

ibm.com/redbooks

Patterns: Pervasive Portals
Patterns for e-business Series

Peter Kovari
Alex Barbosa Coqueiro
Luís Fernando Liguori

José Guilherme S.T. de Souza
Sergio Del Valle

Michele Galic

Using the Access Integration pattern to
build Pervasive Portal solutions

Using WebSphere Everyplace
Access V4.2

Technical scenario with
a sample application

Front cover

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

Patterns: Pervasive Portals
Patterns for e-business Series

September 2003

International Technical Support Organization

SG24-6876-00

© Copyright International Business Machines Corporation 2003. All rights reserved.
Note to U.S. Government Users Restricted Rights -- Use, duplication or disclosure restricted by GSA ADP Schedule
Contract with IBM Corp.

First Edition (September 2003)

This edition applies to WebSphere Everyplace Access V4.2 for use with Windows 2000 Server
and some of the components on AIX 4.3.3 and Sun Solaris; WebSphere Portal Server 4.1 Enable
on Windows 2000 Server.

Note: Before using this information and the product it supports, read the information in
“Notices” on page ix.

Contents

Notices . ix
Trademarks . x

Preface . xi
The team that wrote this redbook. xi
Become a published author . xiv
Comments welcome. xiv

Part 1. Patterns for e-business . 1

Chapter 1. Introduction . 3
1.1 The Patterns for e-business layered asset model . 5
1.2 How to use the Patterns for e-business . 6

1.2.1 Selecting a Business, Integration, or Composite pattern, or a Custom
design . 7

1.2.2 Selecting Application patterns. 12
1.2.3 Review Runtime patterns . 13
1.2.4 Review Product mappings . 16
1.2.5 Review guidelines and related links . 16

1.3 Summary . 17

Chapter 2. The Access Integration pattern . 19
2.1 Access integration patterns . 20

2.1.1 Access Integration services . 21
2.2 The Portal composite pattern . 21

2.2.1 Benefits . 22
2.2.2 Limitations . 23

2.3 Pervasive solution business strategies . 23
2.4 Summary . 25

Chapter 3. Selecting the Application patterns . 27
3.1 Application patterns described . 28

3.1.1 Access Integration application patterns . 28
3.1.2 Self-Service application patterns. 32
3.1.3 Identified Application patterns for the Portal composite pattern 35

3.2 Where to find more information . 36

Chapter 4. Selecting the Runtime patterns. 39
4.1 Runtime pattern nodes description . 40
© Copyright IBM Corp. 2003. All rights reserved. iii

4.2 Runtime pattern for the Self-Service application . 45
4.2.1 Basic Runtime pattern. 45
4.2.2 Runtime pattern: Variation 1 . 46

4.3 Runtime pattern for the Pervasive Device Access application 47
4.3.1 Access Integration pattern . 48

4.4 Portal composite pattern variation for Pervasive solutions 52

Chapter 5. Selecting the product mapping . 55
5.1 Product mappings . 56

5.1.1 Pervasive Portal solution framework. 56
5.1.2 Product mapping for Pervasive solutions . 56

5.2 Products . 60
5.3 Considerations . 69
5.4 Where to find more information . 71

Part 2. Pervasive Portal solution guidelines . 73

Chapter 6. Technology options . 75
6.1 Web client . 76

6.1.1 Web browser . 77
6.1.2 HTML . 78
6.1.3 Dynamic HTML . 78
6.1.4 CSS. 79
6.1.5 JavaScript . 80
6.1.6 Java applets . 80
6.1.7 XML (client side) . 82
6.1.8 XHTML 1.1 (HTML 4.01). 83
6.1.9 XForms . 84

6.2 Pervasive clients . 84
6.2.1 Architecture . 85
6.2.2 WAP . 85
6.2.3 Microbrowser. 85
6.2.4 WML . 85
6.2.5 WMLScript. 86
6.2.6 cHTML. 86
6.2.7 VoiceXML . 86
6.2.8 SyncML . 87
6.2.9 Mobile devices . 88
6.2.10 Mobile client platforms . 89

6.3 Wireless networks . 91
6.3.1 PAN (Personal Area Network) . 91
6.3.2 WLAN (Wireless Local Area Network) . 92
6.3.3 WWAN (Wireless Wide Area Network) . 93

6.4 Web application server . 95
iv Patterns: Pervasive Portals

6.4.1 Java servlets . 97
6.4.2 Java portlet . 98
6.4.3 JavaServer Pages (JSPs) . 98
6.4.4 JavaBeans . 99
6.4.5 XML. 99
6.4.6 Enterprise JavaBeans . 103
6.4.7 Additional enterprise Java APIs . 106

6.5 Transcoding technology . 107

Chapter 7. Application design . 109
7.1 e-business application design . 110
7.2 Self-Service application guidelines . 111
7.3 Sample scenario . 112

7.3.1 Business flow . 113
7.3.2 Component diagram . 114
7.3.3 Use case diagram . 116
7.3.4 Class diagram . 117
7.3.5 Sequence diagram . 119

7.4 Application structure . 120
7.4.1 Device-specific content . 121
7.4.2 Model View Controller (MVC) . 121
7.4.3 Object-oriented Design patterns . 130
7.4.4 Applying the Design patterns . 135

7.5 WebSphere Portal Solution guidelines . 138
7.5.1 Internationalization . 139
7.5.2 Session . 140
7.5.3 Personalization . 141
7.5.4 Single sign-on . 142

7.6 Designing the mobile applications. 146
7.6.1 Transcoding guidelines . 146

7.7 Embedded mobile client applications . 151
7.7.1 J2ME . 151
7.7.2 What has changed in J2ME for J2SE programmers 155

Chapter 8. Application development . 157
8.1 Application development methodology . 158
8.2 Pervasive solutions tools. 159

8.2.1 WebSphere Studio Application Developer 159
8.2.2 Portal Server Toolkit . 161
8.2.3 Development for pervasive devices . 161

8.3 Portlet development . 168
8.3.1 Developing a portlet . 168
8.3.2 User registry . 176
 Contents v

8.3.3 Using Transcoding Technology. 178
8.4 Building a client application . 181
8.5 Everyplace Synchronization Server . 183

8.5.1 Using DB2 Everyplace . 185
8.5.2 Configuring the DB2 Everyplace Server . 186

8.6 Developing Java Application for J2ME . 189
8.6.1 Developing a Midlet. 189

8.7 Testing your pervasive application . 191
8.8 Everyplace Client . 193
8.9 Notification Services . 195

8.9.1 Configuring Notification Services . 196

Chapter 9. Security . 199
9.1 Security for a Pervasive Portal solution. 200

9.1.1 Boundary components . 201
9.2 WebSphere Everyplace Connection Manager . 204
9.3 WebSphere Edge Server . 208
9.4 WebSphere Everyplace Access and its components 209
9.5 Tivoli products for security. 210

9.5.1 Tivoli Access Manager and Single Sign-On 210
9.6 Where to find more information . 218

Chapter 10. System management . 219
10.1 System management activities . 220
10.2 WebSphere Everyplace Access management 222

10.2.1 Everyplace Synchronization Server . 222
10.2.2 Intelligent Notification Services . 224
10.2.3 Device Manager . 227

10.3 System Management and monitoring using Tivoli products 229
10.3.1 Integrating System Management in the Pervasive Portal solution 231

10.4 Production, Staging and Development environment 232
10.5 Where to find more information . 237

Chapter 11. Performance and availability . 239
11.1 Concepts . 240
11.2 Techniques . 243
11.3 Products . 246
11.4 Applying to a Pervasive Portal solution . 249
11.5 Where to find more information . 267

Part 3. Implementation . 269

Chapter 12. Technical scenario . 271
12.1 Deploying the sample application . 272
vi Patterns: Pervasive Portals

12.1.1 Prerequisites for the application . 272
12.1.2 Database configuration . 272
12.1.3 Installing the EJB components . 272
12.1.4 Installing and configuring the portlets . 273
12.1.5 Application users. 280
12.1.6 Mobile client application and database synchronization 281

Part 4. Appendixes . 283

Appendix A. Additional material . 285
Locating the Web material . 285
Using the Web material . 286

System requirements for downloading the Web material 286
How to use the Web material . 286

Abbreviations and acronyms . 287

Related publications . 289
IBM Redbooks . 289
Referenced Web sites . 290
How to get IBM Redbooks . 292

IBM Redbooks collections. 292

Index . 293
 Contents vii

viii Patterns: Pervasive Portals

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult
your local IBM representative for information on the products and services currently available in your area.
Any reference to an IBM product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product, program, or service that
does not infringe any IBM intellectual property right may be used instead. However, it is the user's
responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document.
The furnishing of this document does not give you any license to these patents. You can send license
inquiries, in writing, to:
IBM Director of Licensing, IBM Corporation, North Castle Drive Armonk, NY 10504-1785 U.S.A.

The following paragraph does not apply to the United Kingdom or any other country where such provisions
are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES
THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer
of express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made
to the information herein; these changes will be incorporated in new editions of the publication. IBM may
make improvements and/or changes in the product(s) and/or the program(s) described in this publication at
any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in any
manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of the
materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Information concerning non-IBM products was obtained from the suppliers of those products, their published
announcements or other publicly available sources. IBM has not tested those products and cannot confirm
the accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on
the capabilities of non-IBM products should be addressed to the suppliers of those products.

This information contains examples of data and reports used in daily business operations. To illustrate them
as completely as possible, the examples include the names of individuals, companies, brands, and products.
All of these names are fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:
This information contains sample application programs in source language, which illustrates programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs in
any form without payment to IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating platform for which the
sample programs are written. These examples have not been thoroughly tested under all conditions. IBM,
therefore, cannot guarantee or imply reliability, serviceability, or function of these programs. You may copy,
modify, and distribute these sample programs in any form without payment to IBM for the purposes of
developing, using, marketing, or distributing application programs conforming to IBM's application
programming interfaces.
© Copyright IBM Corp. 2003. All rights reserved. ix

Trademarks
The following terms are trademarks of the International Business Machines Corporation in the United States,
other countries, or both:

™
^™
Redbooks (logo) ™
developerWorks®
ibm.com®
iNotes™
pSeries™
z/OS®
AIX®
CICS®
Domino™

Domino Designer®
DB2 Universal Database™
DB2®
Everyplace®
Informix®
IBM®
Lotus Notes®
Lotus®
Mobile Notes®
MQSeries®
NetView®

Notes®
PAL®
Redbooks™
Sametime®
SecureWay®
Tivoli Enterprise™
Tivoli Enterprise Console®
Tivoli®
WebSphere®
Word Pro®

The following terms are trademarks of other companies:

Intel, Intel Inside (logos), MMX, and Pentium are trademarks of Intel Corporation in the United States, other
countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the
United States, other countries, or both.

Java and all Java-based trademarks and logos are trademarks or registered trademarks of Sun
Microsystems, Inc. in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

SET, SET Secure Electronic Transaction, and the SET Logo are trademarks owned by SET Secure
Electronic Transaction LLC.

Other company, product, and service names may be trademarks or service marks of others.
x Patterns: Pervasive Portals

Preface

This IBM Redbook discusses the Access Integration pattern. The book is a
valuable source for IT architects, IT specialists, application designers, application
developers and consultants who wish to know more about pervasive solutions.
The application framework for this book includes WebSphere® Portal and
WebSphere Everyplace® Access.

Part 1 of the redbook guides you through the process of choosing the Business
and Integration patterns of the Pervasive solution and then drills down to the
Application and Runtime patterns and Product mapping to deliver the desired
functionality for a pervasive solution.

Part 2 provides guidelines for pervasive applications, including application
design and development, and some of the non-functional requirements for such
applications, including security, system management and performance.

Part 3 demonstrates how to set up and configure a system for the sample
application presented in this book.

The team that wrote this redbook
This redbook was produced by a team of specialists from around the world
working at the International Technical Support Organization, Raleigh Center.
© Copyright IBM Corp. 2003. All rights reserved. xi

The Team (José, Luís, Alex, Sergio, Peter)

Peter Kovari is a WebSphere Specialist at the International Technical Support
Organization, Raleigh Center. He writes extensively about all areas of
WebSphere. His areas of expertise include e-business, e-commerce, security,
Internet technologies and mobile computing. Before joining the ITSO, he worked
as an IT Specialist for IBM in Hungary.

Alex Barbosa Coqueiro is a Software Engineer in IBM Business Consulting
Service in Brazil. He received a degree in Computer Technology in Fatec, Sao
Paulo and has been working at IBM for two years. He has over eight years of
experience in object-oriented development and is certified by Sun as an Architect
(SCEA), Web Developer (SCWD) and Programmer (SCJP) for Java™. His areas
of expertise include WebSphere Application Server, WebSphere Portal Server
and WebSphere Content Publisher. Currently, he is working toward a Master’s
Degree in Software Engineer at USP.

Luís Fernando Liguori is a certified Consulting IT architect in the e-business
Technical Sales group in Brazil and has been working at IBM for nine years. He
has worked in many customer engagements and his areas of expertise include
e-business infrastructure, Internet solutions, patterns, wireless and security. Luís
worked as an IT Architect in the last three IT waves in the Client-Server,
Networking Computing and e-business departments.

José Guilherme S.T. de Souza is a Senior IT Architect responsible for Wireless
Solutions in Latin America. He joined IBM two years ago to develop solutions
and advise enterprises and services providers on wireless technologies. His
current areas of expertise include patterns for e-business, telecommunications
systems and technologies, mobile e-business solutions and ROI studies. He has
xii Patterns: Pervasive Portals

more than 18 years of working experience in IT. Before joining IBM, he worked
with ExxonMobil for ten years as an IT Infrastructure Project Manager. He holds
degrees in Computer Engineering and MBAs in Finance and Telecommunication
Management.

Sergio Del Valle is an IT specialist at Synerg-e Consulting in Mexico; his areas
of expertise include pervasive applications using IBM/lotus Wireless products.

Michele Galic is a WebSphere Specialist at the International Technical Support
Organization, Raleigh Center. Her focus is on the WebSphere family of products
and Patterns for e-business. She has 13 years of experience in the IT field. She
holds a degree in Information Systems. Before joining the ITSO, she was a
Senior IT Specialist in IBM Global Services in the Northeast, specializing in the
WebSphere field.

Thanks to the following people for their contributions to this project:

International Technical Support Organization, Raleigh Center

Cecilia Bardy
Gail Christensen
Carla Sadtler
Margaret Ticknor
Jeanne Tucker

Thanks to the following people for their contributions to this project:

Jonathan Adams, IBM UK, Software Group Technical Strategy
Marshall Lamb, IBM US, WebSphere Portal Business Portlet Development
Jennifer Lanier, IBM US, WebSphere Transcoding Publisher Development
 Preface xiii

Become a published author
Join us for a two- to six-week residency program! Help write an IBM Redbook
dealing with specific products or solutions, while getting hands-on experience
with leading-edge technologies. You'll team with IBM technical professionals,
Business Partners and/or customers.

Your efforts will help increase product acceptance and customer satisfaction. As
a bonus, you'll develop a network of contacts in IBM development labs, and
increase your productivity and marketability.

Find out more about the residency program, browse the residency index, and
apply online at:

ibm.com/redbooks/residencies.html

Comments welcome
Your comments are important to us!

We want our Redbooks™ to be as helpful as possible. Send us your comments
about this or other Redbooks in one of the following ways:

� Use the online Contact us review redbook form found at:

ibm.com/redbooks

� Send your comments in an Internet note to:

redbook@us.ibm.com

� Mail your comments to:

IBM Corporation, International Technical Support Organization
Dept. HZ8 Building 662
P.O. Box 12195
Research Triangle Park, NC 27709-2195
xiv Patterns: Pervasive Portals

http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/
http://www.ibm.com/redbooks/
http://www.ibm.com/redbooks/
http://www.redbooks.ibm.com/contacts.html

Part 1 Patterns for
e-business

Part 1
© Copyright IBM Corp. 2003. All rights reserved. 1

2 Patterns: Pervasive Portals

Chapter 1. Introduction

This IBM Redbook is part of the Patterns for e-business series. In this
introductory chapter, we provide an overview of how IT architects can work
effectively with the Patterns for e-business.

The role of the IT architect is to evaluate business problems and to build
solutions to solve them. To do this, the architect begins by gathering input on the
problem, an outline of the desired solution, keeping in mind any special
considerations or requirements that need to be factored into that solution. The
architect then takes this input and designs the solution. This solution can include
one or more computer applications that address the business problems by
supplying the necessary business functions.

To enable the architect to do this better each time, we need to capture and reuse
the experience of these IT architects in such a way that future engagements can
be made simpler and faster. We do this by taking these experiences and using
them to build a repository of assets that provides a source from which architects
can reuse this experience to build future solutions, using proven assets. This
reuse saves time, money and effort and in the process helps ensure delivery of a
solid, properly architected solution.

The IBM Patterns for e-business help facilitate this reuse of assets. Their
purpose is to capture and publish e-business artifacts that have been used,
tested, and proven. The information captured by them is assumed to fit the
majority, or 80/20, situation.

1

© Copyright IBM Corp. 2003. All rights reserved. 3

The IBM Patterns for e-business are further augmented with guidelines and
related links for better use.

The layers of patterns plus their associated links and guidelines allow the
architect to start with a problem and a vision for the solution, and then find a
pattern that fits that vision. Then, by drilling down using the patterns process, the
architect can further define the additional functional pieces that the application
will need to succeed. Finally, he can build the application using coding
techniques outlined in the associated guidelines.
4 Patterns: Pervasive Portals

1.1 The Patterns for e-business layered asset model
The Patterns for e-business approach enables architects to implement
successful e-business solutions through the re-use of components and solution
elements from proven successful experiences. The patterns approach is based
on a set of layered assets that can be exploited by any existing development
methodology. These layered assets are structured in a way that each level of
detail builds on the last. These assets include:

� Business patterns that identify the interaction between users, businesses,
and data.

� Integration patterns that tie multiple Business patterns together when a
solution cannot be provided based on a single Business pattern.

� Composite patterns that represent commonly occurring combinations of
Business patterns and Integration patterns.

� Application patterns that provide a conceptual layout describing how the
application components and data within a Business pattern or Integration
pattern interact.

� Runtime patterns that define the logical middleware structure supporting an
Application pattern. Runtime patterns depict the major middleware nodes,
their roles, and the interfaces between these nodes.

� Product mappings that identify proven and tested software implementations
for each Runtime pattern.

� Best-practice guidelines for design, development, deployment, and
management of e-business applications.

These assets and their relation to each other are shown in Figure 1-1 on page 6.
 Chapter 1. Introduction 5

Figure 1-1 The Patterns for e-business layered asset model

Patterns for e-business Web site
The patterns Web site provides an easy way of navigating top down through the
layered patterns’ assets in order to determine the preferred reusable assets for
an engagement.

For easy reference to Patterns for e-business, refer to the Patterns for
e-business Web site at:

 http://www.ibm.com/developerWorks/patterns/

1.2 How to use the Patterns for e-business
As described in the last section, the Patterns for e-business are a layered
structure where each layer builds detail on the last. At the highest layer are
Business patterns. These describe the entities involved in the e-business
solution.

Best-Practice Guidelines

Application Design
Systems Management
Performance
Application Development
Technology Choices

Customer
requirements

Product
mappings

Any M
ethodology

Runtime
patterns

Application
patterns

Composite
patterns

Business
patterns

Integration
patterns
6 Patterns: Pervasive Portals

http://www.ibm.com/developerWorks/patterns/

Composite patterns appear in the hierarchy shown in Figure 1-1 on page 6 above
the Business patterns. However, Composite patterns are made up of a number of
individual Business patterns, and at least one Integration pattern. In this section,
we discuss how to use the layered structure of Patterns for e-business assets.

1.2.1 Selecting a Business, Integration, or Composite pattern, or a
Custom design

When faced with the challenge of designing a solution for a business problem,
the first step is to take a high-level view of the goals you are trying to achieve. A
proposed business scenario should be described and each element should be
matched to an appropriate IBM Pattern for e-business. You may find, for
example, that the total solution requires multiple Business and Integration
patterns, or that it fits into a Composite pattern or Custom design.

For example, suppose an insurance company wants to reduce the amount of
time and money spent on call centers that handle customer inquiries. By allowing
customers to view their policy information and to request changes online, the
company will be able to cut back significantly on the resources spent handling
this by phone. The objective is to allow policyholders to view their policy
information stored in legacy databases.

The Self-Service business pattern fits this scenario perfectly. It is meant to be
used in situations where users need direct access to business applications and
data. Let’s take a look at the available Business patterns.

Business patterns
A Business pattern describes the relationship between the users, the business
organizations or applications, and the data to be accessed.
 Chapter 1. Introduction 7

There are four primary Business patterns, as shown in Figure 1-2:

Figure 1-2 The four primary Business patterns

It would be very convenient if all problems fit nicely into these four slots, but
reality says that things will often be more complicated. The patterns assume that
most problems, when broken down into their most basic components, will fit
more than one of these patterns. When a problem requires multiple Business
patterns, the Patterns for e-business provide additional patterns in the form of
Integration patterns.

Integration patterns
Integration patterns allow us to tie together multiple Business patterns to solve a
business problem. The Integration patterns are outlined in Figure 1-3 on page 9.

Business Patterns Description Examples

Self-Service
(User-to-Business)

Applications where users
interact with a business
via the Internet or
intranet

Simple Web site
applications

Information Aggregation
(User-to-Data)

Applications where users
can extract useful
information from large
volumes of data, text,
images, etc.

Business intelligence,
knowledge management,
Web crawlers

Collaboration
(User-to-User)

Applications where the
Internet supports
collaborative work
between users

E-mail, community, chat,
video conferencing, etc.

Extended Enterprise
(Business-to-Business)

Applications that link two
or more business
processes across
separate enterprises

EDI, supply chain
management, etc.
8 Patterns: Pervasive Portals

Figure 1-3 Integration patterns

These Business and Integration patterns can be combined to implement
installation-specific business solutions. We call this a Custom design.

Custom design
We can represent the use of a Custom design to address a business problem
through an iconic representation as shown in Figure 1-4.

Figure 1-4 Patterns representing a Custom design

If any of the Business or Integration patterns are not used in a Custom design,
we can show that with blocks lighter than the others. For example, Figure 1-5 on
page 10 shows a Custom design that does not have a Collaboration business
pattern or an Extended Enterprise business pattern for a business problem.

Integration Patterns Description Examples

Access Integration
Integration of a number
of services through a
common entry point

Portals

Application Integration
Integration of multiple
applications and data
sources without the user
directly invoking them

Message brokers,
workflow managers

Ac
ce

ss
 In

te
gr

at
io

n Self-Service

Collaboration

Information Aggregation

Extended Enterprise Ap
pl

ic
at

io
n

In
te

gr
at

io
n

 Chapter 1. Introduction 9

Figure 1-5 Custom design with Self-Service, Information Aggregation, Access Integration
and Application Integration

A Custom design may also be a Composite pattern if it recurs many times across
domains with similar business problems. For example, the iconic view of a
Custom design in Figure 1-5 can also describe a Sell-Side Hub composite
pattern.

Composite patterns
Several common uses of Business and Integration patterns have been identified
and formalized into Composite patterns. The identified Composite patterns are
shown in Figure 1-6 on page 11.

Ac
ce

ss
 In

te
gr

at
io

n Self-Service

Collaboration

Information Aggregation

Extended Enterprise Ap
pl

ic
at

io
n

In
te

gr
at

io
n

10 Patterns: Pervasive Portals

Figure 1-6 Composite patterns

The makeup of these patterns is variable in that there will be basic patterns
present for each type, but the Composite can easily be extended to meet
additional criteria. For more information on Composite patterns, refer to Patterns
for e-business: A Strategy for Reuse by Jonathan Adams, Srinivas Koushik,
Guru Vasudeva, and George Galambos.

Composite Patterns Description Examples

Electronic Commerce User-to-Online-Buying www.macys.com
www.amazon.com

Portal

Typically designed to aggregate
multiple information sources and
applications to provide uniform,
seamless, and personalized
access for its users.

Enterprise Intranet portal
providing self-service functions
such as payroll, benefits, and
travel expenses.

Collaboration providers who
provide services such as e-mail
or instant messaging.

Account Access
Provide customers with
around-the-clock account access
to their account information.

Online brokerage trading apps.
Telephone company account
manager functions.

Bank, credit card and insurance
company online apps.

Trading Exchange
Allows buyers and sellers to trade
goods and services on a public
site.

Buyer's side - interaction
between buyer's procurement
system and commerce
functions of e-Marketplace.

Seller's side - interaction
between the procurement
functions of the e-Marketplace
and its suppliers.

Sell-Side Hub
(Supplier)

The seller owns the e-Marketplace
and uses it as a vehicle to sell
goods and services on the Web.

www.carmax.com (car purchase)

Buy-Side Hub
(Purchaser)

The buyer of the goods owns the
e-Marketplace and uses it as a
vehicle to leverage the buying or
procurement budget in soliciting
the best deals for goods and
services from prospective sellers
across the Web.

www.wre.org
(WorldWide Retail Exchange)
 Chapter 1. Introduction 11

1.2.2 Selecting Application patterns
Once the Business pattern is identified, the next step is to define the high-level
logical components that make up the solution and how these components
interact. This is known as the Application pattern. A Business pattern will usually
have multiple possible Application patterns. An Application pattern may have
logical components that describe a presentation tier for interacting with users, an
application tier, and a back-end application tier.

Application patterns break the application down into the most basic conceptual
components, identifying the goal of the application. In our example, the
application falls into the Self-Service business pattern and the goal is to build a
simple application that allows users to access back-end information. The
Application pattern shown in Figure 1-7 fulfills this requirement.

Figure 1-7 Self -Service::Directly Integrated Single Channel

The Application pattern shown consists of a presentation tier that handles the
request/response to the user. The application tier represents the component that
handles access to the back-end applications and data. The multiple application
boxes on the right represent the back-end applications that contain the business
data. The type of communication is specified as synchronous (one request/one
response, then next request/response) or asynchronous (multiple requests and
responses intermixed).

Suppose that the situation is a little more complicated than that. Let's say that the
automobile policies and the homeowner policies are kept in two separate and
dissimilar databases. The user request would actually need data from multiple,
disparate back-end systems. In this case there is a need to break the request

Presentation synchronous Web
Application

synch/
asynch Back-End

Application 1

Application node
containing new or
modified components

Application node containing
existing components with
no need for modification
or which cannot be changed

Read/Write data

Back-End
Application 2
12 Patterns: Pervasive Portals

down into multiple requests (decompose the request) to be sent to the two
different back-end databases, then to gather the information sent back from the
requests, and then put this information into the form of a response (recompose).
In this case the Application pattern shown in Figure 1-8 would be more
appropriate.

Figure 1-8 Self-Service::Decomposition

This Application pattern extends the idea of the application tier that accesses the
back-end data by adding decomposition and recomposition capabilities.

1.2.3 Review Runtime patterns
The Application pattern can be further refined with more explicit functions to be
performed. Each function is associated with a runtime node. In reality these
functions, or nodes, can exist on separate physical machines or may co-exist on
the same machine. In the Runtime pattern this is not relevant. The focus is on the
logical nodes required and their placement in the overall network structure.

As an example, let's assume that our customer has determined that his solution
fits into the Self-Service business pattern and that the Directly Integrated Single
Channel pattern is the most descriptive of the situation. The next step is to
determine the Runtime pattern that is most appropriate for his situation.

He knows that he will have users on the Internet accessing his business data and
he will therefore require a measure of security. Security can be implemented at
various layers of the application, but the first line of defense is almost always one
or more firewalls that define who and what can cross the physical network
boundaries into his company network.

Presentation synchronous Decomp/
Recomp

synch/
asynch

Application node
containing new
or modified
components

Application node
containing existing
components with no need
for modification or which
cannot be changed

Read/
 Write data

Transient data
- Work in progress
- Cached committed data
- Staged data (data replication
flow)

Back-End
Application 1

Back-End
Application 2
 Chapter 1. Introduction 13

He also needs to determine the functional nodes required to implement the
application and security measures. The Runtime pattern shown in Figure 1-9 is
one of his options.

Figure 1-9 Directly Integrated Single Channel application pattern::Runtime pattern

By overlaying the Application pattern on the Runtime pattern, you can see the
roles that each functional node will fulfill in the application. The presentation and
application tiers will be implemented with a Web application server, which
combines the functions of an HTTP server and an application server. It handles
both static and dynamic Web pages.

Application security is handled by the Web application server through the use of
a common central directory and security services node.

Internal Network
Demilitarized Zone

(DMZ)Outside World

Pr
ot

oc
ol

 F
ire

w
al

l

Existing
Applications

and Data

D
om

ai
n

Fi
re

w
al

lI
N
T
E
R
N
E
T

Public Key
Infrastructure

User

Web
Application

Server

Domain Name
Server

Directory and
Security
Services

Presentation Application Application

Directly Integrated Single Channel application

Application

Existing
Applications

and Data
14 Patterns: Pervasive Portals

A characteristic that makes this Runtime pattern different from others is the
placement of the Web application server between the two firewalls. The Runtime
pattern shown in Figure 1-10 is a variation on this. It splits the Web application
server into two functional nodes by separating the HTTP server function from the
application server. The HTTP server (Web server redirector) will serve static Web
pages and redirect other requests to the application server. It moves the
application server function behind the second firewall, adding further security.

Figure 1-10 Directly Integrated Single Channel application pattern::Runtime pattern:
Variation 1

These are just two examples of the possible Runtime patterns available. Each
Application pattern will have one or more Runtime patterns defined. These can
be modified to suit the customer’s needs. For example, he/she may want to add
a load-balancing function and multiple application servers.

Internal Network
Demilitarized Zone

(DMZ)Outside World

Pr
ot

oc
ol

 F
ire

w
al

l

Do
m

ai
n

Fi
re

w
al

lI
N
T
E
R
N
E
T

Public Key
Infrastructure

User

Web
Server

Redirector

Domain Name
Server

Presentation Application Application

Directly Integrated Single Channel application

Application

Existing
Applications

and Data

Application
Server

Directory and
Security
Services

Existing
Applications

and Data
 Chapter 1. Introduction 15

1.2.4 Review Product mappings
The last step in defining the network structure for the application is to correlate
real products with one or more runtime nodes. The patterns Web site shows
each Runtime pattern with products that have been tested in that capacity. The
Product mappings are oriented toward a particular platform, though more likely
the customer will have a variety of platforms involved in the network. In this case,
it is simply a matter of mix and match.

For example, the runtime variation in Figure 1-10 on page 15 could be
implemented using the product set depicted in Figure 1-11.

Figure 1-11 Directly Integrated Single Channel application pattern: Windows® 2000 product mapping

1.2.5 Review guidelines and related links
The Application patterns, Runtime patterns, and Product mappings are intended
to guide you in defining the application requirements and the network layout. The
actual application development has not been addressed yet. The patterns Web
site provides guidelines for each Application pattern, including techniques for
developing, implementing, and managing the application based on the following:

� Design guidelines instruct you on tips and techniques for designing the
applications.

Internal networkDemilitarized zone

O
ut

si
de

 w
or

ld

Pr
ot

oc
ol

 F
ire

w
al

l

D
om

ai
n

Fi
re

w
al

l

Web Server
Redirector

Windows 2000 + SP3
IBM WebSphere Application
Server V5.0 HTTP Plug-in
IBM HTTP Server 1.3.26

Directory and
Security
Services

LDAP

 Application
 Server

Windows 2000 + SP3
IBM SecureWay Directory V3.2.1
IBM HTTP Server 1.3.19.1
IBM GSKit 5.0.3
IBM DB2 UDB EE V7.2 + FP5

Database

Existing
Applications

and Data

Windows 2000 + SP3
IBM DB2 UDB ESE V8.1

JMS Option:
Windows 2000 + SP3
IBM WebSphere Application
Server V5.0
IBM WebSphere MQ 5.3
Message-driven bean application

Web Services Option:
Windows 2000 + SP3
IBM WebSphere Application
Server V5.0
IBM HTTP Server 1.3.26
IBM DB2 UDB ESE 8.1
Web service EJB application

JCA Option:
z/OS Release 1.3
IBM CICS Transaction Gateway
V5.0
IBM CICS Transaction Server
V2.2
CICS C-application

Windows 2000 + SP3
IBM WebSphere Application
Server V5.0

JMS Option add:
IBM WebSphere MQ 5.3
16 Patterns: Pervasive Portals

� Development guidelines take you through the process of building the
application, from the requirements phase all the way through the testing and
rollout phases.

� System management guidelines address the day-to-day operational
concerns, including security, back-up and recovery, application management,
etc.

� Performance guidelines give information on how to improve the application
and system performance.

1.3 Summary
The IBM Patterns for e-business are a collective set of proven architectures. This
repository of assets can be used by companies to facilitate the development of
Web-based applications. They help an organization understand and analyze
complex business problems and break them down into smaller, more
manageable functions that can then be implemented.
 Chapter 1. Introduction 17

18 Patterns: Pervasive Portals

Chapter 2. The Access Integration
pattern

So far in this redbook, we have introduced the key concepts behind the Patterns
for e-business. In this chapter, we will introduce the Access Integration pattern
and Portal Composite pattern. The goal of these patterns is to provide a solution
for the pervasive requirements that are currently being identified as organizations
deploy portal solutions into their environments and integrate them into their
business processes.

Later on in this book, we will use the WebSphere Everyplace Access 4.2 product
to implement pervasive solutions.

In this chapter, you can read about the Portal Composite pattern and the
WebSphere Portal Server. You will also find that the WebSphere Everyplace
Access product ships with WebSphere Portal Server. The relation between
WebSphere Everyplace Access and WebSphere Portal Server requires some
explanation. The portal server in WebSphere Everyplace Access serves two
purposes:

� To provide a portal application server for pervasive solutions; it also includes
the Transcoding Technology

� To provide management interface for Pervasive services such as Intelligent
Notification.

2

© Copyright IBM Corp. 2003. All rights reserved. 19

2.1 Access integration patterns
Access Integration patterns describe the services and components commonly
required to provide users with consistent, seamless, secure, device-independent
access to relevant applications and information. Access Integration patterns are
useful when:

� Users need access to multiple applications and information sources via a
Single Sign-On and application-independent security context.

� Applications need to be accessible via multiple device types, including fat
clients, browsers, voice response units, mobile devices, and PDAs.

� There is a requirement to provide a common look and feel to a collection of
applications or to aggregate result sets from discrete applications in a
business process.

� The user wishes to customize the choice of applications and how they are
presented.

� The business wishes to target information and applications to a specific user
or group.

The Access Integration pattern, however, can be used to enable more complex
e-business solutions composed of multiple Business patterns. For example, a
browser-based, personalized portal can be developed by combining applications
that automate the Self-Service business pattern and the Collaboration business
pattern. Additionally, this personalized portal might add accessibility to mobile
devices.

A study of several e-business solutions that have successfully met these
challenging requirements reveals the use of four recurring, common services,
including:

1. Device Support service

2. Presentation service

3. Personalization service

4. Security and Administration service

The objective of the Access Integration pattern is to externalize these services
and make them selectable by developers of integrated solutions. If you want to
learn in more detail these patterns, you can read the IBM Redbook entitle Access
Integration Pattern Using IBM WebSphere Portal Server, SG24-6267.
20 Patterns: Pervasive Portals

2.1.1 Access Integration services
Application patterns for a Business pattern are designed to solve a specific
business problem. Application patterns for Access Integration are different in that
they are designed to externalize common, user-to-system interaction services
from the applications within a Business pattern. These services do not provide
end-to-end business value if deployed in isolation from the application patterns
that they support.

Access Integration patterns observed in practice are composed of the following
services:

� Presentation

� Personalization

� Security and Administration

� Pervasive Device Support

– Notification

– Synchronization

– Device management

We often realize the benefits of Access Integration patterns best when these
services are combined. For example, the Personalization service and the
Pervasive Device Support service require the use of the Presentation service to
create the user interface. The Pervasive Device Support, Personalization, and
Presentation services require the Security and Administration service to be
effective. System designers can mix and match these services to facilitate
consistent and seamless access to multiple applications.

2.2 The Portal composite pattern
Composite patterns represent commonly occurring combinations of Business
patterns and Integration patterns to form higher level solutions. Composite
patterns typically solve major portions of functionality within a solution.

The Business and Integration patterns that are identified as the building blocks or
the more common patterns of the Portal composite pattern are as follows:

� Access Integration pattern
� Self-Service business pattern
� Collaboration business pattern
� Information Aggregation business pattern
 Chapter 2. The Access Integration pattern 21

Please note that based on your specific requirements, your building blocks of the
Business and Integration patterns for your portal may vary from the Portal
composite pattern. For example, you may find that you have use for the
Extended Enterprise business pattern in addition to the ones we defined, or you
may find that you only need the Access Integration, and Self-Services business
patterns for your portal. Based on your specific requirements, this would then be
defined as a Portal custom design.

The visual representation of the Portal composite pattern is shown in Figure 2-1.

Figure 2-1 Portal composite pattern showing mandatory patterns

For more details on the Portal composite pattern refer to the redbook, A Portal
composite pattern Using WebSphere Portal V4.1, SG24-6869.

2.2.1 Benefits
The Portal composite pattern is a combination of patterns, technologies and
products. It allows for an understanding of the business and IT drivers that help
an organization answer these questions:

� Do I need a portal?

� What can I achieve with a portal?

Once an organization has determined that it needs to aggregate information,
target that information to specific users, analyze the usage of information, and
collect and manage information, it can use a portal to handle these requirements.
Consequently, using the Portal composite pattern will eventually lead to a choice
of Application patterns and the subsequent combined Runtime pattern. This, in

Collaboration

Information
Aggregation

Extended Enterprise
(Optional) A

pp
lic

at
io

n
In

te
gr

at
io

n
(O

pt
io

na
l)

Self-Service
Ac

ce
ss

 In
te

gr
at

io
n

22 Patterns: Pervasive Portals

turn, will drive the creation of a portal architecture. Some specific benefits
include:

� A single aggregated view of content targeted to specific user types

� Ability to analyze usage patterns to make marketing efforts more efficient

� Ability to tailor the user interface to specific groups enabling a focus on
cultural, language, and nationality-based differences

� Single sign-on, allowing the user to “save time” and have access to
information while lessening the requirements for direct interaction with the
organization (saves money)

2.2.2 Limitations
The creation of a portal is a complex undertaking. It requires linking together
various normally incompatible systems to provide a single view of the information
in an enterprise. Although this of value to most organizations, it will require the
following of an organization:

� Organizational changes

� Process changes

� Restructuring of existing data sources

� Rebuilding some existing applications to support available connectivity
options

� The detailed analysis of the various user groups that need to be supported
(usually in much more detail than what currently exists)

A portal implementation assumes that there will be impacts in all of these areas.

2.3 Pervasive solution business strategies
The following table shows a list of Business drivers and strategies to execute the
initiatives.

Table 2-1 Strategic goals and initiatives

Business drivers Strategy Initiatives

Grow the data-subscriber customer
base.
Increase the number and length of
subscriber
content sessions.

Customer strategy Strengthen content-partnering
programs.
Invest in user interface design.
 Chapter 2. The Access Integration pattern 23

Business drivers for implementing a pervasive solution are as follows.

� Mobile portal customer strategy for the wireless carrier includes providing
open access and open availability, improving user-interface and
customer-experience design, and offering services that are convenient and
easy to use.

� Content provider strategy determines not only what content and applications
will be made available to end users, but how content and application
contributors will be compensated and how brands will be represented.

� Although wireless businesses tend to be technologically savvy, a wireless
company must also be able to discover and assess the impact of global
trends, both in technology and urban culture.

Network strategy is the way that a wireless carrier creates the business
partnerships and seamless interworking between partners in the mobile portal to
create value for end users.

Gain revenue by providing value-added
service to partners.
Increase the availability of content.

Content provider
strategy

Develop solutions to help partners
make money.
Increase the percentage of revenue
shared with partners or
agree to higher licensing fees.
Adopt an open-access content policy.
Increase the number of content
provider relationships

Adopt new technologies and services
that create value.
Learn more about customer needs.

Technology strategy Adopt open standard, interoperable
platforms.
Increase R&D investment in
experimental technologies.
Invest in resources for capturing
customer metrics.
Develop a preliminary CRM strategy.

Increase the number and quality of
relationships with key
vendors and service providers.
Make it easy to create unique value by
leveraging
the partners in the ecosystem.

Network strategy Develop tightly integrated products
and services.
Standardize middleware, security
platform and
management solutions among the
partners in
the ecosystem.

Business drivers Strategy Initiatives
24 Patterns: Pervasive Portals

2.4 Summary
In summary, when designing your solution, evaluate the chosen patterns to
ensure that they contain the characteristics that are important for the Pervasive
solution you are creating. Remember, this it is ultimately based on the business
drivers leading to the pattern and subsequent architecture that supports those
drivers.
 Chapter 2. The Access Integration pattern 25

26 Patterns: Pervasive Portals

Chapter 3. Selecting the Application
patterns

After identifying the Composite, Business and Integration patterns that comprise
the Pervasive solution, the next step in planning an e-business application is to
choose the Application pattern(s) that apply to the business drivers and
objectives. An Application pattern shows the principal layout of the application,
focusing on the shape of the application, the application logic, and the associated
data.

The Application patterns use logical tiers to illustrate various ways to configure
the interaction between users, applications, and data. Based on the Application
patterns, a set of Runtime patterns is identified. These Runtime patterns are
discussed in Chapter 4, “Selecting the Runtime patterns” on page 39.

3

© Copyright IBM Corp. 2003. All rights reserved. 27

3.1 Application patterns described
Each Application pattern has associated business and IT drivers. The architect
should review each of the business and IT drivers with the associated Application
pattern to determine the best fit for the requirements. In this section, the
Application patterns that apply to the Access Integration pattern are described.
Please note that you may have different Application patterns based on your
business requirements.

We did not need to introduce any new Application pattern for our solutions to
implement Pervasive Portal applications.

3.1.1 Access Integration application patterns

Application patterns for Access Integration are composed of four services
described on the patterns Web site found at:

http://www-106.ibm.com/developerworks/patterns/access/index.html

Based on the specific installation needs of the application being built, developers
can mix and match these services to facilitate consistent and seamless access to
multiple applications. Three commonly observed Application patterns for Access
Integration are presented below. It is highly probable that a solution will utilize
more than one of these Application patterns.

Pervasive Device Access application pattern
The Access Integration pattern is used to provide consistent access to various
applications using multiple device types. In order to provide pervasive device
access to an existing Business pattern, we therefore need to use an Access
Integration application pattern as shown in Figure 3-1 on page 29. The Pervasive
Device Access application pattern brings a new tier into the architecture. This tier
is responsible for the pervasive extensions to the original application. The
function of this tier is to convert the source (for example HTML) issued by the
application presentation logic into a format appropriate for the pervasive device.
In this way, the Pervasive Device Access application pattern provides a structure
for extending the reach of individual applications from browsers and fat clients to
pervasive devices such as PDAs and mobile phones.
28 Patterns: Pervasive Portals

http://www-106.ibm.com/developerworks/patterns/access/index.html

Figure 3-1 Access Integration::Pervasive Device Access

Business and IT drivers
� Provide universal access to information and services
� Reduce time to market
� Reduce Total Cost of Ownership (TCO)

Striving to provide universal access to information and applications is often the
primary business driver for choosing this Application pattern.

The primary IT driver for choosing this Application pattern is to quickly extend the
reach of applications to new device types without having to modify every
individual application to enable its use by additional device types.

The Portal composite pattern supports the use of pervasive device access. In
fact, “any type of device” access is supported through the use of templates in the
Pervasive device access tier. At this tier, the session data containing the type of
device is known and the properly formatted content can be delivered. This
formatted content can be transcoded in content management or datasource
nodes, or it can be transcoded “dynamically” when requested by a specific type
of client. This will depend on the frequency of updates to the data.

Note: WebSphere Everyplace Access V4.2 currently supports different types
of wireless phones and PDAs.

Pervasive
device

synchronous/
asynchronous

synchronous

Application
1

Application node containing
existing components with
no need for modification or
which cannot be changed

Application node
containing new
or modified
components

Pervasive
device

access tier

Application
2

Meta data

Read/W rite data
 Chapter 3. Selecting the Application patterns 29

Web Single Sign-On application pattern
The Web Single Sign-On application pattern provides a framework for seamless
application access through unified authentication services. Figure 3-2 shows an
example of this pattern.

Figure 3-2 Access Integration::Web Single Sign-On

Business and IT drivers
� Provide Single Sign-On across multiple applications
� Reduce Total Cost of Ownership (TCO)
� Reduce user administration cost

The primary business driver for choosing this Application pattern is to provide
seamless access to multiple applications with a Single Sign-On while continuing
to protect the security of enterprise information and applications.

Simplification and increased efficiency of user profile management are the main
IT driver for Single Sign-On.

Benefits
� Users can access their application portfolios easily and securely.

� User profile information is centralized in a common directory, simplifying
profile management and reducing costs.

� Application development cost is reduced by providing a standard security
solution.

Client
Tier

Application1

Application2

Single Sign-On
Tier

synchsynchronous

Read/Write data Application node
containing new or
modified components

Application node containing
existing components with no
need for modification or which
cannot be changed
30 Patterns: Pervasive Portals

Limitations
Many existing applications are not capable of accepting a standard set of user
credentials as a substitute for local authentication. Integration with such systems
can be difficult or even impossible.

Personalized Delivery application pattern
The Personalized Delivery application pattern provides a framework for giving
access to applications and information tailored to the interests and roles of a
specific user or group. This Application pattern extends basic user management
by collecting rich profile data that can be kept current up to the user’s current
session. Data collected can be related to application, business, personal,
interaction, or access device-specific preferences. An example of the
Personalized Deliver application pattern is shown in Figure 3-3.

Figure 3-3 Access Integration::Personalized Delivery

Business and IT drivers
The primary business driver for choosing this Application pattern is to increase
usability and improve the efficiency of Web applications by tailoring their
presentation to the user’s role, interests, habits and/or preferences.

Benefits
� Users’ interaction with the site is benefited because of increased perception

of control and efficiency.

� Fine-grained control of users’ access to applications is enabled according to
role and preferences by the enterprise.

� Improved user effectiveness is enabled by adapting the complexity and detail
of content to a user’s skill level.

A pp lication1

A pplication2

Persona liza tion
R u les

C lien t
Tier
 Chapter 3. Selecting the Application patterns 31

Limitations
Personalized Delivery can be very complex and expensive to fully implement.

3.1.2 Self-Service application patterns
As you can see in Figure 3-4, the Self-Service business pattern covers a wide
range of uses. Applications of this pattern can range from the very simple
function of allowing users to view data built explicitly for one purpose, to taking
requests from users, decomposing them into multiple requests to be sent to
multiple, disparate data sources, personalizing the information, and recomposing
it into a response for the user. For this reason, there are currently seven defined
Application patterns that fit this range of function. We summarize these for you
here. More detailed information can be found in Patterns for e-business: A
Strategy for Reuse, by Jonathan Adams, Srinivas Koushik, Guru Vasudeva, and
George Galambos.

Figure 3-4 Self-Service application patterns

6.

7.

CRM
LOB

synch/
asynch

synch/
asynch

Agent

Decomp
synch synch/

asynch

Application node
containing new or
modified components

Application node containing
existing components with
no need for modification
or which cannot be changed

Read / Write data Read only data

Transient data
- W ork in progress
- Cached committed data
- Staged data (data replication flow)

1. Presentation
synch

Application

2.
synch synch/

asynch
Presentation W eb

Application Back-end
Application

Back-end
Application

3.
synch Host

Application

Pres.
synch

4.
Host

Application

5. synch
Routersynch

Back-end
Application

Back-end
Application

Presentation1

Presentation2

Presentation1

Presentation2 Back-end
Application

Back-end
Application

Back-end
Application

Back-end
Application

Presentation1

Presentation2
32 Patterns: Pervasive Portals

1. Stand-alone Single Channel application pattern: provides for stand-alone
applications that have no need for integration with existing applications or
data. It assumes one delivery channel, most likely a Web client, although it
could be something else. It consists of a presentation tier that handles all
aspects of the user interface, and an application tier that contains the
business logic to access data from a local database. The communication
between the two tiers is synchronous. The presentation tier passes a request
from the user to the business logic in the Web application tier. The request is
handled and a response sent back to the presentation tier for delivery to the
user.

2. Directly Integrated Single Channel application pattern: provides
point-to-point connectivity between the user and existing back-end
applications. As with the Stand-alone Single Channel application pattern, it
assumes one delivery channel; the user interface is handled by the
presentation tier. The business logic can reside in the Web application tier
and in the back-end application. The Web application tier has access to local
data that exists primarily as a result of this application, for example, customer
profile information or cached data. It is also responsible for accessing one or
more back-end applications. The back-end applications contain business
logic and are responsible for accessing the existing back-end data. The
communication between the presentation tier and Web application tier is
synchronous. The communication between the Web application tier and the
back-end can be either synchronous or asynchronous, depending on the
characteristics and capabilities of the back-end application.

3. As-is Host application pattern: provides simple direct access to existing
host applications. The application is unchanged, but the user access is
translated from green-screen type access to Web browser-based access.
This is very quickly implemented but does nothing to change the appearance
of the application to the user. The business logic and presentation are both
handled by the back-end host. Because the interface is still host driven, this is
more suited to an intranet solution where employees are familiar with the
application.

4. Customized Presentation to Host application pattern: this is one step up
from the As-is Host application pattern. The back-end host application
remains unchanged, but a Web application now translates the presentation
from the back-end host application into a more user-friendly, graphical view.
The back-end host application is not aware of this translation.

5. Router application pattern: the Router application pattern provides
intelligent routing from multiple channels to multiple back-end applications
using a hub-and-spoke architecture. The interaction between the user and the
back-end application is a one-to-one relation, meaning the user interacts with
applications one at a time. The router maintains the connections to the
back-end applications and pools connections when appropriate, but there is
 Chapter 3. Selecting the Application patterns 33

no true integration of the applications themselves. The router can use a
read-only database, most probably to look up routing information. The
primary business logic still resides in the back-end application tier.

This pattern assumes that the users are accessing the applications from a
variety of client types such as Web browsers, voice response units (VRUs) or
kiosks. The Router application pattern provides a common interface for
accessing multiple back-end applications and acts as an intermediary
between them and the delivery channels. In doing this, the Router application
pattern may use elements of the Integration patterns.

6. Decomposition application pattern: the Decomposition application pattern
expands on the Router application pattern, providing all the features and
functions of that pattern and adding recomposition/decomposition capability.
It provides the ability to take a user request and decompose it into multiple
requests to be routed to multiple back-end applications. The responses are
recomposed into a single response for the user. This moves some of the
business logic into the decomposition tier, but the primary business logic still
resides in the back-end application tier.

7. Agent application pattern: the Agent pattern includes the functions of the
decomposition tier, plus it incorporates personalization into the application to
provide a customer-centric view. The agent tier collects information about the
user, either from monitoring their habits or from information stored in a CRM.
It uses this information to customize the view presented to the user.

Stand-Alone Single Channel application pattern
The application in this book is based on the simplest pattern, the Stand-Alone
Single Channel application pattern. This pattern provides for stand-alone
applications that have no need for integration with existing applications or data. It
assumes one delivery channel, most likely a Web client, although it could be
something else. It consists of a presentation tier that handles all aspects of the
user interface, and an application tier that contains the business logic to access
data from a local database. The communication between the two tiers is
synchronous. The presentation tier passes a request from the user to the
business logic in the Web application tier. The request is handled and a response
is sent back to the presentation tier for delivery to the user.

There are other IBM Redbooks on the Self-Service Business pattern which you
can reference:

� Self-Service Patterns using WebSphere Application Server V4.0, SG24-6175

� Patterns: Connecting Self-Service Applications to the Enterprise, SG24-6572

� Self-Service Applications using IBM WebSphere V4.0 and IBM MQSeries
Integrator, SG24-6160
34 Patterns: Pervasive Portals

� Patterns on z/OS: Connecting Self-Service Applications to the Enterprise,
SG24-6827

� Patterns: Building Messaging-based and Transactional Applications,
SG24-6875

3.1.3 Identified Application patterns for the Portal composite pattern
The Business and Integration patterns that we have identified as the building
blocks to the Portal composite pattern are:

� Access Integration
� Self-Service
� Collaboration
� Information Aggregation

Figure 3-5 shows the identified Application patterns that make up a Portal
composite pattern.

Figure 3-5 Application patterns in a Portal composite pattern

Note: The discussions involving the identified Application patterns use this
naming convention:

<business/integration pattern name>::<application pattern name>

For example, in discussing the Access Integration pattern and the Web Single
Sign-On application pattern, the format is:

Access Integration::Web Single Sign-On

 A
pp

lic
at

io
n

 In
te

gr
at

io
n

Ac
ce

ss
 In

te
gr

at
io

n Information
Aggregation

Store and Retrieve
Collaboration

Extended
Enterprise

Self-Service

Population Single Step

Population Multi-Step
Population Crawl and Discovery

Directly Integrated Single
Channel

Directed Collaboration

Pe
rs

on
al

iz
ed

 D
el

iv
er

y
Pe

rv
as

iv
e

D
ev

ic
e

Ac
ce

ss

W
eb

 S
in

gl
e

Si
gn

-O
n

 Chapter 3. Selecting the Application patterns 35

Over time in the marketplace, the definitions of the Composite patterns are
becoming more defined. The mandatory patterns represent the occurring
patterns that are being implemented by companies in a portal solution. The
optional patterns are not yet implemented with each portal solution but are
optional for a specific company’s requirements and would be implemented as a
Portal custom design. Over time, we may see that all the patterns in Figure 3-5
on page 35 are shown as mandatory. For now, the mandatory and optional
patterns for the Portal composite pattern are as follows:

� Mandatory Business and Integration::Application patterns

– Access Integration::Single Sign-On, Personalized Delivery
– Self-Service::Directly Integrated Single-Channel
– Collaboration::Store and Retrieve
– Information Aggregation::Population Single Step, Population Crawling

and Discovery

� Optional Business and Integration::Application patterns

– Access Integration::Pervasive Device Access
– Collaboration::Directed Collaboration
– Information Aggregation::Population Multi-Step

These identified Application patterns are based on the requirements of a typical
portal implementation.

3.2 Where to find more information
For more information on the Pervasive Access device application pattern, refer to
Mobile Applications with IBM WebSphere Everyplace Access Design and
Development, SG24-6259.

For those wanting a full description of the functionality required in a pervasively
enabled e-business application, and the design issues accompanying these
requirements, we recommend that you review IBM WebSphere Everyplace
Server Service Provider and Enable Offerings: Enterprise Wireless Applications,
SG24-6519. This redbook describes a full-featured implementation of the
WebSphere Everyplace Suite, used to enable pervasive applications.

If you would like additional information on the use of IBM WebSphere Everyplace
Server V2.1.1 to build successful mobile e-business solutions, review IBM
WebSphere Everyplace Server: A Guide for Architects and Systems Integrators,
SG24-6189. Page 55 of this redbook features a table that lists the features,
functions, and benefits of the WebSphere Everyplace Server Service Provider
Offering, featured in the product mappings documented on this Web site.
36 Patterns: Pervasive Portals

Access Integration pattern Redbooks:

� Access Integration Pattern using IBM WebSphere Portal Server, SG24-6267

� Mobile Applications with IBM WebSphere Everyplace Access Design and
Development, SG24-6259

Self-Service business pattern Redbooks:

� Self-Service Patterns using WebSphere Application Server V4.0, SG24-6175

� Patterns: Connecting Self-Service Applications to the Enterprise, SG24-6572

� Self-Service Applications using IBM WebSphere V4.0 and IBM MQSeries
Integrator, SG24-6160

� Patterns on z/OS: Connecting Self-Service Applications to the Enterprise,
SG24-6827

� Patterns: Building Messaging-based and Transactional Applications,
SG24-6875
 Chapter 3. Selecting the Application patterns 37

38 Patterns: Pervasive Portals

Chapter 4. Selecting the Runtime
patterns

After choosing the appropriate Business pattern and Application pattern, it is time
to define the Runtime pattern and map the products used to implement it.

Runtime patterns define functional nodes (logical) that underpin an Application
pattern. The Application pattern exists as an abstract representation of
application functions, whereas the Runtime pattern is a middleware
representation of the functions that must be performed, the network structure to
be used, and the systems management features, such as load balancing and
security. In reality, these functions, or nodes, can exist on separate physical
machines or may co-exist on the same machine. In the Runtime pattern, this is
not relevant. The focus is on the logical nodes required and their placement in
the overall network structure.

4

© Copyright IBM Corp. 2003. All rights reserved. 39

4.1 Runtime pattern nodes description
A Runtime pattern is represented by logical nodes, where each node has a
specific role in the architecture. It defines the topology of the architecture and
node placement. Most patterns will consist of a core set of common nodes, with
the addition of one or more nodes unique to that pattern. To understand the
Runtime patterns presented in this book, you will need to review the following
node definitions.

User node
The user node is most frequently a personal computing (PC) device supporting a
commercial browser, for example, Netscape Navigator or Internet Explorer. The
browser is expected to support SSL and some level of DHTML. Increasingly,
designers need to also consider that this node might be a pervasive computing
device, such as a Personal Digital Assistant (PDA).

Pervasive user node
A pervasive user node is a catch-all category of portal users that includes all
mobile (non-desktop) connected end-user devices other than a Web browser. In
most current scenarios, this includes devices such as mobile phones, personal
digital assistants, and text pagers.

Domain Name Server (DNS) node
The DNS node assists in determining the physical network address associated
with the symbolic address (URL) of the requested information. The Domain
Name Server node provides the technology platform to provide host to IP
address mapping, that is, to allow for the translation of names (referred to as
URLs) into IP addresses and vice versa.

Public key infrastructure (PKI) node
PKI is a system for verifying the authenticity of each party involved in an Internet
transaction, protecting against fraud or sabotage, and for non repudiation
purposes to help consumers and retailers protect themselves against denial of
transactions. Trusted third-party organizations called certificate authorities issue
digital certificates - attachments to electronic messages - that specify key
components of the user's identity. During an Internet transaction, signed,
encrypted messages are automatically routed to the certificate authority, where
the certificates are verified before the transaction can proceed. PKI can be
embedded in software applications, or offered as a service or a product.
e-business leaders agree that PKIs are critical for transaction security and
integrity, and the software industry is moving to adopt open standards for their
use. In the context of the topologies defined in this IBM Redbook, PKI supports
the authentication of the server to the browser client and the confidentiality, using
the SSL protocol.
40 Patterns: Pervasive Portals

Gateway node
Gateway nodes switch between the different networks to establish
communication between pervasive devices and the Web applications. This only
means that the two parties can communicate with each other. It does not mean
that they will understand each other. Communicating and passing data between
the two parties is one thing, but adapting the content and translating between
different protocols is another. The content translation is done by the Transcoding
Proxy node.

Firewall node
A firewall is a hardware/software system that manages the flow of information
between the Internet and an organization's private network. Firewalls can
prevent unauthorized Internet users from accessing private networks connected
to the Internet, especially intranets, and can block some virus attacks -- as long
as those viruses are coming from the Internet. A firewall can separate two or
more parts of a local network to control data exchange between departments.
Firewalls provide the first line of defense for protecting private information, but
comprehensive security systems combine firewalls with encryption and other
complementary services, such as content filtering and intrusion detection.

Firewalls control access from a less trusted network to a more trusted network.
Traditional implementations of firewall services include:

� Screening routers (the Protocol firewall)
� Application gateways (the Domain firewall)

Two levels of firewall nodes provide increasing protection at the expense of
increasing computing resource requirements. They have different levels of
security implementation:

� The Protocol firewall is typically implemented as an IP Router and is
basically configured with filters. It protects from access to unauthorized
services in the DMZ and also can avoid inadequate LAN bandwidth usage.

� The Domain firewall prevents unauthorized access to servers on the internal
network by limiting incoming requests to a tightly controlled list of trusted
servers in the DMZ. In an n-tier architecture, it prevents the user from
accessing any critical data or application directly.

Load Balancer node
The Load Balancer node provides horizontal scalability by dispatching HTTP
connections among several, identically configured Web servers. The Load
Balancer component distributes interactive traffic across a number of hosts using
dynamically updated rules for load balancing, while providing a single system
image to the client system. It is used to achieve scalability through the use of
multiple servers, and high availability through being able to dynamically vary the
algorithms by which a host is selected if one host fails or becomes overloaded.
 Chapter 4. Selecting the Runtime patterns 41

Transcoding Proxy node
The Transcoding Proxy node is a legacy component from earlier Pervasive
solutions. This node is responsible for the content transformation between the
content provider (server) and the pervasive devices (client).

This node appears on the diagram in a lighter shade, indicating that it is a legacy
component.

Web presentation server node
The Web presentation server node provides services to enable a unified user
interface. It is responsible for all presentation-related activity. In its simplest form,
it serves HTML pages and runs servlets and JSPs. For more advanced patterns,
it acts as a portal and provides the access integration services (Single Sign-On,
for example). It interacts with the personalization server node to customize the
presentation based on the individual user preferences or on the user role. The
Web presentation server allows organizations and their users to standardize and
configure the presentation of applications and data in the most efficient way,
while enabling fine-grained access control.

Application server node
The application server node provides the execution and communication runtime
environment for the business logic of the application. The business logic may be
self-contained on the application server node. If not, the application server node
is responsible for interacting with back-end applications and retrieving data from
back-end data sources. The application server node typically enables
infrastructure services such as persistence, resource connection pooling,
scalability, failover, administration, and support for Java.

Web application server node
A Web application server node is an application server that includes an HTTP
server (also known as a Web server) and is typically designed for access by
HTTP clients and to host both presentation and business logic (it includes the
Web presentation server and the Application Server node).

Web server redirector node
In order to separate the Web server from the application server, a so-called Web
server redirector node (or just redirector for short) is introduced. The Web server
redirector is used in conjunction with a Web server. The Web server serves
HTTP pages and the redirector forwards servlet and JSP requests to the
application servers. The advantage of using a redirector is that you can move the
application server behind the domain firewall into the secure network, where it is
more protected than within the DMZ.
42 Patterns: Pervasive Portals

Personalization server node
The personalization server node works with the Web presentation server node to
customize the presentation with data that matches a user’s interest. The
personalization server identifies the type or class of the user based on
information available about the user. Based on this classification, data taken from
a content datastore either in the Personalization tier or from back-end sources is
selected for presentation to the user. It provides the mapping function of user
classification to content data.

Collaboration node
The collaboration node provides synchronous and asynchronous modes of
communicating between organizations. We call this a community. A community is
empowered by collaborative work between users. The collaboration node
provides interactive discussions (interactive messaging and chat functionality)
and the sharing of documents/ideas (team room environment).

Content management node
The content management node provides for the management of digital assets
(for example images, documents, and “pieces” of text) and applies a workflow
and security rules (for example access control) to each discrete asset. Note that
assets can also be referred to as resources (as they are in WebSphere Content
Publisher). The content management node will commonly include and/or
leverage the following functions:

� Content type/category identification
� Workflow (based on a user’s role and/or the type of content)
� Versioning (including rollback to previous versions)
� Handling of static or dynamic content
� Transcoding/reformatting of content (more recently added to handle multiple

end-user channel device types)
� Storage of content to multiple data source types (for example DBMS, file

systems)

Search and indexing node
A search and indexing node provides a function to catalog and/or index the
content data sources. This will provide the capabilities to locate specific content
(for example product or catalog information) and to update this search capability
when updates are added (via indexing). In addition, this information can be
indexed in a manner that provides the Presentation and Personalization server
an ability to find information that is associated with the actions taken by the end
user. For example, this could provide for cross-selling or up-selling on a
commerce site, which is a specific form of Implicit Personalization. For more
details, refer to the Predictive Personalization runtime pattern at:

http://www-106.ibm.com/developerworks/patterns/access/at3-runtime.html
 Chapter 4. Selecting the Runtime patterns 43

http://www-106.ibm.com/developerworks/patterns/access/at3-runtime.html

Pervasive devices services node
This node includes three services. In some cases, not all three services are
implemented. The services can also be separated onto separate nodes.

� Notification

The notification node provides message interchange between users and their
applications. It allows users to subscribe to services, define the delivery
method and specify rules for how and when the information will be delivered.

� Synchronization

The synchronization node enables handheld computing devices to link
remotely to desktop applications and synchronize data with several
applications like mail servers, relational databases, etc. The mobile device
can synchronize using several channels such as a modem, cellular phone,
the Internet, wireless, an intranet, a local area network (LAN) or a wide area
network (WAN).

� Device manager

The device manager node provides identification, configuration, inventory
management and software distribution to devices such as personal digital
assistants (PDAs), handheld PCs, smartphones, wireless access protocol
(WAP) devices, or other emerging devices for pervasive computing.

Directory and security services node
The directory and security services node supplies information on the location,
capabilities and attributes (including user ID/password pairs and certificates) of
resources and users known to this Web application system. This node can
supply information for various security services (authentication and
authorization) and can also perform the actual security processing, for example,
to verify certificates. The authentication in most current designs validates the
access to the Web application server part of the Web server, but this node also
authenticates for access to the database server.

To provide Single Sign-On services, a Lightweight Directory Access Protocol
(LDAP) directory is used.

Shared file server node
The timely synchronization of several Web servers is achieved by using a shared
file system as the content storage and capitalizing on the replication capability of
this technology. In a Web environment with several Web application servers, this
component can be a centralized repository for HTML, Java and JSPs files,
facilitating their management and update process to serve all the application
servers. Any changes or updates to the content of the application server can be
done on the file server.
44 Patterns: Pervasive Portals

Database server node
This node's function is to provide persistent data storage and retrieval service in
support of transactional interactions.

Existing applications and data node
The existing application and data node represents the legacy systems, which are
running on the internal network. These elements provide business logic and also
persistence of the data.

4.2 Runtime pattern for the Self-Service application
In order to understand the complete concept, it is best to start with the basic
elements. We will start with the simplest Self-Service Runtime pattern, then later
enhance it with nodes relevant to the Access Integration Runtime pattern.

4.2.1 Basic Runtime pattern
This Runtime pattern, shown in Figure 4-1 on page 46, provides an initial
implementation with an entry-level footprint. It is a simple yet effective way to
make the solution available. The basic pattern uses a minimum of runtime nodes,
yet provides a measure of security by putting all sensitive persistent data behind
a firewall. While it does not provide scalability or failover capabilities, it is a good
starting point from which you can easily progress to Runtime patterns that do
provide these functions.

The Runtime pattern does not differentiate between intranet and Internet
implementations. However, you should be aware of certain issues:

� Bandwidth is usually greater in an intranet, allowing the use of more
network-intensive solutions, such as thick clients.

� Security may be less of an issue in an intranet. However, protecting the
network is still important and firewalls protecting resources from unauthorized
access are still advisable.

� Due to corporate rules, you may expect certain browsers to be used, allowing
you to exploit all available features and not code to the least common
denominator.
 Chapter 4. Selecting the Runtime patterns 45

Figure 4-1 Stand-Alone Single Channel application pattern::Runtime pattern

The presentation logic and business logic of the application are provided by a
single Web application server node in a demilitarized zone (DMZ). The data to be
accessed from the business logic is behind the domain firewall in the internal
network.

In addition to the network security provided by the firewalls, application-level
security is provided by the Web application server node. The user information
required for authentication and authorization is stored in the directory and
security services node behind the domain firewall in the internal network.

4.2.2 Runtime pattern: Variation 1
As shown in Figure 4-2 on page 47, this variation to the basic Runtime pattern
uses one Web server redirector containing the Web server and one application
server, effectively splitting the function of a Web application server across two
machines. In this case, the application server resides in the internal network to

Internal Network
Demilitarized Zone

(DMZ)Outside World

Pr
ot

oc
ol

 F
ire

w
al

l

Database

Do
m

ai
n

Fi
re

w
al

lI
N
T
E
R
N
E
T

Public Key
Infrastructure

User

Web
Application

Server

Domain Name
Server

Directory and
Security
Services

Presentation Application

Stand-Alone Single Channel application
46 Patterns: Pervasive Portals

provide it with more security. The application server node will run both
presentation and business logic. The Web server remains in the DMZ and serves
static pages. A Web server redirector is used to forward the requests from the
Web server to the application server.

Figure 4-2 Stand-Alone Single Channel application pattern::Runtime pattern: Variation 1

We focus on this variation of the Stand-Alone Single Channel application pattern
with the Pervasive Device Access application pattern.

4.3 Runtime pattern for the Pervasive Device Access
application

Self-Service runtime patterns provide the foundation for the Pervasive Device
Access Runtime pattern in this book. The Access Integration::Pervasive Device
Access application pattern provides the support for pervasive solutions.

Internal Network
Demilitarized Zone

(DMZ)Outside World

Pr
ot

oc
ol

 F
ire

w
al

l

Do
m

ai
n

Fi
re

w
al

lI
N
T
E
R
N
E
T

Public Key
Infrastructure

User

Web
Server

Redirector

Domain Name
Server

Presentation Application

Stand-Alone Single Channel application

Database

Application
Server

Directory and
Security
Services
 Chapter 4. Selecting the Runtime patterns 47

In the last Runtime pattern, we extend the Portal composite pattern with the
Pervasive Device Access pattern to provide a so called “Pervasive Portal” type of
solution, where all the Access Integration functions come together in one place.

4.3.1 Access Integration pattern
The Access Integration pattern provides users with a seamless and consistent
user experience that combines access to multiple applications, databases,
services and presentation through multiple devices.

There are multiple runtime patterns defined for this integration pattern and you
can see each of them in detail by referring to the Patterns for e-Business site at:

http://www-106.ibm.com/developerworks/patterns/

Old Pervasive Device Access Runtime pattern
The following Runtime pattern is from the redbook Mobile Applications with IBM
WebSphere Everyplace Access - Design and Development, SG24-6259. It was
based on the technologies available in WebSphere Everyplace Access V1.1.
This Runtime pattern serves as a quick introduction to see where the pervasive
technologies started in the WebSphere Everyplace Access product line.
48 Patterns: Pervasive Portals

http://www-106.ibm.com/developerworks/patterns/

Figure 4-3 Old Pervasive Device Access Runtime pattern

The main technology that drove the solution was transcoding. The transcoding
proxy took care of the requests and responses from and to the different
pervasive devices. The transcoding proxy had three runtime modes:

� Reverse-proxy
� Forward-proxy
� Servlet filter for WebSphere

The voice server provided voice recognition and voice synthesis for the solution;
enabling the applications for clients using traditional phone to access the
application.

The Web application was a classic J2EE application with minor modifications to
support pervasive device access.

Pervasive Device Access Runtime pattern: Variation 1
This Runtime pattern extends the Self-Service Basic Variation 1 Runtime pattern
to allow a wide variety of pervasive devices to participate in the e-business
solution.

Internal Network
Demilitarized Zone

(DMZ)Outside World

Pr
ot

oc
ol

 F
ire

w
al

l

D
om

ai
n

Fi
re

w
al

lI
N
T
E
R
N
E
T

Public Key
Infrastructure

User

Web
Application

Server

Domain Name
Server

Pervasive
Device

Application

Pervasive Device Access

Application

Directory and
Security
Services

Database

Non-IP
Network

Gateway

Pervasive
User

Voice Server

Tr
an

sc
od

in
g

Pr
ox

y

Pervasive
Device Access

Tier
 Chapter 4. Selecting the Runtime patterns 49

There are two Pervasive Access runtime patterns defined on the Patterns for
e-Business site at:

http://www-106.ibm.com/developerworks/patterns/

The Pervasive Device Access runtime pattern Variation 1 is a variation to these
two Runtime patterns.

This pattern assumes that there are incoming requests for the application from
both IP and non-IP networks. The non-IP network consists of wireless networks
(GSM, CDPD, etc.) and phone networks (PTSN). In order to access the IP-based
networks (Internet or intranet), a special gateway is required. Phone networks
require Voice over IP gateways to connect the analog or digital lines connection
to the IP-based, packet-switched networks. Wireless networks also have to use
gateways to handle the connections, translate the protocols, and connect to IP
networks (for example WAP or i-mode).

The functionalities that are part of a pervasive solution and are included in this
Runtime pattern are:

� Connectivity - it is implemented by the Gateway node providing
communication between pervasive devices and the Web applications.

� Application server - in this scenario, the application server hosts the
application that is designed to handle different type of devices. It is more like
a programmatic approach and it is most common for well designed existing
Web applications with minor modifications or applications that only need to
support a few (one or two) different device presentation logics.

� Notification - provides message interchange between users and applications.

� Synchronization - provides data synchronization with several applications like
mail servers and relational databases through several communication
channels.

� Device Management - provides identification, configuration, inventory
management and software distribution to devices such as personal digital
assistants (PDAs), handheld PCs, smartphones, wireless access protocol
(WAP) devices, or other emerging devices for pervasive computing.
50 Patterns: Pervasive Portals

http://www-106.ibm.com/developerworks/patterns/

Figure 4-4 Pervasive Device Access Runtime pattern: Variation 1

This Runtime pattern is based on the n-tier model and supports browser users
(client node) and mobile users (pervasive user node) accessing back-end
applications. The mobile users will have to pass through the gateway to access
the IP network and through the transcoding proxy to adapt the content, based on
the type and capabilities of the mobile user device.

The presentation tier is split into two, represented by the Web Server Redirector
and the Application Server nodes. In this case, the application server has to take
care of the presentation for the different devices. It can be done
programmatically, or using the WebSphere Transcoding Publisher product as an
intermediary node. For more information about the WebSphere Transcoding
Publisher solution, refer to the redbook Mobile Applications with IBM WebSphere
Everyplace Access - Design and Development, SG24-6259.

The Self-Service application runs on the application server. The notification,
synchronization and device manager services also run in the application tier on a
separate node.

Internal Network
Demilitarized Zone

(DMZ)Outside World

Pr
ot

oc
ol

 F
ire

w
al

l

D
om

ai
n

Fi
re

w
al

lI
N
T
E
R
N
E
T

Public Key
Infrastructure

User

Web
Server

Redirector

Domain Name
Server

Directory and
Security
Services

Database

Pervasive
Device

Application

Pervasive Device Access

Application

Pervasive
Device Access

Tier

Non-IP
Network

Gateway

Pervasive
User

Application
Server

Tr
an

sc
od

in
g

Pr
ox

y

Pervasive
Devices
Services

Synchronization
Notification

Device Manager
 Chapter 4. Selecting the Runtime patterns 51

The relevant data that should be stored in the database for each component is as
follows:

� For the notification - privacy policies, context data and subscriptions.

� For the synchronization - configuration information, enterprise database
access information, user IDs and passwords, user device preferences and
data replicas. In order to improve performance and security in the
synchronization process, the synchronization node can implement a cache by
replicating the data from the back-end database.

� For the device manager - device management information.

The authentication information and user profiles will be held by the directory and
security node and is protected by the domain firewall in the internal network.

4.4 Portal composite pattern variation for Pervasive
solutions

This Runtime pattern is a combination of the Portal composite pattern and the
Pervasive Device Access Variation 1 runtime pattern.

The personalization server node is part of the application tier and interacts with
the Web application server node and the database node.

The personalization services can be implemented to support participatory,
predictive and prescriptive personalization. This book will not focus on the
Personalization pattern; to get detailed information, refer to the redbook A Portal
Composite Pattern Using WebSphere V4.1, SG24-6869. User-to-Business
Pattern using WebSphere Personalization Patterns for e-business Series,
SG24-6213-00 or the Patterns for e-Business site at:

http://www-106.ibm.com/developerworks/patterns/
52 Patterns: Pervasive Portals

http://www-106.ibm.com/developerworks/patterns/.

Figure 4-5 Portal composite pattern variation for Pervasive solution

The Portal composite pattern is a major part of this Runtime pattern. Portal is the
main content provider for most of the pervasive devices. Portal also has the
ability to transform the content as necessary.

Note that the Additional Portal Components are less important from the
pervasive device access point of view, so components such as Content
Management, Collaboration, Search and Indexing are not discussed here. For
more information on these components, refer to the redbook A Portal Composite
Pattern Using WebSphere V4.1, SG24-6869.

For details on the rest of the nodes, refer to “Pervasive Device Access Runtime
pattern: Variation 1” on page 49.

Internal Network
Demilitarized Zone

(DMZ)Outside World

Pr
ot

oc
ol

 F
ire

w
al

l

D
om

ai
n

Fi
re

w
al

lI
N
T
E
R
N
E
T

Public Key
Infrastructure

User

Web
Server

Redirector

Domain Name
Server

Directory and
Security
Services

Database

Non-IP
Network

Gateway

Pervasive
User

Presentation
Server

Pervasive
Device

Application

Pervasive Device Access

Application

Pervasive
Device Access

Tier

Application
Server

Personalization
Server

Existing
applications

and Data

Additional
Portal

Components

Tr
an

sc
od

in
g

Pr
ox

y

Pervasive
Devices
Services

Synchronization
Notification

Device Manager
 Chapter 4. Selecting the Runtime patterns 53

54 Patterns: Pervasive Portals

Chapter 5. Selecting the product
mapping

After choosing the appropriate runtime pattern, it is time to map the Runtime
pattern and map the products used to implement it.

A product mapping maps the logical nodes defined in the Runtime pattern to
specific products which implement the Runtime solution design on a selected
platform. The Product mapping identifies the platform, software product name,
and often version numbers as well.

5

© Copyright IBM Corp. 2003. All rights reserved. 55

5.1 Product mappings
The next step after choosing a Runtime pattern is to determine the actual
products and platforms to be used. Selecting products means selecting hardware
and software elements as well. Choosing the right elements is always difficult
because of various considerations which must be taken into account. In some
cases, decisions are made considering not only the technical and logical points
but other factors such as expenses, existing knowledge, or time. The platform
chosen should fit into the customer's environment and ensure quality of service,
such as scalability and reliability, so that the solution can grow along with the
e-business.

5.1.1 Pervasive Portal solution framework
The products used to implement a Pervasive Portal solution in this redbook
includes the WebSphere product family running in a heterogeneous Microsoft®
Windows 2000 and IBM AIX® environment.

5.1.2 Product mapping for Pervasive solutions
Product mappings are shown for:

� Pervasive Device Access Runtime pattern: Variation 1

� Portal composite pattern runtime variation for Pervasive solutions

Product mapping for Pervasive Device Access Runtime
pattern: Variation 1

The product mapping for this runtime supports the basic runtime and the
variation for security and addressing the Windows and AIX platforms.

This product mapping represents the Pervasive Device Access pattern with the
separation of the Web presentation server and the application server, providing a
more secure, scalable and reliable architecture as described in the Access
Integration pattern section, “Pervasive Device Access Runtime pattern: Variation
1” on page 49.
56 Patterns: Pervasive Portals

Figure 5-1 Pervasive Device Access Runtime pattern Variation 1 product mapping

Although this product mapping is focusing on enabling an existing application for
Pervasive devices and does not include portal components, it still requires the
portal server to run system management services, such as Intelligent
Notification.

Portal composite pattern runtime variation for Pervasive
solutions

The product mapping for this runtime is based on the Portal composite runtime
pattern, additionally it supports the pervasive device access and addresses the
Windows and AIX platforms.

Internal Network
Demilitarized Zone

(DMZ)

O
ut

si
de

 W
or

ld

Pr
ot

oc
ol

 F
ire

w
al

l

D
om

ai
n

Fi
re

w
al

l

Web
Server

Redirector

Directory and
Security
Services

Database

Pervasive
Devices
Services

Synchronization
Notification

Device Manager

WebSphere Application
Server Advanced Edition
v 4.0.4 HTTP plugin
Windows 2000 with SP 2
or AIX 5.1

SecureWay Directory v3.2.2
with eFix 2
DB2 Universal Database v7.2
Fixpack 7
Windows 2000 with SP 2 or
AIX 5.1

LDAP

WebSphere Application
Server Advanced Edition
4.0.4
Windows 2000 with SP 2 or
AIX 5.1

DB2 Everyplace v8.1
DB2 Universal
Database v7.2 Fixpack
7
Windows 2000 with
SP 2 or AIX 5.1

WebSphere Everyplace Access 4.2
with

Everyplace Synchronization
Server v1.2
Device Manager v1.3
Intelligent Notification Services v2
Subscription Manager

Windows 2000 with SP 2 or AIX 5.1

Tr
an

sc
od

in
g

Pr
ox

y

Application
Server

WebSphere Transcoding
Publisher 4.0
 Chapter 5. Selecting the product mapping 57

Figure 5-2 Portal composite pattern runtime pattern variation for Pervasive

Protocol mapping
The protocol mapping in Figure 5-3 on page 59 represents the protocols used to
communicate between the nodes and the applications.

Internal Network
Demilitarized Zone

(DMZ)

O
ut

si
de

 W
or

ld

Pr
ot

oc
ol

 F
ire

w
al

l

D
om

ai
n

Fi
re

w
al

l

Web
Server

Redirector

Directory and
Security
Services

Database

Presentation
Server

Application
Server

Personalization
Server

Existing
applications

and Data

WebSphere Application
Server Advanced Edition
v 4.0.4 HTTP plugin
Windows 2000 with SP 2
or AIX 5.1

SecureWay Directory v3.2.2
with eFix 2
DB2 Universal Database v7.2
Fixpack 7
Windows 2000 with SP 2 or
AIX 5.1

DB2 Everyplace v8.1
DB2 Universal
Database v7.2 Fixpack
7
Windows 2000 with
SP 2 or AIX 5.1

WebSphere
Application Server
Advanced Edition v
4.0.4
Windows 2000 with
SP 2 or AIX 5.1

WebSphere Everyplace Access 4.2
Windows 2000 with SP 2

Additional
Portal

Components

Tr
an

sc
od

in
g

Pr
ox

y

Pervasive
Devices
Services

Synchronization
Notification

Device Manager
WebSphere Transcoding
Publisher 4.0
58 Patterns: Pervasive Portals

Figure 5-3 Protocol mapping

As shown in Figure 5-3, the network protocols used for the Windows
implementation are as follows:

� HTTP/HTTPS: Hypertext Transfer Protocol (HTTP) and Hypertext Transfer
Protocol Secure (HTTPS) are used from the user’s Web browser to the HTTP
server in the Web server redirector node.

HTTP or HTTPS are also used from the WebSphere Web server plug-in in the
Web server redirector node to the Web container in the presentation server
node, as well as from the collaboration and content management node to the
presentation server node.

� LDAP/LDAPS: the presentation and application server uses Lightweight
Directory Access protocol (LDAP) to access the LDAP server in the Directory
and Security Services node. LDAPS is the secure LDAP connection to a
directory server using SSL. Since LDAP directories store essential and
sensitive applications and business information, the communication can use
LDAPS to be secure.

� SMTP: the notification server can use the SMTP protocol to send messages
(mail) to the clients. Using SMTP gateways, the mail or message can be

Internal Network
Demilitarized Zone

(DMZ)Outside World

Pr
ot

oc
ol

 F
ire

w
al

l

Do
m

ai
n

Fi
re

w
al

lI
N
T
E
R
N
E
T

Public Key
Infrastructure

User

Web
Server

Redirector

Domain Name
Server

Directory and
Security
Services

Database

Non-IP
Network

Gateway

Pervasive
User

Presentation
Server

Application
Server

Personalization
Server

Existing
applications

and Data

HTTP/HTTPS

LDAP/LDAPS

JDBC

RMI/IIOP

RMI/IIOP
HTTP/HTTPS

JMS
JDBC

...

Additional
Portal

Components

Pervasive
Devices
Services

Synchronization
Notification

Device Manager

SMTP
 Chapter 5. Selecting the product mapping 59

transmitted through different protocols and transports, for example SMS
(GSM network).

� JDBC: the Application Server node and the Directory and Security Services
node uses a Java database connectivity (JDBC) driver to access the
Database Server node.

� RMI/IIOP: the Personalization Server node uses Remote Method Invocation
(RMI) over Internet Inter-Orb Protocol (IIOP) to access the EJB container in
the Presentation Server node and the EJB container in the Application Server
node.

RMI/IIOP is also used from the Presentation Server node to the EJB
container in the Application Server node.

5.2 Products
In order to have a better understanding of the entire solution and its components,
each product will be briefly described.

The product used in this redbook is WebSphere Everyplace Access V4.2. This
offering includes the following integrated products:

� WebSphere Portal Server

� WebSphere Application Server

� WebSphere Personalization Server

� Everyplace Intelligent Notification Services

� Everyplace Synchronization Server

� Domino™ Everyplace Enterprise Server (we did not use this product in our
scenario in this redbook)

� Device Manager

� DB2®

� DB2 Everyplace

� SecureWay® Directory

� Everyplace Client

� Everyplace toolkit

� WebSphere Studio Site Developer Advanced
60 Patterns: Pervasive Portals

WebSphere Everyplace Access V4.2
WebSphere Everyplace Access delivers the technology needed to give mobile
access to productivity data and enterprise applications from virtually anywhere,
at any time. It supports multiple pervasive devices such as PDAs and
smartphones from a single platform. It helps move business-critical information
throughout the organization more efficiently and without boundaries, whether to
deliver customer information to field sales professionals, inventory information to
warehouse pickers, or personal information management (PIM) data to
managers on the move.

Everyplace Access allows customers to start small, then expand over time to a
richer set of wireless application functions. It provides an entry level solution as a
starting point, and lays the foundation of a scalable infrastructure.

WebSphere Everyplace Access is a platform for mobile applications that
provides:

� PIM and e-mail for Lotus® Notes® and Microsoft Exchange PDA clients (we
did not use this function in our scenario in this redbook)

� All of the components required to extend access to business processes and
back-office data to mobile devices

� Notification, synchronization and device management services

� Offline content access services

� A reliable, scalable infrastructure, based on open standards, that easily
integrates into your existing IT infrastructure

� The proven technologies of WebSphere Application Server and WebSphere
Portal Server

� An application development toolkit that includes samples and a set of plug-ins

The key functionality of Everyplace Access is the support to different devices
accessing online and offline applications and content.

Online features
Online Portal content is available to users who are connected to a network, using
either a wired or wireless network card. This gives users access to the most
current information possible. Everyplace Access provides device-viewing
enhancements that improve the mobile Portal experience by enhancing how the
Portal looks on selected mobile devices.

Offline features
Since a wireless connection is not always possible or desirable, Everyplace
Access makes a selected set of Portal content available for viewing offline as
 Chapter 5. Selecting the product mapping 61

static content. You can also submit forms while offline. Each time you
synchronize, offline content is refreshed and form data is submitted.

Everyplace Access also provides synchronization which utilizes industry
standard SyncML technology. The synchronization services, provided with
Everyplace Access, allow users to remain productive while offline. Disconnected
and connected users can work with the same information and synchronize the
information when all users are connected again.

For example, an employee can synchronize their calendar before leaving the
office on a sales trip. While the employee is gone, someone else can schedule a
meeting on the traveling employee's calendar. At the same time, the traveling
employee can schedule a follow-up meeting with a customer on their calendar.
When the traveling employee returns to the office and synchronizes again, both
new calendar entries are updated on the server and the device.

The following applications and data can be synchronized:

� Lotus Notes PIM and e-mail
� Microsoft Exchange PIM and e-mail
� Domino applications and data
� Any JDBC compliant relational database data

Everyplace Access also provides a client, IBM Everyplace Client, that installs on
a mobile device which provides a common interface that initiates synchronization
requests.

The WebSphere Everyplace Access is composed of Server, Client and
Application Development components.

Server components
1. WebSphere Everyplace Access Basic Services

Basic Services includes:

– WebSphere Portal V4.1.4

The IBM WebSphere Portal allows you to build your own custom portal
Web site. Users can sign on to the portal and receive personalized Web
pages providing access to the information, people and applications they
need. This personalized single point of access to all necessary resources
reduces information overload, accelerates productivity, and increases
Web site usage. WebSphere Portal Server allows you to:

• Build multiple types of portals on a single integrated infrastructure
based on the WebSphere Portal Architecture.

• Provide a scalable, single point of access for data, people, and
applications.
62 Patterns: Pervasive Portals

• Deliver an easy to use graphical interface suitable for both occasional
and expert users.

• Crawl and categorize intranet and Internet repositories.

• Execute a federated search against all forms of data, structured and
unstructured.

• Aggregate and summarize content for users.

• Customize the look and content of home page displays by user.

• Build rules-based and collaborative filtering personalization using
WebSphere Personalization server.

• Integrate applications and workflow systems into the portal.

• Add collaborative services such as e-mail, shared places, and instant
messaging.

• Add pervasive wireless device support for remote and mobile users.

• Provide multiple levels of security and authentication services.

• Leverage syndicated information from over 50,000 databases for news
and research.

• Add modules from Independent Software Vendors or custom
developed modules.

• Leverage Web site tools for JSP page building, performance
monitoring, caching, etc.

• Build next generation Web sites with standards such as XML, SOAP,
CORBA, and LDAP.

• Manage users as individuals or within groups.

• Access control at the portlet level.

• Access Lotus and Microsoft Office applications via portlets.

• Implement a distributed, heterogeneous search across disparate data
sources.

• Use a flexible architecture that enables integration with your current
directory, Database, and security infrastructure.

– WebSphere Application Server Advanced Edition V4.0.4

WebSphere Application Server enables Web transactions and interactions
with a robust deployment environment for e-business applications. It
provides a portable, Java-based Web application deployment platform
focused on supporting and executing servlets, JavaBeans, JavaServer
Pages (JSP) and enterprise beans. Some of the Synchronization Server
logic is deployed as enterprise applications in WebSphere Application
 Chapter 5. Selecting the product mapping 63

Server. WebSphere Application Server is the foundation component and is
required for WebSphere Portal, Everyplace Synchronization Server,
Device Manager and Everyplace Intelligent Notifications Services

– DB2 V7.2

DB2 Universal Database™ is a Web-enabled relational database
management system supporting many levels of complexity in database
environments.The DB2 is used to support the persistence requirements of
all the components of the solution. The Synchronization Server stores
user information such as user authentication, device profile preferences,
adapter information such as adapter authentication, server monitoring lists
and configuration information. The notification stores privacy policies,
context data and subscriptions. The device manager stores device
management information. The personalization server stores users profile
informations and content information.

– SecureWay Directory V3.2.2

Secureway directory is a Lightweight Directory Access Protocol (LDAP)
directory that runs as a stand-alone daemon. It is based on a client/server
model that provides client access to an LDAP server. SecureWay
Directory provides an easy way to maintain directory information in a
central location for storage, updating, retrieval, and exchange.
WebSphere Portal uses LDAP to store user-specific information. It is an
important component when providing a Single Sign-On functionality,
working as a centralized authentication information directory.

2. Everyplace Synchronization Server V1.2

Everyplace Synchronization Server is a scalable solution for synchronizing
personal information management (PIM) data to back-end databases. The
Synchronization Server also provides a powerful relational database
synchronization solution using DB2 Everyplace. The Synchronization Server
provides a single synchronization point. Clients synchronize to the central
Synchronization Server which then synchronizes with back-end databases.
This enables clients to share data through the Synchronization Server and
get concurrent updates to the same data. Clients can also simultaneously
synchronize with multiple databases.

In an enterprise environment, the Synchronization Server provides adapters
to support synchronization with databases such as Lotus Notes, Microsoft
Exchange and DB2 (or other JDBC compliant databases). One adapter
serves many back-end databases, for a scalable solution.

To support multiple platforms, Synchronization Server uses the Java 2
platform (J2EE) and SyncML 1.0 protocol between the server and client
devices. Mobile devices can establish either a wireless or wired connection to
64 Patterns: Pervasive Portals

synchronize data over the Internet, a Wireless network, intranet, local area
network (LAN) or wide area network (WAN) using TCP/IP.

It includes an optional, high-performance cache for systems with heavy
workloads. When caching is enabled, the Synchronization Server replicates
the back-end data in order to respond to client synchronization requests
quickly.

The Everyplace Synchronization Server adapters provide a neutral interface
for accessing different enterprise databases like Lotus Domino, Microsoft
Exchange Server or DB2. The adapters convert data to a common format in
order to synchronize the data between clients and back-end databases. The
Synchronization Server provides the following adapters.

– Lotus Domino Adapter - provides an interface for the Synchronization
Server to access enterprise Lotus Domino databases. The Lotus Domino
Adapter supports e-mail, journal, to-dos, address book and calendar data.

– Microsoft Exchange Adapter - provides an interface for the
Synchronization Server to access Microsoft Exchange databases. The
Microsoft Exchange Adapter supports e-mail, tasks, notes, calendar and
contacts.

– Relational database adapter using DB2 Everyplace - uses DB2
Everyplace to provide an interface for the Synchronization Server to
access DB2 databases or other JDBC compliant relational databases.

The Synchronization Server uses the WebSphere Portal architecture to
provide an administration interface using portlets for the Synchronization
Server and adapters. The Synchronization Server user and group
management is handled through the WebSphere Portal Users and Groups
portlet. Setting synchronization preferences for individual users is handled
through the WebSphere Everyplace Access PIM portlets.

Synchronization Server also includes:

– DB2 Everyplace V8.1

DB2 Everyplace is a relational database and enterprise synchronization
system for mobile and embedded devices. DB2 Everyplace enables
enterprise application functionality and enterprise data to be extended to
mobile devices such as personal digital assistants (PDAs).

3. Everyplace Intelligent Notification Services V2.0

Intelligent Notification Services allows users to subscribe to services, define
the delivery method and specify rules for how and when the information will
be delivered. Intelligent Notification Services delivers messages to users
based on the users' preferences and subscriptions. For example, users can
tell Intelligent Notification Services to send them the URL of any Web-based
news article published with "computing technology" in the headline. Users
 Chapter 5. Selecting the product mapping 65

can also specify message-sending behaviors based on the urgency of the
message. For example, if the message is marked FYI, send it to e-mail. If the
message is marked urgent, send it to Sametime® instant message.

In order to understand better how the Intelligent Notification Services works,
some concepts and components knowledge are required.

– Notification

A notification is a message sent to the subscriber by Intelligent Notification
Services. Intelligent Notification Services supports the following types of
notifications.

• Simple notifications - messages, such as personal messages or
reminders, that originate from other users or applications. Intelligent
Notification users can send simple notifications to one another using
the Message Center portlet.

• Subscription-based notifications - messages that are triggered by
events to which the user subscribes. For instance, the subscriber is
monitoring stock prices for a certain company and has specified that
Intelligent Notification Services notify her when the stock for company
XYZ has gone above 90. Another subscriber is watching the activity of
company ABC in producing wireless widgets and has specified that
Intelligent Notification Services notify him when any articles are
published to the Associated Press that relate to company ABC and
wireless widgets. Intelligent Notification users can set up subscriptions
using the My Subscriptions portlet.

Intelligent Notification Services supports context-aware delivery of these
messages. Context-aware delivery enables the delivery method to be
based on a user's context, such as a user's online availability or location.
Context parameters that possibly affect the delivery method include a
user's location, online presence, and availability.

– Delivery channels

Delivery channels are the mechanisms via which users of Intelligent
Notification receive messages. Intelligent Notification Services supports
the following types of delivery channels.

• Message Center portlet - an Intelligent Notification user portlet with
which users view messages, delete messages, and send simple
notifications to other Intelligent Notification users.

• Lotus Sametime - an instant messaging server and client pair.

• Simple Mail Transfer Protocol (SMTP) - a protocol for sending e-mail
messages between servers.

• Short Message Service (SMS) - a service for sending short text
messages to mobile devices. SMS requires a Wireless Gateway
66 Patterns: Pervasive Portals

(WebSphere Everyplace Connection Manager), which is not provided
as part of the WebSphere Everyplace Access package.

– Components

• Administrative portlets - the administrator of Intelligent Notification
Services uses administrative portlets to manage servers, configure
gateway adapters, remove preferences for deleted users, and
configure e-mail subscriptions.

• User portlets - a user of Intelligent Notification Services uses portlets
to manage delivery channels, manage his or her notification groups,
specify rules for message delivery, manage notifications, and
subscribe to content sources.

• Content adapters - a content adapter is an application that captures
data from an information source and converts that data into a format
that the Trigger Manager can read. After converting the data to the
correct format, the content adapter publishes the data to the Trigger
Manager for matching against user subscriptions. Several content
adapters are provided with Intelligent Notification Services, including
content adapters for XML, RSS News, Lotus Notes e-mail, and
Microsoft Exchange e-mail.

• Gateway adapters - connect the Universal Notification Dispatcher to
supported delivery channels. Each gateway adapter is responsible for
delivering messages to the delivery channel that it supports. Each
gateway adapter includes transcoding support for converting a
notification into a format appropriate for the recipient's device.
Intelligent Notification Services provides gateway adapters for the
following types of delivery channels.

– Message Center portlet
– Lotus Sametime
– Simple Mail Transfer Protocol (SMTP)
– Short Message Service (SMS)

• Trigger Manager - a component of Intelligent Notification Services that
accepts content from content adapters and subscriptions from
Intelligent Notification users. The subscriptions contain criteria for
matching content from the content adapters. The Trigger Manager
matches the content against subscription criteria. When a match
occurs, the Trigger Manager uses a trigger handler to determine how to
handle the match and notify the appropriate user via the Universal
Notification Dispatcher.

• Universal Notification Dispatcher - a component of Intelligent
Notification Services that delivers notifications to users based on their
preferences and context. Messages may originate as simple
 Chapter 5. Selecting the product mapping 67

notifications from other users or applications, or they may result from
subscriptions. Messages resulting from subscriptions are generated
and sent to the Universal Notification Dispatcher by trigger handlers.
Simple notifications are sent directly to the Universal Notification
Dispatcher from an application using the sendMessage() method of the
NotificationService class.

• Secure Context Server - a component of Intelligent Notification
Services that enables context-aware notifications by providing context
information such as a user's location or Sametime availability. This
information may be used to determine where and when to send
notifications, based on the user's context preferences. Context
information is provided by context drivers. There is a context driver for
each specific category of context information. Intelligent Notification
Services currently supports a Sametime context driver that provides
information about whether a user is online in a Sametime environment.

4. Device Manager V1.3

Device Manager is a device management technology that helps to manage
personal digital assistants (PDAs), handheld PCs, smartphones, wireless
access protocol (WAP) devices, in-vehicle information systems, or other,
emerging devices for pervasive computing. Integrated with a service provider
enrollment application or enterprise user database, Device Manager can be
used to identify, configure, inventory, and distribute software to any device
supported by the service provider or enterprise.

5. Lotus Domino Everyplace Enterprise Server V2.7

Lotus Domino Everyplace Enterprise Server (DEES) is packaged with
Everyplace Access to provide the access to existing Domino databases.

Client components
1. Everyplace Client V4.2

Everyplace Client provides a common interface that supports
synchronization, security, device management, offline Portal browsing, offline
Domino applications, and DB2 Everyplace database replication. Everyplace
Client provides a single user control interface for the following client agents
and applications:

– Lotus Mobile Notes®
– e-mail and PIM function (SyncML Client)
– Database (DB2 Everyplace)
– Offline Portal Browsing
– Offline Form submission
– IBM device agent

2. TrueSync Plus V3.1
68 Patterns: Pervasive Portals

This is a multi-point synchronization engine that provides synchronization of
calendar, address book, to do list, and memo between multiple information
sources including mobile devices, organizer applications, and servers. This
single-step process overcomes the fundamental inefficiency of traditional
point-to-point synchronization technology that requires users to perform a
sequential device-to-desktop, desktop-to-server, and desktop-to-device
synchronization.

Application development components
1. Everyplace Toolkit V4.2

The Everyplace Toolkit provides a comprehensive toolkit for the development
of portlet applications. The toolkit is implemented as a plug-in to WebSphere
Studio Site Developer Advanced or WebSphere Studio Application
Developer. In this release, Everyplace Toolkit provides:

– Portlet Projects, in which you can create Abstract portlets, JSP portlets,
Servlet Invoker portlets, XML/XSL portlets, and Multi-Device/View portlets.

– Portlet application samples for enterprise applications.

2. WebSphere Studio Site Developer Advanced V4.0.3

Studio Site Developer is an easy-to-use tool set that minimizes the time and
effort required to create, manage, and debug multi-platform Web sites. It is
designed to the J2EE specifications and delivers integrated support for open
Web standards, including Java, JSP, servlets, XML, full HTML, DHTML,
JavaScript, rich media and Web services tools. It includes an advanced Java
IDE and tools for developing images and animated GIFs. It also allows you to
use your favorite content creation tools in conjunction with its built-in local and
remote publishing capabilities.

5.3 Considerations
It is suggested that you make the final platform recommendation based on the
following considerations:

� Platform - Choosing the right platform depends on several other elements.
The platform in this context means the operating system and the underlying
hardware.

� Homogenous/heterogeneous solution - This is closely related to the
platform, whether the solution deals with different platforms (heterogeneous)
or just one (homogenous).

� Availability - Availability is very complex from an architecture standpoint. It is
related to the number of systems. The higher the redundancy, the higher the
availability; this also means higher costs. It is very important to ensure just the
 Chapter 5. Selecting the product mapping 69

right level of availability; less than required can cause loss of business, more
than required can raise the costs.

� Performance - Performance has influence on the end user experience and
has a significant impact on the business. Users want fast responses, and the
system has to perform well, no matter what kind of application is involved.

� Security - Security has always been an issue. It depends on the business,
and becomes very important for mission-critical applications. Just as with
availability, the right level of security has to be found. Security can be very
strict or stay at a basic level; this depends on the requirements.

System management
Solutions cannot stand alone without any system management. e-business
solutions are moving towards centralized system management, but users still
have to deal with multiple tools to manage the system within their solution.

Figure 5-4 on page 71 shows the framework of a complete Pervasive Portal
solution and the relationship between the components. The solution supports
internal users (intranet) and external users (Internet). For external users, the only
component different from those for internal users that have to be addressed is
the security represented in the diagram by the Security Layer for external access
block. The black captions represent the logical nodes and the white captions
represent the product. The blocks below the Notification, Synchronization and
Device Manager represent their components.

The diagram shows how the connectivity is provided to the Portal for each type of
device. Wireless devices need a wireless gateway, voice devices also need a
Voice Server; all the others access the portal directly.
70 Patterns: Pervasive Portals

Figure 5-4 Pervasive Portal solution framework

5.4 Where to find more information
� For more information about Patterns for e-Business, go to:

http://www-106.ibm.com/developerworks/patterns/

� For more information about WebSphere Everyplace Access, go to:
http://www.ibm.com/software/pervasive/products/mobile_apps/
ws_everyplace_access.shtml

� For more information about WebSphere Application Server, go to:
http://www.ibm.com/software/webservers/appserv/

� For more information about WebSphere Portal Server, go to:
http://www.ibm.com/software/webservers/portal/

� For more information about DB2, go to:
http://www.ibm.com/software/data/db2/udb/

Content Adaptation
 WebSphere Transcoding Publisher

Presentation - FrontEnd - Unique Interface
WebSphere Portal Server

Personalization
WebSphere Personalization Server

Subscription
App

Device Manager
Device Manager

Security to access Persistence layer

Directory LDAP
Secureway
Directory

Content
Repository

Database
DB2

Persistence Access layer (Repository, Directory and Database)

Internal users
Intranet

External users
Internet

Notification
Everyplace Intelligent Notification Services

Customer
and Self
care App

Le
ga

cy
 a

pp
lic

at
io

ns
 a

cc
es

s

Domino
Server

MS
Exchange

PDA
Everyplace

Client

Mobile
Phones

W
ap

Offline
Browsing/

Other
applications Legacy

DB2

Administration
Portlets

Administration
and User
Portlets

PDA
Everyplace Client

Mobile
Phones

Other
Legacy

Authentication and Single Sign-On
Tivoli Access Manager

Voice Services
 WebSphere Voice Server

Syncronization
Everyplace Synchronization Server

Lotus
Notes

Adapter

Wireless Gateway
WebSphere Everyplace
Connection Manager

WAP VPN

W
ire

le
ss

 G
at

ew
ay

W
eb

Sp
he

re
 E

ve
ry

pl
ac

e
C

on
ne

ct
io

n
M

an
ag

er

VP
N

DB2 or any
JDBC

compliant
using DB2
EveryPlace

PIM using SyncML

MS
Exchange
Adapter

Browser
user

Browser
user

R
ep

lic
at

io
n

w
ith

 P
C

s

Replication with
PCs

SMS
Message
Center
Portlet

Lotus
Sametime SMTP

Se
cu

rit
y

la
ye

r f
or

 e
xt

er
na

l a
cc

es
s

(In
te

rn
et

)

Voice Gateway
WebSphere Voice

Response

Voice

Voice

Portal Content Adaptation
 WebSphere Transcoding Technology
 Chapter 5. Selecting the product mapping 71

http://www.ibm.com//ws_everyplace_access.shtml
http://www.ibm.com/software/webservers/appserv/
http://www.ibm.com/software/webservers/portal/
http://www.ibm.com/software/data/db2/udb/
http://www-106.ibm.com/developerworks/patterns/

� For more information about WebSphere Everyplace Connection Manager, go
to: http://www.ibm.com/software/pervasive/products/mobile_sols/
wireless_gateway.shtml

� For more information about Tivoli® Access Manager, go to:
http://www.tivoli.com/products/index/access-mgr-e-bus/

� For more information about WebSphere Voice Server, go to:
http://www.ibm.com/software/pervasive/products/voice/
voice_server.shtml

� For more information about WebSphere Transcoding Publisher, go to:
http://www.ibm.com/software/pervasive/products/mobile_sols/
transcoding_publisher.shtml

� For more information about WebSphere Edge Server, go to:
http://www.ibm.com/software/webservers/edgeserver/

� For more information about WebSphere Studio Site Developer, go to:
http://www-3.ibm.com/software/ad/studiositedev/
72 Patterns: Pervasive Portals

http://www.ibm.com/software//transcoding_publisher.shtml
http://www.ibm.com//wireless_gateway.shtml
http://www.ibm.com//wireless_gateway.shtml
http://www.tivoli.com/products/index/access-mgr-e-bus/
http://www.ibm.com/software/pervasive/products/voice/voice_server.shtml
http://www.ibm.com/software/webservers/edgeserver/
http://www-3.ibm.com/software/ad/studiositedev/

Part 2 Pervasive
Portal solution
guidelines

Part 2
© Copyright IBM Corp. 2003. All rights reserved. 73

74 Patterns: Pervasive Portals

Chapter 6. Technology options

We now take a look at the Web application technology options you should
consider in this chapter. The recommendations are guided by the demands of
reuse, flexibility, and interoperability, and subsequently are based on the open
industry standards outlined by Java 2 Platform, Enterprise Edition (J2EE). Many
of the choices continue to evolve and expand as the J2EE specification matures
to include a broader view of the enterprise architecture. These recommendations
are based on the J2EE1.3 specification. In this chapter, we are going to show
some of the current technologies to implement wireless and pervasive solutions.

To read more about mobile technologies, refer to the IBM Redbooks entitled
Mobile Commerce Solutions Guide using WebSphere Commerce Suite V5.1,
SG24-6171, and Mobile Applications with IBM WebSphere Everyplace Access
Design and Development, SG24-6259-00

6

© Copyright IBM Corp. 2003. All rights reserved. 75

6.1 Web client
Figure 6-1 shows the recommended technologies for Web clients.

Figure 6-1 Web client technology model

The clients are “thin clients” with little or no application logic. Applications are
managed on the server and downloaded to the requesting clients. The client
portions of the applications should be implemented in HTML, dynamic HTML
(DHTML), XML, and Java applets.

The selection of client-side technologies used in your design will require
consideration for the server side, such as whether to store, or dynamically
create, elements for the client side.

The following sections outline some of the possible technologies that you should
consider, but remember that your choices may be constrained by the policy of
your customer or sponsor. For example, for security reasons, only HTML is
allowed in the Web client at some government agencies.

Browser/Web Top

Java VM

Applets
and

JavaBeans

Protocols - HTTP, IIOP, ...

Network Infrastructure

Native Apps
Shrink
Wrapped
Custom

CREDIT CARD

1234 5678 90121234 5678 9012
VALID FROM GOOD THRU

XX/XX/XX XX/XX/XX
PAUL FISCHER
XX/XX/XX XX/XX/XX
PAUL FISCHER

Pervasive

NC

Managed PC

PC

TCP/IP, WAP ...

HTML, DHTML, XML, WML
76 Patterns: Pervasive Portals

We also touch on some of the current technology choices in the wireless area.

6.1.1 Web browser
A Web browser is a fundamental component of the Web client. For PC-based
clients, the browser typically incorporates support for HTML, DHTML, JavaScript,
and Java. Some browsers are beginning to add support for XML as well. Under
user control, there is a whole range of additional technologies that can be
configured as “plug-ins”, such as RealPlayer from RealNetworks or Macromedia
Flash.

As an application designer, you must consider the level of technology you can
assume will be available in the user’s browser, or you can add logic to your
application to enable slight modifications based upon the browser level. For
Internet users, this is especially true. With intranet users, you can assume
support for a standard browser. Regarding plug-ins, you need to consider what
portion of your intended user community will have that capability.

Cross-browser strategies are required to ensure robust application development.
Although many of these technology choices are maturing, they continue to be
inconsistently supported by the full range of browser vendors. Developers must
know browser compatibility for all features being exploited by the application. In
general, developers will need to code to a lowest denominator or at least be able
to distinguish among browser types using programmatic techniques. The key
decision here is to determine the application requirements and behavior when
handled by old browsers, other platforms such as Linux and Mac, and even the
latest browsers.

In the J2EE model, the Web browser plays the role of client container. The model
requires that the container provide a Java Runtime Environment as defined by
the Java 2 Platform, Standard Edition (J2SE). However, for an e-business
application that is to be accessed by the broadest set of users with varying
browser capabilities, the client is often written in HTML with no other
technologies. On an exception basis, limited use of other technologies, such as
using JavaScript for simple edit checks, can then be considered based on the
value to the user and the policy of the organization for whom the project is being
developed.

The emergence of pervasive devices introduces new considerations to your
design with regard to the content streams that the device can render and the
more limited capabilities of the browser. For example, WAP (Wireless Application
Protocol) enabled devices render content sent in WML (Wireless Markup
Language).
 Chapter 6. Technology options 77

6.1.2 HTML
HTML (HyperText Markup Language) is a document markup language with
support for hyperlinks that is rendered by the browser. It includes tags for simple
form controls. Many e-business applications are assembled strictly using HTML.
This has the advantage that the client-side Web application can be a simple
HTML browser, enabling a less capable client to execute an e-business
application.

The HTML specification defines user interface (UI) elements for text with various
fonts and colors, lists, tables, images, and forms (text fields, buttons,
checkboxes, and radio buttons). These elements are adequate to display the
user interface for most applications. The disadvantage, however, is that these
elements have a generic look and feel, and lack customization. As a result, some
e-business application developers augment HTML with other user-interface
technologies to enhance the visual experience, subject to maintaining access by
the intended user base and compliance with company policy on Web client
technologies.

Because most Web browsers can display HTML V3.2, this is the lowest common
denominator for building the client side of an application. To ensure compatibility,
developers should be unit testing pages against a validator tool. Free tools, such
as the W3C HTML Validation Service, are available at:

http://validator.w3.org/

6.1.3 Dynamic HTML
DHTML allows a high degree of flexibility in designing and displaying a user
interface. In particular, DHTML includes Cascading Style Sheets (CSS) that
enable different fonts, margins, and line spacing for various parts of the display to
be created. These elements can be accurately positioned using absolute
coordinates. See 6.1.4, “CSS” on page 79 for details on Cascading Style Sheets.

Another advantage of DHTML is that it increases the level of functionality of an
HTML page through a document object model and event model. The document
object enables scripting languages such as JavaScript to control parts of the
HTML page. For example, text and images can be moved about the window, and
hidden or shown, under the command of a script. Also, scripting can be used to
change the color or image of a link when the mouse is moved over it, or to
validate a text input field of a form without having to send it to the server.
78 Patterns: Pervasive Portals

http://validator.w3.org/
http://validator.w3.org/

Unfortunately, there are several disadvantages when using DHTML. The
greatest of these is that two different implementations (Netscape and Microsoft)
exist and are found only on the more recent browser versions. A small, basic set
of functionality is common to both, but differences appear in most areas. The
significant difference is that Microsoft allows the content of the HTML page to be
modified by using either JScript or VBScript, while Netscape allows the content
to be manipulated (moved, hidden, shown) using JavaScript only.

Due to varying levels of browser support, cross-browser design strategies must
be used to ensure appropriate presentation and behavior of DHTML elements. In
general, this technology is not recommended unless its features are needed to
meet usability requirements.

6.1.4 CSS
Cascading Style Sheets (CSS) allow you to define a common look and feel for
HTML documents. This specification describes how Web documents are to be
presented in print and online.

CSS is defined as a set of rules that are identified by selectors. When processed
by the client browser, the selectors are matched to specific HTML tags and then
are applied against the properties of the tag. This allows for global control over
colors, fonts, margins, and borders. More advanced commands allow for control
over pixel coordinates. Related stylesheet commands can be grouped and then
externalized as a separate template file to be referenced by a multitude of Web
pages.

CSS is defined as level 1 and level 2 specifications. Level 1 was written with
HTML in mind, while level 2 was expanded to include general markup styles for
XML documents. Developers using CSS should unit test against a validator tool,
such as the W3C CSS Validation Service at:

http://jigsaw.w3.org/css-validator/

Due to varying levels of browser support, cross-browser design strategies must
be used to ensure appropriate presentation and behavior of CSS elements. In
general, this technology should be used with great attention to support of
specification elements.
 Chapter 6. Technology options 79

http://jigsaw.w3.org/css-validator/
http://jigsaw.w3.org/css-validator/

6.1.5 JavaScript
JavaScript is a cross-platform object-oriented scripting language. It has great
utility in Web applications because of the browser and document objects that the
language supports. Client-side JavaScript provides the capability to interact with
HTML forms. You can use JavaScript to validate user input on the client and help
improve the performance of your Web application by reducing the number of
requests that flow over the network to the server.

ECMA, a European standards body, has published a standard (ECMA-262) that
is based on JavaScript (from Netscape) and JScript (from Microsoft), called
ECMAScript. The ECMAScript standard defines a core set of objects for scripting
in Web browsers. JavaScript and JScript implement a superset of ECMAScript.

To address various client-side requirements, Netscape and Microsoft have
extended their implementations of JavaScript in version 1.2 by adding new
browser objects. Because Netscape's and Microsoft's extensions are different
from each other, any script that uses JavaScript 1.2 extensions must detect the
browser being used, and select the correct statements to run.

One caveat is that users can disable JavaScript on the client browser, but this
can be programmatically detected.

The use of JavaScript on the server side of a Web application is not
recommended, given the alternatives available with Java. Where your design
indicates the value of using JavaScript, for example for simple edit checking, use
JavaScript 1.1, which contains the core elements of the ECMAScript standard.

6.1.6 Java applets
The most flexibility of the user interface (UI) technologies that can be run in a
Web browser is offered by the Java applet. Java provides a rich set of UI
elements that include an equivalent for each of the HTML UI elements. In
addition, because Java is a programming language, an infinite set of UI elements
can be built and used. There are many widget libraries available that offer
common UI elements, such as tables, scrolling text, spreadsheets, editors,
graphs, charts, and so on.

You can use either the AWT or the Swing classes to build a Java applet. But
while designing your applet, you should keep in mind that Swing is supported
only by later browser versions.
80 Patterns: Pervasive Portals

A Java applet is a program written in Java that is downloaded from the Web
server and run on the Web browser. The applet to be run is specified in the
HTML page using an APPLET tag:

<APPLET CODEBASE="/mydir" CODE="myapplet.class" width=400 height=100>
 <PARAM NAME="myParameter" VALUE="myValue">
</APPLET>

For this example, a Java applet called “myapplet” will run. An effective way to
send data to an applet is by using the PARAM tag. The applet has access to this
parameter data and can easily use it as input to the display logic.

Java can also request a new HTML page from the Web application server. This
provides an equivalent function to the HTML FORM submit function. The
advantage is that an applet can load a new HTML page based upon the obvious
(a button being clicked) or the unique (the editing of a cell in a spreadsheet).

A characteristic of Java applets is that they seldom consist of just one class file.
On the contrary, a large applet may reference hundreds of class files. Making a
request for each of these class files individually can tax any server and also tax
the network capacity. However, packaging all of these class files into one file
reduces the number of requests from hundreds to just one. This optimization is
available in many Web browsers in the form of either a JAR file or a CAB file.
Netscape and HotJava support JAR files simply by adding an
ARCHIVE="myjarfile.jar" variable within the APPLET tag. Internet Explorer uses
CAB files specified as an applet parameter within the APPLET tag. In all cases,
executing an applet contained within a JAR/CAB file exhibits faster load times
than individual class files. While Netscape and Internet Explorer use different
APPLET tags to identify the packaged class files, a single HTML page containing
both tags can be created to support both browsers. Each browser simply ignores
the other's tag.

JavaScript can be used to invoke methods on an applet using the SCRIPT tag in
the applet’s HTML page.

A disadvantage of using Java applets for UI generation is that the required
version of Java must be supported by the Web browser. Thus, when using Java,
the UI part of the application will dictate which browsers can be used for the
client-side application. Note that the leading browsers support variants of the
JDK 1.1 level of Java and have different security models for signed applets.
 Chapter 6. Technology options 81

Using Java plug-ins, you can extend the functionality of your browser to support
a particular version of Java. Java plug-ins are part of the Java Runtime
Environment (JRE) and they are installed when the JRE is installed on the
computer. You can specify certain tags in your Web page, to use a particular
JRE. This will download the particular JRE if it is not found on the local computer.
This can be done in HTML either through:

� The conventional APPLET tag, or

� The OBJECT tag instead of the APPLET tag for Internet Explorer or the
EMBED tag with the APPLET tag for Netscape.

A second disadvantage of Java applets is that any classes such as widgets and
business logic that are not included as part of the Java support in the browser
must be loaded from the Web server as they are needed. If these additional
classes are large, the initialization of the applet may take from seconds to
minutes, depending upon the speed of the connection to the Internet.

Using HTTP tunneling, an applet can call back on the server without reloading
the HTML page. For users who are behind a restrictive firewall, HTTP tunneling
offers a bidirectional data connection to connect to a system outside the firewall.

Because of the above shortcomings, the use of Java applets is not
recommended in environments where mixed levels and brands of browsers are
present. Small applets may be used in rare cases where HTML UI elements are
insufficient to express the semantics of the client-side Web application user
interface. If it is absolutely necessary to use an applet, care should be taken to
include UI elements that are core Java classes whenever possible.

6.1.7 XML (client side)
XML allows you to specify your own markup language with tags specified in a
Document Type Definition (DTD) or XML Schema. Actual content streams are
then produced that use this markup. The content streams can be transformed to
other content streams by using XSL (Extensible Stylesheet Language), which is
based on CSS.

For PC-based browsers, HTML is well established for both document content
and formatting. The leading browsers have significant investments in rendering
engines based on HTML and a Document Object Model (DOM) based on HTML
for manipulation by JavaScript.

XML seems to be evolving to a complementary role for active content within
HTML documents for the PC browser environment.
82 Patterns: Pervasive Portals

For new devices, such as WAP-enabled phones and voice clients, the data
content and formatting is being defined by new XML schema, WML for WAP
phone and VoiceXML for voice interfaces.

For most Web application designs, you should focus your attention on the use of
XML on the server side.

6.1.8 XHTML 1.1 (HTML 4.01)
XHTML (Extended HyperText Markup Language) is an extension to HTML 4,
which supports document types that are XML-based. It is intended to be used as
a language for XML-conforming content as well as for HTML 4-conforming user
agents.

The advantages of XHTML are as follows:

� Since XHTML documents are XML conforming, they can be viewed, edited,
and validated with standard XML tools.

� XHTML documents can be used to traverse either the HTML Document
Object Model or the XML Document Object Model.

Some issues with XHTML are:

� XHTML documents are not as easy to create as HTML documents because
XHTML is validated more strictly than HTML.

� HTML is already used so widely that it is difficult for XHTML to attract the
attention of most Web developers.

� Browser support is not usually an issue since documents can be created
using HTML-compatible XHTML that is understood by most browsers. There
are also utilities that can be used to convert HTML documents to
HTML-compatible XHTML.

� Development tool support for XHTML is also improving. The Page Designer
tool in IBM WebSphere Studio Application Developer V5.0, for example,
allows visual authoring of XHTML pages.

XHTML Basic is designed for Web clients that do not support the full set of
XHTML features. It is meant to serve as a common language and share basic
content across mobile phones, pagers, car navigation systems, vending
machines, etc.
 Chapter 6. Technology options 83

Some of the common features found in Wireless Markup Language (WML) and
other subsets of HTML have been used as the basis for developing XHTML
Basic:

� Basic text
� Basic forms and tables
� Hyperlinks

Some HTML 4 features have been found inappropriate for non-desktop devices,
so extending and building on XHTML Basic will help to bridge that gap.

6.1.9 XForms
XForms is W3C’s specification for Web forms that can be used with desktop
computers, hand-held devices, etc. The disadvantage of the HTML Web forms is
that there is no separation of purpose from presentation. XForms separates the
data and logic of a form from its presentation. Also, XForms are
device-independent.

XForms uses XML for transporting the data that is displayed on the form and the
data that is submitted from the form. HTML is used for the data display.

Currently, the main issue with XForms is that it is still an emerging technology, so
browser and server support is not yet standard.

6.2 Pervasive clients
Pervasive, mobile, wireless and many other terms constitute a confusing
terminology which makes it difficult to have a common understanding of our
topic. The problem always starts with classifying sophisticated systems, when it
is discovered that the terms mean different things to different people.

Mobile in this context means that the information is not only accessible from a
desktop browser but also from different types of devices, using different
connections, from different locations. Wireless means you are not connected to
the network using a cable. Mobile clients include wireless devices such as
phones, pagers, and PDAs. Pervasive computing is computing power freed from
the desktop. It’s a step ahead in the mobile and wireless arena. It could be
embedded in wireless handheld devices, automobile telematics systems, home
appliances, commercial tools-of-the-trade or a smart card that you carry with
you. Pervasive computing is convenient access to relevant information with the
ability to easily take action on it, when and where you need to.
84 Patterns: Pervasive Portals

6.2.1 Architecture
Support for mobile clients impacts the runtime topology and therefore must be
designed and implemented using best practices for system architecture. The
good news is that any past investment in Web architecture to support
Internet-based applications can be extended to support mobile clients.

A Wireless Application Protocol (WAP) gateway is used between the mobile
client device and the Web server. The gateway translates requests from the
wireless protocol into HTTP requests and, conversely, converts HTTP requests
into the appropriate device format.

6.2.2 WAP
WAP is the Wireless Application Protocol. This is the standard for presentation
and delivery of information to wireless devices, which are platform, device and
network neutral. The goal of this protocol is to provide a platform for global,
secure access through mobile phones, pagers, and other wireless devices.

6.2.3 Microbrowser
WAP microbrowsers run on mobile clients. They are responsible for the display
of Web pages written in WML and can execute WMLScripts. These play the
same role as HTML browsers that run on a PC.

6.2.4 WML
The Wireless Markup Language (WML) is based on XML and HTML 4.0 to fit
small hand-held devices. It is a tag-based language that handles formatting static
text and images, can accept data input, and can follow hyperlinks. WML also
uses WMLScript, a compact JavaScript-like language that runs in limited
memory. WML is the markup language of WAP.

The WML specification is maintained by The Open Mobile Alliance. The Open
Mobile Alliance has been established by the consolidation of the WAP Forum
and the Open Mobile Architecture Initiative, two industry-wide consortiums
concerned about the development of an open standard for the wireless industry.

For more information, you can visit The Open Mobile Alliance Web site at:

http://www.openmobilealliance.org or
http://www.wapforum.org
 Chapter 6. Technology options 85

http://www.openmobilealliance.org
http://www.wapforum.org

6.2.5 WMLScript
This is the companion language to WML, in the same way that JavaScript is a
companion language to HTML. WMLScript allows for procedural programming
such as loops, conditional and event handling. It has been optimized for a small
memory footprint and small devices. This language is derived from JavaScript.

6.2.6 cHTML
cHTML stands for Compact HTML and is a subset of the HTML specifications
targeting small appliances such as smartphones and mobile PDAs. The cHTML
tries to bypass several hardware restrictions by providing a standard markup
language and small browser that could be executed in a constrained
environment with a small memory, low power CPU, a small display, etc.

Since the Compact HTML is based on standard HTML recommendations from
W3C, we can develop and apply software tools to adapt pure HTML to cHTML,
making Internet information available and adequately formatted to new classes
of devices and appliances. Basically, cHTML excludes JPEG images, tables,
image map, multiple character fonts and styles, background color or images,
frames, and cascading style sheets from the HTML specification.

cHTML is the markup language of i-Mode. i-Mode is a wireless service
developed by NTT DoCoMo in Japan. It is designed to provide mobile phone
voice service, Internet and e-mail access.

For more information about Compact HTML, you can read the document
submitted to W3C, World Wide Web Consortium, at:

http://www.w3.org/TR/1998/NOTE-compactHTML-19980209.

6.2.7 VoiceXML
The Voice eXtensible Markup Language (VoiceXML) is an XML-based industry
standard language for creating voice applications, much as HTML is a language
for developing visual applications.

VoiceXML is defined and promoted by an industry forum, the VoiceXML Forum,
founded by AT&T, IBM, Lucent and Motorola, and currently supported by more
than 570 member companies.

VoiceXML was designed to create audio dialogs that feature text-to-speech,
digitized as well as prerecorded audio, recognition of both spoken and dual-tone
multi-frequency (DTMF) key input, recording of spoken input, telephony, and
mixed-initiative conversations. Its goal is to provide voice access to Web-based
content and applications. It enables the development of voice applications via the
86 Patterns: Pervasive Portals

http://www.w3.org/TR/1998/NOTE-compactHTML-19980209

use of a familiar markup style and Web server-side logic to deliver applications
over telephone lines. The resulting applications allow conversational access to
Web-based data, and can also interact with existing back-end business data and
logic.

A VoiceXML application is capable of retrieving information from a Web server
and, by making use of scripts and appropriate grammars, the application can
interact with the customer through spoken words.

For more information, you can visit the VoiceXML Forum Official Web site at:

http://www.voicexml.org

X+V
X+V is an abbreviation of XHTML + VoiceXML and it is a markup language
specification submitted to the World Wide Web Consortium (W3C) by IBM,
Motorola and Opera Software to simplify the development of multimodal
applications.

Multi-modal access will give users of pervasive devices (smartphones, PDAs,
kiosks, set-top-boxes, etc.) a range of options for interacting with an application.
To input information, they might use some combination of voice, keypad, stylus,
touchscreen, and the application would deliver information using a combination
of speech synthesis, text, graphics, A/V, etc.

X+V allows you to operate in a voice-only environment; in a visual-only
environment, and if you want, in a multimodal environment.

6.2.8 SyncML
SyncML stands for Synchronization Markup Language and it is a an open
standard protocol for data synchronization optimized for wireless networks. The
SyncML consortium is sponsored by IBM, Nokia, Symbian, Ericsson, Matsushita,
Motorola, Nokia, Openwave, Starfish Software and Symbian. It is being
supported by the leading wireless companies including Apple Computer,
Siemens AG, Vodafone Group, France Telecom and America Online.

The goal of SyncML is to enable synchronization of any type of data, from any
application, on any device, and over any network. It has been designed to cope
well with the specificities of mobile phones such as low bandwidth, unreliable
connections and high network latency.

For more information, you can visit the SyncML Official Web Site at:

http://www.syncml.org
 Chapter 6. Technology options 87

http://www.voicexml.org
http://www.syncml.org

6.2.9 Mobile devices
Today, we have thousands of mobile devices to choose from. Mobile clients
include wireless devices such as phones, smartphones, PDAs and even laptops.
When deciding which one is more suitable for your specific application, you
should analyze several factors such as the mobile platform, the mobile
application platform availability device and network connectivity options. The
goal is to overcome some device limitations to provide access to information and
application services from anywhere.

Mobile devices include wireless desktop PCs, WAP devices, i-mode devices,
PDAs, and Phone w/Voice. PDA devices cannot run the major operating systems
that run on desktop PCs and consequently there are various mobile
device-specific platforms. Palm devices use Palm OS. WinCE/PocketPC devices
use a version of Microsoft Windows called Windows CE.

Voice-enabled applications allow for a hands-free user experience
unencumbered by the limitations of computer interface controls.

Voice technology fall into two categories: those that recognize speech and those
that generate speech. The ability to recognize human voice by computers is
called Automatic Speech Recognition (ASR). The ability to generate speech from
written text is called speech synthesis or Text-to-Speech (TTS).

Mobile devices categories
We have placed the mobile devices into three categories to better describe the
specific features that they offer: mobile phones, smartphones and PDAs.

Mobile phones
When we refer to a mobile phone in this redbook, we are talking about a cellular
phone that has a microbrowser to access Internet content. A standard cellular
phone includes voice capabilities, messaging features (SMS or WAP push) and
data functionality (can access Internet content through a microbrowser).

When selecting a device to a new application, you should also consider some
industry-specific ruggedized devices. They have similar PDA functionality but
they are more robust to work in hazard environments. Symbol and Intermec are
two manufacturers specialized in these devices.

Smart phones
This is a generic name for voice-centric mobile phones with information
capability. It’s a hybrid device that combines the PDA and cellular phone
functionalities. Several models have been launched recently and we expect to
see more new models.
88 Patterns: Pervasive Portals

PDA (Personal Digital Assistant)
A Personal Digital Assistant (PDA) is a handheld computer with a wireless
interface that serves as an organizer for personal information. PDAs often have a
pen-based stylus to tap selections on menus and to enter printed characters. The
unit may also include a small on-screen keyboard that is tapped with the pen.
Data is synchronized between the PDA and desktop computer via cable or
wireless transmission. We are interested in PDAs that have wireless
transmission capability and include a Web browser. The major operating systems
for PDAs are Palm OS, Epoc, and Windows CE.

Wireless laptops
This category includes laptops, notebooks, or portable PC browser clients that
have a wireless interface to the network for Internet access. These clients use
standard TCP/IP protocols and a standard browser, such as Netscape Navigator
or Microsoft Internet Explorer. The wireless connection is usually much slower
than wireline-based network clients.

6.2.10 Mobile client platforms
There are numerous mobile client platforms on the market today. They all target
the same objectives: small footprint, optimized user interface, simple operation.
This section gives a quick overview of the most common mobile client platforms.

Microsoft Pocket PC
The PocketPC operational system is based on the Microsoft Windows CE 3.0
(WinCE) operating system. It’s is similar to the well-known Windows operating
system, but optimized and developed especially for PocketPC mobile devices.

For more information, you can visit the Microsoft Web site at:

http://www.microsoft.com/mobile/pocketpc

Microsoft Windows Smartphone platform
Like PocketPC, Microsoft a smartphone platform also based on Windows CE
V3.0. It combines voice and text communication and data applications with a
similar look and feel. Like the J2ME and BREW platforms, it can run online and
disconnected applications.

For more information, you can visit the Microsoft Web site at:

http://www.microsoft.com/mobile/smartphone
 Chapter 6. Technology options 89

http://www.microsoft.com/mobile/pocketpc
http://www.microsoft.com/mobile/pocketpc

Palm OS
The base for this solution is not the device, but the operating system (OS). The
OS called PALM OS is used with a wide range of devices, including the Palm,
Sony and HandSpring devices. This device has built-in mobile capabilities, and
works as a mobile phone with a data connection.

Like many other operating systems on the market, the Palm OS comes in
different editions. The most widely used editions are V3.x and the latest, V4.0. All
the versions are improvements on the previous versions. It is important to note
that some of the software relies on a specific version of the OS.

For more information, you can visit the Palm OS official Web site at:

http://www.palmsource.com.

Symbian OS
Symbian is an open standard operating system for data-enabled mobile phones.
It includes a multi-tasking multithreaded core, a user interface framework, data
services enablers, application engines and integrated PIM functionality and
wireless communications. It is present in several smartphones including Ericsson
R380 Smartphone, Nokia 3650, Nokia 9290 and 9210 Communicator, Nokia
3650.

For more information, you can visit the Symbian Web site at:

http://www.symbian.com.

J2ME
J2ME stands for Java 2 Platform Micro Edition; it is a very small Java application
environment suitable for several segments such as a TV set-top box, mobile
phones and PDAs. The J2ME platform is composed of standard Java APIs and
runtime environment to handle the user interface, security and network protocols.
It also support online and disconnected applications; for example, handset users
can download and run applications in the devices themselves, without the need
for a continuous connection. The Motorola i85s and Nokia 8910i are examples of
handsets with J2ME support.

For more information, you can visit the SUN Microsystems J2ME official Web site
at:

http://java.sun.com/j2me.

Java Midlet
Midlet stands for Mobile Information Device Application. The latest generation of
mobile phones uses a reduced version of J2ME. This version of Java has been
90 Patterns: Pervasive Portals

http://java.sun.com/j2me
http://java.sun.com/j2me
http://www.palmsource.com

specifically adapted for mobile information devices (MIDs), including mobile
phones under the MID Profile.

BREW
BREW stands for Binary Runtime Environment for Wireless and it is an
application platform execution environment for wireless devices developed by
QUALCOMM. The BREW platform is part of an end-to-end solution for wireless
applications development, device configuration, application distribution, and
billing which will enable services providers and carriers’ customers, for example,
to download new applications over the air and pay for them. The target devices
are cellular phones like Motorola T720 and Samsung SPH-X2700.

For more information, you can visit the Qualcomm BREW official Web site at:

http://www.qualcomm.com/brew.

6.3 Wireless networks
Wireless networks are used to transmit data between mobile devices or personal
computers using wireless adapters without the use of a physical cable or wire.
Depending on the coverage range, these networks could be classified as:

� PAN (Personal Area Network)

� WLAN (Wireless Local Area Network)

� WWAN (Wireless Wide Area Network)

6.3.1 PAN (Personal Area Network)
A PAN has a very short range, usually up to 10-20 feet. The main objective of this
network is to interconnect personal devices, for example a cell phone to a PDA
or keyboard to a desktop computer. It is also used to connect these with other
available devices in the environment, for example a cell phone with vending
machines. Several technologies could be used to implement a PAN, such as
Infrared and Bluetooth.

Infrared technology
Infrared is an invisible band of radiation at the lower end of the electromagnetic
spectrum; it starts in the middle of the microwave spectrum and goes up to the
beginning of visible light. Infrared transmission requires an unobstructed line of
sight between transmitter and receiver. It is used for short range point-to-point
wireless transmission between computer devices, as well as many handheld
remotes for TVs and video and stereo equipment.
 Chapter 6. Technology options 91

http://www.qualcomm.com/brew

The Infrared technology standards are controlled by IrDA, Infrared Technology
Data Association, to ensure interoperability between devices of all types. For
more information, you can visit the official IrDA Web site at:

http://www.irda.org

Bluetooth
Bluetooth is an open technology specification created for short-range (up to 10
meters) wireless connection using low-cost transceiver chips to be embedded in
mobile PCs, smart phones, and other portable devices. It provides three voice
and data channels via a one-to-one connection with built-in encryption and
verification. The objective is to connect devices and establish ad-hoc
connections in a peer-to-peer mode, using the unlicensed 2.4GHz frequency.
This technology can transfer data at up to 1 Mb per second. The Bluetooth
technology signals are omni-directional, thus eliminating the need for
line-of-sight.

The Bluetooth technology is governed by the Bluetooth Special Interest Group
(SIG) which includes promoter group companies 3Com, Agere, Ericsson, IBM,
Intel®, Microsoft, Motorola, Nokia and Toshiba, and more than 2000 Associate
and Adopter member companies representing a broad spread of industry
interest.

The Bluetooth Special Interest Group is working together with the IEEE, Institute
of Electrical and Electronics Engineers, focused on the development of
consensus standards for PAN. It is also working on recommended practices and
guidelines to handle, among other issues, manufacturer interoperability. The
IEEE 802.15.1 standard is an additional resource for those who implement
Bluetooth devices.

For more information, you can visit the official Bluetooth Web site at:

http://www.bluetooth.com

or the IEEE Web site at:

http://www.ieee.org

If you want to understand the IBM’s perspective regarding the synergies between
the Bluetooth technology and the pervasive computing, you can read our white
paper at:

http://www.ibm.com/industries/telecom/doc/content/ bin/Bluetooth.pdf.

6.3.2 WLAN (Wireless Local Area Network)
A Wireless LAN is a local area network that uses wireless technologies to
connect devices and transmits data. To work properly, a WLAN requires an
92 Patterns: Pervasive Portals

http://www.irda.org
http://www.bluetooth.com
http://www.bluetooth.com
http://www.ieee.org
http://www.ibm.com/pvc/tech/bluetoothpvc.shtml
http://www-1.ibm.com/industries/telecom/doc/content/bin/Bluetooth.pdf
http://www-1.ibm.com/industries/telecom/doc/content/bin/Bluetooth.pdf

antenna connected to the network and a client with a wireless card. The antenna
is known as an access point and the wireless card is usually a PCMCIA card. The
widespread technology is the IEEE 802.11b which uses an unlicensed 2.4GHz
frequency and can transfer data at up to 11MB per second. The current speed is
dependent on the distance between the access point and the client. The closer
the client is to the access point, the higher the speed it will achieve.

The IEEE (Institute of Electrical and Electronics Engineers) is responsible for the
IEEE 802.11b standard. There are some other WLAN standards that are starting
to have commercial products like IEEE 802.11a, which uses the 5GHz frequency
and can transfer data at up to 54MB per second. The IEEE is continuously
developing other standards like 802.11g (for WLANS operating in the 2.4 GHz
frequency but with a bandwidth of 54 MBps), 802.11i (enhanced security),
802.11h (spectrum and power control management) and 802.11e (quality of
service).

A wireless LAN does not require lining up devices for line-of-sight transmission
such as IrDA. The wireless access points (base stations) are connected to an
Ethernet network or server and transmit a radio frequency over an area of
several hundred to a thousand feet. This frequency can penetrate walls and
other non-metal barriers. Roaming users can be handed off from one access
point to another as in a cellular phone system. Laptops usually use PCMCIA
cards to connect to a wireless access point and desktops and servers use plug-in
cards.

Wi-Fi Alliance
The Wi-Fi Alliance is an important member of the IEEE 802.11 ecosystem. They
are a nonprofit trade organization that promotes the use of standardized 802.11
technologies and certify Wi-Fi product interoperability.

For more information, you can visit the official IEEE Web site at:

http://www.ieee.org

or the Wi-Fi Alliance Web site at:

http://www.weca.net

6.3.3 WWAN (Wireless Wide Area Network)
Wireless WANs use the cellular networks to provide access. The cellular
technology is in constant evolution. Each major advance is often referred to as a
generation with its acronyms: 1G (first generation), 2G (second generation) and
so on.
 Chapter 6. Technology options 93

http://www.irda.org
http://www.weca.net

1G
The First-generation (1G) was the first analogic circuit-switching cellular
technology appropriated to mobile voice communication.

2G
The Second-generation (2G) systems represented the digital evolution and were
introduced in the 1990s. Some of the technologies implemented included TDMA,
CDMA, and GSM. 2G systems were used primarily for voice. They have basic
data capabilities but with a slow data transfer speed, between 9.6KBps and
14.4KBps. These protocols support high bit rate voice and limited data
communications. They offer auxiliary services such as data, fax and SMS.

2.5G
The 2.5G represents a major step towards the convergence between
telecommunication and the Internet. It brings packet-switching technology to
data transfer. Some 2.5G systems have been implemented recently, such GPRS
and CDMA 1xRTT. Both can be considered a packet-based extension of GSM
and CDMA networks, respectively, and provide higher data throughput and
always-on connectivity. They also provide new business models such as the pay
per packet model.

Under the wireless solution perspective, we should focus on the 2.5G which
brings higher packet data transfer speed, allowing the development of a huge
spectrum of new applications.

3G
Third-generation (3G) systems are starting to be implemented and will be called
IMT-2000 (International Mobile Telecommunications-2000). IMT-2000 is the ITU
(International Telecommunication Union) globally coordinated definition of 3G,
covering key issues such as frequency spectrum use and technical standards.
3G networks provide higher-speed transmission to support high-quality audio
and video, as well as global roaming capability. 3G will support bandwidth-hungry
applications such as full-motion video, video-conferencing and full Internet
access. For more information, you can visit the ITU Official Web site at:

http://www.itu.int

UMTS
The Universal Mobile Telecommunications System (UMTS) is the European
implementation of the 3G wireless phone system supported by the European
Telecommunications Standard Institute (ETSI). UMTS, which is part of IMT-2000,
offers global roaming and personalized features. UMTS was designed as an
evolutionary system for GSM network operators. UMTS uses the W-CDMA
94 Patterns: Pervasive Portals

http://www.itu.int

technology. GPRS and EDGE are interim steps that will speed up wireless data
for GSM. For more information you can visit the UMTS Forum Web site at:

http://www.umts-forum.org

or the ETSI Web site at:

http://www.etsi.org.

WCDMA
The Wideband Code Division Multiple Access (WCDMA) radio access
technology is part of UMTS and is supported by several manufacturers such as
Ericsson (Sweden) and Nokia (Finland). This technology will be used mainly in
Europe and Japan. The data translation rate is 64 kbps for upstream and 384
kbps for downstream.

CDMA2000
CDMA2000 is a specification developed by the Third Generation Partnership
Project 2 (3GPP2). It is an evolution from CDMA technology. The first phase of
CDMA2000 is known as CDMA2000 1X and will provide bandwidth of 144 kbps.
The second phase is labeled CDMA2000 1xEV and will provide for bandwidth in
the 2Mbps range. For more information you can visit the 3GPP Web site at:

http://www.3gpp2.org

6.4 Web application server
Figure 6-2 on page 96 shows the recommended technology model for a Web
application server.
 Chapter 6. Technology options 95

http://www.umts-forum.org
http://www.etsi.org.
http://www.3gpp2.org

Figure 6-2 Web application server technology model

We assume in this book that you are using a Web application server and
server-side Java. While there have been many other models for a Web
application server, this is the one that is experiencing widespread industry
adoption.

Before looking at the technologies and APIs available in the Web application
programming environment, first let’s have a word about two fundamental
operational components on this node, the HTTP server and the application
server. For production applications, they should be chosen for their operational
characteristics in areas such as robustness, performance, and availability.

Native Platform
Services

Web Application Server

Java VM

Dynamic
Content
Services

Enterprise Java
Libraries

e-business Applications

Enterprise JavaBeans

Java Servlets

Java Server Pages

Protocols - HTTP, IIOP, ...

Network Infrastructure

Existing
Data &

Applications

NSF
IMS

CICS

RDB

Persistent Store

File
RDB

Connectors
96 Patterns: Pervasive Portals

We follow the well-known Model-View-Controller (MVC) design structure so often
used in user interfaces. For the Web application programming model, the
following applies.

� The Model represents the data of the application, and the business rules and
logic that govern the processing of the data. In a J2EE application, the Model
is usually represented to the View and the Controller via a set of JavaBeans
components.

� The View is a visual representation of the Model. Multiple Views can exist
simultaneously for the same model and each View is responsible for making
sure that it is presenting the most current data by either subscribing to state
change events or by making periodic queries to the Model. With J2EE, the
view is generally implemented using JavaServer Pages (JSP).

� The Interaction Controller decouples the visual presentation from the
underlying business data and logic by handling user interactions and
controlling access to the Model. It processes the incoming HTTP requests
and invokes the appropriate business or UI logic. Using J2EE, the Controller
is often implemented as a servlet.

6.4.1 Java servlets
Servlets are Java-based software components that can respond to HTTP
requests with dynamically generated HTML. Servlets are more efficient than CGI
for Web request processing, since they do not create a new process for each
request.

Servlets run within a Web container as defined by the J2EE Model and therefore
have access to the rich set of Java-based APIs and services. In this model, the
HTTP request is invoked by a client such as a Web browser using the servlet
URL. Parameters associated with the request are passed into the servlet via the
HttpServletRequest, which maintains the data in the form of name/value pairs.
Servlets maintain state across multiple requests by accessing the current
HttpSession object, which is unique per client and remains available throughout
the life of the client session.

Acting as an MVC Controller component, a servlet delegates the requested tasks
to beans that coordinate the execution of business logic. The results of the tasks
are then forwarded to a View component, such as a JSP to produce formatted
output.

One of the attractions of using servlets is that the API is a very accessible one for
a Java programmer to master. The specification of the J2EE 1.3 platform
requires Servlet API 2.3 for support of packaging and installation of Web
applications.
 Chapter 6. Technology options 97

Servlets are a core technology in the Web application programming model. They
are the recommended choice for implementing the Interaction Controller classes
that handle HTTP requests received from the Web client.

6.4.2 Java portlet
Portlets are reusable components that provide access to Web-based contents,
applications, and other resources. Web pages, Web Services, applications, and
syndicated content feeds can be accessed through portlets.

Companies can create their own portlets or select portlets from a catalog of
third-party portlets. Portlets are intended to be assembled into a larger portal
page, with multiple instances of the same portlet displaying different data for
each user.

From a user's perspective, a portlet is a window on a portal site that provides a
specific service or information, for example, a calendar or news feed. From an
application development perspective, portlets are pluggable modules that are
designed to run inside a portlet container of a portal server.

From the development perspective, the portlets are components coded against
the portlet API. The portlet components are part of the portal application. The
portal application is deployed on the portal server.

For more information about portlets and portlets programming, you can refer to
IBM Redbook entitled A Portal composite pattern Using WebSphere Portal V4.1,
SG24-6869.

6.4.3 JavaServer Pages (JSPs)
JSPs were designed to simplify the process of creating Web pages by separating
the Web presentation from Web content. In the page construction logic of a Web
application, the response sent to the client is often a combination of template
data and dynamically generated data. In this situation, it is much easier to work
with JSPs than to do everything with servlets. The JSP acts as the View
component in the MVC model.

The chief advantage JSPs have over standard Java servlets is that they are
closer to the presentation medium. A JavaServer Page is developed as an HTML
page. Once compiled, it runs as a servlet. JSPs can contain all the HTML tags
that Web authors are familiar with. A JSP may contain fragments of Java code
that encapsulate the logic that generates the content for the page. These code
fragments may call out to beans to access reusable components and enterprise
data.
98 Patterns: Pervasive Portals

JSP technology uses XML-like tags and scriptlets written in Java programming
language to encapsulate the conditional logic that generates dynamic content for
an HTML page. In the runtime environment, JSPs are compiled into servlets
before being executed on the Web application. Output is not limited to HTML but
also includes WML, XML, cHTML, DHTML, and VoiceXML. The JSP API for
J2EE 1.3 is JSP 1.2.

JSPs are the recommended choice for implementing the View that is sent back to
the Web client. For those cases where the code required on the page is to be a
large percentage of the page, and the HTML minimal, writing a Java servlet will
make the Java code much easier to read and therefore maintain.

6.4.4 JavaBeans
JavaBeans are an architecture developed by Sun Microsystems, Inc. describing
an API and a set of conventions for reusable, Java-based components. Code
written to Sun’s JavaBeans architecture is called JavaBeans or just beans. One
of the design criteria for the JavaBeans API was support for builder tools that can
compose solutions that incorporate beans. Beans may be visual or non-visual.

Beans are recommended for use in conjunction with servlets and JSPs in the
following ways:

� As the client interface to the Model layer. An Interaction Controller servlet will
use this bean interface.

� As the client interface to other resources. In some cases this may be
generated for you by a tool.

� As a component that incorporates a number of property-value pairs for use by
other components or classes. For example, the JavaServer Pages
specification includes a set of tags for accessing JavaBeans properties.

6.4.5 XML
XML (Extensible Markup Language) and XSL stylesheets can be used on the
server side to encode content streams and parse them for different clients, thus
enabling you to develop applications for a range of PC browsers and for the
emerging pervasive devices. The content is in XML and an XML parser is used to
transform it to output streams based on XSL stylesheets that use CSS.

This general capability is known as transcoding and is not limited to XML-based
technology. The appropriate design decision here is how much control over the
content transforms you need in your application. You will want to consider when it
is appropriate to use this dynamic content generation and when there are
advantages to having servlets or JSPs specific to certain device types.
 Chapter 6. Technology options 99

XML is also used as a means to specify the content of messages between
servers, whether the two servers are within an enterprise or represent a
business-to-business connection. The critical factor here is the agreement
between parties on the message schema, which is specified as an XML DTD or
Schema. An XML parser is used to extract specific content from the message
stream. Your design will need to consider whether to use an event-based
approach, for which the SAX API is appropriate, or to navigate the tree structure
of the document using the DOM API.

IBM’s XML4J XML parser was made available through the Apache open source
organization under the Xerces name. For open source XML frameworks, see:

http://xml.apache.org/

Defining XML documents
XML documents are defined using DTDs or XML Schemas.

DTDs are a basic XML definition language, inherited from the SGML
specification. The DTD specifies what markup tags can be used in the document
along with their structure.

DTDs have two major problems:

� Poor data typing: in DTDs, elements can only be specified as EMPTY, ANY,
element content, or mixed element-and-text content, and there is no standard
way to specify null values for elements.

Date formats, numbers, or other common data types cannot be specified in
the DTD, so an XML document may comply with the DTD but still have data
type errors that can only be detected by the application.

� Not defined in XML: DTD uses its own language to define XML syntax, and it
is not compliant with the XML specification. This makes it difficult to
manipulate a DTD.

To solve these problems, the World Wide Web Consortium (W3C) defined a new
standard to define XML documents called XML Schema. XML Schema provides
the following advantages over DTDs:

� Strong typing for elements and attributes

� Standardized way to represent null values for elements

� Key mechanism that is directly analogous to relational database foreign keys

� Defined as XML documents, making them programmatically accessible
100 Patterns: Pervasive Portals

http://xml.apache.org/

Even though the XML Schema is a more powerful technology to define XML
documents, it is also a lot harder to work with, so DTDs are still widely used to
define XML documents. Additionally, simple, not hard-typified documents can be
easily defined using DTDs with similar results to using XML Schema.

Whether to use one or the other will depend on the complexity of the messages
and the validation requirements of the application. Actually, in many cases, both
(a DTD and a XML Schema) are provided, so they can be used by the
application depending on its requirements.

XSLT
Extensible Stylesheet Language Transformations (XSLT) is a W3C specification
for transforming XML documents into other XML documents. The XSLT is built on
top of the Extensible Stylesheet Language (XSL) which, like CSS2 seen in 6.1.4,
“CSS” on page 79, is a stylesheet language for XML. Unlike CSS2, XSL is also a
transformation language.

A transformation expressed in the XSLT language defines a set of rules for
transforming a source tree to a result tree; it is expressed in the form of a
stylesheet.

An XSLT processor is used for transforming a source document to a result
document. There are currently a number of XSLT processors available on the
market. DataPower has introduced an XSL just-in-time (JIT) compiler, which
speeds up the time taken for the XSL transformation.

The XSLT processor has a performance overhead, so online processing of larger
documents can be slow.

XML security
XML security is an important issue, particularly where XML is being used by
organizations to interchange data across the Internet. Several new XML security
specifications are working their way through three standards bodies - the W3C
(World Wide Web Consortium), IETF (Internet Engineering Task Force), and
OASIS (Organization for the Advancement of Structured Information Standards).
We highlight a few of them here:

� XML Signature Syntax and Processing is a specification for digitally signing
electronic documents using XML syntax. According to the W3C, “XML
Signatures provide integrity, message authentication, and/or signer

Note: We have to remember that the validation process of an XML document
using XML Schemas is an expensive process. Validation should be performed
only when it is necessary.
 Chapter 6. Technology options 101

authentication services for data of any type, whether located within the XML
that includes the signature or elsewhere.”

A key feature of the protocol is the ability to sign parts of an XML document
rather than the document in its entirety. This is necessary because an XML
document might contain elements that will change as the document is passed
along or various elements that will be signed by different parties.

WebSphere Studio provides you with the ability to create (using a wizard) and
verify XML digital signatures.

� XML encryption will allow encryption of digital content, such as Graphical
Interchange Format (GIF) images or XML fragments. XML encryption allows
the parts of an XML document to be encrypted while leaving other parts open,
the encryption of the XML itself, or the super-encryption of data (that is,
encrypting an XML document when some elements have already been
encrypted).

� XKMS (XML Key Management Specification) establishes a standard for
XML-based applications to use Public Key Infrastructure (PKI) when handling
digitally signed or encrypted XML documents. An XML signature addresses
message and user integrity, but not issues of trust that key cryptography
deals with.

� SAML (Security Assertion Markup Language) is the first industry standard for
secure e-commerce transactions using XML. It aims to standardize the
exchange of user identities and authorizations by defining how this
information is to be presented in XML documents, regardless of the
underlying security systems in place.

For further discussion, see the Sun ONE article Riddle Me This: Is Your XML
Data Safe? by Brett Mendel, which can be found at:

http://dcb.sun.com/practices/websecurity/overviews/xmldata.jsp

Advantages of XML
There are many advantages to XML in a broad range of areas. Some of the
factors that influenced the wide acceptance of XML are as follows:

� Acceptability of use for data transfer

XML is a standard way of putting information in a format that can be
processed and exchanged across different hardware devices, operating
systems, software applications and the Web.

� Uniformity and conformity

XML gives you an common format that could be developed upon and is
accepted industry-wide.
102 Patterns: Pervasive Portals

http://dcb.sun.com/practices/websecurity/overviews/xmldata.jsp

� Simplicity and openness

Information coded in XML is human readable.

� Separation of data and display

The representation of the data is separated from the presentation and
formatting of the data for display in a browser or other device.

� Industry acceptance

XML has been accepted widely by the information technology and computing
industry. Numerous tools and utilities are available, along with new products
for parsing and transforming XML data to other data, or for display.

Disadvantages of XML
Some XML issues to consider are as follows:

� Complexity

While XML tags can allow software to recognize meaningful content within
documents, this is only useful to the extent that the software reading the
document knows what the tagged content means in human terms, and knows
what to do with it.

� Standardization

When multiple applications use XML to communicate with each other, they
need to agree on the tag names they are using. While industry-specific
standard tag definitions often do exist, you can still declare your own
non-standard tags.

� Large size

XML documents tend to be larger in size than other forms of data
representation.

6.4.6 Enterprise JavaBeans
“Enterprise JavaBeans” is Sun's trademarked term for its EJB architecture (or
“component model”). When writing to the EJB specification, you are developing
“enterprise beans” (or, if you prefer, “EJBs”).

Enterprise beans are distinguished from JavaBeans in that they are designed to
be installed on a server, and accessed remotely by a client. The EJB framework
provides a standard for server-side components with transactional
characteristics.
 Chapter 6. Technology options 103

The EJB framework specifies clearly the responsibilities of the EJB developer
and the EJB container provider. The intent is that the “plumbing” required to
implement transactions or database access can be implemented by the EJB
container. The EJB developer specifies the required transactional and security
characteristics of an EJB in a deployment descriptor (this is sometimes referred
to as declarative programming). In a separate step, the EJB is then deployed to
the EJB container provided by the application server vendor of your choice.

There are three types of Enterprise JavaBeans:

� Session beans

� Entity beans

� Message-driven beans

A typical session bean has the following characteristics:

� Executes on behalf of a single client.

� Can be transactional.

� Can update data in an underlying database.

� Is relatively short lived.

� Is destroyed when the EJB server is stopped. The client has to establish a
new session bean to continue computation.

� Does not represent persistent data that should be stored in a database.

� Provides a scalable runtime environment to execute a large number of
session beans concurrently.

A typical entity bean has the following characteristics:

� Represents data in a database.

� Can be transactional.

� Has shared access by multiple users.

� Can be long lived (lives as long as the data in the database).

� Survives restarts of the EJB server. A restart is transparent to the client.

� Provides a scalable runtime environment for a large number of concurrently
active entity objects.

A typical Message-Driven Bean has the following characteristics:

� Consumes messages sent to a specific queue.

� Is asynchronously invoked.

� Is stateless.
104 Patterns: Pervasive Portals

� Can be transaction aware.

� May update shared data in an underlying client message.

� Executes upon receipt of a single client message.

� Has no component or home interface.

� Is removed when the EJB container crashes. The container has to
re-establish a new message-driven object to continue computation.

Typically, an entity bean is used for information that has to survive system
restarts. In session beans, on the other hand, the data is transient and does not
survive when the client's browser is closed. For example, a shopping cart
containing information that may be discarded uses a session bean, and an
invoice issued after the purchase of the items is an entity bean.

An important design choice when implementing entity beans is whether to use
Bean Managed Persistence (BMP), in which case you must code the JDBC logic,
or Container Managed Persistence (CMP), where the database access logic is
handled by the EJB container.

The business logic of a Web application often accesses data in a database. EJB
entity beans are a convenient way to wrap the relational database layer in an
object layer, hiding the complexity of database access. Because a single
business task may involve accessing several tables in a database, modeling
rows in those tables with entity beans makes it easier for your application logic to
manipulate the data.

An important change to the specification in EJB 2.0 is the addition of a new
enterprise bean type, the message-driven bean (MDB). The message-driven
bean is designed specifically to handle incoming JMS messages. The EJB
container uses message properties and bean deployment descriptor to select the
bean to invoke when a message arrives, so your application logic only needs to
process the message contents.

The J2EE 1.3 platform requires support for EJB 2.0. As a tool provider,
WebSphere Application Server V5.0 supports J2EE 1.3 and therefore supports
EJB 2.0. EJBs are packaged into EJB modules (JAR files) and then combined
with Web modules (WAR files) to form an enterprise application (EAR file). EJB
deployment requires generating EJB deployment code specific to the target
application server.
 Chapter 6. Technology options 105

6.4.7 Additional enterprise Java APIs
The J2EE specification defines a set of related APIs that work together. Here are
the remainder not discussed so far:

� JNDI: Java Naming and Directory Interface. This package provides a
common API to a directory service independent of any directory access
protocol. This allows for easy migration to new directory services. Through
this interface, component providers can store and retrieve Java object
instances by name. Service provider implementations include those for JDBC
data sources, LDAP directories, RMI and CORBA object registries. Sample
uses of JNDI include:

– Accessing a user profile from an LDAP directory
– Locating and accessing an EJB home
– Locating a driver-specific data source

� RMI-IIOP: Remote Method Invocation (RMI) and RMI over IIOP are part of
the EJB specification as the access method for clients to access EJB
services. From the component provider point of view, these calls are local.
The EJB container takes care of calling the remote methods and receiving the
response. To use this API, component providers create an IDL description of
the EJB interface and then compile it to generate the client-side and
server-side stubs. The stubs connect the object implementations with the
Object Request Broker (ORB). ORBs communicate with each other through
the Internet Inter-ORB Protocol (IIOP). RMI can also be used to implement
limited-function Java servers.

� JTA: Java Transaction API. This Java API for working with transaction
services is based on the XA standard. With the availability of EJB servers,
you are less likely to use this API directly.

� JAF: JavaBeans Activation Framework. This API is not intended for typical
application use, but it is required by the JavaMail API.

� JavaMail: This is a set of classes for supporting e-mail. Functionally, it
provides APIs for reading, sending, and composing Internet mail. This API
models a mail delivery system and requires the SMTP for sending mail and
POP3 or IMAP for receiving mail. Special data wrapper classes are provided
to view and edit data in the mail content. Support for MIME data is delegated
to the JAF-aware beans.

� JAXP: API for parsing and transforming XML documents.

� JAAS: Java Authentication and Authorization Service.
106 Patterns: Pervasive Portals

6.5 Transcoding technology
Transcoding Technology is delivered as an embedded transcoding engine in the
WebSphere Portal Server as part of the WebSphere Everyplace Access product.
It takes care of transcoding the content for different devices using the original
HTML source. The transcoding technology is transparent for application
designers and developers. It is configured in the portal server and for each
portlet that wishes to use content transcoding.

The Transcoding technology that is shipped as part of WebSphere Everyplace
Access is an extracted part of the Transcoding Publisher product.
 Chapter 6. Technology options 107

108 Patterns: Pervasive Portals

Chapter 7. Application design

This chapter provides design guidelines for solution designers and application
developers. It addresses the design stage of the solution development process.

The objective of this chapter is to highlight those key design issues that are
specific to a pervasive and portal solution.

The chapter starts with basic e-business and Self-Service application design,
then goes into details about the sample application that was developed for this
book.

The majority of the chapter goes into details about certain design guidelines,
such as:

� Model-View-Controller design

� Object-oriented design

� Portal solution design guidelines

� Mobile application design guidelines

7

© Copyright IBM Corp. 2003. All rights reserved. 109

7.1 e-business application design
e-business application design is changing the way that the products are created.
The designer needs to take care of the functional and non-functional
requirements and also be clear the business issues in considering the solution
implementation.

In the traditional way to develop applications, the designer should take care of
the business requirements but basically the interface does not have variations,
considering that the basic capabilities are the same.

In the new e-business environment, the application must be available for many
devices and the users have different ways to access the same information.
These considerations make the design more ample and the designer must take
into further consideration the business requirements and the non-functional
requirements such as availability, performance (this depends on the device the
user has been using), and other facilities that the e-business application needs.

There are many differences between the traditional applications and e-business
applications; some of them are listed below:

� The domain of e-business applications users is typically much more diverse
than that of the user group for traditional applications. Users can be known to
the systems or anonymous, and can come from inside or outside the
enterprise. Web applications must be developed to meet the varied needs of
those end users.

� The diversity in user types and exposure to the outside world significantly
increases security risks to internal systems. e-business applications security
infrastructure and applications must be designed accordingly, and will likely
require dedicated security components.

� The user experience, look and feel, and features of the site need to be
enhanced frequently to leverage emerging technologies, attract and retain
site users.

� Changes and enhancements must be delivered more quickly and flawlessly
than ever to avoid damage to the corporation’s reputation and lost customers.

� Content for e-business applications can come from many sources: technical
and non-technical, from inside or outside the enterprise. Such diversity in
location, skill levels, and access creates significant challenges for content
creation and management.

� It is hard to predict the runtime load of e-business applications. Based on the
many variables, system load can increase dramatically over time. e-business
applications and infrastructure must be designed with rapid scalability and
availability in mind.
110 Patterns: Pervasive Portals

� Connection device, bandwidth, and reliability have an enormous impact on
the success of a site. Access devices can range from small-footprint mobile
devices such as wireless phones to PCs with near-LAN speed bandwidth.
Infrastructure and interfaces for e-business applications must take this into
account.

To meet these challenges, flexibility is a critical aspect in the design of Web
applications. The following sections provide some suggestions for meeting the
diverse challenges of e-business, especially in regard to a Pervasive Portal
solution.

7.2 Self-Service application guidelines
The design guidelines outlined here primarily focus on Self-Service Web
applications. Before exploring these guidelines, you should be familiar with the
Self-Service runtime patterns and the various technology options available for
implementing a Self-Service Web application, including server-centric
Java-based technologies such as servlets, JSPs, JavaBeans, and EJBs for such
implementations. The self-service basic concepts can be found in more detail in
Chapter 3, “Selecting the Application patterns” on page 27.

Clients are responsible for accepting and validating the user input,
communicating the user inputs to the Web application server, and presenting the
results received from the Web browser, PDAs or WAP (for example cell phones).

Clients may use HTTP, IIOP, WAP, VoIP (Voice over IP), TCP/IP, or other Internet
standard protocols to communicate with the Web application server. These
clients can be broadly classified into the following categories:

� HTML clients - These use HTTP protocol to communicate with the Web
application server. These clients display HTML Web pages. In addition, they
are capable of processing client-side JavaScript for enhancing navigation to
perform simple input validation and to handle simple errors. Furthermore, the
HTML clients can display small Java applets to enhance the GUI.

� Application clients - These are primarily large Java applets or Java
applications. These clients provide rich graphical user interfaces compared to
HTML clients. They may communicate with the Web application server over a
number of protocols including HTTP, IIOP, MQ, etc. Application clients
communicate with the Web application server primarily to receive data rather
than preformatted HTML pages. These clients use the data received to format
and render the user interface. All of the user interface processing is
performed on the client side. In addition, under this model, some parts of the
business logic can also be processed on the client side.
 Chapter 7. Application design 111

� Application clients that use Java Application for PDA using J2ME (Java 2
Micro Edition) -This application can be online or offline and can use the
synchronization techniques using SyncML to update the data. In this case,
the PDA should have a Java Runtime Environment (CVM, KVM, J9) and the
appropriate configuration (CLDC - Connected Limited Device Configuration or
CDC - Connected Device Configuration) and profile (MIDP, PDAP, etc.). Also
in this case, the application will have some capabilities for processing.

� WML clients - These use WAP protocols to communicate with the Web
application server. These clients display WML in the client device. The
communication between the gateway and Web application can be HTML
using transcoding technologies to translate from HTML to WML; the
application throws the data into XML format and certain software links it with a
Stylesheet; WML can be directly provided by the application.

7.3 Sample scenario
The sample application is a Pervasive Portal for a computer maintenance
company. It can be used by its customers, technicians and help desk attendants.
This Pervasive Portal can be accessed through a regular Internet browser like
Netscape or Internet Explorer, and also through a cell phone with a WAP browser
or a PDA with PalmOS. It can be expanded to other platforms supported by the
tools used, such as WebSphere Everyplace Access.

The sample application implements a help desk portal with three perspectives:
customer, technician and customer service attendant.

The customer perspective shows the “problem entry” and the “problem follow-up”
applications. These applications are available through a Web browser, on PDAs
and for WAP phones. In the technician perspective, it also has the “close defect”
and “invoice customer” applications and access to the knowledge system. The
call center attendants can have the same perspective as the customer but can
search the knowledge database to find help for the customer at the first call.

This section gives a detailed description of the sample scenario we have used for
this book. This scenario is based on a sample application that handles service
requests from the customers, manages the service fulfilment, and provides help
for the agents in the field.

There are three different types of users for the application:

� The Client can submit a request to the system. There is an option to request
help using a computer with a simple Web browser. Since the application
handles service requests for computer parts, the computer is probably going
112 Patterns: Pervasive Portals

to be broken, so we have to provide another channel for the customer: a
phone contact.

� The Customer Service will help the customer submit the request, in case the
customer has a broken system or is not willing to use a Web browser on a
computer.

� The Technicians are the technical specialists who can fix the problem at the
customer site. They need to know about the problem, the details of the
problem, the address where the problem has to be solved. They have to be
able to place orders remotely in case the service requires new parts or
replacement. The technician needs to have access to a knowledge or
supporting database to solve unusual situations and problems.

With today’s technology, we can arm the technician with several different
accessories on the field, for example a laptop, PDA, or intelligent wireless
phone. These instruments all have some sort of network connection to the
Internet, either wireless or wireline connection, permanent (online most of the
time) or temporary (offline most of the time).

7.3.1 Business flow
The business flow explains how the solution works in an everyday situation,
without too many technical details. There are three different flows, according to
the roles identified for the business.

1. Customer’s perspective

2. Customer representative’s perspective

3. Technician’s perspective

Customer flow
1. The customer runs into a hardware problem with the machine in the office.

The hardware is supported by the company from our sample scenario.

2. The user goes to the company’s Web site to submit a service request.

3. If the user is not registered yet, then he/she can register via the registration
page and process.

4. Once the user is registered or logged in, a service request needs to be
submitted. The request is a simple Web-based form; it needs to be filled out
and sent to the system.

5. The user gets a reply from the system that the request was successfully
processed.

6. Based on the severity of the problem, the technician will visit the location,
sooner or later, to fix the problem.
 Chapter 7. Application design 113

Customer representative flow
1. The customer calls the customer representative to get help and schedule a

service for the defective hardware.

2. The customer representative uses an intranet version of the same application
that the customer uses to submit a new service request.

3. The request is a simple Web-based form; it needs to be filled out then sent to
the system.

4. The customer representative gets a reply from the system that the request
was successfully processed. The customer representative can tell the
customer about the details of the request or can send a notification to the
customer.

Technician flow
1. The technician receives the service request. If the request has a high priority,

the technician gets a notification on a pervasive device. Otherwise, the
technician can get the details by synchronizing a PDA, accessing the
company’s Web site or accessing the Pervasive Portal application with a
smartphone. The technician receives a to-do list with the service request
items.

2. The technician goes to the customer to repair the defective hardware.

3. The technician can access the company’s knowledge database to find further
information about the defect discovered at the customer site. It can be
accessed with a browser on a laptop or a PDA, with a smartphone or using an
interactive voice response system.

4. If it is necessary to order parts to repair the hardware, the technician must fill
out the order request form using a browser on a laptop, a PDA or a
smartphone.

5. The technician can also close the defect and put it in the closed state. In this
case, the defect will disappear from the to-do list.

7.3.2 Component diagram
Figure 7-1 on page 115 depicts the components in the sample application.

Note: The Voice Server was not implemented in this book.
114 Patterns: Pervasive Portals

Figure 7-1 Component diagram

The client and the customer service users are using a desktop machine with a
Web browser to access the portal application in order to submit a service
request.

The interesting part is when the technician comes into the picture. There are
different scenarios for this user, depending on the field device.

1. Portable computer (laptop) with remote network connection. This option is
quite simple; the technician needs a remote connection to the network to
access the application using a Web browser.

WAP

PC

Transcoding
Technology

Database

EJB
Application

Customer
Service

Portal
Application

PC

PC

PDA
Technician

Telephone

H
T
M
L

Simplified
HTML

Voice
Server

VoiceXML

Database
Sync

Server

WML

Portlets

Client
 Chapter 7. Application design 115

2. Smaller, more portable PDA for field agents. There are options again using
this device:

a. If the PDA has an online network connection and is powerful enough, then
it can run a Web browser that is capable of handling simplified Web
content. This option is very similar to the first one.

b. The other option is to use the synchronization capabilities of the PDA and
download (synchronize) the data between the server and the PDA every
once in a while, when the technician has access to a network, to get the
service request and the customer information. The synchronization can
happen at the base (service provider station) a couple of times a day, or at
home in the morning and evening.

The knowledge management supporting database can be too “heavy” for
a PDA to store everything, so the technician needs an alternative way to
access that data. In this case, a simple telephone application (VoiceXML)
can help out the technician to access the necessary information.

3. An intelligent wireless phone (for example, a WAP phone) has limited online
browsing capabilities. The technician can access the most essential
information in order to get the service request and the customer information.

The phone device is definitely not capable of storing or showing support
information for the service. The knowledge database in this case can be
accessed through a voice (VoiceXML) application.

7.3.3 Use case diagram
We have two actors in the system; one is the client that can register one defect.
The client need to log in to the Portal because only authenticated users can log
in to the system.

You can create new users with the self-register option in the Portal. The user will
be saved in the LDAP Server (IBM SecureWay Directory).

The other actor is the technician. This user cannot register using the application;
technicians are added to the system internally. There is a group created in the
user registry (LDAP) and all technicians can join the group.

Important: In the application database, there is one table that states which
technician ID is responsible for receiving the defect to work on. If you would
like to create a new technician ID, you should create the categories and put
this ID in a RESPONSIBLE_TECHNICIANID field in the CATEGORY table.
The system uses this table to redirect the defect.
116 Patterns: Pervasive Portals

The technician can get information from the knowledge database; this database
works as an intellectual capital.

Another function is checking the status of a reported defect. The technician can
see who the client is and what the problem is. When the problem is resolved, the
technician can close the defect and submit an invoice to the client.

Figure 7-2 Help desk use case diagram

7.3.4 Class diagram
This next diagram helps to understand the classes created for the sample
scenario. It is not the goal of this book to explain in detail the decisions involved
in the business structure.

Each entity bean maps one table in the database. These beans do not contain
business process logic; they only model the data.

The value that entity beans provide is an object-oriented in-memory view of data
in an underlying data store. The traditional method for applications in dealing with
data is to work with relational tables in a database, reading and writing the data
as needed. Entity beans, on the other hand, are object representations of this
underlying data. You can treat data in a relational store as real objects. You can
read an entire set of data out of a database at once into an in-memory entity
bean component. You can then manipulate this entity bean in memory by calling
methods on it.
 Chapter 7. Application design 117

Because EJBs model permanent data, entity beans are long lasting. They can
survive critical failures, such as application servers crashing, because entity
beans are just representations of data in a permanent, fault-tolerant underlying
storage.

If a machine crashes, the entity bean can be reconstructed in-memory again by
simply reading the data back in from the permanent database. Because the
database survives crashes, the components that represent them do as well.

Figure 7-3 shows the relationship between the defect, order, category and
knowledge management EJBs.

Figure 7-3 Class diagram - persistent class

In our sample, the stateless session bean is working in a session facade pattern;
it has to interact with entity beans and the portlets have to interact only with the
stateless session bean.
118 Patterns: Pervasive Portals

Figure 7-4 Class diagram - business class interaction with the entity bean

7.3.5 Sequence diagram
In Figure 7-5 on page 120, you can see the interaction between the portlets and
the business components.
 Chapter 7. Application design 119

Figure 7-5 Sequence diagram - make order

In the figure above, the portlet is PortMakeOrder. The business component is an
EJB Stateless Session Bean. Its name is DefectService. The portlet has no
access to the persistent component (entity bean) because the portlet knows only
the business methods.

When the business method needs to send the results to the portlet, the portlet
calls a method on the session bean to create a Value Object component. If you
want to know more about this pattern, refer to “Data communication between the
portlets and business tier” on page 135.

7.4 Application structure
In this section, we explain the Design patterns to develop good object-oriented
projects. The topics cover theory and practical samples. We do not discuss the
samples in detail; if you need more information, refer to Chapter 8, “Application
development” on page 157.
120 Patterns: Pervasive Portals

7.4.1 Device-specific content
Before we get into the Model-View-Controller (MVC) design concept, we need to
take a look at the options and how the device-specific content can be processed.

There are two fundamental methods to providing device-specific content:

� Generating the content in the code in a programmatic way. It is a direct
solution using either different presentation pages or stylesheets.

� Using an intermediary component, like a transcoding engine, that takes care
of the content transformation. It is a configurable, intelligent engine that is
capable of recognizing the device and transform the content as required on
the fly.

For more information about the options described above, refer to the redbook
Mobile Applications with IBM WebSphere Everyplace Access Design and
Development, SG24-6259.

7.4.2 Model View Controller (MVC)
In the MVC paradigm, the user input, the modeling of the external components,
and the visual feedback to the user are explicitly separated and handled by three
types of object, each specialized for its task.

The View manages the graphical and/or textual output to the portion of the
“bitmapped” display that is available for the application.

The Controller interprets the user inputs, commanding the model and/or the view
to change as appropriate.

Finally, the Model manages the behavior and data of the application domain,
responds to requests for information about its state (usually from the View), and
responds to instructions to change state (usually from the Controller).

The MVC behavior is then inherited, added to, and modified as necessary to
provide a flexible and powerful system.

To use the MVC paradigm effectively, you must understand the division of labor
within the MVC tier. You also must understand how the three parts of the tier
communicate with each other and with other active views and controllers; the
sharing of a single mouse, keyboard and display screen among several
applications demands communication and cooperation. To make the best use of
the MVC paradigm, you also need to learn about the available subclasses of
View and Controller which provide ready-made starting points for your
applications.
 Chapter 7. Application design 121

In a general application, the input can be a specific hardware device or some
specific data that identifies a client. For example, in the mobile realm, a piece of
hardware can be a wireless phone or a PDA. These are different hardware
devices that need differently supported presentations. The same output has a
different presentation on a wireless phone and on a PDA. The important fact to
remember is that an application should be client-independent.

An application that is only designed to support a specific type of client can be
considered a “bad” application. For example, consider information that is
requested by a mobile phone and by a PDA. The same information is being
requested by the two different hardware devices. Why should applications be
differently designed and implemented if they use the same business logic?
Having two applications serving the same information results in duplicate
components, duplicate maintenance and duplicate costs. How to avoid this
problem will be explained later.

The best way to learn MVC is to understand the concept very well and practice in
architecture design. In this project, the portlet development uses the MVC
pattern.

It will be presented one component example that was applied the MVC pattern.
122 Patterns: Pervasive Portals

The first step is to design the components and put them in the right tier. To do
this, some name convention were created. Take a look at the sequence diagram
shown in Figure 7-6.

Figure 7-6 Sequence diagram with MVC design

SearchProblem.jsp is one View component; this is a JavaServer Page and is
responsible for viewing the data. The Controller in this diagram is the
PortSearchKm, which is one portlet. This class has no business process and its
responsibility is to interact with the Service Controller Singleton to get the
references from EJB and call the business methods.

KmService is a stateless session bean that has the business methods. This bean
works as a Session Facade and it is recommended that in a pervasive project,
the portlets have no access to entity beans. Category and KM class are entity
beans and they are responsible for interacting with the database records. There
are other classes and applied patterns in this diagram. Refer to 7.4.4, “Applying
the Design patterns” on page 135 for more information about the patterns that
were applied.

In order to understand the physical implementation of this diagram, part of the
code for each tier is shown.
 Chapter 7. Application design 123

The first sample code is a JSP. This code is responsible for viewing the data and
sending it to the user.

Example 7-1 View tier - JSP

<%@ taglib uri="/WEB-INF/tld/portlet.tld" prefix="portletAPI" %>
<%@ page import="com.ibm.itso.pervasive.model.CategoryVO" %>
<%@ page import="com.ibm.itso.pervasive.model.KmVO" %>
<%@ page session="false" %>
<jsp:useBean id="categoryList" class="java.util.ArrayList" scope="request"/>
<jsp:useBean id="solutionList" class="java.util.ArrayList" scope="request"/>
<form name="<portletAPI:encodeNamespace value='frmSearchProblemJsp'/>"
method="post" action="<portletAPI:createURI><portletAPI:URIAction
name='select'/></portletAPI:createURI>">
<TABLE border="0">
<TR>
<TD>Select Category Of Problem</TD>
<TD><SELECT name="selCategoryID">
<%
for(int x=0; x < categoryList.size(); x++) {
CategoryVO category = (CategoryVO)categoryList.get(x);
out.println("<OPTION value=");
out.println(">" + category.getDescription() + "</OPTION>");
}
%>
</SELECT></TD>
</TR>
</TABLE>
<INPUT type="submit" name="ok" value="OK">
<HR>
<TABLE border="1">
<TR><TD>Problem</TD>
<TD>Solution</TD>
</TR>
<% for(int y=0; y < solutionList.size(); y++) {
KmVO solution = (KmVO)solutionList.get(y);
%>
<TR>
<TD><%= solution.getProblem() %></TD>
<TD><%= solution.getSolution() %></TD>
</TR>
<% } %>
</TABLE>

In this code, you can see the data from other tiers and also HTML. This mix of
Java and HTML code makes it unstructured and difficult to maintain. This code
does not contain any transaction or business process and represents the View in
the MVC pattern.
124 Patterns: Pervasive Portals

The next class is the Controller. This tier has no business process because it is
responsible for calling the business methods. This code is more structured than
the JSP code.

Example 7-2 Controller tier - Java class

import com.ibm.itso.pervasive.ejb.*;
import com.ibm.itso.pervasive.exception.*;
import com.ibm.itso.pervasive.model.*;
import com.ibm.itso.pervasive.foundation.*;
public class PortSearchKm extends AbstractPortlet implements ActionListener {

//* Constants with pages to redirect
private final static String ERROR_PAGE = "GeneralErrorJsp.jsp";
private final static String FORM_PAGE = "SearchProblemJsp.jsp";
public void doView(PortletRequest req, PortletResponse res) throws

PortletException, IOException {
ArrayList listCategories = new ArrayList();
ArrayList listSolution = new ArrayList();
//* get all categories
try {

KmServiceHome kmServiceHome =
(KmServiceHome)ServiceLocator.getInstance().getHome("ejb/KmService");

KmService kmService = kmServiceHome.create();
listCategories = kmService.searchAllCategories();
req.setAttribute("categoryList", listCategories);

} catch (Exception e) {
e.printStackTrace(System.out);
req.setAttribute("errorMessage", e.getMessage());

 getPortletConfig().getContext().include(ERROR_PAGE, req, res);
}
if (req.getAttribute("errorMessage") == null)

getConfig().getContext().include(FORM_PAGE, req, res);
else

getConfig().getContext().include(ERROR_PAGE, req, res);
}

}

Example 7-2 shows a Controller in the MVC pattern; it is responsible for handling
the requests.

Example 7-3 on page 126 shows a Model class which contains the business
logic. The code is well-structured and shows the method createOrder.
 Chapter 7. Application design 125

Example 7-3 Model Tier - Java Class

import com.ibm.itso.pervasive.model.*;
import com.ibm.itso.pervasive.exception.*;
import com.ibm.itso.pervasive.foundation.*;
public class DefectServiceBean implements javax.ejb.SessionBean {

public void createOrder(Long defectID, String comments) throws
PervasiveException {

try {
OrderHome orderHome =

(OrderHome)ServiceLocator.getInstance().getHome("ejb/Order");
DefectHome defectHome =

(DefectHome)ServiceLocator.getInstance().getHome("ejb/Defect");
DefectKey defectKey = new DefectKey(defectID);
Defect defect = defectHome.findByPrimaryKey(defectKey);
DefectVO defectVO = defect.getDefectVO();
//* create an service order
orderHome.create(defectVO.getCustomerID(), defectVO.getDefectID(),

comments);
//* change the status of defect
defect.setStatusProblem(DefectVO.PROBLEM_CLOSE);

} catch (ObjectNotFoundException onf) {
throw new DefectNotFoundException();

} catch (Exception ex) {
throw new PervasiveException("This is not possible create one order

for client", ex.getMessage());
}

}
}

In Chapter 8, “Application development” on page 157, this code is explained in
detail.

The goal is to understand the tiers and have one practical view of what each
class needs to do.

MVC and portlets
Portlets include both visual elements and processing logic. A typical portal can
include class files, Web pages, images and some deployment files. All of these
files are packaged together into a .jar file, called a Web archive file (WAR). When
writing custom portlets, a Model-View-Controller design is recommended, as
shown in Figure 7-7 on page 127.
126 Patterns: Pervasive Portals

Figure 7-7 Model-View-Controller tiers

� The Controller is the class responsible for interfacing with the Model and for
rendering the portlet by calling upon the appropriate View. The portlet class is
responsible for executing this function.

� Views are usually implemented as JavaServer Pages. Portlets may have
several different Views, including their standard View (which renders the
portlet on the home page), a maximized View (which renders the portlet in its
maximized state), and an edit View (which displays a page for changing the
portlet settings).

� Models are usually implemented outside of portlet applications. The best
approach is to implement the business logic using EJBs and just call the
methods from the portlets.

The key is to separate the user interface from the business model so the user
interface can be used for different Views. Portlets, JSPs, servlets and desktop
applications can use the same business Model.

Pervasive portlets
Now that we have a background for a modular approach to application
development, let's apply it to the pervasive development.

It is easy to see how the Model remains the same regardless of the actual
display that is rendered. The Controller will essentially remain the same between
the Views, but may need to perform some special customization of data based
on the intended View.

Interaction
Controller

Controller

Page
Construction

View

Business
Logic

Model

Browser client

Web Application Server
 Chapter 7. Application design 127

Example 7-4 and Example 7-5 show a base Controller that contains common
function for both the HTML and WML Views. In SampleBaseController, the
methods to call the business operations and to pass the values in the request to
an specific Controller are implemented.

Example 7-4 Controller for WML implementation

public class SampleWMLController extends SampleBaseController {
 public void doView(PortletRequest request, PortletResponse response)
 throws PortletException, IOException {
 getPortletConfig().getContext().include(“jspWML.jsp”, request, response);
 }
}

When you compare the sample codes, the difference that you can see is the
page that the Controller will use to forward the response.

Example 7-5 Controller for HTML implementation

public class WeatherHTMLController extends WeatherBaseController {
 public void doView(PortletRequest request, PortletResponse response)
 throws PortletException, IOException {
 getPortletConfig().getContext().include(“jspHTML.jsp”, request,
response);
 }
}

The View component has the flexibility to render the data for a best fit on the
destination display. For example, SmartPhones display content in WML
(Wireless Markup Language) or another markup language developed for
phones.

We can define a separate view JSP for each intended device: an HTML JSP for
browsers and a WML JSP for cell phones. Look at the sample portlet in
Example 7-6 and Example 7-7 on page 129, which uses this design scheme and
the WebSphere Portal pervasive APIs.

Example 7-6 JSP for HTML

<%@ page contentType="text/html" errorPage="" %>
<jsp:useBean id="valueVO"
 class="com.ibm.itso.model.ValueVO"
 scope="request"/>
<p>
Value is <%= valueVO.showData() %>
128 Patterns: Pervasive Portals

Since the HTML view is intended for a rich content client, it can show appropriate
design for one device (the browser for example), but omit it from the WML view
since this is a more constrained client.

Example 7-7 JSP for WML

<%@ page contentType="text/wml" errorPage="" %>
<jsp:useBean id="valueVO"
 class="com.ibm.itso.model.ValueVO"
 scope="request"/>
<p>
Value is <%= valueVO.showData() %>

Up to now, we have only described how to provide views for a large
categorization of devices, assuming that a broad range of devices will have the
same capabilities. However, this is not usually appropriate, particularly when
referring to mobile devices. For example, some cell phones support WML V1.1,
others support a subset of WML 1.2 (for example: no table support), and still
others support the entire WML 1.2 specification. How is it possible to provide a
view that is intelligent enough to take into account all these device variations
without resorting to one that supports only the least common denominator of
capabilities?

The IBM WebSphere Portal API provides a mechanism for a portlet to query the
capabilities of the device for which the portlet view is intended. Instead of
requiring every portlet to understand the capabilities of all User-Agent types, the
Portal provides an abstraction between the User-Agent and device capabilities.

How does the Portal determine device capabilities? When an HTTP request is
made to the Portal, the requesting device sends a field called User-Agent in the
HTTP header that contains information about the requesting device.

For example, a Nokia Communicator 9110 sends the following User-Agent field:

Nokia-Communicator-WWW-browser/3.0 (Geos 3.0 Nokia-9110)

The Portal internally maintains mapping from the User-Agent field to the
expected capabilities of the device. Thus, the Portal can know the capabilities of
a device and provide that information to a portlet. This provides scalability
considering that new User-Agent mappings can be added to the Portal as new
devices become available, but portlets does not need to change their behavior.
Rather, they use the same device capabilities abstraction to know how a
particular view should be rendered.

This capabilities abstraction class, appropriately called Capability, is a part of the
org.apache.jetspeed.portlet package. It provides generic capability attributes,
such as what level of markup is supported (for example WML 1.1 versus WML
 Chapter 7. Application design 129

1.2), as well as more specific capabilities, such as what specific type of function
is supported (for example: JavaScript versus no JavaScript).

It can be modified in the WML JSP to take into account the capabilities of the
WML client. If the client does not support WML tables, then we will output straight
text.

Example 7-8 Selecting the capabilities for the device

<%@ page contentType="text/wml" errorPage="" %>
<%@ page import="org.apache.jetspeed.portlet.*" %>
<jsp:useBean id="weatherBean"
 class="com.ibm.wps.samples.weather.WeatherBean"
 scope="request"/>
<%@ taglib uri="/WEB-INF/tld/portlet.tld" prefix="portletAPI" %>
<portletAPI:init />
 <% if (portletRequest.getClient().isCapableOf(Capability.WML_TABLE)) {

//show the tale with data
 } else {

//show data without table
 } %>

Instead of using the previously described approach, Transcoding Technology can
be used to transform the content. In this case, nothing in the code needs to be
changed, because the Transcoding Technology will do it for you. The advantage
of this approach is that you can publish your portlet for more pervasive devices.

The sample in this book was done with this approach using Transcoding
Technology. For more information about Transcoding Technology, refer to 7.6.1,
“Transcoding guidelines” on page 146.

7.4.3 Object-oriented Design patterns
Design patterns are common strategies for developing reusable object-oriented
components. Each pattern describes a problem which occurs over and over
again in our environment, and then describes the core of the solution to that
problem, in such a way that you can use this solution a million times over, without
ever doing it the same way twice. This definition is by Christopher Alexander and
show perfectly the idea of the patterns.

We will now be talking about patterns for components design. The patterns that
we will show in this chapter can be used in other solutions and in other
programming languages. Design patterns can exist at many levels from a very
low level to specific solutions to broadly generalized system issues. There are
now hundreds of patterns in the literature; they have been discussed in articles
and in conferences at all levels of granularity.
130 Patterns: Pervasive Portals

It has become apparent that you do not just write a Design pattern off the top of
your head. In fact, most such patterns are discovered rather than written. The
process of looking for these patterns is called “pattern mining”.

Design patterns began to be recognized more formally in the early 1990s by
Helm (1990) and Erich Gamma (1992), who described patterns incorporated in
the GUI application framework and published the book Design Patterns -
Elements of Reusable Software, by Gamma, Helm, Johnson and Vlissides
(1995). This book, commonly referred to as the Gang of Four or “GoF” book, has
had a powerful impact on those seeking to understand how to use Design
patterns and has become an all-time best seller.

The authors divided these patterns into three categories: creational, structural
and behavioral.

� Creational patterns are ones that create objects for you, rather than having
you instantiate objects directly. This gives your program more flexibility in
deciding which objects need to be created for a given case.

� Structural patterns help you compose groups of objects into larger structures,
such as complex user interfaces or accounting data.

� Behavioral patterns help you define the communication between objects in
your system and how the flow is controlled in a complex program.

It is not the intention of this book to explain in detail all twenty-three patterns from
the GoF, but to explain the main ideas around the most common patterns that we
can use in portlet development. The patterns described are:

� Singleton
� Factory
� Abstract Factory
� Proxy
� Decorator
� Command
� Facade

Singleton
This is a creational pattern that is used to ensure that a class has only one
instance, and provide a global point of access to it. This pattern is interesting
when you want to keep track of a sole instance. You can use this in many ways,
for example, when you want to load application variables from a file or control the
access to components.

The easiest way to make a class that can have only one instance is to embed a
static variable inside the class that we set on the first instance and check each
 Chapter 7. Application design 131

time we enter the constructor. A static variable is one for which there is only one
instance, no matter how many instances there are of the class.

static boolean instance_flag = false;

The problem is how to find out whether or not creating an instance was
successful, since constructors do not return values. One way would be to call a
method that checks for the success of creation, and which simply returns some
value derived from the static variable.

Another approach, suggested by Design Patterns, is to create Singletons using a
static method to issue and keep track of instances. To prevent instantiating the
class more than once, we make the constructor private so an instance can only
be created from within the static method of the class.

This approach was used in the sample application.

Example 7-9 Singleton pattern

public static ServiceLocator getInstance() throws ServiceLocatorException{
 if (myServiceLocator == null) {
 myServiceLocator = new ServiceLocator();
 }
 return myServiceLocator;
}

Figure 7-8 represents the class diagram for the Singleton pattern.

Figure 7-8 Class diagram for Singleton pattern

Factory
This is a creational pattern that is used to define an interface for creating an
object, but lets subclasses decide which class to instantiate. The Factory method
lets a class defer instantiation to subclasses. This approach can be found in EJB
technology for home and remote classes.

A Factory pattern is one that returns an instance of one of several possible
classes depending on the data provided to it. Usually, all of the classes it returns
132 Patterns: Pervasive Portals

have a common parent class and common methods, but each of them performs
a task differently and is optimized for different kinds of data.

Abstract Factory
This is a creational pattern that provides an interface for creating families of
related or dependent objects without specifying their concrete classes. This
approach can be found in EJB technology for home and remote classes.

The Abstract Factory pattern is one level of abstraction higher than the Factory
pattern. You can use this pattern when you want to return one of several related
classes of objects, each of which can return several different objects upon
request. In other words, the Abstract Factory is a factory object that returns one
of several Factories.

Proxy
This is a structural pattern that provides a surrogate or placeholder for another
object to control access to it.

The Proxy pattern is used when you need to represent a complex object with a
simpler one. If creating an object is expensive in terms of time or computer
resources, Proxy allows you to postpone this creation until you need the actual
object. A Proxy usually has the same methods as the object it represents, and
once the object is loaded, it passes on the method calls from the Proxy to the
actual object. This approach can be found in remote implementation of EJB
technology.

Decorator
This is a structural pattern that attaches additional responsibilities to an object
dynamically. Decorators provide a flexible alternative to subclassing for
extending functionality.

The Decorator pattern provides a way to modify the behavior of individual objects
without having to create a new derived class. Suppose we have a program that
uses eight objects, but three of them need an additional feature. You could create
a derived class for each of these objects, and in many cases this would be a
perfectly acceptable solution. However, if each of these three objects requires
different modifications, this would mean creating three derived classes. Further, if
one of the classes has features of both of the other classes, you begin to create
a complexity that is both confusing and unnecessary.

We can see this applicability in the portlet API. We have one skin for each portlet
and the skin has some functionality such as resizing the portlet, call edit mode for
personalization issues and so on.
 Chapter 7. Application design 133

In a portlet development, you extend the AbstractPortlet and do not care how the
engine implements this class. In other words, it is totally transparent for portlet
developers.

Command
This is a behavioral pattern that encapsulates a request as an object, thereby
letting you parameterize clients with different requests, queue or log requests.

The Command pattern forwards a request to a specific module. It encloses a
request for a specific action inside an object and gives it a known public
interface. It lets you give the client the ability to make requests without knowing
anything about the actual action that will be performed, and allows you to change
that action without affecting the client program in any way.

Facade
This is a structural pattern that provides a unified interface to a set of interfaces
in a subsystem. Facade defines a higher-level interface that makes the
subsystem easier to use.

Usually, as programs are developed, they grow in complexity. In fact, for all the
excitement about using Design patterns, these patterns sometimes generate so
many classes that it is difficult to understand the program’s flow. Furthermore,
there may be a number of complicated subsystems, each of which has its own
complex interface.

The Facade pattern allows you to reduce this complexity by providing a simplified
interface to these subsystems. This simplification may in some cases reduce the
flexibility of the underlying classes.

The class diagram for the Facade pattern is shown in Figure 7-9 on page 135.
134 Patterns: Pervasive Portals

Figure 7-9 Class diagram for Facade

In this diagram, the DefectService works as a Facade. This class is responsible
for interacting with many classes and the client. In this case, the portlet needs to
talk only with DefectService to execute the operations.

7.4.4 Applying the Design patterns
The MVC can help you structure the tier in the application, but when you are
developing components, there are many design problems that other patterns can
help you deal with.

There are patterns for different solutions, but in this book we choose the patterns
that you should use when you are developing solutions to Pervasive with
WebSphere Portal Solution.

Data communication between the portlets and business tier
The business tier has server-side business components (session beans and
entity beans). Session beans represent the business services and maintain a
 Chapter 7. Application design 135

one-to-one relationship with the client. Entity beans are multi-user, transactional
objects representing persistent data with a data store.

Some of the service methods may return data to the client that invoked the
methods. In such cases, the client must invoke the session bean methods
multiple times until the client obtains values for all the attributes. Every method
call made is remote and takes time to complete the operation.

Efficient transfer of remote, fine-grained data by sending a coarse-grained view
of the data is the key to the Value Object Pattern. Instead of transferring
fine-grained data in multiple remote calls, transferring a value object reduces
network traffic and simplifies entity beans and remote interfaces.

The Value Object pattern is used to encapsulate the business data. A single
method call is used to send and retrieve the object. When the client requests the
enterprise bean for the business data, the enterprise bean can construct the
Value Object, populate it with its attribute values, and pass it by value to the
client.

Clients usually require a lot of value from an enterprise bean and to reduce the
number of remote calls and avoid the associated overhead, it is best to use value
objects to transport the data from the enterprise bean to the client.

When an enterprise bean uses a value object, the client makes a single remote
method invocation to the enterprise bean to request the value object instead of
numerous remote method calls to get individual attribute values. The enterprise
bean then constructs a new value object instance and copies the attribute values
from its attributes into the newly created value object. It then returns the value
object to the client. The client receives the value object and can then invoke its
accessor (or getter) methods to get the individual attribute values from the value
object. The implementation of the value object may be such that all attributes are
made public. Because the value object has been passed by value to the client, all
calls to the value object instance are local calls instead of remote method
invocations. We have one value object example, as shown in Example 7-10.

Example 7-10 Value object example

public class CategoryVO implements Serializable {
private int categoryID;
public int getCategoryID() {

return categoryID;
}
public void setCategoryID(int categoryID) {

this.categoryID = categoryID;
}

}

136 Patterns: Pervasive Portals

Getting the references to the business component
The portlet requires a way to look up the service objects that provide access to
distributed components. The business component infrastructure (EJB) uses Java
Naming and Directory Interface (JNDI) to look up enterprise bean home
interfaces, data sources, connections, and connection factories. The lookup
code is used many times by the project.

Unnecessary JNDI initial context creation and service object lookups can cause
performance problems. The Service Locator pattern can help you resolve this
problem. It centralizes distributed service object lookups, provides a centralized
point of control, and may act as a cache that eliminates redundant lookups. It
also encapsulates any vendor-specific features of the lookup process.

Service Locator abstracts the complexity of the network operation and lookup of
various services. It can also cache the service object so that the expensive
lookup operation does not have to be performed every time.

Here is one example of getting the reference in the Service Locator class.

Example 7-11 Service Locator class

public EJBHome getHome(String name)throws ServiceLocatorException {
Object objref = context.lookup(name);
EJBHome home = (EJBHome)PortableRemoteObject.narrow(objref, EJBHome.class);
return (EJBHome)PortableRemoteObject.narrow(home,

home.getEJBMetaData().getHomeInterfaceClass());
}

The context of this code involves the ServiceLocator class (using Singleton
pattern) and getHome method returning the EJBHome object from the bean we
want to use. This method works between the portlets, stateless beans and entity
beans. You can use this method to get all home lookups.

Structuring the requests
Portlet Applications is a Controller in the MVC Model. The action in the form goes
to a method that understands the request and redirects to the appropriate
business component. Portlets can have multiple actions to perform, unlike the
servlets.

In this case, you have some options; one idea is to implement the command
pattern (GoF) to encapsulate a request as an object, thereby letting you
parameterize the client with different requests.

Another option is to use Struts. Struts is an Apache Jakarta open source project
that provides a framework based on the Model-View-Controller (MVC) that
 Chapter 7. Application design 137

allows developers to efficiently implement their Web applications, keeping the
business logic and presentation aspects separate.

In the Portal Server environment, the ability to use Struts is a logical extension.
The portlets on a Portal page can be essentially thought of as servlet
applications in their own right. For many of the same reasons one would use
Struts to implement a Web application, using Struts in a portlet would be
desirable.

7.5 WebSphere Portal Solution guidelines
When you implement one portal solution, it is possible to integrate information
from multiple sources in your company in a single point of access. In this case,
you have one infrastructure to support different types of devices and data
sources.

� Create components with object-oriented design principles. Design Portlet
applications according to good object-oriented design principles with loosely
coupled, encapsulated components to maximize the opportunity for reuse.

� Avoid writing Java code in JSP: use Java beans to encapsulate the interface
operation.

� Understand the customer’s problem: take the time to fully understand the
requirements of a comprehensive user profile to support all related
applications before starting the application design process.

� Understand Portal Solution; use the Portal in the way it was intended: as a
framework for aggregating application components. Design JSPs, servlets,
beans, and so forth, to handle all of the business processing and plug into the
portal framework rather than developing portlets. This will maximize flexibility
of the solution and reduce platform independence.

� To avoid making default portlets user-customizable, create a default page
using custom portlets and persistence based on a key comprising the page,
portlet, and user ID to allow for a default page. Do not use the default
persistence model for shared portlets; changes made by one user will be
seen by all.

� A clear definition of success and measurement criteria at the beginning of a
portal effort is critical. Clear definitions of the goals, functions, and
measurable success criteria will help lead to a successful effort.

� Existing business rules must be evaluated and potentially changed to fit into
the user experience.

� Consumer trend data must be constantly monitored and acquired, internally
and externally, to be useful. Applications must be developed with flexibility.
138 Patterns: Pervasive Portals

The vast amounts of data that can be collected must be managed and
transformed to be worthwhile.

This solution should cover many functionalities and provide flexibility for the user.
The Portal Solution provides some concepts to help you achieve this level of
quality. These concepts, such as Single Sign-On, personalization and
internationalization, are ones that the developer should take into consideration
when developing the solution.

7.5.1 Internationalization
Today’s international high-tech marketplace has created a need for global
applications and Web-delivered content. As more and more companies attempt
to accommodate their customers' needs and internationalize their offerings, the
challenges of managing the technology and resources are emerging.

Included in the Java 1.1 API are the java.text package and the ResourceBundle
classes contained in the java.util package, which together with the Locale
classes make up the backbone of localization on the Java platform. Resource
bundles use a cascading mechanism to provide the best translation support with
the minimal amount of work for both the developer and resources of the
computer. In this scheme, the developer creates files that define a lookup table
for translation and adds encoding to the names of these files to specify the locale
of the file.

Portal aggregation allows you to package JSPs to support multiple markups,
clients, and locales. JSPs that contain mostly text, such as help JSPs, can be
translated directly rather than storing strings in a resource bundle. You need to
store JSPs that do not use resource bundles in the appropriate localized location.
When a portlet uses a JSP for rendering the portlet's content, the portal searches
for and selects the proper JSP based on the client type (including browser),
markup language, and locale indicated in the request. To include a JSP in a
portlet, use the function PortletContext.include():

getPortletConfig().getContext().include(jsp_path/jspname.jsp,
portletRequest, portletResponse);

To support multiple markup types and locales, the portlet's JSPs must be
packaged in the WAR. The elements in this structure are as follows.

� jsp_path: a path defined by the developer. For example, JSPs can be located
in the root of the WAR file or in a JSP directory. However, this path must not
include mime-type/language_country_variant. The include() method already
locates the correct JSP also in those directories.

� markup_type: either html, wml, or chtml.

� language: the language for this JSP, for example: en, ja, or pt .
 Chapter 7. Application design 139

� country: the country of the JSP, for example: US, UK, or BR.

� client: the type of device. For example, this could indicate a JSP with
browser-specific markup, such as IE or NS4. Manage Clients Help describes
how clients are identified by the portal server.

The directory structure is:

jsp_path/markup_type/language _country/client/jspname.jsp

You can find more information about internationalization at the following site:

http://java.sun.com/docs/books/tutorial/i18n/

7.5.2 Session
The PortletSession holds user-specific data for the virtual instance of the portlet.
Virtual instances differ from each other only by the data stored in their respective
PortletSession or objects. The PortletSession contains transient data for the
portlet virtual instance. Any persistent data must be stored using PortletData.
Information stored in a portlet’s class variables is shared between all virtual
instances, with read and write access. Make sure you do not use class attributes
for user-specific data. On the other hand, you have to be cautious about what the
portlet adds to the session, especially if the portlet ever runs in a cluster
environment where the session is being serialized to a shared database.
Everything being stored in the session must be serializable too.

Like an HttpSession, a PortletSession is not available on an anonymous page.

During login, a PortletSession is automatically created for each portlet on a page.
To get a PortletSession, the getSession() method (available from the
PortletRequest) has to be used. The method returns the current session or, if
there is no current session and the given parameter “create” is true, it creates
one and returns it.

When you are working with Session, the Portal Application Server creates a
session cookie to maintain the data from PortletSession.

We have three different ways to manage this cookie.

� The browser should accept cookie from the server. This cookie will still be on
the client and when the client closes the browser, this cookie will be removed
from the client machine. In another words, this cookie will exist while the
session is alive.

� With WAP, the cell phone should support the cookie. The older phones do not
support the cookie; in this case, it is necessary to install software to manage
this cookie for you, such as WebSeal.
140 Patterns: Pervasive Portals

http://java.sun.com/docs/books/tutorial/i18n/

� With PDA the device should accept the cookie. The behavior of the PDA is
similar to the Web browser.

7.5.3 Personalization
Personalization is about tailoring Web content and applications to specific users.
This is done by gathering and storing information about site visitors, analyzing
the information, and based on the analysis, delivering the right information to
each visitor at the right time. A number of techniques can enable your site to
personalize news feeds, recommend documents, provide advice, target e-mail,
target advertising, and promote products.

When personalizing a Web site, there are two fundamental reasons for targeting
individual users:

� To match content (information), application access, application interests,
roles, and needs of each visitor to a Web site.

� To deliver the information and applications that you want your visitors to see
and alter the processing of the applications based on the services you want to
provide.

Elements of a personalization solution include the following:

� User profile

– Users of the Web site

– Attributes about the user

– Groups and hierarchies

� Content model

– Products, articles, programs, and so on

– Defines attributes about the content

– Groups and hierarchies

� Matching technology

– User profile, rules, collaborative filtering, and collaborative filtering/market
basket analysis or a combination

– Matches the user to the right content

� Populating the user content repositories

– Explicit and implicit

� Feedback on personalization effectiveness
 Chapter 7. Application design 141

There are several types of personalization:

� User profile-based: User profile-based personalization or simple filtering is
used to display content based on predefined groups or user profiles. For
example, when a user registers on a portal site, selects which news feeds he
or she would like to see information on.

� Rules-based: Rules-based personalization is used to display content on
predefined business rules.

� Collaborative filtering: Collaborative filtering is used to display information
based on a combination of your preferences and those of like-minded users.

If you want more information about personalization, please refer to the redbook
WebSphere Personalization Solutions Guide, SG24-6214.

7.5.4 Single sign-on
The users in a corporate system are commonly required to use a separate
password to authenticate themselves to each server they need to access in the
course of their work. Multiple passwords are an ongoing headache for both users
and system administrators. Users have difficulty keeping track of different
passwords, tend to choose poor ones, and tend to write them down in obvious
places. Administrators must keep track of a separate password database on
each server and deal with potential security problems related to the fact that
passwords are sent over the network routinely and frequently.

Solving this problem requires some way for a user to log in once, using a single
password, and get authenticated access to all servers that the user is authorized
to use without sending any passwords over the network. This capability is known
as Single Sign-On.

This process includes two different processes that need to be clearly understood.
These are authentication and authorization.

Authentication
Authentication is the mechanism through which callers and service providers
prove to one another that they are acting on behalf of specific users or systems.
When the proof is bidirectional, it is referred to as mutual authentication.
Authentication establishes the call identities and proves that the participants are
authentic instances of these identities. An entity that participates in a call without
establishing or proving an identity (anonymous authentication) is called
unauthenticated.
142 Patterns: Pervasive Portals

Authentication is carried out in two phases:

� Service-independent authentication that requires knowledge of some secret
is performed to establish an authentication context that encapsulates the
identity and is able to create proofs of identity, called authenticators.

� The authentication context is then used to authenticate with other called or
calling entities.

Authorization
Authorization mechanisms limit interactions with resources to collections of users
or systems for the purpose of enforcing integrity, confidentiality, or availability
constraints. Such mechanisms allow only authentic caller identities to access
components. Mechanisms provided by the J2SE platform can be used to control
access to code based on identity properties, such as the location and signer of
the calling code. In the J2EE distributed component programming model,
additional authorization mechanisms are required to limit access to called
components based on who is using the calling code. As mentioned in
“Authentication” on page 142, caller identity can be established by selecting from
the set of authentication contexts available to the calling code. Alternatively, the
caller may propagate the identity of its caller, select an arbitrary identity, or make
the call anonymously.

In all cases, a credential is made available to the called component. The
credential contains information describing the caller through its identity attributes.
In the case of anonymous callers, a special credential is used. These attributes
uniquely identify the caller in the context of the authority that issued the
credential. Depending on the type of credential, it may also contain other
attributes which define shared authorization properties (for example, group
memberships) that distinguish collections of related credentials. The identity
attributes and shared authorization attributes appearing in the credential are
referred to together as the caller's security attributes. In the J2SE platform, the
identity attributes of the code used by the caller may also be included in the
caller's security attributes. Access to the called component is determined by
comparing the caller's security attributes with those required to access the called
component.

In the J2EE architecture, a container serves as an authorization boundary
between callers and the components it hosts. The authorization boundary exists
inside the container's authentication boundary, so that authorization is
considered in the context of successful authentication. For inbound calls, the
container compares security attributes from the caller's credential with the
access control rules for the target component. If the rules are satisfied, the call is
allowed. Otherwise, the call is rejected.
 Chapter 7. Application design 143

There are two fundamental approaches to defining access control rules:
capabilities and permissions. The capabilities approach focuses on what a caller
can do. The permissions approach focuses on who can do something. The J2EE
application programming model focuses on permissions. In the J2EE
architecture, the Deployer maps the permission model of the application to the
capabilities of users in the operational environment.

When a user requests a resource from a server, the server collects the
access-control lists (ACLs) associated with that resource and evaluates them. If
the server's evaluation of the ACLs requires identification of the user, the server
requests client authentication, in the form of either a name and password or a
digital certificate presented according to the Secure Sockets Layer (SSL)
protocol.

After the server has established the user's identity, optionally including
user/group information stored in a Lightweight Directory Access Protocol (LDAP)
directory, it continues its evaluation of the ACLs and authorizes or denies access
to the requested information according to the user's access privileges.

Single Sign-On WebSphere Portal Server
Single sign-on support in Portal Server provides a mechanism that assists a
portlet in retrieving one of several representations of a user's authenticated
identity, which the portlet can then pass to a back-end application. This is much
like Portal Server and the portlet acting as an authentication proxy to the
back-end application. Using Single Sign-On, a user can authenticate once when
logging into the Portal Server, and the user's identity is passed on to applications
without requiring additional identity verification from the user. Portal Server
supports Single Sign-On through Application Server as well as other
authentication proxies, such as IBM Tivoli Access Manager and Netegrity
SiteMinder, and leverages the Single Sign-On capabilities between Application
Server and Domino.

Single Sign-On in Portal Server has two levels:

� The first is a Credential Service, which encapsulates the functionality of
Single Sign-On for the portlet writer in an object provided by the Service and
for which sample code exists so as to make the use of these objects easy for
the portlet writer.

� The second level is more flexible but requires portlet writers to directly utilize
the Single Sign-On functions of the Portal Server and manage their own
connections and authentication to back-end applications.

JAAS
The Single Sign-On functions of Portal Server utilize a subset of Java
Authentication and Authorization Services (JAAS). The subset is the
144 Patterns: Pervasive Portals

authentication portion; Portal Server does not support true JAAS authorization.
Portal Server builds a JAAS Subject for each logged on user. The Subject
consists of Principals and Credentials.

A Principal is a piece of data, such as the user ID or user's DN, that gives the
identity of the Subject.

A Credential is a piece of data, such as a password or a CORBA credential, that
can be used to authenticate a subject. The Subject carries around the Principals
and Credentials that can be used by the portlet directly or via the Credential
Service. See Advanced Topics in Developing Portlets for details on working with
Single Sign-On.

JAAS is one Java specification from Sun. JAAS can be used for the
authentication of users, to reliably and securely determine who is currently
executing Java code, and for authorization of users to ensure they have the
access control rights (permissions) required to perform security-sensitive
operations.

JAAS authentication is performed in a pluggable fashion. This permits Java
applications to remain independent from underlying authentication technologies.
New or updated technologies can be plugged in without requiring modifications
to the application itself. An implementation for a particular authentication
technology to be used is determined at runtime. The implementation is specified
in a login configuration file.

JAAS authorization (not supported by WebSphere Portal Server) extends the
existing Java security architecture that uses a security policy to specify what
access rights are granted to executing code. This architecture, introduced in the
Java 2 platform, is code-centric, that is, the permissions are granted based on
code characteristics: where the code is coming from, whether it is digitally
signed, and if so, by whom.

Credential Service
Credential Service objects exist to handle Basic Authentication, LTPA Token
authentication, and simple form-based user ID/password login challenges.
Credentials can take their input identity from the JAAS Subject Principals, from
the portlet configuration, or from the Credential Vault service. Portlet writers can
use the Credential Service to retrieve Credentials from the Credential Vault or the
JAAS Subject. Credential Service objects can also be used to pass IBM Tivoli
Access Manager or Netegrity SiteMinder Single Sign-On tokens from the JAAS
subject to the back-end application in the appropriate headers.
 Chapter 7. Application design 145

Credential Vault
The Credential Vault is a portal service to assist portlets and portal users in
managing multiple identities. The Credential Vault stores credentials that allow
portlets to log in to applications outside the portal's realm on behalf of the user.
Portal Server provides one simple database vault implementation for mappings
to secrets for other enterprise applications. The Default Vault comes
pre-configured with an administrator-managed vault segment and a
user-managed vault segment. The user managed vault allows users to add
application definitions, such as a POP 3 mail account, under the user vault and
store a mapping there. Administrator-managed vaults allow users to update
mappings; however, users may not add new applications to this vault. By default,
the default vault loads an encryption exit for which Base 64 encodes the
passwords.

7.6 Designing the mobile applications
In the following sections, we discuss the options provided by WebSphere
Everyplace Access to extend applications to mobile and wireless devices. These
options cover the two ways an application can be accessible from pervasive
devices, either by using wireless devices with WAP, HTML or cHTML devices or
by using mobile devices that store data for further manipulation.

When you want to extend existing applications to pervasive devices, the design
tasks are basically the following:

� Define the application processes that are going to be accessible from the
devices.

� Define the kind of access the users must have to these applications.

The application itself may help you decide what kind of access must be provided
to the users; for example, a Web application is, in general terms, easier to extend
by using a browser-based device than by developing a whole new application for
the device in order to manipulate the synchronized data.

The target device platform is also a decision point; if you want your application to
be enabled for several device platforms, it is better to develop a Web application
and make it accessible from the browsers included on each platform.

7.6.1 Transcoding guidelines
Once you have developed a portal, you may want it to be accessible by using
pervasive devices such as WAP-phones and PDAs. The easiest way to do this is
by enabling the Transcoding Technologies provided with WebSphere Everyplace
Access.
146 Patterns: Pervasive Portals

With Transcoding Technologies, the portal content and presentation can be
modified in order to fit specific device characteristics; for example, the content
can be optimized to show only the most relevant information and the images can
be reduced in size and color depth. By providing a single access point for
multiple device types, the cost of re-development and maintenance of
applications is significantly reduced.

The content is transformed according to the information associated with each
device and user profile. Transcoding Technologies also transforms the markup
language to make it comprehensible by the device.

In Transcoding Technologies, there are three types of resources that can be used
to transform contents:

� XML Stylesheets
� Annotators
� Transcoding plug-ins

There is another type of resource called preference profiles; this resource is used
by Transcoding Technologies to determine the device and user characteristics,
as well as the stylesheet, annotator or plug-in to use.

Transcoding Technologies acts as a filter for a single portlet, so you need to
enable this filter for every portlet you want to be accessible from wireless
devices.

Next, we discuss the differences between the transformation options, as well as
scenarios showing their use.

Preference profiles
This represents a particular type of device, or a particular user or group of users.
Transcoding Technologies uses these files to decide how to treat documents
depending on the device and the user making the request.

The device preference profiles are represented by .prop files located in:

<TTRoot>\etc\preferences\device

The user preference profiles are represented by .prop files located in:

<TTRoot>\etc\preferences\user

If the X-IBM-PVC-Device-Type field is present in the HTTP header, Transcoding
Technologies uses the device profile whose file name matches the value
specified for that field. If this field is not present in the HTTP header, Transcoding
Technologies uses the device profile whose user-agent value matches the value
of the user-agent field in the HTTP header. If no matching profile is found,
 Chapter 7. Application design 147

Transcoding Technologies uses the default device profile. Example 7-12 shows
an example of a device preference profile.

Example 7-12 Device preference profile

#version = 1.0
#Wed Jul 10 12:55:23 CDT 2002
framesSupported=true
deviceRule=(User_Agent%e*MSIE 6.0*)
javaAppletSupported=true
portalOrdinal=360
portalMarkupVersion=ie
createCHTML=false
portalClient=true
desiredContentTypes=[text/html]
parent=NT.InternetExplorer
javaScriptSupported=true

If more than one device profile matches the incoming request, it is impossible to
predict which of the matching profiles would be selected.

The user profile is selected for a request following these steps:

1. If a value is specified for UserAndSessionExtractor in
<TTRoot>\etc\localConfig.prop, Transcoding Technologies tries to execute
the referenced implementation of the UserAndSessionExtractor interface to
obtain the user and session names and select the user profile that matches
the user name.

2. You can specify a field in the HTTP header to be used to select a user profile
by setting the httpUserIdField value in <TTRoot>\etc\localConfig.prop;
Transcoding Technologies would then find the value of the defined field in the
HTTP header and select the user profile that matches that value.

3. If the X-IBM-PVC-User field is present in the HTTP header, Transcoding
Technologies uses the user profile that matches the value specified for that
field.

4. If none of these methods identifies a user profile, Transcoding Technologies
does not use a specific user profile. If one of these methods is used to specify
the user profile and the specified user profile file is not found, Transcoding
Technologies does not try the other methods.

Each profile contains values for the preferences that are important to the device
represented by the profile. If the preference is not important for the device, it can
be omitted so that a value can be chosen from a different profile. Transcoding
Technologies will check profiles for a value in this order:

1. Specific user
148 Patterns: Pervasive Portals

2. Specific device

3. Default user

4. Default device

XML stylesheets
If your existing Web applications generate XML documents, the easiest way to
extend them to wireless devices is to use XSL stylesheets; this approach also
provides the company a single way of sharing data among different kind of users,
while maintaining one representation of the data as XML documents.

In order to transform the XML documents, the stylesheets must be registered in
the transcoding server. You can do so by:

� Adding the stylesheet resources to the configuration.

� Configuring the portlet to use a stylesheet. This can be done by using one of
the following alternatives:

– If the stylesheet is part of the portlet .war file, a <config-param> element
with the stylesheet specifics is added to the <concrete-portlet> element
within the portlet’s portlet.xml file.

– If the portlet is not within the portlet .war file, you can specify the
StylesheetFile parameter with the installed portlet.

� Specifying the stylesheets within the XML document using the wtp-condition.
This approach supports multiple stylesheets for a single document.

Annotators
Annotation files are used to modify an HTML document to meet specific device
characteristics. This type of modification is known as clipping.

This option is useful when you are trying to reach devices with limited screen
size, since it only allows the showing of critical information and avoids showing
irrelevant content, such as graphics. There are two types of annotators:

� Internal annotators can be created by using the tools available in WebSphere
Studio Application Developer and WebSphere Studio Site Developer. They
are special tags embedded in the original HTML document. When the
transcoding server filters the document, these tags are processed.

� External annotators are separate and independent annotation files used by
Transcoding Technologies to operate on the original HTML document. They
can be created with simple text editors or with tools supplied in the Pervasive
Toolkit.
 Chapter 7. Application design 149

The external annotators can be registered by using the XML Configuration
tool, and they can be visible to all portlets, or can be set for specific portlets
using Portal Administration.

Transcoding plug-ins
A transcoding plug-in is a piece of software that modifies the content of a
document. These plug-ins are selected to process a document based on
conditions specified by the program when the plug-in is created.

Several transcoding plug-ins are provided with Transcoding Technologies and
you can obtain or develop others. Some of the plug-ins included are as follows.

� The image transcoding plug-in modifies images regarding color support and
size to better support the display capabilities of a device.

� The text transcoding plug-in converts textual data, such as HTML or XML,
from one format to another and can perform a number of transformations to
simplify the output.

� The fragmentation transcoding plug-in fragments XML documents into
smaller pieces that can be managed by the target device.

� The HTML DOM generator creates a Document Object Model (DOM)
version of the incoming HTML documents.

� The annotation transcoding plug-in, also known as the annotation engine,
interprets the contents of the annotation files to perform the document
clipping.

� The HTML to WML Transcoding plug-in converts HTML documents to WML
for devices with WAP browsers.

� The HTML to compact HTML transcoding plug-in transforms HTML
documents to Compact HTML documents for devices with cHTML browsers.

New transcoding plug-ins can be developed by using the API provided.

For more information about transcoding, refer to the following IBM Redbook and
Redpaper:

� Mobile Applications with IBM WebSphere Everyplace Access Design and
Development, SG24-6259

� Transcoding Technologies in IBM WebSphere Everyplace Access V4.1.1,
REDP3592
150 Patterns: Pervasive Portals

7.7 Embedded mobile client applications
This section is a short introduction to the embedded mobile client applications for
pervasive solutions.

Embedded mobile applications run on the pervasive device itself and they are
specific to the solution, unlike a multi-purpose browser.

Several technologies and platforms exist today to build and run mobile
applications. J2ME is only one of them, but it is one of the most promising, and it
is also in line with IBM’s Java strategy. In this book, you will only find the J2ME
technology documented.

7.7.1 J2ME
J2ME technology is a highly optimized Java runtime environment; it specifically
addresses the vast consumer space, which covers the range of extremely tiny
commodities such as smart cards or a pager all the way up to the set-top box, an
appliance almost as powerful as a computer.

The following is a summary of key goals for this architecture:

� Provide support to a variety of devices with different capabilities. These
devices often vary in the user interface, data storage, network connectivity
and bandwidth, memory, power consumption, security and deployment
requirements.

� Provide one architecture that can be optimized for small spaces.

� Focus on devices that can be highly personalized, often used by a single
person.

� Maximize cross-platform capabilities.

� Maximize the flexibility and provide a means to support a rapidly changing
market-place.

Note: For the sample application, we have used the Mobile Application
Builder to provide a working prototype for our scenario. Using the Mobile
Application Builder, we could build a client application quickly, although the
functionalities and programming capabilities of the tool are very limited.

The result is platform-dependent; in our case, it is a PalmOS native
application compiled from a C source.
 Chapter 7. Application design 151

� Support multiple devices.

� Support device-specific functionality.

� Maintain a common architecture.

Keep in mind that the network connectivity is different according to capabilities
(low bandwidth, wireless, and intermittent connection to high-fidelity, high
bandwidth) and services.

One of the key problems that J2ME architecture tries to resolve is how to support
a wide range of devices with different constraints, capabilities, features and
intended uses without introducing limitations on any specific device.

One way to do it is to create a large, monolithic architecture that includes
everything any application would ever need on any given device. In this case, the
architecture would be too large in terms of resources.

Another way is to identify the common denominator of functionality that applies to
all devices in the J2ME space.

The J2ME decided to use the second solution and introduced two concepts:
configuration and profiles.

� Configuration: make up the set of low-level APIs that define the runtime
characteristics of a particular J2ME environment.

� Profile: address the more device-specific and usage-specific API. The profile
provides characteristics such as user interface widgets, event handling and
data storage.

Figure 7-10 J2ME architecture tiers

Profile 1 Profile 2 Profile n

Configuration

Host Operating System

Java Virtual Machine
152 Patterns: Pervasive Portals

Configuration defines the contract between a profile and the Java Virtual
Machine; it basically has two different realizations. These configurations are
CLDC (Connected Limited Device Configuration) and CDC (Connected Device
Configuration).

You can see the difference between both technologies in Table 7-1.

Table 7-1 Configuration, Java Virtual Machine and devices

The common question is: if you have two different configurations, how is
portability maintained between them? We can see the relationship between the
different configurations in Figure 7-11; this gives you an idea of portability in this
case.

Figure 7-11 Portability between the specifications

The profile provides an API that focuses on a single device, such as a PDA or a
group of related devices such as cell phones and pagers. The devices supported
by a particular profile tend to have much in common in terms of how the device is
used, what the user capabilities are, how the device connects to the network,

Configuration Virtual Machine Example Device

CDC CVM
J9

Pocket PC
Communicator device
TV set-top boxes

CLDC KVM
J9

Cellular phones
PDAs
Two-way pagers

J2SE CDC CLDC

J2ME

portability
 Chapter 7. Application design 153

and how the device works with persistent data. Profiles are vertical and created
to address different kinds of devices.

Choosing a profile is a very important decision that is made when creating
applications using J2ME. The number of providers in development is increasing
day by day.

Table 7-2 shows a summary of the different J2ME profiles.

Table 7-2 Profiles for J2ME

The most famous profile is MIDP. This is first official profile released by Sun and
originally released for cellular phones and two-way pagers. This profile now has
also been implemented to run on the PalmOS platform. These devices have very
constrained resources, such as a small screen for user interface, limited data
entry capability and limited data storage.

The next version of MIDP will address features such as security, using HTTPS,
push interface, small XML parser and sound API.

Profile Configuration/VM Virtual Machine Target Device
Examples

MIDP CLDC KVM Cellular phones
and two way
pagers

PDAP CLDC KVM PDA

Foundation CDC CVM foundation for
personal profile

Personal CDC CVM Pocket PC, tablets,
communicator and
device

RMI CDC CVM Any

Multimedia CLDC/CDC KVM/CVM Any

Gaming CLDC/CDC KVM/CVM Any

Telephony CLDC/CDC KVM/CVM Cellular phones
154 Patterns: Pervasive Portals

7.7.2 What has changed in J2ME for J2SE programmers
The J2ME specification had to remove some features that were available in the
J2SE environment to meet the requirements in developing for pervasive devices.

Following is a list of features that have changed from J2SE:

� Java Native Interface

� User-defined class loaders

� Java Reflection

� Thread groups and daemon threads

� Finalization (Garbage Collector thread)

� Weak references

� Floating point data type (float and double)

� Some security feature and APIs

� Class file verification (modified for efficiency)

� Some error handling limitations (not all exceptions are included)

These features have been changed because obtaining the necessary memory or
processing power is quite expensive.
 Chapter 7. Application design 155

156 Patterns: Pervasive Portals

Chapter 8. Application development

This chapter will give practical advice on how to use certain development tools to
build a pervasive solution for the WebSphere Portal Server.

Some of the tools introduced here are also used to build the sample application
for the book. You will find detailed descriptions of these tools and even some
step-by-step instructions on how to use them to build the sample application.

8

© Copyright IBM Corp. 2003. All rights reserved. 157

8.1 Application development methodology
Today, it is quite common in the industry to develop object-oriented software via
an iterative and incremental process. This approach has different roots. For more
information, refer to Object-Oriented Analysis and Design with Applications by
Grady Booch, Object-Oriented Software Engineering by Ivar Jacobson, and
Object-Oriented Modeling and Design by James Rumbaugh.

There is no defined standard process for development that everyone uses.
Different teams typically adopt a recognized process using a vendor
methodology or their services team methodology. IBM Global Services has its
own methodology used in customer engagements that covers the development
process. Rational® Software Corporation®, for example, uses its Rational
Unified Process®.

These methodologies generally divide the development process into different
phases. Each phase is done in a sequential manner and is subdivided into
further smaller phases. Some phases are only run through once. Others are
done over and over again, forming the iterative and incremental part of the
development process. The actual process and which phases you use might differ
slightly depending on the development team or organization that uses the
process. We can divide the whole process into the following phases:

� Solution outline
� Macro design
� Micro design
� Build cycle
� Deployment

Figure 8-1 Development process overview

In the Solution Outline phase, you decide the scope of the project, explore what
the essential business needs are, come up with an idea of the base architecture,
and get the commitment from the project sponsor to start.

Solution
Outline

Macro Design Micro Design Build Cycle Deployment
158 Patterns: Pervasive Portals

Then you start with the macro design, which concentrates on the detailed
requirements gathering, business process modeling, high-level analysis and
design, base architecture, and a plan for the subsequent development phases,
including a development release plan. These two phases are usually done once
in a project.

Now the iterative and incremental part of the development starts. For each
release of the developed e-business application, the micro design, build cycle,
and deployment phases are completed. Usually, a subset of use cases that has
to be developed to meet a part of the system requirements make up a release.
Use cases are grouped according to relevance and timeliness of functionality.
The releases are defined in the project plan produced in the previous phase. A
release can be an internal one that is not deployed to any users. This is quite
common for early stages of big projects. Others, such as alpha or beta releases,
might be deployed to a certain number of test users. It might take several
iterations until a first official release of the application is deployed to the users. In
turn, there are often several releases to the users until all requirements are met,
plus maintenance releases to fix errors and other defects.

For more information on the application development process in the context of
IBM Patterns for e-business, refer to the publication Self-Service Patterns using
WebSphere Application Server V4.0, SG24-6175.

8.2 Pervasive solutions tools
In this section, we will explain the tools environment for developing a solution for
Pervasive.

8.2.1 WebSphere Studio Application Developer
IBM WebSphere Studio Application Developer is the core development
environment from IBM. It helps you to optimize and simplify Java 2 Enterprise
Edition (J2EE) and Web services development by offering best practices,
templates, code generation, and the most comprehensive development
environment in its class.

You can create J2EE and Web services applications with integrated support for
Java components, EJB, servlet, JSP, HTML, XML, and Web services all in one
development environment.

You can also increase productivity with intuitive user interface, Visual Editor for
Java, code assist, re-factoring, configurable runtime, incremental compilation,
scrapbook, dynamic debugging, etc.
 Chapter 8. Application development 159

You can build new applications or enable existing assets quickly with Web
services using open standards such as UDDI, SOAP, and WSDL via Web
services Client Wizard.

It is also possible to transform data using a comprehensive XML development
environment that offers wizards and mapping tools for creating DTDs, XML
schemas, XSL style sheets and other data transformation.

Figure 8-2 IDE for WebSphere Studio Application Developer

If you want more information about this product, go to:

http://www-3.ibm.com/software/ad/studioappdev/
160 Patterns: Pervasive Portals

http://www-3.ibm.com/software/ad/studioappdev/

8.2.2 Portal Server Toolkit
The Portal Server Toolkit is a comprehensive toolkit for developing portlet
applications. It is provided in the form of plug-ins to WebSphere Studio Site
Developer Advanced or WebSphere Studio Application Developer.

The Portal Toolkit provides the following features:

� Portlet projects, with which you can create basic portlets, JSP portlets, servlet
invoker portlets, XSL portlets and MVC portlets.

� Portal server configuration, with which you can publish your portlet application
onto your target WebSphere Portal server. Your portlet will appear on the
debug page of your WebSphere Portal server.

� A capability for debugging a portlet at the source level.

� Portlet application samples for Enterprise Application.

This tool has a separate perspective inside WebSphere Studio Application
Developer, as you can see in Figure 8-2 on page 160.

8.2.3 Development for pervasive devices
In this section, we discuss the configuration and development steps you need to
follow in order to extend the portal application to pervasive devices such as
WAP-enabled phones and PDAs. For the WAP-enabled devices, we show how
to enable the Transcoding Technology bundled with WebSphere Portal Server to
use it with the portlets shown in 8.3.3, “Using Transcoding Technology” on
page 178. For PDAs, we show how to develop the application for Palm OS
devices by using the Mobile Application builder discussed in 8.4, “Building a
client application” on page 181.

Thin client
The thin client refers to those devices that can access the application online, by
using either a WAP or HTML browser. When you want these clients to connect to
the portal application, you may want to modify the contents of the portlets in
order to fit the information into the device screen.

The Portal Server included in WebSphere Everyplace Access has embedded
Transcoding Technology which allows you to configure what to show to pervasive
clients depending on the device platform and/or capabilities. Is important to note
that this component is not WebSphere Transcoding Publisher (WTP), so if you
are used to working with WebSphere Transcoding Publisher you will find some
differences between it and the Transcoding Technology.
 Chapter 8. Application development 161

In the sample scenario, the thin client can access the portal application and the
user can perform the following tasks:

� Customer registration

� Submit the service request by the customer or customer representative

� Technician can check the to-do list

� Technician can browse the knowledge base

� Technician can submit an order request

� Technician can close a defect

Fat client
The fat client development can be done with several different development tools,
based on different platforms, technologies and languages.

Within the WebSphere Everyplace Access there are three developer tools you
can use to develop mobile applications for PDAs; a comparison of these tools is
shown in Table 8-1 on page 167.

In the sample scenario, the fat client can perform the following tasks:

� Technician can check the to-do list

� Technician can browse the knowledge base

� Technician can submit an order request

� Technician can close a defect

Mobile Application Builder
This tool is intended to rapidly create applications for PDAs, to access
information stored in a DB2 Everyplace database on the device. Palm OS,
PocketPC, SymbianOS and any other device supporting the PersonalJava 3.0.2
specification API at JDK 1.1.7.* are supported. The MAB does not allow you to
edit the generated code; however, you can add a barcode scanner and printing
capabilities to the Palm OS target applications.

The code generated by MAB can be edited and recompiled with other
development tools in order to add other functionalities to your applications; for
Palm OS, MAB generates C code, and for all other devices it generates Java
code.

To get the DB2 Everyplace Mobile Application Builder software, go to the
following URL:

http://www-3.ibm.com/software/data/db2/everyplace/.
162 Patterns: Pervasive Portals

http://www-3.ibm.com/software/data/db2/everyplace/.

For more information about Mobile Application Builder, please refer to:

http://www-3.ibm.com/software/data/db2/everyplace/library.html.

WebSphere Studio Device Developer
IBM WebSphere Studio Device Developer is an integrated development
environment (IDE) for the creation and testing of applications that will be
deployed on handsets and other small devices.

It is the newest member of the WebSphere Studio family of application
development products. It helps developers create applications that enable
“devices” (cellular phones, PDAs and handheld computers) to become part of an
end-to-end e-business solution.

Figure 8-3 IDE for WebSphere Studio Device Developer

With this tool, you can develop applications based on C and the J2ME platform; it
also contains the J9 JVM for the different device types. The applications can be
developed based either on the CDC, CLDC, MIDP, or the Foundation classes. As
 Chapter 8. Application development 163

http://www-3.ibm.com/software/data/db2/everyplace/library.html.

in the regular Java applications, the most important issue you can address with
this kind of development is the portability of the code. You always use the
standard configurations and profiles libraries. Another issue to keep in mind is
the GUI; each device manufacturer has defined its own standard for the screen
size and depth, although standards like MIDP allow you to leave the UI rendering
to the JVM. This requires processing time, therefore the performance is
impacted. For Palm OS devices, you can create the GUI resources using other
tool, compile it with the PiLRC tools, and import the binary file into the linking
process; this feature will leverage the performance of the application on a Palm
OS, but you will not be able to port the application to other devices.

For more information about WebSphere Studio Device Developer, please refer
to:

http://www-3.ibm.com/software/pervasive/products/wsdd/index.shtml

Domino Everyplace Enterprise Server (DEES)
Domino Everyplace Enterprise Server is a set of tools that allows you to develop,
administer, run the devices and synchronize Domino mobile applications. The
Domino Everyplace Enterprise Server components are as follows.

� Domino Everyplace Enterprise Mobile Application Designer: this is the
Domino Everyplace Enterprise Server development tool used to create the
applications for handheld devices. It enables the developer to specify Domino
forms and views for the mobile application, to test the application on a device
emulator, and to publish the mobile application’s profile to a DEES
Administration database on a Domino Everyplace Enterprise Server.
Figure 8-4 on page 165 shows the Mobile Application Compiler, which is used
to define the properties, forms and views the developer want to add to the
mobile application.
164 Patterns: Pervasive Portals

http://www-3.ibm.com/software/pervasive/products/wsdd/index.shtml

Figure 8-4 The Mobile Application Compiler form

� Domino Everyplace Enterprise Server: this is a servlet that runs on top of a
Domino server and provides the synchronization services for Domino servers.
It includes the DEES Administration database for administering mobile
applications to users; Figure 8-5 on page 166 shows the published
applications on a DEES Administration database. The Mobile Notes users
connect to the Domino Everyplace Enterprise Server to synchronize both the
design and data of a mobile application.
 Chapter 8. Application development 165

Figure 8-5 The DEES Administration Database

� Mobile Notes: this provides the Notes-like functionality on the handheld
devices. From Mobile Notes, you can create, modify and delete documents
from your mobile applications. The applications maintain the security features
implemented on a Domino application. Figure 8-6 on page 167 shows the
Mobile Notes client on a Palm OS device.
166 Patterns: Pervasive Portals

Figure 8-6 The Mobile Notes client on a Palm OS device

This is a very useful tool when you want to extend Notes applications to
mobile users, maintaining the security and collaboration capabilities from the
regular Notes applications.

For more information about Lotus Domino Everyplace Enterprise Server, please
refer to:

http://www.lotus.com/products/domeveryplace.nsf

Table 8-1 Development Tools Included in WebSphere Everyplace Access V4.2

Lotus Domino
Everyplace
Enterprise

WebSphere
Studio Device
Developer

DB2 Everyplace
Mobile
Application
Builder

Version 2.7 4.0 8.1

Device Platform
Supported

PalmOS,
PocketPC, EPOC

PalmOS,
PocketPC, Linux,
Windows

PalmOS,
SymbianOS,
WinCE/PocketPC

Allows coding No Yes No

Programming
Language

Domino Designer® J2ME, C/C++ Generates C
(PalmOS), J2ME
(Others)
 Chapter 8. Application development 167

http://www.lotus.com/products/domeveryplace.nsf.

8.3 Portlet development
In this section, we discuss the steps that you need to develop a portlet.

For the sample application, the portlets provide the content for every task.

8.3.1 Developing a portlet
This section provides the steps for developing a portlet. Basically, there are three
things we must do. The first step is to create the .java class; the second step is to
create the .jsp for the user to view the data and the last step is to create the
deployment descriptor.

We are not covering the steps for installing the portlet in the WebSphere Portal
Server; the assumption is that you already are familiar these steps. If you need
more information, read the IBM WebSphere Portal 4.1 Handbook - Volume One,
SG24-6883.

Portlet class
At this point, we can start developing the portlets. The portlet we develop here is
the same that the sequence diagram represents in the previous section.

The method doView is activated when View Mode is active in the framework.
This is a default mode for a portlet. When a portlet is in this mode, it is rendering
data in its default display mode. This method will receive the request and
generate a response.

Mobile
Application Type

Lotus Notes DB2 Everyplace

Portable
Applications

Yes Yes No

Application
Performance

Low Low High

Synchronization
Tool

Domino
Everyplace
Enterprise Server

Lotus Domino
Everyplace
Enterprise

WebSphere
Studio Device
Developer

DB2 Everyplace
Mobile
Application
Builder
168 Patterns: Pervasive Portals

The framework has the following other modes.

� Edit Mode: this mode is active when the user clicks the edit icon displayed in
the portlet's title bar. When a portlet is in edit mode, a dialog is displayed that
lets the user customize the settings of the portlet.

� Configure Mode: a portal administrator, during the manage portlets process,
can invoke configuration of the portlet by selecting the Modify Parameters
function. In this mode, the portlet displays a dialog that lets the administrator
configure the portlet for the portal. These settings are global in nature, and
typical settings for the portlet (the target back-end server URL, for example);
they are not settings for a particular user.

� Help Mode: this mode is made active when the user clicks the help icon
displayed in the portlet's title bar. When a portlet is in help mode, help
information for the user should be displayed. This help information should
explain how the user customizes the portlet settings and how the portlet
display is interpreted.

Example 8-1 Getting the request from the browser

public void doView(PortletRequest req, PortletResponse res)throws
PortletException, IOException {

//* get the user from request
User user = req.getUser();
req.setAttribute("userID", user.getUserID());
//* forward to page error if find some problem
if (req.getAttribute("errorMessage") == null)

getConfig().getContext().include(FORM_PAGE, req, res);
else

getConfig().getContext().include(ERROR_PAGE, req, res);
}

In this code, the method doView gets the user information from the request and
saves it in the user object. The user object is one instance of the user interface
that contains methods for accessing attributes from the user, such as the user’s
full name or user ID.

In this case, the user ID is saved in the request. The method forwards to a JSP
because we are using the MVC model and have no HTML code in the portlet
class.

When the user posts the data, the container calls one event. Portlet events
contain information about an event to which a portlet might need to respond. For
example, when a user clicks a link or a button, it generates an action event. To
receive notification of the event, the portlet must have an event listener
implemented in the portlet itself. In the Portlet API, there are three types of
events:
 Chapter 8. Application development 169

� ActionEvents: generated when a HTTP request is received by the portlet
container that is associated with an action, such as when the user clicks a
link.

� MessageEvents: generated when a portlet sends a message to another
portlet.

� WindowEvents: generated when the user changes the state of the portlet
window.

The portlet container delivers all events to the respective event listeners (and
thereby to the portlets) before generating the new content that the event
requires. Should a listener, while processing the event, find that another event
needs to be generated, that event will be queued by the portlet container and
delivered at a point of time that is at the discretion of the portlet container. All that
is guaranteed is that it will be delivered and that this will happen before the
content generation phase.

The most common event is the ActionEvent. An ActionEvent is sent to the
related portlet when an HTTP request is received that is associated with a
PortletAction. PortletActions can be linked to URLs by using the PortletAPI.
Normally, PortletActions are linked with HTTP references or buttons in HTML
forms, enabling the portlet programmer to implement different processing paths
for different user selections. The ActionEvent of the clicked link then carries the
associated PortletAction back to the portlet which in turn is able to process
different paths on behalf of the PortletAction.

We have one sample for the ActionEvent, below.

Example 8-2 Getting the ActionEvent

public void actionPerformed(ActionEvent event) {
DefaultPortletAction action = (DefaultPortletAction)event.getAction();
PortletRequest req = event.getRequest();
if (action.getName().equals("save")) {

//* This action will call when the user want to save defect.
try {

//* Get the data from request
Long defectID = new Long(req.getParameter("txtDefectID"));
String comments = req.getParameter("txtComments");
//* Call one stateless bean to create one order to client
DefectServiceHome defectServiceHome =
(DefectServiceHome)ServiceLocator.getInstance().getHome("ejb/DefectSe
rvice");
DefectService defectService = defectServiceHome.create();
defectService.createOrder(defectID, comments);
//* Send one message jsp
req.setAttribute("appMessage", "Order Registered");
170 Patterns: Pervasive Portals

} catch (DefectNotFoundException dnfe) {
req.setAttribute("appMessage", dnfe.getMessage());

} catch (Exception e) {
e.printStackTrace(System.out);
req.setAttribute("errorMessage", e.getMessage());

}
}

}

In the actionPerformed method, you will receive the event as an object. This
object has one method to get the action. The input form sends this action name
for portlet. When the technician fills the form and clicks the Submit button, the
HTML sends one action (save) and starts the process.

This method will get the data from the request and will call one singleton Service
Locator. This component centralizes distributed service object lookups and
provides a centralized point of control. This class will return one EJBHome class.
After that, the portlet will get one remote reference to start to call the business
methods. If the business methods have an exception, the component will get the
exception and write one message in the request.

JavaServer Pages for portlets
The next step in development is to create the component to show the data
coming from the portlet class. The portal aggregator calls the portlet to render the
data and the portlet responds with the stream of the response object.

The job to implement the interface becomes more difficult when the interface
becomes more complex. It is necessary that one method for a portlet delegate
rendering to another entity; the JSP is the entity which commonly does this job.

The WebSphere Portal Server has a portlet API to provide the class to support
the use of JSP components in order to render portlet markup. Refer to the JSP
code shown in Example 8-3.

Example 8-3 JSP interface code for the user type defect

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<%@ taglib uri="/WEB-INF/tld/portlet.tld" prefix="portletAPI" %>

<jsp:useBean id="userID" class="java.lang.String" scope="request"/>

<form name="<portletAPI:encodeNamespace value='frmMakeOrderJsp'/>"
method="post"
action="<portletAPI:createURI><portletAPI:URIAction name='save'/>
</portletAPI:createURI>">

Technician ID: <%= userID %>

 Chapter 8. Application development 171

Select the Defect: <INPUT size="20" type="text" name="txtDefectID">

Comments: <TEXTAREA rows="2" cols="20"
name="txtComments"></TEXTAREA>

<INPUT type="submit" name="ok" value="OK">
<INPUT type="reset" name="Clear" value="Clear"></P>

</FORM>

In this code, the JSP receives one JavaBean that was created by the portlet. The
portlet places the JavaBean in the portlet request scope. In this code, the name
of the bean is userID.

The portlet call the portlet context method include() to invoke the JSP. You can
see this call in Example 8-1 on page 169.

The JSP component uses the <jsp:useBean> tag to establish the reference to
the bean and extract the data from the request. You can write the value from the
bean in a traditional JSP way. This is a basic step necessary to get the data from
portlet.

Another consideration is how to send the data to the portlet and call an action.
This JSP has a custom tag know as portletAPI:URIAction name='save'. In this
tag, you can define the name of the action. The URIAction works only if you
define another tag, CreateURI.

The CreateURI is used to create an URI that points to the current portlet with the
given parameters. You can pass a parameter or action in the URI by including
URIParameter or URIAction between the createURI start and end tags.

The URIAction is used to add a default action to the URI of the createURI and
createReturnURI tags. The portlet must provide an action listener to handle the
event.

This action will activate and you can code one method to execute the operations
compatible with this action.

Deployment descriptor for the portlet
The last step is to create the deployment descriptor file.

A collection of related portlets make up a portlet application and are packaged
together in the Web archive (WAR) file. Portlets packaged together in a single
.war file may share images, stylesheets, JSP components, and other kinds of
resources. A .war file is a specially structured JAR file that includes a special
XML descriptor called the Web application deployment descriptor.
172 Patterns: Pervasive Portals

The file name for the XML descriptor file is web.xml. This file is always stored in
the WEB-INF directory of the WAR file.

Example 8-4 The web.xml file

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE web-app PUBLIC "-//Sun Microsystems, Inc.//DTD Web Application
2.2//EN" "http://java.sun.com/j2ee/dtds/web-app_2_2.dtd">
<web-app id="WebApp">
 <display-name>PervasivePortal</display-name>
 <servlet id="Servlet_1">
 <servlet-name>PortSearchKm</servlet-name>
 <display-name>PortSearchKm</display-name>
 <servlet-class>com.ibm.itso.pervasive.PortSearchKm</servlet-class>
 <init-param>
 <param-name>listener.action</param-name>
 <param-value>com.ibm.itso.pervasive.PortSearchKm</param-value>
 </init-param>
 </servlet>
 <servlet-mapping id="ServletMapping_1">
 <servlet-name>PortSearchKm</servlet-name>
 <url-pattern>/PortSearchKm/*</url-pattern>
 </servlet-mapping>
</web-app>

In this example, we have the reference and mapping for only one portlet. If you
have more portlets, you will have more entries. In a sample application, we have
the complete version for the project. The portlet here is PortSearchKM (see this
on the servlet-name tag) and the class name is
com.ibm.itso.pervasive.PortSearchKm (see this on the servlet-class tag).

The Web application descriptor describes the portlets in the portlet application
.war file to the application server as servlets. Each portlet is defined as a servlet,
and the portlet application is synonymous with the definition of the Web
application.

One important point is that when you have the action, you should define the
listener action. You can have one class for the portlet and another class to
receive the actions. In this case, the two classes are the same but if you want to
change the action, you should change the class in the param-value class.

Look at the tags below:

<param-name>listener.action</param-name>
<param-value>com.ibm.itso.pervasive.PortSearchKm</param-value>

In addition to the web.xml file in the portlet application's .war file, a .war file that
contains a portlet application and associated portlets must also contain a portlet
 Chapter 8. Application development 173

application descriptor. The portlet application descriptor file name is portlet.xml,
and this file is also always stored in the WEB-INF directory of the .war file.

This document describes the portlet application, each portlet in the application
and each portlet's title and capabilities. Refer to Example 8-5.

Example 8-5 The portlet.xml file

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE portlet-app-def PUBLIC "-//IBM//DTD Portlet Application 1.1//EN"
"portlet_1.1.dtd">

<portlet-app-def>
 <portlet-app uid="DCE:f3f5b310-f757-1201-0000-005d15cf6940:1"
major-version="1" minor-version="0">
 <portlet-app-name>PervasivePortal application</portlet-app-name>
 <portlet id="Portlet_1" href="WEB-INF/web.xml#Servlet_1" major-version="1"
minor-version="0">
 <portlet-name>Search KM</portlet-name>
 <cache>
 <expires>0</expires>
 <shared>NO</shared>
 </cache>
 <allows>
 <maximized/>
 <minimized/>
 </allows>
 <supports>
 <markup name="html">
 <view/>
 </markup>
 </supports>
 </portlet>
</portlet-app>

<concrete-portlet-app uid="DCE:f3f5b310-f757-1201-0000-005d15cf6940:1.1">

<concrete-portlet href="#Portlet_1">
 <portlet-name>ITSO Search Knowledge Managment portlet</portlet-name>
 <default-locale>en</default-locale>
 <language locale="en">
 <title>Search Knowledge Management</title>
 <title-short></title-short>
 <description></description>
 <keywords></keywords>
 </language>
</concrete-portlet>
174 Patterns: Pervasive Portals

</concrete-portlet-app>
</portlet-app-def>

In this file, you can find the link between the portlet (portlet.xml) and the servlet
(web.xml). In this file, we can find a lot of interesting information such as whether
the portlet can be maximized, or the name that the user can see to identify this
portlet on the list of portlets, or what kind of device this portlet can be used.

The information about the device can be set in the markup tag.

Example 8-6 Tags to set portlet to HTML, WML and cHTML devices

<supports>
 <markup name="html">
 <view/>
 </markup>
 <markup name="wml">
 <view/>
 </markup>
 <markup name="chtml">
 <view/>
 </markup>
</supports>

In Portal Administration, this information will be available when you install the
portlet application.

Generating the portal deployable code
This step is really easy if you have some tool such as WebSphere Studio
Application Developer with the Portal Toolkit.

The XML files, portlets and JSP files are inside the \WEB-INF folder. The portlet
follows the same conventions as a J2EE specification. You should create one
.war file to deploy portlets inside the WebSphere Portal Server.

Select Export WAR in WebSphere Studio Application Developer. You should see
a window as shown in Figure 8-7 on page 176.
 Chapter 8. Application development 175

Figure 8-7 Generating the portlet .war file

You can choose the place that you want to generate the deploy file. For example,
this could be C:\temp\PervasivePortal.war.

Now your portlet has finished delivering to WebSphere Portal Server. The Portal
Administrator should import this in Portal Page Administration to finalize the
process.

For more information about deploying the sample application in a runtime
environment, refer to Chapter 12, “Technical scenario” on page 271.

8.3.2 User registry
The application exhibits a different behavior if the user logged in is a technician
or a customer. The information about these two actors is stored in an LDAP
directory. The product responsible for managing this data is IBM SecureWay
Directory.

IBM SecureWay Directory is a Lightweight Directory Access Protocol (LDAP)
directory that runs as a stand-alone daemon. It is based on a client/server model
that provides client access to an LDAP server. IBM SecureWay Directory
provides an easy way to maintain directory information in a central location for
storage, updating, retrieval, and exchange.
176 Patterns: Pervasive Portals

IBM SecureWay Directory provides Secure Sockets Layer (SSL) V3 support,
both for the directory server and client. SSL provides encryption of data and
authentication using X.509v3 public-key certificates. The directory may be
configured to run with or without SSL support. IBM SecureWay Directory also
supports LDAP referrals, allowing directory operations to be redirected to
another LDAP Directory server. Replication of the LDAP Directory is supported
and allows for additional copies of the directory to be available for directory read
operations, which increases performance and reliability when accessing
directory information.

The suggested mapping for the structure to use the LDAP can be seen in
Table 8-2 below.

Table 8-2 Structure of LDAP

The next step is for the users to populate this structure. Of course, you can
create your own users, but if you want to see an example, take a look at
Example 8-7.

Example 8-7 Example for Technician

dn: uid=tech1, cn=users, dc=itso, dc=ral, dc=ibm, dc=com
objectclass: top
objectclass: person
objectclass: organizationalPerson
objectclass: inetOrgPerson
cn: tech1 Technician
givenName: tech1
sn: Technician
uid: tech1
userPassword: password

You can customize this LDAP structure to save the information about the
employee (Technician). We have one more example for another kind of user, the
Customer. In this case, both structures are the same but in real conditions, the
intranet and Internet profiles would be completely different.

Business Name Class Attribute

User Identification inetOrgPerson uid

Password person userPassword

First Name inetOrgPerson givenName

Last Name person sn
 Chapter 8. Application development 177

Example 8-8 Example for Customer

dn: uid=client1, cn=users, dc=itso, dc=ral, dc=ibm, dc=com
objectclass: top
objectclass: person
objectclass: organizationalPerson
objectclass: inetOrgPerson
cn: client1 Customer
givenName: client1
sn: Customer
uid: client1
userPassword: password

Now we have the users for the portal, but the next step is to separate the
Technician and Customer. We can separate using groups in LDAP. We have
been using the default definition group that is configured when you installed IBM
SecureWay. This group has the information about the users who work with this
application.

Example 8-9 Example for a group of users

dn: cn=technician, cn=groups, dc=itso, dc=ral, dc=ibm, dc=com
objectclass: groupOfUniqueNames
description: Technician from ITSO Help Desk
cn: technician
uniquemember: uid:tech1, cn=users, dc=itso, dc=ral, dc=ibm, dc=com
uniquemember: uid:tech2, cn=users, dc=itso, dc=ral, dc=ibm, dc=com
uniquemember: uid:tech3, cn=users, dc=itso, dc=ral, dc=ibm, dc=com

If you want to test all scenarios with this application, you should have the
Customer and Technician users as shown in Table 8-3.

Table 8-3 List of users to use the application

8.3.3 Using Transcoding Technology
The Transcoding Technology comes as a feature of WebSphere Portal in
WebSphere Everyplace Access.

User Identification Profile

client1 Customer

client2 Customer

tech1 Technician

tech2 Technician
178 Patterns: Pervasive Portals

If you log on as an administrator to WebSphere Portal on a WebSphere
Everyplace Access installed machine, select the Portal Administration option
from the menu, then select the Portal Settings tab and Global settings under it.

At the bottom of the page, you will find a check box, by which you can enable
transcoding for the portlet content, as shown in Figure 8-8.

Figure 8-8 Enabling Transcoding Technology

This is a global setting for WebSphere Portal, and it is set to be enabled by
default.

If you want to transcode your portlets, you have to configure the Transcoding
Technology for the portlet. In order to do so, you have to select the Portlets tab,
then Manage Portlets under it.

Select your portlet from the list of portlets, then select the Modify Parameters
link. For example, select Welcome Portlet from the list.

A page will appear with the details and settings for the portlet; add a new
parameter, type in FilterChain for the parameter, and Transcoding as the value,
then click Add.
 Chapter 8. Application development 179

You should get the resulting window as shown in Figure 8-9.

Figure 8-9 Configuring Transcoding for a portlet

Once you have transcoding enabled using the FilterChain in WebSphere, you
can access the portal application using a WAP phone or, in our case, an
emulator. In this case, we accessed the http://<servername>/wps//portal site;
first, we got the list of items from the Welcome portlet, then we looked at the
World time to get the result as shown in Figure 8-10 on page 181.
180 Patterns: Pervasive Portals

Figure 8-10 Portlet results on a WAP phone

In the sample application, the Transcoding Technology enables the users to
access Web content on pervasive devices, for example a wireless laptop, PDA,
smartphone, interactive voice response system.

8.4 Building a client application
The objective of this section is to quickly show a sample application built using
the Mobile Application Builder.

In the sample application, this fat client application handles the to-do list, the
knowledge base, and the order request functions for the technician.

The recommended development environment for pervasive applications is the
WebSphere Studio Device Developer. We have used the Mobile Application
Builder for our project to generate a simple application quickly and easily for the
sample scenario. The capabilities of the Mobile Application Builder are very
limited; it does not allow any programming, only drag and drop, rapid application
development. This product is good for quick prototype development.
 Chapter 8. Application development 181

This section will not go into details as to how to use the Mobile Application
Developer; we only provide some information about the developed sample client
application.

1. Open the project ITSO HelpDesk.mab under the ITSOHelpDesk directory.

You should get the window shown in Figure 8-11.

Figure 8-11 Mobile Application Builder

2. The application for mobile devices is already developed; you only have to
compile and deploy it on a PalmOS device. For more information about the
building process, refer to the product documentation. The building process
requires different applications and libraries to be installed on the system in
order to compile the code.

3. Once the code is built and you have the resulting .prc file for the Palm device,
you have to install the following libraries on the PalmOS device in order to use
182 Patterns: Pervasive Portals

DB2 Everyplace and synchronization working on PalmOS for the DB2
Everyplace Server:

– Clients\PalmOS\sync\imsaconfig.prc
– Clients\PalmOS\sync\imsadb2e.prc
– Clients\PalmOS\sync\imsafile.prc
– Clients\PalmOS\sync\isyncl.prc
– Clients\PalmOS\sync\isynconf.prc
– Clients\PalmOS\sync\isyncore.prc
– Clients\PalmOS\sync\isynce.prc
– Clients\PalmOS\sync\isyncui.prc
– Clients\PalmOS\sync\wbxmllib.prc
– Clients\PalmOS\database\DB2eCat.prc
– Clients\PalmOS\database\DB2eCLI.prc
– Clients\PalmOS\database\DB2eComp.prc
– Clients\PalmOS\database\DB2eRunTime.prc
– Clients\PalmOS\database\DB2eDMS.prc
– Clients\PalmOS\database\PBSPkcs11.prc*
– Clients\PalmOS\QBE\lang\QBE.prc

4. Install the application ITSO HelpDesk.prc file, then reset the device.

5. Configure the DB2 Synchronization on the PalmOS device.

You will need the server name and port. The server name is that of the server
where your synchronization server is running, the port number is that of the
port where the server is listening. You can get the port number from the
WebSphere Administrative Console if you look up the port number for the
Web container transport, for example: 9082.

You also have to specify the user name and password, for example: tech1
and password.

6. Synchronize the database for the application, then start the Help Desk Palm
application.

8.5 Everyplace Synchronization Server
Everyplace Synchronization Server is the component provided by WebSphere
Everyplace Access for synchronizing data between several types of data
repositories and the pervasive devices. It is intended to allow the mobile devices

Important: The following step assumes that you have a DB2 Everyplace
server up and running and configured for the application. For configuration
details, refer to 8.5.2, “Configuring the DB2 Everyplace Server” on page 186.
 Chapter 8. Application development 183

to synchronize personal information data (PIM) and relational database
management systems (RDMS) with the back-end repositories.

The Synchronization Server includes adapters for synchronizing with databases
such as Lotus Notes, Microsoft Exchange and DB2 or other JDBC-compliant
databases.

Synchronization Server uses the Java 2 (J2EE) platform and SyncML V1.0
protocol between the server and the client devices. The devices can use any
connection type that can support TCP/IP.

Synchronization Server is a set of servlets that are installed as enterprise
applications in WebSphere Application Server. These servlets are as follows.

� The SyncML servlet handles SyncML requests from pervasive devices.

� The Relay servlet handles requests from desktops using TrueSync Plus.

� The DB2 Everyplace Sync Server is the DB2 Everyplace synchronization
engine and allows the synchronization with JDBC-compliant databases. The
Mobile Devices Administration Center, shown in Figure 8-12, is used to
administer users, filters and subscriptions.

Figure 8-12 The Mobile Devices Administration Center

The adapters provided by Synchronization Server convert data into a common
format in order to synchronize it between the back-end repositories and the
devices. The adapters provided by Synchronization Server are as follows.

� Lotus Domino Adapter: provides an interface for the Synchronization Server
to access enterprise Lotus Domino databases. Supports e-mail, address
book, calendar, to dos and journal data using the standard templates
Std50Mail, iNotes5, Std4PersonalAddressBook, Std50Journal, Std6Journal,
and custom templates defined in the Mapping Database directory.
184 Patterns: Pervasive Portals

� Microsoft Exchange Adapter: provides an interface for the Synchronization
Server to access Microsoft Exchange databases. Supports e-mail, contacts,
calendar, tasks and notes synchronization.

� Relational Database Adapter: uses DB2 Everyplace Sync Server to provide
an interface for the Synchronization Server to access DB2 or other
JDBC-compliant databases.

8.5.1 Using DB2 Everyplace
Figure 8-13 depicts the relational database synchronization environment for
JDBC subscription types.

Figure 8-13 DB2 Everyplace synchronization for JDBC subscriptions

The hand-held device sits on the IBM Everyplace Client, which is the unified
client. The unified client has a component called Secure Proxy, which is
transparent to the user. Secure Proxy handles user authentication and data
encryption between the client and the Web Server.

LDAP
Directory
Services

IBM HTTP Server

m23vnx78.itso.ral.ibm.com
Port 80

WebSphere
Portal

DB2e Sync
Server

(servlet)

Basic Authentication
SSL (optional)

Pocket PC

Secure
proxy

127.0.0.1

Port 1080

DB2e Sync

Everyplace Client

DB2e database

DB2 Everyplace
Mobile Devices
Administration
Center (MDAC)

Users and
Groups

Subscription
set and

Subscriptions

DB2 database
(LDAP data)

source database
(DB2)

JDBCJDBC

WebSphere Application Server

DB2e Sync Server

WebSphere Application Server

Replication

Synchronization

JDBC

mirror
database

(DB2)

JDBC subscription
DB2 source database
 Chapter 8. Application development 185

On the server side, IBM HTTP Server handles incoming HTTP requests, and
passes those destined for WebSphere Application Server via a plug-in.
WebSphere Portal rides on top of the WebSphere Application Server. It provides
administration portlets to manage portlets as well as users and groups. User and
group information is stored within LDAP.

Also on the server, DB2 Everyplace periodically replicates the back-end
databases to mirror databases. DB2 Everyplace Mobile Devices Administration
Center or MDAC, together with WebSphere Portal, provides the complete
administration functionalities for DB2 Everyplace Sync Server.

DB2 Everyplace is the database engine installed on the mobile device. DB2
Everyplace Sync Server carries out bi-directional synchronization of data
between the database on the mobile device and the source database on the
server.

For more information about DB2 Everyplace and database synchronization, refer
to the IBM Redpaper Relational Database Synchronization in WebSphere
Everyplace Access V4.1.1, REDP3590.

8.5.2 Configuring the DB2 Everyplace Server
The following steps show you how to set up the sample application that is using
DB2 Everyplace to interact with the application database in order to collect
information on the PDA for the Technician in the field.

1. Create a mirror database for the application, run the script mirror.bat from the
database directory.

2. Create the SyncGroup with the portal interface. Add the wpsadmin user to the
SyncGroup group. Also add all the Technician (tech1, tech2) and Client
(client1, client2) users to the group.

3. Create the DB2e_Technicians group and add the users: tech1, tech2 to the
group.

4. Create the DB2e_Clients group and add the users: client1, client2 to the
group.

5. Start the DB2 Everyplace Mobile Devices Administration Center.

6. Create a new subscription set, right-click the Subscription Set, then select
Create. Set the Name field to HelpDesk, then add the DB2e_technicians
group to the subscription set.
186 Patterns: Pervasive Portals

Figure 8-14 Subscription Set

7. Create a new subscription; right-click Subscriptions, then select: Create ->
Table Subscription -> JDBC subscription...

8. Specify the following field for the subscription:

Name: Customer Service

9. Switch to the Source tab, the set the following fields:

Database URL: jdbc:db2:PERPORDB

User ID: db2admin

Password and Verify password: password

10.Switch to the Mirror tab and set the following fields:

Database URL: jdbc:db2:PERPORMI

User ID: db2admin

Password and Verify password: password

11.Switch to the Subscription sets tab and add the HelpDesk subscription set to
this subscription.

12.Switch back to the Identification tab and click the Define subscription...
button.

13.On the Define Replication Subscription panel, click Add then add the
following tables to the subscription:

– DBUSER.CATEGORY

– DBUSER.DEFECT

– DBUSER.ORDER

14.Select the DBUSER.DEFECT item, then click Advanced.
 Chapter 8. Application development 187

15.Switch to the Rows tab, then specify the following condition for the Subset of
rows for individual users:

TECHNICIANID=:TECHID

16.Close the Replication panel.

17.Click OK to create the subscription.

Figure 8-15 Subscription

18.Select the Groups node, right-click the DB2e-Technicians item and select
Edit...

19.Select the Data filter tab, then click Add. Set the Parameter name to TECHID,
then click OK. Click OK on the Edit group panel.

Figure 8-16 Groups

20.Select the Users node, then right-click tech1 from the list and select Edit...

21.Select TECHID under the Data filter tab, then click Change. Set the User
override field to tech1. Click OK.

22.Repeat the last two steps for the user tech2.
188 Patterns: Pervasive Portals

Figure 8-17 Users

The database is configured for remote synchronization for pervasive devices.

8.6 Developing Java Application for J2ME
This section shows the concepts, architecture and development of a J2ME
pervasive application. For design considerations and details on this technology,
refer to 7.7, “Embedded mobile client applications” on page 151.

J2ME applications are not exercised in this book’s sample application, but they
can provide the same functionality as the previous fat client, although in this
case, it is also available for smartphones besides the PDAs.

8.6.1 Developing a Midlet
In this part, we explore CDLC and MIDP API in more detail. We choose this
profile because it has became more popular than others.

A Midlet is an abstract class that is subclassed to form the basis of the
application. The Midlet class resides in the package javax.microedition.midlet.

Example 8-10 is quite simple; it shows the Midlet and does nothing other than
putting a short text message on the screen.

Example 8-10 Midlet class

package com.itso.test;

import javax.microedition.lcdui.*;
import javax.microedition.midlet.*;
 Chapter 8. Application development 189

public class DemoMidlet extends MIDlet {
 private TextBox textbox;

 public DemoMidlet() {
 textbox = new TextBox("", "UUUUUUAaaaa", 20, 0);
 }

 protected void startApp() throws MIDletStateChangeException {
 Display.getDisplay(this).setCurrent(textbox);
 }

 protected void pauseApp() {
 }

 protected void destroyApp(boolean flag) throws MIDletStateChangeException {
 }
}

When a device receives a message to start a Midlet , the Midlet is instantiated
and the application management service on the device calls the startApp()
method. At this point, our application takes over control and performs any
initialization that may be required.

The startApp() method can be called a number of times during the lifecycle of a
Midlet. It can be placed in a pause state as a result of a call to the pauseApp
when the user, or the device needs to perform some action such as writing
content.

The user can choose to close the application, or for some reason the system can
also require the application to close. The method destroyApp is called.

The next step is to compile the code and create the deployment files. This task
can be automated by ANT or you can use WebSphere Studio Device Developer
to do it for you.

Example 8-11 shows an ANT script for generating the deployable code.

Example 8-11 Steps to compile the Midlet

<?xml version="1.0" encoding="UTF-8"?>
<project default="all" name="HelloMidletProject">
 <target depends="updatejad palm68k/HelloMidletSuiteName" name="jxe2prc
palm68k/HelloMidletSuiteName">
 <jxe2prc applicationName="DemoMidlet" apptype="midp"
 compress="true" creatorId="0001" midp="true"
 outputFile="palm68k/HelloMidletSuiteName.prc"
 platform="palm68k" scale="" translate="true">
 <efileset dir="palm68k">
190 Patterns: Pervasive Portals

 <include name="HelloMidletSuiteName.jxe"/>
 </efileset>
 </jxe2prc>
 </target>
 <target depends="includemidlets palm68k/HelloMidletSuiteName"
name="smartlink palm68k/HelloMidletSuiteName">
 <jxelink optionsFile="palm68k/HelloMidletSuiteName.jxeLinkOptions"/>
 </target>
 <target name="includemidlets palm68k/HelloMidletSuiteName">
 <includemidlets jadFile="HelloMidletSuiteName.jad"/>
 </target>
 <target depends="smartlink palm68k/HelloMidletSuiteName" name="updatejad
palm68k/HelloMidletSuiteName">
 <updatejad inputJadFile="HelloMidletSuiteName.jad"
 jarFile="palm68k/HelloMidletSuiteName.jxe"
outputJadFile="palm68k/HelloMidletSuiteName.jad"/>
 </target>
</project>

This script compiles the code for PalmOS.

The WebSphere Application Device Developer has tools to emulate this
program, or you can download a simulator for the device to test this program.

8.7 Testing your pervasive application
This section provides information about testing the sample application. We can
do this job in two different ways.

In the first case, we are using the cell phone emulator with Java support. After
you finish with the code and deployment descriptor, you can test your application
with WebSphere Studio Device Developer Debug. To do this, press F11 inside
the IDE environment and this tool will show the emulator.

If you follow all the steps properly, you will see a window as shown in Figure 8-18
on page 192.
 Chapter 8. Application development 191

Figure 8-18 WAP device simulator

You can also run the same application on a Palm device. This is a test outside of
the device developer. The deployment descriptor generates the file to import in
Palm OS.

You can download a simulator from the PalmOS Web site
(http://www.palmos.com) then you have to install the Java Runtime Environment
for J2ME to run this application.

In order to install the Java Runtime Environment, you should open the Palm
simulator; right-click the Palm screen, choose the Install application/database
option and select the following files:

� <WSDD_home>\wsdd5.0\ive\runtimes\palmos\68k\ive\bin\cldc20.prc

� <WSDD_Home>\wsdd5.0\ive\runtimes\palmos\68k\ive\bin\j9_vm_bundle.prc
192 Patterns: Pervasive Portals

http://www.palmos.com

� <WSDD_home>\wsdd5.0\ive\runtimes\palmos\68k\ive\bin\j9pref.prc

� <WSDD_home>\wsdd5.0\ive\runtimes\palmos\68k\ive\bin\midp20.prc

After this, you can install the sample application in the same way that you have
installed the JVM. For this device, you should install the .prc file. The deployment
descriptor in this chapter generates the .prc file in
<WSDD_home>\workspace\HelloMidletProject\palm68k\HelloMidletSuiteName.
prc.

Figure 8-19 Palm device simulator

8.8 Everyplace Client
Everyplace Client is a client application for Personal Digital Assistants (PDAs)
which provides a common interface that supports information updating, security,
device management, offline Portal pages, offline Domino Applications and
database synchronization. The Everyplace Client features the following products:

Important: WSDD_home is the folder where you have WebSphere Studio
Device Developer installed.
 Chapter 8. Application development 193

� Domino applications, which provide Lotus Notes functionality for the handheld
device.

� e-mail and PIMs, which provide the capability to synchronize with e-mail and
PIM data with Lotus Domino and Microsoft Exchange servers.

� Database synchronization, which supports DB2 Everyplace as the database
synchronization engine. It enables the synchronization with DB2 and JDBC
compliant database servers.

� Offline Portal pages, which provide the ability to view Portal content and to
handle Form operation offline, using the capabilities of Web-based services.
This feature is available only in PocketPC devices.

� Device Manager, which can be used to identify, configure, inventory, and
distribute software to supported PDA devices.

� Everyplace Client: the Everyplace Client interface provides a simple and
unified operation and launching interface for packaged applications. This
interface is available only for PocketPC devices.

� Secure HTTP proxy: this supports SSL connection and basic authentication,
and contributes to support the offline browsing of the static portal server, the
unified user interface and configuration for all Everyplace client applications.

� Sametime Connect: Sametime Connect is an easy-to-use application that
provides complete awareness and conversation features. It lets people find
other members online and create personalized lists of team members and
colleagues. Features for managing user privacy are also included so a
member can control their own online presence. Users can also list their
presence as "active", "away", or "do not disturb". Once a team member is
aware of who is online, immediate communication is easy. A single mouse
click lets them send an instant message to anyone. The Sametime Connect
client for Palm OS is shown in Figure 8-20 on page 195.
194 Patterns: Pervasive Portals

Figure 8-20 The Sametime Connect for Palm OS

8.9 Notification Services
Everyplace Intelligent Notification Services delivers messages to users of
pervasive devices based on the users’ preferences and subscriptions. For
example, subscribers can tell Everyplace Intelligent Notification Services to notify
them when news articles with “pervasive computing” in the headline are
published by a content provider. Subscribers can also specify which devices to
send a notification to based on the urgency of the message. For example, if the
message is marked FYI, send it via e-mail, if the message is marked urgent,
send it via Sametime instant messaging.

In the sample application, we did not implement notification. In the sample
scenario, the notification takes care of the urgent customer requests, so the
technician gets the request immediately on the pervasive device while he/she is
working in the field.

The supported notification mechanisms by Everyplace Intelligent Notification
Services are:

� Lotus Sametime

� Message Center portlet

� Short Message Service (SMS); this requires WebSphere Everyplace Wireless
Access

� Simple Mail Transfer Protocol (SMTP)
 Chapter 8. Application development 195

In order to send notification through another type of messaging service, you must
implement a custom gateway adapter, which can be developed by using the API
provided.

8.9.1 Configuring Notification Services
Notification Services in WebSphere Everyplace Access can be configured
through the Portal administration.

1. Open a Web browser, go to the location http://<WEA_server>/wps/portal.

2. Log in as the portal administrator (wpsadmin/wpsadmin).

3. Select Notification Services from the menu. You will get the following page
for administering the notification services.

Figure 8-21 Notification Services in WebSphere Portal
196 Patterns: Pervasive Portals

In our sample scenario, the Notification Service sends messages to the
Technician on the field on the PDA. Messages can be filtered on the application
level, so the Technician only gets notification when the reported defect reaches a
certain severity level.

Notification can use the following technologies:

� Instant messaging; this requires a special client application for messaging.

� e-mail, message sending via SMTP. This also requires a client application to
receive messages.

� SMS is usually a built-in function in GSM devices and the phone takes care of
the message handling.

� WAP push is part of the WAP specification, and it is implemented in the
mobile device.

For more information about notification, refer to the product documentation.
 Chapter 8. Application development 197

198 Patterns: Pervasive Portals

Chapter 9. Security

The pervasive world was envisioned to make the user’s experience easier and
extend the capabilities and reach of e-business applications to everybody,
everywhere and at every time. As an unknown and unexplored solution,
pervasiveness brings with all these announced advantages new issues for
critical areas such as security.

This chapter discusses the common security issues to a Pervasive Portal
solution using WebSphere Everyplace Access.

This chapter will not present basic security concepts; some of this information
can be found in the IBM Redbook Mobile Applications with IBM WebSphere
Everyplace Access Design and Development, SG24-6259-00.

9

© Copyright IBM Corp. 2003. All rights reserved. 199

9.1 Security for a Pervasive Portal solution
In order to better understand the security issues on a Pervasive Portal solution,
the same operational model diagram will be used and the security issues for
some of the components of the solution will be detailed.

The components explored are:

� Boundary components - this includes routers, firewalls and architecture
recommendations for security layers.

� WebSphere Everyplace Connection Manager

� WebSphere Edge Server

� WebSphere Everyplace Access and its components, such as:

– Everyplace Client

– Device Manager

– Everyplace Synchronization Server

� Tivoli Access Manager and Single Sign-On

Figure 9-1 Security issues for the components of a Pervasive Portal solution

Firewall to
Access Internet and to Protect
Application and Persistence

from Internet

Load Balance
WebSphere Edge Server

Web Server Redirector
HTTP Server
HTTP Plugin

Transcoding Proxy
WebSphere Transcoding

Publisher

Database
DB2

LDAP Directory+
Authentication

Secureway Directory
+ DB2 +

Tivoli Access
Manager

Storage Area Network

 Persistence

Internet

Routers+
Packet Filters

Application

Portal
WebSphere Portal Server

WebSphere Personalization
WebSphere Application Server

Device Manager
Device Manager

Subscription Manager
WebSphere Application Server

Syncronization
WebSphere Syncronization Server

WebSphere Application Server

Authentication
+Single Sign On

WebSeal

Voice Server
WebSphere Voice Server

Firewall to Protect
Application and

Persistence

DMZ Web Server Redirector
HTTP Server

WebSphere Plugin

Load Balance
WebSphere Edge Server+

WebSeal Plugin

PDAs
Everyplace

Client Mobile
Phones

WAP

PDAs
Everyplace

Client

Internal
Browser

users

External
Browser

Users

Replication
with PCs

Wireless
Network
Wireline
Network

Replication
with PCs

Storage

Tape

Notification
Intelligent Notification Services
WebSphere Application Server

Voice Gateway
WebSphere Voice

Response

Mobile
Phones

Voice
Wireless Network
Wireline NetworkWireline

Phones

System
Management

Firewall
Backup
Firewall

System Management
Tivoli Enterprise

Console
Tivoli Monitoring

Tivoli Netview

Data
Contingency

Tivoli Storage
Manager

System Management and
Data Contingency

 Access Manager
Console

Web Portal
Manager

Wireless Gateway
WebSphere Everyplace

Connection Manager
200 Patterns: Pervasive Portals

9.1.1 Boundary components
The boundary components include the firewalls and routers that implement the
“physical” security separating the solution layers and implementing the security
policy. Each security layer created uses different principles, compatible with the
security level required. Even the security policy of each layer will be different and
specific to the relative functionality and operational level.

We will use a generic diagram block representing a multi-tier production
environment to explain the characteristics of each security layer. It is considered
that the solution non-functional requirements include high availability. For more
detailed information about high availability and performance, refer to Chapter 11,
“Performance and availability” on page 239.

Note: Because of the extensive details of the previous diagram, it is difficult to
read some parts on a printout. If you would like to read the details, please use
the original PDF document and magnify the area you want to see.
 Chapter 9. Security 201

Figure 9-2 Security layers for a generic n-tier solution

First security layer
This layer includes routers connecting to Internet and protecting in a basic level
through the use of packet filters. Besides creating an initial barrier, it avoids some
improper accesses that could compromise the performance of the LAN. That
layer increases the security level, but by itself it is not enough to protect the
entire solution.

Second security layer
This security level includes two firewalls separating the DMZ (presentation layer
for Internet users) from the application tier. That layer will have the following
characteristics:

� A second level of security to protect against malicious Internet users.

Access
Layer

Presentation
and

Application
Security Layer

Internet

Backend
Systems

Persistence
Security Layer

Application
Components

High Availability/Load
Balance Components

Management
Security Layer

Presentation
Components

Legend
LAN

Backup
(LAN or SAN)

Component with
High Availability

Component without
High Availability

Data
Contingency

System
Management

Data
Contingency

Security Layer

 Integration
Components

 Persistence
Components

First Security
Layer

Second
Security

Layer

Third
Security

Layer

Fifth Security
Layer

Fourth
Security

Layer

Presentation Tier (DMZ)

Application Tier

Persistence Tier

Management Tier
202 Patterns: Pervasive Portals

� This layer does not allow Internet users to access the application layer
directly. Using this model, every request from external users will take place in
the Presentation components (HTTP Server in the Web Server Redirector
node) on the demilitarized zone (DMZ) and the requests will be redirected to
the application layer. It is important to create rules so that only the
presentation components can access the Application components.

It is recommended that the two firewalls be working at high availability,
guaranteeing service availability, even in case of problems with one of the
firewalls.

Third security layer
This security level includes two firewalls separating the application tier from the
critical components and persistence tier that the end user does not need to
access directly.

Every information request performed by the user takes place on the presentation
tier that reaches the persistence tier by the application tier. Rules will be created
in order to define which components of the application tier should access the
persistence tier. It is assumed that access will be denied to any end user trying to
access the Persistence components.

It is recommended that the two firewalls be working at high availability,
guaranteeing service availability, even in case of problems with one of the
firewalls.

Fourth security layer
A separate network was created for the site management. This layer
corresponds to the security level implemented to separate the management tier
from the presentation (DMZ), application and persistence tiers. This is possible
through the use of one firewall. The reason for the existence of this layer lies with
the different rules, and mostly because of the right policy that should be
implemented. Implementing the management security policy in the second and
third layer would represent a security exposure. Keeping in mind that every
request performed on the application tier goes through the second and third
security layer, this exposure could reduce the level of security and cause a
performance degradation. The firewall prevents a break-in attempt on the
persistence tier through the management tier.

Fifth security layer
Separated networks were created for the site’s back-up for performance reasons
(it does not use up the bandwidth from the presentation, application and
persistence tier). Those were not connected because this would create a security
leak, and a possible break-in on the persistence tier (critical data) through the
 Chapter 9. Security 203

back-up network. Therefore, the use of a firewall connecting the back-up network
of the various layers is strongly recommended.

9.2 WebSphere Everyplace Connection Manager
WebSphere Everyplace Connection Manager is composed of a Messaging
Gateway (SMS Gateway and Push Proxy Gateway), a WAP Gateway, Remote
Access enabler (VPN-IP tunneling), a wireless client and an administration
interface (Wireless Gatekeeper).

Following are some security solutions supported by each one of these
components. Figure 9-3 also shows in a generic way the several network
connections that WebSphere Everyplace Connection Manager supports.

Figure 9-3 WebSphere Everyplace Connection Manager security

Note: WebSphere Everyplace Connection Manager is not part of the
WebSphere Everyplace Access 4.2 product; it is a separate product from IBM.

Admin

WAP Gateway

Remote Access

Wireless Gateway
Principal Node

WebSphere Everyplace
Connection Manager

LDAP

Wireless
Gatekeeper

WAP Client
Mobile Phone or PDA

Wireless Client
PDA or Windows

SSL

SS
L

SSL

VPN
WLP

C
el

lu
la

r
N

et
w

or
ks

CD
M

A,
TD

M
A,

GS
M

,P
CS

,P
D

C
,P

HC

W
-L

A
N

/
W

-P
A

N
80

2.
11

 a e
 b,

Bl
ue

to
ot

h

LA
N

Et
he

rn
et

,
To

ke
n-

Ri
ng

In
te

rn
e

t
C

ab
le

m
od

em
,

A
DS

L,
IS

DN
,IS

P

D
ia

l
DI

AL
/T

CP
,

IS
DN

,P
PP

,
PS

TN

Pu
bl

ic
N

on
-IP

R
ad

io

Pr
ib

va
te

Pa
ck

et
-

R
ad

io
Sa

te
lli

te

WTLS (WAP)

SMS Center

Web Server
Redirector

Web Application
Server

SSL

SSL

2

1

3

4

Messaging
Gateway

SMS
Gateway

SSLUCP/SMPP/SNPP

SMTP Server SMTP

Push Proxy
GatewayUCP/SMPP/SNPP

Wireless Gateway
Subordinate Node

WebSphere
Everyplace Connection

Manager

SSL

Message-processing
server or push

initiator

SSL

5

Mobile
Phone

IP

Mobitec
DataTAC
204 Patterns: Pervasive Portals

1. Wireless Client running on a PDA or a Windows accessing the WebSphere
Everyplace Connection Manager through an IP tunnel solution.

This function provides a secure data communication between a client using a
PDA or Windows over a public network and a secure network.

Considering that the user wants to access a Web Application that is behind
the Wireless Gateway, the following considerations should be taken into
account:

– A secure IP tunnel will be implemented between the Wireless client and
the Wireless Gateway

– All the traffic inside the tunnel is protected

– If the Web Application supports SSL, it will establish an HTTPS connection
between the Web browser on the client and the Web server, and the
content will be transported through the IP tunnel.

Authentication is a prerequisite for the communication link between the
Wireless Gateway and Wireless Client to be encrypted. The Wireless
Gateway uses a modified Point-to-Point Protocol (PPP) called wireless
optimized link protocol (WLP) to authenticate the connection between itself
and the Wireless Clients. WLP provides data compression, IP header
reduction, selective packet filtering, and TCP retransmission optimizations
that make data communications over these networks more efficient and
cost-effective.

The Wireless Gateway supports:

– Single-party key distribution protocol. The Wireless Client is authenticated
to the Wireless Gateway.

– Two-party key distribution protocol. The Wireless Gateway and the
Wireless Clients authenticate each other.

– Diffie-Hellman key agreement algorithm. Both the Wireless Gateway and
the Wireless Client are given the means to compute the same key. Note
that this choice does not perform authentication, only encryption.

In terms of encryption, the WebSphere Everyplace Connection Manager and
Wireless Client support the advanced encryption standard (AES), digital
encryption standard (DES), RC5 and Triple-DES.

2. Secure connection between a WAP client and a WAP Gateway

This functionality provides secure Web access to WAP clients such as mobile
phones and PDAs using a WAP browser.

The solution used to provide encryption between the WAP client and the Web
Application is as follows:
 Chapter 9. Security 205

– Wireless transport layer security (WTLS) protocol using public-key
algorithms to manage key agreement and symmetric key algorithms to
encrypt the communication link between the WAP clients and the WAP
gateway.

– SSL protocol to encrypt the communication link between the WAP
gateway and the Web Application.

This solution has two secure connections: WTLS and SSL. The encrypted
data from WTLS has to be decrypted in order to be re-encrypted under SSL,
and vice-versa. The reason is that SSL is defined at the transport level (TCP),
and that transport level protocol is different from the one in WAP. The
consequence of this is that at one moment the data may pass through the
gateway, and in some contexts this might create a security issue.

For solutions on these issue, refer to the IBM Redbook Mobile Applications
with IBM WebSphere Everyplace Access Design and Development -
SG24-6259-00.

The WAP Gateway supports several methods of authentication to validate a
WAP client.

– Native PPP connections: the Wireless Gateway accepts connections from
dial-in devices that support the Point-to-Point Protocol (PPP) protocol.
When users are first configured by the administrator, they are assigned a
password that is stored securely by the gateway and is communicated to
the person using the ID (by phone, secure e-mail, or postal mail) so both
parties know the password.

Using either the PAP (password authentication protocol) or CHAP
(challenge handshake authentication protocol) authentication protocols,
users negotiate authentication with the Wireless Gateway. The Wireless
Gateway validates the user's credentials using a persistent user storage
database in an LDAP-compliant directory server, or using an external
authentication server that uses the RADIUS protocol.

The authentication for establishing a PPP session to Wireless Gateway
serves as the authentication mechanism for WAP proxy transactions.

– Device resolver: though not a method of authentication, the device
resolver serves to uniquely identify a WAP client. Authentication of the
WAP client takes place elsewhere in the environment, usually at the
server that provides network access.

In a typical service-provider environment, the Network Access Server
(NAS) has direct access to the provider's wireless network infrastructure,
where unique information about a device, such as its phone number, is
available. The NAS uses the RADIUS protocol to inform the WAP proxy of
that unique identity. The WAP proxy uses the device resolver to match this
206 Patterns: Pervasive Portals

information to WAP requests and check that the device has previously
been authenticated.

– Account resolver: the account resolver is similar to the device resolver
function, but instead of using the RADIUS protocol to get information
about the WAP client, the WAP proxy uses HTTP to query the NAS for
information about the device.

– HTTP challenge: the Wireless Gateway can require that user credentials
exist in each WAP transaction header.

When user IDs are first configured in the system by the administrator, they
are assigned a password that is stored securely on the Wireless Gateway
and is securely communicated to the person using the ID (by phone,
secure e-mail, or postal mail) so that both parties know the password.

Any transaction that does not contain a user ID and password is
discarded, and the WAP client browser is sent a reply with a status code of
either Proxy-Authenticate or WWW-Authenticate, depending on the
environment. The WAP client browser prompts users to enter their user ID
and password, and then resubmit the transaction with the credentials
included. These credentials, along with the network address of the WAP
client, are used to authenticate the user. The Wireless Gateway can
validate the user's credentials using a persistent user storage database in
an LDAP-compliant directory server, or using an external authentication
server, via the RADIUS protocol.

The encryption between the WAP Gateway and the Web Application is
supported using SSL version 2 or 3, and the authentication is provided by
x.509 certificates.

3. Secure connection between the Message Gateway and message-processing
server or push initiator.

This functionality provides encryption and authentication between a
message-processing server or push initiator and the Messaging Gateway.

The encryption between the Message Gateway and the message-processing
server or push initiator is supported using SSL version 2 or 3, and the
authentication is provided by x.509 certificates.

In the WebSphere Everyplace Access package, the message-processing
server and the push initiator function is provided by the Intelligent Notification
Services. However, the actual version of the Intelligent Notification Services
does not support SSL at this moment, but it will be supported in a future
release.

The messages flowing between the messaging gateway and the client
devices are not encrypted.
 Chapter 9. Security 207

4. Secure connection between the Wireless Gatekeeper administration console
and the Wireless Gateway.

The Wireless Gateway uses its access manager subsystem to communicate
with the Wireless Gatekeeper administration console. The access manager is
a process (wgmgrd) that manages interactions between Wireless
Gatekeeper, the persistent data store, and Wireless Gateways.The
encryption supported is SSL version 2 or 3, and the authentication is provided
by X.509 certificates. In addition to X.509 certificate validation, each
administrator ID has an associated password. The Wireless Gateway can
validate the administrator's credentials against a persistent user storage
database in an LDAP-compliant directory server.

5. Inter-gateway cryptography

For load balancing and high availability performance, several Wireless
Gateways can work together in a clustered configuration. The cluster
manager subsystem controls the communications among the nodes. The
encryption between the Wireless Gateways is supported by using SSL
version 2 or 3, and the authentication is provided by X.509 certificates.

For more information about the load balancing and high availability solution
for WebSphere Everyplace Connection Manager, refer to 11.4, “Applying to a
Pervasive Portal solution” on page 249.

9.3 WebSphere Edge Server
WebSphere Edge Server acts as a front end to a cluster of Web application
servers, serving static and limited dynamic content from its cache and performing
load balancing. It supports SSL-encrypted requests and, if needed, exploits
cryptographic hardware accelerators to relieve application servers of
CPU-intensive public key infrastructure (PKI) authentication chores.

WebSphere Edge Server addresses the authentication and authorization
requirements by the use of the Tivoli Access Manager for Edge Server plug-in. It
identifies users to all the site’s back-end components, and controls the access to
cached static or slowly changing dynamic content, as well as to back-end highly
dynamic or interactive content. The Access Manager plug-in can identify users
via X.509 certificates, forms-based login or the traditional ID-password basic
authentication challenge protected by an SSL-encrypted session. It integrates
with access policy administration tools such as Policy Server and LDAP.
208 Patterns: Pervasive Portals

9.4 WebSphere Everyplace Access and its components
WebSphere Everyplace Access provides the core components to create a
Pervasive Portal solution. Considering that it is composed of several different
products and based on WebSphere Application Server, the product architecture
is mostly based on a centralized security solution, facilitating the management
and development of new components. Refer to 5.2, “Products” on page 60 for
more information about the WebSphere Everyplace Access components.

The authentication and Single Sign-On features are provided by WebSphere
Application Server, WebSphere Portal Server and Tivoli Access Manager. Refer
to 9.5.1, “Tivoli Access Manager and Single Sign-On” on page 210 to obtain
more information about authentication and Single Sign-On methods.

In order to protect data transferred between servers and mobile clients, security
must be enabled on both the HTTP server, the application server, and the mobile
client.

WebSphere Everyplace Access supports Single Sign-On using LTPA
(Lightweight Third Party Authentication) which is part of WebSphere. It also
supports SSL for securing the connections and communication for the HTTP
protocol.

Everyplace Client
Everyplace Client includes an authentication proxy that handles translations
between the client and a secure server. This proxy is transparent to the servers,
therefore each client component must be configured to use the proxy. The proxy
then acts as an agent between the client and servers, providing the necessary
authentication information to the server.

Device Manager
In order to provide encryption between the Device Manager and the mobile
devices, these are the available solutions:

� Palm OS does not supply any SSL functions, so the device agent provides the
elements needed to implement secure connections. It implements 128-bit
encryption as well as data integrity checking of communications between the
device agent and the plug-in.

� Device Manager relies on the SSL features supplied with Microsoft Windows
CE. It implements 128-bit encryption of communications between the device
agent and the plug-in.

Note: WebSphere Edge Server is not part of WebSphere Everyplace Access
V4.2; it is a separate IBM product.
 Chapter 9. Security 209

Everyplace Synchronization Server
The Synchronization Server uses WebSphere Application Server basic
authentication for user authentication. It also supports MD5 and basic
authentication at the SyncML layer and performs user authentication before
permitting access to back-end databases.

The Lotus Domino Adapter and Microsoft Exchange Adapter require
authentication to synchronize with the back-end databases. For caching
back-end servers, the adapters need write, edit, create and delete authority in
order to write updated PIM data to the back-end servers. Adapter authentication
is configured using the Lotus Domino and Microsoft Exchange Adapter portlets.

9.5 Tivoli products for security
The following Tivoli products are not part of the WebSphere Everyplace Access
product; they are optional components of a solution and they are widely used to
implement security.

9.5.1 Tivoli Access Manager and Single Sign-On
From the user’s perspective, Single Sign-On (SSO) is the ability to move
between applications without being prompted for a user ID and password (or
certificate) when moving from one application or datasource to another during
the same user session. The solution that provides authentication, authorization
and SSO is the Tivoli Access Manager.

There are a number of commonly encountered business requirements that justify
the use of an authentication and authorization solution like Tivoli Access
Manager:

� Different back-end and Web content hosting systems require users to
authenticate multiple times, which generates a negative user experience. In
order to improve customer satisfaction, a method for single-user
authentication has to be implemented.

� Web security policies must be consistently applied across the business.
Without a common security infrastructure, Web content and application
security policies tend to be applied differently by various parts of the
business.

� The costs of Web security management must be predictable.

� Threats of inadvertent security compromises or hacker attacks represent
significant risks to business operations and company goodwill.
210 Patterns: Pervasive Portals

Access Manager’s base functions are provided through a set of core
components and various management components.

Core components
Access Manager is fundamentally based on two components:

� An user registry that is based on a LDAP directory and provides:

– A database of the user identities

– A representation of groups in Access Manager (roles) that may be
associated with users

� An Authorization Service, consisting of an authorization database and an
authorization engine. This is the foundation and it is responsible for permitting
or denying access to protected objects (resources) based on the user’s
credentials and the access controls placed on the objects.

The authorization database is a special database containing a virtual
representation of the resources that it protects and the definition of the
security mechanisms. Some of these security mechanisms are:

– Access control list (ACL) policy templates - ACLs are special Access
Manager objects that define policies identifying user types that can be
considered for access, and specify permitted operations. In the Access
Manager model, ACLs are defined separately from and then attached to
one or more protected objects. Access Manager uses an inheritance
model in which an ACL attached to a protected object applies to all other
objects below it in the tree until another ACL is encountered.

– Protected object policy (POP) templates - A POP specifies additional
conditions governing the access to the protected object, such as privacy,
integrity, auditing, and time-of-day access. POPs are attached to protected
objects in the same manner as ACLs.

Figure 9-4 Relationship between protected objects, ACLs and POPs

Protected Objects

Web Objects Application ObjectsManagement Objects

ACLACL

POP
 Chapter 9. Security 211

Management components
The Access Manager environment requires certain basic capabilities for
administrative control of its functions. Management facilities are provided
through the following base components:

� The Policy Server, which supports the management of the authorization
database and its distribution to Authorization Services. The purpose of the
Policy Server is to maintain the master authorization database that contains
the protected object space with the access control information (ACLs and
POPs).

� The pdadmin utility, which provides a command line capability for performing
administrative functions, such as adding users or groups.

� The Web Portal Manager, which provides a Web browser based capability for
performing most of the same functions provided by the pdadmin utility.

WebSEAL
WebSEAL is a high-performance, multi-threaded reverse proxy, front-ending
back-end Web service that applies a security policy to a protected object space.
WebSEAL can provide Single Sign-On and incorporate back-end Web
application server resources into its security policy. Being implemented on an
HTTP server foundation, it listens to the typical HTTP and HTTPS ports.

In order to apply a security policy to any resource located in a back-end server, it
has to be defined in WebSEAL a junction with this resource.

For example, suppose a junction on the WebSEAL host www.server1.com is
defined such that a request for any URL specifying the path /content/xyz is to be
proxied to the back-end Web server w3.server2.com. /content/xyz is the junction
point and from the perspective of the browser, the request is processed by
www.server1.com. To support this, WebSEAL performs various transformations
of the response sent to the browser to assure that the back-end server names
are not exposed (this is called virtualization of the back-end Web server and
improves security).

Figure 9-5 on page 213 shows the components of the Tivoli Access Manager, the
relationship between them and Single Sign-On solutions.
212 Patterns: Pervasive Portals

Figure 9-5 Tivoli Access Manager and Single Sign-On architecture

1. User authentication mechanisms

WebSEAL supports a number of client authentication mechanisms to protect
access to a Web environment. WebSEAL can communicate with the clients
with both encrypted (SSL) and unencrypted (TCP) protocols. The supported
encryption types are SSL V1, SSL V2, SSL V3, and TLS V1. It also supports
SSL hardware acceleration that can minimize the CPU impact of SSL and
improve the overall performance of the system. Some of these mechanisms
are:

– Basic authentication with user ID/password - Basic authentication (BA) is
part of the HTTP standard and defines a standardized way in which user
ID/password information is passed to a Web server.

– Forms-based login with user ID/password - The alternative to using basic
authentication is the forms-based login. Rather than sending a basic
authentication challenge in response to a client request, WebSEAL
responds with a sign-in form in HTML format.

WebSEAL

Policy Server

Web Application Server
WebSphere Portal Server
WebSphere Application

Server

Web Server Redirector
WebSphere HTTP plugin

Authorization
DB

Access
Manager User

Registry
LDAP

Secureway
Directory

Junction

1

Wireless
Gateway

WebSphere
Everyplace
Connection

Manager

Web Portal
Manager

Client Basic Authentication

Forms-based login

X.509 client certificates

RSA SecureID Token

2

1

Web Application Server

aznAPI
JAAS

3

Mobile Phone or PDA

Junctions
LTPA
TAI

4

 Chapter 9. Security 213

Another benefit to using the forms-based login process is that you can
enforce a time-based logout for authenticated sessions. The time values
can be customized in the WebSEAL configuration files.

– Authentication with X.509 client certificates - In response to a certificate
request from WebSEAL, as part of the SSL V3 tunnel negotiation, the
browser prompts the user to select a certificate from the local certificate
store or smartcard.

– Authentication with RSA SecurID token - Access Manager supports
authentication of clients using user name/token pass code information
from an RSA SecurID token authenticator (TAR), a physical device that
stores and dynamically generates a piece of authentication data (a token).

– Authentication integration with WebSphere Everyplace Connection
Manager- Access Manager provides an authentication mechanism for
clients using a Wireless Gateway as WebSphere Everyplace Connection
Manager; it can receive from it an “authenticated ID” and does not need to
re-authenticate the user.

2. WebSEAL authentication with junctioned servers and delegation mechanisms

WebSEAL can authenticate itself to a junctioned server using either server
certificates, forms-based authentication, or HTTP basic authentication. When
using an SSL communication channel for this junction, WebSEAL and the
junctioned server can also mutually authenticate one another. This is very
important in order to establish the trust relationships between WebSEAL and
back-end application servers.

WebSEAL can communicate with the back-end servers with both encrypted
(SSL) and unencrypted (TCP) protocols. The supported encryption types are
SSL V1, SSL V2, SSL V3, and TLS V1. It also supports SSL hardware
acceleration that can minimize the CPU impact of SSL and improve the
overall performance of the system.

After a user has been authenticated by WebSEAL and an authorization
decision has been made, WebSEAL has to forward the user’s request to a
back-end Web application server. The mechanisms to forward that
information and also provide a Single Sign-On solution are:

– WebSEAL junctions

WebSEAL performs authentication while the back-end server handles its
own authorization needs. It is recommended that you use a shared user
registry to eliminate duplication of data.

WebSEAL is configured to talk to a Web or application server behind it
with a smart junction, which is a portion of a request URL that directs
WebSEAL to forward the remainder of the URL path to the back-end Web
or application server. A smart junction:
214 Patterns: Pervasive Portals

• Allows the integration of multiple servers (WebSEAL or third-party) into
one unified Web space.

• Extends Access Manager security to third-party Web servers.
WebSEAL provides authentication and authorization checking and
enforcement services.

• Allows growth of Web clusters with load balancing and fault-tolerant
HTTP and HTTPS junctions.

• Provides both TCP and SSL connections to back-end servers.

Smart junctions can be configured to let WebSEAL modify the request
header contents and basic authentication credentials before passing the
request to a subsequent Web server. That is, WebSEAL can determine
how the user ID and password are forwarded on.

– Web Trust Association Interceptor (TAI)

This Single Sign-On method is supported by WebSphere and implies that
WebSphere's security application recognizes and processes HTTP
requests received from WebSEAL. WebSphere and WebSEAL engage in
a contract in which the former will give its full trust to the latter, which
means that WebSEAL will apply its authentication policies on every Web
request that is dispatched to WebSphere.

This trust is validated by the interceptors that reside in the WebSphere
environment for every request received. The method of validation is
agreed upon by WebSEAL and the interceptor.

For detailed information on these options, refer to the IBM Redbook
Enterprise Business Portals with IBM Tivoli Access Manager,
SG24-6556-00.

– LTPA authentication

This is a token-based lightweight third-party authentication mechanism
(LTPA) that is supported by WebSphere Application Server and Lotus
Domino.

Considering an environment without WebSEAL, the token is created by
WebSphere Application Server when a user authenticates, and is stored in
a cookie that is passed back to the browser with the HTTP response. On
subsequent accesses by the user, the token is extracted from the cookie
and used to authenticate the user. In this way, the user enters their user ID
and password only once, and the LTPA token identifies them after that.
The drawbacks of this approach are twofold:

• LTPA is supported only by WebSphere Application Server and Domino,
and has not received industry-wide acceptance. Kerberos is a more
widely used third-party authentication mechanism.
 Chapter 9. Security 215

• The user's credentials (in the form of the token) are passed all the way
back to the browser and then back to the server with each request.
This creates some vulnerability considering that the cookie is stored in
the user machine and particularly if SSL is not used between the
browser and Web server.

With WebSEAL, the token never passes to the browser, avoiding a
potential security vulnerability.

When a user makes a request for a WebSphere resource, the user must
first authenticate to WebSEAL. After successful authentication, WebSEAL
generates an LTPA cookie on behalf of the user. The LTPA cookie, which
serves as an authentication token for WebSphere, contains the user
identity, key and token data, buffer length, and expiration information. This
information is encrypted using a password-protected secret key shared
between WebSEAL and the WebSphere server.

WebSEAL inserts the cookie in the HTTP header of the request that is
sent across the junction to WebSphere. The back-end WebSphere server
receives the request, decrypts the cookie, and authenticates the user
based on the identity information supplied in the cookie.

To improve performance, WebSEAL can store the LTPA cookie in a cache
and use the cached LTPA cookie for subsequent requests during the same
user session. It can be configured with lifetime timeout and idle (inactivity)
timeout values for the cached cookie.

The trust association interceptor mechanism (TAI) is preferred to LTPA,
because LTPA support is currently limited to WebSphere Application
Server and Domino, and the TAI is faster considering that a token does not
have to be encrypted and decrypted each time.

3. Single sign-on to WebSphere Portal Server

In order to provide Single Sign-On, the WebSphere Portal Server trust of
WebSEAL is maintained through the junction between WebSEAL and the
Web server. There are essentially two options for achieving Single Sign-On,
and each handles trust of the requester differently. The two options are:

– Running WebSphere Portal Server in Trust Association mode (TAI), which
allows WebSEAL to act as a front-end authentication server while
WebSphere Portal Server applies its own authorization policy onto the
resulting credentials that WebSEAL passes to it.

– Passing mapped usernames and passwords to WebSphere Portal Server,
with which the target Web server can do its own authentication and add its
own authorization policy.

With both options, both aspects of trust are maintained.
216 Patterns: Pervasive Portals

WebSphere Portal Server contains applications called portlets. Although
WebSEAL can provide access control to these portlets, the portlets
themselves often need to make further access control decisions, finer-grained
than those controlled by WebSEAL. For example, these finer-grained access
control decisions can help personalize the requesting user's Web browser
screens. So, for flows coming through WebSEAL, to enable fine-grained
processing, WebSEAL can be configured to pass user information, group
information, or Access Manager credential information to the target portlets.

In conclusion, Access Manager and WebSphere Portal Server are based on
different security models. The options below help Access Manager and
WebSphere Portal Server users choose between one of the security models,
or a mix:

– Access Manager as an end-to-end solution. You can choose to use
Access Manager to manage access to all WebSphere Portal Server
resources. Though this has the advantage of using a single security
model, the disadvantage is that authorization cannot be as granular as in
WebSphere Portal Server. Developers have to code to enforce
fine-grained authorization on portal resources.

– Access Manager and WebSphere Portal Server for providing security
solution. You can choose to have Access Manager and WebSphere
security coexist. This has the advantage of no coding to enforce
fine-grained authorization on portal resources. The disadvantages are
redundant effort in defining ACLs, and maintaining and administering two
security solutions.

4. Programmatic integration

– Java Authentication and Authorization Service (JAAS)

The IBM Tivoli Access Manager (Tivoli Access Manager) authorization
Java classes provide an implementation of Java security code that is fully
compliant with the Java 2 security model and the Java Authentication and
Authorization Service (JAAS).

The Java 2 security architecture is policy-based, and allows for
fine-grained access control. When code is loaded, it is assigned
permissions based on the security policy currently in effect. Each
permission specifies a permitted access to a particular resource, such as
read access to a specified file, or connect access to a specified host and
port.

With the Java 2 and JAAS support delivered in Tivoli Access Manager,
Java applications can invoke the Tivoli Access Manager-supplied JAAS
LoginModule to acquire authentication/authorization credentials from
Access Manager.

This offers Java application developers the following advantages:
 Chapter 9. Security 217

• The security of Java applications is managed using the same
consistent model as the rest of the enterprise.

• Java developers do not need to learn anything additional beyond Java
2 and JAAS.

• Updates to security policy involve Tivoli Access Manager-based
administrator actions, rather than any code updates.

– Authorization Application Programming interface (aznAPI)

The Access Manager aznAPI provides a standard programming and
management model for integrating authorization requests and decisions
with applications. Use of the aznAPI allows applications to utilize
fined-grained access control for application-controlled resources.

Application-specific resources may be individually defined, added to the
protected object space and maintained in the authorization database in
the same manner that WebSEAL defines their respective resources. ACLs
and POPs may be attached to these application objects, and aznAPI calls
may then be used to access the Access Manager Authorization Service to
obtain authorization decisions.

Access Manager provides a C version of the API and a Java version of the
API, although the Java version is really a wrapper for the original C code.

9.6 Where to find more information
� For more information about IBM Tivoli Access Manager, refer to the IBM

Redbook Enterprise Business Portals with IBM Tivoli Access Manager,
SG24-6556-00.

� For more information about WebSphere Everyplace Connection Manager for
AIX, refer to the Product Administrator’s Guide.
218 Patterns: Pervasive Portals

Chapter 10. System management

System management is a critical discipline for any e-business solution. It
involves pre-implementation and post-implementation activities.The
pre-implementation activities are part of the design phase and occur during the
deployment of the solution. The post-implementation activities occur on a routine
basis and do not really begin until an application has been deployed into a
production environment. This chapter covers the pre- and post-implementation
system management design, technologies and activities.

10
© Copyright IBM Corp. 2003. All rights reserved. 219

10.1 System management activities
The multi-tier model provides the separation of the presentation, business logic,
persistence and integration components of an application, facilitating the system
management and data contingency. Figure 10-1 shows that it was
complemented with two new tiers:

� System Management: this tier is responsible for the components that will
manage the solution. The management range goes from solution availability,
performance evaluation and alert generation to software distribution and
inventory management.

� Data Contingency: this tier is responsible for back-up/restore of the solution.

Figure 10-1 n-tier model with System Management and Data Contingency

System management can be divided into pre- and post-implementation activities:

1. Pre-implementation activities occur during the Solution Design phase and
involves the answer of some questions that will drive the post-implementation
activities. These answers are very related to availability requirements and
used technologies. Some of these questions are:

– Does the solution need management? Is it critical? What are the impacts
of service outage?

– What level of management is needed for each component? It is interesting
to analyze each isolated component and qualify how critical that
component is to the solution, considering technical and business
issues.The main components are:

Presentation

Application or Business Logic

Integration

Persistence

Legacy Systems

Security

System
 M

anagem
ent

D
ata C

ontingency
220 Patterns: Pervasive Portals

• WAN and LAN Connectivity

• Security

• Server hardware resources

• Operating systems

• Foundation software, like WebSphere Application Server

• On-the-shelf applications, like WebSphere Portal Server

• Developed applications

• Databases

• Clusters

• Storage

– How much money can be spent on system management? Is it worth it to
manage a specific component if the cost for it is particularly high? What
are the benefits of each component in business and technical terms of
management?

– Is data contingency by implementing a back-up and restore policy
necessary? Is an online and totally automatized process needed?

– Is a disaster recovery solution necessary?

– Will the development and testing of new applications be in-house?

– Will the stage be in-house?

– What will be the process to develop an application, stage and deploy it in
the production environment?

– What is the required Service Level Agreement (SLA) established between
the users and the solution provider? SLAs cover system availability hours,
system utilization and problem resolution response time.

With the answers to some of these questions, it is possible to design a
solution that supports and implements the required level of system
management. Part of the design phase includes matching the solution
requirements, the existing tools and technologies, and the cost of the
solution. From this matching, the solution that best fits the technical and
business requirements can be developed.

2. Post-implementation activities occur after the solution is deployed. These
activities require highly specific skills and professional experience to perform
competently. Some of the core activities that are performed depending on the
required level of system management are:

– Application management

– Performance monitoring
 Chapter 10. System management 221

– Availability management

– Security management

– Disaster recovery

– Operating system and network administration

– Asset management

– Software distribution

– Problem reporting

– Change management

A detailed explanation of each pre- and post-implementation activity is beyond
the scope of this redbook. Our focus is on the key system management activities
related to the implementation of WebSphere Everyplace Access and its
components for a Pervasive Portal solution.

10.2 WebSphere Everyplace Access management
This chapter will not focus on system management of products that are the
foundation of the WebSphere Everyplace Access, like WebSphere Application
Server and WebSphere Portal Server.

For information on system management of WebSphere Application Server, refer
to the IBM Redbook IBM WebSphere V4.0 Advanced Edition Handbook -
SG24-6176-00 and to User-to-Business Patterns Systems Management
Guidelines, REDP0401.

For information on system management of WebSpahere Portal Server, refer to
the IBM Redbook Access Integration Pattern using IBM WebSphere Portal
Server - SG24-6267-00.

Some components of the WebSphere Everyplace Access which will be
discussed are:

� Everyplace Synchronization Server

� Intelligent Notification Services

� Device Manager

10.2.1 Everyplace Synchronization Server
Everyplace Synchronization Server is a solution for synchronizing data to
back-end databases.The Synchronization server uses WebSphere Portal Server
222 Patterns: Pervasive Portals

to provide administration and configuration by the Synchronization Server
Administration portlets. The administration portlets are:

� Manage Servers - This portlet allows the administrator to monitor the
Synchronization Server status, stop and start servers, and view a list of
actively synchronizing users.

� Remove User Preferences - This portlet allows the administrator to remove
user profiles from the Synchronization Server database.

� Device Profiles - This portlet provides sample device configurations that users
can choose to use or to modify.

� Lotus Domino Adapter - This portlet allows the administrator to edit Lotus
Domino Adapter specific information, including adapter authentication, Lotus
Domino Servers to monitor, caching and polling frequency, Field Conversion
Databases location, and server cache enabling.

� Microsoft Exchange Adapter - This portlet allows the administrator to edit
Microsoft Exchange Adapter specific information, including adapter
authentication, Microsoft Exchange Adapter servers to monitor, caching and
polling frequency, and server cache enabling.

� Server Settings - This portlet allows the administrator to configure server
message logs and trace logs.

The relational database adapter is not managed using the portlets described
above. It uses an embedded version of DB2 Everyplace, so most administration
tasks are accomplished using the Mobile Devices Administration Center. The
relational database adapter only uses the WebSphere Portal interface for user
and group management.
 Chapter 10. System management 223

Figure 10-2 Mobile Devices Administration Center

10.2.2 Intelligent Notification Services
Intelligent Notification Services deliver notifications to users via multiple delivery
channels based on user preferences and subscriptions. It uses WebSphere
Portal Server to provide administration by the Administration and User portlets.

Administering Intelligent Notification Services involves managing Intelligent
Notification users, configuring e-mail subscriptions and managing servers,
gateway adapters, and content adapters. Servers must be configured, started,
stopped, and monitored. Gateway adapters and content adapters must be
configured. Custom gateway adapters and content adapters can be added.

Administration portlets
The Intelligent Notification administrator uses a set of administrative portlets to
manage servers, configure gateway adapters, configure e-mail subscriptions,
and remove the preferences of deleted users. The administrative portlets are as
follows.
224 Patterns: Pervasive Portals

� Manage Servers portlet - Administrators use the Manage Servers portlet to
start, stop, and configure Intelligent Notification servers.

� Remove Users Preferences portlet - Administrators use the Remove User
Preferences portlet to remove the user preferences of users that have been
deleted from WebSphere Portal.

� Configure Gateways portlet - Administrators use the Configure Gateways
portlet to view and configure gateway adapters.

� Configure Subscription portlet - Administrators use the Configure
Subscriptions portlet to specify configuration settings for e-mail subscriptions.

Figure 10-3 Intelligent Notification Services Administration portlets
 Chapter 10. System management 225

User portlets
Users work with portlets to manage delivery channel settings, manage
notification groups, specify rules for message delivery, manage notifications, and
subscribe to content sources. The user portlets are:

� My Delivery Channels - On the My Delivery Channels page, users can add or
delete delivery channels and edit delivery channel settings. There are multiple
delivery channel portlets on the My Delivery Channels page, one for each
type of delivery channel.

� My Notification Groups - With the My Notification Groups portlet, users add
and remove notification groups. Users also add and remove users from those
groups.

� My Message Rules - With the My Message Rules portlet, users create and
modify rules for receiving messages. The rules specify what priority
messages are to be received, on which delivery channels, and from which
notification groups.

� My Message Center - With the My Message Center portlet, users can view a
list of recent notifications and content for any of the messages listed. Users
can also use this portlet to send simple notifications to other users of
Intelligent Notification Services.

� My Subscriptions - On the My Subscriptions page, users subscribe to content
sources, such as sample news, stock, weather, and e-mail sources. Users
add, edit, and remove subscriptions for content sources. There are multiple
portlets on the My Subscriptions page, one for each content source.
226 Patterns: Pervasive Portals

Figure 10-4 Intelligent Notification Services User portlets

10.2.3 Device Manager
Device Manager is comprised of a set of servlets running in an application server
and a database that is the repository for device related data.The Device Manager
can manage PALM OS PDAs, generic Windows CE devices and SyncML DM
capable devices.

Device Manager provides three administration components:

� Device Manager Console

� Customer Care application

� Self Care application
 Chapter 10. System management 227

Device Manager Console
The Device Manager Console is a client-server Java application that runs on
Windows and provides a graphical user interface.

Figure 10-5 Device Manager console

From this console, the following elements can be managed:

� Jobs - A job is specialized processing initiated by the Device Manager. The
job types that can be managed using the console are device configuration
(updates the configuration of a device, including network parameters),
inventory collection (collects a list of software applications, hardware and
current configuration parameters present on a device) and software
distribution (send a software package to a target device). These jobs are
submitted and take place the next time the device connects.

� Devices - The console provides management of device-related information,
software, inventory and jobs.
228 Patterns: Pervasive Portals

� Device Class - Device Class is a collection of devices that have similar
characteristics and that can be managed similarly. The console provides
management of device class information, and device-class-related software
and jobs.

� Server - A server is a Device Manager server that processes jobs for devices.
The console displays the name and port number of each registered Device
Manager server.

� Software - This relates to a software package to be sent to a device. A
software package resides on a Web server and this information (URL) is
stored in the Device Manager database.

� Queries - The console uses queries to request device information or to target
a job to devices with particular characteristics.

Administrators using the Device Manager Console can submit jobs to a single
device, all devices of a device class or a selection of devices of the same device
class.

Customer Care application
The Customer Care application is a Web application accessed by browser,
provided by the subscription manager component. It is mainly used by Customer
Service Representatives (CSRs) to manage devices, jobs and software to these
devices. It allows a subset of the tasks that an administrator performs with the
Device Manager Console and performs these tasks one device at a time.

Self Care application
The Self Care application is similar to Customer Care but is used by the device
owners to manage their own devices. It is also a Web application accessible by a
browser. The available tasks for Self Care are a subset of the tasks available for
Customer Care.

10.3 System Management and monitoring using Tivoli
products

In order to provide an overview of how to implement performance, availability,
configuration and operation management, core IBM Tivoli products will be listed
and described at a high level. It is not the objective of this redbook to discuss
these system management products in detail.
 Chapter 10. System management 229

IBM Tivoli Enterprise™ Console (TEC)
The IBM Tivoli Enterprise Console® product is a powerful, rules-based event
management application that integrates network, systems, database, and
application management. It offers a centralized, global view of your computing
enterprise while ensuring the high availability of your application and computing
resources. It collects, processes, and automatically responds to common
management events, such as a database server that is not responding, a lost
network connection, or a successfully completed batch processing job. It acts as
a central collection point for alarms and events from a variety of sources,
including those from other Tivoli software applications, custom applications,
network management platforms, and relational database systems.

IBM Tivoli Monitoring
IBM Tivoli Monitoring provides monitoring for essential system resources such as
performance, including disks, CPU and applications, to detect bottlenecks and
potential problems, and to automatically recover from critical situations.

IBM Tivoli Monitoring for Web Infrastructure
IBM Tivoli Monitoring for Web Infrastructure is a critical tool to help ensure the
optimal performance and availability of both application servers and the
associated Web servers that feed them. It provides a single point of control to
enable IT organizations to understand the health of a Web-based environment’s
key elements. It allows administrators to quickly identify problems, alert
appropriate personnel as required, and offer a means for automated problem
correction.

IBM Tivoli Monitoring for Databases
The IBM Tivoli Monitoring for Databases ensures the availability and optimal
performance of DB2, Oracle, and Informix® database servers.

IBM Tivoli Monitoring for Messaging and Collaboration
IBM Tivoli Monitoring for Messaging and Collaboration monitors the status of
Domino servers, identifies server and system problems in real time, notifies
administrators and takes automated actions to resolve Domino server problems.
The product also collects monitoring data to help you analyze performance and
trends, and helps you address problems before they affect end users.

IBM Tivoli Netview
IBM Tivoli NetView® discovers TCP/IP networks, displays network topologies,
correlates and manages events and SNMP traps, monitors network health, and
gathers performance data. Tivoli NetView meets the needs of managers of large
networks by providing the scalability and flexibility to manage mission-critical
environments.
230 Patterns: Pervasive Portals

IBM Tivoli Storage Manager
IBM Tivoli Storage Manager protects data from hardware failures, errors, and
unforeseen disasters by storing back-up and archive copies in offline and offsite
storage. It is responsible for implementing the data contingency
(back-up/restore) policy.

10.3.1 Integrating System Management in the Pervasive Portal
solution

Figure 10-6 on page 232 shows an example of how to integrate the system
management infrastructure in a Pervasive Portal solution using the Tivoli
products. In order to understand the security layer for Data Contingency and
System Management, refer to 10.1, “System management activities” on
page 220.

The system management solution in this example is composed of the Tivoli
Netview that manages the network infrastructure, the Tivoli Monitoring that
manages operational systems, hardware resources such as memory and disk
and specific applications like WebSphere and DB2, and Tivoli Enterprise
Console, which consolidates all the events created by Tivoli Netview and
Monitoring and generates alarms. To manage the specific applications, you will
require Tivoli Monitoring as the server and the Tivoli agents (Tivoli Monitoring for
Web Infrastructure, for Databases, for Messaging and Collaboration) running
with each specific application.

The data contingency is provided by the Tivoli Storage Manager that backs up
data using the Storage Area Network for the equipment connected to it, using a
LAN (dotted line) for the other equipment that also needs backing up. This
sample diagram does not take care which components need back-up and
includes all of them in the back-up LAN or SAN. Usually, databases have a lot of
data to back up and it is recommended, in terms of performance and security, to
use a SAN. So as not interfere in the data access performance and integrity of
the databases while performing a back-up, some components can be used that
allow the online back-up, such as the Tivoli Storage Manager for Databases.
 Chapter 10. System management 231

Figure 10-6 System Management and Data Contingency represented in the operational model

10.4 Production, Staging and Development environment
Keeping in mind the growth possibility of a solution and the insertion of new
components, new functionalities or even the need for performance testing,
access, security or environment availability, the solution should include, besides
the Production environment, a Staging and Development environment. The
diagram represents a generic Production environment.

Firewall to
Access Internet and to Protect
Application and Persistence

from Internet

Load Balance
WebSphere Edge Server

Web Server Redirector
HTTP Server
HTTP Plugin

Transcoding Proxy
WebSphere Transcoding

Publisher

Database
DB2

LDAP Directory+
Authentication

Secureway Directory
+ DB2+

Tivoli Access
Manager

Storage Area Network

 Persistence

Internet

Routers+
Packet Filters

Application

Portal
WebSphere Portal Server

WebSphere Personalization
WebSphere Application Server

Device Manager
Device Manager

Subscription Manager
WebSphere Application Server

Syncronization
WebSphere Syncronization Server

WebSphere Application Server

Authentication
+Sigle Sign On

WebSeal

Voice Server
WebSphere Voice ServerFirewall to Protect

Application and
Persistence

DMZ Web Server Redirector
HTTP Server

WebSphere Plugin

Load Balance
WebSphere Edge Server+

WebSeal Plugin

PDAs
Everyplace

Client
Mobile
Phones

WAP

PDAs
Everyplace

Client

Internal
Browser
Users

External
Browser
users

Replication
with PCs

Wireless Gateway
WebSphere Everyplace
Connection Manager

Wireless Network
Wireline Network

Replication
with PCs

Storage

Tape

Notification
Intelligent Notification Services
WebSphere Application Server

Voice Gateway
WebSphere Voice

Response

Mobile
Phones

Voice Wireless
Network
Wireline
Network

Wireline
Phones

System
Management

Firewall
Backup
Firewall

System Management
Tivoli Enterprise Console

Tivoli Monitoring
Tivoli Netview

Data
Contingency

Tivoli Storage
Manager

System Management
and Data Contingency

 Access Manager
Console

Web Portal
Manager

Note: Because of the extensive details of the previous diagram, it is difficult to
read some parts on a printout. If you like to read the details, please use the
original PDF document and magnify the area you want to see.
232 Patterns: Pervasive Portals

Figure 10-7 Generic n-tier Production environment

With the Staging environment, it is possible to perform all kinds of tests without
interfering with the current production of the solution. After the testing and
approval of new functionalities or new definitions of non-functional requirements
such as performance, it can be migrated to the Production environment.

Access
Layer

Presentation
and

Application
Security Layer

Internet

Backend
Systems

Persistence
Security Layer

Application
Components

High Availability/Load
Balance Components

Management
Security Layer

Presentation
Components

Legend
LAN

Backup
(LAN or SAN)

Component with
High Availability

Component without
High Availability

Staging 3

Staging 2

Development 1

Staging 1

Data
Contingency

System
Management

Data
Contingency

Security Layer

 Integration
Components

 Persistence
Components\
 Chapter 10. System management 233

Figure 10-8 A generic staging environment

The Development environment provides all the necessary tools for creation and
implementation of the new functionalities.

Backend
Systems

Persistence
Security Layer

Application
Components

High Availability/Load
Balance Components

Presentation
Components

Staging 3Staging 1

Presentation
and

Application
Security Layer

Development 2

Legend
LAN

Backup
(LAN or SAN)

Component with
High Availability

Component without
High Availability

Staging 2

 Persistence
Components

 Integration
Components
234 Patterns: Pervasive Portals

Figure 10-9 A generic development environment

Figure 10-10 on page 236 shows a possible connection of all three
environments. Since the people in charge of the production are not, in general,
the same who test the new solutions and develop the new functionalities, the
environments are protected by security layers.

Development
Components

Development 2

Legend
LAN

Backup
(LAN or SAN)

Component with
High Availability

Component without
High Availability

Development 1
 Chapter 10. System management 235

Figure 10-10 Connection between environments

Development
Components

Development Environment
Backend
Systems

Application
Components

High Availability/Load
Balance Components

Presentation
Components

Presentation
and

Application
Security Layer

Staging Environment

Persistence
Security Layer

Access
Layer

Presentation
and

Application
Security Layer

Internet

 Persistence
Components

Application
Components

High Availability/Load
Balance Components

System
Management

Management
Security Layer

Presentation
Components

Data
Contingency

Security Layer

Data
Contingency

Production Environment

Persistence
Security Layer

Backup

Management

 Persistence
Components

 Integration
Components

Backend
Systems

 Integration
Components
236 Patterns: Pervasive Portals

10.5 Where to find more information
� For more information about IBM Tivoli products, go to:

http://www.tivoli.com/

� For more information on WebSphere Everyplace Access, refer to the
WebSphere Everyplace Access infocenter at:
http://www.ibm.com/software/pervasive/products/library/
ws_everyplace_access.shtml

� For more information about test and development environment, refer to:
WebSphere Application Server Test Environment Guide, SG24-6817
 Chapter 10. System management 237

http://www.ibm.com//ws_everyplace_access.shtml
http://www.tivoli.com/

238 Patterns: Pervasive Portals

Chapter 11. Performance and availability

The e-Business model is very different from the traditional models. Placing an
e-Business application on the Internet means you have potentially millions of
users, all around the world, operating at all times of the day. If this is extended to
a Pervasive solution, it increases the complexity and requirements to support a
good quality of the offered services.

This chapter discusses the non-functional requirements of performance,
availability and scalability related to each component of a Pervasive Portal
solution.

11
© Copyright IBM Corp. 2003. All rights reserved. 239

11.1 Concepts
The multi-tier model provides the separation of the presentation, business logic,
persistence and integration components of an application, facilitating the
scalability and implementation of availability and performance. As shown in
Figure 11-1, these non-functional requirements complement the picture.

Figure 11-1 Multi-tier model with high availability, performance and high availability

To understand these non-functional requirements, a brief description is provided
below.

Availability
In IT, a system, application, or component that can be used is considered to be
available. Availability is the measurement of the time during which the element is
out of use, that is, experiencing an outage. Availability is usually expressed as a
percentage of time the element is not out of service; the availability measure is
calculated by subtracting the duration of the outage from the base time and
dividing the results by the base. High availability is the term usually associated
with the ability to run for extended periods of time with no (or minimal) unplanned
outage. High availability refers to a system or component that is continuously
operational for a desirably long length of time. Availability can be measured
relative to "100% operational" or "never failing". A widely-held but difficult to
achieve standard of availability for a system or product is known as "five 9s"
(99.999 percent) availability.

Presentation

Application or Business Logic

Integration

Persistence

Legacy Systems

Security

Scalability

Perform
ance

H
igh A

vailability
240 Patterns: Pervasive Portals

Figure 11-2 Availability chain

To provide continuous availability, every element of the infrastructure must
support continuous availability. The level of service delivered can be no higher
than the availability of the weakest link. Improving one element to deliver near
100% availability while ignoring other elements does not provide as much benefit
as a more balanced approach. The total availability of an infrastructure is
calculated by multiplying the availability values of all components. In Figure 11-2,
the availability of the entire solution is 93%. The value of each node does not
represent reality; these are only samples.

Performance
Performance has three definitions:

1. The speed at which a computer operates, either theoretically (for example,
using a formula for calculating Mtops - millions of theoretical instructions per
second) or by counting operations or instructions performed (for example,
millions of instructions per second (MIPS)) during a benchmark test. The
benchmark test usually involves tasks that attempt to imitate the kind of work
the computer does during actual use.

2. The total effectiveness of a computer system, including throughput, individual
response time, and availability.

3. In a transactional system, how long it takes to get a response to a request.

Measure Outage per
year

99.9999% 32 seconds

99.999% 5 minutes

99.99% 53 minutes

99.9% 8.8 hours

99% 87 hours (3.6
days)

90% 876 hours (36
days)

Firewall
99.9%

Client
95%

Network
99%

Load Balance
99%

Web Server
99.9%

Firewall
99.9%

Application
Server
99.99%

Database
99.9%
 Chapter 11. Performance and availability 241

Scalability
Scalability is the capability of a system or component to adapt readily to a greater
or lesser intensity of use, volume, or demand while still meeting business
objectives such as acceptable levels of performance and availability. There are
two types of scalability:

� Vertical - In terms of hardware, this is achieved by adding more power to the
hardware, like CPUs, memory, etc. The advantage of this type of scalability is
the use of the same system running on the same hardware, only with more
power. It is important to check that the system supports and recognizes all the
power features added. The disadvantages are that the scalability is limited to
the hardware growth capability and the solution support for that growth.

In terms of a Web application, vertical scaling provides a straightforward
mechanism for creating multiple instances of an application server, and hence
multiple JVM processes.

� Horizontal -In terms of hardware, this is achieved by adding more hardware
equipment in parallel to support the load. For this type of solution, a load
balance component is required to distribute the requests between each piece
of equipment that is running the solution. The advantage of this type of
scalability is the endless growth achieved by adding new hardware and the
possibility to use less powerful machines. If there are at least two machines
attending the requests, it will improve the availability, because if one fails, the
other can assume the workload and also improve the performance since
there are more machines attending the load. The disadvantage is that some
solutions do not support load balancing.

In terms of a Web application, in horizontal scaling, clones of an application
server are created on multiple physical machines. This enables a single
application server to span several machines yet still present a single system
image. Horizontal scaling can provide both increased throughput and failover
support when compared to vertical scaling topologies.
242 Patterns: Pervasive Portals

11.2 Techniques
There are some known techniques used to provide availability and performance.
This section is just a quick overview of the techniques with some specific details
in regards to “Pervasive Portals”. For more information about scalability and
availability, refer to the redbook Patterns for the Edge of Network, SG24-6822.

Clustering
In a computer system, a cluster is a group of servers and other resources that act
as a single system and enable high availability and, in some cases, load
balancing and parallel processing (performance).

Clustering configurations for high availability
The goal of these configurations is to improve availability. There are two basic
configurations for high availability.

1. The simplest high-availability cluster configuration is a two-node cluster.
There is one primary system for all cluster resources and a second system
that is a back-up, ready to take over during an outage of the primary system.

Figure 11-3 Active/standby configuration

Primary Host

Principal
node

(Standby)

heartbeat

Hot Standby

Service

Access

Primary Host

Principal
node

(Standby)

heartbeat

Hot Standby

Service

Access

Active/Standby configuration before failover

Active/Standby configuration after failover
 Chapter 11. Performance and availability 243

2. Another typical configuration is the mutual takeover cluster. Each node in this
environment serves as the primary node for some sets of resources and as
the back-up node for other sets of resources. With mutual takeover, every
system or node is used for production work, and all critical production work is
accessible from multiple systems, multiple nodes, or a cluster. The goal of this
technique is to improve availability and scalability.

Figure 11-4 Active/active configuration

In both of these scenarios, replication is key. Replication means that a copy of
something is produced in real time, for instance, copying objects from one node
in a cluster to one or more other nodes in the cluster. Replication makes and
keeps the objects on your systems identical. If you make a change to an object
on one node in a cluster, this change is replicated to other nodes in the cluster.

Load balancing
The goal of this technique is to improve performance and availability by
supporting horizontal scalability. Load balancing is dividing the amount of work
that a computer has to perform between two or more computers so that more
work gets done in the same amount of time and, in general, all users are served
faster.

Host 1

Principal
node

(Standby)

heartbeat

Host 2

Service-1

Access

Principal
node

(Standby)

heartbeat

Access

Active/active configuration before failover

Active/active configuration after failover

Service-2

Access

Host 1 Host 2

Service-2

Service-1

Access
244 Patterns: Pervasive Portals

Figure 11-5 Load balance configuration

On the Internet, companies whose Web sites get a great deal of traffic usually
use load balancing. To load balance Web traffic, there are several approaches.
For Web serving, one approach is to route each request in turn to a different
server host address in a domain name system (DNS) table, round-robin fashion.
Usually, if two servers are used to balance a work load, a third server is needed
to determine which server to assign the work to. Since load balancing requires
multiple servers, it is usually combined with failover and back-up services. In
some approaches, the servers are distributed over different geographic
locations.

Caching
The goal of this technique is to improve performance. A cache is a special
high-speed storage mechanism. It can be either a reserved section of main
memory or an independent high-speed storage device. Two types of caching
techniques are commonly used: memory caching and disk caching.

When data is found in the cache, it is called a cache hit, and the effectiveness of
a cache is judged by its hit rate. Many cache systems use a technique known as
smart caching, in which the system can recognize certain types of frequently
used data.

Content delivery
The goal of this technique is to improve performance and availability. Content
delivery (sometimes called content distribution) is the service of copying the
pages of a Web site to geographically dispersed servers and, when a page is

Host 1

Principal
node

(Standby)
Host 2

Service Service Principal
node

(Standby)
Host 3

Service

Load
Balance
 Chapter 11. Performance and availability 245

requested, dynamically identifying and serving page content from the closest
server to the user, enabling faster delivery. Typically, high-traffic Web site owners
and Internet service providers (ISPs) hire the services of the company that
provides content delivery.

A common content delivery approach involves the placement of cache servers at
major Internet access points around the world and the use of a special routing
code that redirects a Web page request (technically, a Hypertext Transfer
Protocol (HTTP) request) to the closest server. When the Web user clicks a URL
that is content-delivery enabled, the content delivery network re-routes that
user's request away from the site's originating server to a cache server closer to
the user. The cache server determines what content in the request exists in the
cache, serves that content, and retrieves any non-cached content from the
originating server. Any new content is also cached locally. Other than faster
loading times, the process is generally transparent to the user, except that the
URL served may be different from the one requested.

The three main techniques for content delivery are: HTTP redirection, Internet
Protocol (IP) redirection, and domain name system (DNS) redirection. In general,
DNS redirection is the most effective technique.

11.3 Products
WebSphere Everyplace Access does not support caching in this version.
Components like DB2e, Device Management, and synchronization require
having unique sessions that prevents using caching.

Other components in WebSphere Everyplace Access, for example portal, can
use external caching. There are some products that implement these techniques
in order to provide availability and performance. Some of them are described
below.

IBM WebSphere Edge Server
IBM WebSphere Edge Server V2 for Multiplatforms is a Web infrastructure
software that addresses the scalability, reliability and performance needs of
e-business applications in both local and geographically distributed
environments. Its functions incorporate robust, leading-edge caching and load
balancing that together compensate for the inherent weakness of the Internet in
supporting critical business applications and expectations. In addition, IBM
WebSphere Edge Server V2 introduces significant new functions, defined by the
Edge Services Architecture, which offer additional capabilities.
246 Patterns: Pervasive Portals

The Edge Services Architecture has been defined to enable the delayering of
application programs so as to more fully exploit the distributed execution
environment created when edge servers are placed at the edge of the network.

Delayering means decomposing an application into smaller modules for
placement on appropriate platforms throughout a distributed network topology. It
is advantageous in accommodating a variety of business models which may be
evolving over time. Delayering applications in “edgable” components opens
significant new opportunities for e-businesses, service providers, and
independent software vendors, allowing application scalability and good user
response times.

IBM WebSphere Edge Server is made up of four main components which allow
you to reduce Web server congestion, increase content availability and improve
Web server performance:

� Caching and filtering - The caching and filtering component, known as the
Caching Proxy, is a server that provides highly scalable caching and filtering
functions used in receiving requests and serving URLs. Since tunable
caching is capable of supporting high cache hit rates, this component can
reduce bandwidth costs and provide more consistent rapid customer
response times. Additionally, the Caching Proxy is programmable via
plug-ins, and it caches and invalidates dynamic content generated by the IBM
WebSphere Application Server’s dynamic cache.

� Load balancing - The load balancing component, known as Network
Dispatcher, is a server that is able to dynamically monitor and balance TCP
servers and applications in real time. It improves a Web site’s availability,
scalability and performance by transparently clustering edge, Web and
application servers. The main advantage of the load balancing component is
that it allows heavily accessed Web sites to increase capacity, since multiple
TCP servers can be dynamically linked in a single entity that appears in the
network as a single logical server.

� Content Distribution - The Content Distribution Framework provides an
infrastructure that can be used to distribute static, dynamic, and multimedia
Web content, along with application components to production servers,
rehosting servers and edge server caches throughout the network.

� Application Offload - A typical Web application setup consists of three tiers:
Presentation, Business logic, and Data Store, co-located at the origin
application server. Application Offload moves some of the Presentation and
Business logic related processing to the edge of the network. It enables the
Edge Server to perform page composition from cached and rehosted
fragments and Web objects.
 Chapter 11. Performance and availability 247

For detailed information about IBM WebSphere Edge Server, refer to the IBM
Redbook IBM WebSphere Edge Server: New Features and Functions in Version
2 - SG24-6511.

High Availability Cluster Multi-Processing for AIX
IBM's tool for building UNIX®-based mission-critical computing platforms is the
HACMP software. The HACMP software ensures that critical resources are
available for processing. HACMP has two major components: high availability
(HA) and cluster multi-processing (CMP).

High Availability
Until recently, the only avenue for achieving high availability in the UNIX realm
was through fault tolerant technology. Fault tolerance relies on specialized
hardware to detect a hardware fault and instantaneously switch to a redundant
hardware component, whether the failed component is a processor, memory
board, power supply, I/O subsystem, or storage subsystem.

Although this cutover is apparently seamless and offers non-stop service, a high
premium is paid in both hardware cost and performance because the redundant
components perform no processing. More importantly, the fault tolerant model
does not address software failures, by far the most common reason for down
time.

High availability views availability not as a series of replicated physical
components, but rather as a set of system-wide, shared resources that
cooperate to guarantee essential services. High availability combines software
with industry-standard hardware to minimize down time by quickly restoring
essential services when a system, component, or application fails. While not
instantaneous, services are restored rapidly, often in less than a minute.

The difference between fault tolerance and high availability, then, is this: a fault
tolerant environment has no service interruption, while a highly available
environment has a minimal service interruption. Many sites are willing to absorb
a small amount of down time with high availability rather than pay the much
higher cost of providing fault tolerance. Additionally, in most highly available
configurations, the back-up processors are available for use during normal
operation.

High availability systems are an excellent solution for applications that can
withstand a short interruption should a failure occur, but which must be restored
quickly. Some industries have applications so time-critical that they cannot
withstand even a few seconds of down time. Many other industries, however, can
withstand small periods of time when their database is unavailable. For those
industries, HACMP can provide the necessary continuity of service without total
redundancy.
248 Patterns: Pervasive Portals

Cluster Multi-Processing
Cluster multi-processing is a group of loosely coupled machines networked
together, sharing disk resources. In a cluster, multiple server machines
cooperate to provide a set of services or resources to clients.

Clustering two or more servers to back up critical applications is a cost-effective
high availability option. You can use more of your site’s computing power while
ensuring that critical applications resume operations after a minimal interruption
caused by a hardware or software failure.

Cluster multi-processing also provides a gradual, scalable growth path. It is easy
to add a processor to the cluster to share the growing workload. You can also
upgrade one or more of the processors in the cluster to a more powerful model. If
you are using a fault tolerant strategy, you must add two processors, one as a
redundant back-up that performs no processing during normal operations.

There are two basic types of cluster configurations:

• Standby configurations—These are the traditional redundant hardware
configurations where one or more standby nodes stand idle, waiting for a server
node to leave the cluster.

• Takeover configurations—In this configuration, all cluster nodes do useful work,
processing part of the cluster’s workload. There are no standby nodes. Takeover
configurations use hardware resources more efficiently than standby
configurations since there is no idle processor. Performance can degrade after
node detachment, however, since the load on remaining nodes increases.

For detailed information about High Availability Cluster Multi-Processing for AIX,
refer to the IBM Redbook Configuring Highly Available Clusters Using HACMP
4.5, SG24-6845-01.

11.4 Applying to a Pervasive Portal solution
An end-to-end solution has many components. Providing availability and
scalability to an end-to-end solution really means managing each component’s
capacities, performance and availability. Increasing the performance and
availability of one component may change the dynamics of the transaction,
thereby moving the bottleneck to another component. To increase the scale of a
solution, many or all components of that solution must scale to service the
increasing number of requests. There are some rules to help provide availability
and performance:

1. Define the availability that is required for each component of the solution. This
can be done by understanding how critical each component is to the solution.
 Chapter 11. Performance and availability 249

It is important to remember that if high availability is required for one
component, every other component that has dependency relationships with
this component has to provide at least the same level of availability. Some
components of a solution support load balancing; this provides availability
and at the same time increases the performance, considering that the
requests will be held by more than one server at the same time.

Figure 11-6 Performance and Availability for Pervasive Portal Solution components

a. ISP and routers - If Internet access is critical to the solution, it is important
to have redundant Internet links, if possible with different service

Firewall to
Access Internet and to Protect
Application and Persistence

from Internet

Load Balance
WebSphere Edge Server

Web Server Redirector
HTTP Server
HTTP Plugin

Transcoding Proxy
WebSphere Transcoding

Publisher

Database
DB2

LDAP Directory+
Authentication

Secureway Directory
+ DB2+

WebSphere Access
Manager

Storage Area Network

 Persistence

Internet

Routers+
Packet Filters

Application

Portal
WebSphere Portal Server

WebSphere Personalization
WebSphere Application Server

Device Manager
Device Manager

Subscription Manager
WebSphere Application Server

Syncronization
WebSphere Syncronization Server

WebSphere Application Server

Authentication
+Sigle Sign On

WebSeal

Voice Server
WebSphere Voice Server

Firewall to Protect
Application and

Persistence

DMZ Web Server Redirector
HTTP Server

WebSphere Plugin

Load Balance
WebSphere Edge Server+

WebSeal Plugin

PDAs
Everyplace

Client Mobile
Phones

WAP

PDAs
Everyplace

Client

Internal
Browser

users

External
Browser

Users

Replication
with PCs

Wireless Gateway
WebSphere Everyplace

Connection Manager

Wireless
Network
Wireline
Network

Replication
with PCs

Storage

Tape

Notification
Intelligent Notification Services
WebSphere Application Server

Voice Gateway
WebSphere Voice

Response

Mobile
Phones

Voice
Wireless
Network
Wireline
NetworkWireline

Phones

a

ed

c
b

a

d
e

hgf

f

i j k lnm

b o

Note: Because of the extensive details of the previous diagram, it is difficult to
read some parts on a printout. If you would like to read the details, please use
the original PDF document and magnify the area you want to see.
250 Patterns: Pervasive Portals

providers. To provide transparent high availability of the inbound and
outbound communication, one of the solutions is to use technologies such
as Border Gateway Protocols (BGP) and Hot Standby Router Protocol
(HSRP).

BGP performs interdomain routing in Transmission-Control
Protocol/Internet Protocol (TCP/IP) networks. BGP is an exterior gateway
protocol (EGP), which means that it performs routing between multiple
autonomous systems or domains and exchanges routing and reachability
information with other BGP systems.

Using HSRP, a set of routers works in concert to present the illusion of a
single virtual router to the hosts on the LAN. This set is known as an
HSRP group or a standby group. A single router elected from the group is
responsible for forwarding the packets that hosts send to the virtual router.
This router is known as the Active router. Another router is elected as the
Standby router. In the event that the Active router fails, the Standby
assumes the packet-forwarding duties of the Active router.

Figure 11-7 ISP and routers high availability

It is very important to provide routers with redundant components such as
processors, fans, power supplies, management modules, etc.

b. Firewall - A possible solution to provide high availability and increase
performance for the firewalls is the use of a load balance solution such as
WebSphere Edge Server. Considering that a firewall has at least two

ISP-2

ISP-1

Router 1

Router 2

BGP

BGP

Et
he

rn
et

Host

Enterprise

HSRP
 Chapter 11. Performance and availability 251

communication adapters, the WebSphere Edge Server has to take care of
all interfaces and one possible implementation is the WebSphere Edge
Server running in the same machine as the firewall. It is recommended
that WebSphere Edge Server be dedicated for the firewalls.

c. Wireless Gateway (WebSphere Everyplace Connection Manager)-
Figure 11-8 on page 253 shows a scenario of Wireless Gateways
configured to distribute workload. Each box is a Wireless Gateway,
configured as either a subordinate node or a principal node. The principal
node is a Wireless Gateway configured to receive traffic from a mobile
network connection and distribute the workload among its subordinate
nodes. The subordinate nodes are configured to accept and process traffic
from the principal node based on a configurable distribution algorithm. The
distribution algorithms include:

• Round-robin - The principal node continuously repeats the sequence of
distributing traffic to a series of subordinate nodes, one after the other.

• Weighted round-robin - The principal node continuously repeats the
sequence of distributing traffic to a series of subordinate nodes, based
on configurable CPU utilization thresholds, called low and high water
marks.

• Device/type of network connection based - The principal node
distributes traffic to subordinate nodes based on the type of network
connection or unique device identifier from which it came.

To provide back-up for the principal node, High Availability Cluster
Multi-Processing (HACMP) may be used with a second machine. It is not
necessary to back up the subordinate nodes.
252 Patterns: Pervasive Portals

Figure 11-8 Wireless Gateway cluster solution

In order to improve performance on WAP services, the Wireless Gateway
acting as a WAP gateway can use the HTTP proxy caching facilities
provided by the Everyplace Wireless Gateway WML caching plug-in for
IBM WebSphere Edge Server Caching Proxy (formerly Web Traffic
Express). Caching facilities minimize network traffic and ensure that WAP
clients spend less time retrieving repeated requests.

The Wireless Gateway provides a virtual private network tunnel between
the wireless gateway and a wireless client, sensitive to the limited
bandwidth capabilities and varying latencies found in wireless
environments, so IP traffic can be routed efficiently and securely. In order
to improve performance, this VPN solution implements data compression,
IP header reduction, selective packet filtering, and TCP retransmission
optimizations.

d. Load Balance (WebSphere Edge Server)- This supports high availability
by the use of a second machine that monitors the main, or primary
machine and stands by to take over the task of load balancing if the
primary machine fails at any time. The standby machine is ready to take
over and preserve connections in case the primary machine fails. If the
back-up machine detects that the active machine has failed, it will take
over and begin load balancing. At that point, the statuses of the two
machines are reversed: the back-up machine becomes active and the

Subordinate
node

Subordinate
node

Subordinate
node

Subordinate
node

Principal
node

(active)

Mobile Client

Mobile
Network

Principal
node

(Standby)

heartbeat
HACMP
 Chapter 11. Performance and availability 253

primary machine becomes standby. A “heartbeat” mechanism between
the two Dispatcher machines is used to detect a Dispatcher failure. The
standby machine makes the decision to take over if it detects that all
heartbeats have stopped for two seconds. The standby machine then
changes its state to active. It also broadcasts gratuitous Address
Resolution Protocol (ARP) commands so that everyone on the subnet
(including the router) will now send packets for the cluster addresses to
the standby (now active) machine.

For detailed information about IBM WebSphere Edge Server, refer to the
IBM Redbook IBM WebSphere Edge Server: New Features and Functions
in Version 2 - SG24-6511-00.

e. Authentication (Tivoli Access Manager - WebSeal).

Tivoli Access Manager is composed of:

• User Registry, which in most cases is implemented by an LDAP
directory as IBM Secureway Directory. It supports the concept of
master and replica LDAP servers. A master server contains the master
directory from which updates are propagated to replicas. All changes
are made and occur on the master server, and the master is
responsible for propagating these changes to the replicas.

• The Policy Server, which supports the management of the
authorization database and its distribution to Authorization Services.

For availability purposes, a standby server can be configured to take
over Policy Server functions in the event of a system failure. This can
be supported using an appropriate high-availability product (for
example, HACMP on AIX platforms).

The Policy Server replicates the authorization database to all other
Access Manager Authorization Servers. Every application, configured
in local cache mode, that uses this Authorization Service (like
WebSEAL) has its own local copy (replication) of the master
authorization database and can therefore provide authentication and
Authorization Services, even if the Policy Server is not available for a
brief period of time.

• The Web Portal Manager, which provides a Web browser based
capability for performing administrative functions. In order to provide
availability, more than one Web Portal Manager can be deployed.

• The WebSEAL reverse proxy that is the front-end to the back-end Web
servers and is responsible for applying the security policy. Increasing
the availability of the WebSEAL starts with at least two front-end
WebSEAL servers. Replicated front-end WebSEAL servers provide the
site with load balancing during periods of heavy demand, as well as
fail-over capability: if a server fails for some reason, the remaining
254 Patterns: Pervasive Portals

replica server(s) will continue to provide access to the site. The load
balancing mechanism is handled by a mechanism such as the Network
Dispatcher (WebSphere Edge Server).

In order to provide availability and performance to access the back-end
Web server, WebSEAL supports defining more than one target server
for a unique junction. In this case, WebSEAL can load balance among
the servers, and if a back-end server is unavailable, WebSEAL can
continue forwarding requests to the remaining servers for the junction.
For situations where it is important that subsequent requests for a
particular user continue going to the same back-end server, WebSEAL
is capable of providing support using what are called stateful junctions.

For more detailed information on Tivoli Access manager, refer to 9.5.1,
“Tivoli Access Manager and Single Sign-On” on page 210.

Figure 11-9 High Availability for the Tivoli Access Manager components

f. Web Server Redirector (Web Server and WebSphere HTTP plug-in)- This
supports load balancing provided by the WebSphere Edge Server or the
Authentication component (WebSeal). See Figure 11-10 on page 256 and
Figure 11-11 on page 257.

W e bS ea l
R e ve rse p ro xy

B ro w se r

P o lic y
S e rv e r

S tand by

W e b S erv er

A utho riza tio n
D B

A ccess
M anag er U ser

R eg is try
L D A P

R ep lica

Jun ctio n W e b S erv er

W e bS ea l
R e ve rse p ro xy

A ccess
M an ag er U ser

R eg istry
L D A P

M aste r

R e p lica

N e tw ork
D is pa tche r

A ctive
H TT P /H TT P S

H TTP /H TT PS

N e tw ork
D is pa tche r

S tan dby

H TTP /
H TTP S

Jun ctio n

P o lic y
S e rve r
A c tiv e

H A C M P

W e b P o rta l
M an ag er

W e b P o rta l
M an ag er

A u th orization
D B R e p lica

A uthoriza tion
D B R ep lic a
 Chapter 11. Performance and availability 255

g. Transcoding proxy (WebSphere Transcoding Publisher)- This supports
load balancing provided by the WebSphere Edge Server.

h. Web application server - There are several topologies to implement the
Web application server and provide availability and performance. For this
solution, the separation of the HTTP server, the Application Server and the
Database was chosen. For more detailed information on the existent
topologies, refer to Chapter 10 of the IBM Redbook IBM WebSphere V4.0
Advanced Edition Scalability and Availability, SG24-6192-00.

Figure 11-10 Web application server availability

In Figure 11-11 on page 257 the authentication node that provides load
balance for the HTTP server is added. The authentication node is load
balanced by the Network Dispatcher.

 Database
(standby)

 Database
(primary)

Web
Server

Redirector

HTTP
Server

HTTP
plug-in

Web
Server

Redirector

HTTP
Server

HTTP
plug-in

Network
Dispatcher
(primary)

Cache

Network
Dispatcher
(standby)

Cache

Heartbeat

Web
Application

Server

Web
Application

Server

Web Container

Web Container

EJB Container

EJB Container

Heartbeat

HTTP request

High
Availability

High
Availability

High
Availability
and Load
Balancing

High
Availability
and Load
Balancing
256 Patterns: Pervasive Portals

Figure 11-11 Web application server and Authentication proxy availability

The Portal Server, Device Manager and Synchronization are Web
applications and use the solutions described in Figure 11-10 on page 256.
These components support WebSphere Application Server cloning.

i. Portal (WebSphere Edge Server)- This supports load balancing provided
by the WebSphere Edge Server or WebSphere HTTP plug-in.

j. Notification (Intelligent Notification Services)- This supports load balancing
for the administration and user portlets using the same mechanism of
WebSphere Portal Server.

k. Device Manager - This supports load balancing provided by the
WebSphere Edge Server or WebSphere HTTP plug-in.

Before a device (PDA) can use the dispatching capability, that device must
be configured with the server URL of the network dispatcher cluster. In the
dispatcher, a cluster is a group of TCP or UDP servers that are used for
the same purpose and are identified by a single host name or IP address,
the cluster address. A server URL is a Web address stored on a device
and used by the device agent program to direct the device to a Device
Management server, possibly through a network dispatcher (by using the
host name of the dispatcher's appropriate cluster address) for job
processing.

When the device connects to the network dispatcher, the dispatcher
forwards the HTTP request from the device to the most available Device
Manager server. If jobs are scheduled for the device, the Device Manager
server redirects the device back to its own server URL. This prevents the
device from returning through the network dispatcher and being rerouted

 Database
(standby)

 Database
(primary)

Web
Server

Redirector

HTTP
Server

HTTP
plug-in

Web
Server

Redirector

HTTP
Server

HTTP
plug-in

Network
Dispatcher
(primary)

Cache

Network
Dispatcher
(standby)

Cache

Heartbeat

Web
Application

Server

Web
Application

Server

Web Container

Web Container

EJB Container

EJB Container

Heartbeat

HTTP request

High
Availability

High
Availability

High
Availability
and Load
Balancing

High
Availability
and Load
Balancing

Authentication

Authentication

High
Availability
and Load
Balancing
 Chapter 11. Performance and availability 257

to a different Device Manager server whenever multiple HTTP
connections are required to complete the job.

l. Synchronization (Everyplace Synchronization Server)- This supports load
balancing provided by the WebSphere Edge Server or WebSphere HTTP
plug-in. In order to improve performance, it includes:

• A high performance cache for systems with heavy workloads. When
caching is enabled, the Synchronization server replicates the back-end
data locally in order to deal with client synchronization requests quickly.

• Filters that limit the synchronization to subsets of data. Filtering can
also help control client database size by synchronizing the minimum
amount of data necessary for a specific client.

m. Database - If the Relational Database Management System (RDBMS) is
running on AIX, you can place the server in an HACMP cluster. If the
application is using a database client that supports connection pooling and
will reopen severed connections with the database, it is possible to have
the database fail over without causing the application as a whole to fail.

n. LDAP Directory - A directory is often described as a database, but it is a
specialized database that has characteristics which set it apart from
general purpose relational databases. One special characteristic of
directories is that they are accessed (read or searched) much more often
than they are updated (written). Lightweight Directory Access Protocol
(LDAP) is a fast growing technology for accessing common directory
information. In a way similar to building an HA database for WebSphere,
you can build an HA LDAP service with clustering software such as
HACMP.

o. Storage - There are several modes and technologies of storage. The high
availability can be provided by a redundant array of independent disks
(RAID) and combined with performance and scalability provided by a
storage area network (SAN).

2. Define the capacity and performance that are required for the solution. This
can be done using:

– Benchmarks

• TPC-C - this is one of the most used benchmarks and relates to a
computing environment where a population of users executes
transactions against a database.The TPC-C is sponsored by the
Transaction Processing Performance Council. For more details or
information on other TPC benchmarks, refer to:

http://www.tpc.org

• SPECweb - this is specifically used for Web solutions. There are
already two versions of the SPECweb: the 96 and the 99 versions.
258 Patterns: Pervasive Portals

http://www.tpc.org

The SPECweb96 measures the number of Web operations (get, put)
per second that a machine can perform. The SPECweb96 is widely
used on the comparison and sizing of Web solutions and this pattern is
being substituted for the SPECweb99 described below.

The SPECweb99 is the next generation of the SPEC benchmarking for
WWW servers evaluation. Because of the quick advances of Web
technologies, the benchmark SPECweb99 includes several
improvements in order to respond to Web users’ needs now and in the
future. The SPECweb99 measures the number of Web pages per
second that a machine can provide.

For more details, refer to:

http://www.spec.org/

– Solution and business requirements

• User visits

• Concurrent users

• Response time

• Peak time

• Hits per second

• Pageviews per second

Using this information, it is possible to size the necessary hardware and use
the rights techniques to provide the desired performance. Sizing is not a
precise method. It uses benchmarks and performs experiences as to how
each component works under determined conditions. There are so many
influencers that can change the performance of a solution, such as network
latency, basic software, applications developed not using the best practices,
that the sizing will be the first estimate to have the solution definitions.

IBM has for many years been designing and running e-Business solutions.
With this experience, it was possible to create patterns as to the typical load
and use of each type of solution. This intellectual capital was used to develop
internal tools to help define a solution sizing with more accuracy. It is not the
focus of this IBM Redbook to explain sizing techniques, but we do provide a
sample using an internal IBM tool for a Pervasive Portal solution using IBM
WebSphere Portal Server V4.1. It is assumed that:

– The solution will be 3-tier (Presentation, Application and Persistence)

– The performance objectives are: four user visits per second and a
contingency percentage of 10%

– The 3-tier will be running on pSeries™ machines
 Chapter 11. Performance and availability 259

http://www.spec.org/

– A load balance component such as WebSphere Edge Server will be
provided

– There is a delay of two seconds between the server and the pervasive
devices

The first step is to choose a pattern. In our case, it will be a Portal
(WebSphere Portal Server V4.1).

Figure 11-12 Choosing a pattern

Figure 11-13 on page 261 shows a Web portal pattern diagram.
260 Patterns: Pervasive Portals

Figure 11-13 Portal pattern

The second step is to set the performance and capacity objectives and
number of tiers.
 Chapter 11. Performance and availability 261

Figure 11-14 Setting Performance and capacity objectives

The third step is to set which version of WebSphere will be used and if it is
being used with SSL.
262 Patterns: Pervasive Portals

Figure 11-15 Software settings

The fourth step is to choose the hardware that will be used.
 Chapter 11. Performance and availability 263

Figure 11-16 Hardware choice

The last step is to check whether the hardware and software definitions meet
the performance objectives defined for the solution.
264 Patterns: Pervasive Portals

Figure 11-17 Performance results

It is possible to create graphics and visualize the capacity and performance of
the solution.

Figure 11-18 Performance graphics
 Chapter 11. Performance and availability 265

Figure 11-19 Performance graphics
266 Patterns: Pervasive Portals

11.5 Where to find more information
� For more information about WebSphere Edge Server, refer to the IBM

Redbook IBM WebSphere Edge Server: New Features and Functions in
Version 2, SG24-6511-00.

� For more information about HACMP, refer to the IBM Redbook Configuring
Highly Available Clusters Using HACMP 4.5, SG24-6845-01.

� For more information about WebSphere Scalability and Availability, refer to
IBM Redbook IBM WebSphere V4.0 Advanced Edition Scalability and
Availability, SG24-6192-00

� For more information about Scalability and Availability, refer to IBM Redbook
Best Practices for High-Volume Web Sites, SG24-6562-00
 Chapter 11. Performance and availability 267

268 Patterns: Pervasive Portals

Part 3 Implementation

Part 3
© Copyright IBM Corp. 2003. All rights reserved. 269

270 Patterns: Pervasive Portals

Chapter 12. Technical scenario

In this chapter, we provide information on how to deploy the sample application
in a runtime environment which was developed for the project.

12
© Copyright IBM Corp. 2003. All rights reserved. 271

12.1 Deploying the sample application
The following sections and step-by-step instructions will guide you through the
sample application installation and configuration.

12.1.1 Prerequisites for the application
The sample application runs on WebSphere Everyplace Access V4.2. You can
use the setup manager to install the product. For other installation details, refer
to the product documentation or to the IBM Redpaper IBM WebSphere
Everyplace Access V4.1.1 Installation, REDP3587.

The recommended configuration method for WebSphere Everyplace Access
V4.2 is to use the setup manager provided with the product. This is the supported
way of performing the installation; at this stage, there is no support for
incremental installation on top of WebSphere Portal Server or other existing
components.

12.1.2 Database configuration
The application requires a database populated with sample data. The following
steps will help you to set up the sample database.

1. After you have downloaded SG246876.zip from the Redbooks site and
followed the Additional Materials link, create a directory on your local hard
drive (for example: c:\pervsamp) for the sample code, then unzip the file into
the directory.

2. Open a DB2 command window.

3. Change the directory to the sample code directory: C:\SG246876\database.

4. Run the setup.bat script.

5. In order to populate the database, run the populate.bat script.

6. Close the window.

12.1.3 Installing the EJB components
The sample application consists of multiple parts. The back end is implemented
as an EJB application. This section will guide you in installing the EJB
components for the sample.

1. Create an operating system user dbuser with the password password for
database access.

2. Launch the WebSphere Advanced Administrative Console.
272 Patterns: Pervasive Portals

3. Create a datasource under Resources -> JDBC providers -> Sample DB
Driver.

– Name: Pervasive

– JNDI name: jdbc/Pervasive

– databaseName: PERPORDB

– user: dbuser

– password: password

4. Click Console -> Wizards -> Install Enterprise Application.

5. Select the Install stand-alone module (*.war, *.jar) option. Browse for the
EJB .jar file PervasiveEJB.jar. Provide the Application name: PervasiveEJB.

6. Click Next until you get to the Selecting Application Servers panel. Highlight
the PervasiveEJB line, then select the WebSphere Portal server from this
item. Click Next.

7. Click Finish.

8. Click Yes when installation asks whether to regenerate the application code.
Set the database name to PERPORDB, set the schema name to DBUSER.

9. When the installation is complete, start the PervasiveEJB under the
Enterprise Applications.

10.The portlets should find the EJB stubs and skeletons; you need to copy the
file, PervasiveEJB.jar, to a place where portlets can load the class files. One
suggestion is to use <WAS_HOME>\lib\ext to copy the .jar file over. You
should restart your application server in order to get the class loader to load
the new libraries.

12.1.4 Installing and configuring the portlets
A major part of the sample application is the portal application. This section will
explain how you can install the portal application.

The first step is to install the portlet.

1. Open the browser and type:

http://<server_fully_qualified_name>/wps/portal

2. Click the key on the right side of the page and log on as administrator (the
default is wpsadmin) with a password (the default is wpsadmin).

3. In the navigation menu, select Portal Administration then select Portlets ->
Install Portlets.
 Chapter 12. Technical scenario 273

Figure 12-1 Install portlet

4. In the Directory field, type C:\SG246876\PervasivePortal.war and click Next.

5. You should see one list with one portlet application (PervasivePortal
application) and portlets (we have four portlets: ITSO close defect and invoice
customer portlet, ITSO search knowledge portlet, ITSO register defect portlet,
ITSO list problem pending portlet). Click the Install link.

6. You need to create a place to insert the portlets that you have created in the
previous step. In the navigation menu, select Work With Pages then click
Manage Place and Pages.

7. Click Create Place.

8. In the Place name and default locale title field, type Help Desk ITSO
Application and for Support markups, select the html, wml and chtml
options and click OK.
274 Patterns: Pervasive Portals

Figure 12-2 Create a place

9. Click the Manage Places and Pages tab, click Create page then select
Create new.
 Chapter 12. Technical scenario 275

Figure 12-3 Create a page

10.In the Administrative name and default locale title field, type Defect Manager.

11.For the layout, select the first option.

12.For the Supported markups, select html, chtml and wml and click OK.

13.Click the Edit and Layout Content tab and select the place and the page
that you have created.
276 Patterns: Pervasive Portals

Figure 12-4 Page to define the lay out for portlets

14.Click Get portlets.

15.On the next page, select the Show all portlets option and click the Go link.

16.You will see the list of portlets in your WebSphere Portal Server. You should
find the portlets for this application and click the plus sign next to the items to
add them to the Portlet list (you can find the name of the portlets in step 5).
 Chapter 12. Technical scenario 277

Figure 12-5 Page for select the portlets

17.Click OK after selecting all four portlets.
278 Patterns: Pervasive Portals

Figure 12-6 Page after selecting the portlets

18.Select the portlets one by one and click the button (the small window with the
plus sign). By adding the portlets to the layout, you also set the sequence
according to which the portlets will show on the page.

19.At the end, click the Activate link to active this place.

20.The next step is give the permission to portal users to access the place. On
the navigation menu, select Portal Administration and then click the
Security tab.

21.Select the Selected users and groups option and click Get Users and
Groups.

22.Select the Search for groups option and search for the group Technician,
then click OK.

23.Under Select the objects for the permissions, select Pages.

24.Type Defect Manager for the Name Contains field then click Go.
 Chapter 12. Technical scenario 279

25.Under the Minimum column, select View for the Help Desk ITSO Application
and the Defect Manager then click Save.

26.Under Select the objects for the permissions, choose Portlets this time.

27.Type ITSO for the Name Contains field then click Go. You should see the list
of ITSO portlets for the application.

Figure 12-7 ITSO Web Application

12.1.5 Application users
The users for the application are stored in an LDAP directory. In order to create
the necessary users and groups, refer to 8.3.2, “User registry” on page 176.
280 Patterns: Pervasive Portals

12.1.6 Mobile client application and database synchronization
The sample application also has a mobile client application for database
synchronization.

The client application for PalmOS is distributed together with the source code.
For detailed installation steps, refer to 8.3.3, “Using Transcoding Technology” on
page 178.

On the server side, the mobile client application requires a synchronization
server. For detailed configuration steps, refer to 8.5.1, “Using DB2 Everyplace”
on page 185.
 Chapter 12. Technical scenario 281

282 Patterns: Pervasive Portals

Part 4 Appendixes

Part 4
© Copyright IBM Corp. 2003. All rights reserved. 283

284 Patterns: Pervasive Portals

Appendix A. Additional material

This redbook refers to additional material that can be downloaded from the
Internet as described below.

Locating the Web material
The Web material associated with this redbook is available in softcopy on the
Internet from the IBM Redbooks Web server. Point your Web browser to:

ftp://www.redbooks.ibm.com/redbooks/SG6876

Alternatively, you can go to the IBM Redbooks Web site at:

ibm.com/redbooks

Select the Additional materials and open the directory that corresponds with
the redbook form number, SG246876.

A

© Copyright IBM Corp. 2003. All rights reserved. 285

ftp://www.redbooks.ibm.com/redbooks/
http://www.redbooks.ibm.com/
http://www.ibm.com/redbooks/
http://www.ibm.com/redbooks/

Using the Web material
The additional Web material that accompanies this redbook includes the
following files:

File name Description
sg246876.zip Sample application for the book

System requirements for downloading the Web material
The following system configuration is recommended:

Hard disk space: 10MB at least
Operating System: Windows 2000 Server
Processor: Intel Pentium® III or 4, 1GHz or higher
Memory: 1GB or more

How to use the Web material
Create a subdirectory (folder) on your workstation, for example: C:\SG246876,
and unzip the contents of the Web material zip file into this folder.

For more information about how to install and configure the sample application
refer to Chapter 12, “Technical scenario” on page 271.
286 Patterns: Pervasive Portals

acronyms
ACL Access Control List

API Application Programming
Interface

BA Basic Authentication

CDC Connected Device
Configuration

CDLC Connected Limited Device
Configuration

CDMA Code-Division Multiple
Access

CDPD Cellular Digital Packet Data

CGI Common Gateway Interface

CHTML Compact HTML

CICS® Customer Information Control
System

CMP Container Managed
Persistency

CORBA Common Object Request
Broker Architecture

CSS Cascading Style Sheets

DHTML Dynamic HTML

DMZ Demilitarized Zone

DN Distinguished Name

DNS Domain Name Server

DOM Document Object Model

DTD Document Type Definition

DTMF Dual Tone Multi-Frequency

EAI Enterprise

EDI Electronic Data Interchange

EJB Enterprise Java Bean

ERP Enterprise Resource Planning

GOF Gang of Four

GPRS General Packet Radio Service

Abbreviations and
© Copyright IBM Corp. 2003. All rights reserved.
GSM Global System for Mobile
telecommunication

GUI Graphical User Interface

HA High Availability

HACMP High Availability Cluster
Multiprocessing

HTML Hypertext Markup Language

HTTP Hypertext Transfer Protocol

IBM International Business
Machines Corporation

IIOP Internet Inter-ORB Protocol

IM Instant Messaging

IP Internet Protocol

IrDA Infrared Data Association

ISP Internet Service Provider

ITSO International Technical
Support Organization

JAAS Java Authentication and
Authorization Service

JAR Java Archive

JDBC Java Database Connection

JDK Java Development Kit

JNDI Java Naming and Directory
Interface

JSP JavaServer Page

JVM Java Virtual Machine

LDAP Lightweight Directory Access
Protocol

LTPA Lightweight Third Party
Authentication

OS Operating System

PDA Personal Digital Assistant

PKI Public Key Infrastructure
 287

PSTN Public Switched Telephone
Network

RDBMS Relational Database
Management System

RMI Remote Method Invocation

SMS Short Message Service

SMTP Simple Mail Transfer Protocol

SNMP Simple Network Management
Protocol

SOAP Simple Object Access
Protocol

SSL Secure Socket Layer

SSO Single Sign-On

TAI Trust Association Interceptor

TDMA Time Division Multiple Access

UDDI Universal Description
Directory and Integration

URL Unified Resource Locator

VPN Virtual Private Network

WAN Wide Area Network

WAP Wireless Access Protocol

WEA WebSphere Everyplace
Access

WML Wireless Markup Language

WSDL Web Services Description
Language

XML Extensible Markup Language

XSL Extensible Stylesheet
Language

XSLT Extensible Stylesheet
Language
288 Patterns: Pervasive Portals

Related publications

The publications listed in this section are considered particularly suitable for a
more detailed discussion of the topics covered in this redbook.

IBM Redbooks
For information on ordering these publications, see “How to get IBM Redbooks”
on page 292.

� A Portal composite pattern Using WebSphere Portal V4.1, SG24-6869.

� Access Integration Pattern Using IBM WebSphere Portal Server, SG24-6267.

� Self-Service Patterns using WebSphere Application Server V4.0, SG24-6175.

� Patterns: Connecting Self-Service Applications to the Enterprise, SG24-6572

� Self-Service Applications using IBM WebSphere V4.0 and IBM MQSeries
Integrator, SG24-6160

� Patterns on z/OS: Connecting Self-Service Applications to the Enterprise,
SG24-6827

� Patterns: Building Messaging-based and Transactional Applications,
SG24-6875

� User-to-Business Pattern using WebSphere Personalization Patterns for
e-business Series, SG24-6213

� Mobile Commerce Solutions Guide using WebSphere Commerce Suite V5.1,
SG24-6171

� Mobile Applications with IBM WebSphere Everyplace Access Design and
Development, SG24-6259

� WebSphere Personalization Solutions Guide, SG24-6214

� Enterprise Business Portals with IBM Tivoli Access Manager, SG24-6556

� IBM WebSphere V4.0 Advanced Edition Handbook, SG24-6176

� WebSphere Application Server Test Environment Guide, SG24-6817

� IBM WebSphere Edge Server: New Features and Functions in Version 2,
SG24-6511

� Configuring Highly Available Clusters Using HACMP 4.5, SG24-6845
© Copyright IBM Corp. 2003. All rights reserved. 289

� IBM WebSphere V4.0 Advanced Edition Scalability and Availability,
SG24-6192

� Best Practices for High-Volume Web Sites, SG24-6562

� Transcoding Technologies in IBM WebSphere Everyplace Access Version
4.1.1, REDP3592

� Relational Database Synchronization in WebSphere Everyplace Access
V4.1.1, REDP3590

� User-to-Business Patterns Systems Management Guidelines, REDP0401

� IBM WebSphere Everyplace Access V4.1.1 Installation, REDP3587

Referenced Web sites
These Web sites are also relevant as further information sources:

� Patterns for e-business Web site

http://www.ibm.com/developerWorks/patterns

� Symbian’s corporate Web site

http://www.symbian.com

� Sun’s J2ME Web site

http://java.sun.com/j2me

� Qualcomm’s BREW Web site

http://www.qualcomm.com/brew

� IRDA organization’s Web site

http://www.irda.org

� Bluetooth official Web site

http://www.bluetooth.com

� IEEE official Web site

http://www.ieee.org

� ITU Official Web site

http://www.itu.int

� ETSI official Web site

http://www.etsi.org

� UMTS official Web site

http://www.umts-forum.org
290 Patterns: Pervasive Portals290 Patterns: Pervasive Portals

� 3GPP official Web site

http://www.3gpp2.org

� W3C’s official Web site

http://www.w3c.org

� WAP Forum’s official Web site

http://www.wapforum.org

� Open Mobile Alliance Web site

http://www.openmobilealliance.org

� Tivoli’s Web site

http://www.tivoli.com

� IBM’s Web site

http://www.ibm.com

� Lotus’s Web site

http://www.lotus.com

� TPC’s official Web site

http://www.tpc.org

� SPECweb’s official Web site

http://www.spec.org

� IBM Redbook’s Web site

http://www.redbooks.ibm.com

� Microsoft’s PocketPC Web site

http://www.microsoft.com/mobile/pocketpc

� Microsoft’s Smartphone Web site

http://www.microsoft.com/mobile/smartphone

� PalmOS Web site

http://www.palmsource.com

� Wi-Fi Allieance Web site

http://www.weca.net

� Apache’s XML Web site

http://xml.apache.org
 Related publications 291

� VoiceXML Web site

http://www.voicexml.org

� SyncML official Web site

http://www.syncml.org

How to get IBM Redbooks
You can order hardcopy Redbooks, as well as view, download, or search for
Redbooks at the following Web site:

ibm.com/redbooks

You can also download additional materials (code samples or diskette/CD-ROM
images) from that site.

IBM Redbooks collections
Redbooks are also available on CD-ROMs. Click the CD-ROMs button on the
Redbooks Web site for information about all the CD-ROMs offered, as well as
updates and formats.
292 Patterns: Pervasive Portals292 Patterns: Pervasive Portals

http://www.redbooks.ibm.com/
http://www.ibm.com/redbooks/
http://www.ibm.com/redbooks/

Index

Numerics
80/20 situation 3

A
Abstract Factory pattern 133
access 144
Access Integration pattern 20, 35, 48

Pervasive Device Access 47
services 21

Agent application pattern 34
APPLET tag 82
Application clients 111
Application design

e-business 110
Application development 158
Application guidelines

Self-Service 111
Application Offload 247
Application patterns 5, 12, 27–28, 32, 35

Stand-Alone Single Channel 47
Application server 50

Node 42
As-is Host application pattern 33
ASR See Automatic Speech Recognition
asynchronous 43
Authentication 142

mutual 142
Authentication services 30
Authorization 143
Authorization boundary 143
Automatic Speech Recognition 88
Availability 240

B
Bandwidth 45
Bean Managed Persistence 105
Behavioral patterns 131
Benchmarks

SPECweb 258
TPC-C 258

Benefits 22, 30–31
Best practices 5, 16
© Copyright IBM Corp. 2003. All rights reserved.
Binary Runtime Environment for Wireless 91
Bluetooth 92
BMP See Bean Managed Persistence
BREW 91
Business drivers 27, 29–30
Business patterns 5, 7
Business strategies

Pervasive solution 23

C
Caching 245
Caching and filtering 247
Cascading Style Sheets 78

Validator tools 79
CDC 153
CDMA2000 95
cHTML 86, 99
CLDC 153
Client application

Development 181
Client container 77
Cluster Multi-Processing 249
Clustering 243
CMP See Container Managed Persistence
Collaboration business pattern 35
Collaboration node 43
Command pattern 134
Community 43
Compact HTML 86
Compare development tools 167
Composite patterns 5, 10
Connected Device Configuration 153
Connected Limited Device Configuration 153
Connectivity 50
Container Managed Persistence 105
Content delivery 245
Content Distribution 247
Content management 43
Controller 97
CORBA 106
Creational patterns 131
Credential Service 145
cross-selling 43
 293

CSS See Cascading Style Sheets

D
Data Contingency 220
Database server node 45
DB2 Everyplace Server

Configuration 186
Decomposition application pattern 34
Decorator pattern 133
DEES 165
Defining XML documents 100
Demilitarized Zone 46
Deployment Descriptor

Portlet 172
Design patterns 130
Development

Environment 232
Development tools

Compare 167
Device Management 50
Device Manager 227
Device Manager service 44
Device specific content 121
DHTML 99
Directed Collaboration application pattern 36
Directly Integrated Single Channel application pat-
tern 33, 36
Directory and Security services node 44, 46
Document Object Model 82
Document Type Definition 82
documents 43
DOM 82
Domain firewall 46
Domain Name Server (DNS) node 40
Domino Everyplace Enterprise 164

Mobile Application Designer 164
Domino Everyplace Enterprise Server 165
DTD 82, 100
DTMF 86
Dual-Tone Multi-Frequency 86
Dynamic HTML

DHTML 76, 78

E
e-business application design 110
ECMA-262 80
ECMAScript 80
EJB container 104

EJB modules 105
EJB See Enterprise JavaBeans
EMBED tag 82
Enterprise application 105
Enterprise JavaBeans 103

Bean Managed Persistence
Container Managed Persistence
Entity beans 104
Message-Driven Beans 104
Session beans 104

Entity EJBs 104
Everyplace Client 193

Database synchronization 194
Device Manager 194
Domino applications 194
E-mail and PIMs 194
Everyplace Client 194
Offline Portal pages 194
Sametime Connect 194
Secure HTTP proxy 194

Everyplace Intelligent Notification Services 195
Everyplace Synchronization Server 183, 222
Existing Applications and Data node 45
Extensible Markup Language 99
Extensible Stylesheet Language 82

Transformations 101

F
Facade pattern 134
Factory pattern 132
Fifth Security Layer 203
Firewall node 41
Firewalls 202
First Security Layer 202
Fourth Security Layer 203

G
Gang of Four 131
Gateway node 41
Global Services Method 158
GoF 131
GSMethod 158
Guidelines 5, 16

Transcoding 146

H
HACMP 248
294 Patterns: Pervasive Portals

High Availability 240, 248
High Availability Cluster Multi-Processing 248
High Volume Web Sites Simulator 259
HTML 76, 78

Clients 111
Validator tools 78

HTTP
User-Agent 129

HTTP tunneling 82
HTTP/HTTPS 59

I
I18N 139
Images 43
IMAP 106
i-mode 88
indexed 43
Information Aggregation business pattern 35
Infrared Technology 91
Integration patterns 5, 8
Intelligent Notification Services 224
Interaction Controller 97
Internationalization 139
IrDA 91
IT drivers 28–31

J
J2EE 75, 77, 97
J2ME 90, 151

Development 189
JAAS 106, 144, 217

Authentication 145
Authorization 145
Credential 145
Principal 145

JAF See JavaBeans Activation Framework
Java 2 Platform Micro Edition 90
Java 2 Platform, Enterprise Edition See J2EE
Java applets 80

Disadvantages 81
Java Authentication and Authorization Service 106,
144, 217
Java Midlet 90
Java Naming and Directory Interface 106
Java Runtime Environment 82
Java Transaction API 106
Java Visual Editor 159
JavaBeans 99

JavaBeans Activation Framework 106
JavaMail 106
JavaScript 77, 80
JavaServer Pages 98
JAXP 106
JDBC 60
JNDI See Java Naming and Directory Interface
JRE See Java Runtime Environment
JScript 79–80
JSP 98
JTA See Java Transaction API

L
LDAP 106, 176

Structure 177
LDAP/LDAPS 59
Lightweight Directory Access Protocol 176
Lightweight Third-Party Authentication 215
Limitations 23, 31–32
Load Balancer node 41
Load balancing 244, 247
LTPA 215

M
Macromedia Flash 77
Mandatory Business patterns 36
Mandatory Integration patterns 36
Message-Driven Beans 104
Messaging Gateway 204
Microbrowser 85
Microsoft Pocket PC 89
Microsoft Windows Smartphone 89
Midlet

Development 189
MIME 106
Mobile Application Builder 162
Mobile Devices

Mobile phones 88
PDA 89
Smart phones 88
Wireless laptops 89

Mobile Information Devices
MID 91

Mobile Notes 166
Model 97
Model-View-Controller 121
Multi-modal 87
MVC 121
 Index 295

Controller 127
Models 127
Portlet 126
Views 127

N
naming convention 35
network protocols 59
Node

Application server 42
Collaboration 43
Content Management 43
Database server 45
Directory and Security services 44
Domain Name Server 40
Existing Applications and Data 45
Firewall 41
Gateway 41
Load Balancer 41
Personalization server 43
Pervasive user 40
Public key infrastructure 40
Search and indexing 43
Shared file server 44
User 40
Web application server 42
Web presentation server 42
Web Server Redirector 42

nomenclature 35
Notification 50

SMTP 59
Notification service 44
Notification Services 195

Configuration 196
n-tier model 51

O
Object Request Broker 106
Object-oriented design patterns 130
Optional Business patterns 36
Optional Integration patterns 36

P
Palm OS 88, 90
PAN 91
Patterns for e-business 3

Application patterns 5, 12

Best practices 5, 16
Business patterns 5, 7
Composite patterns 5, 10
Guidelines 5, 16
Integration patterns 5, 8
Product mappings 5, 16
Runtime patterns 5, 13
Web site 6

Performance 241
Personal Area Network 91
Personalization 141

Collaborative filtering 142
Rules-based 142
User profile-based 142

Personalization server node 43
Personalized Delivery application pattern 36
Pervasive

Fat client 162
Thin client 161

Pervasive application clients 112
Pervasive Clients 84
Pervasive Device Access application pattern 36
Pervasive Devices Services node 44
Pervasive Portal

Security 200
System management 231

Pervasive Portlet 127
Pervasive solution

Business strategies 23
Pervasive user node 40
POP3 106
Population-Multi Step application pattern 36
Portal

Portlet 98
Single Sign-On 144

Portal composite pattern 21–22, 27–28
Portal composite pattern variation for Pervasive so-
lutions 52
Portal guidelines 138
Portal Server

Single Sign-On 216
Portal Server Toolkit 161
Portlet 98

ActionEvents 170
Communication 135
Configure Mode 169
Deploy 175
Deployment Descriptor 172
Development 168
296 Patterns: Pervasive Portals

Edit Mode 169
Help Mode 169
JSP 171
MessageEvents 170
MVC 126
Pervasive 127
Session 140
WindowEvents 170

primary business driver 30
Product mappings 5, 16
Production environment 232
Proxy pattern 133
Public Key Infrastructure 40, 102

R
Rational Unified Process 158
RealPlayer 77
Redbooks Web site 292

Contact us xiv
Remote Access enabler 204
Remote Method Invocation 106
Replication 244
requirements 22
resources 43
Reverse proxy 212
RMI See Remote Method Invocation
RMI/IIOP 60, 106
Router application pattern 33
Runtime pattern 5, 13

Old Pervasive Device Access 48
Pervasive Device Access 47, 52
Pervasive Device Access Variation 1 49
Portal Composite 52
Self-Service 45

S
SAML 102
Sample application 112

Application structure 120
Class Diagram 117
Component diagram 114
Deployment 272
Install 273
Prerequisites 272
Sequence Diagram 119
Use case diagram 116

Sample scenario 112
Scalability 242

SCRIPT tag 81
Search and indexing node 43
Second Security Layer 202
Security 43

Boundary components 201
Tivoli products 210

Security Assertion Markup Language 102
Self-Service

Application guidelines 111
Basic Runtime pattern 45
Business pattern 32, 35
Runtime pattern Variation 1 46
Runtime patterns 45

Service Locator pattern 137
Servlets 97
Session EJBs 104
Shared file server node 44
Signed applet 81
Single Sign-On 23, 36, 142, 210

Application pattern 36
Portal Server 216
WebSphere Portal Server 144

Singleton pattern 131
SMTP 59, 106
SSO 210
Staging environment 232
Stand-alone Single Channel application pattern 33
Store and Retrieve application pattern 36
Strategy

Content provider 24
Mobile portal customer 24
Network strategy 24

Structural patterns 131
Struts 137
Swing 80
Symbian OS 90
Synchronization 50
Synchronization Markup Language 87
Synchronization Server 183

Lotus Domino Adapter 184
Microsoft Exchange Adapter 185
Relational Database Adapter 185

Synchronization service 44
synchronous 43
SyncML 87
System management 220

Pervasive Portal 231
Post-implementation activities 221
Pre-implementation activities 220
 Index 297

Tivoli 229

T
TAI 215
Technical scenario

Deployment 272
Text-to-Speech 88
Thin clients 76
Third Security Layer 203
Tivoli

Access control list 211
Authorization Service 211
Policy Server 212
Protected object policy 211
Security products 210
System management 229
Web Portal Manager 212

Total Cost of Ownership 30
Transcoder

Annotation 150
Fragmentation 150
HTML DOM generator 150
HTML to compact HTML 150
HTML to WML 150
Image 150
Text 150

Transcoding
Annotators 149
Guidelines 146
Plug-ins 150
Preference Profiles 147
Stylesheets 149

Transcoding Technology 107, 130
Configuration 178

TTS See Text-to-Speech

U
UMTS 94
User node 40
user profile management 30
User registry 176
User-Agent 129

V
Validator tools

CSS 79
HTML 78

Value Object pattern 136
VBScript 79
View 97
Voice eXtensible Markup Language 86
Voice-enabled applications 88
VoiceXML 86, 99

W
WAP Gateway 204–205
WAP See Wireless Application Protocol
WAR 172
WCDMA 95
Web application server 95
Web application server node 42, 46
Web archive 172
Web browser 77
Web client 76
Web container 97
Web modules 105
Web presentation server node 42
Web server redirector 46
Web Server Redirector node 42
Web Single Sign-On application pattern 30
Web Trust Association Interceptor 215
WebSEAL 212

Server authentication 214
User authentication 213

WebSphere Content Publisher 43
WebSphere Edge Server 208, 246
WebSphere Everyplace Connection Manager 204
WebSphere Studio Application Developer 159
WebSphere Studio Device Developer 163
Wi-Fi Alliance 93
Windows CE 88
Wireless Application Protocol 77, 85, 88

Microbrowser 85
Wireless Gateway 205
Wireless Local Area Network 92
Wireless Markup Language 77, 85, 99
Wireless transport layer security 206
Wireless Wide Area Network 93
WLAN 92
WML clients 112
WML See Wireless Markup Language
WMLScript 85–86
WTLS 206
WWAN 93
298 Patterns: Pervasive Portals

X
X+V 87
XForms 84
XHTML

Extended HTML 83
XHTML + VoiceXML 87
XKMS 102
XML 76, 85, 99

Advantages 102
Disadvantages 103
Encryption 102

XML Key Management Specification 102
XML Schema 82, 100
XML security 101
XML Signature Syntax and Processing 101
XML4J 100
XSL 82
XSL just-in-time 101
XSLT See Extensible Stylesheet Language Trans-
formations
 Index 299

300 Patterns: Pervasive Portals

(0.5” spine)
0.475”<->

0.875”
250 <->

 459 pages

Patterns: Pervasive Portals Patterns for e-business series

®

SG24-6876-00 ISBN 0738427772

INTERNATIONAL
TECHNICAL
SUPPORT
ORGANIZATION

BUILDING TECHNICAL
INFORMATION BASED ON
PRACTICAL EXPERIENCE

IBM Redbooks are developed by
the IBM International Technical
Support Organization. Experts
from IBM, Customers and
Partners from around the world
create timely technical
information based on realistic
scenarios. Specific
recommendations are provided
to help you implement IT
solutions more effectively in
your environment.

For more information:
ibm.com/redbooks

Patterns: Pervasive Portals
Patterns for e-business Series

Using the Access
Integration pattern to
build Pervasive
Portal solutions

Using WebSphere
Everyplace Access
V4.2

Technical scenario
with a sample
application

This IBM Redbook focuses on the Access Integration pattern,
specifically on portals with pervasive access. The book is a
valuable source for IT architects, IT specialists, application
designers, application developers and consultants who wish
to know more about Pervasive Portal solutions. The
application framework for this book includes WebSphere
Portal and WebSphere Everyplace Access.

Part 1, “Patterns for e-business”, introduces the Patterns for
e-business concept, focusing particularly on the Access
Integration pattern.

Part 2, “Guidelines”, provides guidelines for Pervasive Portal
applications, including application design and development,
and some of the non-functional requirements for such
applications, including security, system management and
performance.

In Part 3, “Implementation“, you will find details on how to set
up and configure a system for the sample application
introduced in this book.

Back cover

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

	Front cover
	Contents
	Notices
	Trademarks

	Preface
	The team that wrote this redbook
	Become a published author
	Comments welcome

	Part 1 Patterns for e-business
	Chapter 1. Introduction
	1.1 The Patterns for e-business layered asset model
	1.2 How to use the Patterns for e-business
	1.2.1 Selecting a Business, Integration, or Composite pattern, or a Custom design
	1.2.2 Selecting Application patterns
	1.2.3 Review Runtime patterns
	1.2.4 Review Product mappings
	1.2.5 Review guidelines and related links

	1.3 Summary

	Chapter 2. The Access Integration pattern
	2.1 Access integration patterns
	2.1.1 Access Integration services

	2.2 The Portal composite pattern
	2.2.1 Benefits
	2.2.2 Limitations

	2.3 Pervasive solution business strategies
	2.4 Summary

	Chapter 3. Selecting the Application patterns
	3.1 Application patterns described
	3.1.1 Access Integration application patterns
	3.1.2 Self-Service application patterns
	3.1.3 Identified Application patterns for the Portal composite pattern

	3.2 Where to find more information

	Chapter 4. Selecting the Runtime patterns
	4.1 Runtime pattern nodes description
	4.2 Runtime pattern for the Self-Service application
	4.2.1 Basic Runtime pattern
	4.2.2 Runtime pattern: Variation 1

	4.3 Runtime pattern for the Pervasive Device Access application
	4.3.1 Access Integration pattern

	4.4 Portal composite pattern variation for Pervasive solutions

	Chapter 5. Selecting the product mapping
	5.1 Product mappings
	5.1.1 Pervasive Portal solution framework
	5.1.2 Product mapping for Pervasive solutions

	5.2 Products
	5.3 Considerations
	5.4 Where to find more information

	Part 2 Pervasive Portal solution guidelines
	Chapter 6. Technology options
	6.1 Web client
	6.1.1 Web browser
	6.1.2 HTML
	6.1.3 Dynamic HTML
	6.1.4 CSS
	6.1.5 JavaScript
	6.1.6 Java applets
	6.1.7 XML (client side)
	6.1.8 XHTML 1.1 (HTML 4.01)
	6.1.9 XForms

	6.2 Pervasive clients
	6.2.1 Architecture
	6.2.2 WAP
	6.2.3 Microbrowser
	6.2.4 WML
	6.2.5 WMLScript
	6.2.6 cHTML
	6.2.7 VoiceXML
	6.2.8 SyncML
	6.2.9 Mobile devices
	6.2.10 Mobile client platforms

	6.3 Wireless networks
	6.3.1 PAN (Personal Area Network)
	6.3.2 WLAN (Wireless Local Area Network)
	6.3.3 WWAN (Wireless Wide Area Network)

	6.4 Web application server
	6.4.1 Java servlets
	6.4.2 Java portlet
	6.4.3 JavaServer Pages (JSPs)
	6.4.4 JavaBeans
	6.4.5 XML
	6.4.6 Enterprise JavaBeans
	6.4.7 Additional enterprise Java APIs

	6.5 Transcoding technology

	Chapter 7. Application design
	7.1 e-business application design
	7.2 Self-Service application guidelines
	7.3 Sample scenario
	7.3.1 Business flow
	7.3.2 Component diagram
	7.3.3 Use case diagram
	7.3.4 Class diagram
	7.3.5 Sequence diagram

	7.4 Application structure
	7.4.1 Device-specific content
	7.4.2 Model View Controller (MVC)
	7.4.3 Object-oriented Design patterns
	7.4.4 Applying the Design patterns

	7.5 WebSphere Portal Solution guidelines
	7.5.1 Internationalization
	7.5.2 Session
	7.5.3 Personalization
	7.5.4 Single sign-on

	7.6 Designing the mobile applications
	7.6.1 Transcoding guidelines

	7.7 Embedded mobile client applications
	7.7.1 J2ME
	7.7.2 What has changed in J2ME for J2SE programmers

	Chapter 8. Application development
	8.1 Application development methodology
	8.2 Pervasive solutions tools
	8.2.1 WebSphere Studio Application Developer
	8.2.2 Portal Server Toolkit
	8.2.3 Development for pervasive devices

	8.3 Portlet development
	8.3.1 Developing a portlet
	8.3.2 User registry
	8.3.3 Using Transcoding Technology

	8.4 Building a client application
	8.5 Everyplace Synchronization Server
	8.5.1 Using DB2 Everyplace
	8.5.2 Configuring the DB2 Everyplace Server

	8.6 Developing Java Application for J2ME
	8.6.1 Developing a Midlet

	8.7 Testing your pervasive application
	8.8 Everyplace Client
	8.9 Notification Services
	8.9.1 Configuring Notification Services

	Chapter 9. Security
	9.1 Security for a Pervasive Portal solution
	9.1.1 Boundary components

	9.2 WebSphere Everyplace Connection Manager
	9.3 WebSphere Edge Server
	9.4 WebSphere Everyplace Access and its components
	9.5 Tivoli products for security
	9.5.1 Tivoli Access Manager and Single Sign-On

	9.6 Where to find more information

	Chapter 10. System management
	10.1 System management activities
	10.2 WebSphere Everyplace Access management
	10.2.1 Everyplace Synchronization Server
	10.2.2 Intelligent Notification Services
	10.2.3 Device Manager

	10.3 System Management and monitoring using Tivoli products
	10.3.1 Integrating System Management in the Pervasive Portal solution

	10.4 Production, Staging and Development environment
	10.5 Where to find more information

	Chapter 11. Performance and availability
	11.1 Concepts
	11.2 Techniques
	11.3 Products
	11.4 Applying to a Pervasive Portal solution
	11.5 Where to find more information

	Part 3 Implementation
	Chapter 12. Technical scenario
	12.1 Deploying the sample application
	12.1.1 Prerequisites for the application
	12.1.2 Database configuration
	12.1.3 Installing the EJB components
	12.1.4 Installing and configuring the portlets
	12.1.5 Application users
	12.1.6 Mobile client application and database synchronization

	Part 4 Appendixes
	Appendix A. Additional material
	Locating the Web material
	Using the Web material
	System requirements for downloading the Web material
	How to use the Web material

	Abbreviations and acronyms
	Related publications
	IBM Redbooks
	Referenced Web sites
	How to get IBM Redbooks
	IBM Redbooks collections

	Index
	Back cover

