment and using the TC/PIP Monitor Tool. This is set up with
the following steps:

1. Right-click the TicketVoice application, then select Run on Server.

2. Select Create a new Server, then click Next. Fill out the forms as shown in
the following two pictures.

Figure 14-20 Server selection form
 Chapter 14. Timetable information by Voice 351

Figure 14-21 Server configuration form

3. Click Finish.

4. Under the Server Perspective select New → Server and Server
Configuration to create the monitor server.
352 Patterns: Pervasive and Rich Device Access Solutions

5. Select Monitor → Next.
 Chapter 14. Timetable information by Voice 353

Figure 14-22 Monitor server configuration

6. Click Finish.

7. To configure the proxy server for the Monitor, double-click Monitor.

8. Select Configure switch ports as shown in the next picture.

Figure 14-23 Monitor server configuration view

9. Type in the ports. Enter values for the local and remote ports. Set the local
port to 9080 and the remote port to 9081.

10.Run the sample application by selecting Run from the menu, then Run again.

11.We need to configure a new application client. Select VoiceXML JavaServer
Page → New.
354 Patterns: Pervasive and Rich Device Access Solutions

Figure 14-24 New client configuration

12.Select Voice, and type in the JavaServer Page URL as shown above.

13.Select Run. This will display the Monitor Output.
 Chapter 14. Timetable information by Voice 355

Figure 14-25 Monitor view

14.Toggle output screens to view the Call Simulator.

Figure 14-26 Call simulator

14.9 Preparing voice portlet for implementation
After testing and debugging the voice portlet it is necessary to install it for use in
WebSphere Portal. This will involve the preparation of the full database (rather
than the test database used in the examples) in DB2 and installation in
WebSphere Portal. These requirements are not in the scope of the present
356 Patterns: Pervasive and Rich Device Access Solutions

example, but once DB2 and Websphere Portal have been installed they require a
.war file for the voice portlet.

1. Creation of the .war file from the developed Voice Portlet is described here.

2. Select Window → Voice Perspective.

3. Right-click the TicketVoice project and select File, then select Export.

4. Select WAR file.

Figure 14-27 Export .war file

5. Provide the file destination as shown above, then click Finish.

14.9.1 Deploying the voice portlet in WebSphere Portal
Create a new project with the Project Creation wizard in WebSphere Portal.

1. Click File → New → Portal Application Project from the menu.

2. Select Configure advanced options on the Define Project page.

3. Select Add VoiceXML markup support on the Miscellaneous page.

4. Import the existing project via the WAR file.

5. Associate the Portlet 5.0 API with the project.

6. Select File → Properties → Portlet API from the menu.

7. Select WebSphere.
 Chapter 14. Timetable information by Voice 357

14.10 Meeting ITSO Railways future multi-channel
requirements

The current application development has concentrated on the requirements for
building a voice portlet that can be used to provide access to ITSO Railway
timetable information. A major business requirement for multi-channel re-use
(deployment of the same application framework across the Web, phone, PDAs,
etc.) indicated the need for use of a portlet approach.

The extension of the voice portlet that provides voice access to the timetable
information into other devices is described in Chapter 10, “Web access to ITSO
Railway’s timetables” on page 189.
358 Patterns: Pervasive and Rich Device Access Solutions

Chapter 15. Connectivity and access

This chapter discusses the connectivity and access part of the pattern
architecture. It consists of mobile access services, which enables mobile devices
to connect to the enterprise infrastructure. The connectivity and access node
accommodates different services specific to a mobile environment.

Applying the Patterns for e-business approach will help to classify and structure
the business and IT needs in order to get a common set of decision criteria and
an architectural baseline for connectivity and access services for pervasive
devices.

15
© Copyright IBM Corp. 2005. All rights reserved. 359

15.1 Business initiatives and environment
To remain competitive, enterprises need to make sure that mobile workers have
access to office services and enterprise applications outside of the office.
Enterprises have a rich computing environment with a variety of applications,
such as sales force and field force automation and important enterprise data.
Main business initiatives are:

� Enable corporate workforce seamless mobile access to business application
and information.

� Protect business applications and data communication.

� Cost-efficient connection.

� Leverage existing connection and security infrastructure.

An understanding of the business environment and requirements is the first step
to build a robust connection service. The environment consists of different
domains such as:

� Mobile environment
� Security environment
� Network environment
� Application environment
� Device environment

The following diagram is the Runtime pattern we implemented in this particular
scenario.

Figure 15-1 Runtime pattern for the connectivity scenario

User

O utside W orld
Dem ilitarized Zone

(DM Z) In ternal Network

Client

Data servicesData services
Pervasive

client
serv ices

Pr
ot

oc
ol

 F
ire

w
al

l

Connectiv ity
and Access

for Pervasive
serv ices

D
om

ai
n

Fi
re

w
al

l

ISP G ateway
(Pervasiv e
serv ices)

W eb
serv er

red irector

Com pany
private

intranet

Company
private

in tranet

Directory
and Security

Serv ices
360 Patterns: Pervasive and Rich Device Access Solutions

The actual Product mapping that is used in this chapter to describe the scenario
can be seen on the following diagram.

Figure 15-2 Pervasive Connectivity runtime pattern::Product mapping=Linux

15.1.1 Mobile environment
In order to provide access to mobile services a company faces different
challenges to set up a reliable and secure access to their business applications.
To understand the different areas we will stay in context with the big picture of a
mobile workforce shown in Figure 15-3.

The mobile environment diagram shows domains of a typical mobile workforce.
Different user groups such as sales, management, service technical, home office
workers, and others need access to their business application over different
connections using a wide spectrum of devices.

User

Outside W orld
Dem ilitarized Zone

(DMZ) Internal Network

Client

Data servicesData services
Pervasive

client
services

Pr
ot

oc
ol

 F
ire

w
al

l

Connectiv ity
and Access

for Pervasive
serv ices

D
om

ai
n

Fi
re

w
al

l

ISP G ateway
(Pervasive
serv ices)

Voice and/or
Data services
Voice and/or
Data services

Directory
and Security

Serv ices
AIX 5.2
•IBM W ebSphere Application Server
V5.0 HTTP P lug-in
•IBM HTTP Server V1.3.26 AIX 5.2

•Dom ino Server 6.5.1

AIX 5.2
•W ebSphere Everyplace
Connection M anager V5

•W ebSphere Everyplace
Connection M anager V5
Client

W indows Mobile 2003

W eb
serv er

redirector
 Chapter 15. Connectivity and access 361

Figure 15-3 Mobile environment

A mobile environment consists of areas that have a high demand on flexibility
and the ability to adapt new business needs quickly. Drivers for a mobile
environment can be found in the business, social, and technical environments.
The next section will talk about key areas of a mobile environment.

15.1.2 Security environment
This section focuses on connectivity and access security. Providing secure
access to business applications is an essential function of a mobile access
service. Secure access provides different security services to mobile entities
such as:

� Identification and Authentication
� Authorization
� Integrity
� Privacy and Confidentiality
362 Patterns: Pervasive and Rich Device Access Solutions

� Availability

Security services
This section discusses the security services in further detail.

Identification and Authentication
Identification and Authentication (I&A) services identifies and authenticates
entities such as users, devices, or applications by different identification
parameters such as user IDs, PINs, device IDs, certificates, and security tokens.
Two common types of I&A are Basic authentication and Strong authentication.

Basic authentication is the combination of an identification parameter and a
secret such as a password, PIN, or key. Basic authentication provides a base
security level at a low cost. Strong authentication extends the basic
authentication model using additional security parameters such as certificates,
biometry system, TAN lists, or hard tokens. Strong security provides a good
security level at a higher cost.

The choice of an I&A mechanism must follow guidelines and specifications
described in the corporate security policies and standards, considering existing
authentication mechanism and devices capabilities.

Authorization
Authorization grants or denies access to information and applications based on
security policies and access control. The authorization service creates a security
context for a connection and maps the identified entity to the designated access
policy. The access policy is represented by access roles and related access
control lists (ACLs).

Integrity
Integrity assures that data is unchanged from its source and has not been
accidentally or maliciously modified, altered, or destroyed.

Privacy and Confidentiality
Privacy and Confidentiality protects data from unauthorized access by encryption
and access control.

15.1.3 Network environment
Today’s network environment offers a broad variety of communication options.
The border between voice and data networks falls with the rise of new
technology like Voice over IP (VoIP) standard or 3G (for example, UMTS)
networks. Nevertheless, the deployment of new network technologies varies
depending on location, device, and cost characteristics. Even if new technologies
 Chapter 15. Connectivity and access 363

substitute classic networks technologies in the future, in most cases they will
coexist in the near future.

The diversity of those network options presents many communication
challenges. A heterogeneous wireless communication environment differs
strongly in terms of bandwidth, latency, stability, and availability.

Networks
In the example environment shown in Figure 15-4, typical wired networks such
as the Enterprise LAN, Dial-In, and Broadband DSL/Cable are extended by
wireless networks.

Figure 15-4 Typical network options

The table below shows typical network technologies with theoretical troughput
and transport medium.
364 Patterns: Pervasive and Rich Device Access Solutions

Table 15-1 Network technologies

Network type Transport
medium

Description Theoretical
troughput
Bit/sec

LAN Wired 10baseT - gigabit
Ethernet

10 Mbps–10 Gbps

DSL/Cable Wired 100 Kbsp–8 Mbps

PSTN Dial-up and
ISDN

Wired 28 Kbps–128 Kbps

Wireless network
(WLAN)

Wireless/radio
frequency

802.11 a,b,g 11 Mbps–54 Mbps

2 and 2.5
Generation
Cellular network

Wireless/radio
frequency

GSM, CDPD, PDC,
HSCD, GPRS

9.6 Kbps–115
Kbps

3 Generation
Cellular
networks

Wireless/radio
frequency

EDGE
UMTS,

384 Kbps
2 Mbps

Satellite Wireless VSAT 76.8 Kbps
(upstream)–40
Mbps
(downstream)

Bluetooth Wireless/radio
frequency

PAN 64 Kbps–1 Mbps

Infrared Wireless/optical PAN 4 Mbps

USB Wired Cradle, USB cable 12 Mbps–480
Mbps
 Chapter 15. Connectivity and access 365

Messaging services
Messaging services enables users to stay connected to clients, co-workers,
friends, and family even when not able to take a call. It can notify and alert the
mobile workforce as well as provide information services. Common services
include the following technologies:

� SMS and MMS services
� WAP push

Connection modes
Access to business applications in mobile environments can be classified in two
connection modes:

� Online access - Typical browser access, for example. This applies mostly to
applications where the business logic is represented on the server side.

� Offline access - Working offline needs more business logic on the device.
Data transmission is queued and will synchronize when the network is
available.

Roaming
In wireless networking, roaming refers to the ability to move from one network
area to another without interruption in service or loss in connectivity. Roaming
provides seamless use of voice and data services.

Traditionally, roaming is handled by network operators through contracts and
technology bridges. Roaming between a public network and private networks

Abbreviations:

� PAN = Personal Area Network
� USB = Universal Serial Bus
� LAN = Local Area Network
� WLAN = Wireless Local Area Network
� PSTN = Public Switched Telephone Networks
� ISDN = Integrated Services Digital Network
� DSL = Digital Subscriber Line
� GSM = Global System for Mobile communications
� PDC = Personal Digital Cellular
� CDPD = Cellular Digital Packet Data
� HSCD = High Speed Circuit Switched Data
� GPRS = General Packet Radio System
� EDGE = Enhanced Data GSM Environment
� UMTS = Universal Mobile Telephone Serv
� VSAT = Very Small Aperture Terminal
366 Patterns: Pervasive and Rich Device Access Solutions

such as the Internet and the enterprise network are not supported by public
network operators.

The sample network setup in Figure 15-5 shows a typical enterprise environment
with different locations using private and public networks. Roaming between
those networks is becoming more important and should be considered an
enterprise mobile access service. Roaming between those networks must be
controlled by the enterprise in order to manage security, availability, and network
independence.

Figure 15-5 Roaming for enterprise networks

Roaming provides seamless connectivity by adding an abstraction layer called
connectivity and access services in the diagram, which sits between mobile
 Chapter 15. Connectivity and access 367

devices and the enterprise network. This abstraction layer is responsible for
handling connectivity to public and private networks. It also enables you to
manage connection and session context of mobile applications transparently to
user and applications.

Multi-channel and multi-modality
As devices become smaller, modes of interaction other than keyboard and stylus
are a necessity. In particular, small handheld devices like cell phones and PDAs
serve many functions and contain sufficient processing power to handle a variety
of tasks. Present and future devices will greatly benefit from the use of
multi-modal access methods.

Multi-channel access is the ability to access enterprise data and applications
from multiple methods or communication channels such as a phones, laptops, or
PDAs. For example, a user may access his bank account balances on the Web
using a browser from the office or from home, and the same user may access the
same information over a traditional phone using voice recognition and
text-to-speech when traveling on the road.

In contrast, multi-modal access is the ability to combine multiple modes or
communication channels in the same interaction or session. The methods of
input include speech recognition, keyboard, touch screen, and stylus. Depending
on the situation and the device, a combination of input modes will make using a
small device easier. For example, in a Web browser on a PDA, you can select
items by tapping or by providing spoken input. Similarly, you can use voice or
stylus to enter information into a field. With multi-modal technology, information
on the device can be both displayed and spoken.

Providing multi-modal access to business data is one of the key topics in the
mobile world.

Virtual Private Network (VPN)
A Virtual Private Network (VPN) is an extension of an enterprise's private intranet
across a public network such as the Internet, creating a secure private
connection, essentially through a private tunnel. VPNs securely convey
information across the Internet connecting remote users, branch offices, and
business partners into an extended corporate network.

In mobile environment, traditional VPN IP-based solutions are limited in matter of
performance, supported client devices, and different network types and services.
A mobile access VPN will need to extend VPN services to non-IP networks and
devices with limited system resources.
368 Patterns: Pervasive and Rich Device Access Solutions

For more information about VPN see the redbook A Comprehensive Guide to
Virtual Private Networks, Volume III: Cross-Platform Key and Policy
Management, SG24-5309.

Secure Socket Layer (SSL) offers some basic VPN functions like an encrypted
tunnel between client (browser) and server (Web server, Application server,
etc.). Instead of encapsulating all data frames in a “VPN” data packet, SSL is
limited in protocol and security services. It is a standard encryption method on an
application layer, but cannot transport any protocol.

Data compression
Optimizing and reducing the amount of data transmitted over the Internet
reduces the response time and connection costs. Data compression reduces the
size of data frames to be transmitted over a network link by coding and decoding
the transferred packets on both ends of the transport path. A mobile gateway
with compression cannot only improve response time, but can also reduce
connection cost.

Network Address Translation
Network Address Translation (NAT) and Port Address Translation (PAT) are
network technologies that offer flexibility and security. It allows for the separation
of the corporate IP address schema from the public Internet address. Enterprise
internal IP addresses are hidden from the Internet.

15.1.4 Application environment
As shown in 15.1.1“Mobile environment” on page 361, a mobile environment can
consist of different user groups with different needs. Examples are:

� A sales force that needs to get information from many sources while out on
the road; access to a groupware application to get e-mail, schedules, and
customer information.

� Field force automation workers who need access to technical information and
support applications in order to shorten response times and efficiency as well
as reduce the paperwork and data quality.

� Delivery and service workers need customer and location information as well
as access to the transport backend system for updates and new orders. The
delivery company can use location information of the delivery person to
rearrange delivery routes and enable a more dynamic business model.

� Home office workers need secure access to their business applications when
working from home and abroad. This allows the company to implement new
working models in order to increase productivity and decrease costs.
 Chapter 15. Connectivity and access 369

Employees will benefit by more flexibility and the ability to use time efficiently
(for example, at the airport or on a train).

� Management workers need to keep in contact with their company to send and
receive reports, manage business, schedule events, and receive notifications
in urgent situations.

Mobile access provides secure and reliable access to those business
applications and information.

Important considerations before building a mobile access are:

� Application architecture
� Programming model
� Communication protocols
� Application security
� Target devices

Application architecture
Knowing the application architecture presented by application overview
diagrams, component models, use cases, interaction diagrams, and
programming concepts will show how the different components will interact. This
is vital information in order to evaluate requirements for the mobile access.

Programming model
There is a wide range of programming models on the mobile environment from
standard-based platforms, such as Java and Linux, to vendor-specific
applications like .Net or native programming. It contains important information on
how to integrate mobile access services into the overall solution. It is also an
indicator of future application requirements and communication methods.

Communication protocols
In the context of the application architecture and programming model different
communication protocols can be used. It is essential to understand what
protocols the applications will use.

Application security
Application security will identify what type of security mechanism will be used in
the application. Mobile applications may provide their own security mechanism,
which will be combined or enhanced with security mechanisms supported by the
mobile access service. Single sign-on capabilities will improve user experience
and security, but they require further integration.
370 Patterns: Pervasive and Rich Device Access Solutions

Target devices
The target device of the mobile application will indicate which communication
and security function will be supported. This topic is related to the following
section

15.1.5 Device environment
A growing variety of client devices, which differ in input, output, processing and
communications capabilities, will make the implementation of a central
connection and access infrastructure difficult. Communications capabilities are
diverse, often supporting several communication channels including cellular data
(GPRS, HSCSD), WiFi, Bluetooth, infrared, and cradled connections, and each
has different bandwidth and latency characteristics. Also, the supported security
and encryption mechanism can differ widely, for instance, in the ability to run a
user agent.

Device characteristics for mobile access to consider are:

� Device types
� Communication profile
� Security mechanism
� Device operating system and programming model

Device types
There are a huge number of mobile devices in the market and new models
emerging every day. They differ in user interface, communication capabilities,
operating environment, technology options, and more. A clear classification of
those devices is getting more difficult since typical functions are mixed up in
many cases. Typical device types are:

� Mobile phones: Devices with a voice interface and numeric keypad only.

� smartphones: smartphones extend mobile phones with a bigger display and
user interface, and provide a more powerful platform and browser access;
also, some basic PDA functionality like agenda, address book, and text
editors.

� PDA devices that focus more on PC type of application environment and user
experience. Functionally rich PDAs are able to be an alternative to laptop and
desktop PCs in some business environments. A more comfortable user
interface allows different input methods such as handwriting recognition,
pointing device and device extensions such as external keyboard, memory,
network adapters, and so on.

� Tablet and laptop computers that offer a full user experience.
 Chapter 15. Connectivity and access 371

Communication profile
The range of network capabilities of mobile devices is enormous, ranging from
cradle through wireless to multi-modal communication. The wide variety of
devices makes it difficult to classify devices. In fact, the border between the
“classic” PC versus PDA communication capabilities is getting smaller and
smaller. Figure 15-6 shows a device communication environment of a PDA with
mobile communication capabilities. The communication ability differs on each
type of device. Understanding the device communication environment will be a
indicator for present and future requirements for the mobile access service. It
provides an quick overview of communication technologies for a specific device.
A mobile device can access the mobile access way over different network and
connection types.

Figure 15-6 Device communication profile
372 Patterns: Pervasive and Rich Device Access Solutions

As an example, a PDA can connect to the network using a cradle, Bluetooth, or
infrared connection. A passtrough or IP bridge will handle the connection to the
network.

Security mechanism
Loss, theft, and other security issues prevent many companies from deploying
mobile solutions. Mobile devices are attractive targets to many attackers
because the ability to hold and access important business information increased
with new technologies and device capabilities. The security mechanism of the
device must support the corporate security model for a mobile workforce
environment with additional policies, processes, and technologies.

There are two security domains on the device environment: Device and transport
security. Device security offers physical device safety and the data protection on
the device, while transport security will protect data transmission. Supported
security mechanisms on mobile devices can differ widely and must be evaluated
to determine the supported security level on the device and decide whether a
device will satisfy the corporate security policy and standards.

Device operating system and programming model
The operating system of a mobile device varies based on the device type and
manufacturer. Common operating systems are Palm OS, Symbian, Linux,
Windows Mobile (WM), RIM OS, and other. A programming model runs on top of
the operating system such as Java (J2ME), .Net, and native C and C++
programming.

15.2 Non-functional requirements for mobile access
Non-functional requirements address functions that influence the underlying
system architecture. These functions are essential for providing a robust and
scalable environment for the mobile access services mentioned in the previous
sections. Non-functional requirements are key factors in building a mobile access
architecture and the runtime environment.

This section discusses some non-functional requirements important to a mobile
access system.

� Availability - High availability minimizes the risk of an outage, and increases
the availability of the mobile access system. A system outage can be costly in
terms of lost productivity, lost revenue, and lost customers.

� Backup and recovery - It is essential that disaster recovery and
backup/restore procedures be properly planned and implemented to meet the
high demand for security and safety of the system.
 Chapter 15. Connectivity and access 373

� Capacity estimates and planning - Capacity estimates and deployment
planning are important tasks in order to provide good user experience and
robust connectivity services. Understanding the application type, network
types, troughput, devices, and number of users and actors are key factors.

� Performance - Performance planning and measurements of the mobile
access system must follow business requirements and service level
agreements. Areas to consider are response time, data troughput, and
system load, for example.

� Quality of service - With ever-increasing bandwidth demands being placed on
the network, prioritizing traffic is a growing concern. Quality of service (QoS)
offers a practical solution for ensuring the guaranteed delivery of critical data.

� Configuration management - Configuration management will gather,
organize, and locate configuration information about the mobile access
system. Configuration management allows you to have up-to-date information
about the system configuration.

� Environment - Technical, physical, social, and organizational environment.

� Extensibility/flexibility - The ability to extend the mobile access system with
new services. New emerging technologies and business requirements
demand a maximum of flexibility. This goes hand in hand with the topic
standards below.

� Standards - Standards are essential in many aspects of the mobile access
system. They play a critical role in ensuring safety and quality of the
Connecticut services. Standards enable compatibility of functions and
communication modules. Standards are used in obligatory regulatory
compliance requirements for governments and health care in many countries.
Examples are:

– International Common Criteria Common Methodology for Information
Technology Security Evaluation (ISO 15408).

– Federal Information Processing Standard (FIPS): the US and Canadian
government standard for encryption certification.

� Maintainability - The ease of use to maintain a critical system such as a
mobile access service is important. Good maintainability will be a key factor
for a robust system.

� Reliability - A long mean-time between failures, availability, and correctness
are important parameters.

� Scalability - Since business goals and user needs will change over time,
scalability addresses the ability to react in order to reduce cost and effort.

� Security - In order to provide secure access to mobile devices, the mobile
access system itself must be secure. Secure operating system and secure
network access to the mobile access are essential.
374 Patterns: Pervasive and Rich Device Access Solutions

� Accounting - Collect accounting and billing information for cost calculation.

15.3 Architectural decisions
Architectural decision records underlying decisions and principles that give the
mobile access architecture its characteristics and consistency. An architectural
decision discusses different approaches and pollster decisions by considering
different options.

Table 15-2 Sample architectural decision

Table 15-3 Mobile access services

Subject area Enterprise connectivity - mobile access service

Architectural decision Mobile access service will enable mobile and remote workers
to access corporate applications and information.

Problem statement The mobile access service should integrate with existing
infrastructure and back-end systems. The question is how to
best provide connectivity to those systems for different user
groups and different applications and information.

Assumptions Interactions with back-end systems will be a mix of
synchronous and asynchronous communications in different
connectivity modes like online and offline.

Motivation Because of the degree of application integration needed, a
decision must be made on enterprise connectivity to avoid
inconsistent and unmanageable connectivity.

Alternatives 1. Point-to-Point Connectivity - This alternative connects the
mobile client directly and individually to each necessary
enterprise system and data, using the protocol best suited for
that system.
2. Existing Virtual Privat Network (VPN) - This alternative
would use an existing VPN used for remote access for PC
and mobile devices.
3. Reverse Proxy - A Reverse Proxy can act as a gateway
accessible from the internet using an existing network link to
the Internet.

Subject area Enterprise connectivity - Buy versus build

Architectural decision Custom development of access components and services
(such as connectivity, load balancing, monitoring, logging, and
so on) that are typically available from outside vendors will not
be considered.
 Chapter 15. Connectivity and access 375

15.4 ITSO Railways sample application
This section focuses on designing a mobile access gateway service for the ITSO
Railways sample following the information and guidelines described in
Chapter 14, “Timetable information by Voice” on page 313. The design will
consider the following areas:

� Mobile environment
� Security environment
� Network environment
� Application environment
� Device environment

15.4.1 Mobile environment
The Mobile environment of ITSO Railways has a traditional mobile workforce in
place with different user groups and connectivity modes and applications.

� Conductors: Conductors are using PDA-based models in online and offline
mode. The devices are usually synchronized at pickup time and after a
working day when returning to the depot. The amount of data to be
synchronized is highest on the initial sync. The devices are also shared
among the different conductors and personalized after pickup. It is planned to
leverage wireless networks in various train stations and public spots to
synchronize data between the device and the backend server.

� Technical train personal: Technical train personal are responsible for critical
technical equipment. In the case of a critical event, the service technican is
notified and informed. Technical train personal are using PDA-based devices
with a built-in communication module (mobile phone extension). The device

Problem statement Developing a mobile access service will not be considered
because of the complexity.

Motivation Custom-developed middleware and infrastructure
components are time-consuming to develop and maintain.
Moreover, these components require a great deal of testing
and documentation in order to be understood by a team of
developers. Finally, developing these custom components
takes away valuable time from the task of building business
components and logic that can provide an enterprise with an
edge over its competition.

Alternatives Evaluate different products.

Subject area Enterprise connectivity - Buy versus build
376 Patterns: Pervasive and Rich Device Access Solutions

must be robust for usage in a rough environment and sustain rain and dust.
The interface must be designed to provide an ease-of-use experience even
when working with a handicap like glows. The technical train personal carries
a mobile phone as a backup device during their work. Most of the time the
technican will be online using any available network.

� Service personal: Service personal are using their devices for maintenance
and reporting tasks. It helps the service personal to manage work schedules,
orders, and maintenance reports, as well as communication between the
team. The device must have an easy-to-use interface, and will communicate
mainly with WLAN in train stations and over a public carrier network (GSM,
GPRS) in urgent situations.

� Customers: In a first phase the customer should be able to use train
schedules, booking and reservation information online and some services like
personal schedules and travel information in offline mode for some supported
devices. There are plans to have more customer services like notification,
news letters, gold member, and location-aware services in the near future. It
is the Railways’ philosophy to provide an open communication platform to
support as many devices as possible.

� Railway management: The Railway management will use business devices
such as smartphones or PDA-based devices for mobile offices and to access
critical business applications when abroad. The manager will use cradle
communication over an existing laptop connection and public carrier networks
to access the corporate network.

Table 15-4 Mobile environment summary

User group Devices Connection
modes

Interaction
type

Applications

Conductors PDA Online 20%
Offline

Data Train schedules, ticket selling,
and reservations system

Technical
personal

PDA with
communica-
tion module,
mobile phone,
or pager

Online 50%
Offline 50%

Data
Voice
Multimodal

Maintenance, reporting, work
schedules, incident notifications

Service
personal

PDA with
communica-
tion module

Online 10%
Offline 90%

Data
Voice

Maintenance, reporting, work
schedules

Management smartphone
PDA

Online 5%
Offline 95%

Data
Voice

Mobile office (PIM, e-mail)
business applications
 Chapter 15. Connectivity and access 377

15.4.2 Security environment
The security environment provides the required security services for all business
scenarios of the ITSO Railways.

An assessment of the security services by user groups and access information
following a security classification guideline are the first steps. In our scenario we
have defined the user groups: Conductors, Technical Train Personal, Service
Personal, Management, and Customer accessing different applications (assets)
described in 15.4.1, “Mobile environment” on page 376. It is assumed that the
ITSO Railways has a complete IT security environment in place with a base
asset classification, as mentioned below:

� Highly confidential: Highly confidential data like customer name, address,
credit card numbers, ticket information, etc., which are not only protected by
corporate law, but also by government law.

� Confidential: Confidential data is data that is protected by corporate law.

� Private: Private data is data protected by corporate law, but with less impact
to the business.

� Public: Unclassified data.

Table 15-5 on page 379 shows a sample asset classification table that indicates
the proposed security mechanism for each asset. We assume that all assets will
need some basic security services such as Identification and Authentication,
Authorization, Privacy, and Confidentiality and Availability.

Conductors will store customer data on their device, such as credit card
numbers, reservations, and a penalty list. This information must be protected
from unauthorized access, theft, changes, and loss.

Beside the base services, protecting the data from being changed or lost is the
important security service for the technical train personal.

Service personal will have mostly non-critical information on their devices, except
their personal data and work reports.

Customers Any Online 60%
Offline 40%

Data
Voice

Train schedules, ticket booking
and reservation system,
news and notification services

User group Devices Connection
modes

Interaction
type

Applications
378 Patterns: Pervasive and Rich Device Access Solutions

ITSO management will use their devices for mobile office and some business
applications. Most of this information is considered highly confidential, since that
information can result in remarkable loss or damage for the company.

Customer information consists of public information (train schedules) and
personal information.

Table 15-5 Sample asset classification table

15.4.3 Network environment
The network environment of the ITSO Railways consists primarily of IP-based
internal and external networks. An existing internal Ethernet LAN with private
WLAN networks and an Internet DMZ architecture.

The figure below shows a high-level architecture of the ITSO Railways network.
It consists of an internal and external network separated by a security
architecture with firewalls and access control symbolized by a firewall in the
diagram. The mobile access service will enhance this architecture by a mobile
gateway to allow access to the corporate network for a mobile user.

User group Assets Security
classification

Security services

Conductors Train schedules,
ticket selling

Highly confidential Strong
authentication,
privacy,
and basic security
services

Technical train
personal

Maintenance
system,
resource planning,
notifiation

Confidential High integrity and
high availability,
and basic security
services

Service personal Service
maintenance
system,
resource planning,
notifiation

Confidential Basic security
services

Management Personal
information and
e-mail,
business
information

Confidential Strong
authentication and
basic security
services

Customer Information and
booking system

Private Basic security
services
 Chapter 15. Connectivity and access 379

Figure 15-7 ITSO Railways network

The services are:

� Messaging services: The ITSO Railways generates SMS messages for
notification services and customer services. There are further plans to set up
a WAP gateway to support WAP push messaging and MMS for the technical
workforce.

� Roaming: Since the ITSO Railways has many different networks and user
groups travelling between the different network boundaries, roaming is
considered a core service of a mobile access service.

� Virtual Private Network (VPN): Most of the ITSO Railways user groups
access confidential and private information using internal and external
networks. A mobile VPN will provide necessary transport security and is
considered a core service.

� Data compression: Since the ITSO user groups communicate not only over
high bandwidth but also low bandwidth networks, data compression can
improve response time and reduce connection cost. Data compression is
considered an added-value service and a recommended mobile access
service.

Table 15-6 Mobile Access Network Service

User groups Mobile access services

Conductors VPN, roaming, data compression
380 Patterns: Pervasive and Rich Device Access Solutions

15.4.4 Application environment
The application environment describes the application architecture, the
programming model, communication protocols, application security, and the
target device.

In the ITSO example we have different use cases described. See Chapter 5,
“ITSO Railway sample overview” on page 87, for more information about the use
cases, application overview, and communication information.

Table 15-7 shows an overview of the ITSO Railways applications in context with
the communication, target device, application security, and programming model.
This table outlines the ITSO scenarios relevant for the mobile access with
additional information such as a communication profile, target devices,
application security, and programming model.

Table 15-7 Scenario table

Technical train personal VPN, roaming, data compression

Service personal VPN, roaming, data compression

Management VPN, roaming, data compression

Customers Roaming

User groups Mobile access services

ITSO
scenarios

Description Communication Target
device

Appl.
security

Prog.
model

Mobile
Inventory
management

Forms-based
applications on
mobile devices

Protocol: http/ https
Mode: Online,
offline

PDA (WM,
Palm),
smartphones
(Symbian)

Delegation
to J2EE
security
profile

J2EE

PIM/Emily
synchronization

Synchronization
of PIM/e-mail
information on
mobile devices

Protocol: http/https
Mode: Online,
offline

PDA and (WM,
Palm),
smartphones
(Symbian),
mobile phones
(SyncML)

Delegation
to J2EE
security
profile

J2EE,
J2ME

Intelligent
Notifiation

Alerts to
maintenance
workers

SMS,
Instant Messaging,
e-mail

PDA(WM, Palm,
Symbian).
smartphones.
mobile phones

Delegation
to J2EE
security
profile

J2EE,
J2ME
 Chapter 15. Connectivity and access 381

15.4.5 Device environment
The ITSO Railways wants to use state-of-the-art devices that fit the best for the
different user groups. Since the device environment is changing rapidly, ITSO
Railways wants to be able to support current and future needs. It plans to use
devices described in the table below.

Table 15-8 ITSO device matrix

Device
Management

Maintenance of
mobile devices

Protocol: http/https
Mode: Online

PDA (WM,
Palm),
smartphones
(Symbian)

Delegation
to J2EE
security
profile

J2EE,
J2ME

ITSO
scenarios

Description Communication Target
device

Appl.
security

Prog.
model

User group Device type Network
capabilities

Security
mechanism

Operating
system

Conductors PDA-based
devices with
customized user
interface

Cradle,
Bluetooth,
WLAN

Power-on
password,
SmartCard

WM, Palm

Technical train
personal

PDA-based
devices with
customized user
interface

Cradle,
Bluetooth,
WLAN,
mobile
communication
module (GSM,
GPRS)

Power-on,
SmartCard

WM, Palm

Service personal Standard
PDA-based
devices with
standard user
interface

Cradle,
Bluetooth,
WLAN

Power-On,
SmartCard

WM, Palm

Management Standard PDA,
smartphones,
mobile phones

Cradle,
Bluetooth,
WLAN,
public

Power-ON,
SIM

WM, Palm,
Symbian

Customers Some supported Some supported Some supported Some
supported
382 Patterns: Pervasive and Rich Device Access Solutions

15.4.6 Non-functional requirements
This section outlines the non-functional requirements of the ITSO mobile access
service. Non-functional requirements are shown in the table below.

Table 15-9 Non-functional requirements

ITSO non-functional
requirement

Description

Availability High availability will ensure access to business-critical
information.

Backup and recovery Existing and planned backup and recovery processes
will minimize outage time.

Capacity Estimates and
planning

Expected amount of data, connections, and concurrent
users.

Performance The mobile access service must provide necessary
performance for all user groups. Horizontal and vertical
load balancing and clustering will distribute the load to
different systems and resources.

Quality of service Critical and high-priority classified connections.

Configuration management Configuration changes must be stored and maintained
for recovery and audit purpose.

Extensibility/flexibility The mobile access service must be scalable in a matter
of functionality and the ability to integrate new services.

Standards ITOS Railways needs a flexible environment in order to
deploy new services quickly and protect the investment.

Maintainability ITSO Railways has limited resources to maintain the
system. The mobile access service must support easy
maintainability.

Reliability The mobile access service must provide a robust
platform with a minimum of failure.

Scalability The solution must provide horizontal and vertical
scalability.

Security A mobile access service will bridge an outside network
to an internal network. Therefore security is an essential
requirement. The mobile access service itself must run
in a secure environment and should be able to adopt the
corporate security standard.
 Chapter 15. Connectivity and access 383

15.5 Mapping ITSO Sample application requirements
This section outlines how IBM WebSphere Everyplace Connection Manager
(WECM) fits to ITSO Railways mobile access service requirements.

WebSphere Everyplace Connection Manager provides a standard TCP/IP
communications interface to a variety of wireless, dial-up, and local-area
networks (LAN) with data optimization and security. The components that make
up WebSphere Everyplace Connection Manager are designed to run on
multi-vendor hardware and operating system platforms. The main functions are
Mobile Virtual Private Network (VPN), Seamless network roaming, and a wide
spectrum of communication protocols for both Internet Protocol (IP) and non-IP
networks data optimization functionality to reduce transmission costs and lower
connection fees. The three major components of WebSphere Everyplace
Connection Manager are:

� Connection Manager

– Messaging services: Enables a Web application server to send messages
to messaging clients, such as a pager or a phone, using a variety of
wireless networks. Messaging services include support for short message
service (SMS) delivery, mobile-originated message delivery. When
installed with the WAP proxy, messaging services also includes support
for unconfirmed Wireless Application Protocol (WAP) push delivery.

– Mobile access services: Creates an optimized and secure IP tunnel for
communication to the Mobility Client software on your computer. The
Mobility Client can use a wireless or wired connection to the mobile
access services that connects to your company’s private intranet to the
Internet.

– WAP proxy: Performs a protocol conversion between Hyper Text
Transport Protocol (HTTP) and Wireless Application Protocol (WAP)
protocols to link WAP clients with Web-based browser services or TCP
application services.

Systems Management The mobile access gateway must be able to be
integrated in the existing system management
environment of the ITSO Railways.

Accounting The ability to extract accounting and billing information
will provide the base of financial ratings.

ITSO non-functional
requirement

Description
384 Patterns: Pervasive and Rich Device Access Solutions

� Gatekeeper: An easy-to-use administrative interface that enables you to
define and manage wireless resources.

� Mobility Client software: This software runs locally on user devices and
provides a full-function interface to communicate with the Connection
Manager. Once Mobility Client authenticates to WebSphere Everyplace
Connection Manager, a Virtual Private Network (VPN) is established, and the
device securely joins the enterprise intranet.

15.5.1 Requirement mapping
Mapping of the ITSO Railways requirements to WebSphere Everyplace
Connection Manager functions will consider four areas: Security, network,
device, and application.

The tables below show how required ITSO Railways functions are mapped to
WebSphere Everyplace Connection Manager functions.

Table 15-10 Mapping of security requirements to WECM function

Mobile
access
services

Service
description

WECM mobile
access service

Details

Security Identification
and
authentication

Basic and strong
authentication

- Single-party key distribution
protocol.
- Two-party key distribution
protocol.
- Diffie-Hellman key agreement
algorithm.

Authorization Connection
authorization

A secure sockets layer (SSL) or
Wireless Transport Layer
Security (WTLS) connection
can be authorized.

Confidentiality
and privacy

Communication
link confidentiality

Data encryption prevents
unauthorized access. The data
is transformed into encrypted
data using the session key that
is exchanged during the
authentication process.

Integrity Transport integrity Integrity of the encapsulated
data traffic is maintained.
 Chapter 15. Connectivity and access 385

Availability Clustering The Connection Manager can
be configured to be a principal
or subordinate node in a cluster.
In this manner, the Connection
Manager distributes and
services communication
requests and provides
load-balancing efficiency.

Mobile
access
services

Service
description

WECM mobile
access service

Details
386 Patterns: Pervasive and Rich Device Access Solutions

Table 15-11 Mapping of Network requirements to WECM function

The ITSO Railway network architecture with WebSphere Everyplace Connection
Manager is shown in the next diagram.

Mobile
access
services

Service
description

WECM mobile
access service

Details

Network VPN Mobile access
service.

Wireless applications using
IP or non-IP packet-oriented
connection, such as
Mobitex or DataTAC, are
supported by mobile access
services.

Roaming Seamless
cross-network
roaming.

Seamless cross-network
roaming; session context.

Data compression Data compression
TCP optimization.

Reduces the amount of data
transmitted with data
compression and protocol
optimization.

Network support
(IP, WLAN, PSTN,
Cellular networks)

Connection
Manager supports
a variety of wireless
and dial-up network
technologies.

Connection support for IP
and non-IP networks.

Messaging
Services (Short
Message Services,
SMS, WAP)

Messaging
Services.

Connection Manager
supports SMS, e-mail, and
WAP push.

Network Address
Translation (NAT)

NAT and Port
Address
Translation (PAT).

NAT/PAT lets the
Connection Manager act as
an agent between a public
network and a private
network.
 Chapter 15. Connectivity and access 387

Figure 15-8 WebSphere Everyplace Connection Manager placement at the ITSO network

WebSphere Everyplace Connection Manager will be placed in the DMZ “Access
Net” behind the screening Internet firewall and right before the domain firewall.
The WebSphere Everyplace Connection Manager gateway will also use filters to
secure the access from the mobile clients. The management console gatekeeper
will be placed in the internal network and hold the configuration and logs.
388 Patterns: Pervasive and Rich Device Access Solutions

Table 15-12 Mapping of application requirements to WECM function

Table 15-13 Mapping of device requirements to WECM function

Mobile access
services

Service
description

Communication WECM mobile
access service

Application Forms-based
applications on
mobile devices

Protocol: http/ https
Mode: Online,
offline

Mobile access
services

Synchronization of
PIM/e-mail
information on
mobile devices

Protocol: http/https
Mode: Online,
offline

Mobile access
service

Alerts to
maintenance
workers

SMS,
Instant Messaging,
e-mail

SMS,
mobile access
services, e-mail

Maintenance of
mobile devices

Protocol: http/https
Mode: Online

Mobile access
services

Mobile access
services

Service
description

Communication WECM mobile
access service
(device support)

Devices PDA-based
devices with
customized user
interface

Bluetooth,
WLAN,
mobile
communication
module (GSM,
GPRS)

WM

Palm

Symbian

Linux

Windows

Standard
PDA-based
devices with
standard user
interface

Bluetooth,
WLAN

Standard PDA,
smartphones,
mobile phones

Bluetooth,
WLAN,
Public

Some supported Some supported
 Chapter 15. Connectivity and access 389

Table 15-14 Mapping of non-functional requirements to WECM function

ITSO Railways
non-functional
requirement

WebSphere Everyplace Connection Manager
gateway function

Backup and Recovery WebSphere Everyplace Connection Manager stores
configuration in the files system (config files, database,
and directory).

Performance WebSphere Everyplace Connection Manager support
multiprocessor machines, and multiple Connection
Managers can be configured as a cluster to distribute
workload.

Configuration management Gatekeeper management console.
WebSphere Everyplace Connection Manager stores
configuration in the files system, database, and
directory.

Extensibility/flexibility A comprehensive programing reference and toolkit
allows the extension of connection services.

Standards WebSphere Everyplace Connection Manager runs on
standard Unix systems and supports standard networks.
WebSphere Everyplace Connection Manager is being
FIPS 140 certified on secure platforms.

Maintainability The Gatekeeper is an easy-to-use administrative
interface that enables the definition and management of
wireless resources, the registration of users and mobile
devices, the specification of logging and tracing
controls, and the performance of many other
administrative tasks.

Reliability WebSphere Everyplace Connection Manager runs on
reliable Unix platforms.

Scalability WebSphere Everyplace Connection Manager cluster
support enables scalability. WebSphere Everyplace
Connection Manager runs on open platforms and
provides functional scalability.

Security WebSphere Everyplace Connection Manager supports
a high security environment and can provide
standard-based security.

Systems management WebSphere Everyplace Connection Manager can
leverage existing system management standards like
SNMP, and supports systems management solutions.
390 Patterns: Pervasive and Rich Device Access Solutions

Accounting WebSphere Everyplace Connection Manager can
collect accounting information.

ITSO Railways
non-functional
requirement

WebSphere Everyplace Connection Manager
gateway function
 Chapter 15. Connectivity and access 391

392 Patterns: Pervasive and Rich Device Access Solutions

Chapter 16. Maintaining mobile devices

The falling prices of mobile devices and increase in connectivity options in the
pervasive market are leading to a rising penetration of these devices. Enterprises
will want to take advantage of this trend by providing ways to give access to
enterprise data using these devices.

Maintenance of mobile devices, such as PDAs, mobile phones, or even
notebooks, is gaining importance in the enterprise. But the management of the
mobile devices that are low on computing power and not constantly connected is
challenging. Methods for device management known to the server and
workstation environment must be extended to mobile devices. At the same time,
management systems should be able to enforce certain security guidelines.

This chapter describes one possible approach for a mobile device management
solution. Requirements and use cases from the ITSO Railway example
(Chapter 5, “ITSO Railway sample overview” on page 87) are used throughout
the chapter.

16
© Copyright IBM Corp. 2005. All rights reserved. 393

16.1 Overview
This chapter is a summary of requirements extracted from ITSO Railway’s inputs
for a mobile device management system.

The following diagram is the Runtime pattern we implemented in this particular
scenario.

Figure 16-1 Runtime pattern for the device management scenario

The Product mapping for the scenario can be seen in the following diagram.

User

Outside World
Demilitarized Zone

(DMZ) Internal Network

Client

Data servicesData services
Pervasive

client
services

Pr
ot

oc
ol

 F
ire

w
al

l

D
om

ai
n

Fi
re

w
al

l

ISP Gateway
(Pervasive
services)

Presentation/
Application Application

synch/asynch

Personalization
Server

Directory
and Security

Services

Database

Existing data
and

Applications
Application

Server
Presentation

Server

Collaboration
server

Pervasive
extension
services

Rich Device=Online application pattern

Web
server

redirector
394 Patterns: Pervasive and Rich Device Access Solutions

Figure 16-2 Rich Device=Online::Product mapping=Device Management, Windows 2000

16.1.1 Customer requirements
The fictive ITSO Railway company was created to explain general approaches
for mobilizing applications. Examples of customer wants and needs are
described and listed in Chapter 5, “ITSO Railway sample overview” on page 87.

The following business context was identified for a device management system
(see Figure 16-3 on page 396). Since ITSO Railways has introduced new mobile
solutions to their employees (for example, the new mobile inventory system from
Chapter 11, “Mobile Inventory Management with offline forms” on page 211, and
the new ticketing application from Chapter 13, “Using Workplace Client
Technology, Micro Edition” on page 283), a management system for the new
mobile devices is required. The main functions that must be covered by the new
mobile device management solution are:

� The installation and removal of software
� Device software inventory collection
� Remote device configuration

See the requirements from ITSO Railway in 5.10, “Maintain the mobile devices”
on page 97. A user interface for the administrator of the new device management
system is also desired in order to be able to create appropriate device
management jobs from a single administration point.

User

Outside W orld
Demilitarized Zone

(DM Z) Internal Network

Client

Data servicesData services

Personalization
Server

Directory
and Security

Serv ices

Pervasive
extension
services

Pervasive
client

serv ices

Pr
ot

oc
ol

 F
ire

w
al

l

Application
Server

Presentation
Server

D
om

ai
n

Fi
re

w
al

l

ISP Gateway
(Pervasive
services)

• Everyplace Client for Pocket PC
- IBM Dev ice M anagem ent Agent

W indows 2000 + SP4
•IBM W ebSphere Application Server
V5.0 HTTP Plug-in

•IBM HTTP Server V1.3.26

W indows 2000 + SP4
•W ebSphere Everyplace Access V5.0
- Device M anagem ent

Collaboration
Server

W indows 2000 + SP4
•W ebSphere Portal Server V5.0.2.1
•Dom ino Server 6.5.1
•IBM W ebSphere Application Server
Enterprise V5.0.2.3

W indows Mobile 2003

W eb
serv er

redirector
 Chapter 16. Maintaining mobile devices 395

Figure 16-3 Business context for ITSO Railway device management example

The following sections list the captured functional and non-functional
requirements to define the baseline according to which the business system
must be designed. A sample use case model with the most important use case is
also created. The deployed device management solution must adhere to these
use cases.

16.1.2 Functional requirements and use case model
The functional requirements of our ITSO Railway device management system
example are extracted from the customer wants and needs. They provide the
main input for the use case model.

We simplified the use case model for the ITSO Railway device management
example and reduced the use case description to the following constructs:

� Actors (name, description, status, superclass, subclass, and associations)

� Use cases (number, subject area, business event, name, overview,
preconditions, description, associations, inputs, outputs, usability index, and
notes)

� Communication Association diagram

Networked
Workstation

Mobile
Device
User

Device Data
-Provide inventory
-Provide configuration

Administrator

ERP System
Backend

Inventory System
(Backend)

Device Management
Configuration and
Administration

Device Management Job

Device Management Job
-Create inventory list
-Software distribution
(installation and
configuration)

-Device configuration
(network settings,
password, etc.)
396 Patterns: Pervasive and Rich Device Access Solutions

The presented project approach for the ITSO Railway device management
system example is mainly based on the IBM Global Services Method
recommendation (also see 11.1, “Overview” on page 212).

Actors
The following actors are of interest for the new device management solution:

� Mobile device user
� Device management agent trigger
� Device management agent
� Administrator

Figure 16-4 shows the actors and their interaction for the ITSO Railway example.
Detailed descriptions to these use case actors can be found in Table 16-1 on
page 398 through Table 16-4 on page 399.

Figure 16-4 ITSO Railway device management system - Use case actors

Device
Management

Agent
Mobile
Device
User

Administrator

Device
Management

System

Networked
Workstation

Using
Extends

Actors
Mobile Device

Device
Management
Agent Trigger
 Chapter 16. Maintaining mobile devices 397

Table 16-1 Use case actor mobile device user

Table 16-2 Use case actor device management agent trigger

Actors name

Brief description

Mobile device user

The mobile device user is the person in the company who
works with a mobile device in online and offline mode. More
then one application can run on the device, and are used for
different business purposes (for example, e-mail, train supply
recording, ticketing system). The mobile device user can
initiate DMS job queries (by starting the device management
agent).

Status Primary.

Relationship

Inheritance Subclass: None.

Superclass: Device agent trigger.

Association to use
cases

Initiate job query.

Actors name

Brief description

Device agent trigger

The device agent trigger is a local program that can
automatically start the device management agent. This trigger
can be controlled locally on the device (for example, by the
WEA client, by a timer program) or remotely (for example,
through a SMS).

Status Secondary.

Relationship

Inheritance Subclass: None.

Superclass: Mobile device user.

Association to use
cases

Initiate job query.
398 Patterns: Pervasive and Rich Device Access Solutions

Table 16-3 Use case actor device management agent

Table 16-4 Use case actor administrator

Use cases
Use cases describe functional requirements. They are used as inputs for the
system and application design. Furthermore, use cases describe the potential
uses of the solution delivered to the customer. The final solution test runs utilize
the use cases the customer and the system provider agreed to at project start.

The following use cases were considered in the ITSO Railway device
management system (DMS) example:

1. Create software package.
2. Submit and assign job.

Actors name

Brief description

Device management agent

The device management agent is located on the mobile device
and is the corresponding client program to the device
management server. The agent queries the server for assigned
jobs and executes them appropriately.

Status Primary.

Relationship

Inheritance Subclass: None.

Superclass: None.

Association to use
cases

Enroll device, run job.

Actors name

Brief description

Administrator

The administrator of the inventory system maintains the
system, deploys the Supply Consumption Record application,
and makes it available to the delivery person’s PDA.

Status Primary.

Relationship

Inheritance Subclass: None.

Superclass: None.

Association to use
cases

Create software package, submit and assign job.
 Chapter 16. Maintaining mobile devices 399

3. Enroll device.
4. Initiate job query.
5. Run job.

Device management use cases can be very complex. Because of this, the Run
Job use case covers the following use cases in this chapter:

� Software distribution
� Inventory collection
� Bootstrap (initial installation and configuration of device)
� Device configuration
� Application configuration

Table 16-5 on page 402 to Table 16-9 on page 407 list these use cases in detail.

Use case diagram
Actors and use cases communicate to execute the interaction described in the
use case. This communication is modeled as a communication-association
diagram shown in Figure 16-5 on page 401. The direction of the arrow shows the
direction in which the communication is initiated. In addition, Figure 16-5 on
page 401 includes an application workflow example for the ITSO Railway
software distribution example use case.
400 Patterns: Pervasive and Rich Device Access Solutions

Figure 16-5 Use case association diagram for ITSO Railway device management
solution

The Administrator creates the software package for distribution. Appropriate
dependencies between the new software and existing versions and support
programs are considered. It might be necessary to include additional software in
the package to resolve these dependencies. Now the Administrator can create
the device management job to distribute the created software package (software
distribution job). He makes this job available to the appropriate user group or
device group.

The device management agent (DM Agent) and the device management agent
trigger (DM Agent Trigger) run on the mobile device. The mobile device user can
interact with the device management agent directly in order to initiate a server
contact (initiate job query). The user must provide a user name and password,
which the agent must provide to the server at the beginning of each server
connection.

The DM Agent Trigger is a program that can automatically trigger the DM Agent
to connect to the server. This trigger process could be kicked off periodically by a

Association

Workflow Example

Mobile
Device
User

Administrator

Create Software
Package

Device
Enrollment

Create and
Submit Job

Run Job
Application Configuration

Software Distribution Inventory Collection

Bootstrap

Device Configuration

Device

Initiate Job
Query

Device
Management

Agent

Device
Management
Agent Trigger
 Chapter 16. Maintaining mobile devices 401

local timer program or through other software such as the WebSphere
Everyplace Client. In addition, the DM Agent Trigger could also be started by an
external process (for example, a server component). Other communication
channels could also be used for triggering, such as SMS messaging (if the
mobile device is capable of receiving SMS).

The first contact with the server during which the mobile device is registered with
the device management server is called enrollment. After this, the device
management agent can contact the server and query it for available jobs. If jobs
are available for the device, they are either immediately executed or deferred.
This is configurable during the job configuration time.

Log records and/or user messages must be provided to be able to track job
execution. If a job fails, the reason must be determined. The job must be
re-submitted for a new execution on the effected device.

The following tables describe the five major ITSO Railway mobile device
management use cases.

Table 16-5 Use case 1: Create software package

Use case #1

Subject area

Create software package

Administration

Business event New software for mobile devices is available (additional
software, new releases, fixes, etc.).

Actors Administrator.

Use case overview Administrator packages software for distribution through device
management server.

Preconditions Software to be distributed is available for target device platform.

Termination
outcome

Condition effecting Termination Outcome

1) Software
package ready for
distribution

- Authentication to DMS server is successful.
- Software package to be distributed is completely provided
(including software prerequisites for mobile device).
- Installation order of software pieces is considered.

2) Software not
ready for
distribution

- Administrator could not log on to DMS server.
- Software package is incomplete (software prerequisites for
mobile device are not available).
- Installation order of software pieces is not considered.
402 Patterns: Pervasive and Rich Device Access Solutions

Table 16-6 Use case 2: Create and submit job

Use case
description

Administrator logs on to DMS server. He creates a software
package by creating necessary package information and
installation files (using a wizard). Software to be distributed and
necessary perquisite software is packaged together.

Use case
association

Used by Create and Submit Job (for software distribution) use
case.

Inputs summary Authentication data, software and perquisite software to be
distributed.

Output summary Software bundled ready for distribution.

Usability index Administrator console has to provide support through package
wizard.

Use case notes Use case is only necessary for software distribution jobs.

Use case #2

Subject area

Create and submit job

Administration

Business event Information about the mobile device is needed (for inventory),
new software must be delivered to mobile device or mobile
device configuration must be changed.

Actors Administrator.

Use case overview Administrator creates device management job on device
management server and assigns it to target devices and/or
users.

Preconditions DMS is up and running.

Termination
outcome

Condition effecting termination outcome

1) DMS Job created
successfully

- Authentication successful.
- Plug-in for target device type available (target operating
system and DMS technology supported).
- Software package for software distribution job is available.
- Device configuration information is available for configuration
job.

2) DMS job not
created

- Authentication is not successful.
- Plug-in for target device type not available.
- Package for software distribution job is not available.
- No device configuration information available for configuration
job.
 Chapter 16. Maintaining mobile devices 403

Table 16-7 Use case 3: Enroll device

Use case
description

Administrator logs on to the DMS administration user interface.
He creates a device management job using a wizard.
Administrator assigns the job to target device class, user, or
user group. He also configures the job schedule.
Depending on the job type additional configuration steps are
necessary:
- Software distribution job: Integrate software package.
- Configure device job: Integrate device configuration.
- Bootstrap job: Integrate software and device configuration.

Use case
association

- Used by Run Job use case.
- Needs Create Software Package use case for software
distribution job.

Inputs summary - Authentication data.
- Software package for software distribution job.
- Device configuration data for device configuration job.

Output summary Created DMS job.

Usability index Administrative tasks must be supported through wizards.

Use case notes In order to simplify the ITSO Railway example the following use
case summarizes these more specific use cases:
- Software distribution
- Inventory collection
- Device and application configuration
- Bootstrap

Use case #3

Subject area

Enroll device

Administration

Business event Mobile device user receives a new device (PDA) and needs to
configure it.

Actors Device management agent.

Use case overview Mobile device enrolls with the DMS server.

Preconditions DMS client software (device management agent) was
pre-installed on mobile device.

Termination
outcome

Condition effecting termination outcome
404 Patterns: Pervasive and Rich Device Access Solutions

Table 16-8 Use case 4: Initiate job query

1) Device enrolled - TCP/IP connection from device to DMS server is present
(device cradled to network attached service station) and
configured.
- Authentication with DMS server successful (user belongs to
DMS user group).

2) Device not
enrolled

- TCP/IP connection from device to DMS server is not present
and/or not configured.
- Authentication with DMS server not successful.

Use case
description

Mobile device user receives a new PDA, which is preloaded with
the device management agent. The user places the PDA in the
network-attached cradle and starts the device management
agent. He enters user name and password and connects to the
DMS server (TCP/IP connection is present). Device
management agent enrolls with DMS server. DMS jobs, which
were created for newly enrolled devices and match the user
name, device class, and/or user group are immediately
performed.

Use case
association

- Necessary for all Run Job use cases (apart from Bootstrap use
case).
- Runs Initiate Job Query use case after first contact
automatically.

Inputs summary Authentication data.

Output summary Device enrolled with DMS server and ready for receiving DMS
jobs.

Usability index Device management agent must be preloaded or installed
through Bootstrap job. Network connection through cradle
should be ready for user before.

Use Case Notes Device enrollment is necessary before device jobs can be run on
the device.

Use case #4

Subject area

Initiate job query

Manage device

Business event New job is available.

Actors Mobile device user (manual procedure), device management
agent trigger (automatic procedure)

Use case overview Device management agent is started to query DMS server for
assigned jobs.
 Chapter 16. Maintaining mobile devices 405

Preconditions Device was enrolled with DMS server and is configured for DMS
server access. Device management agent trigger is available for
automatic procedure.

Termination
outcome

Condition effecting termination outcome

1) Server query was
successful, job is
available

- TCP/IP connection to DMS server is available.
- User or trigger started device management agent and
connects to DMS server successfully.
- Authentication with DMS server was successful.
- One or more jobs for device were assigned and are available.

2) Server query was
successful, no job
available

- TCP/IP connection to DMS server is available.
- User or trigger started device management agent and
connects to DMS server successfully.
- Authentication with DMS server was successful.
- No jobs for device is available.

3) Server query not
successful

- TCP/IP connection to DMS server is not available.
- User and/or trigger cannot start device management agent and
cannot connect to DMS server.
- Authentication with DMS server fails.

Use case
description

The mobile device user is informed about newly available DMS
jobs for his device or the device management agent trigger was
kicked off by another process (for example, locally by a timer or
remote through a SMS, see server initiated action). The device
management agent is started (either by the user or the Agent
Trigger) and queries the DMS server for new jobs. If new jobs for
the particular device and user are available, the user can be
informed and the device management agent can start executing
them.

Use case
association

Necessary for all Run Job use cases (apart from Bootstrap use
case).

Inputs summary

Output summary DMS jobs can be executed.

Usability index The device management agent must be triggered for server
contact. This can be done manually by the mobile device user
(for example, during each synchronization process) or
automatically by a Agent Trigger (for example, local timer).

Use case notes Agent Trigger needs to be able to run in background of device.
406 Patterns: Pervasive and Rich Device Access Solutions

Table 16-9 Use case 5: Run job

Use case #5

Subject area

Run job

Manage device

Business event New job is available.

Actors Device management agent.

Use case overview DMS job is executed on mobile device.

Preconditions Device management agent has successfully queried DMS
server and job for mobile device is available.

Termination
outcome

Condition effecting termination outcome

1) Job executed
successfully

- TCP/IP connection from device to DMS server is present
(device cradled to network attached service station), configured
and available during job download.
- Prerequisites for DMS job are met or can be resolved.

2) Job not executed - TCP/IP connection from device to DMS server is not present,
lost during execution and/or not configured.
- Prerequisites for job execution are not met and can not be
resolved either.

Use case
description

After the Initiate Job Query use case runs successfully and
detects DMS jobs for the device, these jobs are executed. After
successful completion of the job, a message is created for the
user and the administrator (message window or log). In case of
temporary failures, the job execution (network problem) can be
resumed (check-point-restart procedure). In case of not
resolvable problems, the job will be canceled and not executed.
An error message will be created (for the mobile device user and
the administrator).

Use case
association

Is initiated by Initiate Job Query use case.

Inputs summary

Output summary DMS job dependent data transmission.

Usability index This is an automatic process kicked off by Initiate Job Query use
case.
 Chapter 16. Maintaining mobile devices 407

Regarding the ITSO Railway scenario and considering the scope of this book,
the example software distribution use case described in 5.8.2, “Example
application scenario” on page 95, was chosen for detailed consideration. In this
use case, a remote display control tool
(http://msdn.microsoft.com/mobility/downloads/tools/default.aspx) will be
installed on the ITSO delivery peoples PDAs (see Chapter 16, “Maintaining
mobile devices” on page 393). This allows the ITSO Railway IT support to
remotely connect to the cradled PDA in order to see and control the user screen.
It offers the capability to remotely investigate the PDA in case of problems and
explain user interactions to a delivery person directly on the screen of the PDA
(Similar tools exist for workstations and are called Remote Desktop Control).

The necessary software distribution job for the remote display application is
created assuming that the target Pocket PC 2002 devices were already enrolled
with the WebSphere Everyplace Access device management server. When the
PDA is connected and synchronized, the remote display software will be installed
to the assigned devices. The following use cases will be implemented in the
following chapters:

� Create software package (for remote display)
� Create and submit job (for remote display)
� Initiate Job query
� Run job (software distribution job for remote display)

See 16.4, “Deployment and runtime configuration” on page 418.

16.1.3 Non-functional requirements
We are looking at these non-functional requirements from a more generalized
view for our simplified ITSO Railway device management example. Many of
those requirements are addressed through the choice of the device management
server included in WebSphere Everyplace Access. Since the device
management server runs on WebSphere Application Server, requirements like
scalability, availability, security and data integrity are covered.

The non-functional requirements we are concentrating on in our example are not
complete. From our perspective, we focused on the most important ones for the
ITSO Railway requirements listed in 5.10, “Maintain the mobile devices” on
page 97.

Use case notes Different DMS jobs are summarized in this use case:
- Software Distribution
- Inventory Collection
- Bootstrap (software distribution and configuration)
- Device Configuration
- Application Configuration
408 Patterns: Pervasive and Rich Device Access Solutions

http://msdn.microsoft.com/mobility/downloads/tools/default.aspx

Performance
Performance is strongly influenced by the chosen device and the available
network connection. The device type (operating system and processor
performance) determines how quickly and efficient device management jobs can
be executed. The speed of the network connection between device management
agent and server affects the time needed for data transmission (e.g. time needed
for software download).

Table 16-10 shows an example of demanded job execution times of a device
management system under the assumption that the mobile device is cradled and
connected to DMS server through a LAN connection.

Table 16-10 Target end-to-end job execution time

Availability
Availability is frequently an important Service Level Requirement. The table
below lists an example specification of the desired availability. Availability
requirements typically vary by use case and component. Each row represents a
collection of components with common availability requirements. In our example
all 3 listed components have the same availability requirements.

Table 16-11 Availability requirements example for ITSO Railway device management

Target end-to-end execution time
(device cradled and connected through LAN connection)

Frequency of usage Low performance
device (smartphone)

High performance
device (high end
PDA)

Data complexity

Inventory collection 5 minutes 3 minutes

Software package (~1MByte size) 5 minutes 3 minutes

Bootstrap (up to 10 MByte) 10 minutes 5 minutes

Availability requirement Impact of not met

Component view
 Chapter 16. Maintaining mobile devices 409

Maintainability
All application components (device management agent, server and network)
must be independent of each other from a development and maintenance point
of view. The following components can be designed, developed, tested and
maintained independently of each other:

� Middleware components (device management agent and server)
� Network

Security
The device management system must prevent unauthorized access and job
execution. The mobile device user must provide user name and password with
which the device management agent can contact the server. On the DMS server
side, jobs are especially assigned to users, user groups and/or device classes.
Unauthenticated access can be prevented (only enrolled and enrolling devices
are managed).

Manageability
Manageability mainly concentrates on the DMS system management. It contains
the way the device management system (jobs, software packages, etc.) is
managed from an administrator’s point of view.

System constraints
System constraints are mainly defined by the used handheld device
(performance), the available network connection and the size of software
packages to be distributed.

A chosen PDA defines capabilities for its management. Specifications including
CPU performance, memory size and operating system/execution environment all

- Device management
agent on handheld device
(PDA)
- Device management
server
- Network connection
between agent and server

Fully available at the end of
each shift of the delivery
staff (7 days a week,
minimum 6:00-7:00,
14:00-15:00, 22:00-23:00)

- Medium:
Software inventory
collection and minor
software updates can not
be performed
- High:
Configuration changes
must be manually applied
by mobile device user
- Critical:
Software updates and
fixes necessary for mobile
device users work

Availability requirement Impact of not met
410 Patterns: Pervasive and Rich Device Access Solutions

affect this. The CPU performance effects the job execution speed on the device.
The operating system and the execution environment of the device management
agent (for example, OSGi) limit the remotely available configuration options for
the device.

The available network speed determines the amount of time needed to download
software packages and to upload inventory information.

The following constraints apply to an example of a Window Mobile 2003 PDA.

Table 16-12 Constraints defined by our chosen PDA

System usability
The device management agent must be able to run without user interaction once
the user name and password are entered (or be automatically triggered by other
remote or local applications).

The device management system administration must provide graphical user
interfaces to create device management jobs (these are wizard-like). There must
also be options to track, log and trace device management activities.

Data integrity
The integrity of transmitted data between the device management agent and the
server must be assured (for example, software packages, inventory information).
The WebSphere Everyplace Access device management server and agent take
care of this aspect.

Very important for mobile devices is an option to allow device management
functions work over unreliable network connections. A function must be
available, which allows an interrupted job to resume exactly there where it was
stopped before.

We will look at these non-functional requirements and how they are fulfilled in the
following chapters in more detail.

Constraint Value

Processor Intel XScale, 400 MHz

Memory 64 MB RAM, 32 MB flash ROM

Operating System (execution
environment of device management
agent)

Windows Mobile Edition 2003

Cradled and network connected 10 MBit/s Ethernet
 Chapter 16. Maintaining mobile devices 411

16.1.4 Solution approach
The ITSO Railway customer requirements above were the input for the example
solution described in the following chapters (see 16.1.2, “Functional
requirements and use case model” on page 396, as well as 16.1.3,
“Non-functional requirements” on page 408). The following approach was taken
to get to a device management solution for software distribution and inventory
collection:

� Identification of the problem which has to be solved by considering the
requirements and use cases to derive an architectural overview.

� Choice of suitable technology and Runtime pattern to create a component
model for the solution.

� Identification of existing out-of-the-box solutions for mobile device
management.

� Deployment of solution. Installation and configuration on the pervasive server
as well as on the handheld device must be performed. This includes setup of
user access to the device management system as well as creation of a
software package and corresponding software distribution job for the mobile
device.

� Maintenance and operation of the system.

The system deployment on the server side is described in the following chapters.
The software package used for distribution is the application developed in
Chapter 13, “Using Workplace Client Technology, Micro Edition” on page 283.

16.2 Architectural overview
Regarding the ITSO Railway customer requirements (see 16.1, “Overview” on
page 394) the mobile device management solution must be able to provide
software distribution, inventory collection, device and application configuration.
The system administrator must be able to create software packages which can
be distributed and remotely deployed to the mobile devices. He must also be
able to force consistent device configurations for security and usage reasons (for
example, enforce power-on password on device). It must be possible to limit
device management jobs to a specific device class, user and/or user group.

The device management system must prevent unauthorized access to the
system. It must also provide stable and secure data transmission to ensure data
integrity (job resume capability in case of interrupts).
412 Patterns: Pervasive and Rich Device Access Solutions

This input leads to the Pervasive runtime pattern for Device Management
pattern, which was introduced earlier in this book (refer to 3.2.4, “Rich
Device=Online::Runtime pattern” on page 43).

Figure 16-6 Architectural overview diagram for the ITSO Railway mobile device
management solution

The high-level solution architecture in Figure 16-6 was derived from the Runtime
pattern in Figure 3-4 on page 44. This device management system architecture
contains two main parts (2-tier approach). The enterprise server including the
Software Management system is optional and can be integrated if it exists (3-tier
approach):

� Part 1: Device

Part 1 instantiates the client including the pervasive client services node of
the applied Runtime pattern in Figure 3-5 on page 45. The Device is a mobile
computing device (for example, PDA) which runs the appropriate business
applications (for example, e-mail, calendar, ticketing system application, etc.).
It contains two important functions, the device management agent (DM
Agent) and the device management agent trigger. The DM Agent is
middleware counterpart to the pervasive server (device management server)
to perform the device management jobs. Since the mobile device is only
intermittently connected and available, the server can only be contacted by
the DM Agent for job queries when a connection is available. The DM Agent
Trigger is an optional component which could detect a connection or even
establish it and can automatically trigger the DM Agent to contact the DM
server in order to ask for available jobs. An example would be a smartphone,
where a server side extension could contact the DM Agent Trigger through a
SMS to trigger the DM Agent for a server query.

� Part 2: Pervasive server

Enterprise ServerDevice

Device
Management

Agent

Pervasive
Server

(Device
Management

Server) Software
Repository

Software
Management

System

Device
Management
Agent Trigger

Program
 Chapter 16. Maintaining mobile devices 413

The pervasive server instantiates the directory and security services,
personalization server, presentation server and application server nodes
including the pervasive extension services node of the Runtime pattern in
Figure 3-5 on page 45. In the device management case, the Pervasive
extension services node would be the device management server plug-in
which extents the existing infrastructure with mobile device management
capabilities.

It can optionally use existing Software Management Systems for license
tracking, software repository, etc.

� Part 3: Enterprise server

The enterprise server stands for existing software management systems in an
enterprise (license tracking, software repository). It is not necessary to have
this component to meet the ITSO Railway requirements. The pervasive
server can fulfill all the mobile device management tasks without the
existence of the enterprise server. The enterprise server is listed here to
underline the capability of the pervasive server to utilize existing systems.

16.3 System design overview
In this section, some general terms and function in the field of device
management are explained using WebSphere Everyplace Device Manger
(WEDM) as example. Then an architectural overview for the ITSO Railway
device management example is developed using the WEDM server in
WebSphere Everyplace Access.

16.3.1 General device management considerations
In this chapter general device management terms and functions are explained
using the example of IBM WebSphere Everyplace Device Manager (WEDM).

In order to have a common understanding of often used terms in the field of
device management, the terms Device Manger, Device, and Job are shortly
explained.

Device management terms
� Devices are personal digital assistants (PDAs), handheld PCs, PCs,

subnotebooks, cellular phones, set-top boxes, in-vehicle information systems,
and other devices for pervasive computing.

� Jobs are device management actions carried out by the Device Manager.
Jobs may be applied to (or targeted to) a single device, a single user, a group
of users or a group of devices with common characteristics (for example,
414 Patterns: Pervasive and Rich Device Access Solutions

same operating system). These common characteristics can be the device
owner or owner group or by some attributes of the device inventory, or a
combination of that.

An assigned job is run when the device connects to the Device Manager
server. The server maintains a job status history for all devices. Certain
device types allow the server to notify the device about an existing job.

� Software is a registered software package or OSGi (Open Service Gateway
Initiative) bundle. A software package is the set of meta package properties,
application properties and application package files for all the software to be
distributed to a device. An OSGi bundle contains all the Java interfaces and
classes, a manifest file and resource files packaged into a JAR file.

The Device Manager database stores URLs for locating software packages and
OSGi bundles and stores other software information. The Device Manager
console provides windows for manipulating that information.

� Device Manager is a powerful application that helps enterprises and service
providers to manage mobile devices efficiently. Device Manager is used to
track devices and their configuration status in a database. With this
information, Device Manger can perform management tasks depending on
the device capabilities. Examples are device and application configuration,
inventory collection, software distribution and initial provisioning. Device
Manager can use existing user repositories or its own subscription manager
component to control access to provided user interfaces for administrators
and device users.

Parts of WEDM are imbedded in several IBM products, for example in
WebSphere Everyplace Access.

Introduction to WebSphere Everyplace Device Manager
WEDM is built on a Web application server model. The WEDM server is a set of
J2EE servlets, running on WebSphere Application Server. Device management
data storage is in a relational database, such as DB2 or Oracle. The Device
Manager server requires an agent on the managed device (device management
agent). The agent can be a Device Manager supplied agent, such as Pocket PC,
Windows 32-bit, and PalmOS, or can be supplied by a device manufacturer.

Device agents communicate with the WEDM server using HTTP or HTTPS. The
protocol running on top of HTTP is either a proprietary protocol, which is used
with Pocket PC and PalmOS devices, or a standard protocol, such as the OMA
DM protocol used with OSGi-compliant devices. With HTTP and HTTPS
communications between devices and WEDM, requests and responses can
pass through various network elements, such as firewalls.
 Chapter 16. Maintaining mobile devices 415

OMA DM is a specification created by the Open Mobile Alliance (OMA)
organization for device management of wireless devices. It is a standardization
that allows Device Manager to write one protocol engine to encode and decode
the messages passed between Device Manager and the OMA DM device agent.
WEDM provides an OMA DM Management Server that is an OMA DM 1.1.2
implementation. Available management functions for SyncML DM devices
include inventory collection, device configuration, and running custom built
SyncML DM command jobs.

WEDM also supports software bundle management for OSGi enabled devices.
OSGi is a specification that defines a run-time environment in which
independently managed applications co-exist in a single virtual machine.
Operations that can be performed on OSGi bundles include installing, starting,
stopping, updating, and removing bundles.

WEDM is particularly suited for wireless or wired providers who want to use open
standards to support their business-to-consumer subscription service. Device
Manager uses the device management open standards from Open Mobile
Alliance to help providers solve service-related problems and reduce the total
cost of customer support.

WEDM extends the customer service and distribution capabilities of the
provider's administrators, and supplies APIs for integrating value-added
applications that help improve the operating environment for delivering service.

Furthermore, WEDM defines a plug-in architecture for the Device Manager
server. This allows specialized support for different kinds of devices (for
example, PalmOS PDA or subnotebooks running Pocket PC). Any number of
device types could be supported through custom developed plug-ins.

Administrators can use graphical user interface called the Device Manager
console or especially developed portlets for the WebSphere Portal Server as
provided by WebSphere Everyplace Access. From this console, an
administrators can manage:

� Jobs
� Device classes
� Devices
� Software

WebSphere Everyplace Device Manager components
Figure 16-7 on page 417 shows components the WebSphere Everyplace Device
Manger. The core Device Management Server components are applications and
user interfaces through which the capabilities of the server may be exercised,
and the information stored within its database may be accessed.
416 Patterns: Pervasive and Rich Device Access Solutions

Figure 16-7 WebSphere Everyplace device management architecture

Below the server lies a series of device plug-ins, each of which provides the
specific function needed to handle the class of device it is designed for.

To the left and right sides of the server are, respectively, a subscriber
management system to which the Device Manager issues requests for
authentication and authorization for actions which it is about to execute, and the
device management database.

External applications such as subscriber management, customer care, etc. are
shown in a different color; these are not included with WEDM. API information,
including Web Services Description Language (WSDL) and JavaDoc is provided
to support the development of applications that interface to Device Manager.
WebSphere Everyplace Access has parts of WEDM integrated so that an
out-of-the-box solution is available.

Please, refer to WebSphere Everyplace InfoCenter and the WebSphere
Everyplace Device Manger InfoCenter for further information.
 Chapter 16. Maintaining mobile devices 417

16.3.2 ITSO Railway device management solution outline
The following solution outline was developed under the consideration of the ITSO
Railway customer requirements for a mobile device management solution, the
Pervasive runtime pattern for device management and the device management
capabilities of WebSphere Everyplace access.

16.4 Deployment and runtime configuration
This chapter explains the deployment and configuration of the ITSO Railway
example for device management software distribution job using WebSphere
Everyplace Access.

16.4.1 Overview
There are two options for creating software distribution jobs with WEA version
5.0:

� Using the device management portlet
� Using the device management Console

Since the first option is available through the WebSphere Everyplace Access
administration user interface (portal page), the following steps taken for the ITSO
Railway example are explained using the device management portlet.

These steps are necessary:

1. Create the software package for distribution.

An archive (zipped) file that contains the software for distribution and specific
job instructions must be created first.

Then it can be uploaded to the device management portlet on the WebSphere
Everyplace Access server.

2. Upload the software package to the device management portlet on the
WebSphere Everyplace Access server and assign target users, user groups
or devices.

Job processing begins automatically after step 2 to all authenticated users.

16.4.2 Creation of the software package
The first step to create a software distribution job is the creation of the software
package which contains the software and specific installation and configuration
instruction commands.
418 Patterns: Pervasive and Rich Device Access Solutions

For this, an archive (zipped) file is composed of a WSEPackage.xml file (with the
job instructions), package and meta package definition files, and software
packages for distribution. The software, such as a CAB file for WinCE class
devices, or a PRC or PDB file for Palm OS class devices, is ready for installation
on the device according to the instructions in the WSEPackage.xml file.

The following steps outlines the process for creating software packages for the
WEA device management portlet:

1. Gather the software file or files to be distributed, and store them in a
temporary folder.

2. Create one or more package definition files.

3. Create a meta package definition file.

4. Create a WSEPackage.xml file.

5. Create an archive (zipped) file that contains the following files:
WSEPackage.xml; meta package definition file; package definition file; and
the software to be installed, such as CAB (for Pocket PC) or PRC (for Palm
OS) files.

Gathering software files for distribution
For the ITSO Railway software distribution example use cases from 16.1.2,
“Functional requirements and use case model” on page 396, the remotedisp1
software must be distributed to the supported devices (PocketPC 2002). First,
the files for the remotedisp application are stored the files in a temporary
directory such as C:\temp\remotedisp (Figure 16-8).

Figure 16-8 Files for Remote Display for Pocket PC 2002 application from Microsoft
Corporation

Creating the package definition files
Next the package definition and meta package definition files must be created.

The Package definition file:

� Is a plain text file that identifies the software and its properties in the software
package. The software package will be distributed or removed from the
supported device after the archive (zipped) file is uploaded to DMS. There
must be one package definition file for each software package.

1 License free tool from Microsoft Corporation
 Chapter 16. Maintaining mobile devices 419

� Points to all the components of the software, such as graphics files, database
files, compiled files.

� Defines the properties for distributing or removing the software package,
properties such as running a setup file after the files are downloaded;
allocating disk space; restarting the device before removing software.

Please refer to the WebSphere Everyplace Access InfoCenter for more details.
The package definition file remotedisp.pkg created for the remotedisp application
is listed in Example 16-1.

Example 16-1 Package definition file remotedisp.pkg for the ITSO Railway software
distribution job example

#*DFP-v1.00 DMS Filepack (version v1.00)
#*Keyword section
after_prog_path=\windows\wceload.exe ceremote.sa1100.CAB
need_space=16000
%
#*Files and directories
ceremote.sa1100.CAB d=/Program Files/rdisp
%
#*Nested file packages
%
#*Excluded files
%
#*Extra section options

Explanation of Example 16-1:

� #*DFP-v1.00 DMS Filepack (version v1.00) is the required header line.

� after_prog_path specifies the full path of an executable file to be run after the
software packages are distributed. wceload.exe installs our remote display
application (packaged in the ceremote.sa1100.CAB file).

� need_space is the size which the file needs on the target.

� ceremote.sa1100.CAB d=/Program Files/rdisp contains the names of the
files and directories to be distributed, created, or removed. Each file entry or
directory is listed on a separate line. For software distribution and software
removal jobs, the listed files and directories are sent to the device. If a
directory does not exist on the device, it is created.

� [setProperty] specifies each job parameter or Windows registry keyword.
For each line, use the format: jobParameter=value or registry
Keyword=value for each registry keyword, the location where the change will
be made.
420 Patterns: Pervasive and Rich Device Access Solutions

Creating the meta package definition file
A meta package definition file lists each software package by its package
definition file name (see remotedisp.pkg created before). Individual packages
can be created for software distribution jobs or software removal jobs. The meta
package properties include the name of the software package, a version number
for the software package, user selection options for the software package, and
other properties.

A meta package definition file defines:

� Properties that affect the entire software package (meta package properties)

� Properties for each software package listed in the meta package definition file
(application properties)

The meta package definition file is created as a plain text file, prefacing the
package name with meta_ by convention. Meta package properties are always
listed first, followed by the stanzas listing application properties, in the
meta_<productname>.pkg file.

Example 16-2 Meta package definition file meta_remotedisp.pkg for ITSO Railway
software distribution job example

PackageUserSelection=yes/delay/reject
PackageName=RemoteDisplay
PackageVersion=1.0
PackageDescription=Install remote display client on PPC2002

[Application1]
ApplicationUrl=remotedisp.pkg
ApplicationSelectionDisable=yes
ApplicationName=WindowsCEAgent
ApplicationVersion=2.03
ApplicationDescription=Remote Display Windows CE

Explanation of Example 16-2:

� PackageUserSelection enables user selection or automatic downloading of
the software distribution job. Options: yes, yes/delay, yes/reject,
yes/delay/reject or no. A user can select to download all the software
packages now (yes), delay the choice to download the software packages
(delay), reject the download of this software distribution job (reject), or have
no choice, so that all of the packages in the software package are
downloaded (no). If delay or reject are not included, the corresponding
buttons are inactive in the User Selection window of the supported device.
We gave the ITSO mobile device user multiple options Example 16-2 for
demonstration purposes.

� PackageNamespecifies the package name.
 Chapter 16. Maintaining mobile devices 421

� PackageVersion specifies the package version.

� PackageDescription provides a description of the package.

� [Application1]

� ApplicationUrl=remotedisp.pkg specifies the name of our previously
created package definition file that is included in the.zip file, not a
fully-qualified URL.

� ApplicationSelectionDisable indicates whether or not a user can highlight
that software package in a User Selection window or if it is automatically
highlighted. The value yes in Example 16-2 on page 421 highlights the
software package automatically.

� ApplicationName specifies the application name.

� ApplicationVersion specifies the application version.

� ApplicationDescription describes the application.

Creating the WSEPackage.xml file
After the creation of the software package, the package definition file, and the
meta package file, the WSEPackage.xml must be build. This file must be named
WSEPackage.xml and must be located at the top level of the archive structure.
The device management portlet uses this file to create one or more jobs that
specify how to distribute the software package in the archive file after it is
uploaded to Device Manager.

Figure 16-9 on page 423 and Example 16-3 on page 423 show the ITSO Railway
sample WSEPackage.xml file for the remotedisp application that directs Device
Manager to install the remotedisp software package to the chosen PPC 2002
device.

Note: Our meta package definition file meta_remotedisp.pkg example contains
only one software package. You can include more than one software package
in a software distribution job.
422 Patterns: Pervasive and Rich Device Access Solutions

Figure 16-9 WSEPackage.xml file for the ITSO Railway software distribution job example
(XML editor view)

Note the following keys in the WSEPackage.xml code:

� Package identifies the software product release and specifies its properties:
release version, platform, priority, locale, class name, relative path and file
name to the class directory, and display name.

� job assigns an action, scope, priority, and name to the software package.

� software specifies the file name of the software package's package definition
file. The software attribute must match one of the software elements in this
WSEPackage.xml file.

Example 16-3 WSEPackage.xml file for ITSO Railway software distribution job example

<?xml version="1.0" encoding="UTF-8"?>
<Package id="PPCRemoteDisplay"

version="1.0"
platform="ppc2002"
priority="250"
displayName="ITSO Railway Support Package">

<job id="install"
jobPriority="250"
action="add"
jobType="SW_DIST"
jobTargetScope="BOTH"
software="RemoteDisp" >

<!-- this job will always apply-->
</job>
 Chapter 16. Maintaining mobile devices 423

<software type="WINCE_PACKAGE" id="RemoteDisp" pkg="meta_remotedisp.pkg"/>
</Package>

Explanation of the WSEPackage.xml file:

� Package

– PackageId= The unique identifier for the package. Only one ID can be
assigned per group. This is the name of the top level directory under which
all the files will be stored (required).

– version= The software package release.

– platform= Must match a platform defined in the DMS portlets.

– priority= A numeric value between 1 and 999, which can be overridden
by the priority field in the <job> tag.

� Job

– id= The unique identifier for the job (required).

– jobPriority= Use only to override the default priority of the package.

– action=add or remove. Default is add.

– jobType=SW_DIST or SW_REMOVAL. Default is SW_DIST.

– jobTargetScope=new, existing, or both. Default is both.

– software=RemoteDisp, where RemoteDisp is the matching ID attribute of a
software entry within the XML file.

– queryExpression condition= Default is AND.

– queryClause attribute= see WEA documentation referenced below.

� Software

– type= A pre-determined type.

– id=RemoteDisp - The name of the software package previously defined
under job in this file.

– pkg=meta_remotedisp.pkg - The name of the meta definition package
previously created.

Find other keywords and options (for example, for conditional installation) in the
WebSphere Everyplace Access InfoCenter.

Creating the archive file remotedisp.zip
Now, the archive file containing the device management job package is built by
compressing all the previously created files into a zip archive called
remotedisp.zip (including the software package file, package definition file, meta
package definition file and WSEPackage.xml file; see Figure 16-10 on page 425).
424 Patterns: Pervasive and Rich Device Access Solutions

Figure 16-10 Files to be compressed into remotedisp.zip file for ITSO Railway software
distribution job example

Now the software package is ready for distribution. A software distribution job
must be created and assigned to the target users, user groups or devices.

16.4.3 Creation and assignment of the software distribution job
With the device management portlet, you can distribute WebSphere Everyplace
Client updates and custom software packages to supported devices quickly and
efficiently. The device management portlet helps you distribute Everyplace Client
updates (fix packs and interim releases) to supported devices in your enterprise
environment. The device management portlet also enables you to distribute
custom software packages or remove existing software.

The last steps in our ITSO Railway software distribution example (Remote
Display) are:

1. The upload of the software package remotedisp.zip (archive) created in
16.4.2, “Creation of the software package” on page 418.

2. The assignment of the automatically created job to our target user group.

Regarding to the ITSO Railway example, we decided to assign the software
package to the offlineformsusers group (contains the ITSO Railway delivery stuff
with the new PDA, see 11.5.1, “Configuration for offline forms-based
applications” on page 253).

The device management portlet is used for uploading the remotedisp.zip
software package. The zipped file is stored in a directory named uniquely to
avoid naming conflicts.

Note that if it is attempted to upload an archive with a duplicate package ID, the
upload will fail. The previous version of the package must be removed in order to
upload a replacement for it.
 Chapter 16. Maintaining mobile devices 425

The following steps are necessary in the WebSphere Everyplace administration
portal:

� Log in to the WebSphere Everyplace Access portal using an administrator ID.

� Select the Administration page group, find the WebSphere Everyplace
section, expand Device Management and click Software Packages (see
Figure 16-11).

Figure 16-11 Installation of software package using WebSphere Everyplace
administration potal

� Click Add and specify the file location of the package (remotedisp.zip).

� Click OK to add the new remotedisp package. The Software packages view
should display the newly added package.

� Assign the software package to users and/or user groups (see Figure 16-12
on page 427):

– Click the Manage Recipients icon next to the newly-added package.

– If you want to assign this package to all users, click Assign to all users,
then click OK. The package is now assigned to all users.

– Click Assign to specific user groups, then click OK.

– Select the offlineformsusers group and click OK. The Remote Display
software package is now assigned to the ITSO Railway delivery stuff
users group which was equipped with a new PPC 2002 PDA.Click OK
again.
426 Patterns: Pervasive and Rich Device Access Solutions

Figure 16-12 Assigning target users and/or user group to software package

After the package is assigned, the software distribution job with id=install and
action=add from the WSEPackage.xml file (see Figure 16-9 on page 423) is
automatically created and submitted to the selected offlineformsusers group.

Figure 16-13 offlineformsusers group is assigned to the device management job

16.4.4 Running the software distribution job
To complete this process, users must initiate the software distribution job on the
PDA. For this, the ITSO Railway delivery people start the device management
agent through the WebSphere Everyplace Client interface which they use for the
synchronization of their Supply Consumption Record as well (see 11.5.2, “Using
the application” on page 258). They log on to the WEA client (see Figure 16-14
on page 428) and perform the following steps:

1. Start Everyplace Client on the Pocket PC 2002 device: Click Start, then click
Everyplace Client.

2. Log in to Everyplace Client.

3. Navigate to the page that has the device management icon.

4. Tap the device management icon and click Get Updates to begin the install
process on the device (see Figure 16-14 on page 428).
 Chapter 16. Maintaining mobile devices 427

Figure 16-14 Start device management job on WebSphere Everyplace Client for PPC 2002

5. The device management agent is queries the server for the jobs (see
Figure 16-15). Since we created the ITSO Railway Support job for the
installation of the remotedisp software package, the job is picked up and
executed. The user will have the choice whether the installation of the
RemoteDisplay job should be carried out immediately, be deferred or be
rejected (see Figure 16-15). Users should see that the job is processed
(scheduled, invoked, software downloaded, files from the package extracted
and installed, Figure 16-15). The installation is complete when the title bar on
the screen no longer displays IBM Device Agent.

Figure 16-15 Software distribution job progress on the PPC2002 device
428 Patterns: Pervasive and Rich Device Access Solutions

Note that the browser screen displaying the device management icon may close
once installation is complete. This is normal. Also, it is recommended that users
wait a few seconds after the install completes before using the newly installed
applications.

Monitor job progress
The administrator can use the Device Manager console to monitor device
management and Device Manager related tasks. This console is a separate user
interface especially designed for device management. Figure 16-16 lists
scheduled jobs in the device management console. Our ITSO Railway software
distribution job is also included.

Figure 16-16 Device management console: Assigned job list

Job progress information can be gathered through right-clicking the highlighted
job and choosing View Job Progress Summary. Figure 16-17 on page 430 shows
that the ITSO Railway software distribution job was scheduled and one enrolled
target device was identified.
 Chapter 16. Maintaining mobile devices 429

Figure 16-17 Device management console: Job progress summary, job assigned

After the ITSO Railway Support job was carried out on the device, the job status
is updated and can be checked using the device management console as
described above. Figure 16-18 on page 431 returns a successful completion of
the remotedisp software distribution job.
430 Patterns: Pervasive and Rich Device Access Solutions

Figure 16-18 Device management console: Job progress summary, job successfully
carried out

Now the remote display tool for the ITSO Railway delivery people is installed on
their PDA. When the PDA is cradled and network connected, the delivery person
can get support directly on the PDAs screen when the remote display application
is started.
 Chapter 16. Maintaining mobile devices 431

432 Patterns: Pervasive and Rich Device Access Solutions

Part 4 Appendixes

Part 4
© Copyright IBM Corp. 2005. All rights reserved. 433

434 Patterns: Pervasive and Rich Device Access Solutions

Appendix A. Additional material

This redbook refers to additional material that can be downloaded from the
Internet as described below.

Locating the Web material
The Web material associated with this redbook is available in softcopy on the
Internet from the IBM Redbooks Web server. Point your Web browser to:

ftp://www.redbooks.ibm.com/redbooks/SG246315

Alternatively, you can go to the IBM Redbooks Web site at:

ibm.com/redbooks

Select the Additional materials and open the directory that corresponds with
the redbook form number, SG246315.

Using the Web material
The additional Web material that accompanies this redbook includes the
following files:

File name Description
SG246315.zip Zipped code samples

A

© Copyright IBM Corp. 2005. All rights reserved. 435

ftp://www.redbooks.ibm.com/redbooks/SG246315
ftp://www.redbooks.ibm.com/redbooks/SG246315
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

System requirements for downloading the Web material
The following system configuration is recommended:

Hard disk space: 20 MB minimum
Operating System: Windows 2000 Server with the latest updates
Processor: 1.5G Hz or higher
Memory: Intel Pentium 4

How to use the Web material
Create a subdirectory (folder) on your workstation, and unzip the contents of the
Web material zip file into this folder.
436 Patterns: Pervasive and Rich Device Access Solutions

Related publications

The publications listed in this section are considered particularly suitable for a
more detailed discussion of the topics covered in this redbook.

IBM Redbooks
For information on ordering these publications, see “How to get IBM Redbooks”
on page 439. Note that some of the documents referenced here may be available
in softcopy only.

� Mobile Applications with IBM WebSphere Everyplace Access Design and
Development, SG24-6259

� Patterns: Pervasive Portals Patterns for e-business Series, SG24-6876

� IBM WebSphere Portal V5: A Guide for Portlet Application Development,
SG24-6076

� WebSphere Everyplace Access Version 4.3 Handbook for Developers,
SG24-7015

� A Comprehensive Guide to Virtual Private Networks, Volume III:
Cross-Platform Key and Policy Management, SG24-5309

Additional publications
� Patterns for e-business: A Strategy for Reuse by Jonathan Adams, Srinivas

Koushik, Guru Vasudeva, and George Galambos

Online resources
These Web sites and URLs are also relevant as further information sources:

� Patterns for e-business Web site

http://www.ibm.com/developerWorks/patterns

� WebSphere Application Server Web site

http://www.ibm.com/software/webservers/appserv/enterprise
© Copyright IBM Corp. 2005. All rights reserved. 437

http://www.ibm.com/developerWorks/patterns
http://www.ibm.com/software/webservers/appserv/enterprise

� Open Mobile Alliance Web site

http://www.openmobilealliance.org

� Wap forum Web site

http://www.wapforum.org

� XForms Web site

http://www.w3.org/TR/xforms

� Microsoft Table PC Web site

http://www.microsoft.com/windowsxp/tabletpc

� Microsoft mobile application development tools Web site

http://msdn.microsoft.com/mobility/prodtechinfo/devtools/netcf

� cHTML Web site

http://www.w3.org/TR/1998/NOTE-compactHTML-19980209

� W3’s validator Web site

http://validator.w3.org

� VoiceXML Web site

http://www.voicexml.org

� Microsoft mobile solutions Web site

http://www.microsoft.com/mobile

� OSGI Web site

http://www.osgi.org

� Palm source Web site

http://www.palmsource.com

� Symbian Web site

http://www.symbian.com

� Sun J2ME Web site

http://java.sun.com/j2me

� Qualcom BREW Web site

http://brew.qualcomm.com

� Sun Java JMS Web site

http://java.sun.com/jms

� IEEE 802.x Web site

http://www.ieee802.org
438 Patterns: Pervasive and Rich Device Access Solutions

http://www.openmobilealliance.org
http://www.wapforum.org
http://www.w3.org/TR/xforms
http://www.microsoft.com/windowsxp/tabletpc
http://msdn.microsoft.com/mobility/prodtechinfo/devtools/netcf
http://www.w3.org/TR/1998/NOTE-compactHTML-19980209
http://validator.w3.org
http://www.voicexml.org
http://www.microsoft.com/mobile
http://www.osgi.org
http://www.palmsource.com
http://www.symbian.com
http://java.sun.com/j2me
http://brew.qualcomm.com
http://java.sun.com/jms
http://www.ieee802.org

� Bluetooth Web site

http://www.bluetooth.org

� developerWorks article

http://www-128.ibm.com/developerworks/subscription/descfiles/vtws51wx.h

� WebSphere Studio Device Developer Web site

http://www.ibm.com/software/pervasive/products/wsdd/index.shtml

� Everyplace Toolkit Web site

http://www-306.ibm.com/software/pervasive/everyplace_toolkit

� Microsoft Developer Netowrk Windows Mobile Web site

http://msdn.microsoft.com/windowsmobile

� W3 schools WAP Web site

http://www.w3schools.com/wap

� Palm One Web site

http://www.palmone.com

� WebSphere MQ Everyplace Web site

http://www.ibm.com/software/wmqe

How to get IBM Redbooks
You can search for, view, or download Redbooks, Redpapers, Hints and Tips,
draft publications and Additional materials, as well as order hardcopy Redbooks
or CD-ROMs, at this Web site:

ibm.com/redbooks

Help from IBM
IBM Support and downloads

ibm.com/support

IBM Global Services

ibm.com/services
 Related publications 439

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.ibm.com/support/
http://www.ibm.com/support/
http://www.ibm.com/services/
http://www.ibm.com/services/
http://www.bluetooth.org
http://www-128.ibm.com/developerworks/subscription/descfiles/vtws51wx.h
http://www.ibm.com/software/pervasive/products/wsdd/index.shtml
http://www-306.ibm.com/software/pervasive/everyplace_toolkit
http://msdn.microsoft.com/windowsmobile
http://www.w3schools.com/wap
http://www.palmone.com
http://www.ibm.com/software/wmqe

440 Patterns: Pervasive and Rich Device Access Solutions

Index

Symbols
.NET Compact Framework 119

Numerics
80/20 situation 3
802.11x 130
802.16 130

A
access control lists (ACL) 175, 363
Access Integration pattern 21
Access Integration patterns 28
Actors 155
actors 153
Actors Name 156, 216, 398
Actuators 115
administration cost 29
Administrator 155
agent 58
AIX 65, 68, 71, 74, 76, 78, 82
Alerts to maintenance workers 94
alternative user experience 103
America On-Line (AOL) 57
application development 16, 62, 95, 135, 140, 200,
234, 334, 358

iterative nature 66
Application gateways 37
application logic 27, 39
application management 166
application messaging 59
application node 22
Application pattern 5, 19, 40, 107, 295

example use 28
application pattern

Pervasive Device Adapter 21
Application patterns 12
application patterns

Extended Single Sign-On 30
Personalized Delivery 31
Rich Device 25

Application Server 120
application server node 39
© Copyright IBM Corp. 2005. All rights reserved.
application sets 103
Application tier 23, 32
Application type

different set 104
valid devices 104

application type 45, 102–103, 374
application updates 44
applied runtime pattern

Pervasive client services node 413
Architectural Overview 167
ASR 121
audible speech 67
audio src 344
Augmented Backus-Naur Format (ABNF) 330
authentication 38
authorization 38
Automated on train ticketing 95
Automatic Speech Recognition 121
Automatic Speech Recognition (ASR) 121
Availability 164
Availability requirement 164–165, 224, 409

B
back-end service 44, 64
back-end system 28, 58, 164, 375
backend system 67, 223
Bandwidth 132
Best practices 5, 16
Binary Runtime Environment for Wireless 119
BlackBerry 57
Blackberry 36
Bluetooth 131
bots 61
BREW 119
business application 5, 36, 60, 287, 360
Business drivers 23, 26, 29, 32
business event 155, 215, 396
business functions 153
business logic 39, 63, 195, 237, 285, 366
Business pattern 5, 21
Business patterns 7
business problem 3, 35, 87

Extended Enterprise business pattern 10
 441

business requirement 313, 317
business requirements 20
business system 153, 223, 396

non-functional aspects 223
non-functional requirements 223

Business Value 88

C
calendar information 45
call centre

cost 96
operation 314

call control 38
call flow 67, 320

generalisable solution 320
Generating basic VoiceXML code structure 343
Interface 324
TTS option 339

CDC 118
CDMA 130
Cellular 130
Cellular Digital Packet Data (CDPD) 365
Cellular telephone 114
central management system 44
CGI 122
cHTML 39, 125
CLDC 118
Click Finish 298, 332
client device 37, 69, 120–121, 368
client node 36
Client side 165
client side 20, 39, 52, 106, 113, 125, 161, 229

mail attachments 180
Client tier 29, 32
client-based local application 72
Client-side technologies 114
collaboration 61
collaboration server node 40
communication-association 162
Compact HTML 125
component model 123, 151, 211, 269, 288, 370,
412
Composite patterns 5, 10
Composite Pervasive and Rich Device solu-
tion::Runtime pattern 48
Composite Pervasive and Rich Device solu-
tion::Runtime pattern variation 1 49
Composite Rich Device=Online and

PDA=Voice::Runtime pattern 46
compression 59
compression techniques 37
configuration 57
Configuration Admin Service 132
Connected Device 118
Connected Limited Device 118
Connectivity 109
Connectivity and Access for Pervasive services 78
connectivity and access for pervasive services node
37
Connectivity management 132
Connectivity technologies 130
connectors 153
Content adaptation 110, 121
content adaptation node 24
content adapter 265, 271

java file 271
content datastore 38
corporate back-end 37
Cradle 131
cross-network roaming 59
CSS 126
CSS2 128
Customer requirements 153

D
Data complexity 164
data exchange 37, 120, 229
Data Input 128, 158, 218

Simple applications 230
Data Integrity 167
data integrity 164, 223, 408
Data storage 133
data synchronization (DS) 49, 58, 128, 285
database node 39
database server 39
database synchronization 55
DB2 Everyplace 55, 133, 140, 285

SDK 55
Sync Server 55, 287
Synchronization Server 287
user 55
V8.1.4 297

DB2e 73
Delivery channel information 57
Delivery channels 56
Delivery Person
442 Patterns: Pervasive and Rich Device Access Solutions

application workflow 217
Mobile Supply Tracking client application 226
train schedule 258

delivery person 91, 215, 369, 399
location information 369

delivery staff 213, 410
Mobile Supply Tracking client application 222
simple ITSO Railway Mobile Supply Tracking
System 230

de-militarized zone (DMZ) 37, 78, 169
departure location 195, 318
Deployment 167
developed Voice Portlet

war file 357
Device Access 132
Device agent 58
Device connectivity 102
Device Management 44, 52, 102, 120, 187, 382,
393, 414
device management

Pervasive Runtime Pattern 413
Device Manager 57, 84, 414

database stores URLs 415
issues request 417
server 58, 415

device managmenet 39
device mangement

job 404
software distribution job 418

Device Platforms 117
Device type 23, 58, 60, 107, 183, 312, 371, 409,
416
device type

target platform 312
wide array 60

Devices 114, 168
Dialogic 62
Digital Subscriber Line (DSL) 131, 364
DIIOP 84
Directory and Security services 79
Directory and Security services node 48
Directory and security services node 64
directory and security services node 38
distribution of software 57
DMS Job 403
DMS job

dependent data transmission 407
query 398

DMS server 402

Device management agent enrolls 405
Mobile device enrolls 404

Document Object Model (DOM) 126
Document Type Definition (DTD) 126, 141
Domino IIOP 84
Domino Server 60
doView 196, 275
DTMF 129
dual-tone multi-frequency 129
dual-tone multi-frequency (DTMF) 129
dynamic text 67

E
EAR 123
EJB 123
EJB modules 123
E-mail Address 57
e-mail application 102, 156–157
e-mail data 75, 151
e-mail service 76, 153
e-mail support 45, 88, 151, 154
e-mail Synchronization 45, 49, 52, 78, 151
Enhanced Data GSM Environment (EDGE)
365–366
enroll devices 57
enterprise application 20, 60, 65, 88, 123, 134, 284,
360

functionality 55
side 237

Enterprise Information Portal (EIP) 30
enterprise integration bus 59
Enterprise JavaBeans 123
Entity beans 123
Environmental 164
Ethernet 132
Everyplace Client 55, 58, 172, 232, 402
Everyplace Intelligent Notification Services 56
Everyplace Synchronization Server 55
Everyplace Toolkit 137, 197, 234

Installation Option 236
plug 138
wizard 201

Executive 155
executive PIM and e-mail support 89
existing business application

new solutions 89
existing data and applications node 39
existing e-mail service
 Index 443

IMAP connections 174
existing PIM

e-mail data 174
Extended HyperText Markup Language 127
Extended Single Sign-On application patterns 30
Extensible Stylesheet Language 126
Extensible Stylesheet Language Transformations
128
Extension Services for WebSphere Everyplace (ES-
WE) 134
External network services 168

F
fat client 27
Federal Information Processing Standard (FIPS)
374
File Adapter 55
Firewall 64, 76
firewall 36, 379
forward request 37
Foundation profile 119
Frameworks 117
Frequency of usage 164
Functional requirement 153–154, 214, 396
Functional requirements 154

G
General application API 25
General applications 102
General Packet Radio Service 83
General Packet Radio Service (GPRS) 81
General Packet Radio System (GPRS) 365
General requirements 89
getNextOrderID 293
Global System for Mobile (GSM) 365
GPRS 36, 130
grammar editor 62
Graphical User Interface API 25
Group members 57
GSM 130
Guidelines 5, 16

H
h.323 36
Handheld device

complex application 261
Complex applications 229

consumed amount 226
e-mail data 168
offline capable applications 229

hand-held device 126, 128
handheld device

Device Management Agent 410
High Speed Circuit Switched Data (HSCD) 365
HiPath 62
HTML 125
HTML document 126
HTML page 24, 38, 122, 232

dynamic content 122
offline browsing 232

HTTP 83
HTTP Service 132
HTTPS 83
Hyper Text Transport Protocol

protocol conversion 384
Hyper Text Transport Protocol (HTTP) 384
HyperText Markup Language 125
Hypertext Transfer Protocol 83

I
I/O-capacity 74
IBM DB2 54
IBM HTTP Server 64, 76
IIOP 84
IMAP 40, 84
industry standard

SyncML technology 184
technology 62

Infrared 131
initial provisioning 57
Input Data 121, 216
Inputs Summary 158, 219, 403
INS 56
Instant Messaging 44, 54, 109, 120, 381
integrated development environment (IDE) 133,
136
Integrated Services Digital Network (ISDN) 365
Integration pattern 5, 7, 294
Integration patterns 8
Intelligent Notification

Service 44, 140
Services administrator 282
Services development 270
Services Portlets 278
Services user 272
444 Patterns: Pervasive and Rich Device Access Solutions

Services users access 282
System 264
user 56

Intelligent Notification Service (INS) 56, 265, 282
Intelligent Notification Services 56–57
interactive agents 61
interactive voice response 62
Interface Definition Language (IDL) 84
Internal employee 155
internal network 64
Internet Inter ORB Protocol 84
Internet Inter ORB Protocol (IIOP) 84
Internet Mail Application Protocol (IMAP) 84, 174
Internet Message Access Protocol 84
Internet Service Provider 81
Internet Service Provider (ISP) 36, 168
Inventory Collection 57, 400
inventory system 211, 395

consistent operation 216
existing stock 213
runtime environment 227
used supplies 213

IR 131
ISP 81
ISP gateway node 36
ISP infrastructure 24
IT Drivers 23, 29, 32
IT drivers 26
IT requirements 20
ITSO Railway 52, 87–88, 151, 189, 213, 264, 283,
313, 376, 393

business case 151
class diagrams 289
departure locations 196
detailed requirements 324
development stage 327
example call flow 326
existing system management environment 384
fictive business case 211
Java classes 297
Mobile environment 376
network environment 379
numerous classes 297
potential future services 318
right click 308
straightforward extensiblity 324
user interacts 284

IVR 38, 62

J
J2EE 121
J2ME 117
J2SE 121
J9 133
JAR 123
Java 2 Platform Enterprise Edition 121
Java 2 Platform Micro Edition 117
Java 2 Platform Standard Edition 121
Java Database Connectivity 84
Java Message Service (JMS) 124
Java Messaging Service (JMS) 134, 296
Java runtime environment (JRE) 133–134, 296
Java servlet 122
Java Virtual Machines 133
Java-based technologies 121
JavaBeans 123
JavaScript 128
JavaServer Pages 122
JBDC See Java Database Connectivity
JDBC 58
JMX support 60
job execution

speed 411
time 409

jobs 57
JSP 122, 234, 273, 300, 330
JVM 133

K
Kbps 365
key requirements 89

L
LAN 55
Laptop PC 114
LDAP-bind 80
legacy systems 39
Lightweight Directory Access Protocol (LDAP) 84
Lightweight Third Party Authentication (LTPA) 79
Linux 116
local area network 55
Local Area Network (LAN) 55, 364
local database 72, 159, 284, 321

application interacts 287
local network 37, 119, 296
local repository 44
location aware service (LAS) 121, 140, 377
 Index 445

Log Service 132
Lotus Domino 40
Lotus Notes 55
Lotus Sametime 56

M
mail routing 61
main input 154, 214, 396
Maintain the mobile devices 97
Maintainability 164–165
maintenance database 265

new service requests 265
Manageability 164, 166
markup language 121, 128, 190, 204

customized JSPs 197
Mbps 365
Message Center 56
message queue (MQ) 44, 284
Message rules 57
Message-driven beans 123
Messaging service 285, 366
Micro Edition 52, 117, 140, 283
Microsoft Exchange 40, 55
middle ware

component 165
middleware tier 171, 231
MIDP 118
Mobile access 20, 61, 89, 193, 370, 373

Device characteristics 371
Non-functional requirements 373

mobile access
architecture 373, 375
gateway service 376
service 359, 370
system 373
VPN 368
way 372

mobile application 60, 101, 114–115, 136, 161,
195, 197, 295, 368

session context 368
target device 371

Mobile customer access 90
Mobile Device

corresponding software distribution job 412
falling prices 393
management system 395
New software 402
software prerequisites 402

software prerquisites 402
mobile device 20, 41, 55, 88, 113, 116, 145, 151,
193, 211, 284, 314, 359, 393, 407

e-mail synchronization 152
huge number 371
inventory software 97
network capabilities 372
operating system 373
operation environments 97
packet data 83
pervasive access server 195
PIM/E-mail information 381
remote maintenance 88
security mechanisms 373
timetable information 324
view modes 261
visual interfaces 319

mobile environment 47, 120, 129, 359–360
business applications 366
programming models 370

Mobile Information Device 118
Mobile Information Device Profile (MIDP) 296
Mobile Internetworking Control Protocol (MICP) 84
Mobile inventory management 91
Mobile phone 21, 61, 80, 89, 115–116, 371, 376,
393
mobile phone

share basic content 127
Mobile Supply Tracking client application 213, 216

application access security features 219
following response times 224
ITSO Railway Supply Consumption Record of-
fline forms 254
offline forms capability 223

Mobile Supply Tracking System
appropriate solution option 230
example solution 226
sample application 234

Mobile Supply Tracking System (MSTS) 211, 226
mobile transport 59
Mobile Web 124
mobile workers 20, 59
mobile workforce 361

big picture 361
Model-View-Controller (MVC) 198
Monitor critical equipment 93
MQ Everyplace 59, 109, 285

look 306
messaging service 297
446 Patterns: Pervasive and Rich Device Access Solutions

queue manager 287
V2.0.1 297
Version 2.0 134

MQe 73
multimodal 46
Multimodal applications 102
multimodal sample 46
MVC model 122

N
National Language Understanding (NLU) 143
native PIM 164
Natural Language Understanding 121
Natural Language Understanding (NLU) 121, 318
Network Address Translation (NAT) 369
Network connection 59, 80, 168, 221, 296, 405
network connectivity 36
network optimization 59
Network security 132
new SubscriptionBean (NEWSUB) 275
nls.INS.Port letMessages 279
NLU 121
node types 36
Non-functional requirements 163
non-repudiation 30
Notes workstation 61
Notification 80
notification 39, 56
Notification Manager 265

appropriate user 281
targeted service technician 265

Notification services 80, 120
Notification tracking 80

O
Object Request Broker (ORB) 84
ODBC 58
office PIM 153

locally stored data 162
Office PIM and e-mail application 165
offline applications 44
offline applications including transactions 103
offline browsing 59
offline form 74, 103, 211, 251

Field validation example 260
Mobile Inventory management 211
server side support 261

Offline Portal Pages 59

offlineformsusers group 257, 425
OMA DM

1.1.2 implementation 416
device agent 84, 416
Management Server 58, 416
protocol 58, 415
V1.1.2 implementation 58

online browser 103
online portal 40
Open Mobile Alliance

device management open standards 416
Open Mobile Alliance (OMA) 84, 128, 186, 416
Open Mobile Architecture Initiative 128
Open Service Gateway Initiative (OSGI) 296, 415
Open Services Gateway Initiative (OSGI) 133
open standard (OS) 115, 416
Open standards 119
Operating System 115, 371, 403, 436
OSGi 119
OSGi devices 58
OSGi framework 145, 289
OSGi Service Platform 132
Output Summary 158, 219, 403

P
Package Admin Service 132
Pager 56
Palm OS 69, 104, 116, 237, 373, 419
Part 1 413
Part 2 413
Part 3 414
Patterns for e-business 3

Application patterns 12
Best practices 5, 16
Business patterns 7
Composite patterns 5, 10
Guidelines 5, 16
Integration patterns 8
Product mappings 5, 16
Runtime patterns 13
Web site 6

PDA 20, 39, 57
ITSO Railway delivery stuff 425

PDA aggregation 64
PDA markup

language 201
support 240

PDAP 118
 Index 447

Peer-to-peer 60
peer-to-peer 42
Performance 163–164
performance advantages 117
Permission Admin Service 133
person 36
persona 66
Personal Area Network (PAN) 365
personal computer (PC) 36
Personal Digital Assistant 118
personal digital assistant (PDA) 24, 36, 55, 91, 114,
192, 414
personal digital assistants 57
Personal Digital Cellular (PDC) 365
Personal Information

Management 20, 40, 52
Personal Information Management (PIM) 89, 151
Personal Information Manager 55
personal PIM 161
Personal profile 119
Personalization 32
personalization 62
personalization server node 38
Personalization services 32
Personalization tier 32, 38
Personalized Delivery application patterns 31
Pervasive Access Applications 20
Pervasive application API 25
pervasive client 22
Pervasive client services 168
pervasive client services 39
pervasive client services node 36
pervasive components 39
Pervasive Connectivity runtime pattern::Product
mapping 77
Pervasive Connectivity runtime pattern::Product
mapping=AIX 78
Pervasive Connectivity runtime pattern::Product
mapping=Linux 78
Pervasive Connectivity::Runtime pattern 47
Pervasive Device 19–20, 39–40, 60, 102, 115, 144,
189, 269, 286–287, 359

Access pattern 21
Access Services 359
Adapter 21, 40, 63, 104, 192, 316
Adapter pattern 295
Interaction pattern 295
Support service 295
Support service target 295

tier 23
pervasive device

calendar applications 45
connectivity services 102
limited browser access 269
necessary services 22
pervasive client services 39
widespread use 116

Pervasive Device Adapter application pattern 21
Pervasive Device Adapter tier 23
pervasive device adapter tier 22
Pervasive Device Adapter=Voice::Product mapping
65
Pervasive Device Adapter=Voice::Product map-
ping=AIX 68
Pervasive Device Adapter=Voice::Product map-
ping=Windows 66
Pervasive Device Adapter=Voice::Runtime pattern
41
Pervasive Device Support 32
Pervasive devices 22
Pervasive devices services node 39
Pervasive extension

server node 40
service 36, 39, 64, 74
services node 39, 169, 227, 414

Pervasive extension services 49, 68, 80
pervasive extension services 39
pervasive extensions 21
pervasive runtime pattern 35
Pervasive services 36, 72, 102
pervasive software products 52
Pervasive solution

Network protocol mapping 85
pervasive solution 19, 52, 69, 90, 102, 135, 263,
283, 286, 313

Access Integration application patterns 19
Application patterns 22

Pervasive Solutions composite pattern::Product
mapping 80
Pervasive Solutions composite pattern::Product
mapping=AIX 82
Pervasive Solutions composite pattern::Product
mapping=Windows 81
Pervasive tool strategy 136
phone client 41
phone network 67
PIM 55
PIM and e-mail applications 102
448 Patterns: Pervasive and Rich Device Access Solutions

PIM and e-mail Synchronization 45
PIM and e-mail synchronization 28, 152
PIM data 55, 155
Plain Old Telephony Services 131
Pocket PC 58, 104, 116, 183, 408
Point of Sale 118
Point of Sale (POS) 118
popular choice (PC) 114, 121, 190
Port Address Translation (PAT) 369
portlet 124, 138, 176, 195, 231–232, 271
portlet API 124
portletAPI

text key 279
URIAction name 347

portletResponse.enco deURL 280, 347
Portlets 124
portlets 231
POS 118
POTS 131
Power-On Password 165, 225, 382, 412
Preferences Service 133
prerecorded audio 129
presence awareness 61
presentation logic 39
Presentation Server 64
presentation server node 38
presentation-related activity 38
privacy 30
product mapping 52, 152, 192, 213, 266, 286, 315,
361, 394
Product mappings 5, 16

starting point 69
program copies (PC) 52, 175
programming model 133
prompt cond 345
pronunciation builder 62
pronunciations 37
protocol firewall node 36
purchaseticket view 293

Q
QUALCOMM 119
Quality of Service (QOS) 374

R
RADIUS 80
Rapid Application Development (RAD) 136
recorded natural speech 66

Redbooks Web site 439
Contact us xvi

relational database 55
relational database synchronization 58
reliability 27
request.getP arameter 247, 274, 300
request.setA ttribute 300
response time 45, 59, 168, 369
return on investment (ROI) 318
rich client 25, 27, 41
Rich Device 22, 42, 69, 104, 153, 213, 266, 286,
395
rich device

application 21, 72
client 42

Rich device application 72
Rich Device application pattern=Online variation 26
Rich Device application pattern=Store and forward
variation 26
Rich Device application patterns 25
Rich Device=Online::Product mapping=Device
Management 69
Rich Device=Online::Product mapping=Device
Management, AIX 71
Rich Device=Online::Product mapping=Device
Management, Windows 70
Rich Device=Online::Runtime pattern 43
Rich Device=Store and forward::Product mapping
71
Rich Device=Store and forward::Product map-
ping=AIX 74
Rich Device=Store and forward::Product map-
ping=Windows 73
Rich Device=Store and forward::Runtime map-
ping=PIM and e-mail 74
Rich Device=Store and forward::Runtime map-
ping=PIM and e-mail, AIX 76
Rich Device=Store and forward::Runtime map-
ping=PIM and e-mail, Windows 75
Rich Device=Store and forward::Runtime pattern
44
Rich Device=Store and forward::Runtime pattern
variation 1 45
roaming 37, 47
robust messaging 60
Runtime pattern 5, 15, 35–36, 51, 65, 104, 152,
190, 212, 264, 284, 314, 360, 394

Application pattern 14
applications node 227
 Index 449

Collaboration services node 169
Pervasive extension services node 414
pervasive nodes 48
product mapping 152
proven and tested software implementations 5

runtime pattern 35
Runtime patterns 13
runtime patterns for pervasive access 40

S
Sametime Everyplace

3.1 52
Server V3.1 61

Sametime Server 61
sample application 190, 234, 288, 354

component diagram 288
Scalability 163
scalability 45
Scenarios implementation 149
Screening routers 37
Secure mobile device 98
Secure Socket Layer (SSL) 369
secured and trusted connection 47
Secured Socket Layer (SSL) 61
Security 164–165
security 27, 81
Security and Administration 32
Security and Administration service 29
security and authorization 48
security context 30
security service 29, 38, 59, 79, 169, 227, 362–363,
414
Sensors 115
server side 27, 36, 52, 113, 166, 174, 226, 237,
366, 410

accesses components 27
computing power 229
e-mail application 165
system deployment 412

Server-Initiated Actions 57
Server-side technologies 120
Service Management Framework (SMF) 132, 145,
296
service station 213, 405
Services 120
servlet 122, 251, 288
Servlets 122
Session beans 123

sessionBean.getD b_SQLresult 204, 349
sessionBean.getE nd 347
shared databases 61
Short Message Service 56
Short Message Services (SMS) 366, 398
Short Messaging Service (SMS) 56
Simple Mail Transfer Protocol 56
Simple Mail Transfer Protocol (SMTP) 56
Simple notifications 56
Single Sign-On 28
Single Sign-On (SSO) 28, 79
Single Sign-On application

pattern 28
single user interface 58
Smart phone 40, 104, 115–116, 371
SmartPhone 116
Smartphone 36
SMF perspective 145, 306
SMS 56
SMTP 56
Software Package 399

Creation 418
file name 423
package definition file 419
user selection options 421
version number 421

Solution Approach 167
Solution space 102
Speech recognition 67
speech recognition 37, 62, 317, 368
Speech Recognition Grammar Specification

XML form 330
Speech Recognition Grammar Specification
(SRGS) 141, 330
speech recognition infrastructure 66
speech synthesis 62
speech technology 38
Standalone applications 102
standalone client 42
Standard PDA 382
Start Level Service 133
statistical language model (SLM) 67, 321
store and forward mechanism 44
Subject area 155, 215, 375, 396
Subscription Bean 273–274
subscription manager 57, 265, 273

host name 272
subscription portlet 271

trigger handler 278
450 Patterns: Pervasive and Rich Device Access Solutions

subscription portlets
MVC architecture 273

subscription setting 57
Subscription settings 57
subscription-based notification 56
Subscription-based notifications 56
SubscriptionManagerFactory.createSubscription-
Manager (SUBMANAGER) 274
superclass 274
Supply Consumption Record

application 399
Supply Consumption Record form 217
supported markup language

separate folders 204
Symbian OS 116
Synchronization 20, 120
synchronization 39
Synchronization Markup Language 128
synchronization profiles 166
Synchronization Server 55, 58
Synchronization server 55, 162, 165

current status 177
network connection 175

Synchronization service 39, 161, 226, 288
Synchronization Settings portlet 55
synchronization system 55
SyncML Data Synchronization 134
SyncML DM 58, 128
SyncML DS 128, 134
System constraints 166
System Usability 166
System usability 164

T
Tablet PC 115
taglib uri 346
TAI 79
Target device 63, 139, 370
TCO 23, 26, 29
TCP/IP connection 405
TD width 246
Telephone 115
telephone networks 36
Telephony connector 37, 67
telephony platform connections 62
Termination outcome 158, 219, 402
Text-To-Speech 62, 67
Text-to-Speech 121

text-to-speech 66
Text-To-Speech (TTS) 62, 121, 318
thin client 27, 105
three logical tiers 23
TicketingService 288
TicketingServlet 288
tier 21
Time to Market 23, 26
Timetable Information 313
tool kit 234, 236
Total Cost of Ownership 23, 26, 29
Total Cost of Ownership (TCO) 23
train schedule 91, 190, 215, 314, 377

data 192
form 225
HTML page 232
information 189
portlet 258
system 193
Web page 231

Transactional messaging service 134
transactional quality 73
transactionality 27
Transcoding 121
transcoding 110
transcoding technology 197
trigger handler 265
Trust Association Interceptor 79
Trust Association Interceptor (TAI) 79
trusted 79
TTS 38, 62, 121

U
UI 125
UMTS 83, 130
unified user interface 38
universal access 23, 26
Universal Mobile Telecommunications Service
(UMTS) 83
Universal Mobile Telephone Serv (UMTS) 363
Universal Serial Bus (USB) 365
URL 206, 252
URL Handlers Service Support 133
usability index 155, 215, 396
use case 154, 313, 318, 370, 393, 396

actor 155, 397
analysis 319
business event 214
 Index 451

description 155, 215, 396
executive 161
model 153–154, 192, 214, 396
name 214
number 154, 214

Use Case Communication-Association Diagram
162
use case model 154
Use Cases 157
user access

configuration 167, 226
management application 162
right 161, 222

User Admin Service 133
user experience 26
user group 254, 361, 401

necessary performance 383
security services 378

User Interface 72
user interface 29, 125

handling action events 273
user interface (UI) 24, 36, 57, 90, 116, 269, 301,
371, 395
user name 182, 258, 401

user interaction 411
user node 36
user preference 120, 185
User-defined groups 57

V
var name 344
verify certificates 38
Very Small Aperture Terminal (VSAT) 365
Virtual Private Network 59
virtual private network 77
Virtual Private Network (VPN) 59
vocabularies 37
Voice 56
voice access to customers 96
Voice application 20, 46, 103, 129, 313, 320

especially important issues 65
voice application 62

jsv file 346
Voice eXtensible Markup Language 129
Voice gateway node 67
Voice over Internet Protocol 84
Voice Portlet

Development 328

tool 143
voice portlet 328

war file 357
voice recognition 46
Voice Response Server 63
voice service 47
Voice Services 121
voice solution 46
Voice Toolkit 137, 323
voice user interface 62
Voice XML 137
voice-enabling 65
voice-related information 37
VoiceXML 39, 129
VoiceXML 2.0

format 328
standard 142, 330

VoiceXML editor 62
VoIP 84
VoIP support 41, 106
VPN 59, 77
VUI 62

W
WAP gateway 23–24, 194, 380
WAP-enabled mobile phone 23
WAP-enabled phones 126
WAR 123
WAR file

format 250
name 250

WCE 134
WCTME 60
WCTP 56
Web application 32, 38, 120–121, 145, 189, 197,
273, 297

page construction logic 122
Web application server node 64
Web browser 46, 83, 115, 173, 189, 229, 368, 435

many low performance mobile devices 230
Sample application 205

Web modules 123
Web presentation server 38
Web server 37
Web server plug-in 64, 76
Web server redirector 64, 76
web server redirector node 37
Web services 52, 80
452 Patterns: Pervasive and Rich Device Access Solutions

Web Services Description Language (WSDL) 417
Web Site 129
Web Site Voice 38, 52, 102, 115, 169, 313, 363
Web tier 28
WebSphere Application Server 53, 58, 164, 223,
273, 278, 408, 415

interim fixes 235
Web server plug-in 64, 76

WebSphere Client Technology, Micro Edition 60
WebSphere Custom Environment 134
WebSphere Custom Environment (WCE) 134
WebSphere Everyplace 134, 223

Extension Services 134
Websphere Everyplace

Access InfoCenter 420, 424
Access V5.0 52

WebSphere Everyplace Access 52, 164
administration user interface 418
client V5.0 52
device management server 408, 411
environment 253
Offline 225
PIM 171
portal 232, 426
server 177, 250, 418
V5 177
V5.0 InfoCenter 183
Version 4.3 Handbook 197

Websphere Everyplace Access
InfoCenter 252

WebSphere Everyplace Connection Manager 59,
76, 78

V5 59
WebSphere MQ

Everyplace 59
WebSphere MQ Everyplace 59
WebSphere Portal 62, 195, 273

5.0 FixPack 2 236
5.0.2 Cumulative Fix 1 236
Architecture 53
InfoCenter 254
Server 52, 164, 223, 324, 416
Test Environment 205, 236
Toolkit 236
user 179
username 179
v5.0 Test Environment 243
Voice Portlet 357

WebSphere Portal Server 53

WebSphere Studio 62, 127, 135, 263, 296
Application Developer 138, 144, 296, 329
Application Developer V5.1 313, 327
Application Developer V5.1.1 235
Application Developer version 5.1 329
Custom Environment Max 133
Device Developer 140, 296–297
Device Developer installation 296
Extension Services Web application develop-
ment 146
family 136
field validation wizard 247
Installation Feature 235
Interim Fix 002 235
Micro Environment Foundation 133
Multimodal Toolkit 141
Portlet Project wizard 239, 241
product 136
product offering 136
production servers 139
Site Developer 138, 200, 296
Site Developer IDE 205
Site Developer V5.1 327
Unit Test Environment 138
Voice Toolkit 142
Voice Toolkit V4.2 62
Voice Toolkit V5.0 329

WebSphere Voice Application Access (WVAA) 62,
313
WebSphere Voice Response 62

development environment 327
WebSphere Voice Response (WVR) 62, 327
WebSphere Voice Server (WVS) 62, 313
WECM function 385
wide area network (WAN) 55
WinCE 116
Windows CE 116
Windows Mobile (WM) 116, 373
Windows XP Tablet PC Edition 117
Wired technologies 131
Wireless Application Protocol (WAP) 56, 384
Wireless Communication Transfer Protocol 56
Wireless Communication Transfer Protocol (WCTP)
56
Wireless connection 96, 114, 166
wireless connection

credit card information 95
wireless device 56
Wireless Ethernet 130
 Index 453

wireless instant messaging 61
Wireless Local Area Network (WLAN) 365
Wireless Markup Language 128
Wireless Markup Language (WML) 127, 195
Wireless technologies 130
Wireless Transport Layer Security (WTLS) 385
WML 128
workgroup computing environment 60
Workplace Client Technology 60, 133, 140, 283
Workplace Client Technology, Micro Edition (WCT-
ME) 133
World Wide Web (WWW) 61
WSEPackage.xml file 419

software elements 423

X
X+V 129
XHTML (XML) 122, 136, 330
XHTML + VoiceXML 129
XML document 128, 272

incoming data 272
XML Schema 126
xml version 303, 330, 423
XSL 126
XSLT 128
454 Patterns: Pervasive and Rich Device Access Solutions

Patterns: Pervasive and Rich
Device Access Solutions

®

SG24-6315-00 ISBN 0738492175

INTERNATIONAL
TECHNICAL
SUPPORT
ORGANIZATION

BUILDING TECHNICAL
INFORMATION BASED ON
PRACTICAL EXPERIENCE

IBM Redbooks are developed by
the IBM International Technical
Support Organization. Experts
from IBM, Customers and
Partners from around the world
create timely technical
information based on realistic
scenarios. Specific
recommendations are provided
to help you implement IT
solutions more effectively in
your environment.

For more information:
ibm.com/redbooks

Patterns: Pervasive and
Rich Device Access
Solutions

Using Patterns for
e-business to design
pervasive solutions

WebSphere
Everyplace Access
and related products

Sample applications
for various scenarios

Patterns for e-business are a group of proven, reusable assets
that can be used to increase the speed of developing and
deploying e-business applications. This IBM Redbook focuses
on the architecture and implementation of pervasive solutions
using currently available IBM products.

Part 1, “Pervasive solution patterns” on page 1, uses the
Patterns for e-business to describe the Application and
Runtime patterns applicable to pervasive solutions. IBM
product mappings are applied to these patterns.

Part 2, “Guidelines” on page 111, describes the technologies
key to building pervasive solutions. It also describes the IBM
development tools for building these solutions.

Part 3, “Scenario implementations” on page 149, consists of
eight pervasive scenarios. Each scenario implements an IBM
product mapping, and provides design, development, and
runtime guidelines for building these scenarios.

Back cover

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

	Front cover
	Contents
	Notices
	Trademarks

	Preface
	The team that wrote this redbook
	Become a published author
	Comments welcome

	Part 1 Pervasive solution patterns
	Chapter 1. Patterns for e-business
	1.1 The Patterns for e-business layered asset model
	1.2 How to use the Patterns for e-business
	1.2.1 Business, Integration, or Composite pattern, or a custom design
	1.2.2 Selecting Application patterns
	1.2.3 Review Runtime patterns
	1.2.4 Review Product mappings
	1.2.5 Review guidelines and related links

	1.3 Summary

	Chapter 2. Application patterns for pervasive solutions
	2.1 Pervasive access applications
	2.2 Pervasive Device Adapter application pattern
	2.3 Rich Device application patterns
	2.4 Other Access Integration patterns
	2.4.1 Single sign-on
	2.4.2 Extended Single Sign-On application patterns
	2.4.3 Personalized Delivery application pattern

	Chapter 3. Runtime pattern
	3.1 An introduction to the node types
	3.1.1 User node
	3.1.2 Client node
	3.1.3 Pervasive client services node
	3.1.4 ISP Gateway (Pervasive services) node
	3.1.5 Protocol firewall node
	3.1.6 Connectivity and access for pervasive services node
	3.1.7 Web server redirector node
	3.1.8 Telephony connector
	3.1.9 Voice gateway node
	3.1.10 Presentation server node
	3.1.11 Personalization server node
	3.1.12 Directory and security services node
	3.1.13 Application server node
	3.1.14 Pervasive extension services node
	3.1.15 Existing data and applications node
	3.1.16 Database node
	3.1.17 Collaboration server node

	3.2 Runtime patterns for pervasive access
	3.2.1 Pervasive Device Adapter::Runtime pattern (composed with Portal runtime pattern)
	3.2.2 Pervasive Device Adapter=Voice::Runtime pattern
	3.2.3 Rich Device::Runtime pattern
	3.2.4 Rich Device=Online::Runtime pattern
	3.2.5 Rich Device=Store and forward::Runtime pattern
	3.2.6 Rich Device=Store and forward::Runtime pattern variation 1
	3.2.7 Composite Rich Device=Online and PDA=Voice::Runtime pattern
	3.2.8 Pervasive Connectivity::Runtime pattern
	3.2.9 Composite Pervasive and Rich Device solution::Runtime pattern

	Chapter 4. Product mappings
	4.1 Overview of IBM pervasive software products
	4.1.1 WebSphere Everyplace Access V5.0
	4.1.2 WebSphere Everyplace Connection Manager
	4.1.3 WebSphere MQ Everyplace
	4.1.4 WebSphere Client Technology, Micro Edition
	4.1.5 Domino Server V6.5.1
	4.1.6 WebSphere Voice Server
	4.1.7 WebSphere Voice Application Access Server
	4.1.8 Voice Response Server

	4.2 Pervasive Device Adapter::Product mappings
	4.3 Pervasive Device Adapter=Voice::Product mapping
	4.4 Rich Device::Product mapping=Pervasive device OS
	4.5 Rich Device=Online::Product mapping=Device Management
	4.6 Rich Device=Store and forward::Product mapping
	4.7 Rich Device=Store and forward::Runtime mapping=PIM and e-mail
	4.8 Pervasive Connectivity runtime pattern::Product mapping
	4.9 Pervasive Solutions composite pattern::Product mapping

	Chapter 5. ITSO Railway sample overview
	5.1 ITSO Railway
	5.1.1 Business value to ITSO Railways

	5.2 General requirements
	5.3 Provide executive PIM and e-mail support
	5.3.1 Key requirements
	5.3.2 Example application scenario

	5.4 Mobile customer access
	5.4.1 Key requirements
	5.4.2 Example application scenario

	5.5 Mobile inventory management
	5.5.1 Key requirements
	5.5.2 Example application scenario

	5.6 Monitor critical equipment
	5.6.1 Key requirements
	5.6.2 Example application scenario

	5.7 Alerts to maintenance workers
	5.7.1 Key requirements
	5.7.2 Example application scenario

	5.8 Automated on-train ticketing
	5.8.1 Key requirements
	5.8.2 Example application scenario

	5.9 Provide voice access to customers
	5.9.1 Key requirements
	5.9.2 Example application scenario

	5.10 Maintain the mobile devices
	5.10.1 Key requirements
	5.10.2 Example application scenario

	5.11 Secure mobile device
	5.11.1 Key requirements
	5.11.2 Example application scenario

	Chapter 6. Pervasive application types
	6.1 Application types
	6.1.1 Solution space
	6.1.2 Application types mapped to Runtime patterns
	6.1.3 Scenario implementations using various pervasive technologies

	Part 2 Guidelines
	Chapter 7. Technology options
	7.1 Client-side technologies
	7.1.1 Devices
	7.1.2 Operating systems
	7.1.3 Device Platforms/Frameworks

	7.2 Server-side technologies
	7.2.1 Services
	7.2.2 Java-based technologies

	7.3 The mobile Web
	7.3.1 HTML
	7.3.2 cHTML
	7.3.3 XML
	7.3.4 XML Device-Independent Markup Extensions (XDIME)
	7.3.5 XForms
	7.3.6 XHTML 1.1 (HTML 4.01)
	7.3.7 XSLT
	7.3.8 WML
	7.3.9 SyncML DS and DM
	7.3.10 VoiceXML and X+V

	7.4 Connectivity technologies
	7.4.1 Wireless technologies
	7.4.2 Wired technologies
	7.4.3 Issues with connectivity

	7.5 IBM-specific pevasive-related technologies
	7.5.1 Service Management Framework (SMF)
	7.5.2 Workplace Client Technology, Micro Edition (WCTME)
	7.5.3 Extension Services for WebSphere Everyplace (ESWE)

	Chapter 8. Application development toolkits
	8.1 Pervasive tool strategy
	8.1.1 WebSphere Studio and pervasive toolkits

	8.2 Everyplace Toolkit
	8.3 Multimodal Toolkit for WebSphere Studio
	8.4 Voice Toolkit for WebSphere Studio
	8.5 WebSphere Studio Device Developer
	8.5.1 SMF Bundle Development Kit
	8.5.2 Application Tools for Extension Services

	Part 3 Scenario implementations
	Chapter 9. PIM and e-mail synchronization
	9.1 Overview
	9.1.1 Customer requirements
	9.1.2 Functional requirements and use case model
	9.1.3 Non-functional requirements
	9.1.4 Solution approach

	9.2 Architectural overview
	9.3 System design overview
	9.3.1 General considerations for synchronized enabled applications

	9.4 Runtime configuration and deployment
	9.4.1 Enable PIM and e-mail server to support synchronization server connection
	9.4.2 Configure PIM and e-mail synchronization
	9.4.3 Configure Everyplace Client and synchronization on client side
	9.4.4 Using the PIM and e-mail synchronization

	9.5 Summary

	Chapter 10. Web access to ITSO Railway’s timetables
	10.1 Overview
	10.1.1 Customer requirements
	10.1.2 Use case model
	10.1.3 Key requirements

	10.2 Architectural overview
	10.3 System design overview
	10.3.1 Application flow diagram
	10.3.2 Design considerations

	10.4 Application development
	10.4.1 Create the portlet application project framework
	10.4.2 Add supporting files and business logic
	10.4.3 Add connectivity to the existing train schedule database
	10.4.4 Customize and add JSPs for specific markup languages
	10.4.5 Test and debug the application

	10.5 Summary

	Chapter 11. Mobile Inventory Management with offline forms
	11.1 Overview
	11.1.1 Customer requirements
	11.1.2 Functional requirements and use case model
	11.1.3 Non-functional requirements
	11.1.4 Solution approach

	11.2 Architectural overview
	11.3 System design overview
	11.3.1 General considerations for intermittently connected applications
	11.3.2 Mobile Supply Tracking System solution outline
	11.3.3 Component model
	11.3.4 Object model

	11.4 Application development
	11.4.1 Introduction to WebSphere Everyplace Toolkit
	11.4.2 Development of forms-based applications for mobile devices

	11.5 Deployment and runtime configuration
	11.5.1 Configuration for offline forms-based applications
	11.5.2 Using the application

	11.6 Summary

	Chapter 12. Using Intelligent Notification Services
	12.1 Business context
	12.2 Architectural overview model
	12.3 System design overview
	12.3.1 Component model
	12.3.2 Object model

	12.4 Sample application development

	Chapter 13. Using Workplace Client Technology, Micro Edition
	13.1 Architectural overview model
	13.2 System design overview
	13.2.1 Component model
	13.2.2 Object model

	13.3 Application design
	13.4 Sample application development
	13.4.1 Creating the application
	13.4.2 Creating the service interface
	13.4.3 Create the servlet
	13.4.4 Creating a user interface
	13.4.5 Accessing the database
	13.4.6 Creating messages
	13.4.7 Setting up the launch configuration
	13.4.8 Deploying the application
	13.4.9 Launching the application
	13.4.10 Using the ITSO Railways Ticketing application

	13.5 Deploying the application

	Chapter 14. Timetable information by Voice
	14.1 Business requirements
	14.2 High-level architectural overview
	14.3 Activity diagram
	14.4 Components
	14.5 Interface for call flow
	14.5.1 Dialogue design
	14.5.2 Persona selection
	14.5.3 Usability design

	14.6 Development of timetable access
	14.7 Voice portlet development
	14.7.1 Setting up Voice Toolkit V5.0 for WebSphere Studio
	14.7.2 Application grammar development
	14.7.3 Creating a database for the application
	14.7.4 Creating a call flow for the application
	14.7.5 Creating speech output
	14.7.6 Generating basic VoiceXML code structure from call flow

	14.8 Testing the Timetable application
	14.9 Preparing voice portlet for implementation
	14.9.1 Deploying the voice portlet in WebSphere Portal

	14.10 Meeting ITSO Railways future multi-channel requirements

	Chapter 15. Connectivity and access
	15.1 Business initiatives and environment
	15.1.1 Mobile environment
	15.1.2 Security environment
	15.1.3 Network environment
	15.1.4 Application environment
	15.1.5 Device environment

	15.2 Non-functional requirements for mobile access
	15.3 Architectural decisions
	15.4 ITSO Railways sample application
	15.4.1 Mobile environment
	15.4.2 Security environment
	15.4.3 Network environment
	15.4.4 Application environment
	15.4.5 Device environment
	15.4.6 Non-functional requirements

	15.5 Mapping ITSO Sample application requirements
	15.5.1 Requirement mapping

	Chapter 16. Maintaining mobile devices
	16.1 Overview
	16.1.1 Customer requirements
	16.1.2 Functional requirements and use case model
	16.1.3 Non-functional requirements
	16.1.4 Solution approach

	16.2 Architectural overview
	16.3 System design overview
	16.3.1 General device management considerations
	16.3.2 ITSO Railway device management solution outline

	16.4 Deployment and runtime configuration
	16.4.1 Overview
	16.4.2 Creation of the software package
	16.4.3 Creation and assignment of the software distribution job
	16.4.4 Running the software distribution job

	Part 4 Appendixes
	Appendix A. Additional material
	Locating the Web material
	Using the Web material
	System requirements for downloading the Web material
	How to use the Web material

	Related publications
	IBM Redbooks
	Additional publications
	Online resources
	How to get IBM Redbooks
	Help from IBM

	Index
	Back cover

