

ibm.com/redbooks

Mobile Commerce
Solutions Guide
using WebSphere Commerce Suite V5.1

John Ganci
David Barker

Masaaki Ishibashi
Peter Kovari

Rodrigo Magalhaes
Giuseppe Plagenza

Masaaki Saitoh

IBM m-commerce architecture and
functionality

Design and development
guidelines for m-commerce

Sample code for WAP WML,
HDML, Palm, and WTP

Front cover
Acrobat bookmark

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

Mobile Commerce Solutions Guide using
WebSphere Commerce Suite V5.1

July 2001

International Technical Support Organization

SG24-6171-00

© Copyright International Business Machines Corporation 2001. All rights reserved.
Note to U.S Government Users – Documentation related to restricted rights – Use, duplication or disclosure is subject to
restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

First Edition (July 2001)

This edition applies to WebSphere Commerce Suite V5.1 Pro Edition for Windows NT and
Windows 2000, and WebSphere Commerce Studio V5.1, Professional Developer’s Edition for
Windows NT and Windows 2000.

Comments may be addressed to:
IBM Corporation, International Technical Support Organization
Dept. HZ8 Building 662
P.O. Box 12195
Research Triangle Park, NC 27709-2195

When you send information to IBM, you grant IBM a non-exclusive right to use or distribute the
information in any way it believes appropriate without incurring any obligation to you.

Take Note! Before using this information and the product it supports, be sure to read the
general information in “Special notices” on page 375.

Contents

Preface . xi
The team that wrote this redbook. xii
Special notice . xiv
IBM trademarks . xiv
Comments welcome. xv

Part 1. Introduction to mobile commerce . 1

Chapter 1. Introduction . 3
1.1 Mobile commerce overview . 5

1.1.1 m-commerce defined . 5
1.1.2 Key objectives of m-commerce . 5
1.1.3 Mobile devices . 6
1.1.4 Challenges . 7

1.2 m-commerce opportunities and market drivers 7
1.2.1 m-commerce opportunities . 7
1.2.2 Mobile market penetration. 8
1.2.3 Technology . 12
1.2.4 New business models . 12
1.2.5 Customer needs . 14

1.3 IBM m-commerce . 14
1.3.1 m-commerce using WebSphere Commerce Suite V5.1 15

1.4 Structure of this redbook . 16

Chapter 2. Wireless technologies . 19
2.1 Wireless networks . 20

2.1.1 Mobile communications network history . 20
2.1.2 GSM . 24
2.1.3 GPRS . 32
2.1.4 Mobitex . 36
2.1.5 CDPD . 38
2.1.6 PDC. 39
2.1.7 IMT-2000. 39
2.1.8 Wireless LANS . 40

2.2 Wireless protocols . 41
2.2.1 HTTP protocol . 41
2.2.2 WAP . 42
2.2.3 i-mode . 46
2.2.4 Web Clipping. 52
© Copyright IBM Corp. 2001 iii

2.2.5 Short Message Service (SMS) . 54
2.3 Mobile devices . 57

2.3.1 Mobile phones. 57
2.3.2 Wireless PDAs . 58
2.3.3 Wireless laptops . 62
2.3.4 Mobile device pros and cons. 62

2.4 Content and markup languages . 64
2.5 Wireless service providers . 67
2.6 Next-generation technologies . 67

Chapter 3. m-commerce development methodology 71
3.1 Understanding WCS V5.1. 72

3.1.1 WCS V5.1 systems architecture and programming model 72
3.1.2 Session management . 72

3.2 Market study of the customer environment . 74
3.3 Existing or new site . 75
3.4 Customer requirements . 75
3.5 m-commerce implementation approaches . 76

3.5.1 m-commerce direct . 76
3.5.2 m-commerce using WTP - application runtime topology. 77
3.5.3 Guidelines for selecting the implementation approach 78

3.6 Application design considerations . 81
3.7 Application development . 81
3.8 Testing the m-commerce application . 83

Chapter 4. m-commerce features and functionality in WCS V5.1 85
4.1 WCS V5.1 m-commerce enablement overview 86
4.2 WCS V5.1 m-commerce enablement features 87

4.2.1 PvC adapter framework . 87
4.2.2 PvC commands. 90
4.2.3 PvC data beans. 91

4.3 Session control. 92
4.3.1 Unique identifier . 92
4.3.2 PvC adapter . 92

4.4 Device control . 94
4.4.1 Differences between mobile devices. 94
4.4.2 WCS V5.1 functionality for device differences 96

4.5 Security . 97
4.5.1 Logon timeout . 97
4.5.2 Restricted command execution . 98
4.5.3 User registration mode . 99

4.6 URL buffering . 101
4.6.1 PVCBufferUrl command b_new mode . 102
iv Mobile Commerce Solutions Guide using WebSphere Commerce Suite V5.1

4.6.2 PVCBufferUrl command b_update mode . 103
4.6.3 PVCBufferUrl command b_exec mode . 104

Chapter 5. IBM wireless middleware . 107
5.1 IBM WebSphere Everyplace Suite (WES) . 108

5.1.1 WES overview . 108
5.1.2 Considerations for m-commerce . 112
5.1.3 Where to find more information . 115

5.2 IBM WebSphere Transcoding Publisher (WTP) 115
5.2.1 WTP overview . 116
5.2.2 Considerations for m-commerce . 122
5.2.3 Where to find more information . 123

5.3 IBM Everyplace Wireless Gateway (EWG) . 123
5.3.1 EWG overview . 124
5.3.2 Considerations for m-commerce . 125
5.3.3 Where to find more information . 125

5.4 IBM MQSeries Everyplace (MQe) . 125
5.5 IBM DB2 Everyplace . 126
5.6 IBM Mobile Connect . 127

Chapter 6. m-commerce payment solutions . 129
6.1 Payment technologies overview . 130

6.1.1 Payment solutions for PC browser clients. 130
6.1.2 Payment solutions for mobile devices. 131

6.2 IBM WebSphere Payment Manager . 136
6.2.1 WebSphere Payment Manager overview . 136
6.2.2 Supported payment methods . 137

Part 2. Setting up your m-commerce environment . 139

Chapter 7. m-commerce runtime environment . 141
7.1 WCS V5.1 runtime environment installation 142

7.1.1 ITSO test runtime environment . 142
7.1.2 WCS V5.1 high-level installation steps . 144

7.2 WTP V3.5 MIME filter installation . 146
7.3 Configuring WTP V3.5 as a MIME filter . 149
7.4 WCS V5.1 messaging configuration . 155

7.4.1 Configure the WCS V5.1 messaging services 155
7.4.2 Define the message content . 156

7.5 Where to find more information . 157

Chapter 8. m-commerce development environment 159
8.1 Development environment . 160

8.1.1 ITSO development environment . 161
 Contents v

8.1.2 Development environment high-level installation steps 162
8.2 WebSphere Transcoding Toolkit. 163

8.2.1 Transform Tool . 163
8.2.2 Request Viewer . 164
8.2.3 Profile Builder . 165
8.2.4 Snoop MEGlet. 166

8.3 Test environments and tools . 167
8.3.1 Toolkits and simulators . 167
8.3.2 Real wireless hardware - intranet testing . 170
8.3.3 Real wireless hardware - Internet testing . 171
8.3.4 Everyplace Wireless Gateway installation 172

8.4 Where to find more information . 177

Chapter 9. m-commerce sample store and sample code 179
9.1 Download sample store and sample code . 180
9.2 Sample store overview . 181

9.2.1 PvC Fashion sample store . 182
9.2.2 Web Fashion sample store . 183

9.3 Deploy sample store to WCS runtime . 183
9.3.1 Create a store template. 184
9.3.2 Create a store from a template . 186
9.3.3 Publish the PvC Fashion sample store from Store Services. 187
9.3.4 Create an alias for the store . 188
9.3.5 Deploy PvC adapter and data beans . 189
9.3.6 Configure content management . 192
9.3.7 Verify PvC Fashion sample store . 193

9.4 Prepare the development environment . 195

Part 3. m-commerce direct implementation . 197

Chapter 10. m-commerce direct design and development process 199
10.1 m-commerce direct application design guidelines 200
10.2 m-commerce direct development process 203

Chapter 11. Creating and deploying a PvC adapter 205
11.1 Creating a PvC adapter . 206

11.1.1 Create a project in VisualAge for Java (VAJ) 207
11.1.2 Create a package in VAJ . 207
11.1.3 Identify the device type . 208
11.1.4 Create an adapter class . 210
11.1.5 The checkDeviceFormat method . 213
11.1.6 The getDeviceModel method . 216
11.1.7 The getTerminalId method . 217

11.2 Deploying a PvC adapter . 218
vi Mobile Commerce Solutions Guide using WebSphere Commerce Suite V5.1

11.2.1 Exporting the PvC adapter from VAJ to a JAR file 219
11.2.2 Deploying the PvC adapter JAR to the WCS server 219
11.2.3 Adding a PvC adapter definition to the WCS instance XML file . . 220

11.3 Deploying multiple PvC adapters . 222
11.3.1 PvC adapter definition . 222
11.3.2 Content management configuration . 223

Chapter 12. Create, deploy and manage content 225
12.1 Content management configuration . 226

12.1.1 Content management . 226
12.1.2 Content management configuration . 231

12.2 Create device-specific content JSPs . 232
12.2.1 PvC data beans. 232
12.2.2 Content development . 233
12.2.3 Content examples of PvC features . 234

12.3 Deploy content . 238
12.4 Advanced content and configuration example. 238

12.4.1 Auto selection of content . 238
12.4.2 Reflection of terminal specification to JSP view 240
12.4.3 Content managed by adapter . 242
12.4.4 Content managed by model . 242

Chapter 13. Creating custom PvC commands . 255
13.1 WCS V5.1 PvC command overview . 256

13.1.1 PvC command summary. 256
13.1.2 Scenarios for using the PvC commands . 257

13.2 Create and deploy a custom PvC command 258
13.2.1 Create a custom PvC command . 259
13.2.2 Deploy the custom PvC command . 262

Chapter 14. HDML implementation sample . 265
14.1 HDML toolkits and test clients . 266

14.1.1 UP.SDK V3.2 for HDML . 266
14.1.2 Mobile device hardware . 269

14.2 Sample code for HDML . 269
14.3 m-commerce direct development for HDML 270

Chapter 15. WAP implementation sample. 271
15.1 WAP toolkits and test clients . 272

15.1.1 Nokia WAP Toolkit V2.1 and simulator . 272
15.1.2 UP.SDK for WAP . 273
15.1.3 WAP mobile device hardware . 273

15.2 Sample code for WAP . 274
15.3 m-commerce direct development for WAP 275
 Contents vii

Chapter 16. Palm implementation sample . 279
16.1 Palm HTML browser implementation . 280

16.1.1 Design guidelines . 280
16.1.2 Development guidelines . 282
16.1.3 Palm development tools . 283
16.1.4 Sample code . 284

16.2 Palm Web Clipping implementation . 284
16.2.1 Design guidelines . 284
16.2.2 Development guidelines . 286
16.2.3 Testing . 287
16.2.4 Problems . 287
16.2.5 Example . 288
16.2.6 Conclusion . 288

16.3 Where to find more information . 289

Chapter 17. i-mode implementation guidelines . 291

Part 4. m-commerce using WTP implementation . 293

Chapter 18. m-commerce using WTP implementation and design 295
18.1 Implementation considerations . 296

18.1.1 WTP overview . 296
18.1.2 Architecture for WCS-WTP integration . 300

18.2 Application design guidelines using WTP . 302
18.2.1 Introduction . 302
18.2.2 Supported features . 302
18.2.3 Usability. 303
18.2.4 Trade-off . 304

Chapter 19. m-commerce using WTP application development 305
19.1 Introduction . 306
19.2 Sample code for WTP . 306
19.3 HTML versus XML . 307

19.3.1 HTML content using WTP . 307
19.3.2 XML content using WTP . 309

19.4 Selecting the right JSPs . 315
19.5 Creating a generic PvC adapter . 316

19.5.1 PvC adapter overview . 316
19.5.2 Creating the PvC adapter . 319
19.5.3 Deploying the PvC adapter . 322
19.5.4 Content management . 323

19.6 Creating the content JSPs . 324
19.7 WCS caching with WTP . 325
viii Mobile Commerce Solutions Guide using WebSphere Commerce Suite V5.1

Part 5. Appendixes . 327

Appendix A. PvC adapter framework reference . 329
PvCAdapterImpl class and methods . 330
PvC adapter definition for the WCS instance XML file 330

HTTP adapter attribute . 332
PvC adapter attribute . 333
IP adapter attribute . 333
Excluded command. 334
Protected command . 334
Sample usage for PvC adapter definition for WCS instance XML file. . . . 334

Appendix B. PvC command reference . 339
PVCRegistration . 340
PVCRegistrationDevice . 344
PVCChangeDevice . 347
PVCBufferUrl . 351
ReEnterPassword . 353

Appendix C. PvC data bean reference . 355
PVCBufferDataBean . 356
UserPVCDeviceDataBean . 356

Appendix D. PvC database tables and content management reference 359
PVCDEVMDL . 360
PVCMDLSPEC. 361
PVCDEVSPEC. 363
PVCBinding . 364
PVCSession . 364
PVCBuffer . 364
Content management reference. 364

PVCDEVMLD table: define adapter default model 364
PVCDEVSPEC table: define minimum spec and JSP root 365
PVCMDLSPEC table: PVCDEVMDL and PVCDEVSPEC relationship . . 366

Appendix E. Additional material . 369
Locating the Web material . 369
Using the Web material . 369

System requirements for downloading the Web material 370
How to use the Web material . 370

Related publications . 371
IBM Redbooks . 371

Other resources . 371
 Contents ix

Referenced Web sites . 372
How to get IBM Redbooks . 373

IBM Redbooks collections. 373

Special notices . 375

Glossary . 377

Index . 383
x Mobile Commerce Solutions Guide using WebSphere Commerce Suite V5.1

Preface

This redbook provides developers and architects with the knowledge to develop
and deploy m-commerce Web sites using WebSphere Commerce Suite V5.1.

Part 1, “Introduction to mobile commerce”, describes the concepts related to
m-commerce, such as wireless technologies, development methodology for
building m-commerce Web sites, and features in WebSphere Commerce Suite
V5.1 for m-commerce. Also, we have included integration considerations
regarding IBM wireless middleware and payment.

Part 2, “Setting up your m-commerce environment”, provides detailed
instructions for setting up your runtime, development, and test environments. We
provide a sample store and code to demonstrate IBM m-commerce functionality.

Part 3, “m-commerce direct implementation”, provides development guidelines
for mobile devices directly accessing device-specific content JSPs. Samples and
guidelines are included for WAP WML, HDML, Palm, and i-mode.

Part 4, “m-commerce using WTP implementation”, provides design and
development guidelines for mobile devices using WTP to access WebSphere
Commerce Suite HTML and XML content JSPs.
© Copyright IBM Corp. 2001 xi

The team that wrote this redbook
This redbook was produced by a team of specialists from around the world at the
IBM International Technical Support Organization, Raleigh Center.

Figure 0-1 The IBM Redbook team (1st row: John Ganci, Giuseppe Plagenza, Masaaki
Ishibashi; 2nd row: Masaaki Saitoh, Peter Kovari, Rodrigo Magalhães, David Barker)

John Ganci is a Senior Software Engineer, WebSphere Specialist at the IBM
ITSO Raleigh Center. He writes extensively and teaches IBM classes worldwide
about all areas of WebSphere. John has 14 years of experience in product and
application design, development, system testing, and consulting. His areas of
expertise include e-commerce, personalization, pervasive computing, and Java
programming. Before joining the ITSO, he developed e-commerce sites for IBM.

David Barker is an I/T Specialist in the IBM Software Group based in Hursley,
U.K. He has two years of experience in the field of pervasive computing and
three years of experience in Java programming. He holds a degree in Computer
Science from Portsmouth University, U.K. His areas of expertise include
pervasive computing, Java programming and XML.
xii Mobile Commerce Solutions Guide using WebSphere Commerce Suite V5.1

Masaaki Ishibashi is a Software Developer at the Integrated System Evaluation
Laboratory (ISEL), IBM Yamato Lab, in Japan. He has four years of experience in
the e-commerce development field. He holds a Master’s degree in Information
Science from the Science University of Tokyo, Japan. He has written extensively
about m-commerce application design and development; including i-mode and
HDML. His areas of expertise include e-commerce software architecture and
development, pervasive computing, and Java server programming.

Peter Kovari is a WebSphere Specialist at the IBM ITSO Raleigh Center. He
writes extensively about all areas of WebSphere. His areas of expertise include
e-business, e-commerce, and mobile computing. Before joining the ITSO, he
worked as an I/T Specialist for IBM in Hungary.

Rodrigo Magalhães is a Consulting I/T Architect with the IBM e-business
Competence Center in Rio de Janeiro, Brazil. He has seven years of experience
in software development and consulting in the private sector, and has been
designing and building Internet and intranet sites for five years. His areas of
expertise include WebSphere Commerce Suite, pervasive computing, and Java
server programming.

Giuseppe Plagenza is an Advisory I/T Specialist in IBM Global Services,
Business Innovation Services, e-business Integration in Milan, Italy. He has
several years of experience in the field of value-added services for mobile
telecommunications networks. He holds a degree in Computer Science from the
University of Pisa, Italy. His areas of expertise include SIM Application Toolkit,
pervasive computing, wireless security and mobile commerce solutions.

Masaaki Saitoh is an Advisory Development Engineer in the Integrated System
Evaluation Laboratory (ISEL), IBM Yamato Lab, Japan. He holds a degree in
Fluid Dynamics from Waseda University, Tokyo. He has 13 years of experience
in AIX system management and application development as an I/T Specialist in
the Industrial Sector in Japan. He has written extensively about WebSphere
Commerce Suite and i-mode.

Thanks to the following people for their contributions to this project:

Margaret Ticknor, IBM ITSO Raleigh Center, USA

Juan Rodriguez, IBM ITSO Raleigh Center, USA

Ivan Heninger, IBM Raleigh, USA

George Hall, IBM Raleigh, USA

Joanna Ng, IBM Toronto Lab, Canada

Mark Linehan, IBM Hawthorne, USA
 Preface xiii

Michal Jordan-Rozwadowski, IBM Toronto, Canada

Kazuhiro Yabuta, IBM Yamato Lab, Japan

Jakka Sairamesh, IBM Hawthorne, USA

Chung-Sheng Li, IBM Hawthorne, USA

Special notice
This publication is intended to help developers, I/T architects, I/T specialists, and
consultants design, develop, test, and deploy m-commerce solutions. The
information in this publication is not intended as the specification of any
programming interfaces that are provided by WebSphere Commerce Suite V5.1
Pro Edition for Windows NT and Windows 2000, or WebSphere Commerce
Studio V5.1, Professional Developer’s Edition for Windows NT and Windows
2000. See the PUBLICATIONS section of the IBM Programming Announcement
for WebSphere Commerce Suite V5.1 Pro Edition for Windows NT and Windows
2000, and WebSphere Commerce Studio V5.1, Professional Developer’s Edition
for Windows NT and Windows 2000 for more information about what publications
are considered to be product documentation.

IBM trademarks
The following terms are trademarks of the International Business Machines
Corporation in the United States and/or other countries:

e (logo)®
IBM ®
AIX
AS/400
DB2
DB2 Universal Database
Mobile Connect
MQSeries
Netfinity
OS/2
OS/390
PAL
PC 300

Redbooks
Redbooks Logo
RS/6000
S/390
SecureWay
SP
SP1
ThinkPad
VisualAge
Wave
WebSphere
WorkPad
xiv Mobile Commerce Solutions Guide using WebSphere Commerce Suite V5.1

Comments welcome
Your comments are important to us!

We want our Redbooks to be as helpful as possible. Please send us your
comments about this or other Redbooks in one of the following ways:

� Use the online Contact us review redbook form found at:

ibm.com/redbooks

� Send your comments in an Internet note to:

redbook@us.ibm.com

� Mail your comments to the address on page ii
 Preface xv

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/contacts.html

xvi Mobile Commerce Solutions Guide using WebSphere Commerce Suite V5.1

Part 1 Introduction to
mobile
commerce

Part 1
© Copyright IBM Corp. 2001 1

2 Mobile Commerce Solutions Guide using WebSphere Commerce Suite V5.1

Chapter 1. Introduction

In recent times, there has been a dramatic increase in the use of powerful mobile
devices. These mobile devices, ranging from pagers to mobile phones, wireless
PDAs, and wireless laptops, are changing the way people interact at work and at
home. The sophistication of the mobile devices and wireless technologies has
advanced to the stage of mass-market usage and acceptance. Just as we saw a
surge in e-commerce by PC browser clients, we are now experiencing a similar
phenomenon in mobile commerce by users of these more advanced mobile
devices.

The combination of wireless technologies and the powerful Java-based
application architecture provided by WebSphere Commerce Suite V5.1 promises
to transform e-business. IBM is leading the way in the mobile computing arena in
bringing together the technologies of the wireless world and the strength and
integration of the IBM server and software family of products, to create
end-to-end mobile commerce solutions.

Mobile computing, also known as pervasive computing, provides a series of
technologies that enable people to accomplish personal and professional tasks
using this new class of portable, intelligent, wireless mobile devices. These
mobile devices give people access to information at any time and place. Some
areas of the world are further invested in wireless technologies than others.
However, the capability and number of users in all areas of the world are growing
at a tremendous rate.

1

© Copyright IBM Corp. 2001 3

Wherever you live, mobile computing will in the very near future become a
prominent means of accessing information on the Internet. Just as the PC
browser client market matured from accessing the Internet simply for browsing
and gathering information to full-blown e-business and e-commerce, the same is
happening for mobile devices.

As a leader in e-business and e-commerce, IBM has recognized that mobile
computing offers tremendous business opportunities, and has integrated mobile
device support into its products and has developed a series of middleware
products designed as infrastructure for mobile computing.
4 Mobile Commerce Solutions Guide using WebSphere Commerce Suite V5.1

1.1 Mobile commerce overview
Before we start describing the features of WebSphere Commerce Suite V5.1 that
provide mobile commerce support, it is important to understand some general
concepts about m-commerce.

1.1.1 m-commerce defined
For the purposes of this redbook, the term m-commerce, or mobile commerce,
refers to the use of mobile devices to partially or completely perform a
transaction electronically from a commerce Web site for the exchange of goods
or services for monetary consideration. Simply put, m-commerce is electronic
commerce using a mobile device such as a mobile phone or PDA. This includes
the following types of stores: Business-to-Consumer (B2C),
Business-to-Business (B2B), and auctions.

The key distinction between m-commerce and e-commerce is the use of a mobile
or wireless devices to access the commerce Web site, instead of using a wireline
PC browser client.

We refer to mobile commerce throughout this redbook as m-commerce. The
terms “mobile commerce”, “m-commerce”, and “wireless electronic commerce”
are interchangeable.

1.1.2 Key objectives of m-commerce
We have listed the key objectives of the m-commerce initiative:

1. Enable WebSphere Commerce Suite V5.1 to support a wide range of mobile
devices for m-commerce.

2. Provide an end-to-end solution for the mobile commerce customers by
supplying wireless middleware products that integrate industry-standard
wireless protocols with IBM servers and software products.

3. Create a flexible m-commerce product enablement architecture and
infrastructure to keep pace with the fast-moving wireless technologies and
standards.
 Chapter 1. Introduction 5

1.1.3 Mobile devices
A mobile device, in the context of this redbook, is a portable, generally small
wireless device that can be used to access the Internet via a browser. All mobile
devices are not created equal. There is a wide range of capabilities and
functionality. In addition, the capability between the mobile device categories
continues to be blurred. For example, some phone manufacturers are developing
PDA-like functionality into mobile phones and providing larger screens and
easier methods of input.

We have categorized the mobile devices as follows:

� Mobile phones

� Wireless PDAs

� Wireless laptops

Mobile phones
When we refer to a mobile phone in this redbook, we are talking about mobile or
wireless phones that have a microbrowser to access Internet content. Other
names for a mobile phone include “cell phone”, and “wireless phone”. A standard
mobile phone includes the following capabilities:

� Voice

� Messaging (SMS or WAP push)

� Data (access to Internet content via a microbrowser)

For the purposes of this book, we have excluded analog cell or mobile phones
that only provide voice capability. There are two major protocols that are used by
mobile phones capable of Internet browsing: WAP and i-mode.

Wireless PDAs
A Personal Digital Assistant (PDA) is a handheld computer with a wireless
interface that serves as an organizer for personal information. PDAs often have a
pen-like stylus to tap selections on menus and to enter printed characters. The
unit may also include a small on-screen keyboard that is tapped with the pen.
Data is often synchronized between the PDA and desktop computer via cable or
wireless transmission.

We are interested in PDAs that have wireless transmission capability and include
a Web browser. Some examples of PDAs are the Palm VIIx, Epoc, and Pocket
PC.
6 Mobile Commerce Solutions Guide using WebSphere Commerce Suite V5.1

Wireless laptops
This category includes laptops, notebooks, or portable PC browser clients that
have a wireless interface to the network for Internet access. These clients use
standard TCP/IP protocols and a standard browser, such as Netscape Navigator
or Microsoft Internet Explorer. The wireless connection is usually much slower
than for wireline-based network clients. An example of a wireless notebook is the
IBM ThinkPad T20 with a wireless PC card adapter.

1.1.4 Challenges
We are now in a period where the mobile technology offers capabilities that make
it useful and attractive for business and consumers to invest in mobile commerce.
As the functionality of the mobile devices continues to improve, the challenge will
be for the technology infrastructure providers and application developers to keep
pace with the new devices, networks, protocols and standards.

1.2 m-commerce opportunities and market drivers
In this section, we will examine the business opportunities and key market drivers
for the existing and future growth of the mobile and m-commerce market:

� m-commerce opportunities

� Mobile market penetration

� Technology advances

� New business models

� Customer needs

1.2.1 m-commerce opportunities
The mobile Internet application market is exploding with real revenue
opportunities. By 2003, data enabled mobile phones will overtake the number of
PCs in use. IBM anticipates that the m-commerce market will reach $100 billion
in 2003. Figure 1-1 displays some staggering estimates of the number of mobile
devices in use now and in the future, as well as the projected I/T revenues.
 Chapter 1. Introduction 7

Figure 1-1 m-commerce opportunities

1.2.2 Mobile market penetration
The mobile communications market has reached the mass market in certain
areas and is growing rapidly in others. We have selected three areas that
demonstrate the penetration in the worldwide market:

� Mobile computing in Japan

� Mobile computing in Europe

� Mobile computing in the United States

Mobile computing in Japan
There are two primary types of mobile devices used in Japan: the mobile phone
and the Personal HandyPhone System (PHS). The PHS is a kind of cell phone
with limited functionality compared to the mobile phone, and is not considered for
the purposes of this redbook.

Carriers
There are three major carriers for wireless connectivity of mobile phones in
Japan:

� NTT DoCoMo

� KDDI

� J-PHONE

Mobile Devices IT Revenue

T
ho

us
an

ds

1998 2001 20030

100

200

300

400

500

600

1998 2001 20030

10

20

30

40

50

60

B
ill

io
ns
8 Mobile Commerce Solutions Guide using WebSphere Commerce Suite V5.1

Each carrier providing service for mobile phones has provided Internet
connectivity service for their own mobile phone users since 1999. As of February
2001, the number of mobile phone Internet users has reached 30 million.
Considering that the Japanese population is approximately 120 million, almost
one in four people can connect to the Internet by mobile phone. Table 1-1
provides a summary of the number of Internet users by carrier and service in
Japan.

Table 1-1 Number of mobile Internet users by carrier in Japan

The number of mobile Internet users has increased rapidly in Japan as seen in
Figure 1-2 on page 10.

Service Name i-mode EZweb J-SKY Total

Carrier Name NTT
DoCoMo

KDDI J-PHONE

Number of mobile phone
users (1)

35,115,000 1,462,000 9,726,000 59,456,000

Number of mobile phone
internet users (1)

19,777,000 6,114,000 5,521,000 31,411,000

Number of
Web sites for
mobile phone

Official 1,600 (2) 680 (3) 550 (4) N/A

Voluntary 38,000 N/A N/A N/A

Note: Figures obtained February 2001 from the following sources:

(1) http://www.tca.or.jp/index-e.html (current figures)
(2) http://www.nttdocomo.co.jp/i/
(3) http://www.au.kddi.com/ezweb/contents/index.html
(4) http://www.j-sky.j-phone.com/
 Chapter 1. Introduction 9

Figure 1-2 Mobile Internet user growth in Japan

The content providers are starting to support mobile phones as well as PC
browsers for nearly all content on Web sites. For example, content supported for
mobile devices includes news, weather forecast, banking, credit cards, stock
trading, transportation, airline reservations, hotel reservations, map services,
online tickets for trains or concerts, books, music CDs, videos, games, used cars,
real estates, fashion, health, pets, restaurants, sports, entertainment, lottery, TV
timetable, job search, government services, portal sites, e-mail services, and so
on.

Mobile computing in Europe
In the European mobile market, WAP is the dominant protocol used for mobile
phones. Figure 1-3 provides a good summary of the current number of
mobile-phone users in Europe by country, as well as the expected growth
through 2003.

Note: The dominant wireless service provider in Japan is NTT DoCoMo,
which uses i-mode. For more information on i-mode, refer to 2.2.3, “i-mode” on
page 46.

99
/2 3 4 5 6 7 8 9 10 11 12 00

/1 2 3 4 5 6 7 8 9 10 11 12
01

/0
1 02

0

5,000,000

10,000,000

15,000,000

20,000,000

(number of users)

0

5,000

10,000

15,000

20,000

25,000

30,000

35,000

40,000

(number of i-mode site)

i-mode internet user
EZweb internet user
J-SKY internet user
i-mode web site
10 Mobile Commerce Solutions Guide using WebSphere Commerce Suite V5.1

Figure 1-3 Mobile penetration in Europe

Mobile computing in the US
In the US market, there is no one dominant technology used for mobile devices.
The Palm VII wireless PDA has been successful by providing a Web-clipping
solution to access existing HTML-based sites. The Pocket PC PDA, which uses
the Microsoft Windows CE operating system, is gaining momentum. The new
Microsoft initiative code named “Stinger” offers promising capability at the
browser level by providing markup language support for HTML, WML (WAP), and
cHTML (i-mode).

Technology providers from Japan and Europe are attempting to get a foothold in
the US market by signing agreements with US service providers. For example,
NTT DoCoMo, based in Japan, has recently signed an agreement with AT&T to
provide i-mode mobile phone service in the US. Carriers such as Cingular
Wireless, which provides WAP mobile phone support, have signed service
agreements with European carriers offering the same type of technology.
 Chapter 1. Introduction 11

1.2.3 Technology
Technology is driving the mobile market from multiple directions. Two very
significant market drivers of technology are technological advances and the
technology that suppliers push.

Many of the technology limitations for mass market appeal have been overcome.
It is now more a question of service providers and wireless infrastructure
providers being able to implement these new mobile technologies. Once these
new technologies are in service, the application developers will need to
incorporate the new technologies into m-commerce applications. The technology
suppliers and service providers are eager to cash in on the huge investments
made in creating the wireless technologies.

Faster wireless networks, more powerful Internet-capable mobile devices, and
applications such as m-commerce are all factors driving the market.

1.2.4 New business models
Many new business models have been established recently that include the use
of mobile devices. The mobile device has its special characteristics: portability,
low cost, more personalization, GPS, voice and so on. In this section, we
describe the new business models evolving to leverage the unique functionality
and opportunities mobile devices offer.

Content distribution services
Users want to stay connected and are interested in the latest information. Some
examples of content distribution services are as follows:

� Real-time information

Real-time information such as news, stock prices or tonight's weather forecast
can be distributed to your personal mobile phone via the Internet during the
morning commute time. Content providers can send the information that is
personalized to the user's interest. For example, during the Sydney Olympic
Games, a service was offered that sent e-mail automatically to a mobile
phone when the subscriber’s home country won a medal.

� Notification

Notices can be sent to the mobile device; for example, a stock price has hit a
user-defined threshold, or the book that was reserved has just arrived at the
store, or the result of the professional baseball game, and so on.
12 Mobile Commerce Solutions Guide using WebSphere Commerce Suite V5.1

� Positioning system to personalize information is known by location

By using a positioning system, you can retrieve local information. For
example, while you are in a shopping mall, a supermarket can advertise a
temporary discount service directly to your mobile device. Similarly you can
get traffic information along the road you are driving.

� Advertising

Mobile devices offer the advertising market a higher rate of response than can
be expected on a PC. Mobile device terminals are generally small, so an
advertisement may occupy a relatively large portion of the screen and catch
user’s eye more easily.

Online financial service
The online financial service industry has been a leader in deploying mobile
solutions. A balance inquiry of an account or payment treatment can be done
while you are drinking a cup of coffee at lunchtime. Or you can buy some stocks
by checking the graphical stock growth chart on the mobile phone display.

In Japan, there are over 450 banks, eight securities, eight life insurance
companies, and 10 credit card companies already in service using i-mode,
provided by the NTT DoCoMo official site.

Reference service
The mobile Internet is a very powerful tool for accessing basic reference
information. In combination with a positioning system, a Web site can locate a
suitable restaurant in the neighborhood, display the route to that restaurant on a
map, make a reservation, and show you a menu of today’s specials.

Online shopping
Generally speaking, the quality of the image files displayed on a mobile device
screen is relatively poor. On the other hand, items such as music CDs, games,
books, and tickets are good examples of products that do not need high image
quality for display on mobile devices.

Repeat orders can be easily issued by referring to a previously purchased item
from the commerce site.

Auctions are also easily accessible via mobile devices. For example, your
m-commerce application can notify you of an increase or decline of your bid.

The mobile device can be used to identify the user accessing the Web site.
Registered users do not need to enter their personal information such as credit
card number or phone number. In the near future, the mobile device itself will act
as a personal identification device and be used as an electronic wallet.
 Chapter 1. Introduction 13

Corporate intranet
Mobile computing provides a number of benefits for any kind of business if a
mobile device is connected to the office information system. For example, your
notebook PC can access your company’s intranet from outside of the office,
without a phone line.

Some examples of corporate intranet use of mobile devices are:

� Real estate salesperson

If you are a real estate salesperson, you can get information about land or
homes for sale, with the assistance of the mobile device.

� Delivery driver

If you are a delivery driver, your geographical position and the transaction you
performed can be reported to the headquarters by entering the delivery
record using the mobile phone. This information can be used to determine
your position with a GPS in your phone and then find the best route for your
next delivery.

1.2.5 Customer needs
As the capability of mobile devices improves, users will be able to access
information anytime and anywhere. Consumers that currently use their mobile
phones primarily for voice and SMS messages are now able to use a mobile
phone to engage in m-commerce as well as browse the Internet. Sales, services,
and logistics-related businesses have great potential to benefit from the
functionality provided by m-commerce.

1.3 IBM m-commerce
IBM provides a wide range of electronic commerce solutions for your business
needs. Within the IBM WebSphere brand, IBM has enabled two electronic
commerce product suites to support m-commerce:

� IBM WebSphere Commerce Suite V5.1

This product suite is very versatile and can be used for B2C, B2B, and
Auction e-commerce Web sites. WebSphere Commerce Suite V5.1 provides
a pure Java programming model that is conducive to supporting mobile
clients. Features have been added to WCS V5.1 to provide integration and
support for mobile devices.

� IBM WebSphere Commerce, MarketPlace Edition V4.2

This product suite is designed specifically for electronic marketplaces. Version
4.2 of this product provides extensions for m-commerce.
14 Mobile Commerce Solutions Guide using WebSphere Commerce Suite V5.1

Refer to the following URL for more information on this product:

http://www.ibm.com/software/webservers/commerce/wcs_me/index.html

1.3.1 m-commerce using WebSphere Commerce Suite V5.1
WebSphere Commerce Suite V5.1 allows customers to easily build m-commerce
Web sites for a wide range of mobile devices. The m-commerce solutions are
built using the WebSphere Commerce Studio, and deployed in the runtime
environment using WebSphere Commerce Suite.

WebSphere Commerce Studio
WebSphere Commerce Studio includes two major products that are used to
develop m-commerce or e-commerce Web sites: WebSphere Studio V3.5 and
VisualAge for Java V3.5, Enterprise Edition.

We provide detailed information on the m-commerce development environment
in Chapter 8, “m-commerce development environment” on page 159.

WebSphere Commerce Suite
WebSphere Commerce Suite V5.1 includes the following major products used in
the runtime environment for m-commerce and e-commerce Web sites:

� IBM HTTP Server V1.3.6.12

� IBM DB2 V7.1 Enterprise Edition

� IBM WebSphere Application Server, V3.5 Advanced Edition

� IBM WebSphere Commerce Suite V5.1

� IBM WebSphere Payment Manager V2.2

We provide detailed information on the m-commerce runtime environment in
Chapter 7, “m-commerce runtime environment” on page 141.

m-commerce enablement features in WCS V5.1
WebSphere Commerce Suite V5.1 includes PvC (pervasive computing)
extensions designed to enable m-commerce. The PvC extensions provide
support for session control, device control, security enhancement, and URL
buffering.

Below is a summary of the features added to support m-commerce in
WebSphere Commerce Suite V5.1:
 Chapter 1. Introduction 15

� PvC adapter framework

The PvC adapter framework provides Java classes and methods to create a
PvC adapter for many wireless protocols. The PvC adapter provides support
for session control, detects of the device type, checks the device format for
subscriber ID, and sets the root path of the content JSPs for the specific or
category of mobile device.

– For a detailed description of the PvC adapter framework, refer to 4.2.1,
“PvC adapter framework” on page 87.

– For detailed instructions on creating and deploying a PvC adapter, refer to
Chapter 11, “Creating and deploying a PvC adapter” on page 205.

– For reference information on the syntax and usage of the PvC adapter
framework, refer to Appendix A, “PvC adapter framework reference” on
page 329.

� PvC commands

The PvC commands are used to develop custom WCS commands written in
Java. The commands are used within the content JSPs to solve specific
mobile commerce issues such as device security and URL buffering.

– For a detailed description of the PvC commands, refer to 4.2.2, “PvC
commands” on page 90.

– For detailed instructions on creating custom PvC commands, refer to
Chapter 13, “Creating custom PvC commands” on page 255.

– For information on syntax and a usage example, refer to Appendix B, “PvC
command reference” on page 339.

� PvC data beans

The PvC data beans are used to access information related to the PvC
commands and database tables for information about the detected mobile
device type.

– For a detailed description of the PvC data beans, refer to 4.2.3, “PvC data
beans” on page 91.

– For information on syntax and a usage example, refer to Appendix C, “PvC
data bean reference” on page 355.

1.4 Structure of this redbook
This redbook is organized in four parts and designed to provide information for
different audiences such as architects, developers, sales professionals, and I/T
specialists.
16 Mobile Commerce Solutions Guide using WebSphere Commerce Suite V5.1

Part 1: Introduction to mobile commerce
Part 1 of this redbook is intended for sales and marketing professionals as well
as developers, architects, and specialists. The chapters in this part of the
redbook provides a foundation for m-commerce development and deployment by
exploring the mobile commerce concepts and features, wireless technologies,
and integration considerations for implementing an m-commerce solution.

The chapters in Part 1 of this redbook are organized as follows:

� Chapter 1, “Introduction”, provides an overview of m-commerce, describes
the opportunities and market drivers for m-commerce, and explains the
features added to WCS V5.1 to enable m-commerce.

� Chapter 2, “Wireless technologies”, provides an overview of the wireless
technologies that are used to enable m-commerce.

� Chapter 3, “m-commerce development methodology”, guides developers and
architects through the process of designing and developing m-commerce
Web sites using WCS V5.1

� Chapter 4, “m-commerce features and functionality in WCS V5.1”, provides a
description of the features and functionality added to WCS V5.1 to enable
m-commerce.

� Chapter 5, “IBM wireless middleware”, describes the m-commerce integration
considerations when using IBM wireless middleware.

� Chapter 6, “m-commerce payment solutions”, explores m-commerce payment
solutions used within the industry and solutions available using WebSphere
Payment Manager.

Part 2: Setting up the m-commerce environment
Part 2 of this redbook is intended for developers and architects and provides a
hands-on approach to setting up the m-commerce development, runtime, and
test environment. In addition, we provide a sample e-commerce Web site to use
as a base upon which an m-commerce Web site can be built, as well as sample
code that will be used throughout the redbook.

The chapters in Part 2 of this redbook are organized as follows:

� Chapter 7, “m-commerce runtime environment”, provides an overview of the
production runtime environment, as well as instructions for implementing a
runtime environment for the purposes of testing an m-commerce Web site.

� Chapter 8, “m-commerce development environment”, provides instructions for
setting up the m-commerce development and test environments.

� Chapter 9, “m-commerce sample store and sample code”, provides
instructions for deploying a sample store to enable m-commerce, along with
sample code to be used in the implementation process.
 Chapter 1. Introduction 17

Part 3: m-commerce direct implementation
Part 3 of the redbook is intended for developers and architects, and provides
development guidelines for mobile devices directly accessing device-specific
content JSPs. Samples and guidelines are included for WAP WML, HDML, Palm,
and i-mode.

The chapters in Part 3 of this redbook are organized as follows:

� Chapter 10, “m-commerce direct design and development process” on
page 199, provides design and development guidelines for developing a store
using the direct m-commerce approach.

� Chapter 11, “Creating and deploying a PvC adapter” on page 205, explains in
detail how to create and deploy a PvC adapter.

� Chapter 12, “Create, deploy and manage content” on page 225, provides
instructions for content management configuration, content development, and
content deployment. In addition, we include an advanced content
development and configuration example.

� Chapter 13, “Creating custom PvC commands” on page 255, describes how
to create a custom PvC command.

� Chapter 14, “HDML implementation sample” on page 265, provides
guidelines and sample code for developing a store with HDML content.

� Chapter 15, “WAP implementation sample” on page 271, provides guidelines
and sample code on developing a store with WAP WML content.

� Chapter 16, “Palm implementation sample” on page 279, provides guidelines
and sample code on developing a store with content for Palm devices using
HTML or Web Clipping.

Part 4: m-commerce using WTP implementation
This part of the book is intended for developers and architects and provides
design and development guidelines for mobile devices using WTP to access the
WCS HTML or XML content JSPs.
18 Mobile Commerce Solutions Guide using WebSphere Commerce Suite V5.1

Chapter 2. Wireless technologies

This chapter provides readers not familiar with wireless technologies a
foundation for understanding the unique issues faced by project managers,
architects, developers and specialists when developing and deploying mobile
commerce applications. Many of the chapters to follow in this redbook make
references to various wireless networks, protocols, mobile devices, and markup
languages discussed in this chapter.

The chapter is organized into the following sections:

� Wireless networks

� Wireless protocols

� Mobile devices

� Content and markup languages

� Wireless service providers

� Next-generation technologies

2

© Copyright IBM Corp. 2001 19

2.1 Wireless networks
Wireless networks are used to transmit data between mobile devices or personal
computers using wireless adapters without the use of a physical cable or wire. In
this section, we will describe the wireless networks in use today, as well as the
wireless networks of the future.

This section is organized into the following topics:

� Mobile communications network history
� GSM
� GPRS
� Mobitex
� CDPD
� IMT-2000
� Wireless LANS

2.1.1 Mobile communications network history
The birth of wireless mobile communications can be traced back to the invention
of frequency modulation (FM) in 1935 by E.H. Armstrong. The first wireless
mobile network was introduced in the United States in 1946, when the Federal
Communications Commission (FCC) granted AT&T the first mobile network
license to cover the area of St. Louis. The system was based on frequency
modulation and the area coverage was guaranteed by a unique antenna,
installed at the highest point in the city. The user needed to manually scan for an
available channel (manual trunking) and then communicate over this channel
with an operator to set up the call. Such a system was half-duplex, since it
allowed only one person to talk at a time.

A big improvement was introduced in 1962, with the Improved Mobile Telephone
Service (IMTS) network. This system exploited more channels, in order to handle
a higher number of simultaneous users. Moreover, the call procedure was made
automatic, with an automatic trunking of the available channels, which eliminated
the need for operators. However, in spite of the capacity improvements achieved,
such systems still presented enormous limitations in terms of the maximum
number of users that could be handled simultaneously.

The turning-point came with cellular systems. The first of such networks was the
Advanced Mobile Phone System (AMPS), introduced in 1983 in the United
States. Cellular networks are based on the technique of frequency reuse, which
optimizes the use of the limited radio spectrum.
20 Mobile Commerce Solutions Guide using WebSphere Commerce Suite V5.1

In cellular radio networks, the area covered by one base station (for example, an
antenna) is reduced and other base stations are installed with small overlapping
areas. Adjacent cells (coverage area) need to use different frequencies to avoid
interferences, but the same frequency can be reused in non-adjacent cells, as
seen in Figure 2-1.

Figure 2-1 Frequency reuse

Due to the splitting of the coverage area into many cells, it may happen that a
moving user passes from one cell to another. In this case, in order to guarantee
the highest communication quality, the mobile device needs to switch to one of
the frequencies of the new cell. Since every antenna uses a limited number of
frequencies, the device will select the one that offers the best quality. However,
this change of frequency also needs to be transparent for the user and should
not affect any call in progress. The procedure by which the terminal changes the
frequency when passing from one cell to another is called handover.

By splitting an area into many smaller cells, the overall network capacity
increases. However, the cell size cannot be decreased beyond a certain
threshold. In fact, a decrease in the cell size, means a decrease in the reuse of
frequency. Consequently, the probability of interferences and handovers also
increases.

Determining the optimal size of each cell is a fundamental issue in the radio
coverage planning of a certain area. The major factors to consider are:

� Presence of reliefs
� User density
� Area topology (urban, suburban, rural)
� Presence of buildings

Frequency 1

Frequency 4

Frequency 1

Frequency 3

Frequency 3

Frequency 2

Frequency 4

Frequency 2

Frequency 1Frequency 1Frequency 1
 Chapter 2. Wireless technologies 21

When a mobile device is switched on, it will scan a predetermined set of radio
channels to find a base station. After finding one, the terminal tries to get access
to the network by means of a registration procedure, in which the device
identifies itself to the network with a unique identifier. If the registration succeeds,
the terminal can access the network and from that moment onward the location
of the device within the coverage area is kept under control, in order for the
network to direct any incoming calls to the proper cell.

It may happen that a mobile device is in an area that is covered by a network
provider other than its own. In that case, if the two networks are based on the
same technology and an agreement between the two involved operators exists,
the terminal can access its home network through the infrastructure of this
hosting operator. For this purpose, the hosting network will communicate with the
home network to check whether access can be granted. This kind of agreement
is called a roaming agreement and covers interpretability as well as billing
issues.

Networks are either circuit-switched or packet-switched. With circuit-switched
networks, the network resources are assigned to a single connection for the
whole duration of the communication. This dedicated channel remains allocated
even in those time frames when no data is sent over the channel. Voice traffic is
typically sent over circuit-switched connections. The GSM network also supports
data traffic over circuit-switched connections. However, data services are very
different in nature from voice services. In typical voice communications, you
usually have very short idle times between two consecutive transmissions, which
means that the allocated channel is intensively used during the communication.
The situation for data traffic is quite different. Consider the case of a user
browsing the Internet. When a user sends an HTTP request from a PC browser
client, they then receive a response page for display of the content. In this phase,
the user is operating offline and is not using the network. At that time, the
resource could be assigned to other users waiting to transmit. This is the typical
situation of data services and in such cases a packet-switched technology is
highly preferable.

In packet-switched networks, no permanent channel is allocated to a single
connection. Data is transmitted in the form of packets and the network resources
are allocated on-demand. This also means that any single channel can be
shared among different users and that the network resources are better
exploited, because they are allocated only when effectively needed.

Adopting a packet-switched network for data traffic also allows for more flexible
and convenient billing plans. In a circuit-switched connection, the user has to pay
for the whole duration of the connection, and then even for those time frames
when the network is not used. With a packet-based network, the user pays for
22 Mobile Commerce Solutions Guide using WebSphere Commerce Suite V5.1

service based on the amount of data packets downloaded. Moreover, with this
kind of network, flat rates are applicable. For example, the user could pay a fixed
amount of money a month, provided the download traffic in that month has not
exceeded a certain threshold.

Wireless network generations
When looking at how wireless networks have evolved, the different phases and
characteristics of wireless networks are often referred to as generations: 1G for
first generation, 2G for second generation, etc.

The first generation (1G) cellular systems were analog and implemented with
such technologies as AMPS. The AMPS 1G network was introduced in 1983 in
the US and was used for voice capability.

Second-generation (2G) systems were introduced in the 1990s. Some of the
technologies implemented include TDMA, CDMA, and GSM. 2G systems were
used primarily for voice, with the exception of SMS offered by GSM.

Some 2.5G systems have been implemented recently, such as HSCSD and
GPRS. HSCSD is a circuit-switched extension of GSM that allows an increase in
the bit rate by combining more than one timeslot in the GSM radio interface.
GPRS can be considered a packet-based extension of GSM and provides higher
data throughput. Other 2.5G systems, such as EDGE, are still to be
implemented.

Third-generation (3G) systems are expected to be implemented over the next
few years and will be called UMTS in Europe and IMT-2000 worldwide. At the
time of writing this redbook, NTT DoCoMo is in the process of launching a 3G
IMT-2000 cdmaOne-based wireless network in Japan. 3G networks provide
higher-speed transmission to support high-quality audio and video, as well as
global roaming capability.

Table 2-1 provides a summary of the wireless networks in use today, and a look
at future implementations.

Table 2-1 Implementation of wireless networks

Wireless network
type

Currently in
use

Near-term
implementation

Long-term
implementation

GSM Europe (900, 1800)
US (1900)

US (1900)

GPRS Europe Europe

Mobitex Europe, US

CDPD US
 Chapter 2. Wireless technologies 23

2.1.2 GSM
The Global Systems for Mobile Communications (GSM) standard was proposed
by CEPT in 1982 and completed by ETSI in 1990, while the first networks were
deployed in 1991. The main reason behind the introduction of GSM in Europe
was to provide a common standard for European Cellular Communications,
which allowed subscribers to roam throughout Europe and access cellular
networks in each country with the same equipment. It also allowed the
equipment manufacturers to sell identical mobile and fixed equipment in all
countries. GSM technology has been evolving through three different phases of
the standard specifications, as seen in Table 2-2.

Table 2-2 GSM phases of standard specifications

GSM base stations transmit toward the terminals (downlink) on channels in the
range of frequencies 935-960 MHz (25 MHz range), and receive in the range
890-915 MHz (25 MHz range). The transmit and receive frequencies for any
channel are always separated by 45 MHz. The GSM technology supports both
voice and data traffic over circuit-switched connections and provides a data
throughput of 9.6 kbps. The radio interface uses both Time Division Multiple
Access (TDMA) and Frequency Division Multiple Access (FDMA). The available
range of frequencies is divided into many GSM carriers (FDMA) and each GSM
carrier is divided into groups of eight timeslots (TDMA). In GSM no user can

PDC Japan Japan

cdmaOne US, Korea, Japan US, Korea, Japan

IMT-2000 Japan Japan, US

UMTS Europe

Wireless network
type

Currently in
use

Near-term
implementation

Long-term
implementation

GSM phase Description

Phase 1 This was the first specification, completed in March 1995.

Phase 2 This version was completed at the end of 1995 and added
some new features to the previous release, such as
supplementary services (for example, call waiting) and
enhanced full rate.

Phase 2+ This is the latest version of the GSM specification and
introduces interesting concepts such as HSCSD, GPRS, EDGE
and the SIM application toolkit.
24 Mobile Commerce Solutions Guide using WebSphere Commerce Suite V5.1

transmit over more than one timeslot at the same time. Moreover, during a
connection each user is allocated one timeslot to transmit and one timeslot to
receive. These situations are different in other technologies, such as GPRS (see
2.1.3, “GPRS” on page 32).

Today, GSM is one of the most important and widespread mobile standards
worldwide. Many variants of GSM have been created for different frequency
ranges. For instance, ETSI developed the Digital Communications System 1800
standard (DCS1800) as an extension to GSM. It operates in the 1800 MHz band
in Europe, uses less power for mobile phones, and has smaller cell sizes. GSM
and DCS1800 are functionally similar in terms of voice quality, data facilities, and
call handling, and the user can hardly note the difference. GSM technology in the
form of DCS1900 is available in North America, and often referred to as Personal
Communications Services (PCS) systems.

In a GSM network, the subscriber is considered an entity separate from the
device. This means that the subscriber identity can be transferred from one
physical phone to another, without reprogramming the device. This is
accomplished by means of a Subscriber Identity Module (SIM), which is a small
smartcard to insert into the mobile phone. The first SIM cards were credit
card-sized but now nearly all GSM phones support only the so-called plug-in
format, which corresponds to the break-out section shown in Figure 2-2
(opposite side shown in Figure 2-3).

Figure 2-2 GSM Subscriber Identity Module (SIM)
 Chapter 2. Wireless technologies 25

Figure 2-3 SIM other side

The SIM can be inserted into a GSM phone, as seen in Figure 2-4, which then
takes the identity of the subscriber’s GSM phone.

Figure 2-4 SIM inserted into a WAP phone
26 Mobile Commerce Solutions Guide using WebSphere Commerce Suite V5.1

The SIM card technology has been evolving very quickly in the last two years. In
spite of their very reduced size, SIM cards come with a CPU, EEPROM memory
for the file system, a ROM memory for the card operating system, and a RAM
memory for program execution. The first SIM cards were only used to store data
and the secret keys needed by the GSM security algorithms for authentication
and encryption.

The CPU processing power and the available memory allow Java applications to
run on the card itself. Some operators in Europe have already launched many
services based on the combination of Java SIM cards and the SIM Application
Toolkit, which is a standardized technology to develop applications on the SIM
cards.

Each GSM subscriber is uniquely identified by the International Mobile
Subscriber Identity (IMSI), which is stored on the SIM card, can have a maximum
length of 15 bytes and contains the following pieces of information:

� Mobile Country Code (3 digits) - Country code of the operator

� Mobile Network Code (2 digits) - Operator code within the country

� Mobile Station Identification Number (max 13 digits) - Serial number

The physical device is identified by the International Mobile Equipment Identifier
(IMEI), that is a 15 byte-long code embedded in the device.

One interesting service of the GSM network is the Short Message Service
Point-to-Point (SMS-PP). It allows the GSM phone to send and receive short
messages, using the network’s control channel to transfer the information. This
means that no circuit-switched connection is established and the message can
be stored, then forwarded when the phone is able to accept the message. The
GSM Short Message Service allows the phone to act as a two-way alphanumeric
pager. Up to 160 characters can be transmitted in one message. The received
messages are usually stored on the SIM card. Each message has a validity
period parameter, which can be set up on the phone and states the overall
lifetime of the message. If the message has not been delivered within the validity
period, it will be discarded by the network. To guarantee this service, one or more
Short Message Service Center (SMSC) nodes need to be attached to the GSM
signalling network. SMS messages are currently the most widespread means of
sending data over GSM networks. According to the GSM Association, a record
15 billion SMS messages were sent over the world's GSM wireless networks
during December 2000.

Other interesting data services of the GSM technology are the Short Message
Service Cell Broadcast (SMS-CB) and the Unstructured Supplementary Services
Data (USSD).
 Chapter 2. Wireless technologies 27

The SMS-CB allows the user to send messages from the network to many
different mobile phones simultaneously. This is achieved by sending the
message to a base transmission station (BTS) with an indication of all the cells
depending on that base station controller (BSC) where the message should be
broadcasted. Each message can be 1 to 15 pages long. One page can contain
93 alphanumeric characters or 82 binary octets in length. Many messages can
also be concatenated.

The USSD is another means of sending messages over a GSM network. It is
different from SMS because it is not a store-and-forward service and because it
provides session management. A new session is established when the user first
accesses the USSD service. The message length is 182 bytes.

The GSM architecture is very complex, as seen in Figure 2-5.

Figure 2-5 GSM network architecture

Note: This is important because, contrary to the SMS we are familiar with
(called SMS-PP), SMS-CB does not allow the user to send messages but only
to receive them. Only the network has the capability to broadcast information.

Gateway MSC
(G-MSC)

Authentication
Center (AuC)

BSC

Base Stations
Controller (BSC)

Mobile Switching
Center (MSC)

Base
Transceiver

Stations
(BTS)

VLR

HLR

PSTN
ISDN

Other PLMNs

GSM
Network
Provider

NMC OMC

EIR

Base
Transceiver

Stations
(BTS)
28 Mobile Commerce Solutions Guide using WebSphere Commerce Suite V5.1

Each of the components has a well-defined role within the overall architecture:

� Base Transceiver Station (BTS)

BTSs in GSM perform tasks similar to the base stations of other networks.
Each BTS can be defined as the set of all transceivers (for example,
transmitters and receivers) and equipment that can provide radio coverage
within a cell.

� Base Station Controller (BSC)

The BSC controls several base stations, manages the settings of the radio
channels and ensures that a mobile phone can move from one cell to another
and switch to the new radio channel without a communication break. The
BSC can only manage internal handovers (for example, between cells under
its own control).

� Mobile Switching Center (MSC)

MSCs are the main switching nodes within GSM networks. In one network
there are usually many MSCs, each one controlling many BSCs and therefore
a huge area. The main functions of the MSC are call setup, call control,
mobility management and generation of billing data. It is essentially in charge
of properly routing any incoming or outgoing calls for all the terminals that are
in its coverage area. Finally, it can also manage all the handovers between
cells belonging to different BSCs. Some MSCs also handle special functions
for the SMS service.

� Visitor Location Register (VLR)

The VLR is a database that contains all the information related to the users
that are within the coverage area of its own MSC. This data is needed for call
control and management. As soon as a terminal enters the area covered by a
new MSC, the VLR queries the HLR to get the needed user data. This user is
then registered in the VLR of this new MSC and a reference to this VLR is
associated to the same user in the HLR. Each MSC and the corresponding
VLR are often deployed as a single entity (for example, they are integrated in
a single node).

� Home Location Register (HLR)

The HLR is the main node of the GSM network. It is basically a huge
database used to store permanently the data related to all subscriptions, such
as service profile and activity status.

� Gateway MSC (G-MSC)

The G-MSC is a special MSC that interfaces the GSM network with either a
fixed phone network (PSTN or ISDN) or the mobile network of a different
operator (PLMN). PLMN is the acronym for Public Land Mobile Network.
 Chapter 2. Wireless technologies 29

� Equipment Identity Register (EIR)

The EIR is a database of device identifiers (IMEI). It contains devices that are
allowed to access the network, devices that cannot access the network, and
devices that need to be located (for example, this database can be used to
detect the users of stolen mobile phones and locate them).

� Authentication Center (AuC)

The AuC is in charge of computing the security parameters to authenticate
the user and encrypt the traffic.

� Operations Management Center (OMC)

The OMC manages the network on a regional and day-to-day basis. It is used
to configure the various nodes of the network, to monitor faults and to collect
accounting data.

� Network Management Center (NMC)

The NMC manages the entire network on a global basis and is used for
long-term planning. Usually, there are many OMCs, and only one NMC in a
network.

Regarding security, GSM networks provide authentication and confidentiality.
Authentication is mutual, in the sense that the terminal and the network
authenticate each other, and it takes place when any attempt of the mobile
device to access the network is made. This means that authentication is also
needed when the user wants to place a call. GSM authentication is based on a
challenge-response protocol and is performed via the AUC and the SIM card.
The GSM authentication protocol is depicted in Figure 2-6.

Figure 2-6 GSM authentication protocol

MS Network

RAND

A3

Ki

SRES

=

yes/no

A3

KiRAND
30 Mobile Commerce Solutions Guide using WebSphere Commerce Suite V5.1

The major elements involved in the authentication process are:

� The authentication key Ki

� The A3 authentication algorithm

The A3 algorithm is the same for all GSM users, whereas each subscriber has
his/her own authentication key stored both on the SIM card and in the HLR. The
overall authentication procedure is the following:

1. The network sends a random value (RAND) to the mobile device.

2. The terminal uses the received value and the stored Ki as input values for the
A3 algorithm, and sends back the result (SRES) to the network.

3. The network compares the received value with the one it has computed itself.
If the two values are equal, the authentication is successful; otherwise it fails.

The computation of the random value and the result SRES on the network side is
the responsibility of the AuC.

Similar considerations apply for the generation of the encryption key. Exactly like
the authentication procedure, this process is performed many times in order to
have a different ciphering key for any communication. The authentication key Ki
is also involved in this second procedure. The algorithm that is used to generate
the key is the A8 algorithm. Both the network and terminal compute the same
encryption key Kc by applying the A8 algorithm to the Ki, as seen in Figure 2-7.

Figure 2-7 Generation of the encryption key in GSM

The traffic is then encrypted by using the generated key. It is important to note
that the authentication key Ki is never transmitted over the air. Again, it is the
AuC that actually computes the key Kc. The traffic from that moment on will be
encrypted by using the generated key Kc and the GSM ciphering algorithm,
called A5. The traffic is encrypted only over the radio interface, which means that
the two parties that actually cipher and decipher the data are the mobile device

A8

Ki RAND

Kc
 Chapter 2. Wireless technologies 31

and the BTS. Then, the encryption algorithm A5 is not run by the AuC but rather
by the BTS. For this reason, after the encryption key has been generated, the
network forwards the Kc to the BTS of the area where the terminal is located, so
that encryption and decryption can take place.

2.1.3 GPRS
General Packet Radio Service (GPRS) is the packet-based extension of the
GSM network. GPRS is a fundamental step in the migration from GSM to 3G
networks. This evolution path is represented in Figure 2-8.

Figure 2-8 Evolution path from GSM to UMTS

GPRS can support data traffic over packet-based connections with a higher bit
rate than GSM (up to 172.4 kbps). GPRS introduces three additional coding
schemes (CS) for the data that is transmitted across the radio interface, with
respect to the single coding scheme existing in GSM. These coding schemes, as
seen in Table 2-3, provide different degrees of error correction and,
consequently, different bandwidths (the values are computed using the whole
MAC header). CS-1 is also used for the signalling channels in GSM and provides
the highest error correction but the lowest throughput (9.2 kbps). On the contrary,
CS-4 does not provide error correction at all, but ensures the highest data rate
(21.55 kbps). In GPRS, timeslots can be bundled and allocated asymmetrically.
While in GSM the user is allocated one timeslot in downlink and one timeslot in
uplink, in GPRS more than one timeslot can be allocated per direction (one

2G

2.5G

3G

GSM
9.6 Kbps

HSCSD
57.6 Kbps

GPRS
172.4 Kbps

EDGE
384 Kbps

UMTS
2 Mbps

1998 1999 2000 2001 2002
32 Mobile Commerce Solutions Guide using WebSphere Commerce Suite V5.1

through eight).The maximum throughput is computed by assuming CS-4 and the
allocation of all the eight available timeslots. Furthermore, the number of
timeslots in one direction can be different from the number of timeslots in the
opposite direction.

Table 2-3 Transmission rates for GPRS

Most of the emerging GPRS networks are providing CS-1 and CS-2, with one
timeslot in uplink and two timeslots in downlink. One important consideration is
that most GSM operators are building GPRS on top of the existing GSM
infrastructure and are continuing to use GSM for voice traffic. This means that
the radio resources must be shared between GSM and GPRS traffic and all
timeslots at a time cannot be allocated. One important feature of GPRS and,
more generally, of all packet-based networks is that the user is always connected
to the network. Value-added services based on information push, such as online
e-mail and remote monitoring, provide great advantages from this kind of
network.

The GSM technology, even if based on a circuit-switched core network, is
packet-based as far as the radio interface is concerned, because information is
transmitted in bursts over the air interface. GPRS can be built on top of the
existing GSM infrastructures, thus allowing a partial reuse of the already existing
equipment. More precisely, the migration from GSM to GPRS can take place by
leaving the GSM base station subsystem (for example, BTS and BSC) almost
unchanged and by adding a packet-based switching subsystem to the GSM core
switching subsystem (for example, MSC + GMSC). The GPRS network
architecture is shown in Figure 2-9.

1 Timeslot 2 Timeslots 8 Timeslots

CS-1 9.2 kbps 18.4 kbps 73.6 kbps

CS-2 13.55 kbps 27.1 kbps 108.4 kbps

CS-3 15.75 kbps 31.5 kbps 126 kbps

CS-4 21.55 kbps 43.1 kbps 172.4 kbp
 Chapter 2. Wireless technologies 33

Figure 2-9 GPRS network architecture

The main differences between the GPRS network architecture and that of GSM
can be seen in Figure 2-5 on page 28.

� Packet Control Unit (PCU)

This new component performs an adaptation of content structure between the
data packets received by the SGSN and the frame structure used by the
BSC.

� Serving GPRS Support Nodes (SGSN)

The SGSN is the packet-based equivalent of the MSC in GSM. It is able to
route incoming data packets to the proper destination. Unlike GSM, where the
communication is ciphered between the mobile station and the BTS, in GPRS
the data is encrypted between the mobile station and the SGSN. This node
must also provide ciphering capabilities. SGSN is also in charge of managing
user mobility and has to collect accounting information. Finally, it must be
capable of dealing with handover. If a user moves to another cell, all the
undeliverable packets must be routed to the new cell. If the new cell belongs
to a different SGSN, these packets must be routed to the new serving node.

Gateway GPRS
Support Node (GGSN)

BSC

HLR

Packet Data Networks

GPRS
Network
Provider

Authentication
Center (AuC) EIR

Border Gateway
(BG)

Other PLMNs

Base Stations
Controller (BSC)

Serving GPRS
Support Node

(SGSN)

Base Transceiver
Stations (BTS)

VLR

Base Transceiver
Stations (BTS)

PCU

PCU
34 Mobile Commerce Solutions Guide using WebSphere Commerce Suite V5.1

� Gateway GPRS Support Nodes (GGSN)

The Gateway GPRS Support Node (GGSN) interfaces the GPRS network
with external packet data networks. It is also in charge of collecting
accounting information and assigning IP addresses to GPRS mobile stations.

� Border Gateway (BG)

The Border Gateway is the interface between a specific GPRS network and
other mobile networks (PLMNs). It essentially provides security to protect the
network.

GPRS defines three different classes of mobile devices, as seen in Table 2-4.

Table 2-4 GPRS classes for mobile devices

In GPRS, every subscription has a well-defined QoS profile (Quality of Service).
This will be negotiated in a handshake phase before any data transmission takes
place. The QoS is defined as a set of four different parameters, as seen in
Table 2-5.

Table 2-5 QoS profile parameters defined

Note: Even if GPRS has been defined as an extension of GSM, it will be used
to provide packet-based support also to the IS-136 TDMA standard, which is
popular in North and South America.

GPRS class Description

Class A The mobile station can handle simultaneous
circuit-switched and packet-switched connections (for
example, it can transmit or receive GPRS packets with a
GSM voice call in place).

Class B The mobile station can support both circuit-switched and
packet-switched connections, but cannot handle them
simultaneously.

Class C The mobile station supports circuit-switched or
packet-switched connections.

QoS parameter Description

Priority It states if data transmission for this subscriber should
have precedence over other transmissions.

Delay It states how long it takes for a packet to cross the GPRS
network.
 Chapter 2. Wireless technologies 35

As far as security is concerned, GPRS uses the same algorithms as GSM to
generate the ciphering key Kc (for example, A8) and to generate the SRES value
used for authentication (for example, A3). However, it uses a different encryption
algorithm. As we have already stated, in GPRS encryption takes place between
the mobile station and the SGSN.

2.1.4 Mobitex
The Mobitex technology was originally developed in Sweden in 1984 by Swedish
Telecom Radio (now called Telia Mobitel) and tested by Erictel, which is a
company owned by Swedish Telecom Radio and Ericsson Radio Systems. This
network now operates in 23 countries. Mobitex is the network used in the U.S. by
Palm.Net, as well as by many other wireless service providers. The architecture
is depicted in Figure 2-10.

Figure 2-10 Mobitex network architecture

Throughput It indicates the mean and peak data rate available.

Reliability It indicates the level of error correction provided.

QoS parameter Description

Mobitex Area
Exchange (MOX)

Mobitex
Network
Provider

Base Stations Base Stations

Mobitex Main
Exchange (MHX)

MOX

Mobitex Network
Control Center (NCC)

X.25
TCP/IP

SNA/3270

Fixed
terminal

Fixed
terminal
36 Mobile Commerce Solutions Guide using WebSphere Commerce Suite V5.1

Mobitex in the US transmits from the base station on channels in the range of
frequencies 935-940 MHz, and receives in the range of 896-901 MHz. The
transmit and receive frequencies for any channel are always separated by 39
MHz. Mobitex in Europe has different frequency allocations for each country but
they are all in the range of 410-459 MHz. Apart from this difference in radio
carrier frequency, the European and North American systems are the same.

The data rate of a Mobitex wireless channel is 8 kbps. The network latency is
relatively high and varies significantly. Mobitex provides a maximum message
size of 512 octets. Both mobile devices and fixed terminals are treated equally in
terms of addressing. Any entity can communicate with every end system in the
Mobitex network. It is even possible to address end systems at other network
providers if they are interconnected. Mobitex takes care of all the needed routing.
So, different Mobitex networks may be interconnected and packets may be
transferred between them, in the same way as you would establish international
phone calls or communication between two telephone carriers. Mobitex mobile
and fixed terminals are both identified and addressed by a Mobitex Access
Number (MAN), which has an 8-digit value. MANs are unique worldwide and are
assigned by the device manufacturer. Every Mobitex network provider has its
own address range to assign MANs to fixed terminals. A Mobitex mobile device
even keeps its MAN when roaming between different network providers.

Mobitex has been designed to be a messaging system, where small amounts of
data have to be transmitted at irregular intervals. The transmission
characteristics are not well suited for routing IP traffic. One problem is the high
variance in network latency, which makes it hard for the network to decide
whether a packet should be regarded as lost or just delayed (a bit longer).

Access to the Mobitex network from external host systems is provided by a
number of different gateways, called MOX. The availability and definition of
access methods to these gateways will vary from network to network, but
normally includes:

� X.25
� TCP/IP
� SNA/3270

In a Mobitex network, the end systems exchange Mobitex packets, called
MPAKs. Some MPAKs are exchanged between the terminals and the Mobitex
system only. Others flow between the end systems and are routed by the MOX
and MHX if they have to leave a MOX domain.
 Chapter 2. Wireless technologies 37

2.1.5 CDPD
Cellular Digital Packet Data (CDPD) is a wireless, packet-switched network
technology. It uses the same frequencies as existing AMPS cellular services (for
example, 800 MHz) and also shares the same core infrastructure. It was built on
top of the AMPS infrastructure by adding the required capabilities for packet
management and routing. Roughly speaking, CDPD is the packet-based
extension of AMPS, which is circuit-switched, exactly as GPRS is the
packet-based extension of GSM.

As for most packet-switched networks, charges are based on the amount of data
sent rather than on the duration of the network connection. CDPD inherently
uses Internet Protocol (IP) as the protocol for sending and receiving data. IP
includes protocols that take care of such essential functions as authentication
and encryption, and provides a maximum raw data throughput of 19.2 kbps. The
network architecture is depicted in Figure 2-11.

Figure 2-11 CDPD network architecture

The wireless CDPD Network Controllers, connected to the base stations, route
the packet traffic between the CDPD phones and the Internet, and also manage
the handover between cells. One of the most useful features of CDPD is the
ability to find open voice channels and use them for data. CDPD base stations

Internet

CDPD
Base Stations

CDPD Network
ControllerCDPD

Network
Provider

CDPD
Base Stations
38 Mobile Commerce Solutions Guide using WebSphere Commerce Suite V5.1

monitor all the channels in the cellular network. When a base station receives a
data transmission call, it picks out one of the unused channels and sends data
over it. If a subsequent voice call needs that channel, the base station releases
the channel and hops to another unused channel to continue the transmission.

Since CDPD relies on an AMPS cellular network, it is not available outside of
North America and some Latin American countries. AT&T and Verizon in the U.S.
offer wireless services over CDPD networks. However, roaming agreements
between the two parties allow a huge coverage area. In this context, only AT&T
offers WAP services over CDPD. Instead, Verizon provides WAP services over
CDMA, which supports both voice and data traffic.

2.1.6 PDC
Personal Digital Cellular (PDC) is a Japanese cell phone standard that uses 800
MHz and 1.5 GHz frequency range. The data transmission rate is 9.6 kbps.
Almost all the cell phones used in Japan are based on PDC.

2.1.7 IMT-2000
International Mobile Telecommunications-2000 (IMT-2000) is a 3G wireless
system. IMT-2000 offers support for a wide range of mobile devices, includes
links to terrestrial and/or satellite-based networks, and the terminals may be
designed for mobile or fixed use.

Key features of IMT-2000 are:

� Support of different access networks, both terrestrial and satellite

� Multi-mode and multi-band terminals

� Virtual Home Environment (VHE)

� Very high data throughput

� Worldwide roaming capability

� Capability for multimedia applications

Note: VHE means that the user should have access as much as possible to
the same set of services and the same look and feel regardless of the access
network, the terminal capabilities, and the current location.
 Chapter 2. Wireless technologies 39

UMTS
The Universal Mobile Telecommunications System (UMTS) is the European
implementation of the 3G wireless phone system. UMTS, which is part of
IMT-2000, provides service in the 2 GHz band and offers global roaming and
personalized features. UMTS was designed as an evolutionary system for GSM
network operators, and offers impressive data rates of up to 2 Mbps. UMTS uses
the W-CDMA technology. GPRS and EDGE are interim steps that will speed up
wireless data for GSM.

For more information refer to: http://www.umts-forum.org/.

W-CDMA (DS-CDMA)
The Direct Spread - Code Division Multiple Access (DS-CDMA) specification is
supported by Ericsson (Sweden) and Nokia (Finland). This technology will be
used mainly in Europe and Japan. NTT DoCoMo will start the first IMT-2000
service in the world in mid-2001 using the W-CDMA specification. The data
translation rate is 64 kbps for upstream and 384 kbps for downstream.

cdma2000 (MC-CDMA)
The Multi Carrier - Code Division Multiple Access (MS-CDMA) specification is
supported by Qualcomm (US) and Lucent Technologies (US) and will be the
North American standard. Compared to W-CDMA, it is easier for the carriers of
cdmaOne to migrate their facilities or learn management know-how. The
maximum data translation rate will be 14.4 kbps while fast moving, 384 kbps
while slow moving, and 2 Mbps while at a standstill. The fast data transfer
system called HDR (High Data Rate) developed by Qualcomm adopts a concept
of best effort. One frequency is split into multiple transmissions. If the line is
crowded, the speed will be less.

cdmaOne
Code Division Multiple Access (CDMA) is a specification of wireless
communication. Voices from multiple users are transformed by multiplying
different codes and transferred all together as one frequency. The receiver can
detect only the sender’s voice and decode it. The cdmaOne is one standard of
3G cell phones that uses CDMA protocol. It is used in North America and Asia.
The data transmission rate is 14.4 kbps.

2.1.8 Wireless LANS
A wireless LAN is a local area network that transmits over the air, typically using
an unlicensed frequency such as the 2.4 GHz band. A wireless LAN does not
require lining up devices for line-of-sight transmission such as IrDA. Wireless
access points (base stations) are connected to an Ethernet hub or server and
40 Mobile Commerce Solutions Guide using WebSphere Commerce Suite V5.1

transmit a radio frequency over an area of several hundred to a thousand feet.
This frequency can penetrate walls and other non-metal barriers. Roaming users
can be handed off from one access point to another like a cellular phone system.
Laptops use wireless modems that plug into an existing Ethernet port or that are
self-contained on PC cards, while stand-alone desktops and servers use plug-in
cards (ISA, PCI, etc.).

There have been numerous proprietary products on the market for home and
office, but now most manufacturers are adopting the standard IEEE 802.11b,
which defines a maximum data rate of 11 Mbps. Bluetooth and HomeRF are
other home and small-office technologies that are expected to proliferate in the
2000-2002 timeframe. Such systems have a more limited range and do not
support roaming. Small wireless LANs are sometimes called personal area
networks (PANs), since one of their primary uses is to serve an individual
connecting a laptop or PDA to a desktop machine.

2.2 Wireless protocols
Wireless protocols are used to connect mobile devices to the Internet. Many of
the wireless protocols have defined architectures that optimize the use of the
radio resource and also minimize the capabilities required for the device.

This section is organized into the following topics:

� HTTP protocol
� WAP
� i-mode
� Web Clipping
� Short Message Service (SMS)

2.2.1 HTTP protocol
The most obvious way of accessing Web-based applications from a mobile
device is to use the same protocol and content type used when accessing the
Internet from PC browsers over a wireline network connection. In this case, we
use the HTTP protocol to retrieve standard HTML content, exactly as if we were
accessing the Internet through a fixed workstation.

This approach, which is very suitable for wired connections, presents many
limitations when adopted over wireless networks. In fact, when using TCP/IP
based protocols (such as HTTP) over wireless mobile networks, you have to deal
with the fact that radio networks usually have much less bandwidth and a higher
 Chapter 2. Wireless technologies 41

latency than local or wide area networks. Moreover, wireless connections are
less stable in nature than wired connections and also unpredictable in terms of
availability. TCP/IP-based protocols work well over wireless connections.
However, the performance is slow.

Additionally, most mobile devices have limitations in display capabilities and may
not be able to deal with all the features of full HTML. Sending full HTML to mobile
devices can be useless in some cases, considering that some of this information
will be ignored by the client browser. Due to the limited bandwidth and capability
of mobile devices, simplified markup languages have evolved that are optimized
for the limited bandwidth available and the limited capabilities of the mobile
device.

Many alternative protocols and markup languages have been created for mobile
environments. For example, the WAP technology (see 2.2.2, “WAP” on page 42)
uses a protocol stack different from HTTP and a new markup language, such as
WML. Moreover, it introduces a new scripting language for mobile devices, which
is the equivalent of JavaScript in the Internet world. The i-mode approach (see
2.2.3, “i-mode” on page 46) is slightly different. It defines a new markup
language, which is called Compact HTML (or more simply cHTML) and, as the
name suggests, is a subset of HTML with a few special tags. However, unlike
WAP, it still relies on the HTTP protocol.

The Palm Web Clipping solution (see 2.2.4, “Web Clipping” on page 52) is similar
to i-mode in some respects. For example, they both use the HTTP/S protocols,
but the page content is encoded according to a Palm proprietary format, called
the Web Clipping Application (WCA) format. The content is retrieved from the
content server in standard HTML and is then translated into WCA format by a
proxy for proper rendering on the Palm device.

As the next-generation networks (for example, IMT-2000/UMTS) become
available, which provide very high data throughputs, the HTTP/S protocols and
HTML markup language become a much more viable solution for mobile
devices.

2.2.2 WAP
The Wireless Application Protocol (WAP) is a standard for providing cellular
phones, pagers, and other handheld devices with secure access to e-mail and
text-based Web pages. Introduced in 1997 by Phone.com, Ericsson, Motorola
and Nokia, WAP provides a complete environment for wireless applications that
includes a wireless counterpart of TCP/IP and a framework for telephony
integration, such as call control and phone book access.
42 Mobile Commerce Solutions Guide using WebSphere Commerce Suite V5.1

WAP features the Wireless Markup Language (WML), which was derived from
Phone.com's HDML and is a streamlined version of HTML for small-screen
displays. It also uses WMLScript, a compact JavaScript-like language that runs
in limited memory. WAP also supports handheld input methods such as a keypad
and voice recognition. Independent of the air interface, WAP runs over all the
major wireless networks in place now and in the future. It is also device
independent, requiring only a minimum functionality in the unit so that it can be
used with a myriad of phones and handheld devices.

WAP was developed because of the strong limitations of both mobile devices
and wireless networks. Most wireless devices are often very limited in terms of
display, processing power and available memory. Moreover, wireless networks
themselves are characterized by limited bandwidth and high latency. In order for
wireless devices to be able to access Internet content in a way similar to wireline
PC browser clients, WAP was developed. The problems related to the use of
TCP/IP over a wireless connection are described in 2.2.1, “HTTP protocol” on
page 41. The WAP specification defines an architecture that optimizes the use of
the radio resource and also minimizes the capabilities required for the device.

The main elements of the WAP specification are as follows:

� A Wireless Application Environment (WAE), which includes a microbrowser
and is very well-suited for devices with poor capabilities.

� A new markup language called the Wireless Markup Language (WML), and a
new scripting language called WMLScript.

� A new protocol stack, which is independent of the underlying network and is
suitable for connections that have low bandwidth and are often unreliable.

� A secure protocol called Wireless Transport Layer Security (WTLS), which
provides authentication and confidentiality.
 Chapter 2. Wireless technologies 43

Figure 2-12 WAP stack vs Internet stack

Figure 2-12 shows the WAP stack (on the right-hand side) and how it compares
to the Internet stack. The first thing to observe is that the WAP protocol does not
make any assumptions about the underlying bearer service (for example, the
network data service used to transport information). We can have WAP over a
GSM circuit-switched data connection (CSD), over CDPD, and even over SMS.
The transport layer, which is the lowest layer in the stack, is very similar to UDP.
The topmost layer is the WAE, which includes WML and WMLScript that
correspond respectively to HTML and JavaScript.

The WML markup language is based on XML. It can be viewed as a simplified
version of HTML. It allows the user to enter data, select from a list, and display
text and certain types of images. Example 2-1 shows a simple WML code
sample.

Example 2-1 A simple WML code sample
<?xml version="1.0"?>
<!DOCTYPE wml PUBLIC "-//WAPFORUM//DTD WML 1.1//EN"
"http://www.wapforum.org/DTD/wml_1.1.xml">
<wml>

<card id="card1" title="A first example">
<p align="center">

Hello WAP World.
</p>

</card>
</wml>

HTML
JavaScript

HTTP

TLS - SSL

TCP/IP
UDP/IP

Wireless Application Protocol

Wireless Application
Environment (WAE)

Session Layer (WSP)

Security Layer (WTLS)

Transport Layer (WDP)

Other Services and
Applications

Transaction Layer (WTP)

SMS USSD CSD IS-136 CDMA CDPD PDC-P Etc.

Bearers:
44 Mobile Commerce Solutions Guide using WebSphere Commerce Suite V5.1

WAP architecture
The communication between the client and the WAP gateway is based on the
WAP protocol stack, whereas the link between the gateway and the content
server uses standard HTTP/S. The WAP architecture is depicted in Figure 2-13.

Figure 2-13 WAP architecture

The overall flow for a request coming from a WAP client is as follows:

1. The client sends a request for a WML deck by using the WAP protocol stack
(for example, WSP, WTLS, etc.).

2. The WAP Gateway translates this request from the WAP protocol stack into
the WWW protocol stack (for example, HTTP/S). The obtained request is
then sent to the Web Application Server.

3. The Web Application Server generates the content to be returned to the
client. The server can use advanced Web technologies, such as servlets or
JSPs, to dynamically generate the response deck.

4. The content is returned as an HTTP/S response to the WAP gateway.

5. The WAP gateway encodes the content in a more compact format to optimize
the use of the radio resource and then translates the response from the
WWW protocol stack to the WAP protocol stack. Finally, the response is sent
to the client.

If the WAP client sends a request for a WMLScript piece of code, this code is
returned in a compiled format (to the client), in order to reduce the processing
power required on the client device.

Web Appl. Server

JSPs
Servlets

etc.

W
M

L
D

ec
ks

w
ith

 W
M

L-
S

cr
ip

t

WAP Gateway

WML Encoder

WMLScript
Compiler

Protocol Adapters

Client

WML

WML-
Script

WTAI

Etc.

HTTP/SWSP/WTLS

Content
 Chapter 2. Wireless technologies 45

2.2.3 i-mode
i-mode is a wireless service developed by NTT DoCoMo in Japan. It is designed
to provide mobile phone voice service, Internet and e-mail access. The i-mode
protocol uses compact HTML (cHTML) as its markup language for the reasons
that WAP use WML.

In order to develop i-mode applications, you will need to enter into a
confidentiality agreement with NTT DoCoMo. The agreement will allow you
access to the i-mode proprietary APIs to develop secure i-mode applications.
NTT DoCoMo’s i-mode service is predominately used in Japan. NTT DoCoMo
has recently signed agreements with Telecom Italia Mobile in Italy, and AT&T in
the US to provide i-mode service in 2002.

Carrier Internet access architecture
There are three major carriers for wireless connectivity of mobile phones in
Japan:

� NTT DoCoMo
� KDDI
� J-PHONE

Figure 2-14 Mobile phones interaction with Web servers

NTT Docomo's
i-mode Gateway

Web Servers forDedicated Line

KDDI's
EZweb Gateway

J-PHONE's
J-SKY Gateway

Internet

i-mode
Cellphone

EZweb
Cellphone

J-SKY
Cellphone

- PC
- i-mode
- EZweb
- J-SKY

PC Browser
46 Mobile Commerce Solutions Guide using WebSphere Commerce Suite V5.1

Each of the carriers seen in Figure 2-14 has been providing Internet connectivity
service for their mobile phone users since 1999. NTT DoCoMo provides i-mode
service to approximately 35,000,000 customers, of which 20,000,000 customers
have Internet access.

Each carrier has a gateway center to translate the wireless transmission from the
mobile phone to TCP/IP protocol so that it can be sent over the Internet. The
i-mode service provided by NTT DoCoMo has a basic fee of 300 Yen
(approximately 2.5 USD), and bills customers and additional charge based on
the amount of packets that the user sends and receives from the gateway. For
example, 128-byte packet transferred costs 0.3 Yen (0.0025 USD).

The carrier provides Internet e-mail service with an address such as
xxxx@docomo.ne.jp. There is a one-to-one correlation of e-mail address and
phone number. The outbound e-mail is transferred through the gateway to the
Internet. The inbound e-mail is routed through the gateway and notification is
sent to the mobile phone that an e-mail has been received.

The concept of a SIM card provided by WAP is not used by i-mode or other
protocols or services in Japan. If you want to change from your old phone to a
new mobile phone and you are using the same carrier, you will have to choose
from one of the following options:

� Use the former phone number and e-mail address.

� Use a new phone number and e-mail address.

If you want to change the mobile phone to a different carrier service, you have to
change your phone number as well as your e-mail address.

Official Site and Voluntary Site in Japan
Each carrier in Japan has an Official Site service. The content provider (Web site
or commerce site) needs to register with the carrier to become an Official Site.
Once the content provider is approved as an Official Site, they gain access to
many benefits from the carrier. For example, Official Site content providers are
listed on the home page of mobile phones serviced by the carrier. The carrier
acts as a portal site when the user of the mobile phone accesses the Internet.
This feature is always turned on and is not customizable by the user.

It is not easy to type long URLs on a mobile phone. The user can connect to the
Official Site easily by navigating the menu, thus giving the content provider a
much higher chance of the site being accessed.

Note: The concept of a SIM card will be provided with the rollout of the new
IMT2000 mobile phone provided by NTT DoCoMo.
 Chapter 2. Wireless technologies 47

Another benefit of the Official Site is that the carrier, rather than the content
provider, collects access fees to pay for content. The carrier sends a bill to the
users which includes the usual calling fee, Internet service fee (including e-mail
service), and an access fee to pay for the content served based on the packets
transferred. Having payment services provided by the carrier makes it easy for
content providers to engage in m-commerce without having to address issues
related to interfacing with many payment systems and technologies. Users are
billed a fee for accessing content provider for m-commerce. For example, NTT
DoCoMo includes a 9% surcharge on all fees collected from the content
providers.

The third benefit of an Official Site is security. For example, i-mode provides a
dedicated line connection service between the service provider i-mode gateway
and the Web server of the Official Site. Content providers such as banks or
securities firms for trading stock commonly use this service to get a highly secure
connection.

The carrier can use the mobile phone unique identifier (in some cases supplied
by the carrier gateway) and the IP address of the carrier gateway to build a
secure system. WCS V5.1 uses this information for session control between the
mobile phone and the WCS server. For more information on WCS V5.1
m-commerce session control, refer to 4.3, “Session control” on page 92.

Table 2-6 provides a summary of the differences between Official and Voluntary
Sites for i-mode.

Table 2-6 The difference between Official Site and Voluntary Site for i-mode

Title Official Site Voluntary Site

Number of sites 1600 39000

Navigate by Menu list URL/other portal site

Content Acceptable for public
policy

Anything

Link to other site Restricted As they wish

Payment for contents Provided Not provided

Dedicated line to Web server Provided Not available

Mobile phone device
information

Provided Not available

IP address of gateway Provided Not available
48 Mobile Commerce Solutions Guide using WebSphere Commerce Suite V5.1

NTT DoCoMo does not charge extra registration fees for the Official versus
Voluntary Sites. The business model of NTT DoCoMo is based on usage.
Specifically, users are charged a fee according to how many packets they have
transferred through the gateway. The more popular a Web site is, the more
profitable the site will be for NTT DoCoMo.

If content providers want to become an Official Site, they are required to submit a
business case proposal, which explains the business potential, uniqueness, and
the advantage to the other Official Sites. The carrier will examine the proposal
and decide if the content provider is worthy of an Official Site or not.

Voluntary Site access is free. All that is needed to make content available for a
Voluntary Site is the appropriate markup language. One disadvantage is that you
cannot get any mobile device-related information from the carrier. It is more
difficult for WCS V5.1 to provide session control without this information. In
Japan, if you want to build an m-commerce Web site, we strongly recommend
that you try to become an Official Site.

NTT DoCoMo 503i Series: Cell phone with Java
The 503i Series supports two major new features: Java and SSL. The Java
platform has been developed to support the 503i Series. In addition to the i-mode
extended libraries, it contains the following:

� Java2 platform Micro Edition (J2ME)

� Connected Limited Device Configuration (CLDC)

Note: A new model of mobile phone called the 503i Series from NTT DoCoMo
in Japan has the capability to transfer its own device identifier to the Web
server. This feature allows Voluntary Sites to be accessed with a unique
identifier critical for security, without needing the carrier gateway to provide
this service.
 Chapter 2. Wireless technologies 49

Figure 2-15 Java architecture for NTT DoCoMo 503i Series

The Java architecture of the NTT DoCoMo 503i Series mobile phone is depicted
in Figure 2-15. Users of the 503i Series can download programs from Web sites
via the HTTP protocol. The downloaded program is called iAppli, and is executed
as a Java applet.

The device is small, so there are some limitations and considerations for using
Java applets on 503i Series mobile phones.

� Java applet

Once the program is downloaded, it is not stored in the browser cache but
stored permanently into a type of storage called a ScratchPad. It is possible
to launch the applet from the ScratchPad when the user is not connected to
the Internet via i-mode. NTT DoCoMo advertises that the user can store at
least three programs on the 503i mobile phone. Each program is required to
be less than 10 KB as a JAR file. The data size must be less than 5 KB in the
ScratchPad.

� Semi-multimedia

Sound files called i-melody and animation GIF files are supported.

Operating SystemOperating System

Native Application InterfaceNative Application Interface

K Virtual MachineK Virtual Machine

CDLC Class LibraryCDLC Class Library

i-mode Extended Libraryi-mode Extended Library

Java Application
Manager (JAM)
Java Application
Manager (JAM)

DataStorage
(ScratchPad)
DataStorage
(ScratchPad)

JAR Storage JAR Storage T
ext Input M

ethod

S
cratchP

ad

N
etw

orking

U
ser Interface

M
anufacturer's

Im
plem

entation Library

http://www.nttdocomo.co.jp/i/java.html
50 Mobile Commerce Solutions Guide using WebSphere Commerce Suite V5.1

� Scheduler

It is possible to launch the program at a specified date, at a certain interval,
and access a Web site using a user agent. The scheduler is used to enable
agent applications, such as a stock price chart or a weather forecast.

� Security

To protect the user from a malicious program, Java applications cannot
access the local address book or dialer function of the mobile phone. We
have listed the restrictions to Java programs in regards to security, which is
controlled by Java Application Manager or JAM:

– A Java program cannot launch or override another Java program.

– A Java program cannot access the other ScratchPads.

– A Java program cannot connect to the Web server, except the one from
which the program was downloaded.

– A Java program can be terminated by the user.

� Compatibility consideration

There is no compatibility with the Mobile Information Device Profile (MIDP) for
the J2ME platform.

For more detailed information or considerations refer to the i-mode Java
Contents Development Guide found at the following URL:

http://www.nttdocomo.co.jp/i/java.html

Note: The i-mode Java Contents Development Guide is only available in
Japanese.

Note: In order to develop i-mode applications, you must enter into a
confidentially agreement with NTT DoCoMo. This agreement will allow you
access to technical information required to develop secure i-mode solutions.

� Refer to the following URLs for information about i-mode provided by NTT
DoCoMo:

http://www.nttdocomo.com
http://www.nttdocomo.com/imode

Some information is available on the NTT DoCoMo Web site; however, this
information is only available in Japanese.

� For questions regarding implementing m-commerce using WCS V5.1 for
i-mode mobile phones, contact IBM Japan at:

http://www.ibm.com/jp/contact
 Chapter 2. Wireless technologies 51

2.2.4 Web Clipping
Web Clipping is a proprietary technology developed by Palm. The main elements
that constitute the Web Clipping architecture are the Palm device, a Web
Clipping proxy server, and the content server. In order to support Web Clipping, a
special piece of software called a Clipper must be present on the Palm device.
This application is a built-in component of all Palm VII devices. However, some
third-party software (for example, OmniSky) can be used to make Web Clipping
applications available also on Palm V and IBM WorkPad devices. The Clipper is
able to interpret and properly render a proprietary format called Web Clipping
Application (WCA) format. This format makes it possible to reduce the amount of
data transferred over the air and the required storage on the Palm. The content
that is retrieved from the content server is in HTML format. The Web Clipping
proxy is in charge of translating the HTML content into this proprietary WCA
format. There are many available proxies that can be used for this, all hosted by
Palm.Net. Web Clipping uses the HTTP/S protocols.

There are two main components to consider when writing Web Clipping
applications:

� The Web Clipping application has to be installed on the device.

� The server side application, which returns the result pages to the device.

A Web Clipping application is like a small Web site stored locally. The starting (or
index) page usually provides a form, or list of links, which are the gateways to the
live data provided by the server.

Result pages (clippings) are returned by the server side application as a
response to the request from the Web Clipping application. The result pages are
written in HTML.

Web Clipping proxy server
A key component of the Web Clipping solution is the Palm Computing Web
Clipping proxy server that resides at the 3Com Corporation’s data center. The
Web Clipping proxy server is responsible for converting the standard Internet
protocols and content from a Web page into a form that is tuned for transmission
across a wireless network and for display on a small device.
52 Mobile Commerce Solutions Guide using WebSphere Commerce Suite V5.1

Figure 2-16 Web Clipping proxy server

As shown in Figure 2-16, the Web Clipping proxy server uses the standard
Internet protocols (TCP, HTTP, SSL) to access Web servers. To ensure
compatibility, the requested pages are in HTML format.

The Web Clipping proxy server implements a reliable layer over the UDP
protocol to talk to the Palm device; this protocol reduces latency and conserves
battery power relative to using TCP.

In Web Clipping, encryption and authentication between the handheld and the
Web Clipping proxy server is performed by Elliptic Curve Cryptography from
Certicom Corporation, which offers extremely high levels of security at small key
sizes. On the server side, the high-strength SSL is used for encryption and
authentication between the Web Clipping proxy server and Web servers
providing HTML content.

Note: For more detailed information about Web Clipping application
development for Palm devices, refer to the following URL:

http://www.palm.com/dev

Wireless
Data Network 3Com Data Center

Compression
Encryption

UDP

HTTP
SSL
TCP

Palm

Bay Net wor ks

B ayN etw orks

Bay Net wor ks

Sports

Bay Ne two rk s

Internet

Travel

Bay Ne two r ks

Directions

Bay Ne two rk s

Stocks

Bay Ne two rk s

News

Ba y Net wor ks

Base Station

Modem Bank

Base Station

Mo dem Bank

Base Station

Mo dem Bank
 Chapter 2. Wireless technologies 53

2.2.5 Short Message Service (SMS)
Short Message Service (SMS) provides two-way alphanumeric paging
messages that can be sent to and from mobile phones.

This section is organized as follows:

� Messaging

� Short Message Service (SMS)

� WCS V5.1 messaging

� SMS implementation

Messaging
An m-commerce solutions usually requires an online client connection to interact
with the commerce application. There are other possibilities where an
asynchronous connection or synchronization connection are possible. These
cases are beyond the scope of this redbook.

During time periods when a user does not have access to a PC browser, and a
user needs to be notified to alert the user of an event, a message can be sent to
the user’s mobile phone (for example, an auction when someone has a higher
bid). The messaging subsystem of WCS V5.1 allows the generation of a
message when a specified event occurs.

Short Message Service (SMS)
Short Message Service (SMS) messages are two-way alphanumeric paging
messages that can be sent to and from mobile phones. SMS messages are
transmitted over the mobile phone's air interface, using the signalling channels so
there is no delay for call setup. SMS messages are stored by an entity called the
Short Message Service Center (SMSC) and sent to the recipient when the
subscriber connects to the network. The number of a cooperative SMSC must be
known to the sender when sending the message. Short messages can be mobile
terminated (MT) or mobile originated (MO). Mobile -terminated messages are the
ones that arrive at the phones; mobile originating messages are sent by a mobile
subscriber. Networks may support either, both, or neither one of these.

A service similar to GSM SMS can also be found in other mobile phone systems.
To keep everything simple, this redbook specifies a unique scheme specifier for
SMS messages in the GSM system; other systems may use other scheme
specifiers.

The SMS messages cannot be longer than 160 characters, in case the message
has to be formatted to fit into this short text.
54 Mobile Commerce Solutions Guide using WebSphere Commerce Suite V5.1

WCS V5.1 messaging
The WebSphere Commerce Suite V5.1 messaging system is capable of
managing all aspects of defining and sending messages generated within
Commerce Suite. It allows you to control the manner in which administrators,
customers, and the back-end systems are notified of various events, such as
customer orders or system errors.

A configuration of the outbound messaging system is performed using the
administration console. Through the administration console, you can determine
what transport methods are to be used, configure them to your specifications,
and assign message types to transport methods. The messaging system can
transport messages via e-mail using SMTP and plain files, and you can also
configure the system to send messages to the back-end system using
MQSeries.

The messaging environment features include the following:

� Composition services, which give you the ability to customize the messages
using predefined JSP templates.

� Support for multiple message transmissions, which allows you to send a
single message through more than one transport.

� Multiple notifications can be sent over the same transport. This is useful for
sending a broadcast e-mail to multiple recipients. The content of a broadcast
e-mail can vary for different recipients.

� Support for the following three forms of processing:

– Transacted processing for messages that should only be sent upon
successful completion of the current transaction.

– Immediate processing for messages that must be sent at the time the
event takes place in Commerce Suite. With this type of communication,
the message is sent whether the transaction is committed or not.

– Request-reply processing for messages that require a response from the
back-end system.

SMS implementation
There are a few different approaches to creating an SMS message with these
tools:

� Using a specially formatted e-mail, and then sending it to an e-mail-SMS
gateway.

� Using an HTTP-SMS gateway, where SMS is sent through an HTTP
connection.
 Chapter 2. Wireless technologies 55

� Using an SMS server, which can connect via a modem to the SMS Center
and send out messages received from the application server.

The first solution is much easier, and requires less knowledge of SMS
messaging, while the other solutions require more programming.

Since most of the service providers allow the users to send SMS in e-mail, and
WebSphere Commerce Suite V5.1 provides e-mail messaging, the e-mail-SMS
gateway solution is the obvious choice.

Figure 2-17 E-mail-SMS gateway scenario

Figure 2-17 represents a simple e-mail-SMS gateway scenario, with the following
steps:

1. The client sends a request to the application server, which invokes a
messaging action.

2. The event starts the messaging procedure, where the message is generated
and sent through the network as an e-mail using SMTP.

3. The mail server delivers the e-mail to the recipient, which is the e-mail-SMS
gateway provider.

4. The gateway sends the appropriate message to the SMS Center, which
delivers the SMS to the mobile device.

Two major steps are required to set up the messaging service on the WebSphere
Commerce Suite server:

1. Configure the WCS V5.1 messaging services

For detailed instructions, refer to 7.4.1, “Configure the WCS V5.1 messaging
services” on page 155.

wireless
network

mobile
phone

Internet

application
server

mail
server

SMS
Center

gateway

1

2
3

4

56 Mobile Commerce Solutions Guide using WebSphere Commerce Suite V5.1

2. Defining the message content

For detailed instructions, refer to 7.4.2, “Define the message content” on
page 156.

2.3 Mobile devices
We have placed the mobile devices into three categories to describe the specific
features that they offer. In practice, there is an ever-growing number of hybrid
devices. For example, the Ericsson R380 WAP phone also has the capabilities of
a PDA.

This section is organized as follows:

� Mobile phones

� Wireless PDAs

� Wireless laptops

� Mobile device pros and cons

2.3.1 Mobile phones
When we refer to a mobile phone in this redbook, we are talking about mobile or
wireless phones that have a microbrowser to access Internet content. Other
names for a mobile phone include cell phone and wireless phone.

A standard mobile phone includes the following capabilities:

� Voice

� Messaging (SMS or WAP push)

� Data (access Internet content via a microbrowser)

Note: For the purposes of this redbook, we have excluded analog cell or
mobile phones that do not provide any Internet browsing capability.

There are two major protocols that are used for mobile phones capable of
Internet browsing: WAP and i-mode.
 Chapter 2. Wireless technologies 57

2.3.2 Wireless PDAs
A Personal Digital Assistant (PDA) is a handheld computer with a wireless
interface that serves as an organizer for personal information. PDAs often have a
pen-based stylus to tap selections on menus and to enter printed characters. The
unit may also include a small on-screen keyboard that is tapped with the pen.
Data is synchronized between the PDA and desktop computer via cable or
wireless transmission.

We are interested in PDAs that have wireless transmission capability and include
a Web browser. The major operating systems for PDAs are Palm OS, EPOC, and
Windows CE. Table 2-7 displays the major wireless PDAs, operating systems,
device manufacturers, and protocols used.

Table 2-7 PDA operating systems and device manufacturers

Palm
The base for this solution is not the device, but the operating system (OS). The
OS called PALM OS is used with a wide range of devices, including the Palm VII,
the IBM WorkPad, and HandSpring Visor. This device has built-in mobile
capabilities, and works as a mobile phone with a data connection.

PDA
type

PDA
operating system

PDA
Manufacturer Protocol

Palm PALM OS Palm V, Palm VII HTTP, WAP,
Web Clipping

IBM WorkPad PC HTTP, WAP,
Web Clipping

Handspring Visor HTTP, WAP,
Web Clipping

PocketPC Microsoft Windows CE Compaq iPac HTTP, WAP

HP Jornada HTTP, WAP

Casio E-125 HTTP, WAP

EPOC Symbian EPOC32 Ericsson R380 WAP

Nokia 9210 Communicator WAP

Psion Series 5mx,
Series 7, REVO, REVO
PLUS

WAP
58 Mobile Commerce Solutions Guide using WebSphere Commerce Suite V5.1

Like many other operating systems on the market, the Palm OS has different
editions. The most widely used editions are: V3.1, V3.3 and the latest, V3.5. All
the versions are improvements on the previous versions. It is important to notice
that some of the software relies on a specific version of the OS.

Palm OS has the capability of running several different browsers to access
Internet content, including:

� HTTP browser

� WAP browser

� Web Clipping browser

HTTP browser
The HTTP browsers on Palm OS are like any other HTTP browser for accessing
Internet content, such as Netscape Navigator or Microsoft Internet Explorer.

From the m-commerce application point of view, there are some key features
required by the browser:

� Secure Socket Layer (SSL)

� Forms

� Cookies

There are several HTTP Web browsers available for Palm OS as follows:

� Intellisync Browse-it

This browser features impressive display capabilities, even for the small PDA
screen. The browser supports SSL and cookies, and the proxy server is
configurable. The browser requires a proxy server from the service provider.
The software and the proxy service are available for free.

� Handspring Blazer

This is a great browser for a small device such as a PDA. It has all the
required capabilities, such as images (b/w, gray, color), security (requires
proxy at the provider), cookies, and HTTP proxy. It supports HTML, WAP
(WML/HDML), and cHTML. The browser and the proxy service are free from
Handspring.

� AvantGo AvantGo

This browser, just like the previous, supports all the necessary functions. The
presentation is average. It does not support a proxy server, but this is not
required. AvantGo is a well-known and long-running product that is available
for free. It requires a proxy server for content providing. The service is free.

� OmniSky OmniSky
 Chapter 2. Wireless technologies 59

The OmniSky browser is basically the same as the Palm VII built-in Web
Clipping viewer.

� Qualcomm EudoraWeb

This is the only browser at this time that uses a true SSL connection.
Unfortunately, the software is not free. It comes with all the required features,
and supports a proxy. Using the software with the Palm OS Emulator, the
Name Server IP address has to be defined (use the nslookup command at
the command prompt to determine the Name Server IP).

There are other HTML Web browsers, but they are not useful in this case, since
they do not support secure connections.

WAP browser
Palm uses the same WAP browsers as WAP phones. The main difference is the
size of the screen.

Some WAP browsers include the following:

� EdgeMatrix WAPman

This is a commercial WAP browser with WTLS security features.

� 4thpass Kbrowser

This is a browser that does not require WAP gateway.

These browsers provide a big screen with WAP wireless access. Considering the
air-time and the small amount of content, it is reasonable to use WAP browsers
on a Palm device.

Web Clipping browser
To achieve the goals of long battery life, low service cost and Internet-like
performance with low bandwidth, Palm Computing took a different approach to
accessing information on the Web. Browsing does not make sense for a
handheld device with a small screen and low bandwidth. The Web Clipping
solution is like clipping an article out of a newspaper to get the part that is
needed, and nothing more.

Note: In Chapter 16, “Palm implementation sample” on page 279, we provide
design and development guidelines as well as sample code for implementing
m-commerce applications for Palm HTML-based browsers.
60 Mobile Commerce Solutions Guide using WebSphere Commerce Suite V5.1

Proxy servers
Some of the above-mentioned browsers require a server called a proxy, which is
a server between the Web browser client and a Web server. The proxy is
necessary for security purposes. These small devices are usually not capable of
calculating heavy encryption keys, such as SSL. Therefore, the device uses a
light (but strong enough) encryption method between the client and the proxy;
then the proxy connects to the Web server using SSL.

The problem is that the client cannot do anything with server certificates,
because the proxy handles the security. Usually proxies only accept certificates
predefined by the service provider (which runs the proxy). If the destination Web
server certificate is not in the proxy database, the client cannot connect to the
site securely. This is a common problem during the development of Palm Web
applications.

PocketPC
PocketPC devices use the Microsoft Windows CE (WinCE) operating system.
The latest version (3G) is called PocketPC, which is similar to the well-known
Windows operating system, but optimized and developed especially for
PocketPC mobile devices.

HTTP browser
WinCE/PocketPC is capable of running more advanced Web browsers, such as
the WinCE/PocketPC version of Internet Explorer called PocketIE. The software
is freely available for download from the Internet.

The browser supports the required features to access the m-commerce sites with
support such as SSL, cookies, and proxy server configuration ability.

If the recommended design method is using simplified HTML, cut down the
content - avoid using big images, nested tables, JavaScript, and Java.

WAP browser
Since WinCE/PocketPC devices are powerful enough to run sophisticated Web
browsers, the availability of WAP browsers is very limited. Eventually an
application may require a WAP browser on a WinCE/PocketPC device, but it is
not reasonable because there are better applications for wireless
communication.

Some examples of WAP browsers for WinCE/PocketPC include the following:

� Ezos’s EzWAP V1.0 for all Windows platforms

� Ezos’s EzWAP V2.0 for PocketPC only
 Chapter 2. Wireless technologies 61

EPOC
Symbian’s EPOC is an emerging operating system in the wireless PDA market.
Some examples of manufacturer devices that use EPOC include the following:

� Psion Series 5mx, Series 7, REVO, REVO Plus

� Ericsson R380

� Nokia 9210 Communicator

You may notice that the devices are very different from each other. The OS for
these devices is EPOC, but the applications are different.

HTML browser
The most powerful browser for EPOC is the latest version of the freely available
browser called OPERA. This browser was originally available for PCs.

WAP browser
Since the Ericsson R380 and the Nokia 9210 are mobile phones or
communicators, they have built-in WAP browsers.

The Pocket PC does not replace Windows CE. The Pocket PC is the hardware
device, and Windows CE is the operating system. The Pocket PC uses a
customized version of the Windows CE 3.0 operating system, built by Microsoft
and used specifically in Personal Digital Assistants (PDAs), such as the Compaq
iPaq and the Hewlett-Packard Jornada. While this customized version is only
used in PDA-type devices, Windows CE 3.0 can be used in a wide variety of
devices including industrial automation devices, Internet access devices, Web
terminals, kiosks, consumer electronics, or retail and point-of-sale devices.

2.3.3 Wireless laptops
This category includes laptops, notebooks, or portable PC browser clients that
have a wireless interface to the network for Internet access. These clients use
standard TCP/IP protocols and a standard browser, such as Netscape Navigator
or Microsoft Internet Explorer. The wireless connection is usually much slower
than wireline-based network clients. An example can be an IBM ThinkPad T20
with a GSM mobile phone connected through the infrared port.

2.3.4 Mobile device pros and cons
Compared to a personal computer, the mobile device is small and portable. This
portability is an advantage over the PC in usability, accessibility, and costs.
However, there are disadvantages when using a mobile device instead of a PC.
We have listed some of the pros and cons of using a mobile device.
62 Mobile Commerce Solutions Guide using WebSphere Commerce Suite V5.1

Pros of mobile devices
� Portability

The user can receive information anytime and anywhere by e-mail or a direct
phone call. This enables people to receive information instantly. Combined
with GPS (Global Positioning System) capability, you can always be reached.

� Easy operation

Mobile devices can be switched on instantly. The user can operate a cell
phone with a single hand, even with one finger or thumb. Also, a power cable
is not needed.

� Low cost

Mobile devices consume very little power, and are relatively cheap in
comparison to a PC browser client.

Cons of mobile devices
� Quality of line connection

The connection speed to the Internet is relatively slow. The connection can
sometimes be disconnected when a user is moving outside because of
interference, being out of range, or out of the frequency.

� Security

If your mobile phone is lost or stolen while you are connected to a commerce
site, the person with the phone can make purchases at your expense.

Typically, the password is not visible when you enter it on a PC (* is shown).
On a mobile phone, the four or six digits of numeric character are often used
(lowered security).

� Poor user interface

It is difficult to enter characters from a standard keypad on a mobile device.
Some mobile phones requiring pushing the same key several times to
represent different characters in the alphabet.

The key layout is different from device to device and there is no mouse
operation supported as in Windows.

� Small display and cache

� No attachment file support for e-mail (cell phone)

� No cookie support (certain devices)

It is not easy to maintain sessions between a mobile device and Web servers
without a cookie. Some alternative techniques should be used.

� No JavaScript support
 Chapter 2. Wireless technologies 63

Note: WAP does provide WMLScript, which offers capability similar to
JavaScript.

� URL length limitation

On some devices, the maximum length of a URL is 400 bytes.

2.4 Content and markup languages
Content is the information presented to the user on a Web page. This section
provides information about the markup languages used to render content for
Web pages.

Markup languages are a set of labels that are embedded within text to distinguish
individual elements or groups of elements for display or identification purposes.
The labels are typically known as tags. Markup languages identify elements
within a continuous stream of text.

Our intention is not to document how to use the following markup languages, but
to provide insight on how they are used within the context of mobile computing
and m-commerce:

� HTML
� HDML
� WML
� cHTML
� XML
� XHTML

HTML
HyperText Markup Language (HTML) is the most widely used markup language
on the World Wide Web. Web pages are built with HTML tags, or codes,
embedded in the text. HTML defines the page layout, fonts, and graphic
elements, as well as the hypertext links to other documents on the Web. Each
link contains the URL, or address, of a Web page residing on the same server or
any server worldwide, hence the name World Wide Web.

Note: The programming model in WebSphere Commerce Suite V5.1 uses
JSPs for view of the model-view-control model. In this case the view is done
using a JSP with a markup language such as HTML, XML or WML embedded
within the JSP to create the content for the Web page.
64 Mobile Commerce Solutions Guide using WebSphere Commerce Suite V5.1

HTML is not a programming language like Java or JavaScript. It could be
considered a presentation language. HTML is derived from the Standard
Generalized Markup Language (SGML), which is widely used to publish
documents. HTML is an SGML document with a fixed set of tags that, although
they change with each new revision, are not flexible.

HTML is the standard markup language used within the JSPs of WebSphere
Commerce Suite V5.1 and WebSphere Application Server. Initially, HTML was
not used in mobile computing because the network bandwidth and the capability
of the device were so poor that HTML was considered too inefficient. Since the
2.5G and 3G wireless networks have been implemented, network bandwidth is
no longer an issue. The new more powerful mobile devices are capable of using
the HTTP protocol and HTML.

HDML
Handheld Device Markup Language (HDML) is a specialized version of HTML.
Designed to enable wireless pagers, cell phones, mobile phones and other
handheld devices to obtain information from Web pages. HDML was developed
by Phone.com (formerly Unwired Planet) before the WAP specification was
standardized. It is a subset of WAP with some features that were not included in
WAP.

HDML is still widely used in the US and has several million users in Japan,
although the dominant markup language and service are cHTML used with
i-mode. The UP.Browser developed by OpenWave Phone.com provides support
for HDML markup.

WML
Wireless Markup Language (WML) is a tag-based language used in the Wireless
Application Protocol (WAP). WML is an XML document type allowing standard
XML and HTML tools to be used to develop WML applications. It evolved from
Phone.com's HDML, but WML is not a superset of HDML. Certain HDML
features are not found in WML.

Note: We provide a sample m-commerce implementation using HTML for:

� m-commerce Direct in 16.1, “Palm HTML browser implementation” on
page 280.

� m-commerce using WTP in 19.3.1, “HTML content using WTP” on
page 307.

Note: We provide a sample m-commerce implementation using HDML in
Chapter 14, “HDML implementation sample” on page 265.
 Chapter 2. Wireless technologies 65

cHTML
Compact HTML (cHTML) is a more efficient variation of HTML specifically
designed for use by the i-mode wireless service. Information on cHTML can be
found at the following URLs:

http://www.nttdocomo.com/i/index.html
http://www.nttdocomo.co.jp/i/tag.html

XML
Extensible Markup Language (XML) is an open standard for describing data from
the W3C. It is used to define data elements on a Web page and
business-to-business documents. It uses a tag structure similar to HTML;
however, whereas HTML defines how elements are displayed, XML defines what
those elements contain. HTML uses predefined tags, but XML allows tags to be
defined by the page developer. Thus virtually any data items, such as product,
sales representative and amount due, can be identified, allowing Web pages to
function as database records. By providing a common method for identifying
data, XML supports business-to-business transactions and is expected to
become the dominant format for electronic data interchange (EDI).

Since its introduction, XML has been hyped tremendously as the panacea for
e-commerce. The human-readable XML tags provide a simple data format, but
the intelligent defining of these tags and common adherence to their usage will
determine their value. For example, commercial XML (cXML) from Ariba and
Common Business Library (CBL) from Commerce One are some of the first XML
vocabularies for business data. DSML is a set of XML tags that defines the items
in a directory. XML tags are defined in an XML schema, which defines content
type as well as name. XML tags can also be described in the original SGML DTD
format, since XML is a subset of the SGML language. There are several Web
sites that provide repositories for publishing and reviewing XML schemas.

Unlike HTML, which uses a rather loose coding style and which is tolerant of
coding errors, XML pages have to be well formed, which means they must
comply with rigid rules.

Note: We provide a sample m-commerce implementation using WML in
Chapter 15, “WAP implementation sample” on page 271.

Note: We provide a sample for using XML in 19.3.2, “XML content using WTP”
on page 309.
66 Mobile Commerce Solutions Guide using WebSphere Commerce Suite V5.1

XHTML
Extensible HTML (XHTML) is a combination of HTML 4.0 and XML 1.0 into a
single format for the Web. XHTML is expected to become the standard format for
Web pages. XHTML also makes it possible for Web pages to be developed with
different sets of data, depending on the type of browser used to access the Web.
Increasingly, handheld devices are used for the Web that must download
abbreviated pages, because they do not have screen displays large enough and
capable of handling the graphics.

2.5 Wireless service providers
A wireless service provider is an organization that provides wireless services to
its customers, including cellular services, satellite services and Internet Service
Providers (ISPs). In this redbook, we are interested in wireless service providers
that provide Internet access. When developing mobile applications, it is very
important to understand the wireless technologies supported by the wireless
service provider in the targeted mobile user’s area. The wireless service provider
dictates the wireless network type, wireless protocol and thus the markup
language used for application development, as well as the supported mobile
device type. In addition, it is important to understand the specifications of the
wireless service provider protocol gateway.

The protocol gateway of the wireless service provider, such as a WAP gateway,
can vary in specification and support. For example, one service provider may
support session control of mobile devices by its WAP gateway, and another
provider may not. This type of consideration will have a significant impact on the
design of your mobile commerce application and should be understood before
entering the application development phase.

2.6 Next-generation technologies
In this section, we highlight some key technologies that will have a major impact
within the mobile computing world in the near future. Most of these technologies
already exist and are continually being updated or improved. The biggest
question with these technologies is when will service providers and technology
providers fully harness their capability and implement them for the mass market.

J2ME - Java 2 Platform, Micro Edition
The capability to run Java on a mobile device allows for many new possibilities
that can be exploited.
 Chapter 2. Wireless technologies 67

Recognizing that one size doesn't fit all, Sun has regrouped its innovative Java
technologies into three editions: Micro (J2ME technology), Standard (J2SE
technology), and Enterprise (J2EE technology):

� Java Virtual Machines that fit the range of consumer devices

� A library of APIs, specialized for each type of device

� Tools for deployment and device configuration

� A profile or specification of the minimum set of APIs useful for a particular
kind of consumer device (set-top, screenphone, wireless, car, and digital
assistant) and a specification of the Java Virtual Machine functions required
to support those APIs

Java 2 Platform, Micro Edition (J2ME) is a Java technology specifically designed
to address the vast consumer market, which covers the range from extremely
tiny commodities such as smart cards or pagers all the way up to the set-top box,
an appliance almost as powerful as a computer. J2ME provides a Java Virtual
Machine (JVM) capable of running on mobile devices.

J2ME platform maintains the qualities that Java technology:

� Built-in consistency across products of running anywhere, any time, over any
device

� Portability of the code

� Same Java programming language

� Safe network delivery

� Applications written with J2ME technology are upwardly scalable to work with
other Java editions

J2ME has been implemented by various technology providers, such as NTT
DoCoMo’s i-mode 503i. The 503i mobile phone includes J2ME support and is
used by many Japanese mobile phone manufacturers.

Another example of a Java-enabled mobile phone is the Motorola i85s. This
phone has been manufactured in partnership with Motorola Inc. and Nextel. The
the i85s is among the first phones to use Java and comes loaded with a number
of applications, including voice-activated dialing, a datebook, an enhanced
phone book, a voice recorder, menu customization, and enhanced security.

More detailed information on J2ME can be found at:

http://java.sun.com/j2me/
68 Mobile Commerce Solutions Guide using WebSphere Commerce Suite V5.1

Bluetooth
Bluetooth is a wireless personal area network (PAN) technology from the
Bluetooth Special Interest Group, founded in 1998 by Ericsson, IBM, Intel, Nokia
and Toshiba. Bluetooth is an open standard for short-range transmission of
digital voice and data between mobile devices (mobile phones, wireless PDAs,
wireless laptops) and desktop devices. It supports point-to-point and multipoint
applications.

Bluetooth provides up to 720 kbps data transfer within a range of 10 meters, and
up to 100 meters with a power boost. Unlike Infrared Data Association (IrDA),

which requires that devices be aimed at each other (line of sight), Bluetooth uses
omnidirectional radio waves that can transmit through walls and other non-metal
barriers. Bluetooth transmits in the unlicensed 2.4 GHz band and uses a
frequency-hopping spread-spectrum technique that changes its signal 1600
times per second. If there is interference from other devices, the transmission
does not stop, but its speed is downgraded.

More detailed information on Bluetooth can be found at:

http://www.bluetooth.com

High speed wireless networks
IMT-2000/UMTS will have a significant effect on the mobile computing and
m-commerce market by increasing the bandwidth for mobile devices.

More detailed information on IMT-2000/UMTS can be found in 2.1.7, “IMT-2000”
on page 39.

Voice technologies
Voice XML or VXML is an extension of XML that defines specific tags for voice
and enables access to the Internet via telephones and other voice-activated
devices. AT&T, Lucent, IBM and Motorola created the Voice XML forum to
support this development.

More detailed information on Voice XML can be found at:

http://www.vxml.org
 Chapter 2. Wireless technologies 69

70 Mobile Commerce Solutions Guide using WebSphere Commerce Suite V5.1

Chapter 3. m-commerce development
methodology

In this chapter, we provide the project manager, developer, architect and
specialist with a development methodology for building m-commerce solutions.
The information is structured with a focus on the unique issues related to mobile
computing and m-commerce.

This chapter is organized into the following sections:

� Understanding WCS V5.1

� Market study of the customer environment

� Existing or new site

� Customer requirements

� m-commerce implementation approaches

� Application design considerations

� Application development

� Testing the m-commerce application

3

© Copyright IBM Corp. 2001 71

3.1 Understanding WCS V5.1
Before you start building m-commerce solutions using WCS V5.1, it is important
to understand the systems architecture, programming model, and session
management support in WCS V5.1.

3.1.1 WCS V5.1 systems architecture and programming model
We have provided some useful sources of information for understanding
WebSphere Commerce Suite V5.1.

Systems architecture
Refer to:

� Fundamentals, IBM WebSphere Commerce Suite V5.1, provided on the
product CD

� WebSphere Commerce Suite V5.1 Handbook, SG24-6167

� WebSphere V3.5 Handbook, SG24-6161

Programming model
Refer to:

� Programmer’s Guide, IBM WebSphere Commerce Suite V5.1, provided on
the product CD

� WebSphere Commerce Suite V5.1 Handbook, SG24-6167 (soon to be
available in redbook format)

� WebSphere Commerce Suite V5.1 Customization and Transition Guide,
SG24-6174 (soon to be available in redbook format)

3.1.2 Session management
WebSphere Commerce Suite V5.1 supports two different mechanisms for
session management between the client device and the Web application:

� Cookies

� URL rewriting
72 Mobile Commerce Solutions Guide using WebSphere Commerce Suite V5.1

Cookies
A cookie is a piece of information with a specific format that can be included in
the HTTP headers. When the user visits the site for the first time, a new session
ID for the visitor is generated and sent back to the browser through a cookie. The
browser receives the cookie and stores it locally. If the user requests another
page from the same site, the browser automatically includes the stored cookie
before it is sent to the Web application.

Cookie-based session management in WebSphere Commerce Suite V5.1 uses
two types of cookies:

� Non-secure session cookie

This type of cookie is used to manage session data. It contains the session
ID, negotiated language, current store and the shopper’s preferred currency.
This cookie can flow between the browser and the server on either an SSL or
a non-SSL connection. There are two types of non-secure session cookies:

– WebSphere Application Server session cookie (sesessionid)

It is based on the servlet HTTP session standard and can be found in any
document in the WebSphere Application Server. WebSphere Application
Server cookies persist in memory or in the database in a multi-node
deployment.

– Commerce Suite session cookie (wcs_session_id)

It is internal to Commerce Suite and is not persisted in the database.

� Secure authentication cookie (WCS_AUTHENTICATION_ID)

This type of cookie is used to manage authentication data. An authentication
cookie flows over SSL and is timestamped for maximum security. This is the
cookie used to authenticate the user. Authentication cookies are always
generated by Commerce Suite whenever cookie-based session management
is in use.

Note: By default, both types of cookies expire when the user closes the browser.

Cookies are the most widespread means for session management, because they
are transparent to the user and do not need any specific programming code. The
problem is that many browsers either allow the user to disable the reception of
cookies or, as in the case of some mobile devices (for example, i-mode phones),
cannot handle cookies at all.

URL rewriting
As an alternative to cookies, WebSphere Commerce Suite V5.1 supports
session management via URL rewriting, which consists of encoding the session
ID as a parameter in any URL that the user can invoke from the current page.
 Chapter 3. m-commerce development methodology 73

For example, the link could be as follows:

Clicking this link causes the session ID to be sent in the HTTP request. URL
rewriting requires some additional code to include these session IDs in the
various links. For example, all links within a JSP will have to be rewritten as
follows:

<%= response.encodeURL ("/store/catalog") %>

In addition to these changes, URL rewriting has a limitation: it limits the flow to
generated pages only. In fact, static pages cannot be modified at runtime to
include the session IDs. In this case, the user will be forced to visit only dynamic
pages as long as a session is needed.

One major problem that is encountered when extending a Web-based
application to mobile devices is their limited or missing support of cookies. Most
mobile devices are not capable of storing cookies locally. In some cases, this
limitation is overcome by giving a second entity the task of storing the cookies on
behalf of the phone. For example, WAP gateways are also in charge of storing
the cookies on behalf of WAP phones.

Some other technologies, for example i-mode, do not support cookies at all. One
solution to this problem is to require session management from an i-mode
specific adapter, or to use URL rewriting.

3.2 Market study of the customer environment
When developing applications for traditional e-commerce Web sites, one of the
first tasks is to gather requirements. Of course, the customer requirements are
still important, but before you make decisions on what is needed, you must
understand the mobile device and wireless service provider constraints. For this
reason, we recommend a market study of the customer environment.

Note: Some mobile phones have limitations in the length of cookies. This may
cause problems.

Note: Many mobile phones have limitations in the length of URLs. This should
be taken into account when planning to use URL rewriting.
74 Mobile Commerce Solutions Guide using WebSphere Commerce Suite V5.1

Each geography has unique challenges with different types of mobile devices,
number of providers, and different support offered by the providers. Such
countries as Japan have one dominant device type or service, such as i-mode. In
other countries, such as the US, there are many different possible devices and
protocols to consider.

All mobile devices are not created equal. The size of the display and speed of the
mobile network can dramatically affect the design of your application. It may not
be appropriate or practical to develop a complex m-commerce full-function Web
site if your target audience’s mobile device type is a two-line display mobile
phone. In this case it may be more practical to offer complementary m-commerce
functionality to the user than to use the site with a PC browser. For example, a
more limited m-commerce function may be to send an SMS message to the
customer mobile device when the order is shipped. For mobile devices that offer
more advanced functionality, it may be very desirable to create a full-service
m-commerce Web site.

3.3 Existing or new site
What type of site does the customer want? There are several scenarios that you
should consider when planning and designing an m-commerce Web site.

� Extending an existing e-commerce Web site for mobile clients

It is important to understand if you need to extend an existing PC
browser-accessible e-commerce Web site, and what the existing content is.

� New m-commerce Web site for mobile clients and PC browser clients

When designing a commerce Web site from scratch, there are many design
issues that could make the development of an m-commerce application more
seamless in the way that the application is developed.

� New m-commerce Web site for mobile clients

In some cases. the customer may only want a commerce Web site for mobile
clients. The design implications for the runtime and development approach
may be impacted by this decision, as we will discuss later.

3.4 Customer requirements
Before you perform a traditional customer requirements review, it is critical that
you understand the limitations of the mobile infrastructure. This section will help
you shape the requirements with the customer to fully realize what is possible.
 Chapter 3. m-commerce development methodology 75

3.5 m-commerce implementation approaches
There are two approaches for implementing m-commerce using WCS V5.1:

� m-commerce direct

m-commerce direct is an implementation approach for supporting mobile
devices directly connecting to the WCS V5.1 commerce Web site by detecting
the mobile device and serving content with the appropriate markup language
embedded in JSPs for the mobile device browser.

For example, WAP mobile phones accessing an m-commerce direct enabled
commerce Web site will be served content JSPs with WML markup.

� m-commerce using WTP

m-commerce using WTP is an implementation approach for supporting
mobile devices that use WebSphere Transcoding Publisher (WTP) as a filter
to transcode WCS V5.1 content JSPs from either HTML or XML into the
markup language supported by the detected mobile device browser.

For example, an m-commerce application containing JSPs with simplified
HTML output can be transcoded by WTP into WML for WAP mobile phones,
and cHMTL for i-mode mobile phones.

There are some cases when a customer environment may require the use of
both an m-commerce direct approach and the m-commerce using WTP
approach. For example, you may want to provide optimal support for specific
i-mode mobile phones, but also provide generic support for several other device
sets, such as WAP mobile phones and PDAs.

3.5.1 m-commerce direct
The direct approach uses a device manager that receives a request containing
information about a device from a servlet. It determines which adapter would
best process the request, and passes the request to the appropriate adapter.
Adapters are device-specific components that perform processing functions
before passing a request to a controller.

Computing flow
1. To prevent applications from having to handle system functions, such as

access control and authentication, requests from any device are first
processed by the Commerce Suite Web Controller.

2. The adapter creates a session context and a controller request object, and
passes the controller request object to the Web Controller.
76 Mobile Commerce Solutions Guide using WebSphere Commerce Suite V5.1

The controller request object contains a set of properties, formatted by the
adapter. It also contains a backward reference to the adapter object and a
reference to the session context object created by the adapter.

3. The Web controller executes the request by invoking the corresponding
controller command.

All business logic is implemented in the controller command.

4. Based on the view name returned by the controller command, it will return the
appropriate JSP file to the requesting device as seen in Figure 3-1.

Figure 3-1 m-commerce direct - computing flow

To implement the m-commerce direct approach, you must configure the device
manager to recognize the type of device that is assessing your store. This is
accomplished by creating a PvC adapter and content JSPs with the appropriate
markup language of the targeted mobile device.

The features and functionality added to WCS V5.1 to enable m-commerce can
be found in Chapter 4, “m-commerce features and functionality in WCS V5.1” on
page 85.

3.5.2 m-commerce using WTP - application runtime topology
One of the biggest challenges in mobile computing is providing support for the
many different mobile devices, each potentially using its own unique presentation
language, often referred to as a markup language (CHTML, WML, HDML, HTML,
XML, and XHTML). Coupled with this, you need to be able to provide support in
an efficient manner, taking into account low network bandwidths.

Mobile
Device

Request
Sent

Response
Returned

Mobile
Application

WCS 5.1

Request
Sent

Response
Returned

Mobile
Internet

Request
Servlet

Device
Manager

Controller
Command

View
Command

Web
Controller

JSP
File

PVC
Adapter
Session
 Chapter 3. m-commerce development methodology 77

The WebSphere Transcoding Publisher transforms arbitrary content into a form
that can be presented on a device different from the original target, such as
changing HTML content intended for desktop PCs to WML content suitable for
the new class of WAP mobile phones.

In general, transcoding is the process of transforming content from one format
into another. This includes conversion between alternative screen or window
sizes and aspect ratios, so that the content can be displayed on a wide and
growing variety of devices. It also includes conversion into another language.

Both enterprise and Web content may be filtered, transformed, converted, or
reformatted to enable them to be universally accessed by a variety of devices, to
exploit specific application requirements for content customization, and to enable
personalization of general content. Moreover, this content may be delivered over
a wide range of networks, and as a result the network bandwidth and latency
encountered will vary greatly. Figure 3-2 presents the computing flow of
m-commerce using WTP.

Figure 3-2 Computing flow of m-commerce using WTP

For more detailed information on WTP, refer to IBM WebSphere Transcoding
Publisher V1.1, Extending Web Applications to the Pervasive World, SG24-5965.

3.5.3 Guidelines for selecting the implementation approach
This section provides considerations for selecting the m-commerce
implementation approach. We have examined considerations based on
functionality, extensibility, scalability, development effort and cost.

Key questions for selection input
Here are some questions to help in your selection:

1. What is the targeted mobile device type (for example, WAP mobile phones,
i-mode mobile phones, etc.)?

Request

Response

Mobile
Device

Request Specific
Content Format

Response Specific
Content Format

WCS
5.1

Request Specific
Content Format

Response Specific
Content Format

Mobile
Internet

WTP
78 Mobile Commerce Solutions Guide using WebSphere Commerce Suite V5.1

2. How many different types of mobile devices exist within the category of
mobile devices that you plan on supporting?

For example, there are many manufacturers of WAP mobile phones. These
mobile phones may have different specifications for screen size, memory, and
URL buffering capability.

3. How many content JSPs will your application support?

4. Is your m-commerce application a full-function or limited-function commerce
store?

5. Do you already have an existing commerce Web site with JSPs using HTML
or XML content?

6. Does the m-commerce application need to be highly precise in the support
and capability provided for the mobile device?

Pros and cons of m-commerce direct
Following are the pros and cons of the m-commerce direct approach as key
decision points for making an implementation selection.

Pros:

� If you need a high level of customization and support for a specific mobile
device, the m-commerce direct approach provides the most flexibility.

� If you have a limited number of mobile devices to support within a given
mobile device category, m-commerce direct may be the best approach.

For example, in Japan i-mode mobile phones are dominant. Developing JSPs
with cHTML content may provide the best support for the targeted i-mode
mobile phone.

� The acquisition cost of the direct approach is very low.

Cons:

� If you have many mobile devices that require separate JSPs with different
markup languages, the direct approach may not be a good option because of
the high cost of developing the content JSPs.

� Each device type needs a customized version of the JSP with specific content
for the targeted mobile device.

� Development cost can be high if changes are required for more than one
mobile device set of content JSPs.
 Chapter 3. m-commerce development methodology 79

Pros and cons of m-commerce using WTP
The theory behind using transcoding is that you need only put a transcoder in
front of your existing commerce Web site. We have found that in practice there is
a little more to it than that.

Following are the pros and cons of the m-commerce using the WTP approach as
key decision points for making an implementation selection:

� You will need to modify your content JSPs to contain either simplified HTML
or XML for output of WCS to WTP for transcoding.

� Transcoding offers advantages when support is needed for more than one
mobile device category, with many variations within the device categories.
Content JSPs can be developed using XML with style sheets for the targeted
mobile device.

� The bottom line with transcoders is that they can be made to work, but must
be tuned for identification, by the use of examples, or programmed to execute
in the desired way by modifications. Any change in the back-end system is
likely to require additional programming and training of the transcoder. The
process of programming or training such a transcoder can be elaborate.

� Even with advanced transcoder engines, two problems still remain.

– First, transcoders typically operate on an interaction-by-interaction basis
and they are not usually designed to diverge from this mode. However, in
order to adapt to characteristics of the device, it is necessary to modify the
data flow across interactions. For example, if you have a store that
requires seven mouse clicks to create an order, a transcoder supporting
this service on a PDA device could, with some programming or training,
translate the relevant HTML pages into a suitable format for the mobile
PDA, but it would still deliver seven HTML pages that need to be
navigated, which may not be desirable.

– Second, transcoders usually support existing services. If the new devices
require or permit new services or forms of interaction, transcoders have
difficulty supporting them.

� In order to implement the WTP approach to m-commerce, you must purchase
the WebSphere Transcoding Publisher.

� Using WTP, the maintenance cost for a simple store tends to be lower.

In summary, the m-commerce direct approach is recommended when you intend
to generate content for one or maybe a few types of mobile devices and want a
high level of customization. The m-commerce using WTP approach can be used
when you need to transcode the WCS contents for many types of devices.
80 Mobile Commerce Solutions Guide using WebSphere Commerce Suite V5.1

3.6 Application design considerations
Depending on the implementation approach selected, we have provided more
detailed information on the application design considerations.

For more detailed information on m-commerce direct application design, refer to
10.1, “m-commerce direct application design guidelines” on page 200.

For more detailed information on m-commerce using WTP application design
considerations, refer to Chapter 18, “m-commerce using WTP implementation
and design” on page 295.

3.7 Application development
The application development of an m-commerce Web site will vary from the
different implementation approaches mentioned above in the configuration of the
runtime environment and content JSPs.

Following are the high-level steps for m-commerce application development:

1. Setting up your environment

In order to develop an m-commerce application, you will need to set up the
following:

– Runtime environment

The runtime environment will be used for unit and system testing your
m-commerce Web site.

– Existing commerce Web site

If you have an existing store, you should publish or deploy the store to
verify the runtime environment. An alternative to having your own store is
to use the InFashion sample store.

– Development environment

In order to create the Java classes for the PvC adapter and content JSPs
for the direct or WTP approachm you will need to install and configure the
development environment and tools (Studio and VAJ).

For more detailed information on setting up the runtime, development and
test environments, refer to Part 2, “Setting up your m-commerce environment”
on page 139.

2. Creating the PvC adapter
 Chapter 3. m-commerce development methodology 81

Once we know how to detect the mobile device, we can create the PvC
adapter class in VisualAge for Java. We will implement three methods in the
PvC adapter class: checkDeviceFormat, getDeviceModel, and getTerminalId.

For more detailed information, refer to 11.1, “Creating a PvC adapter” on
page 206.

3. Deploying the PvC adapter

Once we have developed the PvC adapter, we need to deploy the PvC
adapter JAR file, update the Command line argument field in the
WebSphere Advanced Administration Console. Next, update the WCS
instance XML configuration file with the PvC adapter definition.

For more detailed information, refer to 11.2, “Deploying a PvC adapter” on
page 218.

4. Content management configuration

Content management works with the PvC adapter to provide the proper JSPs
for the detected mobile device. The content management configuration
requires the WCS database tables to be updated to allow this process.

For more detailed information, refer to 12.1, “Content management
configuration” on page 226.

5. Creating device-specific content JSPs

Whether you are developing an implementation approach using m-commerce
direct or using WTP, you may want to modify the application flow. In WCS
V5.1 JSPs are used to display contents of a Web page. For example, you
may want to reduce the number of pages required for shopping, or possibly
offer only reorder capability based on items in a quick list.

If you are using the m-commerce direct approach, you will need to modify the
content JSPs to include the markup language supported by the target device.
For example, WAP mobile phones will require that JSPs be created with
embedded WML content.

If you are using the m-commerce using WTP approach, you will need to
modify the content JSPs to include simplified HTML or XML with different XSL
for each category of mobile devices.

For more detailed information, refer to 12.2, “Create device-specific content
JSPs” on page 232.
82 Mobile Commerce Solutions Guide using WebSphere Commerce Suite V5.1

6. Deploying m-commerce content

After you have developed your new JSPs, you need to publish them to a
unique directory within the application target directories of your runtime
environment. For example, if your commerce Web site supports PC browser
clients, you may have a directory structure that looks something like the
following:

Example 3-1 Example directory structure for m-commerce content
\stores\InFashion*.jsp (PC client JSPs)
\stores\InFashion\wml_jsp*.jsp (WAP WML content JSPs)
or
\stores\InFashion\wtp_xml*.jsp (WTP XML content JSPs)

Note: One of the functions of the PvC adapter is to detect the mobile device
type and set the correct directory to load JSPs with the appropriate content
for that mobile device.

7. Creating custom commands (optional)

For information on this topic, refer to Chapter 13, “Creating custom PvC
commands” on page 255.

3.8 Testing the m-commerce application
When developing an m-commerce application, there are several test
environments that need to be implemented to ensure proper testing is done prior
to production deployment.

When developing the m-commerce application within VisualAge for Java and
WebSphere Studio we recommend that you set up the following configuration to
test and debug your application:

� WebSphere Test Environment with WCS runtime

The WebSphere Test Environment (WTE) is included in VisualAge for Java
(VAJ) for debugging WebSphere Application Server applications. WebSphere
Commerce Suite V5.1 provides a VAJ repository file to import the WCS
environment into WTE, to run WCS application code and have full debug
capability. This environment is used in application development and unit
testing.

For more detailed information on m-commerce development using the
WebSphere Test Environment, refer to WebSphere Commerce Suite V5.1
Handbook, SG24-6167.
 Chapter 3. m-commerce development methodology 83

� WebSphere Commerce Suite V5.1 runtime

In order to fully test your m-commerce application with the PvC adapter, you
will need to set up a WCS V5.1 runtime environment.

For more detailed information on m-commerce runtime environments, refer to
Chapter 7, “m-commerce runtime environment” on page 141.

� Simulator testing

In the early stages of m-commerce application development it is highly
desirable and cost effective to use software simulators for the mobile device
client testing. The simulators are provided by various manufacturers. Several
manufacturers provide a software developer’s toolkit (SDK) containing
documentation, a simulator, and sample code.

� Real hardware

As your testing progresses, we recommend that you build an environment
that supports real wireless hardware devices. There are many variations that
can be implemented. We recommend that you provide the following two
environments for real hardware testing:

– Real wireless hardware - intranet test environment

Before deploying the m-commerce application code to production, it is
required that you test with real mobile devices. The intranet test
environment allows you to perform nearly all testing without having to
have your application code outside your company’s firewall.

– Real wireless hardware - Internet test environment

In final preparation for production, or if you are developing a m-commerce
application for a wireless protocol that requires services from a wireless
service provider you will need to set up an Internet test environment.

For more detailed information on m-commerce test environments, refer to
Chapter 8, “m-commerce development environment” on page 159. In addition,
information specific to the mobile device type is provided in the following
implementation sections specific to a wireless protocols:

� Chapter 14, “HDML implementation sample” on page 265

� Chapter 15, “WAP implementation sample” on page 271

� Chapter 16, “Palm implementation sample” on page 279
84 Mobile Commerce Solutions Guide using WebSphere Commerce Suite V5.1

Chapter 4. m-commerce features and
functionality in WCS V5.1

Along with the many advantages and business opportunities that m-commerce
presents, there are some technology challenges in properly supporting mobile
devices for m-commerce. WebSphere Commerce Suite V5.1 is ideal for
m-commerce because of its mobile device support features. These m-commerce
features are known as PvC (pervasive computing) extensions.

The chapter is organized into the following sections:

� WCS V5.1 m-commerce enablement overview

� WCS V5.1 m-commerce enablement features

� Session control

� Device control

� Security

� URL buffering

4

© Copyright IBM Corp. 2001 85

4.1 WCS V5.1 m-commerce enablement overview
This section describes the unique challenges presented by mobile devices, as
well as a functionality overview of the features added to enable WCS V5.1 for
mobile commerce.

Session control
Session control provides a means for a Web server to keep track of the client
system users’ transactions, valid URLs and preferences. On PC browser clients,
session control is often maintained by using a cookie in cooperation with the
browser, such as Microsoft Internet Explorer or Netscape Navigator.

In the mobile computing world, some mobile devices do not support cookies on
the client device. In other cases, the session is maintained by the service
provider protocol gateway; such is the case for WAP.

For this reason, the Web server needs another way to identify such a cookie-less
device as a client.

WCS V5.1 supports a function that enables session control between a Web
Server and mobile device by using a unique identifier stored in a WCS PvC
session table called PVCSESSION. The unique identifier information is sent in
the HTTP request header provided by the mobile telecommunication carrier.

Device control
There are several categories of mobile devices such as mobile phones, PDAs,
and wireless laptops. Within the categories of mobile devices, there are often
unique characteristics and specifications. For example, two WAP phones,
whether from the same manufacturer or different manufacturers, may vary from
each other in the following features:

� Microbrowser
� Size of screen
� Screen resolution
� Color capability
� Size of memory

WCS V5.1 provides the ability to detect the mobile device type via the incoming
HTTP request from the mobile device, and send back the JSPs with the
appropriate content and images for that mobile device. This requires content
JSPs and images with the appropriate markup language and graphics to support
the target mobile device.
86 Mobile Commerce Solutions Guide using WebSphere Commerce Suite V5.1

Security enhancement
A mobile device is easily lost or stolen because it is generally small. Also, in light
of the portability of mobile devices, the chances of your user ID and password
being seen in a public space increase. To address these security issues, WCS
V5.1 includes enhanced security functions for logon timeout, command
execution restriction, and user registration control.

URL buffering
Generally speaking, there is a limitation in the length of HTTP requests that can
be transmitted from a small device such as a portable cell phone. Lengthy URLs
with parameter contents, for example the registration input form for a user profile,
may be cut in half due to the small memory in the device. To resolve this
problem, WCS V5.1 provides URL buffering functions. By using the
PVCBufferUrl function, we can divide the original content (perhaps content
originally designed for PC browsers) into several pieces, and send these pieces
to the WCS Server separately. The WCS Server temporarily buffers the separate
data in the WCS database. After all data is sent, the command is executed using
the buffered data.

4.2 WCS V5.1 m-commerce enablement features
WebSphere Commerce Suite V5.1 includes the following features to enable
m-commerce:

� PvC adapter framework
� PvC commands
� PvC data beans

4.2.1 PvC adapter framework
The PvC adapter framework includes the following components:

� PvCAdapterImpl class

– checkDeviceFormat method
– getDeviceModel method
– getTerminalId method

� PvC adapter definition for WCS instance XML configuration file

� PvC adapter WCS database table updates
 Chapter 4. m-commerce features and functionality in WCS V5.1 87

PvCAdapterImpl class
A PvC adapter is implemented as a Java class that extends the class
com.ibm.commerce.pvcadapter.PVCAdapterImpl as the super class. The PvC
functionality is included in the PvC adapter framework included in the WCS V5.1
class libraries.

The values returned by the methods implemented in the class depend on the
wireless protocol and gateway specification. Each adapter class is required to
implement these methods to provide carrier-specific information for the adapter.

When developing a PvC adapter for your target mobile device type, the following
methods must be used:

� checkDeviceFormat

This method checks if the necessary information for session control is
contained in the HTTP request from the browser.

� getDeviceModel

This method is used to get the mobile device model name from the HTTP
request.

� getTerminalId

This method is used to get the unique ID from the mobile device HTTP
request.

We explain how to implement these methods in 11.1, “Creating a PvC adapter”
on page 206.

Deploy the PvC adapter
This section describes how to deploy a PvC adapter.

Deploy the PvC adapter JAR
The PvC adapter code will need to be exported from VisualAge for Java to a JAR
file and then copied to the <wcs_install_path>\lib directory. Next, the JAR will
need to be added to the command line arguments of the WebSphere Commerce
Server from the WebSphere administrator’s console.

Important: If your mobile client type or wireless service provider does not
supply a unique ID, the WebSphere Application Server (WAS) session
information can be used. For example, we used the WAS cookie as the unique
identifier.
88 Mobile Commerce Solutions Guide using WebSphere Commerce Suite V5.1

PvC adapter definition
In order to deploy the PvC adapter, entries need to be added to the WCS
instance XML configuration file. The WCS instance entry attributes, possible
values, and usage example can be found in “PvC adapter definition for the WCS
instance XML file” on page 330.

Content management configuration
This section describes the minimum configuration necessary to provide the
desired content JSPs for the detected device type of the PvC adapter. The
following WCS database tables should be configured:

� PVCDEVMDL

This table stores model information about PvC devices.

� PVCDEVSPEC

This table stores specification information and the JSP content directory. One
record can be shared by more than two devices.

� PVCMDLSPC

This table stores the relationship between the model and the specification.
Models of devices that have similar specifications are categorized to the
same record in the PVCDEVSPEC table.

The following list explains the workings of content management:

1. When a request comes from the browser, the server extracts the model name
from the PvC adapter.

2. The server then looks for the record related to the extracted device model and
adapter name.

3. If a suitable record for the client’s device is found in the PVCDEVMDL table,
which is determined by the relationship stored in PVCMDLSPEC table, a
suitable device specification can be found in PVCMDLSPEC, and the server
will use the value of PVCMDLSPEC.CONTENTDIR for the selected record for
content switching.

4. If there is no model-spec relationship in the PVCMDLSPEC table, the server
will use the adapter default model-spec relationship to select a suitable record
in PVCMDLSPEC for the client's device.
 Chapter 4. m-commerce features and functionality in WCS V5.1 89

For more detailed information on syntax and usage, refer to “Content
management reference” on page 364.

PvC adapter framework reference
For details about the syntax and usage, refer to Appendix A, “PvC adapter
framework reference” on page 329.

4.2.2 PvC commands
The PvC commands are used within the content JSPs for merchants who wish to
manage user and device information.

PVCRegistration
This command enables registration and renewal of the users’ PvC device
information. Registration records of users and PvC device information records
can be made and updated. This command is used together with the Secure
Socket Layer (SSL) to encode the user's logon ID, password and individual
information.

PVCRegistrationDevice
This command enables registration and update of PvC information of users that
have already registered. It creates and updates PvC device information. This
command is used together with the Secure Socket Layer (SSL) to encode the
user's logon ID, password and individual information.

PVCChangeDevice
Some wireless protocols and service providers require a one-to-one relationship
between the device and user. This is offered as a security precaution. The
PVCChangeDevice can be used by updating the PvC adapter definition
registrationMode value to 2 in the WCS instance XML configuration file.

Note: If you do not need to change the JSP root directory for the newly
created PvC adapter, and you do not need to use data stored in the
PVCDEVSPEC table, you do not need to set up the database to manage your
content.

For example, if you are developing a store that only supports mobile devices
of the same type, you can modify the JSPs in the default directory of the
VIEWREG table.
90 Mobile Commerce Solutions Guide using WebSphere Commerce Suite V5.1

You need to manage canceled or changed devices, because once a user has
registered a device, no further registration is allowed using another device for the
account in the WCS database until the old user-device relationship is canceled.

PVCBufferUrl
This command enables buffering of input field data placed in multiple pages, and
delivers this data to one command. It saves parameters of the destination URL
on the server in a temporary database table. Buffers that have not been updated
for some time will be inaccessible. The time until the buffer becomes ineffective is
specified (in minutes) as bufferTimeout in the configuration file.

ReEnterPassword
This command adds the given ReEnter Password parameter to the specified
URL and redirects. Usually the ReEnterPassword command is used by a JSP
that is assigned to ReEnterPassowrdForm. ReEnterPasswordForm is called
when executing a command without a password in password-locked status.

PvC command reference
For detailed information on syntax and usage, refer to Appendix B, “PvC
command reference” on page 339.

4.2.3 PvC data beans
The PvC data beans provide access to buffered parameters and the user device
address.

PVCBufferDataBean
This data bean is required if you want to write a JSP page with parameter
buffering.

UserPVCDeviceDataBean
This data bean allows you to access a user’s device address stored in the
USERPVCDEV table. You can use this data bean when you need to extract data
such as an e-mail address from the USERPVCDEV table.

PvC data beans reference
For detailed information on syntax and usage, refer to Appendix C, “PvC data
bean reference” on page 355.

Note: The PvC data beans packaged in the additional material zip file
associated with this redbook are not officially supported by IBM.
 Chapter 4. m-commerce features and functionality in WCS V5.1 91

4.3 Session control
This section describes the session control functionality provided in WCS V5.1 for
m-commerce enablement.

4.3.1 Unique identifier
The unique identifier in the HTTP header request is used to enable session
control within WCS V5.1. We can identify mobile devices that do not support
cookies, such as a mobile phone, by using this capability.

In some cases the unique identifier is issued by the gateway of the wireless
service provider or the telecommunication carrier that provides the Internet
connection service to the mobile phone user, as seen in Figure 4-1. The
uniqueness of this identifier is assured by the carrier. The identifier is usually
associated with the mobile phone number.

Figure 4-1 Unique identifier flow

4.3.2 PvC adapter
The carrier gateway pads the unique identifier in the HTTP header request sent
to the Web server. Different carriers implement padding of the unique identifier
differently. WCS V5.1 includes a PvC adapter framework to create a PvC
adapter. This PvC adapter extracts the unique identifier from the HTTP request
sent in different formats by the carriers.

Carrier's Gateway

identified by
phone number

Mobile
Phone Web Server

identified by
unique identifier

 translation

090-1111-2222 ABCDEFGHIJ

Note: This means one adapter is needed for each carrier.
92 Mobile Commerce Solutions Guide using WebSphere Commerce Suite V5.1

The identifiers sent from different carriers might be the same if each carrier
implemented its identifier in its own way. To avoid the possibility that the identifier
from the carrier is not unique, WCS5.1 combines the identifier with the PvC
adapter identifier that is generated by WCS V5.1. The combination of the carrier
identifier and the PvC adapter identifier makes all mobile devices unique for all
carriers, as depicted in Figure 4-2.

Figure 4-2 PvC adapter - unique identifier

The adapter ID is stored in the sessiontype field, and the unique identifier is
stored in the terminal field in the WCS database PVCSESSION.

The advantage of the adapter is that we can separate the session control logic
from the business logic.

Carrier A

 WCS Server
www.mywcs.com

Carrier B

http://www.mywcs.com/samp?uniqueidentifier=ABCDEFGHIJ

HTTPHeader ->
subscriberidentifier=ABCDEFGHIJ

Adapter for Carrier A
 adapterid:001
 uniqueid:ABCDEFGHIJ
 (search for "uniqueidentifier=")

Adapter for Carrier B
 adapterid:002
 uniqueid:ABCDEFGHIJ
 (search for "subscriberidentifier=")

Request from Carrier A:

Request from Carrier B:
 Chapter 4. m-commerce features and functionality in WCS V5.1 93

4.4 Device control
This section describes the functionality provided in WCS V5.1 for device control.

4.4.1 Differences between mobile devices
The differences between mobile devices include the unique identifier, hardware
specification, wireless protocol, and the browser.

Markup language
Content is the information presented to the user on a Web page. A markup
languages is a set of labels used to format individual elements, or groups of
elements for the display or rendering of content on Web pages. HTML is the most
widely used markup language for Web pages. Each mobile device has an
underlying protocol that it supports. The protocol and browser determine the type
of markup language that the device supports.

For example, WAP mobile devices widely in use today in Europe use the WML
markup language. In Japan, the three major carriers have different
implementations: compact HTML for i-mode, HDML for EZweb, and MML for
J-SKY. The image file format is also different, as seen in Table 4-1.

Note: Adapters for different carriers or wireless protocols are not included in
WCS V5.1.

� The PvC adapter framework is provided to create your own PvC adapter
for your specific needs. The fundamental framework for creating a PvC
adapter has already been prepared as Java classes and can be developed
using 10 or 20 lines of code. We explain in detail how to create a PvC
adapter in Chapter 11, “Creating and deploying a PvC adapter” on
page 205.

� In addition, we provide sample code for PvC adapters in the sample
implementation chapters including:

– HDML: Chapter 14, “HDML implementation sample” on page 265

– WAP: Chapter 15, “WAP implementation sample” on page 271

– WTP: 19.5, “Creating a generic PvC adapter” on page 316
94 Mobile Commerce Solutions Guide using WebSphere Commerce Suite V5.1

Table 4-1 Three major carriers in Japan

To support mobile devices using the m-commerce direct approach, developers
will need to prepare different content JSPs with the appropriate markup language
and image format for the targeted device.

Browser
The browser or microbrowser on a mobile device varies with different
manufacturers and wireless protocols. Some device vendors implement their
own browser and others use a vendor-developed browser. For example,
OpenWave Phone.com developed a WAP-compliant browser used by Motorola,
and Microsoft developed the Mobile Explorer used by Mitsubishi. The
CompactNetFront* Browser is widely used not only on cell phones but also in
PDAs, computer games, TVs and for car navigation in Japan, as seen in
Table 4-2.

Table 4-2 Browser difference of i-mode terminal in Japan

Service Name i-mode EZweb J-SKY

Markup Language compact HTML HDML (1) MML(cHTML)

Image File Format GIF BMP, PNG PNG

Max data transfer size
(2)

2 KB 1.5 KB 6 KB

(1) Handheld Device Markup Language: almost compatible with WAP
(2) recommended value by each carrier over device dependencies

Hardware Vendors Browser

Mitsubishi, Fujitsu, NEC

(N299i/F209i/D209i/N50ii/F501i/D501i/N502i/F502i/D502)

CompactNetFront (1)

Panasonic proprietary

Sharp proprietary

Note: (1) Copyright of Access Corp. (http://www.access.co.jp/)
 Chapter 4. m-commerce features and functionality in WCS V5.1 95

Display - color, size and resolution
Some devices have monochromatic screens and others are in 256, 4096, or
65536 colors. The size of the screen, number of lines of text, and resolution are
also different. Table 4-3 provides a list of the differences in screen size by
different i-mode mobile phones.

Table 4-3 The difference in screen size among i-mode devices (V-code 7316)

Even if it is possible to see a gray scale bitmap image on a color screen, the
merchants of an m-commerce site will want to customize the content and images
to display their items as well as they on a mobile device. The page design and
maximum number of lines available on a small screen need to be considered.

Other differences
Some new mobile devices have Java support (J2ME), some have a large
amount of memory, some have an embedded digital camera, and others act as
portable headphone stereo recorders. The merchant should customize the
content of the JSPs and images to best support the mobile device.

4.4.2 WCS V5.1 functionality for device differences
By using the PvC adapter in WCS V5.1, mobile devices can be detected by using
the device information sent by the carrier in the HTTP header. Once the device is
detected, the appropriate JSP content and images are used for the mobile
device. Using the appropriate image format supported by the wireless protocol of
the mobile device can provide a more customized and attractive Web page for
the mobile device shopper, as seen in Figure 4-3.

Device Model rows x columns number of characters on screen

P503, N502, N501 20 x 10 200

F503 16 x 10 160

SO503 20 x 9 180

P501, P502 16 x 9 144

NM502 16 x 8 128

F502, D502 16 x 7 112

F501, D501 16 x 6 96
96 Mobile Commerce Solutions Guide using WebSphere Commerce Suite V5.1

Figure 4-3 Device handling by WCS V5.1

4.5 Security
This section describes the functionality added for m-commerce security.

4.5.1 Logon timeout
A mobile device is small and could easily be lost or stolen. If you lose your mobile
phone while you are logged on to a shopping site, the person who finds or steals
your mobile phone can potentially purchase anything they want at your expense.
For this reason, the user of a mobile device is at higher risk than a PC browser
client user when shopping on a commerce Web site.

To provide enhanced security for mobile device users, WCS V5.1 has a logon
timeout function for mobile devices. The site administrator can set the session
timeout value (in minutes) in the PvC adapter section of the WCS instance XML
configuration file. Details on these settings can be found in “PvC adapter
definition for the WCS instance XML file” on page 330.

When there is no access within the time period specified by the timeout value,
WCS V5.1 will automatically lock the session. After the timeout, you can no
longer access the site until you enter your password again when prompted, as
seen in Figure 4-4. WCS5.1 will restore the expected contents that the URL has
stored in the database, and you can continue shopping again.

/imode_mono_16x6/orang.jsp

/imode_col256_16x6/orang.jsp

/imode_col256_20x10/orang.jsp

WCS Server

Monochrome
16 x 6

256 Color
16 x 6

256 Color
20x10
 Chapter 4. m-commerce features and functionality in WCS V5.1 97

Figure 4-4 Logon timeout

4.5.2 Restricted command execution
WCS V5.1 can set up two types of restrictions for executing commands: one is
the password protection mode, and the other is the unexecutable mode. These
settings can be modified by editing the WCS instance XML configuration file, and
the definition is valid only for a certain PvC adapter.

Password protection mode
We can choose the password protection mode for commands such as
OrderItemDisplay, OrderDisplay, OrderProcess, or your own custom-designed
commands, which need to be more secure than other commands.

Once the commands are set up in the password protection mode, users have to
enter their password to execute the commands from the mobile device. Even if
the mobile device is stolen, the thief will not be able to buy anything or access the
owner’s personal information without a password.

Unexecutable mode
This setting is useful if we encounter a security problem for a certain mobile
device or carrier’s service. We can stop the commerce service by setting up
commands in the unexecutable mode.

WCS Commerce Site
timeout=10 (min)

Logon

Keep Shopping
.
.
.

(no operation for 10 minutes)

Denied Page

LogonForm

Deny access

Password

Session
Timeout!

Shopper

Continue Shopping
98 Mobile Commerce Solutions Guide using WebSphere Commerce Suite V5.1

4.5.3 User registration mode
For the users who have already registered with a commerce site from a PC
browser client, it is useful to be able to log on to that site from a mobile device
using the same user ID and password. Most shoppers who want to by something
using a mobile device probably have already purchased something by using their
PC. It is much easier for them to put in their home address or e-mail address by
using PC keyboard. On the other hand, the commerce site should provide the
ability to enter additional information for the mobile user, such as a mobile device
e-mail address or a mobile phone number. This functionality gives the merchant
the ability to send information or notification to the mobile device directly.

WCS V5.1 provides three types of user registration modes for the m-commerce
site. In any case, the single user ID and password can be used between the
mobile device and the PC browser client.

Normal mode (default)
If users have registered with a PC browser client, they can also log on to the site
from a mobile device without registering again, as seen in Figure 4-5.

Figure 4-5 Normal mode for user registration

P C B ro w se r

W C S 5 .1

M ob ile
P ho n e

R e g is te r

L o go n id = u se r1
P a s s w o rd = u s e r1
U se r N a m e = Jo h n S m ith
S tre e t= 1 6 2 3 -1 4
C ity= Y a m a to
S ta te = K a n a g a w a
C o u n try = JA P A N
Z IP = 2 4 2 -8 5 0 2
P h o n e = 0 4 6 -2 1 5 -9 9 9 9
e -m a il= jo h n @ ya m a to . ib m .c o m

L o go n
a s u se r1
u s in g pa s sw o rd u se r1
 Chapter 4. m-commerce features and functionality in WCS V5.1 99

Register once
At the first attempt to log on to the Web site from a mobile device, WCS5.1 will
send a new registration form that lets users input their mobile information, such
as an e-mail address, for their own mobile devices, as seen in Figure 4-6. They
can still use the previous user ID and password, and they do not need to register
their personal information again. This information is stored in the WCS database.

Figure 4-6 Register once

Restricted registration
This mode is similar to the register once mode, but more restrictive. Only one
user can be registered to the commerce site for a certain mobile device, which
means other people cannot use this mobile device to access that commerce site.
Moreover, this user cannot access the same commerce site from a different
mobile device using the same user ID. This means the relationship between a
user ID and his/her mobile device becomes one-to-one as seen in Figure 4-7.

PC Browser

WCS5.1

Cell Phone

Register

Logonid=user1
Password=user1
User Name=John Ganci
Street=1623-14
City=Yamato
State=Kanagawa
Country=JAPAN
ZIP=242-8502
Phone=046-215-9999
e-mail=john_ganci@yamato.ibm.com

Logon
as user1
using password user1

CellPhone=090-1111-2222
mobile-mail=john_ganci@docomo.co.jp

Register
100 Mobile Commerce Solutions Guide using WebSphere Commerce Suite V5.1

Figure 4-7 Restricted registration mode

As a result, the content provider can recognize who is accessing the site by
checking the mobile device unique identifier. The content provider can then send
a customized message tailored to the user's personal interests, such as the
following:

Example 4-1 Restricted registration mode example message
Welcome John! How is the fishing?
(Please Enter your password)"

In this case the user does not need to enter even his/her user ID. This mode
enables one-to-one marketing for the merchant.

4.6 URL buffering
Generally speaking, there is a limit on the maximum length of a URL that can be
sent from a mobile phone. This limit depends on the memory size of the mobile
device. For i-mode devices, we recommend that the length of a URL be less than
300 bytes. If we send a long URL, for example the registration form of the user
profile, the URL might get cut in a half. To avoid this problem, WCS V5.1
provides the URL buffering function, as seen Figure 4-8.

WCS5.1

cell phone A

Register

Logonid=userA
device=cell phone A
mobile-mail=userA@mobile.com

userA
cell phone B

userB
 Chapter 4. m-commerce features and functionality in WCS V5.1 101

Figure 4-8 PVCBufferUrl

If we have a long URL that was originally made for PC browsers, we have to
divide it into several pieces to suit the mobile device. There may be some input
fields in each piece. The data will be stored in the PvC Buffer of the WCS server
by using the PVCBufferUrl command.

The PVCBufferUrl command has three modes, as follows:

� b_new
� b_update
� b_exec

4.6.1 PVCBufferUrl command b_new mode
The b_new mode of URL buffering creates a buffer in the WCS database and
stores the parameters in the first page. Figure 4-9 shows that when the user
types in the value of data A, B and C and clicks the Next button, the
PVCBufferUrl command stores this data (that is, A=1, B=2 and C=3) into the PvC
Buffer in the WCS server, and WCS server will send the next “Page2” to the
client.

http://mywcs.com/webapp/
 wcs/stores/...../RegisterNew?
 logonid=jganci&passwd=****&
 firstname=John&
 lastname=ganci&
 address1="1-1-1 Yamato Japan"&
 phone1=046-999-9999

POST

PvC Buffer

WCS Server

PVCBufferUrl
(b_new)

Logon =
Passwd=
F.Name=
L.Name=
Addr =

Phone =

 jganci

 John
 Ganci
 1-1-1
 Yamato
 Japan
 046-999-9999

Send

Addr =

Phone =

F.Name=
L.Name=

Logon =
Passwd= ****

 jganci

 John
 Ganci

 1-1-1
 Yamato
 Japan
 046-999-9999

Next

Next

Send

Registration Form (1page)

logoinid = jganci
passwd = ****

firstname = John
lastname = Ganci

address1 = 1-1-1 Yamato
Japan
phone1 = 046-999-9999

PVCBufferUrl
(b_exec)

PVCBufferUrl
(b_update)

RegisterNew

WCS ServerRegistration Form (3pages)

URLtoo
long!

Parameter
missing
102 Mobile Commerce Solutions Guide using WebSphere Commerce Suite V5.1

Figure 4-9 PVCBufferUrl b_new

4.6.2 PVCBufferUrl command b_update mode
On page 2, the user types in the value of data D, E and F and clicks Next. The
PVCBufferUrl command then updates the PVCBuffer by inserting this new data.
Next the WCS server sends the next page (page 3) to the client, as seen in
Figure 4-10.

b_new 'Next'

b_url
/PVCRegistration?URL=Ma
llFrontView®istertype=G

A 1

B 2

C 3

Next /RegisterFormView?page=
2

b_no Next'

b_err /PVCRegistrationErrorView

A

B

C

Next

Content Page1

1

2

3

Server Client

1000

/PVCRegistration?URL=MallFront
View®istertype=G

A 1

B 2

C 3

2001/03/19 10:00

PvCBufferUrl

RegisterFormView?page=2

1) Store
PvC Buffer

2) Execute Command

FormData
(Page2)

Click Next
 Chapter 4. m-commerce features and functionality in WCS V5.1 103

Figure 4-10 PVCBufferUrl b_update

4.6.3 PVCBufferUrl command b_exec mode
On page 3, the user types in the value of data G, and pushes Send. The
PVCBufferUrl command then inserts this data into the PvC Buffer. Next, the
WCS server executes the PVCRegistration command with all buffered data
(A-G), and sends a form with the data to the client, as seen in Figure 4-11.

b_updat
e 'Next'

D 4

E 5

F 6

Next RegisterFormView?page=3

Back RegisterFormView?page=1

b_no 'Next', 'Back'

b_err /PVCRegistrationErrorView

D

E

F

Next

Content Page2

4

5

6

Server Client

A 1

B 2

C 3

D 4

E 5

F 6

2001/03/19 10:01

PVCBufferUrl

RegisterFormView?page=3

1) Store
PVC Buffer

2) Execute Command
FormData
(Page 3)

Click 'Next

Back

10001000

/PVCRegistration?URL=MallFront
View®istertype=G
104 Mobile Commerce Solutions Guide using WebSphere Commerce Suite V5.1

Figure 4-11 PVCBufferUrl b_exec

b_exec 'Send'

G 7

Back RegisterFormView?page=3

b_no 'Back'

b_err /PVCRegistrationErrorView

G

Content Page3

7

Server Client

A 1

B 2

C 3

D 4

E 5

F 6

G 7

2001/03/19 10:02

PvCBufferUrl
1)Store

PvC Buffer

2) Execute Command FormData

Click Send

SendBack

1000

/PVCRegistration?URL=MallFront
View®istertype=G

PVCRegistration
 Chapter 4. m-commerce features and functionality in WCS V5.1 105

106 Mobile Commerce Solutions Guide using WebSphere Commerce Suite V5.1

Chapter 5. IBM wireless middleware

In this chapter, we discuss how WebSphere Commerce Suite V5.1 can be used
with other key IBM wireless middleware products to build an m-commerce
solution. We provide an overview of each product and cover considerations when
deploying and integrating the products.

The chapter is organized into the following sections:

� IBM WebSphere Everyplace Suite (WES)

� IBM WebSphere Transcoding Publisher (WTP)

� IBM Everyplace Wireless Gateway (EWG)

� IBM MQSeries Everyplace (MQe)

� IBM DB2 Everyplace

� IBM Mobile Connect

5

© Copyright IBM Corp. 2001 107

5.1 IBM WebSphere Everyplace Suite (WES)
In today’s fast-moving business world, it is important to keep up with the
ever-changing demands of users. Computing is no longer confined to desktop
PCs and people now expect to be able to access information at anytime and from
any place with the device they happen to be using at the time. Accordingly, the
applications in this environment are varied and encompass everything from
simple Web browsing to secure access to business-critical data. There are,
therefore, many challenges to be addressed in this environment, and the
WebSphere Everyplace Suite contains a set of products that address these
issues.

5.1.1 WES overview
IBM WebSphere Everyplace Suite V1.1.3 provides the functionality necessary to
enable both network access and application and content serving to multiple
device types. It also provides the functionality to extend e-business applications
to the new classes of pervasive computing devices discussed previously,
including WAP phones, PDAs, Internet appliances, and screen phones, in
addition to the large base of Internet browsers.

Everyplace Suite is not part of the infrastructure that comprises those business
applications and data, but rather it provides the infrastructure that allow many
different devices to access those applications and data via networks. This is
illustrated in Figure 5-1, which shows how WES logically fits into a deployment of
a multi-channel, end-to-end e-business solution.

Figure 5-1 WES deployment

Clients WebSphere Everyplace Suite Applications and Content

Connectivity
Content
Handling

Security Optimization

Subscriber and Device
Management

Core Services

eCommerce Information

Business Apps. PIM/Messaging

Service Apps. Lifestyle/Fun

WebSphere Server Domino Server

2
3

1
5

6

4
8

9
7 0 #
*

Enterprise
Data

Application
Data

Web
Content
108 Mobile Commerce Solutions Guide using WebSphere Commerce Suite V5.1

From a functional perspective, the IBM WebSphere Everyplace Suite is an
integrated, modular suite of software components. Together, the Everyplace
Suite components provide solutions for connectivity, security, content handling,
optimization, and subscriber and device management.

Components
Each component performs a different function in extending pervasive computing
connectivity. Figure 5-2 shows the product components that comprise the
WebSphere Everyplace Suite under the function they perform.

Figure 5-2 WebSphere Everyplace Suite functions and components

Connectivity

Everyplace
Wireless Gateway

Security

Everyplace
Authentication Server

Subscriber and Device Management

Tivoli Personalized Services Manager

Everyplace Installation
Everyplace Administration

Console

Everyplace
Wireless Gateway

Optimization

Edge Server - Load Balancer

Edge Server - Caching Proxy

Everyplace Wireless Gateway

Content Handling

WebSphere Transcoding
Publisher

MQSeries Everyplace

Everyplace Synchronization
Manager

Core Services

SecureWay Directory
 Chapter 5. IBM wireless middleware 109

Connectivity
This function relates to how devices physically connect to your network. This is
composed of two parts. First of all, you need gateways to provide the access
from different types of wireless and wireline networks. Secondly, you need a
protocol converter to take data transmitted over a specific network type and
convert it into a form that can be used by an application.

IBM Everyplace Wireless Gateway provides secure wired and wireless
connectivity between your enterprise network and whatever external
communications networks that you need to support, for example, GSM, CDMA,
TDMA, X.25, etc. It also implements protocol translation, and provides support
for interfacing to short messaging centers via a series of APIs.

Security
IBM WebSphere Everyplace Suite provides an integrated security model that
gives the user a significantly enhanced end-user experience. The key feature is
the ability to provide single sign-on across all the components of an end-to-end
e-business solution, which fully integrates with standard security techniques
such as virtual private network (VPN) technology, firewall protection, etc.

IBM Everyplace Authentication Server forms the core of Everyplace Suite
security functionality. It provides user and device authentication capabilities that
together enable a single, device-independent user sign-on. It also provides the
pass-through of authentication information to business application and data
servers.

IBM Everyplace Wireless Gateway provides Virtual Private Network (VPN)
support, which allows an enterprise to extend its private intranet across a public
network, such as the Internet, creating a secure private connection by way of a
private IP tunnel.

Content handling
Content handling is the process of moving content from your e-business
solutions (either applications or data) to the point where it is required. This
typically has two main aspects; moving the content and then ensuring that when
the data is at the point where it is needed, it is in a form that can be used. To that
end, this process comprises three main areas:

� Transcoding

Since pervasive computing devices come in all sizes and have widely varying
display capabilities, transmitted content must be customized to fit the
capabilities of the requesting device.
110 Mobile Commerce Solutions Guide using WebSphere Commerce Suite V5.1

� Asynchronous messaging

Asynchronous messaging is a complementary technology to Internet
browsing that is designed for applications where a “fatter” client is acceptable,
and where disconnected modes of operation are required. To support these
modes, it provides assured, asynchronous, once-only delivery of data across
a broad range of hardware and software platforms.

� Data Synchronization

IBM WebSphere Everyplace Suite has the capability to manage the automatic
exchange and updating of e-mail, schedules, transactions, and database
exchanges between popular pervasive devices and database servers. This
allows users to perform work offline, and connect to the network whenever it
is convenient.

IBM WebSphere Transcoding Publisher transforms one form of content into
another so that it can be presented on a device that is different from the originally
intended target. IBM WebSphere Transcoding Publisher performs this
transformation automatically and on-the-fly, reducing or eliminating the need to
maintain multiple versions of the content. A good example of this is changing
HTML content that is intended for desktop PCs into WML content that is suitable
for displaying on a WAP-enabled mobile phone.

IBM MQSeries Everyplace enables pervasive devices to participate in
commercial messaging, sending messages between applications, and assuring
their delivery (once and only once), in a secure and highly efficient manner,
operating in both connected and disconnected modes.

IBM Everyplace Synchronization Manager is another complementary technology
that allows pervasive devices to work in semi-connected modes. It enables
pervasive devices to operate applications offline, and to synchronize the results
of their activities with a server database when connectivity is re-established.

Optimization
As with all e-business solutions, performance is a critical issue. If the
performance is poor, it is easy for a customer to go elsewhere. Customer
expectations are constantly rising, and as the your solution increases in
popularity, it must be capable of scaling to cope with the increased demand. This
is provided through the inclusion of caching and load balancing support to ensure
high performance and scalability.

Subscriber and device management
In the world of pervasive computing, a single device may have multiple users,
and a single user may access the network using multiple devices. IBM
WebSphere Everyplace Suite includes Tivoli technology to manage subscribers
and their devices, easing the burden of administration and system maintenance.
 Chapter 5. IBM wireless middleware 111

Tivoli Personalized Services Manager (TPSM) provides a comprehensive set of
management services to the solution, including content personalization,
subscriber enrollment, customer care and self-care, report generation, and
interfaces to external billing systems.

Supporting components
A number of supporting components that come with the Everyplace Suite may
need to be installed:

� Secureway Directory - Lightweight Directory Access Protocol (LDAP) server

� IBM HTTP Server

� IBM DB2 Universal Database Enterprise Edition

� WebSphere Application Server Standard Edition

� Java Development Kit (AIX only)

5.1.2 Considerations for m-commerce
Depending on the environment, there are several different ways in which
WebSphere Everyplace Suite can be deployed to extend a WebSphere
Commerce Suite store for mobile devices. Not all of these involve direct
integration between the Everyplace Suite and the Commerce Suite. Described
here are three example deployment scenarios.

Internet Service Provider and merchant - scenario 1
A typical customer for the WebSphere Everyplace Suite is an Internet Service
Provider (ISP). In this case, Everyplace Suite is most likely being used to form
the core of the ISP’s infrastructure, covering device connectivity right through to
subscriber management. As such, it is likely that every component within the
Everyplace Suite is deployed. The ISP is providing its subscribers with the
means to access any content provider’s content from whatever device they
choose to use.

In this scenario, the content provider (commerce Web site), is dependent on the
ISP to provide the wireless middleware technologies to support mobile clients.
The only consideration here for the merchant is that the Commerce Suite
application, or store, must be able to support requests from these other types of
devices. This involves making use of the pervasive extensions in WebSphere
Commerce Suite V5.1.
112 Mobile Commerce Solutions Guide using WebSphere Commerce Suite V5.1

This scenario will work for devices using standard content retrieval methods,
such as requesting pages of content from the Internet using a HTTP request. For
devices using a more specialized method, such as asynchronous messaging or
database synchronization, the merchant and ISP would have to collaborate to
ensure that the appropriate access permissions have been given.

Internet Service Provider and merchant - scenario 2
This scenario assumes a closer relationship between the merchant and ISP. For
example, a merchant may collaborate with a major ISP to make their store
available exclusively to subscribers. This is analogous to NTT DoCoMo working
with content providers in Japan to provide i-mode services.

The ISP in this case already has an Everyplace Suite infrastructure in place and
a large number of subscribers. Both of these are attractive to the merchant for
the following reasons:

� The ISP bears the overhead of the infrastructure maintenance and has the
experience to effectively manage the connectivity.

� The large subscriber base also offers an instant, captive market for the
merchant to address.

In this scenario there are a number of key challenges to be addressed when
integrating WebSphere Commerce Suite into the environment. These are
described below.

Subscriber management
Within the Everyplace Suite, subscriber details are stored in LDAP and
maintained by the Tivoli Personalized Services Manager (TPSM) product. New
users enroll using the application provided by TPSM and the data is then
propagated to LDAP.

WebSphere Commerce Suite by default uses its own database to store user
information. It is also possible, however, to configure Commerce Suite to use an
LDAP source instead (see WebSphere Commerce Suite V5.1 Handbook,
SG24-6167 for details on configuring WCS to use LDAP). This means that WCS
could use Secureway Directory as its LDAP source, and therefore pick up all the
pre-stored subscriber information.

Security
Once a client is authenticated within the Everyplace domain, the merchant may
want his clients to be able to browse the store as if they had logged in to WCS in
the normal way. To enable this to happen, Commerce Suite would have to be
able to understand the PvC HTTP headers added to the request by the
Everyplace Authentication server.
 Chapter 5. IBM wireless middleware 113

Within the Everyplace Suite domain, all users are either authenticated by the
Authentication Server or the Wireless Gateway. The user credentials are then
added into the HTTP request headers so that other applications within the
Everyplace Suite domain have this information readily available.

Clients using asynchronous messaging
It is possible that some customers may be using mobile devices, such as PDAs,
which have messaging capabilities. In this case, it is possible to deploy
MQSeries Everyplace in conjunction with WCS V5.1 in order to support these
clients.

Clients using MQSeries Everyplace (MQe) can send messages to Commerce
Suite using the MQSeries bridge. It is unlikely that the average shopper would
use this approach to access a store, but it does present some interesting
possibilities for business-to-business scenarios. For example, reordering of
goods could be handled entirely through messages sent to Commerce Suite.

Clients using data synchronization
Some clients may be using devices with greater storage capacity and thus are
able to support some sort of database application. The Everyplace Suite includes
a product called the Everyplace Synchronization Manager, which provides
support for the synchronization of any Open Database Connectivity (ODBC)
database on a pervasive device that has a database installed (for example DB2
Everyplace). Clients can therefore synchronize a subset of Commerce Suite’s
back-end database, such as the product catalog, onto their device for the
purposes of offline browsing.

Merchant - scenario 3
In this scenario, we are assuming that the merchant is going to implement his/her
own infrastructure to support mobile devices using WebSphere Everyplace Suite.
Taking WebSphere Commerce Suite as the starting point, the merchant needs to
do the following to make his/her store accessible from mobile devices:

� Produce appropriate device content

� Provide connectivity for mobile devices

The first task is accomplished by producing the relevant JSP templates for the
store, then developing and registering the appropriate pervasive adapter(s)
within Commerce Suite.
114 Mobile Commerce Solutions Guide using WebSphere Commerce Suite V5.1

The second task relates to the selection of appropriate WebSphere Everyplace
Suite components. Since the merchant already has Commerce Suite providing
user management functions, it may be that Tivoli Personalized Services
Manager is not required. Login and authentication are also provided by
Commerce Suite; therefore, the Authentication Server does not need to be
deployed either.

It is likely that a situation will arise where only a select few components of the
Everyplace Suite have been deployed. In such a case, we are not implementing
a WES authentication method. Instead, we are adding in the connectivity for the
different types of mobile devices, and providing content adaptation tools, such as
WebSphere Transcoding Publisher.

This scenario is more of an exercise in integrating individual products from the
Suite rather than a complete integration of the two suites. It is likely that this will
be the most common approach for combining the Everyplace Suite and the
Commerce Suite.

5.1.3 Where to find more information
� An Introduction to IBM Everyplace Suite Version 1.1, Accessing Web and

Enterprise Applications, SG24-5995

� WebSphere Everyplace Suite product documentation can be found at:

http://www.ibm.com/pvc/tech/library.shtml

5.2 IBM WebSphere Transcoding Publisher (WTP)
One of the biggest challenges in mobile computing is how to support many
different devices, each potentially using their own unique presentation language.
Coupled with this, you need to be able to do it in an efficient manner, taking into
account low network bandwidths.

Note: WebSphere Everyplace Suite V1.1.2 comes with WebSphere
Transcoding Publisher V1.1.2. This version of the Transcoding Publisher does
not contain the functionality that was added to V3.5. The next version of the
Everyplace Suite will include an updated version of the Transcoding Publisher.
If you decide to use the stand-alone WebSphere Transcoding Publisher V3.5,
bear in mind that this does not use LDAP to store its configuration.
 Chapter 5. IBM wireless middleware 115

5.2.1 WTP overview
IBM WebSphere Transcoding Publisher V3.5 extends the reach of applications
by converting content for display on mobile devices. It provides a number of
default transcoders for the leading pervasive devices, as well as the capability to
write and deploy your own transcoders. Through the use of preference profiles, it
can tailor content for lower speed networks by removing images.

Provided here is a brief overview of the transcoding publisher and its
components. For more detailed information, please refer to IBM WebSphere
Transcoding Publisher V1.1, Extending Web Applications to the Pervasive World,
SG24-5965.

Architecture
The WebSphere Transcoding Publisher consists of the following components
(see Figure 5-3):

� A plug-able framework for IBM-provided and custom built transcoder
plug-ins. All plug-ins have access to a standard set of core services, such as
the ability to obtain preference profile details.

� A basic set of transcoder plug-ins, such as the one that applies Extensible
Stylesheet Language (XSL) stylesheets to Extensible Markup Language
(XML) documents in order to transform the content.

� A developer’s toolkit, enabling developers to write custom transcoders.
These could be used to support new content types or perform new content
filtering functions, for example.

� Administration services, so that administrators can control configuration
information and preference profiles.
116 Mobile Commerce Solutions Guide using WebSphere Commerce Suite V5.1

Figure 5-3 WebSphere Transcoding Publisher architecture

Transcoders
A transcoder modifies the contents of a document. IBM WebSphere Transcoding
Publisher V3.5 provides a standard set of transcoders (shown in Table 5-1) to
convert HTML documents, manipulate images, and transform XML documents to
the appropriate format.

Table 5-1 The default enabled transcoders

Knowledge of device capabilities for
enhanced, intelligent transforms

Existing plugin modification
Custom plugin development
Interoperability via Framework
APIs

Readily available transforms

Transcoding Plugin Layer

Customer provided transcoder(s)

Transcoding Backbone

Houses common rules for transforms
Provides common framework for plugin
interoperability

Management of:
Profiles
Stylesheets
Transcoders
Logs

Device
Profiles

3rd Party
Transcoder

Image
Transcoder

Text
Engine:
HTML

Text Engine:
XSL

Other IBM
Transcoder

Developer
Toolkit

Administration

Houses common rules for transforms
Provides common framework for plugin
interoperability

Transcoder Function

Text Transcoder Modifies HTML and XML documents

Image Transcoder Modifies size and quality of GIF and JPEG
images

Fragmentation Transcoder Fragments documents into pieces that
can be displayed on the receiving device

Resource Repository Stores multiple versions of transcoded
documents
 Chapter 5. IBM wireless middleware 117

The HTML DOM Generator transcoder is disabled by default. This transcoder
creates a Document Object Model (DOM) from HTML, enabling content
providers to select parts of the HTML for display to the user.

The Annotation Transcoder is also disabled by default. It allows developers to
prevent portions of a document from being displayed on a device.

The i-Mode transcoder is not registered when you first install the product. This
transcoder allows you to convert HTML documents for display on i-Mode devices.

Preference profiles
IBM WebSphere Transcoding Publisher V3.5 provides a standard set of network
and device profiles that enable content customization according to specific
device form-factors and network bandwidth constraints. You also have the
capability of extending the product capabilities by adding your own profiles.

Device profiles
� Palm Pilot PDA

� Wireless phone - WAP

� Device default

� Wireless phone - HDML models

� Wireless phone - i-mode two-color models

� XML-capable desktop browser

� Windows CE PDA

� Desktop - Netscape

� Wireless phone - i-mode 2 monochrome models

� Wireless phone - i-mode Model 501i

� Desktop - Internet Explorer 4

Network profiles (only used in proxy mode)
� Dial network

� Wireless network

� Network default

Deployment models
IBM WebSphere Transcoding Publisher V3.5 can be deployed in a number of
different modes to fulfill different requirements. The modes are:

� Network proxy
118 Mobile Commerce Solutions Guide using WebSphere Commerce Suite V5.1

� Reverse proxy

� WebSphere MIME filter

� JavaBean

The Server Setup program is run immediately after you install the product,
allowing you to select the mode of operation. You can re-run this program at any
time to change the mode. The only prerequisite here is that IBM WebSphere
Application Server V3.5 be already installed on the same machine in order to use
the MIME filter option.

Network proxy
This is the simplest mode, with IBM WebSphere Transcoding Publisher V3.5
acting as an intermediary sitting between the client and the content server.
Clients are configured to use the transcoder as a proxy, filtering all the
information they receive. Typically, you use the product in this fashion to enhance
the content for the client, perhaps adding your company’s stock price to the
bottom of the page or transcoding the images for display on a mobile phone.

In situations where you don’t own or have access to the Web servers that contain
the content, you would use the network proxy mode. However, the single biggest
disadvantage with this approach concerns security.

The process of transcoding can only take place using data that is not encrypted.
This means that you cannot have a secure connection, using SSL for example,
between the client and the Web server when using the network proxy. You can
overcome this in one of two ways. You can secure the proxy behind the firewall of
a trusted party, or you can choose to implement the WebSphere MIME filter
mode.

When running as a proxy, you can also specify an HTTP caching proxy, such as
IBM WebSphere Traffic Express, for storage of transcoded pages. This is
particularly useful when a large number of users are accessing a site using the
same type of device, or when large documents are being transcoded.

Reverse proxy
This is very similar in operation to the network proxy, and is used when the client
devices cannot be configured to use a proxy. Instead, the transcoding publisher
acts as a proxy to Web servers, rather than to clients. Clients access the Web
server directly, but are in fact being directed via the Transcoding Publisher. All
the considerations for the network proxy also apply to the reverse proxy.
 Chapter 5. IBM wireless middleware 119

WebSphere MIME filter
The Server Setup program allows you to configure the Transcoding Publisher as
a MIME filter for applications running in IBM WebSphere Application Server.
When you view your application using the WebSphere administration console,
you will see that three transcoding filters have been added to the chosen
application. All requests for the application will go through the Transcoding
Publisher.

The biggest advantage with this mode concerns security. By transcoding at the
source, we are able to employ encryption methods such as SSL because the
content is transcoded prior to being encrypted and sent to the client. Another
advantage is that the Transcoding Publisher is then managed as part of the
WebSphere Application Server, so it controls the starting and stopping of the
product.

The disadvantages of this mode are that you can only transcode the content
originating from one server and you no longer have access to the Request
Viewer tool, which is key to debugging applications.

JavaBean
WebSphere Transcoding Publisher also comes with a set of JavaBean
components. These can be included in servlets and JSPs to build custom
transcoding applications. This is the most flexible option of the different
Transcoding Publisher modes. It does, however, assume that you know the
structure of the content that needs to be transcoded. You also need to write your
program to pass all the relevant data (HTTP request information, etc.) to the
transcoding beans. This functionality is already provided for you in the other
Transcoding Publisher modes.

Administration
All the administration for the transcoding publisher is handled through the
administration console (see Figure 5-4). You use the console to perform common
tasks such as registering new device profiles and transcoders.
120 Mobile Commerce Solutions Guide using WebSphere Commerce Suite V5.1

Figure 5-4 WebSphere Transcoding Publisher administration console

Other tasks that can be performed from the console include changing firewall and
port settings. You can also specify the amount of log information that is
generated by the Transcoding Publisher for debugging purposes.

Problem determination and debugging
WebSphere Transcoding Publisher provides a number of ways to obtain
important information that can be used when debugging an application. Full
message logging and tracing capabilities can be enabled using the
administration console. The most useful tool, however, is the Request Viewer
(see Figure 5-5).
 Chapter 5. IBM wireless middleware 121

Figure 5-5 WebSphere Transcoding Publisher Request Viewer

This tool is only available when the Transcoding Publisher is configured to run in
proxy mode, and you must stop the Transcoding Publisher application in order to
run it. This is because the Request Viewer is in fact the Transcoding Publisher
running in debug mode, with a graphical user interface.

Using the Request Viewer, developers can view every detail of each incoming
request in real time. The transcoders that are invoked for the request are
displayed together with their input and output content formats. This tool is an
invaluable asset when debugging applications and should always be used to
verify that an application is being transcoded in the correct manner.

5.2.2 Considerations for m-commerce
Outlined here are the most common ways in which you could deploy WebSphere
Transcoding Publisher in conjunction with WebSphere Commerce Suite.

Note: This tool is available for use only when using the Transcoding Publisher
in a proxy configuration (see “WebSphere MIME filter” on page 120).
122 Mobile Commerce Solutions Guide using WebSphere Commerce Suite V5.1

Proxy
As already outlined in this chapter, running in a proxy configuration means that
you cannot support SSL connections between the mobile client and the
WebSphere Commerce Suite V5.1 Pro Edition for Windows NT and Windows
2000 server. Since the store by default operates in a secure mode (that is, all
pages are requested using the HTTPS protocol), this rules out using the
Transcoding Publisher as a proxy for PC clients. There is a way, however, to
disable Commerce Suite’s internal checking for secure connections from mobile
devices. Refer to the WebSphere Commerce Suite V5.1 Handbook, SG24-6167
for details. This might be useful in situations where two separate Commerce
Suite instances are being used - one to service PC requests and another for
mobile devices. In most cases, though, the server is likely to be handling both
types of request, as this avoids administering two store IDs.

WebSphere MIME filter
This is the recommended approach when deploying WebSphere Transcoding
Publisher V3.5 in conjunction with Commerce Suite. By configuring the product in
this fashion, all requests passed to the WCS Stores application can be filtered by
the WebSphere Transcoding Publisher. Refer to Chapter 7, “m-commerce
runtime environment” on page 141, for detailed instructions on installing and
configuring this mode of transcoding.

5.2.3 Where to find more information
� IBM WebSphere Transcoding Publisher V1.1, Extending Web Applications to

the Pervasive World, SG24-5965

� Product documentation, white papers, articles, etc. can be found at:

http://www.ibm.com/software/webservers/transcoding/library.html

5.3 IBM Everyplace Wireless Gateway (EWG)
This section provides an overview of the IBM Everyplace Wireless Gateway and
highlights the considerations for use with m-commerce.

Attention: After configuring WebSphere Transcoding Publisher as a MIME
filter for the WCS Stores application, you may find that you are unable to
access the store from a browser. If so, open the WebSphere Commerce Suite
Configuration Manager, delete the WCS instance and then recreate it. The
application should then be accessible again.
 Chapter 5. IBM wireless middleware 123

5.3.1 EWG overview
The IBM Everyplace Wireless Gateway (EWG) V1.1.3 is currently bundled with
WebSphere Everyplace Suite V1.1.3. Within our test environment, we used
EWG packaged with WES V1.1.3 with the EWG service pack that can be
downloaded from the following URL:

http://www.software.ibm.com/dl/everyplace/gateway-p

The Wireless Gateway extends the corporate network for e-business solutions
and protects existing investment in software and information technology
infrastructures. It allows secure, optimized access by mobile client devices such
as notebooks with wireless modems, personal digital appliances (PDAs), and
many WAP-enabled smart phones and communicators over a wide range of
wireless and wireline networks, such as local area networks (LANs) and wide
area networks (WANs).

Architecture
The Wireless Gateway has two components: the Wireless Gateway itself and the
Gatekeeper administration console.

Wireless Gateway
The Wireless Gateway is a communications platform, providing connectivity for
wireless networks (both WAP and non-WAP) and wireline networks (such as
dial-up). Internally, it is structured in a series of layers that convert the network
bearer protocol into a TCP/IP, WAP or WEB stack. The Wireless Gateway also
provides enhanced functionality with data encryption, user authentication and
optimization, making it more than just a network access router.

Wireless Gateway Gatekeeper

These are the components of Gatekeeper:
Clients
Wireless Client
WAP Clients

Note: Some people use the terms Wireless Gateway and WAP gateway
interchangeably - this is incorrect. The Everyplace Wireless Gateway provides
connectivity between many different types of networks and supports many
different protocols. WAP is one of the main wireless protocols, and the
Wireless Gateway can be configured for WAP support. On the other hand, a
normal WAP gateway provides support only for the WAP protocol and the
underlying mobile bearer networks.
124 Mobile Commerce Solutions Guide using WebSphere Commerce Suite V5.1

5.3.2 Considerations for m-commerce
When developing an m-commerce store, it is important to test with real hardware
before deploying your application. In order to test with real hardware, you will
need to configure a wireless gateway for the desired protocol. For example, if you
are developing a WAP application, you will need to configure the wireless
gateway to provide WAP gateway service. The WAP gateway will allow mobile
clients that have connected to the network access to your m-commerce store in
the proper protocol.

Using a protocol gateway allows for the testing of session support for devices that
do not support cookies. Some gateways provide session support. In the current
release of WCS V5.1, all mobile device session control is done via the PvC
adapter and WCS database tables.

5.3.3 Where to find more information
� For information about fixes for EWG packaged with WebSphere Everyplace

Suite, refer to the support Web site at:

http://www-3.ibm.com/pvc/products/wes/support.shtml

5.4 IBM MQSeries Everyplace (MQe)
MQSeries Everyplace (MQe) is a member of the MQSeries family of business
messaging products. It is designed to satisfy the messaging needs of lightweight
devices, such as sensors, phones, Personal Digital Assistants (PDAs) and laptop
computers, as well as supporting mobility and the requirements that arise from
the use of fragile communication networks. It maintains the standard MQSeries

Note: In order to enable HTTP cookie support in the WAP gateway, you must
have defined some users to the gateway. Within a WES environment, these
user profiles are stored and maintained by TPSM and the Wireless Gateway
looks up the details in LDAP. In the case of a stand-alone gateway, the user
profiles are added using the Gatekeeper, in the same way you add any other
resource.

Important: The current implementation of the PvC adapter framework within
WebSphere Commerce Suite V5.1 means that session support must be
handled within the adapter. The only way to avoid doing this is to not use an
adapter. This would mean having separate stores for each type of device (for
example, one for HTML and another for WAP).
 Chapter 5. IBM wireless middleware 125

quality of service, providing once-only assured delivery, and exchanges
messages with other family members. Since many MQSeries Everyplace
applications run outside the protection of an Internet firewall, MQe also provides
sophisticated security capabilities.

Lightweight devices require the messaging subsystem to be frugal in its use of
system resources. Consequently, MQSeries Everyplace offers tailored functions
and interfaces appropriate to its customer set. It does not aim to provide exactly
the same capabilities as other members of the family. On the other hand, it does
include unique functions in order to support its particular classes of users, such
as comprehensive security provision, message objects, synchronous and
asynchronous messaging, remote queue access, and message push and pull.
MQSeries Everyplace is also designed to integrate well with other members of
the IBM pervasive computing family - WebSphere Everyplace Server and other
family members.

For more information, refer to the MQSeries Everyplace product home page at:

http://www.ibm.com/software/ts/mqseries/everyplace/

5.5 IBM DB2 Everyplace
DB2 Everyplace is a small-footprint relational database of about 150 KB. It is
designed for low-cost, low-power, small form-factor devices such as personal
digital assistants (PDAs), handheld personal computers (HPCs), and embedded
devices.

The DB2 Everyplace solution has three components:

� DB2 Everyplace database
� DB2 Everyplace Sync Server
� DB2 Everyplace Personal Application Builder

The DB2 Everyplace database provides a local data store on the mobile or
embedded device for storing local data or data from the enterprise. Data stored
in the DB2 Everyplace database is queried, updated, and deleted using
industry-standard SQL on the mobile or embedded device.

For data synchronization, DB2 Everyplace Sync Server works with the DB2
Everyplace database to synchronize mobile data to and from DB2 Universal
Database for UNIX, OS/2 and Windows, DB2 for OS/390, and DB2 for AS/400.
126 Mobile Commerce Solutions Guide using WebSphere Commerce Suite V5.1

For application development, the DB2 Everyplace developer has a choice of
rapid application development tools:

� DB2 Everyplace Personal Application Builder supports building mobile
applications for small handheld devices without writing a single line of code.

� VisualAge for Java or VisualAge Micro Edition, featuring the J9 JVM for Palm
OS, for Java Development of mobile applications.

� MetroWerks CodeWarrior for C/C++ development.

� Microsoft Visual C++ for C/C++ development.

DB2 Everyplace is available in two editions:

� DB2 Everyplace Personal Edition - includes the DB2 Everyplace database
and Personal Application Builder.

� DB2 Everyplace Enterprise Edition - includes the DB2 Everyplace database,
Sync Server, and Personal Application Builder.

For more information, refer to the DB2 Everyplace home page at:

http://www.ibm.com/software/data/db2/everyplace/

5.6 IBM Mobile Connect
IBM Mobile Connect V2.41 is a pervasive computing technology solution that
enables handheld devices such as IBM WorkPads, Palm, EPOC and Windows
CE devices to be integrated into Enterprise Solutions.

Mobile Connect allows organizations to directly transfer information from multiple
handheld devices directly to corporate systems, without the need to synchronize
via the PC. It enables two-way relational database synchronization, two-way file
transfer, and the remote installation of applications. IBM Mobile Connect also
supports direct synchronization with Lotus Notes and Microsoft Exchange for
server-based synchronization of e-mail, calendars, contacts and tasks.

Mobile Connect also supports IBM DB2 Everyplace and Palm PIM applications.
DB2 Everyplace includes the DB2 relational database engine and a set of APIs
that allow developers to take advantage of DB2 on these platforms. IBM Mobile
Connect provides the support for synchronizing relational database information
between DB2 Everyplace and a server or mainframe relational database.
 Chapter 5. IBM wireless middleware 127

All of these transfers are supported over any networking infrastructure that
supports IP, for example Wireless GSM, Internet, as well as standard local area
networks (LANs) and wide area networks (WANs). Additionally, the product
utilizes a VB Scripting engine that enables a company to “plug” its core business
logic components directly into their server. Events handled by these components
can then be automatically triggered by the captured data that is being transmitted
from the remote handheld devices.

By using Certicom's encryption technology (56-bit or 128-bit), IT administrators
can trust that data is transferred between corporate systems and mobile devices
securely. Mobile Connect also provides user authentication against an internal
configuration or through Lotus Domino or Microsoft Exchange servers.

For more information, refer to the Mobile Connect product home page at:

http://www.ibm.com/pvc/products/mobile_connect/index.shtml/
128 Mobile Commerce Solutions Guide using WebSphere Commerce Suite V5.1

Chapter 6. m-commerce payment
solutions

In this chapter, we provide an overview of payment technologies and compare
technologies used in a traditional PC browser client and a mobile client. In
addition, we discuss how WebSphere Payment Manager V2.2 can be used as
part of an m-commerce solution.

The chapter is organized into the following sections:

� Payment technologies overview

� IBM WebSphere Payment Manager

6

© Copyright IBM Corp. 2001 129

6.1 Payment technologies overview
This section provides an overview of payment technologies.

6.1.1 Payment solutions for PC browser clients
Buying goods over the Internet using a PC has been common for some years
now. As a result, there are a number of tried-and-true payment technologies that
are in wide use today. In many cases, these technologies have served as a basis
for the development of mobile payment solutions.

SET
The Secure Electronic Transaction (SET) specification was developed by Visa
and Master Card to define an open standard for the commerce industry. Its
primary purpose is to facilitate the secure use of credit card details over the
Internet. SET accomplishes this through the use of digital certificates, which are
used to identify and validate the cardholder and the merchant during the course
of a credit card transaction. It is the task of software vendors to develop
applications that support SET, and there are a number of specification books
which describe the protocols and programming aspects.

SSL
The Secure Sockets Layer (SSL) protocol, developed by Netscape, is the most
widely used method for securing transactions on the Internet. The protocol
employs encryption to safeguard information and preserve its integrity, and uses
digital certificates for the purpose of identifying each party involved in a given
transaction.

Smart cards
Smart cards are another technology in widespread use, where a card is
embedded with a microchip. Most credit cards are now produced with these
chips, as are telephone payment cards. Smart cards represent the next step in
technology after the old magnetic strips, with features such as:

� Increased storage capacity

� Password protection of stored data

� Ability to incorporate a microprocessor to perform encryption

These features complement the SSL and SET technologies, which require
secure storage of private keys. In fact, it is possible for a smart card to handle all
of the private key management functions, such as storing, generating and using
the private keys.
130 Mobile Commerce Solutions Guide using WebSphere Commerce Suite V5.1

6.1.2 Payment solutions for mobile devices
There are a number of different ways in which payment transactions are made
using mobile devices, ranging greatly in terms of complexity and sophistication. It
should be noted that this is an area still very much under development and
investigation, with a number of different technologies and solutions being field
tested at this time. Included in this section are descriptions of some of the most
common approaches. These give a good idea of the challenges involved within
the mobile environment.

Wireless Transport Layer Security (WTLS)
This is the simplest and most common way of securing a transaction that is made
from a WAP device, by encrypting the data. WTLS is functionally equivalent to
SSL in the wired network Internet world, and applies encryption to the
connection. Unlike SSL, however, which has several different denominations in
terms of strength of encryption and capability, most current implementations of
WTLS, in both devices and WAP gateways, do not support the use of digital
certificates. This is because the Public Key Infrastructure (PKI) support, upon
which WTLS relies for certificates, is a new feature in WTLS 1.2, part of the WAP
1.2 specification.

WTLS is only involved in securing the connection between the mobile device and
the WAP gateway. It is not responsible for the connection between the WAP
gateway and the content server. Instead, this connection is protected by SSL.
This means that the gateway is having to manage the protocol conversion
between WTLS and SSL, which has security implications. The conversion
process means that for a certain amount of time, information is not encrypted,
prior to being re-encrypted for the SSL connection. This has led to a reluctance
by many businesses, financial institutions in particular, to provide secure services
over WAP.

In cases where the gateway is private, that is managed by the business itself, this
is not a problem. In many cases, however, the WAP gateway is public, hosted by
some third-party company on the Internet. The mobile phones have been
provisioned to use that gateway only. This constitutes a potential risk that is most
often seen as unacceptable. This problem is overcome in the next
implementation of the WAP specification, which allows the use of redirects, so
that a request made to a public WAP gateway can be redirected to a private
gateway under the control of the bank or merchant, for example.
 Chapter 6. m-commerce payment solutions 131

Dual-Slot phones
Various companies have considered the use of dual-slot mobile phones, that is,
phones that have a card reader built into them for your credit card. Nokia and
Visa worked together to produce such a handset, and Telecom Italia introduced a
mobile banking solution using this device in Italy.

How it works
Figure 6-1 illustrates a transaction being made from a dual-slot mobile phone.

Figure 6-1 Payment transaction using a dual-slot mobile phone

The user accesses the store and submits an order (let’s say, for a book). This
request is received by the merchant server, which responds with a request for
payment details. At this point, the phone prompts the user to insert his/her credit
card into the slot in the side of the phone. The card reader interrogates the card
and presents the user with the choice of payment method, billing options, etc.
The user selects the appropriate settings and submits the information, causing
the smart card to be updated with the new transaction. The payment is then sent
to the merchant in order to fulfill the order. Finally, a confirmation message is
returned to the client to prove that the order was received.

Mobile Phone Merchant

1. Place order for book

2. Request payment details

3. Insert credit card

4. Send payment

5. Notification

Dual-Slot Phone/Smart Card Approach

I BM

SmartCard
132 Mobile Commerce Solutions Guide using WebSphere Commerce Suite V5.1

Obviously, this solution relies on specialist hardware, which is fine if you are a
business seeking to provide phones to its customers, or if you are a user in the
market for the latest type of phone. There are, however, millions of mobile
phones already on the market, and such a solution would not be applicable to
any of these devices.

Mobile wallet
Rather than having the information held directly by the user for input into the
device, another approach is to host this information on a secure server
somewhere. This is often referred to as having a wallet on a remote server, and
is common practice in many of the original Internet payment solutions.

A typical mobile scenario is shown in Figure 6-2.

Figure 6-2 m-commerce wallet approach

Mobile Electronic Wallet Approach

Wallet Server

1. Place order for book

2. Request payment details

3. Arrange payment

4. Send payment

5. Notification of order received

Mobile Phone Merchant
 Chapter 6. m-commerce payment solutions 133

If a user wants to purchase a product (for example, some cinema tickets), he/she
goes to the merchant’s store and submit an order. In response, the merchant’s
server sends back a request for payment information. The phone, upon receiving
this request, initiates a dialog with the user’s wallet server. The user is prompted
to enter his/her password, after which he/she can then specify the payment
method and even the address that the ordered goods are to be delivered to.
Once the user has completed filling in this information, the wallet server
separately contacts the merchant server and sends it all of the payment details.
The merchant server then finally returns a notification to the user’s mobile phone
to acknowledge the purchase.

This is potentially one of the most secure methods of payment, where none of
the user’s details are being broadcast directly across the Internet. The
implication here is, of course, that the merchant supports the use of the wallet
server, and has some sort of private line connection to it. This method is not
commonly used in the PC environment because of the general lack of knowledge
about methods of payment other than sending your credit card details over the
Internet. Such a system is ideally suited for the mobile environment, but
mobile-phone users are also some of the least computer savvy, and it will require
some education in order for such technologies to become widely adopted.

SIM-based application
A third possibility for payment using a mobile device is the use of a GSM mobile
phone user’s Subscriber Identity Module (SIM) card. Obviously, this solution is
specific to this type of mobile phone technology. However, with millions of GSM
phones being sold every year and with GSM technology due for imminent launch
in the USA, this could be the solution that ultimately prevails.

Figure 6-3 illustrates how the solution works using the SIM-based approach.
134 Mobile Commerce Solutions Guide using WebSphere Commerce Suite V5.1

Figure 6-3 SIM-based approach

The initial communication between the phone and the merchant server is the
same for all the approaches. The user decides to buy something and submits an
order to the merchant server, which responds with a payment request. In this
case, however, this request triggers an application on the user’s SIM card, which
holds the user’s credit card details. The user is prompted for a personal
identification number (PIN) for security and they can then specify all the
necessary information for this purchase. This information is then sent to the
merchant server and the order is completed. Again, the merchant can send back
a notification to the phone to acknowledge receipt of the payment.

SIM-Based Approach

Mobile Phone

1. Place order for book

2. Request payment details

4. Send payment

5. Notification

3.

Merchant

Subscriber Identity Module
(SIM) card
 Chapter 6. m-commerce payment solutions 135

This approach could prove to be one of the most popular payment methods
using a mobile device, or a mobile phone in particular. However, there is some
work to be done to set this up. Service providers and credit card companies
would have to work together to produce the SIM cards with these applications.
This could be provided to new users, but in the case of existing mobile phone
owners, there would have to be some process that could be followed in order for
the users to get their SIM cards updated to include this application.

6.2 IBM WebSphere Payment Manager
In the beginning, the Internet was designed to provide an open network between
scientists. Today, it has evolved into an important medium for online commerce.
While electronic commerce is quickly emerging as a leading business model,
transacting business on the Internet presents two major security challenges:

� Buyers are wary of launching their vital payment card data into the unknown.

� Merchants have been unable to easily confirm the identity of buyers using
payment cards.

6.2.1 WebSphere Payment Manager overview
IBM WebSphere Payment Manager bridges the security issues and provides
secure, electronic payment processing to Internet merchants. Based on open,
standards-based technology, IBM WebSphere Payment Manager works with
payment cassettes to support multiple payment protocols. These protocols
include SET, Merchant Initiated SET (MIS), CyberCash, and other third-party
payment cassettes. Simply put, Payment Manager interfaces with merchant
software systems (for example, order fulfillment and online shopping) and
provides cash register-like functionality to manage payment processing. The
buyer never interacts with Payment Manager directly, because Payment
Manager is behind the Internet merchant’s storefront, receiving payments and
processing those payments with banks and other financial institutions.

The Payment Manager implements a multi-payment Framework architecture that
provides a flexible and extensible way to accommodate payment requirements
on the Internet for merchants who need to accept multiple payment methods.
The multi-payment Framework separates payment management (the
Framework) from specific payment types (the software cassettes) so that each
can evolve independently.

The Payment Manager provides a plug-in architecture whereby software
cassettes for each payment type attach to the payment Framework. The
Framework provides the generic infrastructure functions required for making and
receiving payments using any payment type.
136 Mobile Commerce Solutions Guide using WebSphere Commerce Suite V5.1

Payment cassettes are software applications that conform to the data flow and
control conventions of the Payment Manager Framework. Each payment
cassette contains the specifications of particular payment methods and
protocols.

6.2.2 Supported payment methods
The Payment Manager currently provides a cassette for the SET protocol,
CyberCash, and VisaNet, as well as two offline cassettes. The offline cassettes
are provided with the framework and enable developers to immediately start
building commerce sites that interact with Payment Manager.

Beyond the standard set, cassettes can be written by IBM or by third-party
payment system implementors, using the Cassette Developer’s Toolkit. IBM
supports cassette development and offers detailed instruction to developers
interested in writing their own payment cassettes.
 Chapter 6. m-commerce payment solutions 137

138 Mobile Commerce Solutions Guide using WebSphere Commerce Suite V5.1

Part 2 Setting up your
m-commerce
environment

Part 2
© Copyright IBM Corp. 2001 139

140 Mobile Commerce Solutions Guide using WebSphere Commerce Suite V5.1

Chapter 7. m-commerce runtime
environment

This chapter provides the developer, architect, and specialist information
required to install and configure a WCS V5.1 m-commerce runtime environment.
A WCS V5.1 m-commerce runtime environment includes all of the system
components used for WCS V5.1 runtime for PC browser clients. In addition to the
standard WCS V5.1 components, both the m-commerce direct approach and the
approach using WTP require the deployment of a PvC adapter. When using the
WTP approach to m-commerce, you will need to install and configure WTP V3.5
in the MIME filter mode on the system where WCS V5.1 is installed.

The chapter is organized into the following sections:

� WCS V5.1 runtime environment installation

� WTP V3.5 MIME filter installation

� Configuring WTP V3.5 as a MIME filter

� WCS V5.1 messaging configuration

� Where to find more information

7

© Copyright IBM Corp. 2001 141

7.1 WCS V5.1 runtime environment installation
This section provides instructions for setting up a development unit test or test
runtime environment. If you are not familiar with the systems and runtime
architecture of WebSphere Commerce Suite V5.1, or need more information, we
recommend that you read the following:

� Fundamentals, IBM WebSphere Commerce Suite V5.1, product guide found
on the WCS V5.1 CD

� WebSphere Commerce Suite V5.1 Handbook, SG24-6167

For detailed instructions on installing WebSphere Commerce Suite V5.1 Pro
Edition for Windows NT and Windows 2000, refer to the following:

� WebSphere Commerce Suite V5.1 Handbook, SG24-6167

� Installation Guide, IBM WebSphere Commerce Suite V5.1 Pro Edition for
Windows NT and Windows 2000, product guide found on the WCS V5.1 CD

7.1.1 ITSO test runtime environment
Within our test runtime environment, we used the following software and
hardware.

Software used in our test environment
� Microsoft Windows operating systems:

– Windows NT V4.0 Server + Service Pack 6a - 128-bit encryption

– Windows 2000 Server + Service Pack 1 - 128-bit encryption

Note: We developed the procedures and tested on both Windows NT and
Windows 2000. We did not find differences in the installation process
between Windows NT and Windows 2000. In the following installation
descriptions, references to “Windows” can be taken to refer to either version.

� IBM HTTP Server V1.3.12

Note: Make sure that you publish the InFashion sample store, shipped with
WCS V5.1, prior to setting up the development environment (VisualAge for
Java).

Note: Using the installation procedure documented in this guide is
recommended for users who are not familiar with WCS V5.1, WebSphere
Studio, or VisualAge for Java.
142 Mobile Commerce Solutions Guide using WebSphere Commerce Suite V5.1

� IBM DB2 Universal Database V7.1, Enterprise Edition for Windows + DB2
V7.1 Fixpack 2a

� IBM WebSphere Application Server V3.5, Advanced Edition + WAS V3.5
Fixpack 2 + WAS V3.5.2 E-fixes for WCS V5.1

� IBM WebSphere Commerce Suite V5.1, Pro Edition for Windows NT and
Windows 2000

� Microsoft Internet Explorer V5.5 + Service pack 1

� WebSphere Transcoding Publisher V3.5

Note: Other Web servers and database software may be used, as documented
in the Installation Guide, IBM WebSphere Commerce Suite V5.1 Pro Edition for
Windows NT and Windows 2000, shipped with the product.

Hardware used in our test environment
This section describes the hardware used within our test WCS runtime
environment for Windows NT and Windows 2000 1-tier configuration.

Note: For a 1-tier installation, we recommend that new users refer to the
Installation Guide, IBM WebSphere Commerce Suite V5.1 Pro Edition for
Windows NT and Windows 2000, shipped with the product.

� IBM xSeries Server 230 (8658)

– 1 GHZ PIII CPU

– 1GB RAM

– 18 GB Hard disk

– 1 Ethernet (built-in)

� IBM PC 300PL (6565)

– 733 GHZ PIII CPU

– 512 MB RAM

– 20 GB DASD

– 1 IBM Etherjet 100/10

� IBM Netfinity 7000 M10 (8680)

– 450 MHZ XEON 4-way CPU

– 2 GB RAM

– 36 GB DASD

– 1 IBM Etherjet 100/10
 Chapter 7. m-commerce runtime environment 143

7.1.2 WCS V5.1 high-level installation steps
This section describes the high-level installations steps required to install and
configure an m-commerce runtime environment. We will install and configure a
1-tier runtime environment, for the purpose of m-commerce application
development and unit testing.

Note: We do not recommend a 1-tier configuration for a production runtime
environment. Detailed instructions for 2/3-tier and multi-node configurations can
be found in the WebSphere Commerce Suite V5.1 Handbook, SG24-6167, and
the Install Guide for WebSphere Commerce Suite V5.1, shipped with the
product.

To install and configure a WCS V5.1 1-tier m-commerce runtime environment,
complete the following steps.

Step 1: operating system
1. Install one of the following operating systems within your test runtime

environment:

– Windows NT 4.0 Server + SP6a

– Windows 2000 Server + SP1

2. Log on as admin user to local User Manager (not Windows domain)

Step 2: HTTP Server
3. Install IBM HTTP Server V1.3.12

4. Configure HTTP admin user

5. Configure SSL

6. Verify configuration for HTTP and HTTPS

Step 3: DB2 Server
7. Install DB2 V7.1 Server

8. Install DB2 V7.1 Fixpack 2a

9. Update JDBC level - usejdbc2

10.Verify configuration

Step 4: WebSphere Application Server
11.Install WebSphere Application Server V3.5 AE (WAS)

12.Install WAS V3.5 Fixpack 2 (V3.5.2)

13.Apply WAS V3.5.2 E-fixes required by WCS
144 Mobile Commerce Solutions Guide using WebSphere Commerce Suite V5.1

– Copy e-fixes to \<WAS_install_path>\lib

– Update \<WAS_install_path>\bin\admin.config classpath with e-fixes

14.Update Java security \<WAS_install_path>\jdk\jre\lib\security\java.security

15.Create WAS repository database

16.Start the IBM WS AdminServer Windows service

17.Start WAS Default Server

18.Add 443 virtual host aliases

19.Verify WAS by using snoop or other test application

20.Stop Default Server to conserve memory

Step 5: WebSphere Commerce Suite
21.Install WebSphere Commerce Suite V5.1 Pro Edition for Windows NT and

Windows 2000

22.Restart the WCS server

Step 6: Create a WCS instance
23.Start the WCS Configuration Manager

24.Create a WCS instance

25.Disable caching by deselecting the Cache Enabled checkbox from the
Caching Subsystem tree within the Configuration Manager

26.Stop/restart WCS server

27.Verify environment

Note: At the time of writing this redbook, it is a requirement that you disable
the WCS cache. If you do not disable the cache, JSPs served from different
directories with the same name can not be distinguished by the WCS cache.
The first JSP cached with a given name will potentially be loaded for clients of
a different type. For example:

� PC JSPs in root directory of store

� WAP WML JSPs in wml_jsp directory off the root

The StoreCategoryDisplay.jsp contains HTML for the PC version and WML for
the WAP version. If the WAP client accesses the JSP first, it is compiled and
cached. Next the PC client accesses the store and will not get the cached
version of the file instead of the correct version for the detected device type.
 Chapter 7. m-commerce runtime environment 145

Step 7: Deploy InFashion sample store
This step is required for the proper installation and configuration of WebSphere
Commerce Studio (VisualAge for Java - WTE).

28.Start WCS Store Services

29.Publish the InFashion sample store

30.Verify that the runtime environment is working properly by using the
InFashion sample store for testing purposes

Step 8: WebSphere Transcoding Publisher (optional)
This step is required only if you are using the WTP approach to m-commerce.
Details on this procedure can be found in 7.2, “WTP V3.5 MIME filter installation”
on page 146.

31.Install WTP

For details, refer to 7.2, “WTP V3.5 MIME filter installation” on page 146.

32.Configure WTP as a filter

For details, refer to 7.3, “Configuring WTP V3.5 as a MIME filter” on
page 149.

Step 9: Configure WCS V5.1 messaging (optional)
This step is required only if you are using the messaging services of WCS V5.1
(for example, to send e-mail or for SMS).

33.Configure the WCS V5.1 messaging services

For details, refer to 7.4.1, “Configure the WCS V5.1 messaging services” on
page 155.

34.Define the message content

For details, refer to 7.4.2, “Define the message content” on page 156.

7.2 WTP V3.5 MIME filter installation
WTP V3.5 must be installed on the same machine as WCS. For information
related to the WTP installation steps, please refer to IBM WebSphere
Transcoding Publisher V1.1, Extending Web Applications to the Pervasive World,
SG24-5965.

Note: The store must be called InFashion. This is a requirement of the
WebSphere Commerce Studio, which will be set up in the next chapter.
146 Mobile Commerce Solutions Guide using WebSphere Commerce Suite V5.1

To install and configure the IBM WebSphere Transcoding Publisher V3.5 as a
MIME filter, complete the following steps:

1. Install WTP V3.5.

2. Stop the Request Viewer, if already running.

3. From the administration console of WTP choose Settings -> Server Setup.

4. You will be prompted to confirm your choice. Click Yes to continue.

5. When the Transcoding Publisher Server Setup window appears, as seen in
Figure 7-1, you will need to start the IBM WS AdminServer service if it is not
up and running. If it is stopped, start it before proceeding. Then select
WebSphere Application Server filter, and click Next to continue.

Figure 7-1 WTP 3.5 setup - deployment options

6. When the window seen in Figure 7-2 appears, you will see a list of all
available Web applications found in the WebSphere Application Server

Note: Configuring WTP V3.5 as a MIME filter requires that the IBM WS
AdminServer service be running.
 Chapter 7. m-commerce runtime environment 147

repository. In this list, find the two Web applications that are part of IBM
WebSphere Commerce Suite V5.1 that you would like to transcode.

– Check WCS Stores

This is invoked when your store is accessed through HTTP(S).

– Do not check WCS Tools

This is used by the administration tools of WCS V5.1 (for example, the
administration console, Commerce Suite Accelerator and Store Services).
Do not check, since we only need to transcode the output of the store.

– Click Next.

Figure 7-2 WTP V3.5 setup - selecting the Web applications

7. An information window will appear, as shown in Figure 7-3. Click OK to
continue.
148 Mobile Commerce Solutions Guide using WebSphere Commerce Suite V5.1

Figure 7-3 WTP 3.5 setup - Information window

8. At this point, you must wait until the configuration process is completed. It will
take a few minutes. A message will inform you that the administration console
will shut down. Click OK to shut down.

9. Once WTP has been configured as a MIME filter, you can access its
administration console to customize the way it performs the content
adaptation.

The WebSphere Transcoding Publisher MIME filter mode install and
configuration are now complete.

7.3 Configuring WTP V3.5 as a MIME filter
WTP 3.5 must be installed on the same machine where WCS is also installed.
For any information related to the WTP installation steps, please refer to IBM
WebSphere Transcoding Publisher V1.1, Extending Web Applications to the
Pervasive World, SG24-5965.

In order to configure IBM WebSphere Transcoding Publisher V3.5 as a MIME
filter, proceed as follows:

1. Stop the Request Viewer, if already running.

2. From the administration console of WTP choose Settings->Server Setup.

3. The system will ask you to confirm your choice. Click Yes to continue.

Note: We found that occasionally we needed to delete and recreate the WCS
instance if transcoding was not working properly.
 Chapter 7. m-commerce runtime environment 149

In the first window of the server setup, shown in Figure 7-1 on page 147, you
have to choose which deployment options you intend to use. Configuring the
Transcoding Publisher server as a filter requires that IBM WS AdminServer
service be up and running. If it is stopped, start it before proceeding. Then select
WebSphere Application Server filter and click Next.

Figure 7-4 WTP V3.5 setup - Select the Web applications

4. In the next window, you can see the list of all available Web applications on
your machine. In this list, find the two Web applications that are part of IBM
WebSphere Commerce Suite V5.1:

– WCS Stores

– WCS Tools

Note: Configuring WTP 3.5 as a MIME filter requires that the IBM WS
AdminServer service be running.
150 Mobile Commerce Solutions Guide using WebSphere Commerce Suite V5.1

The first one is invoked when your store is accessed through HTTP(S). The
second application is used by the administration tools of WCS 5.1 (for
example, administration console, Commerce Suite Accelerator and Store
Services). Do not check WCS Tools, since you just need to transcode the
output of your store. Select WCS Stores, click Next and then Finish. An
information window will appear, as shown in Figure 7-3. Click OK to continue.

Figure 7-5 WTP 3.5 setup - Information window

5. At this point, you must wait until the configuration process has completed. It
will take a few minutes. A message will inform you that the administration
console will shut down. Click OK to shut down.

Once WTP has been configured as a MIME filter, you can access its
administration console to customize the way it performs the content adaptation.

Figure 7-6 shows the administration console. For any information on how to
actually customize the transcoding process please refer to IBM WebSphere
Transcoding Publisher V1.1, Extending Web Applications to the Pervasive World,
SG24-5965.

Note: If you are using WTP to transcode XML content, all the required XSLs
must be registered through its administration console.
 Chapter 7. m-commerce runtime environment 151

Figure 7-6 Administration console of IBM WebSphere Transcoding Publisher V3.5

Note: There is a problem with the current implementation of MIME handlers in
WAS 3.5.2. When a MIME filter is configured, as in the case of our configuration
for WTP, HTTP redirects do not work. This means that all the redirects from
HTTP to HTTPS performed by the WCS framework for secure commands will not
work. One possible workaround is to use HTTPS from the beginning. In fact, in
this case no redirect is needed. This problem has been identified but at the time
of writing no solution was available.

Tip: With the proposed architecture, all requests coming from a PC browser
are also processed by the Transcoding servlet, even if you can configure WTP
not to modify anything in the retrieved pages. If you use XML for wireless
devices and you do not want WTP to be invoked for requests coming from PC
browsers, you can disable the filtering of text/html, image/gif, image/jpeg in the
administration console of WAS.
152 Mobile Commerce Solutions Guide using WebSphere Commerce Suite V5.1

During our testing we have also experienced a problem when using WTP as a
MIME filter with JSPs containing the <jsp:include> tag. To better understand this
problem, take a look at the following example:

Example 7-1 WTP include tag
<HTML>
<HEAD><TITLE>Hello</TITLE></HEAD>
<BODY>
Hello from the WebSphere Application Server!
<HR>

<I>
This servlet demonstrates the ability to develop a pervasive computing
solution using the
<I>
WebSphere Application Server. It can be called from any of the following
types of clients:
<jsp:include page="Included.jsp"/>

</BODY>
</HTML>

This simple JSP uses the <jsp:include> tag to include the code generated by a
second JSP, called Included.jsp, during the processing of the HTTP request. The
source code of this second JSP is shown in the next example.

Example 7-2 WTP include tag (Included.jsp)
<TABLE Border=2 WIDTH=30%>
<TR ALIGN=center>
 <TH>Client Type</TH>
 <TH>Data Type Returned</TH>
</TR>
<TR>
 <TD align=center>HTML</TD>
 <TD align=center>HTML</TD>
</TR>
<TR>
 <TD align=center>Speech</TD>
 <TD align=center>VXML</TD>
</TR>
<TR>
 <TD align=center>Wireless</TD>
 <TD align=center>WML</TD>
</TR>
</TABLE>
 Chapter 7. m-commerce runtime environment 153

Now, if you have installed WTP as a MIME filter and try to access the URL of the
first page from a device that does not use HTML as a markup language, only the
HTML generated by the inner JSP is transcoded. The next example shows the
code generated for a WAP device.

Example 7-3 WAP sample from WTP
<HTML>
<HEAD><TITLE>Hello</TITLE></HEAD>
<BODY>
Hello from the WebSphere Application Server!
<HR>

<I>
This servlet demonstrates the ability to develop a pervasive computing
solution using the
<I>
WebSphere Application Server. It can be called from any of the following
types of clients:
<?xml version="1.0"?>
<!DOCTYPE wml PUBLIC "-//WAPFORUM//DTD WML 1.1//EN"
"http://www.wapforum.org/DTD/wml_1.1.xml">
<wml><card id="cmgcfp0"><p><table columns="2" align="LL"><tr><td>Client
Type</td>
<td>Data Type Returned</td>
</tr>
<tr><td>HTML</td>
<td>HTML</td>
</tr>
<tr><td>Speech</td>
<td>VXML</td>
</tr>
<tr><td>Wireless</td>
<td>WML</td>
</tr>
</table>
<do name="te1" type="prev" label="Back"><prev/></do>
</p>
</card>
</wml>

</BODY>
</HTML>

The generated code is a mix of HTML and WML, and obviously does not work.
This problem has been properly isolated and identified but at the time of writing it
was not fixed yet. The obvious workaround for this problem is to avoid using
<jsp:include> tags.
154 Mobile Commerce Solutions Guide using WebSphere Commerce Suite V5.1

7.4 WCS V5.1 messaging configuration
In order to send messages from WCS, the messaging service must be
configured.

Two major steps are required to set up the messaging service on the WebSphere
Commerce Suite server:

� Configure the WCS V5.1 messaging services

� Define the message content

7.4.1 Configure the WCS V5.1 messaging services
To configure the WCS messaging services, complete the following high-level
steps:

1. Start the WCS administration console.

2. Log on with a valid user name and password.

3. Choose the Site option and click OK.

4. Select the Message Types submenu under the Messaging menu.

5. In the next window, there are existing messages assigned to the site. New
message types can be added, deleted, and modified.

6. By adding a new message type, or selecting and changing an existing one, a
new window will be displayed called the Message Transport Assignment. This
window will have the following options:

Note: This problem does not affect the <%@ include %> directive.

Note: This section is only required if you intended to send messages from
WCS (for example, this is required to send SMS messages).

Note: For a description of the features offered in WCS V5.1 for messaging,
refer to, “WCS V5.1 messaging” on page 55.

Note: There are two different levels for setting up messaging: the site level
and the store level. In order to enable messaging in a store, the specified
messaging has to be enabled under the whole site. Under the store, any
enabled site messaging could be disabled.
 Chapter 7. m-commerce runtime environment 155

– Message Type - the selected or added message type.

– Message Severity x to y - 0 to 0 is recommended for e-mail.

– Transport - the specified transport method for the message. Select E-mail.

– Device Format - The specified device format for the message. Standard
Device Format is the default value, and also recommended here.

7. After selecting the e-mail transport, click Next. The following window, called
Parameters for e-mail, will be displayed with the following options:

– Host - the host name of the mail server that receives the e-mail.

– Protocol - e-mail sending protocol (default is SMTP).

– Recipient - the name of the recipient.

– Sender - the sender’s name.

– Subject - the subject of the sent e-mail message.

8. Click Finish.

9. You have to set up the same message for the store. After logging on the
administration console, select the Store option.

10.When the Select Store and Language window appears, select your store and
the desired language, and then click OK.

11.The next window gives the same options for messaging as the site
administration. You can add your transport by clicking Messaging ->
Transports, and configure the messages by clicking Messaging -> Message
Types.

7.4.2 Define the message content
The messaging command invokes the related view which runs the registered
JSP in the application server.

Messages, like any other views, are mapped to JSPs. These JSPs contain the
content of the message. By customizing the JSPs, you can create your own
messages.

The notification message views are stored in the VIEWREG table, seen in
Table 7-1.

Table 7-1 VIEWREG table columns and descriptions

Column Description Sample content

CLASSNAME Java class name for the
view command.

com.ibm.commerce.messaging.vi
ewcommands.MessagingViewCo
mmandImpl
156 Mobile Commerce Solutions Guide using WebSphere Commerce Suite V5.1

You can change the content of the message by modifying the associated JSP. It
is recommended that you use an existing JSP instead of writing your own,
because these message JSPs are not trivial to develop. Unfortunately, they are
full of inline Java code (there is no raw content). For example, use
PasswordNotify.jsp, which sends a short message with the original password of
the user, as a base to start from.

7.5 Where to find more information
� Fundamentals, IBM WebSphere Commerce Suite V5.1

� WebSphere Commerce Suite V5.1 Handbook, SG24-6167

� Installation Guide, IBM WebSphere Commerce Studio V5.1 Professional
Developer’s Edition for Windows NT and Windows 2000

� Installation Guide, IBM WebSphere Commerce Suite V5.1 Pro Edition for
Windows NT and Windows 2000

� IBM WebSphere Transcoding Publisher V1.1, Extending Web Applications to
the Pervasive World, SG24-5965

DEVICEFMT_ID The identifier of the device
to which the view will be
sent.

-3

HTTPS Secure HTTP required for
this view (1 for secure).

0

INTERFACENAME Java interface for the view
command name.

com.ibm.commerce.messaging.vi
ewcommands.MessagingViewCo
mmand

PROPERTIES Name value pair used by
this view.

docname=PasswordNotify.jsp

STOREENT_ID Store reference number for
this view.

0

VIEWNAME View name for this entry. PasswordNotifyView

Column Description Sample content
 Chapter 7. m-commerce runtime environment 157

158 Mobile Commerce Solutions Guide using WebSphere Commerce Suite V5.1

Chapter 8. m-commerce development
environment

This chapter provides the developer with information on the tools and
environment required to develop and test m-commerce stores in WebSphere
Commerce Suite V5.1, Pro Edition and WebSphere Commerce Studio V5.1,
Professional Developer’s Edition for Windows NT and Windows 2000.

The chapter is organized into the following sections:

� Development environment

� WebSphere Transcoding Toolkit

� Test environments and tools

� Where to find more information

8

© Copyright IBM Corp. 2001 159

8.1 Development environment
To help developers customize and develop new functionality and new stores,
IBM has provided WebSphere Commerce Studio. Commerce Studio ships in two
packages, Developer Edition and Professional Developer Edition. The basic
difference between the two packages is that the Professional Developer Edition
has not only all the features of the Developer Edition but can also be used to
develop business logic using Enterprise Java Beans. We used the Professional
Developer Edition for all our examples.

This section provides instructions for setting up a development environment for
development and unit testing within the VisualAge for Java WebSphere Test
Environment. If you are not familiar with the programming model of WebSphere
Commerce Suite V5.1, or need more information, we recommend that you read
the following:

� WebSphere Commerce Suite V5.1 Handbook, SG24-6167.

This redbook provides several chapters on the programming model, the
development environment, and the customization of a store.

� WebSphere Commerce Suite V5.1 Customization and Transition Guide,
SG24-6174.

This redbook provides examples of common customization of stores.

� Programmer’s Guide, IBM WebSphere Commerce Suite V5.1, the product
guide included on the WCS V5.1 CD.

� Fundamentals, IBM WebSphere Commerce Suite V5.1, the product guide
included on the WCS V5.1 CD.

For detailed instructions for installing WebSphere Commerce Studio V5.1,
Professional Developer’s Edition for Windows NT and Windows 2000, refer to the
following:

� WebSphere Commerce Suite V5.1 Handbook, SG24-6167

Make sure that you publish the InFashion sample store prior to setting up the
development environment (VisualAge for Java). This is detailed in the
installation procedure.

� Installation Guide, IBM WebSphere Commerce Studio V5.1 Professional
Developer’s Edition for Windows NT and Windows 2000

This procedure is recommended for users that are not familiar with WCS
V5.1, WebSphere Studio, or VisualAge for Java.
160 Mobile Commerce Solutions Guide using WebSphere Commerce Suite V5.1

8.1.1 ITSO development environment
Within our development environment, we used the following software and
hardware.

Software used in our test environment
� Software documented in 7.1.1, “ITSO test runtime environment” on page 142

� WebSphere Commerce Studio V5.1, Professional Developer’s Edition for
Windows NT and Windows 2000

– WebSphere Studio V3.5, Advanced Edition

– VisualAge for Java V3.5, Enterprise Edition

– WebSphere Commerce Studio V5.1 extensions

� XML Editor

– IBM XML Tools

and/or

– XML Spy

Hardware used in our test environment
This section describes the hardware used within our development environment
for Windows NT and Windows 2000. For a 1-tier installation, we recommend that
new users refer to the Installation Guide, IBM WebSphere Commerce Suite V5.1
Pro Edition for Windows NT and Windows 2000, shipped with the product.

� IBM xSeries Server 230 (8658)

– 1 GHZ PIII CPU

– 1GB RAM

– 18 GB Hard disk

– 1 Ethernet (built-in)

� IBM PC 300PL (6565)

– 733 GHZ PIII CPU

– 512 MB RAM

– 20 GB DASD

– 1 IBM Etherjet 100/10

� IBM Netfinity 7000 M10 (8680)

– 450 MHZ XEON 4-way CPU

– 2 GB RAM
 Chapter 8. m-commerce development environment 161

– 36 GB DASD

– 1 IBM Etherjet 100/10

8.1.2 Development environment high-level installation steps
This section provides the high-level steps required to install and configure an
m-commerce development environment. We install the Commerce Studio
manually in order to verify each component and provide greater understanding of
the configuration, which is needed to develop your own store.

To install and configure a WCS V5.1 m-commerce development environment,
complete the following steps:

1. Install the WCS runtime environment on the same system as the
development environment.

Refer to 7.1.2, “WCS V5.1 high-level installation steps” on page 144.

2. Create a WCS instance.

Refer to 7.1.2, “WCS V5.1 high-level installation steps” on page 144.

3. Deploy the InFashion sample store.

Refer to 7.1.2, “WCS V5.1 high-level installation steps” on page 144.

For details on the remaining steps, refer to the development environment chapter
in WebSphere Commerce Suite V5.1 Handbook, SG24-6167.

4. Install WebSphere Studio.

5. Install VisualAge for Java.

6. Install WebSphere Commerce Studio.

7. Install XML editor.

8. Configure WebSphere Studio.

9. Configure VisualAge for Java.

Optionally, consult the tips for developers in the above-mentioned redbook.

Note: The store must be called InFashion. This is a requirement of the
WebSphere Commerce Studio.
162 Mobile Commerce Solutions Guide using WebSphere Commerce Suite V5.1

8.2 WebSphere Transcoding Toolkit
The WebSphere Transcoding Publisher V3.5 ships with many tools to help you to
develop applications and to work with WebSphere Transcoding Publisher. This
section provides a brief overview of the Toolkit supplied with the product and
selected tools available for download. For details about the Toolkit, see IBM
WebSphere Transcoding Publisher V1.1, Extending Web Applications to the
Pervasive World, SG24-5965.

The WebSphere Transcoding Toolkit includes the following components:

� Transform Tool

� Request Viewer

� Profile Builder

� Snoop MEGlet

8.2.1 Transform Tool
To easily show the effect of transcoding, the Transform Tool provides a
split-screen view (see Figure 8-1) showing original content and transcoded
content side by side. This partly eliminates the need for acquiring a lot of different
devices or device emulators. The tool can be used as a working example of how
to use the transcoding JavaBeans in an application. Using the current settings of
WTP, the tool will show transcoding of HTML, XML and images.

Note: The Request Viewer and the Snoop MEGlet are available only when
WTP V3.5 is configured as a proxy.

For this reason, you may consider using a utility that can view HTTP requests
for debugging purposes.
 Chapter 8. m-commerce development environment 163

Figure 8-1 Transform Tool - WTP Toolkit

8.2.2 Request Viewer
Request Viewer enables you to monitor the flow of requests through the server,
and observe which plug-ins are triggered and when they are triggered (see
Figure 8-2). For each transaction, the Request Viewer also displays the header
and content information as they are manipulated by the plug-ins. Notice that
WTP and the Request Viewer cannot be running at the same time, since the tool
will run a complete debugging version of WTP using the same ports.
164 Mobile Commerce Solutions Guide using WebSphere Commerce Suite V5.1

Figure 8-2 Request Viewer

8.2.3 Profile Builder
Profile Builder is a powerful tool to create a new preference profile for a network
or a device. The wizard will ask you to:

1. Supply a location to store the new profile

2. Indicate if the profile refers to a device or a network

3. Supply a name and a description

4. Indicate the User-Agent value that can trigger the profile (for example,
Windows CE)

5. Choose a set of preferences to include in the profile and, for each of them,
indicate if it can be configurable and provide a default value (see Figure 8-3)

Once the new profile has been created, you need to register it from the
administration console, by choosing Register->Preference Profile.
 Chapter 8. m-commerce development environment 165

Figure 8-3 Profile Builder

8.2.4 Snoop MEGlet
The Snoop MEGlet is similar to the Snoop Servlet that ships with IBM
WebSphere Application Server. It will display all HTTP headers in both the
request and the reply. This is a very easy way to spot the User-Agent for any
device or browser (the Request Viewer could also be used).

To enable Snoop, proceed as follows:

1. From the WTP Administration Console select Register -> Transcoder

2. Point to <WTP_INSTALL_DIR>\toolkit\meglets\Snoop\Snoop.jar

3. Supply a name and a description

4. Activate the MEGlet

5. Refresh or restart the Transcoding Publisher Server
166 Mobile Commerce Solutions Guide using WebSphere Commerce Suite V5.1

Now invoke Snoop by asking for /servlet/Snoop, which is defined as an alias for
the servlet in Snoop.prof.

8.3 Test environments and tools
Developing mobile applications presents some unique challenges compared a
traditional WebSphere Commerce Suite environment.

We have listed some unique issues for mobile application development:

� How can you test your m-commerce application for wireless devices within
your company’s intranet?

� How can you debug the m-commerce application for a wireless client?

� How can you develop and m-commerce application when simulators do not
provide SSL support required by the m-commerce WCS store?

� What do you need to do to set up an m-commerce test environment?

All the test environments described in this section include WebSphere
Commerce Suite V5.1. In addition, if your approach to m-commerce is done via
transcoding, you will need to include WebSphere Transcoding Publisher V3.5.

In order to properly test your application before deployment for m-commerce,
you need the proper test environment. We have divided the m-commerce test
environments into the following:

� Standard PC browsers (Netscape Navigator, Microsoft Internet Explorer)

� Toolkits and simulators

� Real wireless hardware - intranet testing

� Real wireless hardware - Internet testing

� Everyplace Wireless Gateway installation

Each of the environments and tools used for testing provide additional
functionality for testing.

8.3.1 Toolkits and simulators
Wireless client simulators provide the application developer with the ability to
develop the m-commerce applications for the specific protocol and the targeted
features of the device. This allows the developer to take into account such issues
as the screen size, controls on the device, and other unique features, such as a
color display. The software simulator runs on a PC and allows access to the
WCS server device-specific content JSPs, as seen in Figure 8-4.
 Chapter 8. m-commerce development environment 167

Figure 8-4 Simulator test environment

In addition, we used simulators in test environment going through the IBM
Everyplace Wireless Gateway (EWG), which includes a WAP gateway, i-mode
gateway, and many other protocols (see Figure 8-5).

Figure 8-5 Simulator plus EWG WAP gateway test environment

By using the EWG WAP Gateway, we tested our application in an environment
more closely related to the customer environment. This test may bring out issues
related to session management.

There are pros and cons of using simulators for developing and testing your
m-commerce applications. Regardless of the cons, we think that simulators are
the logical starting point for developing m-commerce applications.

Pros of using a simulator
� Simulators provide a low-cost method of development.

� Simulators provide a debug console to output code being executed.

Simulators

WCS Server
m-Commerce store with

device-specific JSPs

HTTP/HTTPS

PC client

WAP over
HTTP/HTTPS

EWG
WAP Gateway

Simulators

PC client
WCS Server

m-Commerce store with
device-specific JSPs
168 Mobile Commerce Solutions Guide using WebSphere Commerce Suite V5.1

Cons of using a simulator
� SSL is not supported by most simulators.

This becomes a problem when developing m-commerce applications that use
SSL. It may be necessary to disable SSL with the WCS database to allow full
navigation through your m-commerce store.

� Real hardware is often more current and different from simulators.

Real hardware testing is required after your initial testing on the simulators to
verify the functionality of the specific device with the application.

Simulators
The simulators we used provide unique features, that, used in combination,
provide a reasonable level of testing. We used the following simulators:

� UP.SDK V3.2 for HDML

Refer to 14.1.1, “UP.SDK V3.2 for HDML” on page 266 for more detailed
information.

� UP.SDK for WAP V3.2, V4.1

Refer to 15.1.2, “UP.SDK for WAP” on page 273 for more detailed information.

� Nokia WAP Toolkit V2.1

Refer to 15.1.1, “Nokia WAP Toolkit V2.1 and simulator” on page 272 for more
detailed information.

Tips when using simulators
Here are some useful tips when testing with simulators:

� Turn off SSL in the WCS database

If your simulator does not support SSL, and you want to test your
m-commerce application while developing your application, you will need to
turn off SSL in the WCS database.

Turn off SSL in the VIEWREG and URLREG WCS database tables by
executing the following SQL commands:

a. Start a DB2 command window

b. Disable SSL in the VIEWREG table as follows:

> db2 update viewreg set https=0

c. Disable SSL in the URLREG table as follows:

> db2 update urlreg set https=0

� Use a WAP Gateway in your simulator test environment.
 Chapter 8. m-commerce development environment 169

By using a WAP Gateway, such as the EWG WAP Gateway, you can resolve
problems related to gateways before real hardware testing, such as session
management, takes place.

8.3.2 Real wireless hardware - intranet testing
Several variations of testing with real wireless hardware devices can be tried
prior to moving to an Internet production environment.

One variation is the use of your company’s RAS/NAS together with your own
installed and configured Wireless Gateway. In this scenario, your wireless
service provider provides the wireless connectivity and device used for testing.
The device needs to be able to be configured for your wireless gateway. For
example, if you are testing with a WAP device, you need to define your WAP
Gateway IP address 9.24.105.101 in the configuration setting of the device, as
seen in Figure 8-6.

This test environment requires that you have RAS/NAS gateway configured to
access your company’s network. For example, within IBM we used the IBM
Global Network’s (IGN) local access number, and IGN user ID and password to
access the IBM Open Net and 9.x.x.x intranet. With the WAP mobile phone
configured to use the IBM Everyplace Wireless Gateway (EWG), we were able to
access our WCS store. The EWG provides rich support for many wireless
protocols and NAS support (for example, WAP). We configured the EWG as a
WAP gateway to allow access of the WAP mobile hardware devices for testing
purposes, as seen in Figure 8-6.
170 Mobile Commerce Solutions Guide using WebSphere Commerce Suite V5.1

Figure 8-6 Real hardware test on company intranet

If your company does not provide this service, you will need to configure a NAS
system such as Windows 2000 Server with a modem attached.

8.3.3 Real wireless hardware - Internet testing
Prior to the production launch of your m-commerce store, you will need to verify
that the mobile device hardware and service provider gateway work properly with
your store. This can be done in silent launch mode by having a URL that is not
provided on your site (manually typed in) with the server accessible on the
Internet, as seen in Figure 8-7.

NAS/RAS
Authentication

Wireless Provider

EWG WAP
Gateway

9.24.105.101

WCS Server
m-Commerce

Store
WAP WML

Content JSPs

WAP
Mobile
Phone

Dial-Up

Company
Intranet
 Chapter 8. m-commerce development environment 171

Figure 8-7 Real hardware test environment on the Internet

8.3.4 Everyplace Wireless Gateway installation
IBM Everyplace Wireless Gateway V1.1.3 plus service pack can be run in two
modes of operation:

� As a component of WebSphere Everyplace Suite

� As a stand-alone gateway, which requires that you get the EWG service pack

When using the Everyplace Suite installation option, all the implementation
details are taken care of. The installation program lets you install the prerequisite
products, such as LDAP. You just have to configure the Gateway settings for your
implementation.

Stand-alone mode means that the Wireless Gateway is not being used as part of
a complete WES solution. In this case there are a number of steps that you need
to go through to set up and install a gateway.

InternetGateway

Wireless
Service
Provider

WCS Server
"PvC Fashion"

SMS
Center
172 Mobile Commerce Solutions Guide using WebSphere Commerce Suite V5.1

Machine configuration
For our environment, we used two RS/6000 systems. We used one system for
our LDAP server (host name rs600015) and the other for the Everyplace
Wireless Gateway configured for WAP (host name rs60001).

High level EWG install steps
To install the IBM Everyplace Wireless Gateway V1.1.3 provided with WES
V1.1.3, plus the EWG service pack, complete the following steps:

1. Download the EWG service pack or contact IBM EWG service for CDs.

The IBM Everyplace Wireless Gateway (EWG) V1.1.3 is currently bundled
with WebSphere Everyplace Suite V1.1.3. We used EWG within our test
environment packaged with WES V1.1.3 plus the EWG service pack, which
can be downloaded from the following URL:

http://www.software.ibm.com/dl/everyplace/gateway-p

2. Install LDAP on rs600015

For the purposes of our test setup, we install IBM SecureWay Directory LDAP
server direct from the WES 1.1.2 CDs. We use the Everyplace Suite install
program to install and configure both LDAP and DB/2. We then verify that
LDAP is working properly by running the Directory Management Tool (DMT)
and performing a rebind operation. This allows us to view the contents of the
directory tree. We can then also stop and restart the LDAP server using the
Web administration console, accessible from a Web browser at
http://rs600015/ldap.

3. Install the Wireless Gateway on rs60001

The code we install is the latest EWG version (EWG 1.1.3 plus service pack),
One of the new features in this updated release is that you can switch the
Gateway between modes (WES and stand-alone) just by changing a setting
in the configuration.

The installation of the code is performed using the AIX system management
tool called smit. At this point, we cannot use the Gateway until we have
installed the Gatekeeper and completed the configuration steps.

4. Install the Wireless Gatekeeper on rs60001

We also install the Gatekeeper administration console on the same box.
Typically you would install this on a separate computer. Again, we use smit to
install the Gatekeeper.
 Chapter 8. m-commerce development environment 173

5. Configure Wireless Gateway for stand-alone mode

By default, the Wireless Gateway is always configured to use the WES LDAP
schema. When configured to run in stand-alone mode, the Wireless Gateway
will apply its own schema to the LDAP server. This schema is a subset of the
one provided with the Everyplace Suite.

To enable stand-alone mode, edit the /usr/lpp/wireless/wgmgrd.conf file. Edit
the attribute wesldaparch, replacing the default value of 1 (WES schema
mode), with 0, as follows:

wesldaparch = 0

6. Configure LDAP

We now need to modify the LDAP server on rs600015. We installed from the
Everyplace Suite install media, meaning that LDAP is configured with the
Everyplace Suite schema. The Wireless Gateway will install its own schema,
so we need to remove the existing one first.

Before doing anything else, stop the LDAP server by issuing the following
command:

slapd stop

Next, drop the LDAP database because this is currently configured for the
Everyplace Suite schema, as follows:

ldapucfg -d

Having dropped the database, we now recreate it afresh, as follows:

ldapcfg -l /home/ldapdb2

The final steps are to create an empty schema file. This is accomplished by
deleting the file and then recreating it by editing it using vi and then saving
with no contents, as follows:

cd /usr/ldap/etc
rm V3.modifiedschema
vi V3.modifiedschema

Important: Do not run the Gatekeeper immediately after running the
installation. Doing so will initiate configuration of the Gateway and the product
will assume that LDAP has already been prepared for the installation. In our
case it has not, because we need to modify the LDAP schema settings.

Important: You must recreate the V3.modifiedschema file after deleting it.
This file is used to hold the schema structure and details, and the Everyplace
Wireless Gateway will update this file when you run the Gatekeeper for the
first time in stand-alone mode.
174 Mobile Commerce Solutions Guide using WebSphere Commerce Suite V5.1

7. Add an LDAP suffix

Now that we have recreated the LDAP database and reset the schema file,
we need to add a suffix. This will be the root of the directory hierarchy, under
which all of our resources and information are stored in LDAP.

Point a Web browser at the Web admin for the LDAP server using the
following URL:

http://rs600015/ldap

Log in, and select Settings ->Suffixes in the left-hand pane. In the Suffix DN
field, enter:

o=ibm, c=us

We have chosen a simple suffix, where o is the organization and c is the
country. You will need this information during the Gatekeeper configuration,
so it is a good idea to make a note of the value you specify here.

Finally, click the Update button. The suffix will now appear in the list of
Current Server suffixes, as seen in Figure 8-8.
 Chapter 8. m-commerce development environment 175

Figure 8-8 SecureWay Directory Web Admin - Suffixes

8. Run Gatekeeper

With all the preparatory steps completed, we can now run the Gatekeeper
program for the first time, using the following command:

wgcfg

This will begin the first stage of the Gateway configuration, which is to
configure the Access Manager. When this is complete, you will then be able
to configure a wireless gateway. Throughout the configuration process, follow
all the instructions provided on-screen, making use of the Tips button to
provide guidance on what values to enter in the various fields. When
prompted for an Organizational Unit, enter your LDAP suffix.

Next you will need to create a user ID and password for EWG access.
176 Mobile Commerce Solutions Guide using WebSphere Commerce Suite V5.1

Provided you follow all the instructions, you will now have a fully functional
stand-alone Wireless gateway. For additional information on how to install
and configure the Wireless Gateway, please refer to the product
documentation.

8.4 Where to find more information
� WebSphere V3.5 Handbook, SG24-6161

� WebSphere Commerce Suite V5.1 Customization and Transition Guide,
SG24-6174

� IBM WebSphere Transcoding Publisher V1.1, Extending Web Applications to
the Pervasive World, SG24-5965

� An Introduction to IBM Everyplace Suite Version 1.1, Accessing Web and
Enterprise Applications, SG24-5995

� Installation Guide, IBM WebSphere Commerce Studio V5.1 Professional
Developer’s Edition for Windows NT and Windows 2000

� Installation Guide, IBM WebSphere Commerce Suite V5.1 Pro Edition for
Windows NT and Windows 2000
 Chapter 8. m-commerce development environment 177

178 Mobile Commerce Solutions Guide using WebSphere Commerce Suite V5.1

Chapter 9. m-commerce sample store
and sample code

This chapter provides information on the m-commerce sample code developed
during the project residency of this redbook. Many of these samples are
documented in the implementation chapters of this redbook. We provide the
code samples and PvC Fashion sample store as a reference of how to develop
and deploy an m-commerce store using WCS V5.1.

The chapter is organized into the following sections:

� Download sample store and sample code

� Sample store overview

� Deploy sample store to WCS runtime

� Prepare the development environment

9

© Copyright IBM Corp. 2001 179

9.1 Download sample store and sample code
This section illustrates a procedure to obtain the sample code and a description
of the contents of the .zip file.

To download the sample m-commerce code from the IBM ITSO Redbooks Web
site, complete the following steps:

1. Download the Web material associated with this redbook, by entering the
following in your Web browser:

ftp://www.redbooks.ibm.com/redbooks/SG246171

Where sg246171 is the order number for this redbook.

2. Unzip the SG246171.zip file to the directory of your choice (for example,
c:\temp).

Table 9-1 provides a description of the SG246171.zip file contents.

Table 9-1 m-commerce sample code .zip file contents

Note: The sample code is supplied in the .zip file is used throughout this
redbook. The goal of the sample code is to make the development of
m-commerce applications easier. We recommend that you download the
sample code .zip file and use the contents as a reference.

Note:

Alternatively, you can go to the IBM Redbooks Web site at:

ibm.com/redbooks

Select the Additional materials and open the directory that corresponds to
the redbook form number, SG246171.

Directory/filename Description

\sg246171\PVCFashion\
pvcfashion_en_US_ja_JP.sar

PvC Fashion sample store in WCS
store archive format (SAR)
* Beneficial for deployment

\sg246171\PVCFashion\PvCFashion.wsr PvC Fashion sample store in
Studio archive format
* Beneficial for development
180 Mobile Commerce Solutions Guide using WebSphere Commerce Suite V5.1

http://www.redbooks.ibm.com/
ftp://www.redbooks.ibm.com/redbooks/
http://www.ibm.com/redbooks/
http://www.ibm.com/redbooks/

9.2 Sample store overview
While writing this redbook, we used the In Fashion sample store included with
WCS V5.1 as a basis to create an m-commerce enabled store called PvC
Fashion. The objectives of the PvC Fashion sample store are as follows:

\sg246171\adapter.pvc\UpPvcAdapter.jar
\sg246171\adapter.pvc\UpPvcAdapter.xml

PvC adapter for UP HDML and
XML adapter definition of WCS
instance XML configuration file

sg246171\adapter.pvc\WapPvcAdapter.jar
\sg246171\adapter.pvc\WapPvcAdapter.xml

PvC adapter for WAP WML and
XML adapter definition of WCS
instance XML configuration file

\sg246171\adapter.pvc\GenericPvcAdapter.jar
\sg246171\adapter.pvc\GenericPvcAdapter.xml

PvC adapter for WTP Generic
(many device types) and XML
adapter definition of WCS instance
XML configuration file

\sg246171\adapter.pvc\PrintHttpRequest.jar JAR containing PrintHttpRequest
test program used in creating an
adapter

\sg246167\command.pvc PvC command sample

\sg246167\databean.pvc PvC data bean

\sg246171\direct\hdml\hdml_jsp
\sg246171\direct\hdml\properties
\sg246171\direct\hdml\scripts

m-commerce direct HDML sample
* JSPs with HDML content
* Properties files
* Content mgt scripts for HDML

\sg246171\direct\wap\wml_jsp
\sg246171\direct\wap\properties
\sg246171\direct\wap\scripts

m-commerce direct WAP sample
* JSPs with WML content
* Properties files
* Content mgt scripts for WML

\sg246171\direct\palm\html_jsp
\sg246171\direct\palm\webclip

m-commerce direct Palm sample
* JSPs with HTML content
* JSPs with HTML Web Clipping

\sg246171\wtp\wtp_html m-commerce using WTP sample
* JSPs with simplified HTML
content

\sg246171\wtp\wtp_xml m-commerce using WTP sample
* JSPs with XML content

Directory/filename Description
 Chapter 9. m-commerce sample store and sample code 181

� To provide an m-commerce store that can be deployed

The deployment process demonstrated will be very similar for other
m-commerce stores developed using WCS V5.1

� To provide an m-commerce store as an example for developing the PvC
extensions documented in this redbook

9.2.1 PvC Fashion sample store
The implementation of the m-commerce features provided in WCS V5.1 were
developed by the IBM Japan Yamato lab. The dominant protocol in Japan is
i-mode (cHTML) provided by NTT DoCoMo. The first sample PvC Fashion store
was developed for i-mode by the IBM Japan team. Unfortunately, we could not
make this code available due to confidentiality agreements between IBM and
NTT DoCoMo for i-mode. For information on i-mode and WCS V5.1, contact IBM
Japan and NTT DoCoMo.

The next biggest service provider in Japan is KDDI’s EZWeb, which provides
HDML services. For this reason, we enabled the PvC Fashion sample store for a
UP PvC adapter and HDML content.

We then used the HDML content JSPs as a starting point for developing WAP
WML content JSPs to browse the catalog. We converted all the HDML content
JSPs to WML. However, only the JSPs necessary for browsing the catalog have
been debugged and tested. We have included the untested version of the WML
JSPs as a head start for developers who may be interested in this code.

In addition, we created Palm HTML content JSPs and used Web Clipping for
browsing the catalog. Similarly, we developed simplified HTML and XML content
JSPs for WTP.

Features of the PvC Fashion sample store
The sample has the following features:

� Multiple device type support

� Multiple language support (English and Japanese)

� Content-specific JSPs

� Use of the PvC adapter

� Modified shopping flow

� Use of PvC data beans

� Use of PvC commands
182 Mobile Commerce Solutions Guide using WebSphere Commerce Suite V5.1

The sample shows how to implement a store with support for mobile devices and
PC browser clients from one server. This sample supports both English and
Japanese languages. It is easy to add other languages by translating the
property file, so that multiple languages can be supported on mobile devices.

9.2.2 Web Fashion sample store
A new and more feature-rich version of a sample store, called Web Fashion, has
been made available for download from the IBM WebSphere Commerce Suite
home page. The Web Fashion store is an enhanced version of the original
InFashion sample store, which PvC Fashion is based upon. If you want to start
with a more complete sample or template when creating your own store, you may
consider using the Web Fashion sample store. The m-commerce sample code
provided in the SG246171.zip can be easily modified to work with Web Fashion
or other WCS stores.

Refer to the store creation and basic customization sections in the WebSphere
Commerce Suite V5.1 Handbook, SG24-6167 for detailed instructions on using
Web Fashion. The instructions include how to use Web Fashion as a template to
create your own store, and how to develop a store using WebSphere Commerce
Studio.

9.3 Deploy sample store to WCS runtime
This section includes high-level instructions for deploying the PvC Fashion
sample store to your WCS V5.1 runtime. Many of the detailed instructions for
these procedures are included in WebSphere Commerce Suite V5.1 Handbook,
SG24-6167.
 Chapter 9. m-commerce sample store and sample code 183

We have organized the deployment of the PvC Fashion sample store in the
following categories to demonstrate the deployment steps for a standard PC
browser-based store, and the additional steps required to deploy an
m-commerce store:

� Create a store template

� Create a store from a template

� Publish the PvC Fashion sample store from Store Services

� Deploy PvC adapter and data beans

� Configure content management

� Verify PvC Fashion sample store

9.3.1 Create a store template
The first step in store creation is the generation of a template store from which
we will create the actual stores to be customized for m-commerce. For the
purpose of our examples, we make a copy of the PvCFashion_en_US_ja_JP.sar
store archive to serve as a template.

To create a store template, complete the following steps:

1. Create a directory named PvCFashion in the
<wcs_install_path>\samples\stores directory.

2. Copy the PvCFashion_en_US_ja_JP.sar to PvCFashion.sar on the WCS
Server.

Note: We have included instructions for deploying UP PvC adapter and HDML
content JSPs, or a WAP PvC adapter and WAP WML content JSPs.

The deployment of both PvC adapters and content simultaneously is
supported. However; for the sake of simplicity, the instructions and
deployment scripts are written to work for only one at a time.

If you are planning to use more that one PvC adapter at a time, you will need
to provide unique values for the deviceFormatId in the adapter definition.

Also, when performing the content management configuration you will need to
modify the SQL scripts to provide unique model_id, mdlspec_id, and spec_ids
for each adapter.

For more detailed information on deploying multiple PvC adapters, refer to
11.3, “Deploying multiple PvC adapters” on page 222.
184 Mobile Commerce Solutions Guide using WebSphere Commerce Suite V5.1

For example:

From: c:\temp\sg246171\PvcFashion\PvCFashion_en_US_ja_JP.sar

To: c:\ibm\wcs\samples\stores\PvCFashion\PvCFashion.sar

3. Make copies of the following files in the <wcs_install_path>\xml\sar\ directory:

Original file Back up to:

catalog.dtd catalog.dtd.bak

command.dtd command.dtd.bak

store-all.dtd store-all.dtd.bak

4. Create a new store owner for PvC Fashion as follows:

a. Open a DB2 command line processor by clicking Start -> Programs ->
IBM DB2 -> Command Line Processor

b. Issue the following commands to create a new owner:

db2 => connect to <wcs_db> user <dbuser> using <dbuser_password>
db2 => insert into member (member_id,type) values (4444, ‘O’)
db2 => insert into orgentity (orgentity_id, orgentityname,
orgentitytype) values (4444,’ITSOPVC’, ‘O’)
db2 => commit

c. Close the DB2 Command line processor window.

5. Modify the commit count number of your Commerce Suite instance as follows:

a. In a text editor or your XML editor, open the file:

<wcs_install_path>\instances\<instance_name>\xml\<instance_name>.xml

b. Under the <DevTools tag, set the CommitCount value to 10500.

c. Save and close the file.

6. When using DB2, increase the log file size of your Commerce Suite database
for publishing purposes:

a. Open the DB2 Control Center by clicking Start -> Programs -> IBM DB2
-> Control Center.

b. Expand the <hostname> -> Instances -> DB2 -> Databases node.

c. Right-click on your Commerce Suite database.

d. Select Configure...

e. In the Configure Database window, open the Logs tab.

Note: The member_id must be unique. Both member_id and orgentityname
are user defined. The type is the letter O not the number 0.
 Chapter 9. m-commerce sample store and sample code 185

f. In the Logs tab, change the value of the Log file size to at least 2500, and
then click OK.

g. Exit the Control Center.

h. Stop and Start the WebSphere Commerce Server - <wcs_instance> from
the WebSphere Administration Console.

7. Update the Store Services sample list by editing the XML file that identifies
the samples, as follows:

a. Opening the <wcs_install_path>\xml\tools\devtools\SARRegistry.xml file
using a text editor or an XML editor.

b. Add the following entry directly after the <SAR-properties> tag :

<SampleSAR fileName="PvCFashion.sar" relativePath="PvCFashion">
<html locale="en_US" featureFile="PvCFashion/Feature_en_US.html"

sampleSite="RetailModel/preview/en_US/index.html"/>
</SampleSAR>

c. Save and close the file.

You have just created a template from which you can generate other stores.

9.3.2 Create a store from a template
To create a store from the template created in the previous section, complete the
following steps:

1. Start Store Services by using Internet Explorer V5.5 (or later) and entering
the following URL:

http://<your_host_name>/storeservices

2. In the Store Services Logon page, enter your WCS administrator name and
password, then click Log On.

3. When the Store Services archive list window appears, click New.

4. When the Create Store Archive window appears, enter the following in the
appropriate fields and then click OK:

– Store archive: PvCFashion

This is the name of the new store archive. After you have created the store
archive, the file extension .sar is added to the name of the store archive,
for example, PvCFashion.sar

– Store directory: PvCFashion

The directory name defines where the Web assets will be published on the
server (for example, c:\ibm\wcs\stores\PvCFashion).
186 Mobile Commerce Solutions Guide using WebSphere Commerce Suite V5.1

– Store owner: From the Store owner pull-down list, select the organization
that owns the store.

For example, we selected the organization ITSOPVC, which we created in a
previous step.

– Sample: From the sample pull-down list, select PvCFashion.sar.

5. You should see a window with the message PvCFashion.sar created
successfully. Click OK to continue.

6. You should now see the PvCFashion.sar listed under the Store archive.

9.3.3 Publish the PvC Fashion sample store from Store Services
Now that a store archive exists for the PvC Fashion store, we need to publish the
store from Store Services to the WCS server runtime, so that we can verify our
changes as we develop m-commerce code.

1. Click the checkbox next to your newly created SAR file, PvCFashion.sar, and
then click Publish... from the right-hand side of the window.

2. When the Publish Store Archive window appears, take note of the directory
paths specified, accept the defaults and then click OK.

3. The Store Archive List should reappear, and the status of the new store
should read Publishing.

This process can take 5-10 minutes, depending the specifications of your
system.

4. To check the status, click Refresh in the right-hand pane.

Repeat this process until the status says Publishing completed
successfully.

5. Verify your store from a PC browser client.

To see the running store, complete the following steps:

a. Click on the checkbox next to PvCFashion.sar, and then click Publish
Summary in the right-hand pane.

b. At the bottom of the Publish Summary window, click Launch the Store.

Your store will appear in a new browser window.

Note: We recommend viewing the Performance tab in the Windows Task
Manager to monitor CPU activity to assist in determining the publishing status.
 Chapter 9. m-commerce sample store and sample code 187

If you experience problems launching your store, we recommend that you
stop/start the WebSphere Commerce Server - <wcs_instance> from the
WebSphere Administrators Console. Then repeat the steps to launch the store.

9.3.4 Create an alias for the store
To make it easier for users to access your store, we recommend that you create
an alias and an index.html file containing the location.href to your store.

Allow quick access to your store from a Web browser by typing the following
URL:

http://<hostname>/<alias>

For example: http://m23vnx58/mystore

Instead of something like the following:

http://<hostname>/webapp/wcs/stores/servlet/StoreCatalogDisplay?stor
eId=10001&langId=-1&catalogId=10001

Add alias to httpd.conf
To add an alias to the httpd.conf, complete the following steps:

1. Stop the IBM HTTP Server from Windows Services.

2. Change to the directory of the httpd.conf file. For example, c:\ibm\http\conf\.

3. Modify the httpd.conf file. Add the following alias to the path of your published
store:

Alias /mystore “c:\ibm\wcs\stores\web\”

4. Save the file.

5. Stop and Start the IBM HTTP Server for the change to take effect.

Tip: It is a good idea to bookmark this page since the URL is very long, and
you will want to view your store home page often as you develop.

Note: After the WCS V5.1 installation, the httpd.conf file can no longer be
edited using NotePad (removal of crlf). We used Wordpad to edit the
httpd.conf.
188 Mobile Commerce Solutions Guide using WebSphere Commerce Suite V5.1

Create an index.html with a href for your store
To create an index.html file with the location.href for your store, complete the
following steps:

1. Change to the directory of your published store. For example,
c:\ibm\wcs\stores\web\.

2. Create an index.html file in this directory like the one seen in Example 9-1.

3. Change the location.href to match your store settings. For example, change
the host name (your storeId and catalogId may be different).

Example 9-1 Sample index.html
<html>
<head>
<title>PvCFashion sample store</title>
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">
<script language="JavaScript">
location.href =
"http://m23vnx58.itso.ral.ibm.com/webapp/wcs/stores/servlet/StoreCatalogDisplay
?storeId=10151&langId=-1&catalogId=10151";
</script>
</head>
<body bgcolor="#FFFFFF">
InFashion
sample store

One moment............
</body>
</html>

Test alias with index.html
Once you have updated the httpd.conf, created the index.html file, and stopped
and started the IBM HTTP Server, you can now test the alias. Enter the following
URL in a Web browser to access your store:

http://<hostname>/<alias>

For example: http://m23vnx58/mystore

9.3.5 Deploy PvC adapter and data beans
This section describes the steps necessary to deploy the PvC adapter and data
bean JARs and update the WCS instance XML config file with the PvC adapter
definition.

Deploy JARs
Complete the following steps to deploy the PVC data beans and PvC adapter:
 Chapter 9. m-commerce sample store and sample code 189

1. Open a Command Prompt window by clicking Start -> Programs ->
Command Prompt.

2. Copy pvcdatabeans.jar to the <wcs_install_path>\lib directory.

For example:

From: c:\temp\sg246171\databean.pvc\pvcdatabeans.jar

To: c:\ibm\wcs\lib

3. Copy the PvC adapter JAR to the <wcs_install_path>\lib directory.

– In UP HDML:

From: c:\temp\sg246171\adapter.pvc\UpPvcAdapter.jar

To: c:\ibm\wcs\lib

– In WAP:

From: c:\temp\sg246171\adapter.pvc\WapPvcAdapter.jar

To: c:\ibm\wcs\lib

4. Append PvC adapter JAR and pvcdatabeans.jar to the classpath of the WCS
application server.

a. Start the WebSphere Administration Console by clicking Start -> Program
-> IBM WebSphere -> Applications Server V3.5 -> Administrator’s
Console.

b. Select and expand the WebSphere Administrative Domain ->
<your_hostname>.

c. Select WebSphere Commerce Suite Server - <wcs_instance> in the
tree view.

d. Append the following JARs in the command line argument field.

For example:

c:\ibm\wcs\lib\UpPvcAdapter.jar;c:\ibm\wcs\lib\pvcdatabeans.jar

or

Note: In the future the pvcdatabeans.jar will be included in the WCS V5.1
product. Check for newer versions of this file on the WebSphere Commerce
Suite home page at:

http://www.ibm.com/software/webservers/commerce/wcs_pro/support.html

The pvcdatabeans.jar includes the PVCDataBufferBean and the
UserPVCDeviceBean documented in Appendix C, “PvC data bean reference”
on page 355.
190 Mobile Commerce Solutions Guide using WebSphere Commerce Suite V5.1

c:\ibm\wcs\lib\WapPvcAdapter.jar;c:\ibm\wcs\lib\pvcdatabeans.jar

e. Click Apply.

The server will need to be stopped and started for these changes to take effect.
We will be making other changes in the next step that will require a stop/restart.

Add PvC adapter definition to the WCS instance XML file
Complete the following steps to insert the PvC adapter definition into the WCS
instance XML configuration file with the PVC adapter attribute entries:

1. Stop the WebSphere Commerce Server - <wcs_instance>.

2. Open a Command Prompt window by clicking Start -> Programs ->
Command Prompt.

3. Change to the directory of the WCS instance XML configuration file. For
example:

c:\ cd \ibm\wcs\instances\wcs\xml

4. Edit the WCS instance XML configuration file (<wcs_instance_name>.xml).
Insert the PvC adapter definition, after the </InstanceProperties> tag.

UP PvC adapter definition is displayed in Example 9-2, and can be found at:

<install_path>\sg246171\adapter.pvc\UpPvcAdapter.xml

WAP PvC adapter definition can be found at:

<install_path>\sg246171\adapter.pvc\WapPvcAdapter.xml

Example 9-2 UP PvC adapter definition for the WCS instance XML config file
<HttpAdapters>

<HttpAdapter
name = "UP"
deviceFormatId = "-2"
deviceFormatType = "PVCAdapter"
deviceFormatTypeId = "-1"
factoryClassname="com.ibm.commerce.pvcadapter.up.UpPvcAdapter"
enabled="true" >
<PVCAdapter registrationMode="0"

preferredLogonTimeout="20"
bufferTimeout="5" >

</PVCAdapter>
</HttpAdapter>

</HttpAdapters>

5. Start the WebSphere Commerce Server - <wcs_instance>.
 Chapter 9. m-commerce sample store and sample code 191

9.3.6 Configure content management
The content management configuration refers to the database updates required
for the device-specific content JSPs to be served to the mobile client. This is
accomplished by executing SQL scripts to update the WCS database tables to
set the document root for the device-specific content JSPs. Once the PvC
adapter detects the device type of the request, the mobile device client is served
the correct device-specific content JSPs based on the content management
configuration.

To configure the content management, complete the following steps:

1. Start the DB2 command line processor by clicking Start -> Programs -> IBM
DB2 -> Command Window.

2. Change to the directory of the content management script file.

– For HDML content UP browser clients, do the following:

i. Start a DB2 command line session.

ii. Change to the directory of the script. For example,
c:\temp\sg246171\direct\hdml\scripts.

iii. Execute the content managment script by typing the following at the
DB2 command line:

> db2 connect to <wcs_database>
> db2 -tvf setup_hdml.sql

– For WAP WML content, do the following:

i. Start a DB2 command line session.

ii. Change to the directory of the script. For example,
c:\temp\sg246171\direct\wap\scripts.

iii. Execute the content managment script by typing the following at the
DB2 command line:

> db2 connect to <wcs_database>
> db2 -tvf setup_wap.sql

Note: The settings in the setup_hdml.sql and setup_wml.sql have many of the
same values. The settings will need to be modified to deploy and run both the
UP, WAP PvC adapters and HDML, WML content simultaneously.

Information on modifying these settings can be found in the following sections:

� 11.3, “Deploying multiple PvC adapters” on page 222

� 12.1, “Content management configuration” on page 226

� “Content management reference” on page 364
192 Mobile Commerce Solutions Guide using WebSphere Commerce Suite V5.1

3. When the database setup script is done processing, restart WebSphere
Commerce Server - <wcs_instance> from the Administration Console, so that
the changes can take effect.

9.3.7 Verify PvC Fashion sample store
We need to test the PvC Fashion sample store from a PC browser client and a
mobile device client. In order to test the m-commerce direct PvC Fashion store,
we will need to do the following:

1. Install the mobile device simulator (UP or WAP).

– UP browser clients

Refer to 14.1, “HDML toolkits and test clients” on page 266 for detailed
instructions.

– WAP browser clients

Refer to 15.1, “WAP toolkits and test clients” on page 272 for detailed
instructions.

2. From the simulator, enter the PvC Fashion store home page URL as noted
and saved when launching the store for a PC browser client.

– The UP HDML simulator should display the HDML content as seen in
Figure 9-1.

Figure 9-1 PvC Fashion samle store HDML content - UP HDML simulator

Important: If the URL starts with https:// please replace it with http:// , since
the simulator we used for testing does not support SSL connection.
 Chapter 9. m-commerce sample store and sample code 193

– Nokia WAP simulator should display the WML content as seen in
Figure 9-2.

Figure 9-2 PvC Fashion sample store WAP WML content - Nokia WAP simulator

3. Verify the PvC Fashion sample store from a PC browser by entering the URL
as noted and saved when launching the store for a PC browser client. The
home page should look like Figure 9-3.
194 Mobile Commerce Solutions Guide using WebSphere Commerce Suite V5.1

Figure 9-3 PvC Fashion sample store HTML content - PC browser client

9.4 Prepare the development environment
In preparation for development using the PvC Fashion store as a basis, we set up
PvC Fashion to run in the VAJ WTE, and imported all the store assets into
Studio. The PvC adapter and custom PvC commands are developed in
VisualAge for Java. The device-specific content JSPs are developed in Studio.

We recommend that you follow the following procedure to prepare your
development environment for the PvC Fashion store:

� Update VAJ WTE to run new store

This is very beneficial for debugging and developing Java code.

� Load assets into Studio

� Load assets into VAJ

Refer to the WebSphere Commerce Suite V5.1 Handbook, SG24-6167 for
detailed information on completing the above-mentioned tasks.
 Chapter 9. m-commerce sample store and sample code 195

196 Mobile Commerce Solutions Guide using WebSphere Commerce Suite V5.1

Part 3 m-commerce
direct
implementation

Part 3
© Copyright IBM Corp. 2001 197

198 Mobile Commerce Solutions Guide using WebSphere Commerce Suite V5.1

Chapter 10. m-commerce direct design
and development process

This chapter describes application design guidelines for developing an
m-commerce application using the direct approach, which includes
device-specific content JSPs. In addition, we have included a summary of the
development process.

The chapter is organized into the following sections:

� m-commerce direct application design guidelines

� m-commerce direct development process

10
© Copyright IBM Corp. 2001 199

10.1 m-commerce direct application design guidelines
The objective of this section is to describe how to take an existing store built for
PC browser clients and enable the store for mobile device clients. We will
highlight the key application design considerations.

Our application design provides guidance on what we did to enable the
InFashion sample store for m-commerce. We have provided this modified
version of InFashion, which we named PvCFashion, in the SG246171.zip.

In this section, we examine the following application design considerations:

� Content grouping based on device

� Creating content: copy PC JSPs for new mobile devices

� Modifying shopping flow

� Modifying content based on the limitations of the device

� WCS cache

� Dividing pages too large for display of device

� Converting content and images for target browsers

� Usability design

� Session management

Content grouping based on device
Decide how to group contents that you want to support for mobile devices of
different capabilities and protocols. The JSPs will need to be developed and
stored in different subdirectories. Through the use of the PvC adapter and
configuration, the device will be detected and automatically use the appropriate
JSPs with specific content for the device.

You must decide how to sort devices when using this function before modifying
the JSP. The content creation workload will increase if your create very specific
content groups based on the capability of the device. On the other hand, you can
provide optimal performance with specific content for each type of mobile device.
We recommend using common JSPs as much as possible to lessen the
development workload and development cycle for a more rapid deployment.

Create the chosen JSP content-specific directory under the store directory. For
example, the file system path (absolute) for our PvCFashion store is as follows:

c:\ibm\wcs\stores\web\PvCFashion
200 Mobile Commerce Solutions Guide using WebSphere Commerce Suite V5.1

The PC browser client JSPs are in the root of PvCFashion. To distinguish
between JSPs of the same name, we created a directory off the root of the store
called hdml, for the HDML-specific content JSPs, as follows:

c:\ibm\wcs\stores\web\PvCFashion\hdml

Using the logonForm.jsp, here is how to configure the server:

� Client accesses the store

� The incoming HTTP request header is evaluated by the adapter to determine
device type.

– If a PC browser client us accessing the store, the server will search for the
logonForm.jsp registered in VIEWREG table, for example:

[Store directory]/logonForm.jsp]

and process it to display the JSP output for the PC browser client.

– If a mobile device (for example, an HDML-based client) is accessing the
store, the server will search the VIEWREG table, for example:

[Storedirectory]/hdml/logonForm.jsp]

and process it to display the JSP output for HDML mobile clients.

The server configuration also includes registering data according to the device
classification in PVCDEVMDL,PVCDEVSPEC and in the PVCMDLSPEC table.
To achieve content switching and session control by subscriber ID (device type
detection), the PvC adapter must be deployed.

Creating content: copy PC JSPs for new mobile devices
As a starting point, we recommend copying all the JSPs and images from the PC
browser clients to develop the device-specific JSPs and convert the images. We
also recommend that you import the copy of these JSPs into a folder created in
Studio.

Modifying shopping flow
In our PvCFashion sample for mobile phones, we changed the shopping flow
developed for PC browser clients to fit the needs and capability of the HDML
mobile phone and user.

Modifying content based on the limitations of the device
In our example, we converted the HTML-based content to HDML and made
modifications specific to the screen size of the target device (a five-line LCD
screen).
 Chapter 10. m-commerce direct design and development process 201

We have listed some key limitations unique to mobile phones. We recommend
checking for the following limitations based on the targeted mobile phone
capabilities:

� If the target browser cannot support JavaScript, it is necessary to realize the
source JavaScript in another way. When using WAP, convert the JavaScript to
WMLScript.

� Certain pages that change dynamically, such as the search result of a
product, may exceed the file size that the browser can receive. In this
situation, you may need to divide the content into several pages.

� There is a limit in the length of a URL that can be sent at one time. We need
to ensure that the URL length is not exceeded.

WCS cache
At the time of writing this redbook, it was a requirement that you disable the WCS
cache. If you do not disable the cache, JSPs served from different directories
with the same name cannot be distinguished by the WCS cache. The first JSP
cached with a given name will potentially be loaded for clients of a different type.

For example:

� PC JSPs in root directory of store

� WAP WML JSPs in wml_jsp directory off the root of store

The StoreCategoryDisplay.jsp contains HTML for the PC version and WML for
the WAP version. If the WAP client accesses the JSP first, it is compiled and
cached. Next, the PC client accesses the store and will not get the cached
version of the file instead of the correct version for the detected device type.

Dividing pages too large for display of device
When we send a large amount of data at once using the HTML <FORM> tag (for
example for address registration), there is a possibility that it will exceed the
capacity of the device memory. So we must divide the <FORM> tag into several
pages. Here, the PvCBufferUrl command is used and several pages of data are
saved on the server side, then processed by the server.

There are instances where page size changes dynamically by manipulation from
the user side (for example for displaying search results, executing Category
Display command, or displaying a shopping cart page). To be prepared for these
eventualities, we divide the page based on the limitation of the devices.
202 Mobile Commerce Solutions Guide using WebSphere Commerce Suite V5.1

Converting content and images for target browsers
The HTML-based JSPs need to be modified for the target browser‘s markup
language of the mobile device. For example, we modified the HTML content to
HDML and converted the images. Image files are often made smaller and the
resolution is lowered so that it will not be beyond the capacity of the mobile
device.

Usability design
The design of the user interface needs to be carefully considered and tested
using software-based simulators and real mobile device hardware.

� Simulator

After the conversion process, the JSP files will be tested using a simulator for
the mobile device. This test shows whether the display flow is properly
working.

� Mobile device hardware

After testing with simulators, we need to test with as many types of mobile
hardware devices as possible. Each device has a different displayable screen
size, so this test is very important. Browsers that are loaded on the mobile
phone devices sometimes differ, depending on the manufacturers of the
mobile phones.

Often, the simulator and actual hardware do not produce the same result.
This is due in part to the simulator features not keeping pace with the features
of mobile device hardware. Because of these differences, the same page may
be displayed differently. There are browser software bugs that sometime
impede the proper display of pages. The same JSP behaves differently on
different mobile device browsers. To avoid surprises, we recommend you test
on as many mobile hardware devices as possible.

Session management
When developing the PvC adapter, you will need to understand the behavior of
the mobile device for session control. Refer to 3.1.2, “Session management” on
page 72 for more information.

10.2 m-commerce direct development process
Before we get started developing the m-commerce application, we need to verify
that the following prerequisites have been met.

1. Runtime environment

The WCS V5.1 runtime environment is set up with a WCS instance.
 Chapter 10. m-commerce direct design and development process 203

Refer to Chapter 7, “m-commerce runtime environment” on page 141 for
details.

2. Deploy the PvC Fashion sample store

The sample store is deployed and working.

Refer to Chapter 9, “m-commerce sample store and sample code” on
page 179 for details.

3. Development environment

The development environment is installed and working (Studio, VisualAge for
Java, WTE, XML editor, etc.).

Refer to Chapter 8, “m-commerce development environment” on page 159

4. Mobile device simulator

For development unit testing, we need to ensure that we have a test simulator
for the desired wireless protocol installed and configured.

– UP browser HDML content

In the examples to follow in this chapter, we need to install the simulator
based on UP.SDK V3.2 for HDML.

Refer to Chapter 14, “HDML implementation sample” on page 265 for
detailed installation and configuration instructions.

– WAP browser WML content

Refer to Chapter 15, “WAP implementation sample” on page 271 for
detailed installation and configuration instructions.

– Palm HTML content

Refer to Chapter 16, “Palm implementation sample” on page 279 for
detailed installation and configuration instructions.

5. Create a PvC adapter

6. Deploy a PvC adapter

7. Content management configuration

8. Create device-specific content JSPs

9. Deploy content

10.Create custom PvC commands

11.Test the m-commerce store
204 Mobile Commerce Solutions Guide using WebSphere Commerce Suite V5.1

Chapter 11. Creating and deploying a
PvC adapter

This chapter describes development procedures for creating and deploying a
PvC adapter. In this section we provide instructions for creating a carrier-specific
PvC adapter. The information provided applies to creating adapters for any
wireless protocol.

This chapter is organized into the following sections:

� Creating a PvC adapter

� Deploying a PvC adapter

� Deploying multiple PvC adapters

11
© Copyright IBM Corp. 2001 205

11.1 Creating a PvC adapter
This section provides detailed information on how to create a PvC adapter.
Depending on your preferences, you can develop the adapter from the following
procedure or import sample PvC adapter. In this chapter we will demonstrate
how to create a PvC adapter for a UP carrier -specific browser. As noted below,
we have included sample PvC adapter code for UP, WAP, Palm, and WTP.

We have organized the steps required to create a PvC adapter as follows:

� Create a project in VisualAge for Java (VAJ)

� Create a package in VAJ

� Identify the device type

� Create an adapter class

� The checkDeviceFormat method

� The getDeviceModel method

� The getTerminalId method

PvC adapter sample code
The sample code described in this section can be found in the additional
materials .zip file, SG246171.zip, in the following directory after being unzipped:

<install_path>\sg246171\adapter.pvc

Each of the following samples includes the Java class and methods found in the
JAR file, which can be imported into VAJ, and the PvC adapter definition XML file
used to update the WCS instance XML file for deployment.

We have included sample PvC adapters for the following:

� For UP HDML

– UpPvcAdapter.jar

– UpPvcAdapter.xml

This PvC adapter is for use with UP.Browser (HDML) mobile devices. This
code is used throughout this chapter as a working example of how to develop
a PvC adapter.

Note: The PvC adapter JAR files include the Java source and class. When
deploying the adapter on a production system, we recommend that you export
the JAR without the Java source.
206 Mobile Commerce Solutions Guide using WebSphere Commerce Suite V5.1

Refer to Chapter 14, “HDML implementation sample” on page 265 for more
detailed information.

� For WAP

– WapPvcAdapter.jar

– WapPvcAdapter.xml

This PvC adapter is for use with WAP mobile devices with browser support for
WML content.

Refer to Chapter 15, “WAP implementation sample” on page 271 for more
detailed information.

� For WTP

– WapPvcAdapter.jar

– WapPvcAdapter.xml

Refer to Chapter 19, “m-commerce using WTP application development” on
page 305 for more detailed information.

11.1.1 Create a project in VisualAge for Java (VAJ)
Before we create the PvC adapter, we need to create a project in VAJ by
completing the following steps:

1. Start VisualAge for Java.

2. Select File -> Quick Start from the VAJ main menu.

3. When the Quick Start window appears, select Basic -> Create Project, then
click OK.

4. When the Add Project window appears, select Create a new project
named:, then enter the project name. For example, we entered PvC Adapter
for UP HDML. Then clicked Finish.

11.1.2 Create a package in VAJ
This section describes the steps necessary to create a package in VAJ, which
will be used in creating an adapter. In this example, we will create a package
called com.ibm.commerce.pvcadapter.hdml by completing the following steps:

1. Select the project created in the previous section.

2. Right-click Add, then click Package.

Note: The VAJ project name could be anything you like. We have provided a
specific name to make it easier to refer to throughout the instructions.
 Chapter 11. Creating and deploying a PvC adapter 207

3. When the Add Package window appears, enter the new package name:
com.ibm.commerce.pvcadapter.up and then click Finish.

11.1.3 Identify the device type
Before creating the adapter, we need to identify the device type we want to check
for in the adapter. We have provided a Java utility (see Example 11-1) called
PrintHttpRequest.java to help us determine the user-agent action to look for.
When a request is transmitted from the mobile client browser, the
PrintHttpRequest application will wait for the connection on the port configured
(for example, port 9998). When the client connects, a message is transmitted to
standard output.

Example 11-1 PrintHttpRequest.java
import java.io.*;
import java.net.*;
class PrintHttpRequest {

public static void main (String args[]) {
ServerSocket serverSocket = null;
Socket socket = null;
try {

serverSocket = new java.net.ServerSocket(9999);
socket = serverSocket.accept();
BufferedReader reader = new BufferedReader(new

InputStreamReader(socket.getInputStream()));
String line = ““;
while (line != null) {

line = reader.readLine();
System.out.println(line);

}
} catch (Exception e1) {

e1.printStackTrace();
} finally {

try {
if (socket != null) socket.close();
if (serverSocket != null) serverSocket.close();

} catch (Exception e2) {
e2.printStackTrace();

}
}

}
}

Import PrintHttpRequest into VAJ
Prior to executing PrintHttpRequest.java, it must be imported into VAJ by
completing the following steps:
208 Mobile Commerce Solutions Guide using WebSphere Commerce Suite V5.1

1. Open VisualAge for Java.

2. Select the project created in the previous section (for example, PvC Adapter
for UP HDML).

3. Select File -> Import. Select the import source Jar, click Next.

4. When the Import from a directory window appears, do the following:

– Click Browse to select the directory and file, for example
c:\sg246171\adapter.pvc\PrintHttpRequest.jar and then click Open.

– Select the type of file to import: .java. Click Details next to .java, and
select PrintHttpRequest.jar. Click OK.

– Deselect Resource.

– Click Finish

You should now see a new package called com.ibm.commerce.pvcadapter.utils
containing PrintHttpRequest.

Run PrintHttpRequest in VAJ
To run PrintHttpRequest in VAJ, complete the following steps:

1. Select Main in the PrintHttpRequest class.

2. Change the ServerSocket (9999) to a port that is not in use. For example we
changed this port to 9998.

3. To run, select Main, right-click Run, then select Run Main.

4. From your simulator, enter the following URL to access your PrintHttpRequest
test program:

http://localhost:9998/

5. The VAJ Console should display output as seen in Example 11-2. Take note
of the following HTTP header information:

– Accept: <value>

– User-Agent: <value>

Example 11-2 VAJ Console output from PrintHttpRequest
GET / HTTP/1.1
Accept-Charset: ISO-8859-1
Accept-Language: en
Content-Type: application/x-www-form-urlencoded

Note: In this example we used the UP.SDK V3.2 for HDML. For more
information on this SDK and simulator, refer to 14.1, “HDML toolkits and test
clients” on page 266.
 Chapter 11. Creating and deploying a PvC adapter 209

x-up-subno: admin_jganci.itso.ral.ibm.com
x-upfax-accepts: none
x-up-uplink: none
x-up-devcap-smartdialing: 1
x-up-devcap-screendepth: 1
x-up-devcap-iscolor: 0
x-up-devcap-immed-alert: 1
x-up-devcap-numsoftkeys: 2
x-up-devcap-screenpixels: 171,108
x-up-devcap-msize: 8,18
Accept: application/x-hdmlc, application/x-up-alert,
application/x-up-cacheop, application/x-up-device,
application/x-up-digestentry, text/x-hdml;version=3.1,
text/x-hdml;version=3.0, text/x-hdml;version=2.0, text/x-wap.wml,
text/vnd.wap.wml, */*, image/bmp, text/html
User-Agent: UP.Browser/3.1-UPG1 UP.Link/3.2
Host: localhost:9998

In this example, HTTP header User-Agent tells us that this browser is a
UP.Browser/3.1-UPG1 UP.Link/3.2 and the Action specifies the type of content
supported by the browser. We will use this information when creating the adapter
in subsequent steps.

11.1.4 Create an adapter class
In this section, we create an adapter class that extends the superclass
com.ibm.commerce.pvcadapter.PVCAdapterImpl.

Create class
To create the class, complete the following steps:

1. Select the com.ibm.commerce.pvcadapter.up package under the PvC
Adapter for UP HDML project.

2. Right-click Add, then click Class.

3. When the Create Class window appears, as seen in Figure 11-1:

– In the Class name field, enter UpPvcAdapter

– Click Browse next to the Superclass field and enter PVC in the pattern
field.

– Select PVCAdapterImpl from the list of Type Names.

Note: You will need to go through this process to identify each device type
user-agent. When creating the adapter in subsequent steps, you must
explicitly check for the user-agent of the device.
210 Mobile Commerce Solutions Guide using WebSphere Commerce Suite V5.1

– Click OK.

– Click Finish.

Figure 11-1 Creating the UpPvcAdapter class

4. After the class is created, the class should look like Figure 11-2 in VAJ.
 Chapter 11. Creating and deploying a PvC adapter 211

Figure 11-2 UpPvcAdapter class after creation

Removing unnecessary methods from the class
When creating a new adapter class using the wcs5101.dat from WebSphere
Commerce Suite V5.1 Pro Edition for Windows NT and Windows 2000, some
unnecessary methods will get created. To remove the unnecessary methods,
complete the following steps:

1. Select the UpPvcAdapter class found under the
com.ibm.commerce.pvcadapter.samples package.

2. Select the following methods, and right-click Delete. Click Yes to confirm
each delete.

– createAdapter

– getSessionContext

– httpsRedirection

– postInvokeCommand

– preInvokeCommand
212 Mobile Commerce Solutions Guide using WebSphere Commerce Suite V5.1

After removing the unnecessary methods your class should look like Figure 11-3.

Figure 11-3 UpPvcAdapter class after removing unnecessary methods

11.1.5 The checkDeviceFormat method
This section provides a description of the checkDeviceFormat method and
intended functionality. It also shows a procedure for creating the method.

Description of checkDeviceFormat method
The checkDeviceFormat method provides the following functionality:

� Checking if the request header contains a subscriber ID in the x-up-subno
field

� Checking the format of the subscriber ID

� Comparing the host name in the subscriber ID with the name of the remote
host

Important: The following methods are required, and should not be deleted:

– checkDeviceFormat

– getDeviceModel

– getTerminalId
 Chapter 11. Creating and deploying a PvC adapter 213

The WCS V5.1 product architecture can detect which adapter should be used to
process a client request.

There are two steps in this method that are repeated until a suitable adapter is
found. If a suitable adapter is not found, the session will be handled as if
accessed from PC browser client.

First, the WCS server checks an adapter to determine if the request contains the
correct information in the request from the carrier that the PvC adapter supports.

Second, the WCS server checks if the address of the sender is valid for the
chosen adapter by comparing it with the address of the host listed in the
configuration file, or with the network address.

If you know the address of a gateway, you do not need a description of this logic
when an adapter is made, since an IP address check is done by setting the XML
configuration file. Each adapter needs to include the checkDeviceFormat logic
that returns the result, to determine whether it is a request that can be processed
by the adapter.

The contents of the request from the browser are an object from the
HttpServletRequest class, and a request parameter as an object of the
TypedProperty class. We can determine if the request can be processed by the
PvC adapter by examining the contents of the object delivered as an argument of
the checkDeviceFormat. Although an IP check can be done by configuration by
specifying a list of gateway addresses, in the case of the UP.Simulator, the name
of the gateway host is present in the HTTP request as a part of subscriber ID.

We can also write extra logic that will check if the host name in the subscriber ID
is the same as the name of the remote host. In this case you do not need a list of
gateway IP addresses in the XML configuration file. The subscriber ID generated
by the gateway by checking the host name in the subscriber ID and the host
name of the requester will be the verification for this check. In other words, for
UPLinkGateway simulated by UP.Simulator, you do not need to know all possible
addresses of the UPLinkGateway for the following reasons:

– A subscriber ID from UPLinkGateway is created to verify that the
subscriber ID is really sent by the same host as in the subscriber ID.

– UPLinkGateway is responsible for validating the subscriber ID sent by
itself.

Note: This sample uses the UP.Simulator (Up.Link Gateway). Regarding
format of the subscriber ID for actual gateway please refer to the manual
provided by the carrier.
214 Mobile Commerce Solutions Guide using WebSphere Commerce Suite V5.1

Create the checkDeviceFormat method
In checkDeviceFormat method we will perform the following checks, as seen in
Example 11-3:

� Check if request header contains subscriber ID in the x-up-subno field

� Check the format of the subscriber ID

� Compare the host name in the subscriber ID with the name of the remote host

Example 11-3 checkDeviceFormat method - PvC Adapter
public boolean checkDeviceFormat(

javax.servlet.http.HttpServletRequest arg1,
com.ibm.commerce.datatype.TypedProperty arg2)

{
String subscriberId = arg1.getHeader("x-up-subno");
if (subscriberId == null) return false;
int i = subscriberId.indexOf("_");
if ((i<=0) || (i>=subscriberId.length())) return false;
String host = subscriberId.substring(i+1);
String remoteIP = arg1.getRemoteAddr();
try {

String gwIP = java.net.InetAddress.getByName(host).getHostAddress();
return remoteIP.equals(gwIP);

} catch (java.net.UnknownHostException e) {
return false;

} catch (NullPointerException e) {
return false;

}
}

Notes to Example 11-3:

� The first line in the body of the method reads the subscriber ID from the
request. The value of the header fields are acquired by the getHeader
method.

� Checks if the subscriber ID is contained in the request by checking whether
return value is null or not.

� Gets the index of separator, which separates the user ID and the host name
of the machine executing UP.Simulator.

� Checks if the separator is found and is located in the correct place.

� Checks if the host name in the subscriber ID and the host name of the
requester is the same. If it is not the same, it returns false and assumes that
the access from the client is not valid.

For example:

Subscriber ID: userid_m23bk61w.itso.ral.ibm.com
 Chapter 11. Creating and deploying a PvC adapter 215

Sent from the host: m23bk61w.itso.ral.ibm.com

It returns true because the request is sent from a valid address. If it fails, it
means that someone has stolen the subscriber ID and is trying to send the
same subscriber ID from another location by using a different type of device,
such as a PC. Thus, by checking the client address and host name in the
subscriber ID, the server can block illegal access from other locations.

11.1.6 The getDeviceModel method
In order to choose the proper content for a targeted device, it is essential that we
determine the type of device. This is done using the getDeviceModel method.

How to determine the type of mobile device
The WCS server can extract the model name from an adapter when trying to
select suitable content for a requesting device. How the name of the device is
stored depends on the service. The WCS server expects data returned by the
getDeviceModel method from an adapter. Sometimes the model name of the
device is set as a substring of the header field. The model name of a device
cannot be extracted from a request in the same way. Therefore, each adapter
needs to implement getDeviceModel to extract the model name of the accessing
device.

Creating the getDeviceModel method
In the case of the UPLinkGatewayAdapter, the model name is found between '-'
and the next blank character of the second element of the User-Agent field
delimited by a slash. We describe a program that extracts the part from
User-Agent field and returns it in the getDeviceModel method. To write the code
that accesses a client request, you can obtain the contents of the request by the
getRequest() method defined in the PVCAdapterImpl of the superclass.
Example 11-4 is the program for a UPLinkGatewayAdapter that retrieves the
model name from a request.

Example 11-4 getDeviceModel method - UP PvC adapter
public String getDeviceModel() {

String agent = getRequest().getHeader("User-Agent");
java.util.StringTokenizer st = new StringTokenizer(agent);
if (st.hasMoreTokens()) st.nextToken(); else return ““;
if (st.hasMoreTokens()) {

String model = st.nextToken();
int begin = model.indexOf("-");
int end = model.indexOf(" ");

Note: This kind of invalid access from the same gateway should be blocked
by the gateway itself.
216 Mobile Commerce Solutions Guide using WebSphere Commerce Suite V5.1

if ((begin <= 0) || (end <=0)) return ““;
if ((begin > end) || (end >= model.length())) return ““;
model = model.substring(begin+1,end);
return model;

} else {
return ““;

}
}

In order to use the StringTokenizer, you will need to add the following to the
UpPvcAdapter class at the top of the file:

import java.util.*;

The code is broken down as follows:

� Extracts the value of the User-Agent field by the getRequest method.

� Using the StringTokenizer, the value of the User-Agent field is divided with “/”,
and the second element is parsed into the String object called model.

� The string between ‘-’ character and the next blank is extracted and is
returned as the model name.

11.1.7 The getTerminalId method
This section explains how to determine the identification information and
provides an example of the getTerminalId method.

How to determine identification information
The subscriber ID is an element that is indispensable for session control. The
WCS server expects adapters to return the subscriber ID as a return value of the
getTerminalId method. Returning the value as the getTerminalId allows for
session control by the adapter. In the case of the UP PvC adapter, the subscriber
ID is set in the header field as x-up-subno (see Example 11-5). The logic to
retrieve this value has been provided in getTerminalId as seen in Example 11-5.

Example 11-5 getTerminalId method - UP PvC adapter
public String getTerminalId() {

return getRequest().getHeader("x-up-subno");
}

Important: Don’t return null when you get an unexpected value in the user
agent field. In this case, return an empty string.”” as the default.
 Chapter 11. Creating and deploying a PvC adapter 217

It is possible to retrieve the request from the browser as an object of the
HttpServletRequest class using the getRequest() method. This method retrieves
the value of x-up-subno from the request from the browser extracted by the
getRequest() method. Since the correct value is confirmed by the
checkDeviceFormat method, we only retrieve the value.

Naming the adapter
When providing services to devices of several carriers, there is a possibility that
the subscriber ID that a service provider generates is the same as another
service provider. In this event, even if the subscriber ID is obtained, it cannot be
used to distinguish the subscriber ID from another carrier. To avoid such a
problem, WCS V5.1 provides a method to assign a unique ID to every device.

Because carriers could potentially send the same ID, we create a unique ID with
a combination of the names given to the adapter and to the subscriber ID, for
example, the name of the adapter for business person A is 'serviceA' and the
name of the adapter for business person B is 'serviceB'. Even when receiving the
same ID '001122334455667788' from different mobile phones and adapters, so
far as the adapter name is unique, the combination of the adapter name and the
subscriber ID will always be unique, as follows:

� ('serviceA','001122334455667788')

� ('serviceB','001122334455667788')

WCS V5.1 specifies the device based on the combination of the adapter and the
subscriber ID.

Also, a unique name is needed that will not overlap that of other adapters when
creating a new adapter. The combination of an adapter name and a subscriber
ID will always be unique.

11.2 Deploying a PvC adapter
The steps in deploying a PvC adapter to your m-Commerce WCS V5.1 runtime
environment are as follows:

� Exporting the PvC adapter from VAJ to a JAR file

� Deploying the PvC adapter JAR to the WCS server

� Adding a PvC adapter definition to the WCS instance XML file
218 Mobile Commerce Solutions Guide using WebSphere Commerce Suite V5.1

11.2.1 Exporting the PvC adapter from VAJ to a JAR file
To export the PvC adapter from VAJ to a JAR file to be deployed in the WCS V5.1
runtime, complete the following steps:

1. From the VAJ Workbench, select the PvC adapter package.

For example, we selected the com.ibm.commerce.pvcadapter.up package
in the PvC adapter for UP HDML project.

2. Right-click and select Export.

3. When the Export window appears, select the Jar file under the heading
export destination, and then click Next.

4. When the Export to a JAR file window appears, do the following:

– Enter the path and file name in the Java file field:
c:\temp\UpPvcAdapter.jar

– Select .class

– Deselect .java

When packaging the JAR for deployment, we do not want to include the
Java source code.

– Click Finish

11.2.2 Deploying the PvC adapter JAR to the WCS server
Now that we have created the JAR file for the PvC adapter, we need to install
and configure the JAR on WebSphere Application Server to make the adapter
accessible from a WCS request servlet.

To install and configure the adapter on the WCS server, complete the following
steps:

1. Copy the PvC adapter JAR file to the <wcs_install_path>\lib directory.

For example, copy UpPvcAdapter.jar from c:\temp to c:\ibm\wcs\lib.

2. Add the PvC adapter JAR file to the WAS class path.

a. Start the WebSphere Application Server Administrator’s Console.

b. Expand the WebSphere Administrative Domain and select the
hostname node.

c. Right-click WebSphere Commerce Server and select
<instance_name>.

d. Click Stop. After a few moments, a message is displayed stating that it
stopped successfully.
 Chapter 11. Creating and deploying a PvC adapter 219

e. In the Command line arguments field, enter the path and file name of the
PvC adapter JAR at the end of the class path parameter. For example:

<wcs_install_path>\lib\UpPvcAdapter.jar

f. Click Apply to apply the changes.

g. Right-click WebSphere Commerce Server and click <instance_name>.

h. Click Start. After a few moments, a message is displayed stating that it
started successfully. You can now close the administrator’s console.

11.2.3 Adding a PvC adapter definition to the WCS instance XML file
In order for WCS to know of the existence of the PvC adapter, we must add the
PvC adapter definition to the WCS instance XML configuration file. The definition
opens with the tag <HttpAdapters> and ends with the tag </HttpAdapters>.

To add the PvC adapter definition to the WCS instance XML configuration file,
complete the following steps:

1. Stop the WCS Server.

2. Change to the <wcs_install_path>\instances\<instance_name>\xml directory.

For example, c:\ibm\wcs\instances\wcs\xml

3. Copy the <wcs_instance>.xml file to <wcs_instance>.xml.bak.

4. Open the <wcs_instance>.xml with an editor. Add the PvC adapter definition
to the end of the file. Here is a template for the PvC adapter definition for
WCS instance XML file.

<HttpAdapter [HTTP Adapter Attribute] >
 <PVCAdapter [PVC Adapter Attribute]>

<IPCheck>
<IP [IP Attribute 1]>
...
<IP [IP Attribute n]>

</IPCheck>
<ExcludeCommands>

<Command name=[[Excluded Command Name 1]/>
...
<Command name=[Excluded Command Name n]/>

</ExcludeCommands>
<RelogonCommands>

<Command name=[Protected Command Name 1]/>
...
<Command name=[Protected Command Name n]/>

</RelogonCommands>
</PVCAdapter>

</HttpAdapter>
220 Mobile Commerce Solutions Guide using WebSphere Commerce Suite V5.1

5. We modified the following fields as seen in Example 11-6.

– [HTTP Adapter Attribute]

– [IP Adapter Attribute 1]

– [IP Attribute n]

– [Excluded Command name 1]

– [Excluded Command Name n]

– [Protected Command Name 1]

– [Protected Command Name n]

Example 11-6 Example: PvC Adapter definition for WCS instance XML file
<HttpAdapters>
<HttpAdapter

name = "UPG"
deviceFormatId = "-2"
deviceFormatType = "PVCDevice"
deviceFormatTypeId = "1"
factoryClassname="com.ibm.commerce.pvcadapter.up"
enabled="true" >
<PVCAdapter
registrationMode="1"
preferredLogonTimeout="60"
bufferTimeout="10" >

<IPCheck>
<IP type="net" value="192.168.0.0" mask="24" />
<IP type="host" value="9.168.91.113"/>

</IPCheck >
<ExcludeCommands>

<Command name="AddressAdd"/>
<Command name="AddressDelete"/>

</ExcludeCommands>
<RelogonCommands>

<Command name="OrderProcess"/>
</RelogonCommands>

</PVCAdapter>
</HttpAdapter>
</HttpAdapters>

Note: For details on all the parameters, refer to “PvC adapter definition for the
WCS instance XML file” on page 330.
 Chapter 11. Creating and deploying a PvC adapter 221

11.3 Deploying multiple PvC adapters
The deployment of more than one PvC adapter simultaneously requires that the
adapter definition and the content management scripts be modified to provide
unique values for the configuration settings.

11.3.1 PvC adapter definition
When deploying more than one PvC adapter, we recommend that you configure
the adapter definition with a unique value for the deviceFormatId as seen in
Table 11-1.

Table 11-1 PvC adapter definition for multiple PvC adapters

Some general guidelines for setting the values for deviceFormatId and
deviceFormatTypeID are as follows:

� deviceFormatId

The main purpose of this element is to identify the unique adapter.

A unique integer value must be set for each adapter. For example, in
Table 11-1 the deviceFormatId value for the UpPvcAdpater is ‘1’ and the
WapPvcAdapter is ‘2’.

� deviceFormatTypeId

The value of the deviceFormatTypeId is used by the WCS server to search for
JSPs in the view registry. We recommend that you set the
deviceFormatTypeId value to ‘-1’.

If you specify a different value, you need to register views in the VIEWREG,
DISPCGPREL, and DISPENTREL tables for the DEVICEFMT_ID value.

These elements have different roles. The deviceFormatId is used for the
purposes of identifying each adapter, and deviceFormatTypeId is used for
controlling VIEW file that will be sent for the client.

If you set the deviceFormatId to '2', the server tries to search the view that is
stored in VIEWREG, DISPCGPREL or DISPENTRELI for DEVICEFMT_ID equal
to '2' prior to the view DEVICEFMT_ID equal to '-1'.

Adapter
definition

UpPvcAdapter
value

WapPvcAdapter
value

deviceFormatId ‘1’ ‘2’

deviceFormatTypeId ‘-1’ ‘-1’
222 Mobile Commerce Solutions Guide using WebSphere Commerce Suite V5.1

If no view is found with specified deviceFormatTypeId, then the server tries to
search the view for DEVICEFMT_ID value equal to '-1'. The value '-1' is defined
for PC browser clients, and is listed in the DEVICEFMT table. By specifying '-1'
for deviceFormatTypeId, we share entries in the VIEWREG table between the
PC browser client and the mobile device client.

By specifying '2' for deviceFormatTypeId, we provide a device-specific view for
the adapter with the value '2' for DEVICEFMT_ID. If there is no device-specific
view in the VIEWREG, DISPCGPREL or DISPENTRELI tables, we use the view
for a PC browser. However, this only works for views in the VIEWREG table.

In summary, we recommend that you always specify '-1' for deviceFormatTypeId
for the PvC adapter definition.

11.3.2 Content management configuration
When using two or more PvC adapters simultaneously, the content management
configuration will need to be modified to include unique values for the model_id,
mdlspec_id, and spec_id.

For example, if you are deploying a UpPvcAdapter and a WapPvcAdapter and
want mobile devices for each to access your server m-commerce store, refer to
the settings in Table 11-2.

When you change model_id and spec_id, you need to update the relationship
between these keys that will be stored in the PVCMDLSPEC table.

Table 11-2 Content management configuration for multiple PvC adapters

Restriction: At the time of writing this redbook, the catalog subsystem was
not able to support multiple type of devices. This problem has been reported.

If you specify deviceFormatTypeId to other value than '-1', catalog page will
not send to mobile client because of the problem.

As a workaround for this problem, copy all entries in DISPCGPREL and
DISPENTRELI table with DEVICEFMT_ID you specified.

PvC database table
elements

UpPvcAdapter
content management
sql script value

WapPvcAdapter
content management
sql script value

model_id -1 -20

mdlspec_id 100 200

spec_id 100 200
 Chapter 11. Creating and deploying a PvC adapter 223

Example 11-7 includes a sample of the SQL script containing the values defined
in Table 11-2 for the WAP content management configuration. The contents of
Example 11-7 can be found at:

<install_path>\SG246171\direct\wap\scripts\setup_wap1.sql

The UP HDML content management values are the same as defined in our
sample script setup_hdml.sql.

Example 11-7 Content management setup_wap1.sql for multiple PvC adapters

insert into pvcdevmdl (
MODEL_ID,
MODELNAME,
SESSIONTYPE,
VENDOR,
DESCRIPTION

) values (
-2,
'',
'WAP',
'',
''

);

insert into PVCDEVSPEC (
SPEC_ID,
SPECNAME,
SESSIONTYPE,
CONTENTDIR

) values (
200,
'WAP Default',
'WAP',
'wml_jsp'

);

insert into pvcmdlspec (
MDLSPC_ID,
STOREENT_ID,
MODEL_ID,
SPEC_ID

) values (
200,
0,
-2,
200

);
224 Mobile Commerce Solutions Guide using WebSphere Commerce Suite V5.1

Chapter 12. Create, deploy and manage
content

When developing an m-commerce application for the direct approach, you need
to develop device-specific content JSPs. For example, if you are targeting WAP
mobile phone, you need to develop JSPs with WAP WML content. In this
chapter, we describe how to create device-specific content, deploy it, and
perform the content management configuration of the WCS database tables.

This chapter is organized into the following sections:

� Content management configuration

� Create device-specific content JSPs

� Deploy content

� Advanced content and configuration example

12
© Copyright IBM Corp. 2001 225

12.1 Content management configuration
Content management includes updates required by the WCS database tables to
set settings such as the content directory of the device-specific JSPs, and
information about the device extracted by the PvC adapter. Once the device type
is known by the information extracted from the HTTP request by the PvC
adapter, the content directory for device-specific JSPs can be set. This
configuration allows us to set the root directory for all JSPs without having to
update the VIEWREG table for each JSP.

In summary, for all devices whose connections are handled by a PvC adapter,
content management provides the following:

� Auto content selection of device-specific JSPs

� User device spec information settings as attributes to JSP programs

12.1.1 Content management
This section includes a description of the PvC tables used to configure content
management for m-commerce.

Refer to the Appendix D, “PvC database tables and content management
reference” on page 359 for more detailed reference information.

WCS PvC database tables
All of the necessary configuration changes are contained in three PvC database
tables:

� PVCDEVMDL

This table stores model information for mobile devices.

� PVCMDLSPEC

This table stores specifications information and the directory of contents. One
record can be shared by more than two devices.

� PVCDEVSPEC

This table stores the relationship between model and spec. By using this
table, device models which have similar specifications can be categorized in
one record in the PVCDEVSPEC table.

In addition to the tables used for content management configuration, WCS V5.1
includes the following PvC database tables used for session management and
URL buffering. These tables do not need to be configured.
226 Mobile Commerce Solutions Guide using WebSphere Commerce Suite V5.1

� PVCBinding

� PVCSession

� PVCBuffer

In order for the JSPs to be displayed on the mobile device, we must perform the
content management configuration to update the WCS database and deploy the
JSPs to the runtime server in a unique directory. When a mobile client accesses
an m-commerce store using WCS V5.1, the HTTP request is read by the WCS
server. Next the PvC adapter determines the device type from the HTTP header
and sets the content directory to serve the proper version of the JSP for display
on the mobile device.

How does the content management work?
When a request comes from a browser, the server extracts the model name from
the PvC adapter. The server then looks for the record related to the extracted
device model and adapter name. If a suitable record for the client's device is
found in the PVCDEVMDL table, using the relationship stored in PVCMDLSPEC
table, a suitable device-specification can be found in PVCMDLSPEC.

The server will use the value of PVCMDLSPEC.CONTENTDIR in the selected
record for content switching or setting the directory to the device-specific JSPs. If
there's no mapping between the selected and a record in the PVCMDLSPEC
table, the server tries the same search by using a record in the PVCDEVSPEC
table whose MODELNAME is blank and SESSIONTYPE is the same as the
adapter name. This kind of model record is called the adapter default model. We
recommend that you prepare this adapter default.

The PVCMDLSPEC table has a STOREENT_ID column, so that you can define
a different mapping from PVCDEVMDL to the PVCDEVSPEC table in the
PVCMDLSPEC table for each store. If you set STOREENT_ID to 0, the record
will be the site default setting. If there were defaults for the site-specific and
store-specific settings at the same time, the site-specific mapping is used prior to
the site default setting. In other words, the most suitable record in
PVCDEVSPEC table is selected with the following priority:

1. Use store-specific mapping prior to site default record.

2. Use model-specific mapping prior to model default record.

Finally, the most suitable record is found in the PVCDEVSPEC table. The
selected record is used for a contents switch and terminal specification reflection
for the JSPs. If there are no suitable records in the PVCDEVSPEC table, the
view commands act the same as an access from a PC browser client.
 Chapter 12. Create, deploy and manage content 227

Define the adapter default model
First, we need to set up the PVCDEVMDL table for all devices whose session is
managed by the PvC adapter.

For example, we will define that all mobile devices detected by the UP PvC
adapter will browse JSPs from the hdml_jsp content directory. This directory
contains JSPs of the same name as the JSPs in the root used for PC browser
clients. To represent the adapter common setting, we need to prepare one record
that has a blank MODELNAME. The SESSIONTYPE of the record should be the
same as the adapter name. A blank record in MODELNAME and
SESSIONTYPE is the same as the adapter name, and referred to as the adapter
default model.

When a model that is not listed in the PVCDEVMDL table is found, the server will
automatically insert a new record into the PVCDEVMDL table. If there is no
specific model-spec mapping in the PVCMDLSPEC table, the adapter default
model will be used in searching for a suitable record in PVCDEVSPEC.

The following is a sample SQL script for inserting a record into the PVCDEVMDL
table so as to set the default model for the UP PvC adapter:

insert into PVCDEVMDL (
MODEL_ID,
MODELNAME,
SESSIONTYPE,
VENDOR,
DESCRIPTION

) values(
-1,
'',
'UP',
'Default',
'Default model for UpPvcAdapter'

);

Note: If you do not need to change the JSP root directory for the created PvC
adapter and you do not need to use the data stored in the PVCDEVSPEC
table, you do not need to set up the database for the content management
function and can skip the following section.

Note: At the time of writing this redbook, all mobile devices that use the PvC
adapter and content management functionality have sessions managed by
WCS, regardless of the mobile device or gateway support for session
management.
228 Mobile Commerce Solutions Guide using WebSphere Commerce Suite V5.1

Auto content selection
The auto content selection uses the value of the CONTENTDIR in a detected
record in the PVCDEVSPEC table. If the server succeeds in selecting a record
from the PVCDEVSPEC table, it inserts the value of the CONTENTDIR to the
search path of the JSPs, to be used for display on the mobile device.

The search-and-insert function works in either of the following cases:

� The request contains a store ID and does not have the option “storeDir=no” in
the request URL. For example:

<STORE_DIRECTORY>\<VALUE_OF_CONTENTDIR>\<JSP_FILE_PATH>

� The request does not contain the store ID or has the option “storeDir=no” in
the request URL. For example:

<VALUE_OF_CONTENTDIR>\<JSP_FILE_PATH>

From the JSP file, the value of the selected record in PVCDEVSPEC table is
accessible through an object of the DeviceInfo class, which is set as an attribute
of the HTTP request for the JSP file.

Example 12-1 shows a sample SQL script for inserting a record into the
PVCDEVSPEC table in order to set the CONTENTDIR to hdml_jsp, and the
SESSIONTYPE to the adapter name UP.

If you already have records in this table, replace the value of SPEC_ID with a
value that is not a duplicate of any existing records. You can set the other fields
to whatever you want. Theses value will be accessible through the DeviceInfo
object.

Example 12-1 PVCDEVSPEC table sample insert

insert into PVCDEVSPEC (
SPEC_ID,
SPECNAME,
SESSIONTYPE,
MAXCONTENTLENGTH,
MAXURLLENGTH,
LCDWIDTH,
LCDHEIGHT,
LCDCOLORS,
LCDMONOCHROME,
IMAGEFORMAT,
SOUNDFORMAT,
DOCUMENTFORMAT,
DOCUMENTVERSION,
CONTENTDIR,
DESCRIPTION

) VALUES (
 Chapter 12. Create, deploy and manage content 229

100,
'UP default',
'UP',
4096,
256,
120,
80,
2,
'1',
'bmp',
'',
'HDML',
'1.0',
'hdml_jsp',
'minimum spec'

);

Define relationship between PVCDEVMDL and PVCDEVSPEC
We set up the relationship between the PVCDEVMDL and PVCDEVSPEC tables
so that all devices which come from the PvC adapter can share the same setting
for content directory (CONTENTDIR) and other information in the
PVCDEVSPEC table.

Example 12-2 shows a sample SQL script for inserting a record into the
PVCMDLSPEC table in order to define the relationship between the adapter
default model and record in the PVCDEVSPEC table.

Example 12-2 PVCMDLSPEC table - sample insert

insert into PVCMDLSPEC (
MDLSPC_ID,
STOREENT_ID,
MODEL_ID,
SPEC_ID

) values (
100,
0,
-1,
100

);

Once these three records are inserted into the corresponding tables, the JSPs
will be served from the hdml_jsp directory by the adapter whose name is UP.
230 Mobile Commerce Solutions Guide using WebSphere Commerce Suite V5.1

12.1.2 Content management configuration
This section provides the procedure for executing the sql script required to
update the WCS database tables for content management configuration.

1. Start a DB2 command window by clicking Start -> Programs -> IBM DB2 ->
Command window.

2. Change to the directory of the SQL script. For example,
<install_path>\SG246171\direct\hdml\scripts.

3. Back up the original setup_hdml.sql to setup_hdml.sql.org.

4. Modify the setup_hdml.sql script for your environment based on the
information provided in the previous section.

5. Execute the setup_hdml.sql script. This script contains insert records for all
three required database tables (PVCDEVMDL, PVCDEVSPEC,
PVCMDLSPEC):

> db2 connect to <wcs_database>
> db2 -tvf setup_hdml.sql

Example 12-3 displays a sample script called setup_hdml.sql, used for
content management configuration.

Example 12-3 setup_hdml.sql sample content management configuration script

insert into pvcdevmdl (
MODEL_ID,
MODELNAME,
SESSIONTYPE,
VENDOR,
DESCRIPTION

) values (
-1,
'',
'UP',
'',
''

);

insert into PVCDEVSPEC (
SPEC_ID,
SPECNAME,
SESSIONTYPE,
CONTENTDIR

) values (
100,
'UP Default',
'UP',
 Chapter 12. Create, deploy and manage content 231

'hdml_jsp'
);

insert into pvcmdlspec (
MDLSPC_ID,
STOREENT_ID,
MODEL_ID,
SPEC_ID

) values (
100,
0,
-1,
100

);

12.2 Create device-specific content JSPs
This section provides guidance and examples for creating device-specific
content JSPs for specific mobile devices. Many of the considerations we discuss
are related to design considerations outlined in 10.1, “m-commerce direct
application design guidelines” on page 200.

12.2.1 PvC data beans
Many of the JSPs created for the PvC Fashion sample store for m-commerce
require that PvC data beans (pvcdatabeans.jar) be deployed. The PvC data
beans are not shipped with WCS V5.1 and are not supported. These beans will
potentially be made available on the Web at a later date or be included in an
upcoming release of WCS V5.x. We have included the pvcdatabeans.jar file in
our sample code SG246171.zip.

The pvcdatabeans.jar includes the following beans:

� PVCBufferDataBean

This data bean allows you to write JSPs that access buffered parameters. If
you need to write JSPs with parameter buffering, this data bean is required.

� UserPVCDeviceDataBean

This data bean allows you to access user device addresses stored in the
USERPVCDEV table. If you need to extract data such as e-mail addresses
from the USERPVCDEV table, you can use this data bean.
232 Mobile Commerce Solutions Guide using WebSphere Commerce Suite V5.1

For more details on these data beans, such as available methods, please refer to
Appendix C, “PvC data bean reference” on page 355.

12.2.2 Content development
When developing the content-specific JSPs for the targeted mobile device, there
are several general development issues to address. Many of these issues have
been discussed in 10.1, “m-commerce direct application design guidelines” on
page 200.

Example overview
In our example, we started with a working store called PvC Fashion, which
supported PC browser clients. The PC browser client JSPs contained HTML
content. We decided to keep the navigation of the store similar for PC and mobile
clients.

The original device-specific JSPs were developed for i-mode and HDML. Due to
confidentiality agreements between IBM and NTT DoCoMo, we are not able to
include the i-mode sample. So we created WAP WML content JSPs by
converting the HDML to WML. The HDML and WML JSPs are included in the
SG246167.zip. The WML JSPs have only been unit-tested through the
navigation of category and product display.

Follow these general content development steps to create device-specific JSPs
with HDML content:

1. As a starting point, import all assets into Studio for the PvC Fashion store.

Refer to the WebSphere Commerce Suite V5.1 Handbook, SG24-6167 for
details on how to do this.

2. Create a folder in Studio called hdml_jsp under the webapp folder. Next,
insert a copy of all the PC browser JSPs into the hdml_jsp directory.

3. Create or modify JSPs to comply with the markup language of the mobile
device browser.

For example, we needed to convert the HTML content in the JSPs to HDML
for the target UP.Browser mobile device (UP simulator).

For the WML content JSPs, we started with the HDML equivalent and used
the UP.SDK guidelines on conversion from HDML to WML.

Note: All samples included in the SG246167.zip file are offered as is and
include no support.
 Chapter 12. Create, deploy and manage content 233

4. Assuming that you have performed the content-management configuration,
publish the device-specific JSPs from Studio to the CONTENTDIR on the
WCS V5.1 runtime.

At this point, you are ready to test the content developed from the simulator.

The next section explains how we implemented some of the PvC features
provided in WCS V5.1 into the content developed for HDML and WML.

12.2.3 Content examples of PvC features
We will describe how to implement the following PvC features available in
WebSphere Commerce Suite V5.1:

� Session timeout form (timeout.jsp).

� Password reentry form (relogon.jsp)

� User registration form (UserRegistrationForm.jsp)

� Device registration form (PvcRegisterDevice.jsp)

� Divided large form

Session timeout form (timeout.jsp)
In the PvC Fashion sample (hdml_jsp, wml_jsp), we include timeout.jsp to
demonstrate the session timeout form for mobile devices. This form is registered
as PVCTimeoutForm in the VIEWREG table.

The timeout function, as related to the timeout form, is available to prevent
unauthorized use of mobile devices in the event of loss or theft. The device
logging out after a specified period of time protects the individual’s information
from being stolen when a user is logged on to the server from the mobile device.

Password reentry form (relogon.jsp)
In the PvC Fashion sample (hdml_jsp, wap_jsp) we include the relogon.jsp file,
which is registered in the VIEWREG table as ReEnterPasswordForm.

Protection of commands by password reentry is meant to address unauthorized
access in the event that the mobile device is lost or stolen. Commands that need
protection include those that display pages containing important data such as the
user’s address and credit card number. This form also protects important
processes, such as the order process.
234 Mobile Commerce Solutions Guide using WebSphere Commerce Suite V5.1

This form is assigned to ReEnterPasswordForm. The ReEnterPasswordForm
view is called when protected commands are executed without a password. This
view is displayed when a logged-on user executes a protected command without
a password. The user is asked to reenter the password to this form. The server
will not allow execution of the command without the correct password.

To enable the password lock, register the target command in the XML
configuration file.

User registration form (UserRegistrationForm.jsp)
In the PvC Fashion sample (hdml_jsp, wap_jsp), we include the
UserRegistrationForm.jsp form, which is registered as UserRegistrationForm in
the VIEWREG table. This file internally switches the input form, register.jsp, and
form to display for confirming data input by userregister2.jsp.

For a connection via a PvC adapter, you can limit user registration. This is done
by configuring the registrationMode for the adapter of the XML configuration file
to 1 or 2. This registration form calls the PVCRegistration command that
corresponds to the registration limit.

In the new registration form that is offered in our sample, parameters needed by
the new registration command RegistrationAdd are passed as arguments to the
PVCRegistration command. In addition, the value for the user's e-mail address is
passed on as the mobile phone e-mail address of the user. The PVCRegistration
command conforms to the given parameter and does both new registration of
users and device information registration to the USERPVCDEV and
PVCBINDING tables.

Device registration form (PvcRegisterDevice.jsp)
In the PvC Fashion sample (hdml_jsp, wap_jsp) we include the
PvcRegistrationDevice.jsp file, which is registered as UseRegistrationForm in the
VIEWREG table.

The UserRegistrationForm is necessary when the registrationMode is set to 1 or
2. User that need information entered in this form have registered from adapters
other than the PvC adapter, such as from a PC browser client. To make it
possible for this kind of user to log in from a mobile device whose connection is
managed by the PvC adapter, the relationship between the user ID used on a PC
browser client and the mobile device used by that user must be registered.

The e-mail address of a mobile phone can be entered by the user in the device
registration form and passed as an argument to the PVCRegisterDevice
command. The PVCRegisterDevice command using the parameter saves the
user device information in the database. If you configure registrationMode to 1 or
 Chapter 12. Create, deploy and manage content 235

2, this command must be executed the first time a registered user accesses. By
using this command, the site manager can collect information such as the e-mail
address of a mobile device of a registered user. It is also possible to customize
PVCRegisterDevice for the collected data.

This function is effective for mobile devices whose fixed ID can be used, such as
a subscriberID. In session control using an unmovable ID, such as a subscriber
ID, it is possible to retrieve the user’s address even if the user has registered
several devices. This is possible by using UserPVCDeviceDatabean.

Divided large form
When a form is too large and its length exceeds the limit of requests that the
mobile device can handle, the form must be divided. The PvCFashion sample
does not include an example. We have included sample code in this section to
illustrate how to address this problem.

Some mobile phone browsers have a limit on the size they can display in one
page, or have limits on the length of the requests they can send at one time.

We have prepared the PVCBufferUrl in WCS V5.1 in the event parameters
cannot be sent at one time to the target command because of the limit on the
length of requests. When using the PVCBufferUrl command, we can divide the
sending parameters to the target command. The parameters will be put together
at the end and will be sent to the target command to be executed.

Example 12-4, Example 12-5, and Example 12-6 show how PVCBufferURL can
be used. This sample divides a data input form into three JSPs. The first JSP
(page1.jsp) buffers Parameter_A. The second JSP (page2.jsp) buffers
Parameter_B. The third JSP (page3.jsp) buffers Parameter_C, and passes all
the buffered parameters to the AddressAdd command at one time.

Example 12-4 PVCBufferUrl sample (page1.jsp)

<HTML>
<HEAD>
<TITLE>Page1</TITLE>
</HEAD>
<BODY>
<FORM Name=”PvCBufferUrl" METHOD="POST" Action="PvCBufferUrl">

<INPUT TYPE="hidden" Name="next" url="page2.jsp"> 1
<INPUT TYPE="hidden" Name="b_err" VALUE="ErrorPage.jsp">2
<INPUT TYPE="hidden" Name="b_no" VALUE="b_new,b_no,b_update">3
<INPUT TYPE="hidden" Name="b_url" VALUE="AddressAdd">4
<INPUT TYPE="text" Name="Parameter_A" VALUE="">
<INPUT TYPE="submit" Name="b_new" VALUE="next">5
236 Mobile Commerce Solutions Guide using WebSphere Commerce Suite V5.1

</FORM>
</BODY>
</HTML>

1 This is the JSP called when the Next button is clicked.
2 This is the JSP called when an error occurs.
3 Specifies the parameters that we do not want to buffer.
4 Specifies the command to execute after buffering.
5 Creates a new buffer.

Example 12-5 PVCBufferUrl sample (page2.jsp)

<HTML>
<HEAD>
<TITLE>Page2</TITLE>
</HEAD>
<BODY>
<FORM Name="PvCBufferUrl" METHOD="POST" Action="PvCBufferUrl">

<INPUT TYPE="hidden" Name="next" url="page3.jsp">
<INPUT TYPE="hidden" Name="back" url="page1.jsp">
<INPUT TYPE="hidden" Name="b_err" VALUE="ErrorPage.jsp">
<INPUT TYPE="hidden" Name="b_no" VALUE="b_new,b_no,b_update">
<INPUT TYPE="text" Name="Parameter_B" VALUE="">
<INPUT TYPE="submit" Name="b_update" VALUE="back">
<INPUT TYPE="submit" Name="b_update" VALUE="next">6

</FORM>
</BODY>
</HTML>

6 Adds and renews data on the buffer.

Example 12-6 PVCBufferUrl sample (page3.jsp)

<HTML>
<HEAD>
<TITLE>Page3</TITLE>
</HEAD>
<BODY>
<FORM Name="PvCBufferUrl" METHOD="POST" Action="PvCBufferUrl">

<INPUT TYPE="hidden" Name="back" url="page2.jsp">
<INPUT TYPE="hidden" Name="b_err" VALUE="ErrorPage.jsp">
<INPUT TYPE="hidden" Name="b_no" VALUE="b_new,b_no,b_update">
<INPUT TYPE="text" Name="Parameter_C" VALUE="">
<INPUT TYPE="submit" Name="b_update" VALUE="back">
<INPUT TYPE="submit" Name="b_exec" VALUE="next">7

</FORM>
</BODY>
</HTML>
 Chapter 12. Create, deploy and manage content 237

7 All buffered parameters specified in 4 above are passed to the command and
executed.

12.3 Deploy content
There are several methods of deploying the JSPs. For the purposes of
development, we published the JSPs directly from WebSphere Studio, as
documented in WebSphere Commerce Suite V5.1 Handbook, SG24-6167.

Once the content is deployed, you can begin testing from mobile device
simulators, PC browser clients, and eventually with real mobile device hardware.

12.4 Advanced content and configuration example
This section provides an example of more advanced content creation and
content management configuration. Using these examples, we describe how
automatic content selection works.

12.4.1 Auto selection of content
For example, suppose there are the following necessary registration settings for
auto selection in the database:

� Only devices that have the model name T250 are mapped to the specification
that has reference number 11.

� Other devices that connect via the UP PvC adapter are mapped to the
specification that has the reference number 10.

You can get a simulator configuration file for a device named T250 from the
following URL:

http://developer.phone.com/download/simconfig.html

By changing the configuration for your simulator, you can simulate access from a
device that has the model name T250.

Table 12-1 PVCDEVMDL sample values

MODEL_ID SESSIONTYPE MODELNAME other fields

-1 UPG Any

-2 UPG T250 Any
238 Mobile Commerce Solutions Guide using WebSphere Commerce Suite V5.1

Table 12-2 PVCDEVSPEC sample values

Table 12-3 PVCMDLSPEC

Then, assume that there was the following entry for the LogonForm view.

Table 12-4 VIEWREG

If the settings in the above are inserted, the results of access to the URL are:

http://hostname/webapp/wcs/stores/servlet/LogonForm?storeId=10001

which contains the store ID parameter, as seen in Table 12-5.

Table 12-5 Results of access

Results of an access to a URL such as:

http://hostname/webapp/wcs/stores/servlet/LogonForm

or

http://hostname/webapp/wcs/stores/servlet/LogonForm?storeId=10001&storeDir=no

SPEC_ID SESSIONTYPE CONTENTDIR other fields

10 UPG hdml Any

11 UPG hdml_high_res Any

MDLSPEC_ID MODEL_ID SPEC_ID STOREENT_ID

100 -1 10 0

101 -2 11 0

VIEWNAME DEVICEFMT_ID PROPERTIES STOREENT_ID

LogonForm -1 LogonForm.jsp 0

Model Used adapter JSP loaded

T250 UPG PvCFashion/hdml_high_res/LogonForm.jsp

Other UPG
devices

UPG PvCFashion/hdml/LogonForm.jsp

Netscape of
IE on PC

PvCFashion/LogonForm.jsp
 Chapter 12. Create, deploy and manage content 239

which are not set up to append a store directory in front of a JSP search path, will
become as seen in Table 12-6.

Table 12-6 Results with no append

Thus, for access from a PC browser such as Netscape Navigator or Microsoft
Internet Explorer, the server acts as usual. For mobile phones, the server adds
the value of CONTENTDIR of the related record in the PVCDEVSPEC table to
the JSP file search path.

12.4.2 Reflection of terminal specification to JSP view
The WCS server allows another method of content management. This is an
approach from the JSP source code. For devices that connect via a PVC adapter,
information stored in the PVCDEVSPEC table corresponding to the model of the
device are accessible through an object. This information is set as an instance
object of com.ibm.commerce.DeviceInfo class as a request attribute of the JSP
file to be processed.

Using the DeviceInfo class object, you can access the columns as seen in
Table 12-7.

Table 12-7 DeviceInfo class object access

Model Used adapter JSP loaded

T250 UPG hdml_high_res/LogonForm.jsp

Other UPG devices UPG hdml/LogonForm.jsp

Netscape of IE on PC LogonForm.jsp

Type Name Corresponding
database field

Description

String pvcSessionId PVCSESSION.PV
CSESSION_ID

Reference number of
pervasive session
information in the
PVCSESSION table

String pvcSessionType PVCSESSION.SE
SSIONTYPE

Name of the adapter that
handled this session

String model PVCDEVMDL.MO
DELNAME

Model name of the client's
device

String vendor PVCDEVMDL.VEN
DOR

Vendor name of the model
240 Mobile Commerce Solutions Guide using WebSphere Commerce Suite V5.1

int maxContentLength PVCDEVSPEC.M
AXCONTENTLEN
GTH

Maximum length of the
content the device can
receive

int maxUrlLength PVCDEVSPEC.M
AXURLLENGTH

Maximum length of the
URL the device can
request

int width PVCDEVSPEC.LC
DWIDTH

Width of the LCD panel

int height PVCDEVSPEC.LC
DHEIGHT

Height of the LCD panel

int colors PVCDEVSPEC.LC
DCOLORS

Number of displayable
colors of the LCD panel

boolean isMonochrome PVCDEVSPEC.LC
DMONOCHROME

Indicates whether LCD
panel is monochrome

String imageFormat PVCDEVSPEC.IM
AGEFORMAT

Supported format for
images

String soundFormat PVCDEVSPEC.SO
UNDFORMAT

Supported format for
sounds

String documentFormat PVCDEVSPEC.D
OCUMENTFORM
AT

Supported format for
documents

String documentVersion PVCDEVSPEC.D
OCUMENTVERSI
ON

Supported version of
document format

String contentDirectory PVCDEVSPEC.C
ONTENTDIR

Name of the directory
where contents for the
model are located

String specDescription PVCDEVSPEC.DE
SCRIPTION

Description of the
specification

String modelDescription PVCDEVMDL.DES
CRIPTION

Description of the model

Type Name Corresponding
database field

Description
 Chapter 12. Create, deploy and manage content 241

The code in Example 12-7 shows how to use the DeviceInfo object information in
a JSP. Using the jsp:useBean tag, you can get the DeviceInfo object that stores
information about the client's device. If your database is configured properly, a
designer can write codes to display the best result for each browser of a different
specification using this information from the DeviceInfo object.

Example 12-7 Sample code to use DeviceInfo object
<!--@Example: How to change GIF image depends on terminal capability>
<jsp:useBean id="pvc_device_info" scope="request"
class="com.ibm.commerce.pvcadapter.DeviceInfo">
</jsp:useBean>
<HTML>
<BODY>
<% if (pvc_device_info.isMonochrome) { %>

This page is designed suitable for monochrome terminal.

<% } else { %>

This page is designed suitable for color terminal.

<% } %>
</BODY>
</HTML>

12.4.3 Content managed by adapter
If you are planning to prepare a PvC adapter, you need to do the same
configuration described in 12.1, “Content management configuration” on
page 226, for each adapter with the specific adapter definitions.

12.4.4 Content managed by model
In this section, we explain how to prepare different JSPs or different
specifications for the DeviceInfo bean for each categorized group of device
models. We discuss how to categorize similar specification of models and how to
manage contents using this categorization. This explanation is given in 12.1,
“Content management configuration” on page 226.

Prerequisites
This section includes the prerequisites needed prior to content management
configuration and content development, as follows:

� You need at least one store installed.

We recommend that you install our sample store (PvC Fashion) on the WCS
server.

� UP.SDK simulator should be installed and configured.
242 Mobile Commerce Solutions Guide using WebSphere Commerce Suite V5.1

If you installed the UP.SDK simulator, you may have a directory called configs
in the simulator directory. You can switch the configuration for your simulator
by selecting File -> Open Configurations... from the menu. In this directory,
there are several configuration files and you will find a file named generic.pho.
In this file you will see the following line:

DEVICEID UPG1

This setting corresponds to the name of the device model that is simulated. If
you are using this configuration, model name of your device should be UPG1.
Next copy these files as IBM1.pho, IBM2.pho, IBM3.pho and IBM4.pho. Then
modify the DEVICEID field, as seen in Table 12-8.

Using these settings, which have different model names, we can verify our
PvC adapter detection and content management configuration.

Table 12-8 DEVICEID field value

Configuration example
We have categorized the device models into 3 groups, and need to configure our
site to map these groups to different specifications, as seen in Table 12-9.

Table 12-9 Group specifications

For these groups we prepare the following settings for content management:

� UPG_Color1 has different resolution from other groups, so we prepare a
separate JSP for this group.

� In resolution, there's no difference in UPG_Color2 and UPG_Default, so we
prepare a common JSP for these groups and make color and monochrome
changes by using the DeviceInfo bean.

IBM1.pho IBM01

IBM2.pho IBM02

IBM3.pho IBM03

IBM4.pho IBM04

Group Minimum Specification

UPG_Color1 Color and high resolution (Minimum spec
is 180x140 pixel, 256 colors)

UPG_Color2 Color and normal resolution (Minimum
spec is 100x80 pixel, 256 colors)

UPG_Default Other all devices (minimum spec is
100x80 pixel, 2 monochrome colors)
 Chapter 12. Create, deploy and manage content 243

� We apply these setting only for a store with a 10001 store ID.

Table 12-10 and Table 12-11 provide a summary of our configuration.

Table 12-10 Sample categorization for content management

Table 12-11 Content directory and minimum spec for each group

The relationship between model and specification includes the content directory.
If we define a relationship model and specification for our sample configuration
into the PVCDEVMDL, PVCDEVSPEC and PVCMDLSPEC tables, it should look
like Figure 12-1.

Simulator config file Model name adapter returns Group

IBM01.pho IBM01 UPG_Color1

IBM02.pho IBM02 UPG_Color2

Other devices from UPG
adapter

depends on device UPG_Default

Group Content Directory Minimum Specification

UPG_Color1 UPG_Color1 180x140 pixel
256 colors

UPG_Color2 UPG_Default 100x80 pixel
256 colors

UPG_Default UPG_Default 100x80 pixel
monochrome
244 Mobile Commerce Solutions Guide using WebSphere Commerce Suite V5.1

Figure 12-1 PvC tables configuration

JSP files in
UPG_Color 1_du

JSP files in
UPG_Default_du

180x140
256 Colors

100x80
Monochrome

100x80
256 Colors

DeviceInfo DeviceInfo DeviceInfo

UPG_Color 1 UPG_Color 2 UPG_Default

PVCDEVSPEC

IBM01 ->
UPGColor1

IBM02 ->
UPGColor2

Adapter Default->
UPG_Default

PVCMDLSPEC

IBM01 IBM02 Adapter Default

Other Devices

PVCDEVMDL
 Chapter 12. Create, deploy and manage content 245

PVCDEVMDL database table
First we need to register the device model that needs to be categorized. We need
to register the models that have a specific model-spec mapping adapter default
model record that represents all other models that do not have specific mapping,
as seen in Table 12-12.

Table 12-12 PVCDEVMDL settings

SQL statements for these settings are seen in Example 12-8.

Example 12-8 Sample SQL insert records for PVCDEVML table
insert into PVCDEVMDL (MODEL_ID,SESSIONTYPE,MODELNAME) values (-10, 'UPG',
'');
insert into PVCDEVMDL (MODEL_ID,SESSIONTYPE,MODELNAME) values (-11, 'UPG',
'IBM01');
insert into PVCDEVMDL (MODEL_ID,SESSIONTYPE,MODELNAME) values (-12, 'UPG',
'IBM02');

PVCDEVSPEC database table
Then we need to register the content directory and minimum specifications for
each group. We need to insert information into the PVCDEVSPEC table, as seen
in Table 12-13.

Table 12-13 PVCDEVSPEC settings

PVCDEVMDLMODEL_I
D

SESSIONTYPE MODELNAME

-10 UPG

-11 UPG IBM01

-12 UPG IBM02

Note: Before running the SQL statements, we recommend that you remove
the old records in the PVCDEVMDL, PVCDEVSPEC and PVCMDLSPEC
tables to avoid errors when you run these statements.

SPEC_ID SPECNAME SESSION_TY
PE

CONTENTDIR LCDWIDTH/
LCDHEIGHT/
LCDCOLORS/
LCDMONOCH
ROME

100 UPG_Color1 UPG UPG_Color1_
dir

180/100/256/0
246 Mobile Commerce Solutions Guide using WebSphere Commerce Suite V5.1

The SQL statements for these settings are seen in Example 12-9.

Example 12-9 Example SQL statements to insert records in to PVCDEVSPEC
insert into PVCDEVSPEC (SPEC_ID, SPECNAME, SESSIONTYPE, MAXCONTENTLENGTH,
MAXURLLENGTH, CONTENTDIR, LCDWIDTH, LCDHEIGHT, LCDCOLORS, LCDMONOCHROME)
 values (100, 'UPG_Color1', 'UPG', 5242880,255, 'UPG_Color1_dir' , 180, 100,
256 , '0');
insert into PVCDEVSPEC (SPEC_ID, SPECNAME, SESSIONTYPE, MAXCONTENTLENGTH,
MAXURLLENGTH, CONTENTDIR, LCDWIDTH, LCDHEIGHT, LCDCOLORS, LCDMONOCHROME)
 values (101, 'UPG_Color2', 'UPG', 5242880,255, 'UPG_Default_dir' , 100, 80,
256 , '0');
insert into PVCDEVSPEC (SPEC_ID, SPECNAME, SESSIONTYPE, MAXCONTENTLENGTH,
MAXURLLENGTH, CONTENTDIR, LCDWIDTH, LCDHEIGHT, LCDCOLORS, LCDMONOCHROME)
 values (102, 'UPG_Default','UPG', 5242880,255, 'UPG_Default_dir' , 100, 80,
2 , '1');

PVCMDLSPEC database table
For each group you need to define the relationship between the records in the
PVCDEVMDL and the PVCDEVSPEC tables. In our sample, we need to enable
this setting only for the store that has a store ID of 10001 as seen in Table 12-14.

Table 12-14 Example settings for PVCMDLSPEC

The SQL statements for these settings are seen in Example 12-10.

101 UPG_Color2 UPG UPG_Default_
dir

100/80/256/0

102 UPG_Default UPG UPG_Default_
dir

100/80/256/1

SPEC_ID SPECNAME SESSION_TY
PE

CONTENTDIR LCDWIDTH/
LCDHEIGHT/
LCDCOLORS/
LCDMONOCH
ROME

MDLSPEC_ID MODEL_ID SPEC_ID STOREENT_ID

1000 -10 102 10001

1001 -11 100 10001

1002 -12 101 10001
 Chapter 12. Create, deploy and manage content 247

Example 12-10 Setup model-spec mapping
insert into PVCMDLSPEC(MDLSPC_ID,MODEL_ID,SPEC_ID,STOREENT_ID) values (1000,
-10, 102, 10001);
insert into PVCMDLSPEC(MDLSPC_ID,MODEL_ID,SPEC_ID,STOREENT_ID) values (1001,
-11, 100, 10001);
insert into PVCMDLSPEC(MDLSPC_ID,MODEL_ID,SPEC_ID,STOREENT_ID) values (1002,
-12, 101, 10001);

Testing the configuration
Now you can verify that these configurations are in effect by accessing the view
from different model names of devices. For example, insert one record into the
VIEWREG table, as seen in Example 12-11.

Example 12-11 Setting up the view registry
insert into viewreg (

VIEWNAME,
DEVICEFMT_ID,
STOREENT_ID,
INTERFACENAME,
CLASSNAME,
PROPERTIES,
HTTPS,
INTERNAL

) values (
'Test',
-1,
10001,
'com.ibm.commerce.command.ForwardViewCommand',
'com.ibm.commerce.command.HttpForwardViewCommandImpl',
'docname=test.jsp',
0,
0

);

We also prepared three JSPs called test.jsp in two separate directories, and one
in the document root. We assume that the store directory for the store that has
store ID 10001 is PvCFashion. If you have already installed our sample, you
might have this directory in your document root.

For PC browsers we prepared a test.jsp under the store root directory.
248 Mobile Commerce Solutions Guide using WebSphere Commerce Suite V5.1

Example 12-12 Page for PC browser. (PvCFashion/test.jsp)
<%@ page language=”JAVA”%>

<HTML>
/PvCFashion/test.jsp

Page for PC browser.

</HTML>

For the UPG_Color1 group, we prepared a test.jsp in the UPG_Color1_dir
directory, which is under the store directory, as follows:

Example 12-13 test.jsp for UPG_Color1
<%@ page import=”com.ibm.commerce.pvcadapter.*” %>
<%@ page contentType="text/vnd.wap.wml; charset=iso-8859-1" %>

<jsp:useBean id="pvc_device_info" scope="request"
class="com.ibm.commerce.pvcadapter.DeviceInfo">
</jsp:useBean>

<?xml version="1.0"?>
<!DOCTYPE wml PUBLIC "-//WAPFORUM//DTD WML 1.1//EN"
"http://www.wapforum.org/DTD">
<wml>
<card>
<p>
Page for IBM01 from UPLink Gateway.

Your terminal must have at least following capability.

 Model: <%= pvc_device_info.model %>

 Width: <%= pvc_device_info.width %>

 Height: <%= pvc_device_info.height %>

 Colors: <%= pvc_device_info.colors %>

We'll provide you color contents.

Is color: Yes

</p>
</card>
</wml>

For the UPG_Color2 and UPG_Default devices we prepared a test.jsp in the
UPG_Default_dir, which is under the store directory.

Example 12-14 test.jsp for UPG_Default_dir
<%@ page import="com.ibm.commerce.pvcadapter.*" %>
<%@ page contentType="text/vnd.wap.wml; charset=iso-8859-1" %>
 Chapter 12. Create, deploy and manage content 249

<jsp:useBean id="pvc_device_info" scope="request"
class="com.ibm.commerce.pvcadapter.DeviceInfo">
</jsp:useBean>

<?xml version="1.0"?>
<!DOCTYPE wml PUBLIC "-//WAPFORUM//DTD WML 1.1//EN"
"http://www.wapforum.org/DTD">
<wml>
<card>
<p>
Default page for devices from UPLink Gateway.

Your terminal must have at least following capability.

 Model: <%= pvc_device_info.model %>

 Width: <%= pvc_device_info.width %>

 Height: <%= pvc_device_info.height %>

 Colors: <%= pvc_device_info.colors %>

 <% if (!pvc_device_info.isMonochrome) { %>
We'll provide you color contents.

Is color: Yes

 <% } else { %>
We'll provide you monochrome contents.
 Is color: No

 <% } %>
</p>
</card>
</wml>

Now we have three different JSPs for the same view registry in the VIEWREG
table. Now let's try to access the following URL from different devices to see if
the WCS server selects the appropriate content for each browser:

http://localhost/webapp/wcs/stores/servlet/Test?storeId=10001

PC browser test
If you try to access from a PC browser client, the WCS server should process the
test.jsp in the root PvCFashion directory. The result should look like Figure 12-2:
250 Mobile Commerce Solutions Guide using WebSphere Commerce Suite V5.1

Figure 12-2 PC browser results page of test.jsp

IBM01 simulator test
Next, try to access the store from the IBM01 device. To emulate this model of the
device, you need to switch the simulator configuration to IBM01.pho. If you try to
access from the IBM01 device, the WCS server should process the test.jsp in the
UPG_Color1 directory. The result should be displayed in the simulator, as seen
in Figure 12-3.

Figure 12-3 IBM01 simulator result
 Chapter 12. Create, deploy and manage content 251

IBM02 simulator test
Repeat the test used in IBM01 for IBM02 (configure for IBM02). The result
should look like Figure 12-4.

Figure 12-4 IBM02 simulator result

IBM03 and IBM04 simulator test
If you try other UPG devices, for example if you choose the setting for IBM03 or
IBM04, the server will pick up the JSP in the PvCFashion/UPG_Default_dir
directory according to the mode-spec mapping shown in Example 12-10. The
result should look like Figure 12-5.

You can make sure that the information in the PVCDEVSPEC table for the
’UPGDefault’ devices is passed to the JSP by checking the message We’ll
provide you monochrome contents displayed on the simulator.
252 Mobile Commerce Solutions Guide using WebSphere Commerce Suite V5.1

Figure 12-5 IBM03 simulator result
 Chapter 12. Create, deploy and manage content 253

254 Mobile Commerce Solutions Guide using WebSphere Commerce Suite V5.1

Chapter 13. Creating custom PvC
commands

WebSphere Commerce Suite V5.1 includes several PvC specific commands for
merchants who wish to manage mobile user and mobile device information. This
chapter describes how to create your own custom PvC commands using the PvC
commands PVCRegistration, PVCRegisterDevice, PVCChangeDevice supplied
with WebSphere Commerce Suite V5.1.

The chapter is organized into the following topics:

� WCS V5.1 PvC command overview

� Create and deploy a custom PvC command

13
© Copyright IBM Corp. 2001 255

13.1 WCS V5.1 PvC command overview
This section provides a brief description of the PvC commands included in
WebSphere Commerce Suite V5.1, and describes how they are used.

For more detailed reference information on the PvC commands, refer to
Appendix B, “PvC command reference” on page 339.

13.1.1 PvC command summary
This section includes a brief description of the PvC commands.

� PVCRegistration

This command is used to enable registration and renewal of the PvC device
information of users. Registration records of users and PvC device
information records can be entered and updated using this command. This
command is used together with Secure Socket Layer (SSL) to encode the
user's logonID, password and individual information.

The PVCRegistration command is required when the PvC adapter definition
registrationMode is set higher than 1.

� PVCRegistrationDevice

This command enables the registration and update of PvC information for
users that have already registered (for example, from a PC browser client).
This command is used together with SSL to encode a user's logon ID,
password and individual information.

The PVCRegistrationDevice command is required when the PvC adapter
definition registrationMode is set higher than 1.

� PVCChangeDevice

If your site is configured to manage PvC devices as one device per user
because the session registrationMode is set to 2 in the XML configuration file,
you need to manage canceled or changed devices. This is necessary,
because once a user registers his/her device, no further registration is
allowed using another device. The account in the WCS database is locked
until the old user-device relationship is canceled.

This command is required when the PvC adapter definition registrationMode
equals 2.
256 Mobile Commerce Solutions Guide using WebSphere Commerce Suite V5.1

� PVCBufferUrl

This command enables buffering of input field data placed in multiple pages,
and then sends the data to one command. It temporarily saves parameters of
the destination URL in the WCS database PVCBUFFER table. Buffers that
have not been updated for some time will be made unavailable by specifying a
bufferTimeout (in minutes) in the configuration file.

� ReEnterPassword

This command adds the given reenterpw parameter to the specified URL and
redirects it. Usually the ReEnterPassword command is used by a JSP which
is assigned to ReEnterPasswordForm. ReEnterPasswordForm is called when
executing the command without a password in locked password status.

13.1.2 Scenarios for using the PvC commands
If you have already developed a store for PC browser clients, and wish to enable
your store for mobile devices, you may wish to implement the PvC commands
provided in WCS V5.1.

Imagine that a company called PvC Fashion has a B2C store currently available
for PC browser clients and now want to enable the store for m-commerce. The IT
staff assumes that many of the customers using mobile devices to access the
store have already registered and have an active account in the WCS database.
They want to allow the user to add such information as the e-mail address of their
mobile phone; they also want to provide mobile users constant access to the
store.

To address this business requirement for users originally registered via a PC
browser client, WCS V5.1 has included a PvC command called
PVCRegistrationDevice. By setting the registrationMode for the PvC adapter
definition to 1 or 2, we can require the user to enter additional registration
information by using the PVCRegisterDevice command. Once this information is
entered, we can provide services for the mobile user.

For new customers who only use mobile phones, you can use the
PVCRegistration command to allow your customers to login to your WCS server.
The PVCRegistration executes the PVCRegisterDevice command internally after
normal registration.

In both cases, the PVCRegistrationDevice and PVCRegistration commands
create records in the USERPVCDEV and PVCBINDING tables. If you want to
use the address information of your customer, you can check the USERPCDEV
table. The PVCBINDING table is used by the system when a logon is executed
by WCS.
 Chapter 13. Creating custom PvC commands 257

After the logon is processed, the server checks if the mobile device attempting to
log on has its user listed in the PVCBINDING table. If the user does not have a
record in the PVCBINDING table, this means that the user has not finished the
device registration. In this case, the server rejects the logon, even if the user has
entered and sent the correct user ID and password.

PVCChangeDevice is a more specialized command. You can use this command
only when registrationMode for the adapter is set to 2. In this case, the
relationship between shoppers and devices must be strictly one-to-one. In other
words, once a user registers his/her device, he/she cannot use any other device
for logon. In addition, the device registered cannot be used by any other user.
This can be very restrictive, and should be used with discretion.

For example, let us say that we only want to require the user to enter the logon ID
for registration. In the future we do not want to ask the customer to enter the user
ID on the logon form, but only to enter the password for logon. Once the user ID
is entered, the user is notified by e-mail when the registration is complete.

To enable this command, we need to define the one-to-one relationship between
the WCS user and mobile phone subscriber ID. Unfortunately, the subscriber ID
can in some cases be changed by the customer. In other cases, the subscriber
ID is provided by the carrier with the new phone and cannot be changed.

To succeed in registering information for a new device, we can use the
PVCChangeDevice command to break the old relationship between a user and a
mobile phone, and to create a new record. This command also receives
addresses for the device and stores them in the USERPVCDEV table.

By default, there is no special checking for the PVCRegisterDevice and
PVCChangeDevice commands. If you want a condition to allow a user to log in to
your WCS server, you can customize it by extending an existing command. In the
following section, by creating our own custom PvC command, we will
demonstrate how to extend the PVCRegisterDevice command to enable a
custom parameter checking for device registration.

13.2 Create and deploy a custom PvC command
In this section, we demonstrate how to create and deploy a custom PvC
command by extending existing PvC commands.

Sample code for custom PvC command
The sample JAR code (included class and Java) for the following custom PvC
command can be found in the <install_path>\SG246171\command.pvc directory
after unzipping the SG246171.zip file.
258 Mobile Commerce Solutions Guide using WebSphere Commerce Suite V5.1

13.2.1 Create a custom PvC command
For this example, let us assume that we have the following application code:

� A command to accept user e-mail address input.

This command has the function of checking the validity of an e-mail address
and also of keeping a list of valid e-mail addresses. Checking the validity of
e-mail addresses is done by sending back e-mail which has a link to the
command which registers submitted e-mail addresses. All users need to
finish this check before registration.

� An access bean and EJB to access the list of e-mail addresses.

The access bean ValidEMailAddressAccessBean, and EJB are used to
access the list of valid e-mail addresses. The ValidEMailAddressAccessBean
uses the method findByAddress(String) to search valid addresses from the
list.

Next, we describe how to write the code which satisfies the following conditions:

� The type of address is ‘E’

� The e-mail address in the parameter is found in the list.

To create the custom PvC command, complete the following steps:

1. Start VAJ.

2. Create a project.

For example, we created a project named Sample customize parameter
check.

3. Create a package.

For example, we created a package named
com.ibm.commerce.sample.pvc.command.

4. Create a class.

For example, we created a class named PVCRegisterDeviceCmdmpl.

Next, we need to customize this method to do our custom parameter checks. The
super class already has a method which performs some simple parameter
checks. This method is defined by the super class as follows:

public void checkParameters()

You can see that the super class has this method already by opening the class
browser. We need to override the method. In this method, we write logic to check
if parameters are valid.
 Chapter 13. Creating custom PvC commands 259

To add this method to the subclass, follow these next steps:

5. Right-click MyPVCRegisterDeviceCmdImpl.

6. Select Add -> Method.

7. When the Add Method window appears, enter public void
checkParameters().

8. Click Next twice.

9. Add com.ibm.commerce.exception.ECException.

10.Click Finish.

You now have a method check parameter for MyPVCRegisterDeviceCmdImpl.
You can write your own custom parameter checks.

This class has static members for error codes and a dummy class, which is a
substitution of the actual access bean and checkParameter method used for
customization.

In the beginning of checkParameter, parameters are checked using methods
prepared by the super class. Refer to “PVCRegistrationDevice” on page 344 for
details on the super class.

After checking parameters with the checkParameter method, which is provided
by the super class, this command checks the mandatory parameter
‘devaddress1’, which is present in the request. If the value of ‘devaddress1’ is not
found in the request, this command throws an exception with the following error
code: ERR_CODE_MISSING_ADDRESS1.

Then the command checks if the address type is ‘E’ or not. If the address type is
not the same as expected, this command throws an exception with the error code
ERR_CODE_BAD_ADDRTYPE1.

After completing the checks above, the command checks if the value of
devaddress1 is listed in the database as a valid e-mail address. Instead of writing
an EJB and access bean code, we prepared a dummy class which has only the
method we are expecting from the access bean to simplify the explanation of
steps on how to extends parameter checking.

The sample MyPVCRegisterDeviceCmdImpl code can be seen in Example 13-2.

Example 13-1 MyPVCRegisterDeviceCmdImpl
package com.ibm.commerce.sample.pvc.command;

import javax.ejb.*;
import com.ibm.commerce.datatype.*;
import com.ibm.commerce.ras.*;
import com.ibm.commerce.server.*;
260 Mobile Commerce Solutions Guide using WebSphere Commerce Suite V5.1

import com.ibm.commerce.exception.*;

public class MyPVCRegisterDeviceCmdImpl extends
com.ibm.commerce.pvc.commands.PVCRegisterDeviceCmdImpl {

public static final String ERR_CODE_BAD_ADDRTYPE1 =
"ERR_CODE_BAD_ADDRTYPE1";

public static final String ERR_CODE_BAD_ADDRESS1 = "ERR_CODE_BAD_ADDRESS1";
public static final String ERR_CODE_MISSING_ADDRESS1 =

"ERR_CODE_MISSING_ADDRESS1";
public static final String ERR_CODE_NOT_IN_LIST = "ERR_CODE_NOT_IN_LIST";

// Dummy class for EMailCheckAccessBean
class ValidEMailAddressAccessBean {

ValidEMailAddressAccessBean findByAddress(String s) throws
ObjectNotFoundException {

if (true) throw new ObjectNotFoundException();
return null;

}
}

public MyPVCRegisterDeviceCmdImpl() {
super();

}

public void checkParameters() throws com.ibm.commerce.exception.ECException
{

String className = this.getClass().getName();
String methodName = "checkParameters";

super.checkParameters();

if (getAddress1() == null) {
TypedProperty hshNVPs = new TypedProperty();
hshNVPs.put(ECConstants.EC_ERROR_CODE, ERR_CODE_MISSING_ADDRESS1);
throw new ECApplicationException(

ECMessage._ERR_MISSING_CMD_PARAMETER,
className,
methodName,
ECMessageHelper.generateMsgParms("devaddress1"),
ERRTASK_NAME,
hshNVPs);

}
if (!getAddrType1().equals("E")) {

TypedProperty hshNVPs = new TypedProperty();
hshNVPs.put(ECConstants.EC_ERROR_CODE, ERR_CODE_BAD_ADDRTYPE1);
throw new ECApplicationException(

ECMessage._ERR_BAD_PARMS,
className,
 Chapter 13. Creating custom PvC commands 261

methodName,
ECMessageHelper.generateMsgParms("devaddrtype1"),
ERRTASK_NAME,
hshNVPs);

}

ValidEMailAddressAccessBean addr= new ValidEMailAddressAccessBean();
try {

addr = addr.findByAddress(getAddress1());
} catch (ObjectNotFoundException e) {

TypedProperty hshNVPs = new TypedProperty();
hshNVPs.put(ECConstants.EC_ERROR_CODE, ERR_CODE_NOT_IN_LIST);
new ECApplicationException(

ECMessage._ERR_BAD_PARMS,
className,
methodName,
ECMessageHelper.generateMsgParms("devaddress1"),
ERRTASK_NAME,
hshNVPs);

}
}

}

13.2.2 Deploy the custom PvC command
In order to deploy a PvC command, the following steps must be completed:

� Export the command to a JAR

� Deploy the JAR file

� Update the application server classpath

� Update the WCS database CMDREG table

Export the command to a JAR
After developing the custom PvC command code, we need to export the code to
a JAR file.

For example, we exported the package com.ibm.commerce.sample.pvc.command
to a JAR file named MyPVCRegisterDeviceCmdImpl.jar.

Deploy the JAR file
Copy the JAR file to the class path of the <wcs_install_path>\lib directory.

For example, we copied the MyPVCRegisterDeviceCmdImpl.jar to the
c:\ibm\wcs\lib directory.
262 Mobile Commerce Solutions Guide using WebSphere Commerce Suite V5.1

Update the application server classpath
Next, we need to update the WebSphere Commerce Server - <instance>
command line arguments (classpath) field.

For example, in the WebSphere Administrator’s Console, we added
c:\ibm\wcs\lib\MyPVCRegisterDeviceCmdImpl.jar to the command line
arguments field for the WebSphere Commerce Server - <instance>.

Once the classpath (command line arguments) has been updated, we need to
stop, then restart the WebSphere Commerce Server - <instance>.

Update the WCS database CMDREG table
The WCS database CMDREG table needs to be updated so that the server can
execute MyPVCRegisterCmdImpl instead of PVCRegisterCmdImpl, which is
already installed on your system.

To change the database registration for the new PvC command, run the SQL
script as seen in Example 13-2.

Example 13-2 cmdreg update script
update cmdreg
set CLASSNAME='com.ibm.commerce.sample.pvc.command.MyPVCRegisterDeviceCmdImpl'
where INTERFACENAME='com.ibm.commerce.pvc.commands.PVCRegisterDeviceCmd';

This SQL statement updates the entry for the command whose interface name is
com.ibm.commrce.pvc.commands.PVCRegisterDeviceCmd. After running this script,
you need to stop, then restart the WebSphere Commerce Server - <instance> to
enable the MyPVCRegisterDeviceCmdImpl command when the PVCRegistration
or PVCRegisterDevice URL command is executed.
 Chapter 13. Creating custom PvC commands 263

264 Mobile Commerce Solutions Guide using WebSphere Commerce Suite V5.1

Chapter 14. HDML implementation
sample

This chapter provides guidelines specific to supporting HDML browser-based
mobile clients using the m-commerce direct approach.

This chapter is organized into the following topics:

� HDML toolkits and test clients

� Sample code for HDML

� m-commerce direct development for HDML

14
© Copyright IBM Corp. 2001 265

14.1 HDML toolkits and test clients
This section provide information specific to developing mobile applications that
use HDML browsers. We show development kits that provide a simulator with
HDML browsers used for testing. In addition, we show real wireless devices that
support HDML browsers used for testing.

14.1.1 UP.SDK V3.2 for HDML
OpenWave Phone.com, formally Unwired Planet, provides a Software
Developer’s Kit (SDK) that includes a simulator that supports HDML 3.0 content
through its microbrowser, examples, and supporting documentation.

Although Nokia is dominant in Europe, the UP Phone.com browser is used by
many phone manufacturers. It appears that HDML-based sites in the US and
Japan are shifting to WAP/WML or imode/CHTML,respectively. HDML has a
large install base and should not be ignored if building m-commerce Web sites
for the current mobile market.

There are currently two versions of the UP.SDK that support HDML content:

� UP.SDK V3.2 for HDML

� UP.SDK V4.1 via UP.Link translation service

Downloading UP.SDK V3.2 for HDML
You can download the UP.SDK V3.2 from the following URL:

http://developer.phone.com/download/license_32.html

Contents of UP.SDK V3.2 for HDML
The Windows-based UP.SDK V3.2 for HDML contains the following:

� Up.Simulator and debugging console

� Example code

� Documentation

– UP.SDK Getting Started Guide (PDF)

– UP.SDK Developer’s Guide (PDF)

– UP.SDK Tools & APIs Reference (PDF)

Note: We found that the UP.SDK V3.2 for HDML for Windows provided better
support for our test needs.
266 Mobile Commerce Solutions Guide using WebSphere Commerce Suite V5.1

– UP.SDK HDML 3.0 Language Reference (PDF)

Installing UP.SDK V3.2 for HDML
To install the UP.SDK, follow these steps:

1. Click the download executable file called upsdkw32he.exe

2. Follow the installation instructions provided.

3. After you install the UP.SDK, click Start -> Programs -> UP.SDK 3.2 for
HDML -> Up.Simulator. The simulator should be displayed as seen in
Figure 14-1.

Figure 14-1 UP.Simulator V3.2 for HDML

Configuring UP.SDK V3.2 for HDML
After installing the UP.SDK by clicking the executable download file, you should
configure the simulator for your test needs. The UP.Simulator can be configured
for different modes of operation and emulation modes of different mobile phones.
 Chapter 14. HDML implementation sample 267

Modes of operation
– HTTP Direct

Configured to connect directly to the application (no gateway)

– UP.Link

This type of configuration is valid if your application requires a unique
subscriber ID. For example, the service provider EZ in Japan provides a
subscriber ID via the provider gateway. When creating the application and
testing it, you will need to configure the simulator to use the UP.Link.

It is quite important, in creating the adapter, to know how the subscriber ID
is included in the request from the browser. Since the simulator mimics
access from UP.Link Gateway, examining this gateway’s specifications
allows us to see how the subscriber ID is used.

For more information about UP.Link Gateway’s functions and contents,
please refer to the UP.SDK Developer's Guide found at the following URL:

http://developer.phone.com/doc/31w/devgd.pdf

Mobile phone emulation of the configuration file
As mentioned, many phone manufactures use the UP.Browser. In order to
provide emulation for each manufacturer, the UP.Simulator can load phone
configuration files. The phone configuration file contains information about the
size of the screen, as well as input to emulate the manufacturer’s device.

Subscriber ID
According to the UP.SDK Developer's Guide, a unique device ID value is set
x-up-subno. This is found before the blank of the second section, where the
browser version is divided by '/'. Since the UP.Simulator is not an actual phone
but a simulator, the value of x-up-subno is a combination of the username and
the host name of the machine that executes the simulator. These will be
connected with '_'.

Also, the value of User-Agent varies according to the configuration file of the
simulator. Since various configuration files for mobile phones are provided at the
download site of the toolkit (simulator), the model name will vary according to the
different kinds of mobile phone emulators used by the simulator. This is possible
by replacing the configuration file of the simulator to use a different mobile phone
emulator. In this chapter, we will explain how to make a concrete adapter by
making a new adapter named UPLinkGWAdapter, which extracts the value of
x-up-subno as a subscriber ID and part of User-Agent as a model name.
268 Mobile Commerce Solutions Guide using WebSphere Commerce Suite V5.1

Verifying UP.Simulator
It is important that you verify that the UP.Simulator is installed and configured
correctly prior to using it for development. A simple test provides a basic
verification that the simulator is working properly.

Useful information from OpenWave
OpenWave provides a wealth of information about mobile computing, which can
be found at: http://developer.phone.com/

We have included a URL that contains information about markup languages:

http://developer.phone.com/resources/markup.html/

14.1.2 Mobile device hardware
As mentioned in the previous section, many mobile phone manufacturers use the
UP.Browser, which can support HDML and WML. You can visit various phone
manufacturers’ Web sites to find a phone that is right for you.

We used a Motorola V.Series V2282 mobile phone in our real wireless hardware
intranet test environment. We found this to be a good match for our real hardware
testing. This particular phone uses the UP.Browser, which supports HDML and
WML.

14.2 Sample code for HDML
The sample code for HDML is included in the SG246171.zip as follows:

� This sample UP PvC adapter can be found at:

<install_path_of_zip>\SG246171\direct\wap\adapter.pvc\UpPvcAdapter.jar
<install_path_of_zip>\SG246171\direct\wap\adapter.pvc\UpPvcAdapter.xml

� The HDML content JSPs can be found at:

<install_path_of_zip>\SG246171\direct\hdml\hdml_jsp

� The content management scripts can be found at:

<install_path_of_zip>\SG246171\direct\hdml\scripts\setup_hdml.sql

Note: The UP.SDK V3.2 for WML, contains information for converting content
from HDML to WML that we found useful. Beware that some of the extensions
provided by the UP.Browser are not supported by standard WAP browsers,
specifically not part of the formally WAP specification.
 Chapter 14. HDML implementation sample 269

14.3 m-commerce direct development for HDML
The development process for m-commerce direct has been defined in 10.2,
“m-commerce direct development process” on page 203. The example chapters
for creating a PvC adapter, content, etc. used HDML as an example. In this
section,we provide the high-level steps required for development.

This chapter makes the assumption that you have met the prerequisites defined
in the 10.2, “m-commerce direct development process” on page 203.

Create a PvC adapter for UP (HDML)
Refer to 11.1, “Creating a PvC adapter” on page 206 for more detailed
instructions.

Deploy the UP PvC adapter
Refer to 11.2, “Deploying a PvC adapter” on page 218 for details.

Configure the content management
Refer to 12.1, “Content management configuration” on page 226 for details.

Create HDML content JSPs
Refer to 12.2, “Create device-specific content JSPs” on page 232.

Deploy HDML content JSPs
Refer to 12.3, “Deploy content” on page 238.

Test the m-commerce store for HDML
Now that you have deployed the HDML device-specific content JSPs, test the
store by entering the URL for your store in the UP.Browser simulator.
270 Mobile Commerce Solutions Guide using WebSphere Commerce Suite V5.1

Chapter 15. WAP implementation sample

This chapters provides instructions and sample code for implementing
m-commerce for WAP mobile devices using WCS V5.1.

The chapter is organized into the following sections:

� WAP toolkits and test clients

� Sample code for WAP

� m-commerce direct development for WAP

15
© Copyright IBM Corp. 2001 271

15.1 WAP toolkits and test clients
When developing a mobile application, you will need a combination of toolkits,
software simulators and real mobile device hardware for testing. We specifically
selected a Nokia and UP-based simulator and real hardware to explore unique
issues related to the microbrowsers.

We used the following when developing our WAP sample code for m-commerce:

� Nokia WAP Toolkit V2.1 and simulator

� UP.SDK for WAP

� WAP mobile device hardware

15.1.1 Nokia WAP Toolkit V2.1 and simulator
This section provides information on the Nokia WAP Toolkit V2.1 and the
accompanying simulator. One of the many benefits of using the Nokia WAP
Toolkit V2.1 for WAP development is that it can be used with a WAP gateway to
better simulate testing.

Download
The Nokia WAP Toolkit V2.1 and simulator can be found at:

http://forum.nokia.com/wapforum/main

If you are not already registered, you will be required to do so before logging on
and proceeding to the download of the toolkit.

We downloaded the following:

� Nokia WAP Toolkit V2.1

� Nokia WAP Toolkit V2.1 - Users Guide

� Nokia WAP Toolkit V2.1 - Developer’s Guide

� Nokia 7110 Mobile Handset Simulator January 2000 (optional)

This download is optional for our example. We used the Blueprint simulator
that comes with the toolkit.

Install the toolkit
The Nokia WAP Toolkit V2.1 requires installation of the Java Runtime
Environment (JRE) 1.3 (or higher) software. If you do not already have this
installed, the toolkit will automatically install it for you.
272 Mobile Commerce Solutions Guide using WebSphere Commerce Suite V5.1

Refer to the Nokia WAP Toolkit V2.1 - Users Guide for instructions on installing
the toolkit and simulators.

Configure the toolkit simulator
Configure the toolkit simulator as follows:

� Configure the Use HTTP tab (since we are working in an emulated
environment, we do not need to go through a WAP gateway)

� Use HTTP cookies

� Do not use HTTP authentication

� Do not use Fast Encoding

� Set the suitable proxy for your location (if needed)

15.1.2 UP.SDK for WAP
OpenWave Phone.com, formally Unwired Planet, provides a Software
Developers Kit (SDK) that includes a simulator that supports WAP content by its
microbrowser, examples, and supporting documentation.

Although Nokia is dominant in Europe, the UP Phone.com browser is used by
many phone manufacturers.

There are currently two versions of the UP.SDK that support WAP content.

� UP.SDK V3.2 for WAP

� UP.SDK V4.1 for WAP

Download and install UP.SDK for WAP
You can download the UP.SDK V3.2 for WAP from the following URL:

http://developer.openwave.com/download/index.html#sdk

15.1.3 WAP mobile device hardware
In our hardware testing environment, we used two different mobile devices. The
selection of the WAP phones (R380 PDA) was done partially based on what was
available and supported by the only WAP service provider in the Raleigh area
(Cingular). The devices were:

� Ericcson R380

This mobile phone/PDA hybrid may be one of the best WAP devices available
on the market. We used this model in light of its capability (PDA type screen
size) and the standard WAP spec browser.
 Chapter 15. WAP implementation sample 273

� Motorola V.Series V2282

This phone allowed us to test with a 4 line of text UP browser.

When using the real WAP mobile phones, we were able to connect to Cingular,
dial our Network Access Server (NAS) and configure the phone to use our WAP
gateway (IBM Everyplace Wireless Gateway configured for WAP).

In addition to the benefits mentioned, real hardware testing allows you to
appreciate usability issues (screen size, formatting, network performance).

15.2 Sample code for WAP
Included in the SG246171.zip file are the following code samples:

� Sample WAP PvC adapter

This sample WAP PvC adapter has been developed to look for the user-agent
WAP, Wap, and Nokia found in the HTTP header. In our example, we used
the Nokia WAP Toolkit V2.1 simulator. Additional user agents can be added to
fit your needs.

The source code can be found at:

<install_path_of_zip>\SG246171\direct\wap\adapter.pvc\WapPvcAdapter.jar
<install_path_of_zip>\SG246171\direct\wap\adapter.pvc\WapPvcAdapter.xml

� Sample WLM content JSPs

The sample JSPs for product and category display have been tested.

The WML content JSPs can be found at:

<install_path_of_zip>\SG246171\direct\wap\wml_jsp

In addition, we have included WLM JSPs converted from the HDML sample
for all the JSPs; however, they have not been debugged and tested. They can
be found in the following directory with _WML appended to the filename:

<install_path_of_zip>\SG246171\direct\wap\wml_jsp\notest

They are available without support, as is (as are all the samples).

� Content management scripts can be found at:

<install_path_of_zip>\SG246171\direct\wap\scripts\setup_wml.sql
274 Mobile Commerce Solutions Guide using WebSphere Commerce Suite V5.1

15.3 m-commerce direct development for WAP
The development process for m-commerce direct has been defined in 10.2,
“m-commerce direct development process” on page 203. In this section, we have
listed the high level steps and key issues related to creating a PvC adapter for a
WAP mobile device.

This chapter assumes that you have met the prerequisites defined in the 10.2,
“m-commerce direct development process” on page 203.

Creating a PvC adapter for WAP
Refer to 11.1, “Creating a PvC adapter” on page 206 for detailed instructions.

The sample WAP PvC adapter included in the sample zip file offers some
improvements over the UP PvC adapter documented in 11.1, “Creating a PvC
adapter” on page 206. By simply changing the User-Agent information for your
environment, you can start using WAP by deploying the sample WAP PvC
adapter.

The sample PvC adapter for WAP is currently written to check for the following
user agent information:

� WAP

� Wap

� Nokia

� UP/4

Example 15-1 displays the sample Java source code for the PvC adapter for
WAP mobile devices. This Java code can be imported into VAJ from
WapPvcAdapter.jar.

Example 15-1 WapPvcAdapter Java source

package com.ibm.commerce.pvcadapter.sample.wap;

public class WapPvcAdapter extends com.ibm.commerce.pvcadapter.PVCAdapterImpl {
/**
 * checkDeviceFormat method comment.
 */
public boolean checkDeviceFormat(javax.servlet.http.HttpServletRequest req,

com.ibm.commerce.datatype.TypedProperty arg2)
{

String agent = req.getHeader("user-agent");
 Chapter 15. WAP implementation sample 275

java.util.Enumeration agentList = acceptedUserAgents.elements();
boolean isAcceptable = false;
String current = "";

if (agent != null)
{

while (agentList.hasMoreElements() && (!isAcceptable))
{

current = (String) agentList.nextElement();

// the device is accepted only if 'current' is a substring of 'agent'
isAcceptable = (agent.indexOf(current) > -1);

}
if (isAcceptable) deviceModel = current;

}
return isAcceptable;

}
/**
 * getDeviceModel method comment.
 */
public String getDeviceModel() {

return deviceModel;
}
/**
 * getTerminalId method comment.
 */
public String getTerminalId() {

return getRequest().getSession().getId();
}
/**
 * Insert the method's description here.
* @return boolean
 * @param sub java.lang.String
 * @param target java.lang.String
 */
private static boolean isSubstring(String sub, String target) {

if ((sub != null) && (target != null))
{

if (target.indexOf(sub) > -1)
return true;

else
return false;

}
else return false;

}

private java.util.Vector acceptedUserAgents = new java.util.Vector();
private String deviceModel = "";
276 Mobile Commerce Solutions Guide using WebSphere Commerce Suite V5.1

public WapPvcAdapter()
{

super();

// Initialization of the "acceptedUserAgent" vector
this.acceptedUserAgents.add("WAP");
this.acceptedUserAgents.add("Wap");
this.acceptedUserAgents.add("Nokia");
this.acceptedUserAgents.add("UP/4.");

}

/**
* @return boolean
 */
public boolean httpsRedirection() {

return false;
}
}

Deploy the WAP PvC adapter
Refer to 11.2, “Deploying a PvC adapter” on page 218 for details.

Configure the content management
Refer to 12.1, “Content management configuration” on page 226 for details.

Create WML content JSPs
Refer to 12.2, “Create device-specific content JSPs” on page 232.

Note: The WML content JSPs were created by using the HDML equivalent as
a starting point. We used the UP.SDK documentation for converting HDML to
WML. All the JSPs have been converted to WML; however, we only debugged
and tested the navigation of the JSPs for category and product display.

We included the remaining untested JSPs (notest directory) to save time for
anyone who may want to use them as a starting point.

All code is shipped as is and includes no support.
 Chapter 15. WAP implementation sample 277

We referenced the following information in our conversion to WML content JSPs:

� Professional WAP, Charles Arehart, et al

� Nokia WAP Toolkit 2.1 Developer’s Guide

� UP.SDK 3.2 for WML documentation

� UP.SDK 3.2 for HDML documentation

Deploy content WML content JSPs
Refer to 12.3, “Deploy content” on page 238.

Test m-commerce store for WAP
Now that you have deployed the WAP WML device specific content JSPs, test
the store by entering the URL for your store in the WAP simulator.

We tested with the following:

� UP 4.1 Toolkit and simulator

� Nokia WAP Toolkit V2.1, Blueprint simulator

� Ericsson R380 WAP phone/PDA using our EWG WAP Gateway.
278 Mobile Commerce Solutions Guide using WebSphere Commerce Suite V5.1

Chapter 16. Palm implementation
sample

In this chapter, we provide implementation, development and design guidelines
for Palm HTML and Web Clipping-based browsers. In addition, we provide
sample code for the Palm HTML browser.

We did not include WAP based browsers because the development of
m-commerce for WAP mobile devices is already covered in Chapter 15, “WAP
implementation sample” on page 271. When using a WAP browser on the Palm,
the Palm takes on the properties of a WAP device for Internet access.

The chapter is organized into the following sections:

� Palm HTML browser implementation

� Palm Web Clipping implementation

� Where to find more information

16
© Copyright IBM Corp. 2001 279

16.1 Palm HTML browser implementation
This section provides implementation guidelines for designing, developing and
testing Palm HTML browser PDAs. The section is organized as follows:

� Design guidelines

� Development guidelines

� Palm development tools

� Sample code

16.1.1 Design guidelines
This section highlights the key issues for designing Palm HTML-based content
for m-commerce.

Page structure
The page structure is usually modular and fairly redundant, as seen in
Figure 16-1.

Figure 16-1 Page structure

The above result can be achieved using frames or tables. Frames are usually not
supported on PDA browsers, so try to avoid them. First, the structure should be
rearranged, considering that the screen is small and narrow. Using sidebars or
any horizontal separation is not recommended. Bear in mind that the page
content should be linear.

In this case, the side navigation bar, the header, and the footer are playing the
same role: site navigation. One approach in modifying the page structure for
m-commerce is to simply remove the side navigation bar, modify the header,
remove the navigation elements, and simplify the remaining footer.

header

content

footer

si
de

na
vb

ar
280 Mobile Commerce Solutions Guide using WebSphere Commerce Suite V5.1

The main parts (header, content, footer) are separated by horizontal lines using
the <hr> tag. By using a linear format, users can read through the pages and
navigate.

Tables
Tables are mostly supported on PDA browsers, but nested tables are usually not.
Try to avoid using tables. Vertically oriented tables are practical using one or two
columns: these are most likely lists. But tables should be avoided for more
complex formatting.

In this example, tables are fully removed, the horizontal tables are converted into
vertical listings, for example the StoreDisplayPage main category listing.

Vertically oriented tables are simply removed and simply converted to listings, for
example the CategoryDisplay page’s category listing.

Do not forget to use the
 tag while replacing the cell delimiter, so that the
content will be separated from other cells’ content.

Images
Images are difficult to handle, because they are not rewriteable. Some text on
pages is really images; simply remove them and type in the text. The text can be
emphasized using the tags.

There are two ways to reduce image size:

� If size does not matter, the <img src= tag allows you to use width and height
attributes to specify the image size (KB). The image can be resized if the
browser supports this feature at runtime.

� If size matters, images need to be resized using a tool (static size), and have
to be stored in a different directory and served from there.

Forms
Forms are useful to control the interaction on the site and to pass parameters or
variables to the server or to the pages. Forms are mostly supported by the PDA
browsers.

In this example, image links are used to submit a form, with good results.
However, JavaScript is used to launch the submit method of the form. PDA
browsers cannot run client-side scripts like JavaScript in case the link does not
work, so the form cannot be submitted.

The image links have to be removed, and submit input fields have to be entered
into the code, between the <form> and </form> tags, with the appropriate title.
 Chapter 16. Palm implementation sample 281

Other design considerations
PDA browsers cannot support Cascading Style Sheets (CSS). Simply remove
them along with all the style sheet definitions.

16.1.2 Development guidelines
This section include guidelines for developing m-commerce applications for
Palm.

Creating a Palm PvC adapter
To develop a Palm PvC adapter refer to 11.1, “Creating a PvC adapter” on
page 206. Once the User-Agent value is identified for the Palm device, the PvC
adapter development procedure is the same as documented.

Creating the HTML content JSPs
The working example requires an HTML browser on the device. The example
shows how to produce simplified content for these devices. The developer needs
to consider the bandwidth, small screen size, and the browser’s capabilities.

Testing
There are several levels of testing environments and types of test clients. In this
section, we will briefly describe the issues to be considered in testing with
different types of test clients.

� Real hardware

A real PDA browser is best for testing the site; however, it could be slow and
waste battery energy. It is recommended that you test the site with as many
PDAs as possible; this is best for the final test.

� PC browser

During the development process, any ordinary desktop browser could be
useful (for example Netscape Navigator or MS Internet Explorer). Switch off
features like JavaScript and Java, and for more realistic results, simply resize
the browser window so it resembles a PDA screen (effective window size:
250 pixel x 350 pixel). Also, consider the font size.

� Emulators

There are also emulators for developing and testing a wireless application.
Emulators and simulators behave like the original device. Their advantages
are faster development, low cost, and easier debugging.
282 Mobile Commerce Solutions Guide using WebSphere Commerce Suite V5.1

16.1.3 Palm development tools
This section provides a summary of the development tools and documentation
available for Palm OS. There are three fundamental development components for
developing a Palm application:

� ROM

� Palm OS Emulator

� Palm OS SDK

In our example of developing HTML-based Web applications, we will need to
download the PALM emulator, freely available on the Internet, and the ROM
image, which is licensed (for development purposes, this is also accessible for
free).

Downloads
� The Palm OS Emulator can be downloaded from the following URL:

http://www.palmos.com/dev/tech/tools/emulator/

� The ROM image can be downloaded from the following URL, once you have
registered as a member of the Alliance program:

http://www.palmos.com/dev/tech/tools/emulator/

� The developer’s documentation can be downloaded from the following URL:

http://www.palmos.com/dev/tech/docs/

Configuring the emulator
After installing the software, access the Settings->Properties menu and switch
on the Redirect NetLib calls to host TCP/IP flag; use the right mouse button on
the Palm window.

Use any of the listed browsers under the PALM HTTP browser section or any
other browser. There are some typical settings for these browsers:

� Proxy: usually, the browsers require a proxy server with a user name and
password. The proxy server performs some content transformation and
provides a secure connection.

� Cache: Palm browsers always use cache in order to browse in offline mode
after downloading the content.

There are other emulators available on the Internet, as well as special
development tools for specific devices available from the manufacturer.
 Chapter 16. Palm implementation sample 283

16.1.4 Sample code
This section provides the sample code included in the ITSO SG246171.zip file.

Palm HTML content JSPs
The following Palm HTML content JSPs can be used as a reference to build an
m-commerce application. We modified the following JSPs to provide browsing
capability for the PVCFashion sample.

The JSPs can be found in the c:\temp\sg246171\palm\html directory:

� header.jsp

� footer.jsp

� StoreCatalogDisplay.jsp

� CategoryDisplay.jsp

� topcategory.jsp

� subcategory.jsp

� ProductDisplay.jsp

16.2 Palm Web Clipping implementation
This section provides design and development guidelines for implementing Palm
Web Clipping for m-commerce.

This section is organized as follows:

� Design guidelines

� Development guidelines

� Testing

� Problems

� Example

� Conclusion

16.2.1 Design guidelines
Web Clipping applications consist of two major parts:

� Web Clipping application, which is installed on the device

� Server-side application, that returns results pages to the device
284 Mobile Commerce Solutions Guide using WebSphere Commerce Suite V5.1

The Web Clipping application has to be built using HTML, and installed at the
end user onto the handheld device. A Web Clipping application is like a small
Web site stored locally; the starting (or index) page usually provides a form, or
list of links, which are the gateways to the live data provided by the server.

The result pages (clippings) are returned by the server side application, as a
response to the request from the web clipping application. The result pages are
written in HTML.

Web Clipping Proxy Server
A key component of making the system work is the Palm Computing Web
Clipping Proxy server found in 3Com Corporation’s data center. The Web
Clipping Proxy Server is responsible for converting the standard Internet
protocols and content from a Web page into a form that is tuned for transmission
across a wireless network, and for display on a small device.

Figure 16-2 Web Clipping Proxy Server

As shown in Figure 16-2, the Web Clipping Proxy uses standard Internet
protocols (TCP, HTTP, SSL) to Web servers to ensure compatibility, so the
requested pages are HTML pages.

Wireless
Data Network 3Com Data Center

Compression
Encryption

UDP

HTTP
SSL
TCP

Palm

B ayN et w orks

Bay Netw or ks

Bay Net wor ks

Sports

Bay Ne two r ks

Internet

Travel

Ba y Ne two rk s

Directions

Ba y Net wor k s

Stocks

Ba y Net wor ks

News

Bay Ne two rk s

Base Station

Modem B ank

Base Station

Mod em Bank

Base Station

Mod em Bank
 Chapter 16. Palm implementation sample 285

The Web Clipping Proxy server uses a reliable layer over the User Datagram
Protocol (UDP) to talk to Palm device; this protocol reduces latency and
conserves battery power more so than the Transmission Control Protocol (TCP).
Both UDP and TCP are transport protocols within the TCP/IP suite of protocols.

In Web Clipping, encryption and authentication between the handheld device
and the Web Clipping Proxy Server is performed by Elliptic Curve Cryptography
from Certicom Corporation, which offers extremely high levels of security with
small encryption key sizes. On the server side, the high strength SSL is used for
encryption and authentication between the Web Clipping Proxy Server and Web
servers providing HTML content.

16.2.2 Development guidelines
The process of developing an m-commerce site for Palm using Web Clipping can
be divided into the following parts:

� Palm-specific development tools

� Test real hardware on the Internet

� Create and deploy a PvC adapter for Palm devices

� The Web Clipping application, found on the client device.

� The server application, which produces the result pages. Practically, these
pages should be JSPs, which are served by the application server.

Additional tools for the development process
The following tools are required for development for the Palm device. They are
freely available, and downloadable from www.palm.com.

� WCA builder, used to compile the Web Clipping application

� Palm OS Emulator (POSE), used for testing

– Palm OS ROM file, required to run the emulator

Palm OS viewer
The Palm OS viewer is used by the browser on a Palm for the display of Web
pages. There are some limitations to the Palm OS viewer that impact the
development process. The viewer supports SSL for secure communication, and
forms for Web Clipping queries. The viewer does not support cookies, frames,
nested tables, JavaScript, or Java.

Server application
The server application provides the query results for the client. The response is
an HTML page, formatted for the Palm device; the restrictions are listed above.
286 Mobile Commerce Solutions Guide using WebSphere Commerce Suite V5.1

If using WebSphere Commerce Suite V5.1, the response should be developed
using JSPs. The JSPs are then compiled into HTML and sent through the
Internet, passing through the Web Clipping Proxy Server.

General considerations
Well-designed Web Clipping applications require a balance between the client
side application and the server-side application. A normal request sent from the
client is a 50-yte data packet, and the response should be 500 bytes. When
using images and more content, the size of the data packet may be larger. The
ratio of request and response data should remain within the range of 1:10..20.

16.2.3 Testing
There are two approaches to testing the application:

� Using the real hardware device with wireless access: this is an expensive
method of testing, and connection time may take long. It is good for beta
testing or final testing, but not recommended for the whole development
process.

� Using Palm emulator: this is the best method for this job. The emulator
behaves just like the original device. There is no charge for the wireless
connection, which is faster. There is only one potential problem: if the
development machine is sitting behind a firewall, the developer cannot
access the Web Clipping Proxy Server. There are ways to solve this problem,
for example, using a SOCKS server. Unfortunately, though the request can
pass the firewall, the response from the Web Clipping Server cannot come
through. The same problem occurs if the application server is sitting behind
the firewall. The Web Clipping Proxy has to somehow access the server.

The recommended testing method is to us the emulator; the development
environment should be directly connected to the Internet. The final test could be
based on real hardware testing.

16.2.4 Problems
Since there is no cookie support in the Palm viewer, URL rewriting is required on
the server application.

Note: For more information about Web Clipping application development,
refer to: http://www.palm.com, and check Web Clipping Development under
Developer and Programming Community.
 Chapter 16. Palm implementation sample 287

An SSL connection to the site is made by the Web Clipping Proxy Server. The
server only accepts predefined site certificates, which cannot be changed by the
end user. During development, the site has to posses a valid site certificate; if it
does not, the site will not work. In this case, the e-commerce site is using a
secure connection, so the problem cannot be avoided.

16.2.5 Example
Creating a Web Clipping application for the m-commerce site is similar to
creating simplified HTML content for a Palm. For details, refer to 16.1, “Palm
HTML browser implementation” on page 280. After creating the Web pages for
the site, the home page can be used as the base point for Web Clipping.

The high-level steps are as follows:

� Open the first page with the browser (MS Internet Explorer is recommended,
because it can save all the content, including images), and save the page.

� Edit the page, make some modifications to fit the Web Clipping application.
Resize the pictures, making them smaller.

� Open the WCA builder and the HTML page, then build the Palm Query
Application (PQA).

� Install the PQA on the Palm.

This example shows one approach to producing a WCA for Palm. Other
m-commerce sites hardcode the whole catalog into one WCA, and the client can
browse it locally, with no connection necessary. The challenge is to find the right
balance between the client-side and the server-side applications.

16.2.6 Conclusion
Taking every point into consideration, it is very difficult to develop an e-commerce
site with Web Clipping. Many serious problems arise when integrating the Web
Clipping application with WebSphere Commerce Suite.

Although Web Clipping is now designed to serve in an environment with a low
bandwidth, a short battery life, and a small screen, in the near future these
limitations will disappear and online browsing will be closer at hand for Palm
devices.
288 Mobile Commerce Solutions Guide using WebSphere Commerce Suite V5.1

16.3 Where to find more information
The best way to find information about wireless devices and applications is to
search and browse the Internet. The following Web sites provide some very
useful information about Palm OS application development:

� Palm: http://www.palm.com

� IBM WorkPad: http://www.ibm.com/workpad

� Handspring Visor: http://www.handspring.com
 Chapter 16. Palm implementation sample 289

290 Mobile Commerce Solutions Guide using WebSphere Commerce Suite V5.1

Chapter 17. i-mode implementation
guidelines

At the time of writing this redbook, most information regarding i-mode was
confidential. A customer must enter into a confidentially agreement with NTT
DoCoMo to gain access to the technical information required to develop an
i-mode solution. That being said, we want to highlight the significance of i-mode
and the efficiency of WCS V5.1 in working with i-mode mobile phones.

WCS V5.1 m-commerce works very well with the i-mode protocol. The
m-commerce PvC extensions added to WCS V5.1 were developed and tested
specifically for i-mode. In addition, IBM has developed and deployed
m-commerce stores in Japan for i-mode mobile phones.

� For information about i-mode, refer to the NTT DoCoMo Web site at:

http://www.nttdocomo.com/i/index.html

� For information about implementing m-commerce solutions using WCS V5.1
for use with i-mode mobile phones, contact IBM Japan at:

http://www.ibm.com/jp/contact

17
© Copyright IBM Corp. 2001 291

292 Mobile Commerce Solutions Guide using WebSphere Commerce Suite V5.1

Part 4 m-commerce
using WTP
implementation

Part 4
© Copyright IBM Corp. 2001 293

294 Mobile Commerce Solutions Guide using WebSphere Commerce Suite V5.1

Chapter 18. m-commerce using WTP
implementation and design

In this chapter, we discuss implementation considerations and application design
for m-commerce Web site using WebSphere Transcoding Publisher V3.5.

This chapter is organized into the following sections:

� Implementation considerations

� Application design guidelines using WTP

18
© Copyright IBM Corp. 2001 295

18.1 Implementation considerations
This section provides integration considerations for using WebSphere
Transcoding Publisher V3.5 to transcode the content of WCS V5.1.

18.1.1 WTP overview
IBM WebSphere Transcoding Publisher V3.5 has been presented in 5.2, “IBM
WebSphere Transcoding Publisher (WTP)” on page 115. This approach to
m-commerce offers several benefits for existing Web applications accessible by
many types of mobile devices.

Users can access Web services and receive the information in a format that is
tailored to mobile devices’ capabilities. Images can be reduced in size or
converted into a format that can be displayed on the device. The retrieved
content can be converted into a language that the device can handle and display.
These types of content adaptations are performed on-the-fly on the basis of
profiles that need to be defined only once. IBM WebSphere Transcoding
Publisher V3.5 constitutes a single and centralized means of disseminating the
same content source to many different devices with various capabilities. Access
to the existing content through a new kind of device can be obtained by adding a
new profile for the new device. The profile determines how requests for the
device can be recognized and how the information retrieved from the Web server
should be adapted. The detection of the correct device type is based mainly on
the User Agent field of the incoming HTTP request.

The most typical transformations that are performed by IBM WebSphere
Transcoding Publisher V3.5 include:

� Converting XML into different markup languages (such as WML, cHTML,
HDML, etc.) by applying XSL style sheets.

� Simplifying HTML by various methods, like removing components that are not
supported on the target device (for example JavaScript and applets), or
converting tables to lists.

� Manipulating images in terms of compression rate, quality, size, etc.

The architecture of WTP also allows you to further customize the content
adaptation process by creating and adding new transcoder modules. For detailed
information about WTP, refer to the IBM WebSphere Transcoding Publisher V1.1,
Extending Web Applications to the Pervasive World, SG24-5965.
296 Mobile Commerce Solutions Guide using WebSphere Commerce Suite V5.1

WTP 3.5 as a MIME filter
There are two basic ways of deploying IBM WebSphere Transcoding Publisher
V3.5:

� Proxy (for example, transparent or reverse proxy with or without external
caching)

� MIME filter for the IBM WebSphere Application Server V3.5

The differences between the two deployment options have been described in 5.2,
“IBM WebSphere Transcoding Publisher (WTP)” on page 115. We used the
MIME filter option (WebSphere Application Server filter) because it is the only
approach that allows end-to-end security, which is highly desirable and a
requirement of most commerce sites. In an SSL connection, the encryption takes
place between the client that has requested the page and the Web server. The
MIME filter solution allows the transcoding of the data before it is SSL encrypted
by the Web server.

Figure 18-1 shows how the WebSphere Application Server configuration is
modified after installing WTP V3.5 as a MIME filter. Three new servlets are
added to the Web application that has been selected for transcoding. Among
these three servlets, the TranscodingFilter is the actual MIME filter that
transcodes the pages produced by the Web application. In the future, we will call
this the TranscodingFilter.

.

Figure 18-1 Transcoding servlets
 Chapter 18. m-commerce using WTP implementation and design 297

Figure 18-2 Default MIME types

As seen in Figure 18-2, after configuring WTP as a MIME filter the
TranscodingFilter servlet is mapped by default to the following MIME types:

� text/html

� text/xml

� image/jpeg

� image/gif

As soon as the Web application generates one of the above content types, the
TranscodingFilter is triggered and performs all the content adaptation defined for
the client device.

Figure 18-3 shows the complete processing path of an HTTP request directed to
a Web application using WTP V3.5 as a MIME filter.
298 Mobile Commerce Solutions Guide using WebSphere Commerce Suite V5.1

Figure 18-3 WTP 3.5 as a MIME filter

The complete path for any incoming request is the following:

1. The client sends an HTTP(S) request to the Web server.

2. The Web server dispatches the request to the Web application.

3. The Web application generates an output page. Now two options may arise:

a. The content type of the generated page is associated to the Transcoding
Filter servlet as a MIME handler. In this case, the page is passed to the
Transcoding servlet.

b. The content type is not associated to the Transcoding Filter servlet. Then,
the page is sent directly to the Web Server.

4. The Transcoding Filter adapts the content on the basis of the preferences for
the client device and returns the page to the Web server.

5. The Web server sends the response page to the client.

As seen in Figure 18-3, the Transcoding Filter uses all the services and
functionality of the WTP framework, which is the core component of IBM
WebSphere Transcoding Publisher V3.5. The WTP framework provides
mechanisms to select all the transcoding rules to apply, as well as the execution
order.

Note: When WTP is configured as a MIME filter, network profiles are never
applied. Only device profiles are applied.

Web
server

Client

Web
application

WAS 3.5

1

2
3/a

4

5
Transcoding Filter

WTP
framework

3/b
 Chapter 18. m-commerce using WTP implementation and design 299

It is also worth noting that only the content that is provided by the application
server can be transcoded. If you have static pages that need transcoding, you
need to use a folder accessible by the Web application of the WebSphere
Application Server (not the Web server document root where static pages are
normally stored).

WTP V3.5 includes many transcoders that allow the manipulation and
transforming of textual information, such as HTML and XML documents. These
transformations include:

1. Simplification of HTML documents.

2. Style sheet (XSL) application to XML documents.

3. Format translation from HTML to:

a. Wireless Markup Language (WML for WAP mobile devices).

b. Compact HTML (cHTML for i-mode mobile phones)

c. Handheld Device Markup Language (HDML mobile devices)

The text transcoder handles the simplification of HTML documents, the XSL
application to XML documents, and the translation from HTML to WML. For the
other two translations, WTP provides ad-hoc transcoders:

� i-mode transcoder

� HDML transcoder

If you want to use WTP to translate the pages produced by a Web application
into a content format suited to a specific device, two basic options are available
as far as the source content format is concerned: HTML or XML. In case the
application generates HTML, the Transcoding servlet can be used to convert the
page into the proper markup language and eventually to further simplify the
content. In case the Web application generates XML, WTP will first apply an XSL
style sheet to translate the page into the proper markup language, then will
eventually simplify the content.

18.1.2 Architecture for WCS-WTP integration
The overall architecture of a mobile commerce site based on WCS V5.1 and
WTP 3.5 is depicted in Figure 18-4. In this case, WCS V5.1 is assumed to
generate XML pages.

Note: i-mode and HDML transcoders are not registered by default, but are
required to transcode data for i-mode or HDML devices.
300 Mobile Commerce Solutions Guide using WebSphere Commerce Suite V5.1

Figure 18-4 Transcoding-based architecture for m-commerce

The existing store infrastructure, based on WCS V5.1, has been extended on the
server side by adding the transcoding framework. This is possible because the
front ends of both the store and administration tools in WCS are Web
applications.

Incoming requests are first processed by the WCS server, which executes the
required business logic, then generates an XML output page. The result page is
then processed by the Transcoding servlet, which will produce the final output,
by first generating the proper markup language and then adapting the content on
the basis of the preferences for the client device. The generation of the target
markup language is based on the use of proper XSL style sheets.

The style sheet selection is based mainly on the Document Type Definition
(DTD) of the retrieved XML page and on the content type supported by the client
device. For each kind of device, the transcoding filter knows what style sheet to
apply in order to generate the final output.

NTT
Gateway

WebSphere
Commerce

Server

WebSphere
Application Server

XML

H
T
T
P

(S)

WCS
DB

WebSphere Commerce Suite

XSL
StyleSheets

Device
Preferences

Windows CE

WAP Phone

Palm VII

Palm VII

I-Mode

HTML

WML

Internet
Gateway

WAP
Gateway

HTML

C-HTML

Palm
Gateway

Palm
Gateway

TR
A

N
S

C
O

D
IN

G
S

E
R

V
L

E
T

 Chapter 18. m-commerce using WTP implementation and design 301

18.2 Application design guidelines using WTP
When using the WebSphere Transcoding Publisher (WTP) V3.5 approach to
mobile commerce, it is important to understand the application design
considerations when used with WebSphere Commerce Suite V5.1.

18.2.1 Introduction
The use of WTP to make store pages accessible from mobile devices and, more
generally, devices with less capability than common PC browsers is not enough.
The content produced by WCS V5.1 is very well suited to PC browsers. It
contains JavaScript, applets and other advanced features that are not supported
on most mobile devices. Simply transcoding these pages into a different markup
language will not do. For example, if the target device does not support
JavaScript, WTP will remove this code from the original page. In most cases,
WCS uses JavaScript not only for pure layout purposes (for example, to set the
focus on a certain component), but also to implement some application logic on
the client side (for example, to assign values to fields in a form). If this code is
removed, the obtained page will not work properly.

Some further consideration needs to be give to the proper execution of the WCS
store. When translating from full HTML, a single page is often split into many
contiguous screens (for example, WML decks). The order in which the original
information is divided into the different screens is the result of an automatic
translation and may not correspond to a logical order. This could have a very big
impact on application usability. This aspect could, however, be improved by using
Web Clipping.

These considerations show that in order for WTP to work reasonably well, the
applications should be carefully designed. There are two major points to keep in
mind during the design process:

� Supported features

� Usability

18.2.2 Supported features
HTML can be made efficient on devices with limited capabilities by using
WebSphere Transcoding Publisher V3.5. For example, it can properly reduce the
number of colors, convert tables into plain text, remove frames, perform image
translations or replace images with links, etc. But, as already mentioned, most
advanced features can make the translation process very involved. This is the
case for image maps, JavaScript, ActiveX objects, Java applets, etc. If the target
device does not support this code, these features should not be used.
302 Mobile Commerce Solutions Guide using WebSphere Commerce Suite V5.1

Most advanced features are not possible to transcode. When there is the need
for using such advanced techniques or features that are only supported on some
device, you will need to build separate sets of JSPs tailored for different device
types.

A compromise can be to build only a few selected pages optimized for specific
devices. This could be the home page and pages using incompatible content like
Java applets, phone API, Palm software, and so on.

18.2.3 Usability
Designing applications for multiple devices requires considerations about input
and output capabilities. Today’s common PC Web browsers are very powerful,
with a 1024x768 true color screen, a mouse and some 102 keys available. The
most minimalistic device used today is the first generation of WAP phones with
two to four lines of monochrome text, 10 numeric keys and a few function
buttons. In between, you find Web TV, PalmPilot, WorkPad, WinCE, and lots of
other devices with various input and output capabilities.

Navigation and application flow clearly need further consideration. On average,
52 links exist on a public Web page. This is not recommended for applications to
be used on a phone! An example is a page containing clickable news headlines.
The PC Web browser could show 20-30 properly arranged headlines and still be
usable. The PalmPilot could probably handle 10 headlines. From a phone, users
may prefer only five headlines. Basically, the number of selectable items can be
reduced in two ways:

� Categorization

Introducing one or more category selections in a flow

� Personalization

Using a filter for passing the subset of relevant items only

The cost and benefit of each approach depend heavily on the application type,
content and users. No final answer can be provided. Input forms introduce even
more considerations to multi-device design. How many fields per page are
acceptable? Does the device support more intelligent forms by allowing
client-side scripting? Is text easily entered from the device, or should you rely
more on selections? Using the existing user information can be most valuable,
for instance by letting the application suggest the customer’s known home
address when needing a goods delivery address.
 Chapter 18. m-commerce using WTP implementation and design 303

18.2.4 Trade-off
You could develop multiple versions of an application, for example, one for large
screen users and one for small screen users. Usability can be improved
significantly by implementing two different navigation schemes optimized for the
two device groups. Device-specific adaptation is performed generically by WTP.
This is illustrated in Figure 18-5.

Figure 18-5 Compromise application design

Some devices with a medium-level user interface, like the WorkPad or PalmPilot,
could potentially use both versions. The choice can be left up to the user or be
determined by the application. As an example of categorization, the application
could present a complete menu to a large screen user, while more levels of
selection are introduced to the small screen user, allowing each page to be
simple. Techniques like personalization could be applied to both versions. The
general user interface of both versions should be carefully considered and
designed, but by having two specialized versions, less compromises have to be
made.

Technically, the application could be implemented as two sets of JSPs: one will
generate standard HTML and the other XML or a very simple HTML. These
topics are further analyzed in Chapter 19, “m-commerce using WTP application
development” on page 305.

Transcoder Application
server

"Small screen"
version

"Large screen"
version

2
3

1
5

6

4
8

9

7

0

#

*

304 Mobile Commerce Solutions Guide using WebSphere Commerce Suite V5.1

Chapter 19. m-commerce using WTP
application development

This chapter provides development guidelines and sample code for developing
m-commerce Web sites using WTP. We explore creating HTML and XML content
JSPs for WCS, which the WTP server transcodes to the markup language of the
target mobile device.

The chapter is organized into the following sections:

� Introduction

� Sample code for WTP

� HTML versus XML

� Selecting the right JSPs

� Creating a generic PvC adapter

� Creating the content JSPs

� WCS caching with WTP

19
© Copyright IBM Corp. 2001 305

19.1 Introduction
In this chapter, we will assume there already exists a store for PC browsers. We
provide a set of guidelines to drive the development flow of a new version suited
to mobile devices based on the use of WTP V3.5. The m-commerce direct
approach relies on creating a specific mirror of the site for each class of devices.
Each mirror produces a content type that is well suited to the requesting device,
and the WCS framework relies on proper adapters to uniquely identify the device
and select the appropriate content-specific JSPs for that device. This approach is
optimal in cases where the set of target devices is limited and well defined. In
cases where you want to allow access to as many devices as possible, it may be
preferable to have only one reduced version of the store and use WTP to
transcode the content on demand for the requesting device.

Before starting the actual development, take note of some important preliminary
decisions to guide you in your development:

� Which source markup language to use

� How to map any incoming request to the proper set of JSPs

19.2 Sample code for WTP
Included in the SG246171.zip file are the following code samples:

� Sample Generic PvC adapter

This sample Generic PvC adapter has been developed to look for the user
agent of many types (“WAP”, “Wap”, “Nokia”, “Palmscape”, “Windows CE”,
etc.).

The source code can be found at:

<install_path_of_zip>\SG246171\direct\wap\adapter.pvc\GenericPvcAdapter.jar
<install_path_of_zip>\SG246171\direct\wap\adapter.pvc\GenericPvcAdapter.xml

� Sample HTML and XML content JSPs for navigation

The HTML content JSPs can be found at:

<install_path_of_zip>\SG246171\direct\wtp\wtp_html

The XML content can be found at:

<install_path_of_zip>\SG246171\direct\wtp\wtp_xml

� The content management script can be found at:

<install_path_of_zip>\SG246171\direct\wtp\scripts\setup_wtp.sql
306 Mobile Commerce Solutions Guide using WebSphere Commerce Suite V5.1

19.3 HTML versus XML
As mentioned in 18.1, “Implementation considerations” on page 296, in order to
define a simplified version of an existing store that can be transcoded, both
HTML and XML can be used as content types. The following sections provide
recommendations that will be helpful, during the development process, in
determining which type to use.

19.3.1 HTML content using WTP
The first option is to write a simplified version of the existing store by using an
HTML code which is as simple as possible. When writing the JSPs, avoid using
elements that may not be supported on the target devices, such as JavaScript,
ActiveX, and applets. WTP will remove these advanced components if the target
device do not support them. Be aware that the JSPs provided with the InFashion
or WebFashion sample stores generate HTML containing JavaScript. This is
used not only for layout-specific purposes (for example, to set the focus on one
component) but also for application logic (for example, to assign values to fields
in a form). If these pieces of code are removed, your store will not work properly.

Some further recommendations follow on the HTML that should be returned by
the JSPs:

� Avoid using tables

Some browsers for wireless devices do not support them and use different
data structures. By avoiding tables in the original pages, you will be able to
properly arrange the data from the beginning and have a better look and feel
of the transcoded content.

� Avoid multiple select fields with the same name

A problem when writing JSPs producing simplified HTML is related to an
implementation technique used within WCS in those pages where many
attributes for a certain product are selected and submitted within a form. One
typical example is the ProductDisplay.jsp page. Example 19-1 shows simple
HTML that uses the same technique.

Example 19-1 Submitting attributes
<html>

<head>
<title>PvCFashion: Classic pleated dress pant</title>

</head>
<body bgcolor="#FFFFFF" text="#000000">

<form name="OrderItemAddForm" method="get" action="OrderItemAdd">
<input type="hidden" name="attrName" value="10004">
<select name="attrValue">

<option value="Black">Black</option>
 Chapter 19. m-commerce using WTP application development 307

<option value="Grey">Grey</option>
</select>
<input type="hidden" name="attrName" value="10003">
<select name="attrValue">

<option value="29W x 28L">29W x 28L</option>
<option value="30W x 32L">30W x 32L</option>
<option value="34W x 32L">34W x 32L</option>

</select>
<input type="submit" name="AddButton" value="ShoppingCart">

</form>
</body>

</html>

As you can see, there are two hidden fields with the same name (attrName) and
two selected fields with the same name (attrValue). This is no problem in HTML
because all the fields are treated as different entities when the data is submitted.
Consider now the page obtained by transcoding from HTML to WML, as seen in
Example 19-2.

Example 19-2 Transcoded attributes
<?xml version="1.0"?>
<!DOCTYPE wml PUBLIC "-//WAPFORUM//DTD WML 1.1//EN"
"http://www.wapforum.org/DTD/wml_1.1.xml">
<wml>

<card>
<p>

<select name="attrValue" title=" ">
<option value="Black">Black</option>
<option value="Grey">Grey</option>

</select>
<select name="attrValue" title=" ">

<option value="29W x 28L">29W x 28L</option>
<option value="30W x 32L">30W x 32L</option>
<option value="34W x 32L">34W x 32L</option>

</select>
<do name="te2" type="accept" label="ShoppingCart">

<go href="OrderItemAdd" method="get" accept-charset="ISO-8859-1">
<postfield name="attrName" value="10004"></postfield>
<postfield name="attrValue" value="$(attrValue:n)"></postfield>
<postfield name="attrName" value="10003"></postfield>
<postfield name="attrValue" value="$(attrValue:n)"></postfield>
<postfield name="AddButton" value="ShoppingCart"></postfield>
308 Mobile Commerce Solutions Guide using WebSphere Commerce Suite V5.1

</go>
</do>
<do name="te1" type="prev" label="Back"><prev/></do>

</p>
</card>

</wml>

In the obtained WML, the hidden fields have remained distinct, but the two
attrValue fields have been mapped to the same value, which is the value chosen
in the second select statement.

19.3.2 XML content using WTP
The alternative solution is to write JSPs generating XML. This approach requires
more programming than in the previous case, because for each command you
will need to:

� Write JSPs generating XML

� Create DTDs for the generated XML

� Create an XSL style sheet for WTP

The DTD is used by the transcoding framework to select which XSL to apply. The
XSL is applied to the XML produced by the JSP to generate the proper markup
language. This can lead to a very high number of style sheets to create. Suppose
your Web site has p JSPs (where p may represent several dozens of JSPs) and
you want to allow the access to d different types of devices. In the worst case,
you will need d x p style sheets. Sometimes, it is possible to group together
similar devices in order to have a same set of XSLs for all of them, and then
reduce the number of style sheets to define. However, this requires a great
amount of development, not only because of the number of XSLs but also
because of the complexity of writing them.

Moreover, WCS already has a clean model-view-controller separation. In this
architecture, JSPs are used as the presentation layer. Since XML is not a
presentation but a data layer, using JSPs to produce XML is a way of forcing this
environment, because we are adding a new presentation layer (the XSLs) on top
of the JSPs. The overall framework has been built in such a way that all the
presentation-related information is only accessible to the JSPs. This situation
can introduce difficulties in writing the JSPs generating XML and the
corresponding XSL (for example, JSPs in WCS that extract strings from a

Note: This particular problem has been reported, but at the time of writing this
redbook, a solution was not available.
 Chapter 19. m-commerce using WTP application development 309

resource bundle for display). There is no means for an XSL to access the same
resource bundle to get the text to display and then it is up to the JSP to pass on
this information. The XML generated by the JSP will then need to contain not
only pure data but also presentation elements.

These difficulties are illustrated in Example 19-3.

Example 19-3 StoreCatalogDisplay: simple XML for the home page
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE StoreCatalogDisplay SYSTEM "StoreCatalogDisplay.dtd">
<StoreCatalogDisplay storeId="10101" langId="-1" catalogId="10001">

<Menu>
<Item command="LogonForm" description="Choose country" title="Next">

<param name="page" value="sidebar"/>
</Item>
<Item command="LogonForm" description="Register" title="Next"/>
<Item command="OrderItemDisplay" description="Shopping cart"

title="Next">
<param name="orderId" value="."/>

</Item>
<Item command="ContactView" description="Contact us" title="Next"/>
<Item command="HelpView" description="Help" title="Next"/>
<Item command="PrivacyView" description="Privacy" title="Next"/>

</Menu>
<TopCategories>

<TopCategory id="10001" description="Men’s" title="Next"/>
<TopCategory id="10002" description="Women’s" title="Next"/>
<TopCategory id="10003" description="New Arrivals" title="Next"/>

</TopCategories>
<PromoCategory id="24" msg="Check out this month’s best-selling products:">

<PromoProduct id="10032" description="A pair of pants" title="Next"/>
<PromoProduct id="10022" description="A shirt" title="Next"/>

</PromoCategory>
</StoreCatalogDisplay>

Example 19-3 shows possible XML that could be generated for the store’s home
page. You will notice that all the strings to use in the final page must be included
in this file because only the JSP that generates the page has access to the
properties files where the localized information is stored. The XSL can not
access the resource bundles to get the same data.

The topmost element in that XML file is called StoreCatalogDisplay and has a set
of attributes that represents the current context (for example storeId, langId and
catalogId).
310 Mobile Commerce Solutions Guide using WebSphere Commerce Suite V5.1

All the inner elements are grouped into three major categories:

� Menu

It is the list of functions accessible from the home page. Some of them can
have specific parameters, like page in the first Item element.

� TopCategories

It is the list of categories that should appear in the home page. Each of them
is characterized by an ID and a description.

� PromoCategory

The PromoCategory represents a current promotion and is identified by a
specific ID. It also includes the message used to advertise this promotion on
the home page. This category can include many products, each one having
an identifier and a description. Example 19-4 shows the DTD for the above
XML file.

Example 19-4 StoreCatalogDisplay.dtd
<!xml version=”1.0”?>
<!-- StoreCatalogDisplay.dtd -->
<!ELEMENT Item (param?)>
<!ATTLIST Item
command (ContactView | HelpView | LogonForm | OrderItemDisplay |

PrivacyView) #REQUIRED
description CDATA #REQUIRED
title CDATA #REQUIRED

>
<!ELEMENT Menu (Item+)>
<!ELEMENT PromoCategory (PromoProduct+)>
<!ATTLIST PromoCategory
id CDATA #REQUIRED

msg CDATA #REQUIRED
>

<!ELEMENT PromoProduct EMPTY>
<!ATTLIST PromoProduct
id CDATA #REQUIRED

description CDATA #REQUIRED
title CDATA #REQUIRED

>
<!ELEMENT StoreCatalogDisplay (Menu, TopCategories, PromoCategory?)>
<!ATTLIST StoreCatalogDisplay
storeId CDATA #REQUIRED

langId CDATA #REQUIRED
catalogId CDATA #REQUIRED

>
<!ELEMENT TopCategories (TopCategory+)>
<!ELEMENT TopCategory EMPTY>
<!ATTLIST TopCategory
 Chapter 19. m-commerce using WTP application development 311

id CDATA #REQUIRED
description CDATA #REQUIRED
title CDATA #REQUIRED

>
<!ELEMENT param EMPTY>
<!ATTLIST param
name CDATA #REQUIRED

value CDATA #REQUIRED
>

One possible style sheet used to generate WML from the above XML file is
shown in Example 19-5.

Example 19-5 StoreCatalogDisplay.xsl
<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
xmlns:fo="http://www.w3.org/1999/XSL/Format">

<xsl:variable name="storeId" select="/StoreCatalogDisplay/@storeId"/>
<xsl:variable name="langId" select="/StoreCatalogDisplay/@langId"/>
<xsl:variable name="catalogId" select="/StoreCatalogDisplay/@catalogId"/>

<xsl:template match="/">
<wml>

<head>
<meta http-equiv="Cache-Control" content="max-age=0" forua="true"/>
<meta name="vnd.up.markable" forua="true" content="true"/>

</head>
<xsl:apply-templates/>

</wml>
</xsl:template>

<xsl:template match="StoreCatalogDisplay">
<xsl:variable name="promoExists" select="count(PromoCategory)"/>
<card id="DP1">

<p>

MFashion

<xsl:apply-templates select="Menu"/>
<xsl:apply-templates select="TopCategories"/>
<xsl:if test="$promoExists > 0">

<xsl:value-of select="PromoCategory/@msg"/>
</xsl:if>
</p>

</card>
312 Mobile Commerce Solutions Guide using WebSphere Commerce Suite V5.1

<xsl:if test="$promoExists > 0">
<card id="DP2">

<p>
<do type="options" label="Home">

<go href="#DP1"/>
</do>

</p>
<xsl:apply-templates select="PromoCategory"/>

</card>
</xsl:if>

</xsl:template>

<xsl:template match="Menu">
<xsl:for-each select="Item">

<xsl:element name="a">
<xsl:attribute name="href">

<xsl:value-of select="@command"/>
<xsl:text>?storeId=</xsl:text>
<xsl:value-of select="$storeId"/>
<xsl:text>&langId=</xsl:text>
<xsl:value-of select="$langId"/>
<xsl:text>&catalogId=</xsl:text>
<xsl:value-of select="$catalogId"/>
<xsl:variable name="paramcount" select="count(param)"/>
<xsl:for-each select="param">

<xsl:text>&</xsl:text>
<xsl:value-of select="@name"/>
<xsl:text>=</xsl:text>
<xsl:value-of select="@value"/>

</xsl:for-each>
</xsl:attribute>
<xsl:attribute name="title">

Next
</xsl:attribute>
<xsl:value-of select="@description"/>
</xsl:element>

</xsl:for-each>
</xsl:template>

<xsl:template match="TopCategories">
<xsl:for-each select="TopCategory">

<xsl:element name="a">
<xsl:attribute name="href">

<xsl:value-of select="CategoryDisplay"/>
<xsl:text>?storeId=</xsl:text>
<xsl:value-of select="$storeId"/>
<xsl:text>&langId=</xsl:text>
<xsl:value-of select="$langId"/>
 Chapter 19. m-commerce using WTP application development 313

<xsl:text>&catalogId=</xsl:text>
<xsl:value-of select="$catalogId"/>
<xsl:text>&categoryId=</xsl:text>
<xsl:value-of select="@id"/>
<xsl:text>&top=Y</xsl:text>

</xsl:attribute>
<xsl:attribute name="title">

Next
</xsl:attribute>
<xsl:value-of select="@description"/>
</xsl:element>

</xsl:for-each>
</xsl:template>

<xsl:template match="PromoCategory">
<xsl:variable name="promocatid" select="@id"/>
<p align="center">

<xsl:value-of select="@msg"/>
</p>
<p>

<xsl:for-each select="PromoProduct">
<xsl:element name="a">

<xsl:attribute name="href">
<xsl:value-of select="ProductDisplay"/>
<xsl:text>?storeId=</xsl:text>
<xsl:value-of select="$storeId"/>
<xsl:text>&langId=</xsl:text>
<xsl:value-of select="$langId"/>
<xsl:text>&catalogId=</xsl:text>
<xsl:value-of select="$catalogId"/>
<xsl:text>&productId=</xsl:text>
<xsl:value-of select="@id"/>
<xsl:text>&parent_category_rn=</xsl:text>
<xsl:value-of select="$promocatid"/>

</xsl:attribute>
<xsl:attribute name="title">

Next
</xsl:attribute>
<xsl:value-of select="@description"/>
</xsl:element>

</xsl:for-each>
</p>

</xsl:template>
</xsl:stylesheet>
314 Mobile Commerce Solutions Guide using WebSphere Commerce Suite V5.1

The XSL variables initialized at the beginning of the code are used to store the
three values that make up the URL of any menu item. This technique avoids
having to navigate through the DOM tree any time these three pieces of
information are needed.

19.4 Selecting the right JSPs
At the end of the development process, you will have at least two separate sets
of JSPs, one producing full-capable HTML for PC browser clients and the other
generating simplified HTML or XML for mobile clients. You then need a method
to determine which JSP to invoke for any given request.

There are two main options:

Using a PvC adapter
The PvC adapter will allow you to identify the class of devices that should be
directed to the simplified pages. You can use a generic adapter to identify all
wireless devices that can access your store, without any further distinction. This
is needed only to allow WCS to generate different pages for standard PC
browsers and wireless devices.

As shown in 12.1, “Content management configuration” on page 226, the
PVCDEVSPEC table stores a mapping between the device type detected by the
adapter and the document root for that device. As soon as a request coming from
a wireless device is detected, the adapter sets the entry point to the store to the
directory where all the JSPs (HTML or XML) for that device are stored. The
adapter will ignore requests coming from PC browser clients, which will instead
refer to the default store location.

The steps needed to deploy a store with mobile support using this approach are:

1. Create a PvC adapter (generic for all wireless devices).

2. Deploy the new PvC adapter.

Note: When writing the JSPs for XML, do not forget to set up the proper
content type in the response (for example, text/xml). One possible way is to
use the page directive, as in the statement:

<%@ page contentType="text/xml; charset=iso-8859-1" %>

As an alternative you can use the following Java code:

<% response.setContentType("text/xml"); %>
 Chapter 19. m-commerce using WTP application development 315

3. Create the content JSPs for wireless devices in a separate directory from the
PC browser client JSPs.

4. Deploy the store assets (possibly by using a SAR).

5. Perform the content management to update the WCS database tables
(update the PVCDEVSPEC table) by entering the document root for the new
set of JSPs.

6. Deploy WTP V3.5 as a MIME filter and configure the transcoders.

7. Restart WebSphere Commerce Server.

Using different stores IDs
If you have two separate stores, they will be accessed through different store IDs
and different URLs. This means there is no need for adapters because the
distinction between the two stores is based on the different URL and not on the
device type. This is the simplest solution to deploy, but it presents additional
problems in terms of ease of maintenance and administration. You now have two
different stores to manage instead of one. Changing any store settings now
requires twice the effort, because any change needs to be applied twice.

To deploy the two stores, you will need to:

1. Create the JSPs for mobile devices.

2. Define two different SARs that only differ in the store file assets. The first
contains all JSPs producing full HTML for PC browsers, and the second
contains the JSPs generating simple HTML or XML.

3. Publish the two SAR files on the same WCS instance.

4. Deploy WTP V3.5 as a MIME filter and configure the transcoders.

5. Restart WebSphere Commerce Server.

19.5 Creating a generic PvC adapter
This section describes how to develop a generic PvC adapter for mobile devices
used with WTP. The technical aspects related to adapters have already been
presented in 10.1, “m-commerce direct application design guidelines” on
page 200.

19.5.1 PvC adapter overview
The PvC adapters provide the following high-level functionality:

� Detect the device type
316 Mobile Commerce Solutions Guide using WebSphere Commerce Suite V5.1

� Uniquely identify the device

� Create and maintain the session

� Set up the document root for the targeted device

The reason why we need an adapter is that we want the store to be able to
generate different response pages based on the type of requesting device.
More precisely:

� Full HTML for PC browsers

� Simple HTML or XML for small devices

Figure 19-1 depicts how each incoming HTTP request is processed, depending
on whether it comes from a pervasive computing mobile device, such as a mobile
phone, or from a PC browser.

Figure 19-1 Processing flows using WTP V3.5

Request
servlet

Device
manager

PvC adapter

Session

Output
page

W TP

JSP file
for PvC

JSP File
for browser

Browser adapter

Web
controller

Controller
command

View
commandSession

3

3

2

4

9

4

7

1

1

8

8

5

6

 Chapter 19. m-commerce using WTP application development 317

The processing flow is as follows:

1. A request servlet receives a request from either a mobile device or a PC
browser client over the Internet.

2. The request servlet passes the request to a device manager.

3. The device manager determines which adapter would best process the
request, and passes the request to the appropriate adapter. For example, if
the request is from a mobile phone, the device manager selects the PvC
adapter. If the request is from a PC browser, the device manager selects the
browser adapter.

4. To prevent applications from having to handle system functions, such as
access control and authentication, requests from any device are first
processed by the Commerce Suite Web controller. The adapter (either PvC or
browser) creates a session context and a controller request object, and
passes the controller request object to the Web controller. The controller
request object contains a set of properties, formatted by the adapter. It also
contains a backward reference to the adapter object and a reference to the
session context object created by the adapter.

5. The Web controller executes the request by invoking the corresponding
controller command. All business logic is implemented in the controller
command.

6. Using the view name returned by the controller command, the Web controller
retrieves the appropriate view entry from the VIEWREG table. The WCS
framework also constructs the proper JSP file path. If the request comes from
a PvC device, it will be obtained by appending the file name in the VIEWREG
table to the value of CONTENTDIR in the PVCDEVSPEC table. Otherwise,
the file path will be constructed from the default document root.

7. The Web Controller invokes the view command defined in the view entry.
Based on the computed path, the view command can fetch the proper JSP
from the appropriate folder for the requesting device. If the request comes
from a PvC device, the view command may invoke a JSP generating a page
written in simple HTML or XML. If the request comes from a PC browser, the
view command may invoke a JSP file generating normal HTML (that is, with
JavaScript, applets, etc.).

8. The generated page is sent to IBM WebSphere Transcoding Publisher V3.5 in
order to further adapt the retrieved content to the capabilities of the target
device. In the case of a PC browser, the page may be left unchanged. But if
the request comes from a cellular phone, WTP will automatically generate a
version of the page whose content format is tailored for that particular device
(for example WML, cHTML, etc.).

9. The page generated by IBM WebSphere Transcoding Publisher V3.5 is sent
to the requesting device to be displayed.
318 Mobile Commerce Solutions Guide using WebSphere Commerce Suite V5.1

19.5.2 Creating the PvC adapter
We will create a new adapter called GenericPVCAdapter. The requesting device
can be identified based on the User-Agent field in the HTTP request. The
adapter will use the following two private fields:

Table 19-1 Private fields of the GenericPVCAdapter

These fields are declared as follows:

private java.util.Vector acceptedUserAgents = new java.util.Vector();
private String deviceModel = "";

The list of user agents must be further completed with all the accepted values.
This can be done in the class constructor.

Example 19-6 GenericPVCAdapter: Class constructor
/**
 * GenericPVCAdapter constructor comment.
 */
public GenericPVCAdapter() {

super();

// Initialization of the "acceptedUserAgent" vector
this.acceptedUserAgents.add("Windows CE");
this.acceptedUserAgents.add("HandHTTP 1.1");
this.acceptedUserAgents.add("EudoraWeb");
this.acceptedUserAgents.add("Palmscape");
this.acceptedUserAgents.add("UP.Browser");
this.acceptedUserAgents.add(" UP/4.");
this.acceptedUserAgents.add("WAP");
this.acceptedUserAgents.add("Wap");
this.acceptedUserAgents.add("Nokia");

}

The code in Example 19-6 detects the following classes of devices:

� Windows CE/Pocket PC

� WML devices

Note: The document root containing all JSPs for PvC devices is configured in
the PVCDEVSPEC table.

acceptedUserAgents It is the set of user agents accepted by the
adapter.

deviceModel It stores the model of the accepted device.
 Chapter 19. m-commerce using WTP application development 319

� HDML devices

� IBM WorkPad/Palm

This set can be modified as needed. For example, if you also want to recognize
i-mode devices, you can add the following line:

this.acceptedUserAgents.add("DoCoMo/1.0/");

The main method of the adapter is checkDeviceFormat, as follows:

/**
 * checkDeviceFormat method comment.
 */
public boolean checkDeviceFormat(javax.servlet.http.HttpServletRequest arg1,
com.ibm.commerce.datatype.TypedProperty arg2) {

String agent = req.getHeader("user-agent");
java.util.Enumeration agentList = acceptedUserAgents.elements();
boolean isAcceptable = false;
String current = "";
if (agent != null)
{

while (agentList.hasMoreElements() && (!isAcceptable))
{

current = (String) agentList.nextElement();
// the device is accepted only if 'current' is a substring of 'agent'
isAcceptable = (agent.indexOf(current) > -1);

}
if (isAcceptable) deviceModel = current;

}
return isAcceptable;

}

The code first gets the user agent value from the HTTP request and then scans
the list of accepted user agents. The device is accepted only if the received user
agent contains one of the strings in acceptedUserAgents. If the device is
accepted, the matching substring is used as a device model to further identify the
device in the sequel.

The getDeviceModel method is invoked by the system to get the information
about the device model. It can be defined as follows:

/**
 * getDeviceModel method comment.
 */
public String getDeviceModel() {

return deviceModel;
}

320 Mobile Commerce Solutions Guide using WebSphere Commerce Suite V5.1

The next method to define is getTerminalId. Defining such a method for a class of
devices with different features and capabilities can be difficult for the following
reasons, both related to the current implementation of the PVCAdapterImpl
class:

1. The session management is handled by the adapter.

2. For session management, the adapter requires a subscriber unique ID. This
unique ID is assigned by the service provider and does not change.

Many devices do not send a unique subscriber ID in the HTTP request; many do
not use this concept at all. This unique subscriber ID can be provided by the
gateway of the service provider. This is the case for NTT DoCoMo i-mode, and
for any provider using UP.Link Server as a WAP gateway. One piece of
information that can be used to uniquely identify the subscriber is his/her phone
number. This is known by the NAS used to access the network (that is, the node
into which the user dials). Some WAP gateways have the capability of
interrogating the NAS to get this information. For example, the IBM Everyplace
Wireless Gateway V1.1.4 has a built-in component with this capability, called
WAP device resolver. EWG 1.1.4 also provides a subscriber ID in the HTTP
request. However, this is not a standard feature and we should not assume a
subscriber ID always exists.

Accordingly, we will not use the subscriber ID in the GenericPVCAdapter. One
possible solution consists in using WAS session IDs as unique identifiers, as
follows:

/**
 * getTerminalId method comment.
 */
public String getTerminalId() {

return getRequest().getSession().getId();
}

The above code returns the session ID assigned to the current HTTP request by
WAS. Session management in WebSphere Application Server must then be
enabled.

It is also worth noting that the above code can be used both with cookies and
URL rewriting (see 3.1.2, “Session management” on page 72).

Important: You cannot use WCS session IDs to identify the users. In fact,
PvC adapters expect subscriber IDs to be static, at least during the same
session. This is the case for WAS session IDs, but WCS session IDs change
at every logon.
 Chapter 19. m-commerce using WTP application development 321

With this technique, a new record is inserted in the PVCSESSION table for any
new WAS session. WAS sessions start when the user accesses the site and
expire when the browser is closed. However, there will be no problem with the
large number of entries that will be created.

Since the PVCSESSION_ID field uses BIGINT(2^64) columns, you can store up
to 0x7FFFFFFFFFFFFFFF records in this table. If there were 10,000,000
sessions / day for the WCS server, you will be able to use it for 2,526,951,242
years: 2^64 records / 365 days / 10,000,000 sessions = 2,526,951,242 years.

However, the KEYS table is not configured correctly, because its current schema
does not allow to create PVCSESSION_IDs up to 0x7FFFFFFFFFFFFFFF. In
order to support that number of entries, you should use the following SQL
statement to set the UPPERBOUND:

update keys
set upperbound = 9223372036854775807

where tablename='pvcsession'

19.5.3 Deploying the PvC adapter
Once the adapter has been created, you will need to deploy it in the WCS
runtime environment as follows:

1. Select the class within the VAJ Workbench, right-click and choose Export
from the pop-up menu.

2. In the following window, leave all the default settings, and click Next.

3. In the next window, enter the complete path of the lib directory in the WCS
installation directory (for example, <wcs_install_path>\lib).

This is the folder where required Java classes are searched for by WCS.

4. Then choose Finish to export your code.

Modifying the WCS configuration file
The new adapter needs to be registered in the configuration file of the current
WCS instance:

<WCS_INSTALL_DIR>\instances\instance_name\xml\instance_name.xml
322 Mobile Commerce Solutions Guide using WebSphere Commerce Suite V5.1

The following example shows how the configuration file can be modified. For a
detailed explanation of the different parameters please refer to “PvC adapter
definition for the WCS instance XML file” on page 330.

<HttpAdapters>
<HttpAdapter name="GenericPVC" deviceFormatId="-2"

deviceFormatType="PVCAdapter" deviceFormatTypeId="-1"
factoryClassname="com.ibm.commerce.sample.adapters.GenericPVCAdapter"
enabled="true">

<PVCAdapter registrationMode="0" preferredLogonTimeout="20"
bufferTimeout="5"/>

</HttpAdapter>
</HttpAdapters>

19.5.4 Content management
This section describes the steps necessary for content management
configuration.

Modifying the WCS database
The last step in this deployment process is to properly configure the database.
Further details on the specific configuration settings can be found in “Content
management reference” on page 364. Three tables need to be modified:

� PVCDEVMDL
� PVCDEVSPEC
� PVCMDLSPEC

The following SQL statements can be used to register the adapter information in
the database:

insert into PVCDEVMDL (MODEL_ID, MODELNAME, SESSIONTYPE)
 values (-1, '', 'GenericPVC');

insert into PVCDEVSPEC (SPEC_ID, SPECNAME, SESSIONTYPE, CONTENTDIR)
 values (100, 'Generic PVC Default', 'GenericPVC', 'wtp_html');

insert into PVCMDLSPEC (MDLSPC_ID, STOREENT_ID, MODEL_ID, SPEC_ID)
 values (100, 0, -1, 100);

Important: Since we are using WAS session IDs to identify the user, 0 is the
only available value for the registrationMode attribute in the XML configuration
file. This is because WAS session IDs are changed whenever any new session
is created. Therefore, it is not possible for WCS to recognize the same user in
different sessions. Being capable of recognizing the user over different
sessions is fundamental when the registrationMode is set to ‘1’ or ‘2’.
 Chapter 19. m-commerce using WTP application development 323

The second statement also sets the document root for all wireless devices to the
folder called wtp_html.

Restarting WebSphere Commerce Server
The new settings will be available only after WebSphere Commerce Server is
restarted. Then, open the WebSphere Advanced Administration Console,
right-click WebSphere Commerce Server and choose Stop (see Figure 19-2).
After it has stopped, right-click again and choose Start.

Figure 19-2 Stopping the WebSphere Commerce Server

19.6 Creating the content JSPs
You can create the JSPs for mobile devices either from scratch or simply by
modifying the files of your already existing store. You can use WebSphere
Commerce Studio for this purpose. In both cases, you will need to create a
dedicated folder containing all these new JSPs and all the file assets they need.
This new directory must be a subfolder of the store directory. The sample store
PvC Fashion will need to be updated with a set of JSPs producing simple HTML
324 Mobile Commerce Solutions Guide using WebSphere Commerce Suite V5.1

code for wireless devices. Look at the JSPs provided in the additional materials
SG246171\wtp\wtp_html directory to understand some of the major guidelines
that should frame this development phase. Refer to WebSphere Commerce Suite
V5.1 Handbook, SG24-6167 for instructions on how to use Studio.

19.7 WCS caching with WTP
If you use WTP V3.5 as a MIME filter for WCS V5.1, it delegates any cache
management to WCS. WCS, by default, caches pages on the basis of the URL
without any consideration for the device type. This becomes a problem when
subsequent different device types access the store and get the transcoded page
from the cache.

Consider this situation:

1. You clean up the WCS cache by removing all files in
<wcs_install_path>\instances\<wcs_instance_name>\cache.

2. You access the store from the WorkPad emulator. You will get simplified
HTML tailored for Palm devices.

3. Now, if you try to access the store from a PC browser, even from a different
machine, you will get the same simplified version obtained at step 2.

Possible solutions to this problem are:

� Disabling the WCS cache

This may not be feasible, due to performance, if your Web site has a high
volume of clients accessing your site.

� Customizing the cache management in WCS 5.1

Cache management in WCS V5.1 can be customized. Some caching settings
can be customized from the Configuration Manager (as also described in the
online help). However, to differentiate the cached pages on the basis of the
device type, you need to write your own implementation of the command
com.ibm.commerce.cache.commands.CacheCommand. Its getKeyValues
method will have to be used to return the values that can uniquely identify the
cached pages for the various devices, like the user agent field. However, this
has not been tested within our scenarios.
 Chapter 19. m-commerce using WTP application development 325

326 Mobile Commerce Solutions Guide using WebSphere Commerce Suite V5.1

Part 5 Appendixes

Part 5
© Copyright IBM Corp. 2001 327

328 Mobile Commerce Solutions Guide using WebSphere Commerce Suite V5.1

Appendix A. PvC adapter framework
reference

WebSphere Commerce Suite V5.1 provides a PvC adapter framework for
providing support of mobile devices in WCS V5.1.

This appendix is organized into the following sections:

� PvCAdapterImpl class and methods

� PvC adapter definition for the WCS instance XML file

A

© Copyright IBM Corp. 2001 329

PvCAdapterImpl class and methods
The PvCAdpaterImpl class can be found once you have imported the VAJ
WCS5101.dat repository included with WebSphere Commerce Suite V5.1 Pro
Edition for Windows NT and Windows 2000.

When developing a PvC adapter for your target mobile device type, the following
methods must be used:

� checkDeviceFormat

This method checks to see if the necessary information for session control is
contained in the HTTP request from the browser.

� getDeviceModel

This method is used to get the mobile device model name from the HTTP
request.

� getTerminalId

This method is used to get the unique ID from the mobile device HTTP
request.

PvC adapter definition for the WCS instance XML file
The WCS instance XML configuration file can be found in the following directory
of your WCS V5.1 runtime environment:

\<wcs_install_path>\instances\<wcs_instance>\xml\<wcs_instance>.xml

For example, on a Windows NT WCS V5.1 platform, the file would be:

c:\ibm\wcs\instances\wcs\xml\wcs.xml

Where wcs is the name of the WCS instance.

Example 19-7 provides the entries required for the definition of a PvC adapter.
Notice we open with <HttpAdapters> and close it with </HttpAdapters> in the
XML configuration file. You must enter this manually since it is not contained in
the XML file created by the WCS V5.1 Configuration Manager when creating an
instance.

Note: In the event that your mobile client type or wireless service provider
does not supply a unique ID, use the WebSphere Application Server (WAS)
session information. For example, we used the WAS cookie as the unique
identifier.
330 Mobile Commerce Solutions Guide using WebSphere Commerce Suite V5.1

Arrange the tags of HttpAdapters so that it will be an element of the <Config> tag
in the XML file. The adapter definition is added within the HttpAdapters tags and
uses the syntax as seen in Example 19-7.

Example 19-7 PvC adapter definition syntax for WCS instance XML configuration file

<HttpAdapter [HTTP Adapter Attribute] >
 <PVCAdapter [PVC Adapter Attribute]>

<IPCheck>
<IP [IP Attribute 1]>
...
<IP [IP Attribute n]>

</IPCheck>
<ExcludeCommands>

<Command name=[[Excluded Command Name 1]/>
...
<Command name=[Excluded Command Name n]/>

</ExcludeCommands>
<RelogonCommands>

<Command name=[Protected Command Name 1]/>
...
<Command name=[Protected Command Name n]/>

</RelogonCommands>
</PVCAdapter>

</HttpAdapter>

The following tags in brackets provide information about the PvC adapter to be
deployed. Each attribute has a table with the possible values.

� [HTTP Adapter Attribute]

� [PVC Adapter Attribute]

� [IP Adapter Attribute 1]

� [IP Attribute n]

� [Excluded Command name 1]

� [Excluded Command Name n]

� [Protected Command Name 1]

� [Protected Command Name n]
 Appendix A. PvC adapter framework reference 331

HTTP adapter attribute
Table A-1 provides a listing of the HTTP adapter attributes.

Table A-1 HTTP adapter attributes

name Specify a name for the adapter. It is necessary that
this value be unique among all the registered
adapters. By all means prevent changing names
that have already been registered.

deviceFormatId Specify a positive integer value that does not
overlap other adapters’.

deviceFormatType Specify 'PVCAdapters' for adapters made after
PVCAdapterImpl.

deviceFormatTypeId Specify -1 for all the adapters made after
PVCAdapterImpl.

factoryClassname Specify the class name of an adapter to be
registered.

enabled It is specified whether this adapter will be used for
session control or not.

When using, 'true' is specified and when not using,
'false' is specified.
332 Mobile Commerce Solutions Guide using WebSphere Commerce Suite V5.1

PvC adapter attribute
Table A-2 provides a listing of the PvC adapter attributes.

Table A-2 PVC adapter attributes

IP adapter attribute
Table A-3 provides a listing of the IP adapter attributes.

Table A-3 IP adapter attributes

registrationMode 0:
The connection which is processed by this adapter will
be dealt with in the same way as the browser working
on the PC. When an ID has already been registered, it
can be used from devices controlled by the adapter
without any further registration.
1:
Registration becomes necessary at logon for devices
being processed by this adapter.
2:
The device that one user can use is restricted to one
unit. When this value is specified, the value that other
adapters can specify will be restricted to 0 or 2.

preferredLogonTimeout The default logon timeout time of this adapter can be set
as a countermeasure against loss and theft.

bufferTimeout The time limit of the effective parameter that has been
buffered by the PVCBufferUrl command is specified.
Access to the parameter that has been buffered is not
permitted after a certain time lapse.

type The address type that is permitted for connection (’host' or 'net') is
specified. When 'host' is specified, it means that the configuration
permits a connection from an IP address which has the same value.
When 'net' is specified, the number of bits set for the value of mask is
considered a sub-net mask, and it allows a connection from the
designated network address in ‘value'.

value The IP address of the sender permitting a 'value' connection or the
network address is written. It varies in the value specified in 'type' for
which meaning it is configured.

mask Mask is a necessary attribute when specifying 'type= "net"'. Specify the
number of bits of the sub-net mask of the network address specified for
'value'. For example, when a sub-net mask is 255.255.255.0, we specify
'mask= "24"'.
 Appendix A. PvC adapter framework reference 333

Excluded command
The Excluded command is used for a command name that you do not want to
execute. This command is used with clients connected with the server through
the registration adapter.

Protected command
The Protected command is used to protect the execution by password reentry for
the name of the command specified. When a logged-on user tries to execute a
specified command without a password, a form is displayed prompting the user
to re-enter the password.

Now, let us do these configurations for the UPLinkGateway adapter. The sample
configuration settings are listed in Table A-4 through Table A-7.

Sample usage for PvC adapter definition for WCS instance XML file
1. Sample: HTTP adapter attribute

Information about the adapter to be registered is specified in the HTTP
adapter attribute. Specify the factoryClassname of the adapter for the PvC
adapter name used when creating the adapter in VAJ (for example,
factoryClassname="com.ibm.commerce.sample.adapters.UPLinkGatewayAd
apter"). A positive integer that does not overlap with other values is specified
in deviceFormatId. Here we use 1, supposing that there is no other adapter
registered. As for PVCAdapterdeviceFormatType, deviceFormatTypeId,and
PVCAdapter,- 2 is specified. When an adapter is used for session control, we
enter “true” as the value of “enabled”. Values for the UPLinkGateway adapter
are provided in Table A-4.

Table A-4 Sample HTTP adapter attributes

Item Configuration value Note

name UPG This is the name of the
adapter

deviceFormatId 1 All adapters have unique
positive integer value.

deviceFormatType PVCAdapter Any adapter which extends
PVCAdapterImpl should
have this value.

deviceFormatTypeId -2 Any adapter which extends
PVCAdapterImpl should
have this value.
334 Mobile Commerce Solutions Guide using WebSphere Commerce Suite V5.1

2. Sample: PVC adapter attributes

The registration limitation, logon effective time, and time limitation of the
buffered parameters can be decided in the PvC adapter attribute. For the
meaning of this value, refer to the user registration mode. Before going on to
the detailed explanation, we will configure the following.

Table A-5 Sample - PvC adapter attributes

3. Sample: IP attributes

The address of the client who permits a connection is specified in the IP
attribute. The gateway address of the carrier is entered to prevent forbidden
access or forging of the contents of the request. When the address of the
client who permits a connection is listed as an IP tag, the address where the
list of the IP tags was used will be checked. If an address check functions, it is
possible to make session control not function using the adapter when the
client address does not correspond to the listed address, even if the request

enabled true To activate the adapter for
session control, specify
‘true’.

Item Configuration value Note

Item Configuration value Note

registrationMode 1 Users are required to input
some information about
their PVC device before
logging on to the WCS
server.

preferredLogonTimeout 60 The logon is timed out
when there is no operation
for 60 minutes.

bufferTimeout 10 Users will be prohibited
from using the mobile
device when the buffered
parameter is not updated
or changed after 10
minutes.
 Appendix A. PvC adapter framework reference 335

from the browser was sent in the form that the adapter can handle. An
IPCheck tag can be omitted when the WCS server and carrier are connected
with leased lines, because it is assured that the request is transmitted by the
gateway of the carrier.

Table A-6 Sample IP attributes

4. Sample: Excluded command

We list commands that need to be made unexecutable in the Excluded
command. We will set AddressAdd, an AddressDelete command, so that it
will not be used from the UPLinkGatewayadapter.

Table A-7 Sample: Excluded command

5. Sample: Protected command

The OrderProcess command needs to be protected by password reentry
when executing using the Protected command.

A summary of all the settings for a sample PvC adapter definition is shown in
Example A-1. Insert the definition into the WCS instance XML configuration file
within the HttpAdapter tag. When WCS server and the carrier's gateway are
connected with leased lines, the IPCheck tag used for gateway address checking
can be omitted, since all the requests are transmitted via the regular gateway.
For the configuration to take effect, restart the WCS server.

Example: A-1 Sample PvC adapter definition
<HttpAdapters>
<HttpAdapter

name = "UPG"
deviceFormatId = "-2"
deviceFormatType = "PVCDevice"
deviceFormatTypeId = "1"
factoryClassname="com.ibm.commerce.sample.adapters.UPLinkGatewayAdapter"
enabled="true" >

type value mask Note

IP Attribute 1 net 192.168.0.0 24

IP Attribute 2 host 9.24.105.178

Excluded command name Value

Excluded Command 1 AddressAdd

Excluded Command 2 AddressDelete
336 Mobile Commerce Solutions Guide using WebSphere Commerce Suite V5.1

<PVCAdapter
registrationMode="1"
preferredLogonTimeout="60"
bufferTimeout="10" >

<IPCheck>
<IP type="net" value="192.168.0.0" mask="24" />
<IP type="host" value="9.168.91.113"/>

</IPCheck >
<ExcludeCommands>

<Command name="AddressAdd"/>
<Command name="AddressDelete"/>

</ExcludeCommands>
<RelogonCommands>

<Command name="OrderProcess"/>
</RelogonCommands>

</PVCAdapter>
</HttpAdapter>
</HttpAdapters>
 Appendix A. PvC adapter framework reference 337

338 Mobile Commerce Solutions Guide using WebSphere Commerce Suite V5.1

Appendix B. PvC command reference

This appendix is provided as a reference for syntax and usage information for the
following PvC commands included in WebSphere Commerce Suite V5.1:

� PVCRegistration

� PVCRegistrationDevice

� PVCChangeDevice

� PVCBufferUrl

� ReEnterPassword

B

© Copyright IBM Corp. 2001 339

PVCRegistration
This is a command that enables the registration and renewal of the PvC device
information of users; registration records of users and PvC device information
records can thereby be made and updated. This command is used together with
Secure Socket Layer (SSL) to encode the user's logon ID, password and
individual information.

This command can be used together with SSL as follows:

� Enter this command by using the HTTPS secure protocol.

� Assign this command to the SSL protocol by using Commerce Suite
administrator and the PVCRegistration command (this provides the user's
registration information first).

Behavior
1. Checks parameters.

2. Executes the UserRegistration command that performs the user registration
and update.

3. Executes the PVCRegisterDevice command that performs the PVC device
information registration and update.

4. Displays the specified redirect view.

Commands executed internally
� UserRegistrationAdd

� UserRegistrationUpdate

� PVCRegisterDevice

Tasks command executed internally
� VerifyCredentials

Syntax
The syntax for the PVCRegistration command is shown in Figure B-1.
340 Mobile Commerce Solutions Guide using WebSphere Commerce Suite V5.1

Figure B-1 PVCRegistration command syntax

Arguments
The URL, logonId, logonPassword, and logonPasswordVerify parameters are
required. Add the other parameters as needed. When using the Lightweight
Directory Access Protocol (LDAP) for authentication mode, the lastName
parameter is indispensable.

The arguments and a brief description of each follow:

� http://<host_name>/<path>

The fully qualified host name of the Commerce Suite server and the
configuration path.

� langId

The language used in this session. Refer to the STORELANG table for the
language supported.

� forUser

The logon ID of the user who executes this command.

� forUserid

This is the same as the forUser parameter.

PVCRegistration

http://host_name/path

PVCRegistration?

&logonId=logonId &logonPassword=pass &logonPasswordVerify=passVer

&langId=lang
&forUser=id
&forUserId=id

&URL=url

&profileType=profType

<Same parameters as UserRegistration commands>

&devaddress1=devaddr1 &devaddrtype1=devaddrtp1

&devaddress2=devaddr2 &devaddrtype2=devaddrtp2
 Appendix B. PvC command reference 341

� URL

The URL called when a command finishes without error.

� logonId

The logon ID used to register and update.

� logonPassword

The password used to register and update. Passwords are encoded before
stored in the database.

� logonPassworVerify

The password used for confirmation.

� profileType

The profile type of registration.

None: No profile data.
 C: B2C profile type.
 B: B2B profile type.

� devaddress1

The PvC information 1 of the user.

� devaddrtype1

The PvC information type 1 for the user.

� devaddress2

The PvC information 2 for the user.

� devaddrtype2

The PvC information type 2 for the user.

Example
The following URL is a sample used to register a new user using the
PVCRegistration command”

http://myhost/webapp/commerce/store/servlet/PVCRegistration?URL=MallFrontVi
ew®istertype=G&storeId=0&profileType=customer&logonId=user1&logonPasswor
d=password&logonPasswordVerify=password&devaddress1=guest@sample.ibm.com&de
vaddrtype1=email

The new user ID and PvC information for logon ID 'user1' is created and calls on
the MallFrontView view command.

Error views
The following error views are called when an error occurs.
342 Mobile Commerce Solutions Guide using WebSphere Commerce Suite V5.1

� UserRegistrationErrorView

This page is called when an error related to user registration occurs.
Parameters related to user registration are not described here. For details,
please refer to the WebSphere Commerce Suite V5.1 online help.

� PVCRegistrationErrorView

This page is called when an error related to client device registration occurs.

Error codes
� ECSecurityConstants.ERR_MISSING_LOGONID

Logonid is not specified.

� ECSecurityConstants.ERR_MISSING_PASSWORD

logonPassword is not specified.

� ECConstants.EC_PVC_ADDRESS1

devaddrtype1 is specified, but devaddress1 is not specified.

� ECConstants.EC_PVC_ADDRTYPE1

devaddress1 is specified, but devaddrtype1 is not specified.

� ECConstants.EC_PVC_ADDRESS2

devaddrtype2 is specified, but devaddress2 is not specified.

� ECConstants.EC_PVC_ADDRTYPE2

devaddress2 is specified, but devaddress2 is not specified.

� ECConstants.EC_PVC_ALREADY_REGISTERED

This device has already been registered.

� ECSecurityConstants.ERR_INVALID_PASSWORD

logonPassword for this logonId is wrong.

� ECConstants.EC_PVC_USER_ALREADY_REGISTERED

The user information of the specified user has already been registered.

� Same error codes as UserRegistrationAdd or UserRegistrationUpdate

Refer to the WebSphere Commerce SuiteV5.1 online help for error codes
returned by UserRegistrationAdd and UserRegistrationUpdate.

Note: The Java classes for ECConstants and ECSecurityConstants are as
follows:

com.ibm.commerce.server.ECConstants
com.ibm.commerce.security.ECSecurityConstants
 Appendix B. PvC command reference 343

PVCRegistrationDevice
This command enables the registration and update of PvC information for users
that have already registered (for example, from a PC browser client). This
command is used together with Secure Socket Layer (SSL) to encode a user's
logon ID, password and individual information.

To use this command together with SSL, do the following:

� Enter this command using HTTPS secure protocol.

� Use Commerce Suite Administrator and PVCRegistration command (this
displays user registration information first) to assign the command to the SSL
protocol.

Behavior
1. When registrationMode equals 0 in the configuration file, it displays the

specified redirect view and returns.

2. Checks parameters.

3. Determines the status of the PVCSESSION table, registers when the status is
logout, and then updates when the status is logon.

4. For registering, the following is done:

a. When registrationMode of the configuration file equals 2, it checks whether
or not the device which executed the command has already been
registered. If so, it displays an error view.

b. Executes the VerifyCredentials task command to check logon ID and
password. In case of an error, it displays an error view.

c. Retrieves the user ID from the logon ID.

d. Checks whether the specified logon ID is already registered. If that is the
case, it displays an error view.

e. Creates new PVCBINDING and USERPVCDEV table entries.

f. Updates the user ID of USERREG and the command context.

5. Does the following when updating:

a. Updates the USERPVCDEV table of the device that executed the
command. It will not update if the parameter itself is not specified.

b. When the command execution finishes without error, it displays the
specified redirection view.

Commands executed internally
� None
344 Mobile Commerce Solutions Guide using WebSphere Commerce Suite V5.1

Tasks executed internally
� VerifyCredentials

Syntax
The syntax for the PVCRegistrationDevice command is shown in Figure B-2.

Figure B-2 PVCRegisterDevice command syntax

Arguments
For a new registration (access by a guest user), the logonId and logonPassword
parameters are required. For an update (access by a registered user), these
parameters are not required.

� http://host_name/path:

The fully qualified host name of the Commerce Suite server and the
configuration path.

� URL

The URL called when a command is normally terminated.

� logonID

The logon ID for registration and update.

� logonPassword

The password used for registration and update.

� devaddress1

The user's PvC information 1

http://host_name/path

PVCRegisterDevice

PVCRegisterDevice?

&logonId=id &logonPassword=pass

&URL=url

&devaddress1=
devaddr1

&devaddrtype1=
devaddrtp1

&devaddress2=
devaddr2

&devaddrtype2=
devaddrtp2
 Appendix B. PvC command reference 345

� devaddrtype1

The user's PvC information type 1

� devaddress2

The user's PvC information 2

� devaddrtype2

The user's PvC information type 2

Example
The following example creates PvC information using the PVCRegistration
command for logon ID “user1”, and then calls the MallFrontView view command.

http://myhost/webapp/commerce/store/servlet/PVCRegistration?URL=MallFrontVi
ew&logonId=user1&logonPassword=password&logonPasswordVerify=password&devadd
ress1=user1@mobile.ibm.com&devaddrtype1=email

the following example updates pVC information using the PVCRegistration
command for a user who has already logged on, and then calls the
MallFrontView view command.

http://myhost/webapp/commerce/store/servlet/PVCRegistration?URL=MallFrontVi
ew&devaddress1=guest@sample.ibm.com&devaddrtype1=email&devaddress2=090-1234
-5678&devaddrtype2=imode

Error views
� PVCRegisterDeviceErrorView

Error Codes
� ECSecurityConstants.ERR_MISSING_LOGONID

logonId is not specified.

� ECSecurityConstants.ERR_MISSING_PASSWORD

logonPassword is not specified.

� ECConstants.EC_PVC_ADDRESS1

devaddrtype1 is specified, but devaddress1 is not specified.

� ECConstants.EC_PVC_ADDRTYPE1

devaddress1 is specified, but devaddrtype1 is not specified.

� ECConstants.EC_PVC_ADDRESS2

devaddrtype2 is specified, but devaddress2 is not specified.

� ECConstants.EC_PVC_ADDRTYPE2

devaddress2 is specified, but devaddress2 is not specified.
346 Mobile Commerce Solutions Guide using WebSphere Commerce Suite V5.1

� ECConstants.EC_PVC_ALREADY_REGISTERED

This device has already been registered.

� ECSecurityConstants.ERR_INVALID_PASSWORD

logonPassword for this logonId is wrong.

� ECConstants.EC_PVC_USER_ALREADY_REGISTERED

The user information of the specified user has already been registered.

PVCChangeDevice
If your site is configured to manage PvC devices as one device per user by
setting the session registrationMode to 2 in the XML configuration file, you need
to manage canceled or changed devices. This is necessary, because once a
user has registered his/her device, no further registration is allowed using
another device. The account in the WCS database is locked until the old
user-device relationship is canceled.

Some service providers keep a list of revoked subscriber IDs by contract. In this
case, you do not need to ask your customer to cancel the old user-device
relationship. You can delete the revoked user-device relationship by deleting
related records in the PVCSESSION table.

For example:

delete from PVCSESSION where
TERMINAL=REVOKED_SUBSCRIBER_ID
SESSIONTYPE=NAME_OF_ADAPTER

By deleting a record in the PVCSESSION table, the records in the PVCBINDING
table, which stores possible user-device relationship, are deleted. By deleting a
record in the PVCBINDING table, the user-device relationship is canceled.

Note: The following values can be used to delete terminals and sessiontype
from the PVCSESSION table:

� REVOKED_SUBSCRIBER_ID

Specifies the revoked subscriber ID which is provided by the carrier.

� NAME_OF_ADAPTER

Specifies the name of the adapter used for access for the service provided
by the carrier.
 Appendix B. PvC command reference 347

When you are not able to get a list of revoked subscriber IDs and want to use
registrationMode 2, you need to ask your customer to cancel the old user-device
relationship by typing in the user ID and password using this command. This
command is used together with Secure Socket Layer (SSL) to encode the user's
logon ID, password and individual information.

To use this command together with SSL, do the following;

� Enter this command using the HTTPS secure protocol.

� Assign this command to the SSL protocol using Commerce Suite
Administrator and the PVCRegistration command. (this displays the user's
registration information first.)

Behavior
1. When registrationMode is set to other than 2, it indicates a redirect view and

returns.

2. Checks that the status of the device that executed the command is logon.

3. Displays an error view when the status is logon.

4. Checks the parameters.

5. Executes the VerifyCredentials task command to check the logon ID and
password. In case of an error, it displays an error view.

6. Acquires the user ID from the logon ID.

7. Checks whether or not the device that executed the command has already
been registered. If it has, it displays an error view.

8. Checks whether or not the logon ID that is specified has already been
registered. If it has, it displays an error view.

9. Changes the status of PVCBINDING of the device that will be the original to
S.

10.Creates a new entry in the PVCBINDING table with the status for the device,
which is changed to ’A’.

11.Creates new USERPVCDEV of the device that will be changed.

12.When the redirect view is normally finished, displays the specified redirect
view.

Commands executed internally
� None

Tasks command executed internally
� VerifyCredentials
348 Mobile Commerce Solutions Guide using WebSphere Commerce Suite V5.1

Syntax
The syntax for the PVCChangeDevice command is shown in Figure B-3.

Figure B-3 PVCChangeDevice command syntax

Arguments
� http://host_name/path

The fully qualified host name of Commerce Suite server and configuration
path.

� URL

The URL called when a command is finished normally.

� logonId

The logon ID used to register and update.

� logonPassword

The password used to register and update.

� devaddress1

The user's PvC information 1

� devaddrtype1

The user's PvC information type 1

� devaddress2

The user's pVC information 2

� devaddrtype2

http://host_name/path

PVCChangeDevice

PVCChangeDevice?

&logonId=id &logonPassword=pass

&URL=url

&devaddress1=
devaddr1

&devaddrtype1=
devaddrtp1

&devaddress2=
devaddr2

&devaddrtype2=
devaddrtp2
 Appendix B. PvC command reference 349

The user's PvC information type 2

Example
The command changes the PvC information of the logon ID "userid", and calls
the MallFrontView view command.

http://myhost/webapp/commerce/store/servlet/PVCChangeDevice?URL=MallFrontVi
ew&logonId=userid&logonPassword=password&devaddress1=userid@sample.ibm.com&
devaddrtype1=email

Error Views
� PVCChangeDeviceErrorView

Error Codes

� ECSecurityConstants.ERR_MISSING_LOGONID

logonId is not specified.

� ECSecurityConstants.ERR_MISSING_PASSWORD

logonPassword is not specified.

� ECConstants.EC_PVC_ADDRESS1

devaddrtype1 is specified, but devaddress1 is not specified.

� ECConstants.EC_PVC_ADDRTYPE1

devaddress1 is specified, but devaddrtype1 is not specified.

� ECConstants.EC_PVC_ADDRESS2

devaddrtype2 is specified, but devaddress2 is not specified.

� ECConstants.EC_PVC_ADDRTYPE2

devaddress2 is specified, but devaddress2 is not specified.

� ECConstants.EC_PVC_ALREADY_REGISTERED

When executed with registrationMode=2 in the configuration file, this device
has already been registered.

� ECSecurityConstants.ERR_INVALID_PASSWORD

logonPassword for this logonId is wrong.

� ECConstants.EC_PVC_LOGONSTATUS

The command has been executed in logon status.
350 Mobile Commerce Solutions Guide using WebSphere Commerce Suite V5.1

PVCBufferUrl
This command enables the buffering of input field data placed in multiple pages,
and then sends the data to one command. It temporarily saves parameters of the
destination URL in the WCS database PVCBUFFER table. Buffers that have not
been updated for some time will be made inaccessible by specifying a
bufferTimeout (set in minutes) in the configuration file.

When there is no specification of bufferTimeout, it will time out in five minutes.
When 0 is specified, it will not time out. In addition to buffering the function of
parameters, it enables the calling of different URLs for each button from forms
that cannot use JavaScript.

Behavior
1. Checks parameters.

2. For b_new, it creates a new record inside the PVCBUFFER and displays a
specified redirect view. For b_update or b_exec, it checks on buffertimeout
using the value of bufferTimeout in the XML configuration file. If records in
this table are not accessed for the period specified as bufferTimeout, the
user cannot access the buffered parameters any more. In this case, it
displays a specified error view.

3. In the case of b_update or b_exec, it adds or changes the parameter in
PVCBUFFER.

4. In the case of b_update, it displays specified redirect view.

5. In the case of b_exec, it checks whether it is an excluded command or a
password-locked command that is defined in the configuration file. If the
command is an excluded command, it displays an error view but does not
execute the command. In the case of a password-locked command,
ReEnterPassword form is displayed, checks the password and executes the
command. Then it starts up the command specified in the URL of
PVCBUFFER. It receives a view of the command result and specifies it on the
redirect view.

Commands executed internally
� Command specified in the URL in the case of b_new.

Tasks command executed internally
� None

Syntax
The syntax for the PVCBufferUrl command is shown in Figure B-4.
 Appendix B. PvC command reference 351

Figure B-4 PVCBufferUrl command syntax

Arguments
By choosing b_new, b_update or b_exec, some parameters become optional.

� http://host_name/path

The fully qualified name of the server and the configuration path.

� b_new

Creates a new parameter buffer.

� b_update

Updates the present parameter.

� b_exec

First it updates the present parameter. Next, it executes the targeted
command with the parameter buffer.button_iSame value of b_new, b_update,
and b_exec. The URL is called after handling the buffering.

� b_url

The URL of the targeted command when executing b_exec.

� b_errurl

The URL that is called when the PVCBufferUrl command finishes abnormally.

� b_no

Parameters that are not to be buffered within the specified parameter.

PVCBufferUrl

http://host_name/path/

PVCBufferUrl?

&b_new=button
&button=posturl

&b_url=url

&b_err=errurl

&b_no=no1,no2,no3

&parm1=value1¶m2=value2&...¶nN=valueN

&b_update=button

&b_exec=button
352 Mobile Commerce Solutions Guide using WebSphere Commerce Suite V5.1

Example
Creates a new buffer.

PVCBufferUrl?b_new=Next&Next=PVCBufferUrl2Form&b_err=PVCBufferUrlErrorView&
b_url=PVCRegistration&logonId=logon&b_no=b_new

Updates the contents of the buffer.

PVCBufferUrl?b_update=Next&Next=PVCBufferUrl3Form&b_err=PVCBufferUrlErrorVi
ew&p1=v1&p2=v2&p3=v3&p4=v4&b_no=p1,p3

Updates the contents of the buffer and executes the targeted command specified
in b_new.

PVCBufferUrl?b_exec=Execute&b_err=PVCBufferUrlErrorView&p5=v5

Error views
� PVCBufferUrlErrorView

Error codes
� ECConstants.EC_PVC_B_URL

b_url is not specified when specifying b_new.

� ECConstants.EC_PVC_B_ERR

b_errurl is not specified.

� ECConstants.EC_PVC_BUF_ACTION

Neither b_new, b_update, nor b_exec is specified.

� ECConstants.EC_PVC_BUF_TIMEOUT

A buffer timeout occurred in b_update and b_exec.

� ECSecurityConstants.ERR_INVALID_USERTYPE

The status is not logon when executing ReEnterPassword command.

� ECSecurityConstants.ERR_INVALID_PASSWORD

The password is wrong in ReEnterPassword command.

ReEnterPassword
This command adds the given reenterpw parameter to the specified URL and
redirects it. Usually the ReEnterPassword command is used by a JSP which is
assigned to the ReEnterPassowrdForm. The ReEnterPasswordForm is called
when executing the command without a password in password-locked status.
 Appendix B. PvC command reference 353

Behavior
1. Extracts reenterpw and URL parameter from the request.

2. Appends reenterpw to the value of the URL, used for location redirection.

3. Sends the redirection instructions to the client’s device.

Commands executed internally
� None

Tasks command executed internally
� None

Syntax
The syntax for the ReEnterPassword command is shown in Figure B-5.

Figure B-5 ReEnterPassword command syntax

Arguments
� url

The URL that needs password reentry

� password

The password of a logged-on user

Example
The command adds a reenterpw parameter of OrderProcess, and executes it.

http://myhost/webapp/commerce/store/servlet/ReEnterPassword?reenterpw=passw
d&URL=OrderProcess

Error views
Generic error page is shown when required parameters are missing.

Error codes
� None

http://host_name/path

ReEnterPassword

ReEnterPassword? &URL=url &reenterpw=password
354 Mobile Commerce Solutions Guide using WebSphere Commerce Suite V5.1

Appendix C. PvC data bean reference

The PvC data beans provide access to the WCS database for mobile device and
user information. The PvC data beans are used within JSPs. For each of the data
beans, we describe how to use it, provide the data available for the data bean
and provide a sample of how to implement the data bean within a JSP intended
to be used by a mobile device.

The appendix is organized into the following sections:

� PVCBufferDataBean

� UserPVCDeviceDataBean

C

© Copyright IBM Corp. 2001 355

PVCBufferDataBean
Using this data bean you can access parameters buffered by the PVCBufferUrl
command from the WCS database. This data bean can be accessed only by
registered users; otherwise this data bean is not populated.

How to use this data bean
To use this data bean, you don’t need to pass parameters to it. You only have to
invoke the DataBeanManager activate method, as shown in Example C-1.

Example: C-1 PVCBufferDataBean
PVCBufferDataBean buffer = new PVCBufferDataBean();
try {

com.ibm.commerce.beans.DataBeanManager.activate (buffer, request);

} catch (Exception e) {
strbuffer = "bad";

}

After the activate method has been invoked, data bean objects will have data
corresponding to the record in the PVCBUFFER table that is being used by the
current user. You can write code to access buffered parameters using the
getParameter(String) method, which returns the value of the parameter. This
methods allows you to access the value of the buffered parameters by name.

UserPVCDeviceDataBean
This data bean can retrieve information about the user device.

How to use this data bean
To use this data bean, you don’t need to pass parameters to it. You only have to
invoke the DataBeanManager activate method, as seen in Example C-2.

Example: C-2 DataBeanManager method
UserPVCDeviceDataBean pvcDeviceBean = new UserPVCDeviceDataBean();
try {

com.ibm.commerce.beans.DataBeanManager.activate (pvcDeviceBean, request);
} catch (Exception e) {

// Handle the exception here.
// If no object is found exception will be thrown.

}

356 Mobile Commerce Solutions Guide using WebSphere Commerce Suite V5.1

After the activate method has been invoked, data bean objects will have data
corresponding to the user device that is being used for access. Information can
be retrieved by using the methods as seen below.

Available methods
� public String getAddress1()

Returns the value of ADDRESS1 in the USERPVCDEV table.

� public String getAddress1Type()

Returns the value of ADDRESS1TYPE in the USERPVCDEV table.

� public String getAddress2()

Returns the value of ADDRESS2 in the USERPVCDEV table.

� public String getAddress2Type()

Returns the value of ADDRESS1 in the USERPVCDEV table.

� public String getDeviceFormatId()

Returns the value of DEVICEFMT_ID in the USERPVCDEV table.

� public Integer getDeviceFormatIdInEJBType()

Returns the device format ID in the Integer type.

� public String getDeviceIdentifier()

Returns DEVICEIDENTIFIER in the USERPVCDEV table. This data is the
same as the value of TERMINAL in the PVCSESSION table. This value is
the subscriber ID of the client’s device.

� public String getPreferredTimeout()

Returns the value of PREFERREDTIMEOUT in the USERPVCDEV table.
This value is copied from preferredTimeout in the XML configuration file
and used calculate logon timeout.

� public String getProtect()

Returns the value of PROTECT in the USERPVCDEV table. If the value is
1, it means that the client device needs to reenter the password to execute
the password-locked commands. Password-locked commands can be
specified in the XML configuration file.

� public Integer getProtectInEJBType()

Returns the value of PROTECT in the Integer type.

� public String getTransportId()

Returns the value of TRANSPORT_ID in the USERPVCDEV table.

� public Integer getTransportIdInEJBType()
 Appendix C. PvC data bean reference 357

Returns the value of TRANSPORT_ID in the Integer type.

� public String getUserId()

Returns the value of USERS_ID in USERPVCDEV table. This value is
the same as the ID of the user who is accessing the WCS server.

� public Long getUserIdInEJBType()

Returns the value of USERS_ID in the Long type.

� public String getUserPVCDeviceId()

Returns the value of USERPVCDEV_ID in the USERPVCDEV table. This
value is the primary key of the record in USERPVCDEV table. Value is
corresponding to the key for the client’s device that is being used for the
access.

� public Long getUserPVCDeviceIdInEJBType()

Returns the value of USERPVCDEV_ID in the Long type.
358 Mobile Commerce Solutions Guide using WebSphere Commerce Suite V5.1

Appendix D. PvC database tables and
content management
reference

The PvC database tables are used for content management, session control and
to store information about the user and device. This appendix provides a
description of each of the PvC database tables.

WebSphere Commerce Suite V5.1 provides the following PvC database tables:

� PVCDEVMDL

� PVCMDLSPEC

� PVCDEVSPEC

� PVCBinding

� PVCSession

� PVCBuffer

� Content management reference

D

© Copyright IBM Corp. 2001 359

PVCDEVMDL
This table stores model information for mobile devices and is used for content
management.

Each record in the PVCDEVMDL table corresponds to existing models of PvC
devices. A corresponding record of a certain model can be found in the table, by
name of the adapter and model name returned by the adapter. The server uses
this table to search for a suitable record in the PVCMDLSPEC table for the
device accessing the server. If a server finds a non-existing model, it will
automatically insert a new record into this table. By checking the contents of this
table, you can determine what kind of devices are accessing your Web site.

A blank model name has special meanings in this table. The relationship
between a blank model name record and a record in the PVCMDLSPEC table
becomes a common relationship for all models managed by the same adapter
which do not have specific model-spec mapping in the PVCMDLSPEC table.

If you want to categorize models into groups and want to prepare different JSPs
for each group, you need to add records for the target devices. Alternatively, by
accessing the WCS server using the mobile device, a new record will be added
to this table if it does not exist. To define new model information, you need to fill
the columns displayed in the PVCDEVMDL table.

For a working example of the configuration changes for content management,
refer to 12.1, “Content management configuration” on page 226.

Table D-1 PVCDEVMDL table

MODEL_ID Reference number of this record. This
must be unique. We recommend you use
a negative number when you manually
add new records to this table. Otherwise,
when you modify this table manually, you
will need to stop the WCS server. After you
have finished work on this table, you need
to update the value of COUNTER for the
PVCDEVMDL table in the KEYS table to
have a value larger than the maximum
number of MODEL_ID in the
PVCDEVMDL table.

MODELNAME Name of model. Specifies the model name
which the adapter returns.

SESSIONTYPE Name of the adapter which returns the
model name in the MODELNAME column.
360 Mobile Commerce Solutions Guide using WebSphere Commerce Suite V5.1

PVCMDLSPEC
This table stores specification information and a directory of the content. One
record can be shared by more than two devices.

This table shows specifications of devices and the location of the JSP root for
these devices. The WCS server changes the contents to be sent to the client’s
device by selecting a suitable record for the device from this table. The WCS
server not only selects suitable contents for the client device, but also sets
attributes to the JSP. Content switching is enabled by the value of the
CONTENTTYPE directory. If you want to prepare some types of JSP for the
same view, you need to create a record for each type. Or, if you want to set
various data to a JSP file which depends on the capability of the client, you also
need to create a record for each type.

Table D-2 PVCMDLSPEC table

VENDOR Name of the vendor of the model. This
column is prepared for your management
use. The WCS server does not use this
column at all. You can specify any desired
value. This column allows a NULL value.

DESCRIPTION Description of this record. This column is
prepared for management use. WCS
server does not use this column at all. You
can specify any desired value. This
column allows a NULL value.

SPEC_ID Reference number of this record. This
must be unique.

SPECNAME Name of the definition. This column is
prepared for management use. The WCS
server does not use this column at all. You
can specify any desired value.

SESSIONTYPE Name of the adapter which primarily uses
this configuration.

MAXCONTENTLENGTH Maximum length of content which the
browser can receive. You can specify any
desired value for this column to use this
data from your JSP file. The value of this
field is accessible from the JSP.
 Appendix D. PvC database tables and content management reference 361

MAXURLLENGTH Maximum length of the URL which the
browser can access. You can specify any
desired value for this column to use this
data from your JSP file. The value of this
field is accessible from the JSP.

LCDWIDTH Width of the LCD panel on the device. You
can specify any desired value for this
column to use this data from your JSP file.
The value of this field is accessible from
the JSP.

LCDHEIGHT Height of the LCD panel on the device.
You can specify any desired value for this
column to use this data from your JSP file.
The value of this field is accessible from
the JSP.

LCDCOLORS Number of colors that the LCD panel on
the device can display. You can specify
any desired value for this column to use
this data from your JSP file. The value of
this field is accessible from the JSP.

LCDMONOCHROME Indicates whether the LCD panel on the
device is monochrome or not. You can
specify any desired value for this column
to use this data from your JSP file. The
value of this field is accessible from the
JSP.

IMAGEFORMAT Available format for image. You can
specify any desired value for this column
to use this data from your JSP file. The
value of this field is accessible from the
JSP.

SOUNDFORMAT Available format for sound. You can
specify any desired value for this
column to use this data from your
JSP file. The value of this field is
accessible from the JSP.

DOCUMENTFORMAT Available format for document. You
can specify any desired value for this
column to use this data from your
JSP file. The value of this field is
accessible from the JSP.
362 Mobile Commerce Solutions Guide using WebSphere Commerce Suite V5.1

PVCDEVSPEC
This table stores the relationship between model_id and spec_id. By using this
table, device models which have similar specifications can be categorized to one
record in the PVCDEVSPEC table.

In addition to the tables used for content management configuration, WCS V5.1
includes the following PvC database tables used for session management and
URL buffering. These tables do not need to be configured.

Table D-3 PVCDEVSPEC table

DOCUMENTVERSION Available version of the document format.
You can specify any desired value for this
column to use this data from your JSP file.
The value of this field is accessible from
the JSP.

CONTENTDIR Name of the directory which contains
contents for the device. The value of this
column will be used by the content
switching function and the value of the
column will be inserted into the JSP file
search path when the view file is
processed. The value of this field is
accessible from the JSP.

DESCRIPTION Description of this record. This column is
prepared for your management use. The
WCS server does not use this column at
all. You can specify any desired value.
This column allows a NULL value.

MDLSPC_ID Reference number of this record. This
must be unique.

STOREENT_ID Reference number of the store. Setting the
value to 0, is used when the relationship is
site wide. Other values mean that the
relationship is unique to the store.

MODEL_ID Reference number of the model.

SPEC_ID Reference number of the spec.
 Appendix D. PvC database tables and content management reference 363

PVCBinding
This table is used for session management and does not need to be configured.

PVCSession
This table is used for session management and does not need to be configured.

PVCBuffer
This table is used for stored buffered data used by the PVCBufferUrl command.

Content management reference
This section provides reference information necessary for content management
configuration.

PVCDEVMLD table: define adapter default model
We need to configure the necessary settings for the PVCDEVMDL table for all
devices whose sessions are managed by the PvC adapter.

� We define all mobile devices which are detected of specific browser to the
content directory of JSP files separate from PC browser client JSPs.

� To represent adapter common settings, we need to prepare one record which
has a blank MODELNAME.

� The SESSIONTYPE of the record should be the same as the adapter name.
From now on, we will call the record which has a blank MODELNAME and
SESSIONTYPE the adapter default model.

� When a model which is not listed in PVCDEVMDL is found, the server will
automatically insert a new record into PVCDEVMDL.

� If there is no specific model-spec mapping in the PVCMDLSPEC table, the
adapter default model will be used to search for a suitable record in
PVCDEVSPEC table.

Example D-1 displays SQL sample for the adapter default model for the
UPLinkGatewayAdapter to be created in the PVCDEVMDL table.
364 Mobile Commerce Solutions Guide using WebSphere Commerce Suite V5.1

Example: D-1 Sample - sql to update the PVCDEVMDL table
insert into PVCDEVMDL (

MODEL_ID,
MODELNAME,
SESSIONTYPE,
VENDOR,
DESCRIPTION

) values(
1,
'',
'UPG',
'Default',
'Default model for UPLinkGatewayAdapter'

);

PVCDEVSPEC table: define minimum spec and JSP root
By configuring the PVCDEVSPEC table, we define the JSP root directory and
minimum spec information for the PvC adapter mobile devices.

� The CONTENTDIR is the key column in this table.

� The server changes the search path of JSPs which will be processed as a
result of command execution by the value in this column.

� From the JSP file, the value of the selected record in the PVCDEVSPEC table
is accessible through an object of DeviceInfo class which is set as an attribute
of the HTTP request for the JSP file.

� Replace the value of SPEC_ID with a value which is not a duplicate of an
existing record.

� Specify the adapter name in the SESSIONTYPE column.

� For other fields, you can set whatever you want. These values will be
accessible through the DeviceInfo object.

Example D-2 provides a sample of the SQL statements required to insert the
adapter default setting into the PVCDEVSPEC table. For example, the sample
sets UPG for CONTENTDIR.

Example: D-2 Sample - sql to update PVCDEVSPEC table
insert into PVCDEVSPEC (

SPEC_ID,
SPECNAME,

Note: Before you run this script on your system, check to see if you already
have records in this table.
 Appendix D. PvC database tables and content management reference 365

SESSIONTYPE,
MAXCONTENTLENGTH,
MAXURLLENGTH,
LCDWIDTH,
LCDHEIGHT,
LCDCOLORS,
LCDMONOCHROME,
IMAGEFORMAT,
SOUNDFORMAT,
DOCUMENTFORMAT,
DOCUMENTVERSION,
CONTENTDIR,
DESCRIPTION

) VALUES (
1,
'UPG default',
'UPG',
4096,
256,
120,
80,
2,
'1',
'bmp',
'',
'HDML',
'1.0',
'UPG',
'minumum spec'

);

PVCMDLSPEC table: PVCDEVMDL and PVCDEVSPEC relationship
This table defines the relationship between PVCDEVMDL and PVCDEVSPEC.
We set up this relationship in order for all devices which come from the adapter
to share the same setting for the content JSP directory and other information in
the PVCDEVSPEC table.

Example D-3 provides a sample of the SQL required to update the
PVCMDLSPEC table to define the relationship between the adapter default
model and the record in PVCDEVSPEC table.

Example: D-3 Sample - sql to update the PVCMDLSPEC table
insert into PVCMDLSPEC (

MDLSPC_ID,
STOREENT_ID,
MODEL_ID,
366 Mobile Commerce Solutions Guide using WebSphere Commerce Suite V5.1

SPEC_ID
) values (

1,
0,
1,
1

);

Once these records are inserted into the tables, JSPs used for connections
which are handled by the adapter whose name is UPG will be picked up from the
UPG directory under the actual document root directory.
 Appendix D. PvC database tables and content management reference 367

368 Mobile Commerce Solutions Guide using WebSphere Commerce Suite V5.1

Appendix E. Additional material

This redbook refers to additional material that can be downloaded from the
Internet as described below.

Locating the Web material
The Web material associated with this redbook is available in softcopy on the
Internet from the IBM Redbooks Web server. Point your Web browser to:

ftp://www.redbooks.ibm.com/redbooks/SG246171

Alternatively, you can go to the IBM Redbooks Web site at:

ibm.com/redbooks

Select the Additional materials and open the directory that corresponds to the
redbook form number, SG246171.

Using the Web material
The additional Web material that accompanies this redbook includes the
following files:

File name Description
SG246171.zip PvC Fashion sample store and source code samples

E

© Copyright IBM Corp. 2001 369

ftp://www.redbooks.ibm.com/redbooks/
http://www.redbooks.ibm.com/
http://www.ibm.com/redbooks/
http://www.ibm.com/redbooks/

System requirements for downloading the Web material
The following system configuration is recommended:

Hard disk space: 10 MB minimum
Operating System: Windows NT or Windows 2000
Processor: 733 MHz or higher
Memory: 512 MB or higher

How to use the Web material
Create a subdirectory (folder) on your workstation, and unzip the contents of the
Web material zip file into this folder. The contents of the unzipped file are used in
many of the examples throughout this redbook.

Refer to Chapter 9, “m-commerce sample store and sample code” on page 179
for instructions on setting up the sample store.
370 Mobile Commerce Solutions Guide using WebSphere Commerce Suite V5.1

Related publications

The publications listed in this section are considered particularly suitable for a
more detailed discussion of the topics covered in this redbook.

IBM Redbooks
For information on ordering these publications see “How to get IBM Redbooks”
on page 373.

� WebSphere Commerce Suite V5.1 Handbook, SG24-6167 redpiece available
at:

http://www.ibm.com/redbooks (expected redbook publish date August 2001)

� WebSphere Commerce Suite V5.1 Customization and Transition Guide,
SG24-6174 redpiece available at:

http://www.ibm.com/redbooks (expected redbook publish date July 2001)

� WebSphere V3.5 Handbook, SG24-6161

� e-Commerce Patterns using WebSphere Commerce Suite, Patterns for
e-business Series, SG24-6156

� Patterns for e-business: User-to-Business Patterns for Topology 1 and 2 using
WebSphere Advanced Edition, SG24-5864

� An Introduction to IBM Everyplace Suite Version 1.1, Accessing Web and
Enterprise Applications, SG24-5995

� IBM WebSphere Transcoding Publisher V1.1, Extending Web Applications to
the Pervasive World, SG24-5965

Other resources
These publications are also relevant as further information sources:

� Programmer’s Guide, IBM WebSphere Commerce Suite V5.1, product guide
found on WebSphere Commerce Suite V5.1 CD.

� Fundamentals, IBM WebSphere Commerce Suite V5.1, product guide found
on WebSphere Commerce Suite V5.1 CD.

� Arehart, Charles, et al, Professional WAP, Wrox, July 2000, ISBN
1861004044
© Copyright IBM Corp. 2001 371

� Dornan, Andy, The Essential Guide to Wireless Communications
Applications: From Cellular Systems to WAP and M-Commerce, Prentice Hall
PTR, November 2000, ISBN 0130317160

� Nokia WAP Toolkit 2.1 User’s Guide, found at:

http://www.forum.nokia.com/wapforum/main/1,6668,1_1_50_20,00.html

� Nokia WAP Toolkit 2.1 Developer’s Guide, found at:

http://www.forum.nokia.com/wapforum/main/1,6668,1_1_50_20,00.html

� UP.SDK 4.1 Developer’s Guide, product documentation is provided with the
software developer’s kit (SDK) found at:

http://developer.phone.com/download/index.html#sdk

� UP.SDK 3.2 for WML Developer’s Guide, product documentation is provided
with the software developer’s kit (SDK) found at:

http://developer.phone.com/download/index.html#sdk

� Palm OS Companion and Reference, found at:

http://www.palmos.com/dev/tech/docs/

� Palm OS Development Tools Guide, found at:

http://www.palmos.com/dev/tech/docs/

Referenced Web sites
These Web sites are also relevant as further information sources:

� http://http://www.forum.nokia.com/main/1,,1_1,00.html/ Nokia WAP
developers forum.

� http://developer.phone.com/ Openwave developer program.

� http://www.palmos.com/dev/tech/tools/ Palm OS development tools.

� http://www.palmos.com/dev/tech/docs/ Palm OS documentation.

� http://www.nttdocomo.com/i/ NTT DoCoMo official site for i-mode.

� http://www.tca.or.jp/index-e.html/ Total number of subscribers
for service providers in Japan.

� http://www.au.kddi.com/ezweb/contents/index.html/ KDDI eZweb home
page, service provider in Japan.

� http://www.j-sky.j-phone.com/ J-Sky home page, J-phone service in
Japan.

� http://www.umts-forum.org/ UMTS forum.
372 Mobile Commerce Solutions Guide using WebSphere Commerce Suite V5.1372 Mobile Commerce Solutions Guide using WebSphere Commerce Suite V5.1

� http://java.sun.com/j2me/ General information on Java 2 Micro
Edition (J2ME).

� http://www.vxml.org/ General information on voice xml.

� http://www.ibm.com/pvc/tech/library.shtml/ IBM Pervasive
Computing (PvC) technical library.

� http://www.ibm.com/pvc/products/mobile_connect/index.shtml/ IBM
Mobile Connect home page.

� http://www.ibm.com/software/data/db2/everyplace/ DB2 Everyplace
home page.

� http://www.ibm.com/software/ts/mqseries/everyplace/ MQSeries
Everyplace home page.

� http://developer.phone.com/resources/markup.html/ General
information about selecting markup languages.

How to get IBM Redbooks
Search for additional Redbooks or redpieces, view, download, or order hardcopy
from the Redbooks Web Site

ibm.com/redbooks

Also download additional materials (code samples or diskette/CD-ROM images)
from this Redbooks site.

Redpieces are Redbooks in progress; not all Redbooks become redpieces and
sometimes just a few chapters will be published this way. The intent is to get the
information out much quicker than the formal publishing process allows.

IBM Redbooks collections
Redbooks are also available on CD-ROMs. Click the CD-ROMs button on the
Redbooks Web Site for information about all the CD-ROMs offered, updates and
formats.
 Related publications 373

http://www.redbooks.ibm.com/
http://www.ibm.com/redbooks/
http://www.ibm.com/redbooks/

374 Mobile Commerce Solutions Guide using WebSphere Commerce Suite V5.1374 Mobile Commerce Solutions Guide using WebSphere Commerce Suite V5.1

Special notices

References in this publication to IBM products, programs or services do not imply
that IBM intends to make these available in all countries in which IBM operates.
Any reference to an IBM product, program, or service is not intended to state or
imply that only IBM's product, program, or service may be used. Any functionally
equivalent program that does not infringe any of IBM's intellectual property rights
may be used instead of the IBM product, program or service.

Information in this book was developed in conjunction with use of the equipment
specified, and is limited in application to those specific hardware and software
products and levels.

IBM may have patents or pending patent applications covering subject matter in
this document. The furnishing of this document does not give you any license to
these patents. You can send license inquiries, in writing, to the IBM Director of
Licensing, IBM Corporation, North Castle Drive, Armonk, NY 10504-1785.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact IBM Corporation, Dept.
600A, Mail Drop 1329, Somers, NY 10589 USA.
Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The information contained in this document has not been submitted to any formal
IBM test and is distributed AS IS. The use of this information or the
implementation of any of these techniques is a customer responsibility and
depends on the customer's ability to evaluate and integrate them into the
customer's operational environment. While each item may have been reviewed
by IBM for accuracy in a specific situation, there is no guarantee that the same or
similar results will be obtained elsewhere. Customers attempting to adapt these
techniques to their own environments do so at their own risk.

Any pointers in this publication to external Web sites are provided for
convenience only and do not in any manner serve as an endorsement of these
Web sites.

The following terms are trademarks of other companies:
© Copyright IBM Corp. 2001 375

Tivoli, Manage. Anything. Anywhere.,The Power To Manage., Anything.
Anywhere.,TME, NetView, Cross-Site, Tivoli Ready, Tivoli Certified, Planet Tivoli,
and Tivoli Enterprise are trademarks or registered trademarks of Tivoli Systems
Inc., an IBM company, in the United States, other countries, or both. In
Denmark, Tivoli is a trademark licensed from Kjøbenhavns Sommer - Tivoli A/S.

C-bus is a trademark of Corollary, Inc. in the United States and/or other
countries.

Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Sun Microsystems, Inc. in the United States and/or other
countries.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of
Microsoft Corporation in the United States and/or other countries.

PC Direct is a trademark of Ziff Communications Company in the United States
and/or other countries and is used by IBM Corporation under license.

ActionMedia, LANDesk, MMX, Pentium and ProShare are trademarks of Intel
Corporation in the United States and/or other countries.

UNIX is a registered trademark in the United States and other countries licensed
exclusively through The Open Group.

SET, SET Secure Electronic Transaction, and the SET Logo are trademarks
owned by SET Secure Electronic Transaction LLC.

Other company, product, and service names may be trademarks or service
marks of others.
376 Mobile Commerce Solutions Guide using WebSphere Commerce Suite V5.1

Glossary

AMPS. Advanced Mobile Phone Services. A
common analog cellular telephone service
standard.

Applet. A Java applet is a small application
program that is downloaded to and executed on
a Web browser or network computer. A Java
applet typically performs the type of operations
that client code would perform in a client/server
architecture. It edits input, controls the screen,
and communicates transactions to a server,
which in turn performs the data or database
operations.

API. Application Program Interface.

Bean Managed Persistence. Bean Managed
Persistence (BMP) is a term used to describe a
type of entity Enterprise JavaBean where the
bean developer specifies how the bean is to be
persisted to a database by writing Java code in
the appropriate methods to perform the tasks
required.

Bluetooth. A short range (10 to 100 m.)
wireless radio transport.

Cache. A cache stores cachable responses in
order to reduce the response time and network
bandwidth consumption on future, equivalent
requests. Any client or server may include a
cache, though a cache cannot be used by a
server while it is acting as a tunnel.

Cache server. Some networks use a cache
server to store Web pages and other data, so
that if the same pages are requested frequently,
they can be served from the cache rather than
repeatedly retrieved from external Web servers.
The external cache is an HTTP proxy such as
IBM Web Traffic Express. IBM WebSphere
Transcoding Publisher can use it to store and
retrieve transcoded Web pages and
intermediate results to avoid repeating the
transcoding of frequently accessed pages,
delivering better performance.
© Copyright IBM Corp. 2001
CDMA. Code Division Multiple Access. A
second generation digital cellular network
standard.

CDPD. Cellular Digital Packet Data. Designed
to work as an overlay on analog cellular
networks.

CGI. Common Gateway Interface. A standard
way of communicating between different
processes.

Cell phone. CELLular telePHONE is the first
ubiquitous wireless telephone. Originally analog,
all new cellular systems are digital. This has
enabled the cell phone to turn into a smart phone
that has access to the Internet.

Clustering. Clustering is a technique used to
provide scalability through the use of multiple
copies of an application on the same machine or
on separate machines. Careful management of
the different applications is necessary to ensure
that they work together effectively. WebSphere
has limited clustering support in Version 2.x and
more support in Version 3.0.

cHTML. Compact HTML is a more efficient
variation of HTML specifically designed for use by
the i-mode wireless service.

Container Managed Persistence. Container
Managed Persistence (CMP) is a term used to
describe a type of entity Enterprise JavaBean
where the code to persist the bean to a
database is generated at deployment time by
the EJB container.

ESS. Enterprise Solution Structure defines a set
of technical reference architectures that are
included in SIMethod.

GSM. Global System for Mobile Communications
is a digital cellular phone technology based on
TDMA that is the predominant system in Europe,
but is also used around the world. Developed in
the 1980s, GSM was first deployed in seven
 377

European countries in 1992. Operating in the 900
MHz and 1.8 GHz bands in Europe and the 1.9 GHz
PCS band in the U.S., GSM defines the entire
cellular system, not just the air interface (TDMA,
CDMA, etc.). As of 2000, there were more than 250
million GSM users, which is more than half of the
world's mobile phone population.

e-business. e-business is a term used by IBM to
describe the use of Internet technologies to
transform business processes. What this means in
practice is using Internet clients such as Web
browsers as front ends for applications that access
back-end legacy systems to allow greater access.
See http://www.software.ibm.com/ebusiness for
more information.

Enterprise Java Beans. Despite the name,
Enterprise Java Beans (EJBs) are not Java
Beans. Enterprise Java Beans are server-side
Java components that are designed for
distributed environments. They do not exist in
isolation but rather are deployed in containers
that provide services such as security, naming
and directory services, and persistent storage.
WebSphere Application Server is just such a
container. See http://java.sun.com/products/ejb/
for more information.

EPOC. A 32-bit operating system for handheld
devices from Symbian Ltd. Used in Psion and
other handheld computers, it supports Java
applications, e-mail, fax, infrared exchange, data
synchronization with PCs and includes a suite of
PIM and productivity applications. See
http://(www.symbian.com for more information.

Gateway. A server which acts as an intermediary
for some other server. Unlike a proxy, a gateway
receives requests as if it were the origin server
for the requested resource; the requesting client
may not be aware that it is communicating with a
gateway. Gateways are often used as server-side
portals through network firewalls and as protocol
translators for access to resources stored on
non-HTTP systems.

GSM. Global System for Mobile Communications.
Widely used in Europe.

GPRS. General Packet Radio Service or GPRS is
an enhancement to the GSM mobile
communications system that supports data
packets. GPRS enables continuous flow of IP data
packets over the system for such applications as
Web browsing and file transfer. GPRS differs from
GSM's short messaging service (GSM-SMS) which
is limited to messages of 160 bytes in length.

HTML. Hyper Text Markup Language is a
document format used on the World Wide Web.
Web pages are built with HTML tags, or codes,
embedded in the text. HTML defines the page
layout, fonts and graphic elements as well as the
hypertext links to other documents on the Web.
Each link contains the URL, or address, of a Web
page residing on the same server or any server
worldwide, hence the term “World Wide” Web.

HDML. Handheld Device Markup Language is a
specialized version of HTML designed to enable
wireless pagers, cell phones, mobile phones and
other handheld devices to obtain information from
Web pages. HDML was developed by Phone.com
(formerly Unwired Planet) before the WAP
specification was standardized. It is a subset of
WAP with some features that were not included in
WAP. AT&T Wireless launched the first
HDML-based service in 1996.

HTTP proxy. An HTTP proxy is a program that
acts as an intermediary between a client and a
server. It receives requests from clients, and
forwards those requests to the intended servers.
The responses pass back through it in the same
way. Thus, a proxy has functions of both a client
and a server. Proxies are commonly used in
firewalls, caching and transcoding machines.

IBM WebSphere Transcoding Publisher. IBM
WebSphere Transcoding Publisher is network
software that modifies content presented to users
based on the information associated with the
request, such as device constraints, network
constraints, user preferences, and organizational
policies. Transforming content can reduce or
eliminate the need to maintain multiple versions
of data or applications for different device types
and network service levels.

Image Transcoder. Image Transcoder is a
transcoder that can scale, modify quality, and
378 Mobile Commerce Solutions Guide using WebSphere Commerce Suite V5.1

modify color levels in JPEG and GIF images.
Additionally, the Image Transcoder can convert
JPEGs to GIFs for devices that do not render
JPEGs.

i-mode. A packet-based information service for
mobile phones from NTT DoCoMo (Japan). i-mode
provides Web browsing, e-mail, a calendar, chat
rooms, games, and customized news. It was the
first smart phone system for Web browsing and its
popularity grew very quickly after its introduction in
1999. i-mode is a proprietary system that uses a
subset of HTML, known as cHTML, in contrast to
the global WAP standard that uses a variation of
HTML, known as WML. The i-mode transfer rate is
9600 bps, but is expected to increase to 384 kbps in
2001, using W-CDMA.

IrDA. The Infrared Data Association develops
standards for wireless, infrared transmission
systems between computers. With IrDA ports, a
laptop or PDA can exchange data with a desktop
computer or use a printer without a cable
connection. IrDA requires line-of-sight transmission
like a TV remote control. IrDA products began to
appear in 1995. See http://www.irda.org for more
information.

JavaBeans. JavaBeans are Java components
designed to be used on client systems. They are
Java classes that conform to certain coding
standards. They can be described in terms of
their properties, methods and events. JavaBeans
may be packaged with a special descriptor class
called a BeanInfo class and special property
editor classes in a JAR file. Java Beans may or
may not be visual components. See
http://www.javasoft.com/beans/docs for more
information.

JavaServer Pages (JSP) . JSPs provide a
simplified, fast way to create dynamic Web
content. JSP technology enables rapid
development of Web-based applications that are
server and platform independent. JavaServer
Pages are compiled into servlets before
deployment.

JDBC. JDBC is a Java API that allows Java
programs to communicate with different database
management systems in a platform-independent

manner. Database vendors provide JDBC drivers
with their platforms that implement the API for
their database, allowing the Java developer to
write applications to a consistent API no matter
which database is used.

JNDI. Java Naming and Directory Interface
(JNDI) is an API that allows Java programs to
interface and query naming and directory
services in order to find information about
network resources. JNDI is used in WebSphere
to provide a directory of Enterprise Java Beans.
See http://java.sun.com/products/jndi/index.html
for more information.

JSP. See JavaServer Pages.

m-commerce. Mobile commerce refers to the use
of mobile devices to partially or completely perform
a transaction electronically from a commerce Web
site for the exchange of goods or services for
monetary consideration. Simply put, m-commerce
is electronic commerce using a mobile device such
as a mobile phone or PDA.

Mobile device. A mobile device is a portable,
generally small, wireless device that can be used to
access the Internet via a browser. It includes a wide
range of capability and functionality. Mobile devices
include mobile phones, wireless PDAs, and
wireless laptops.

Mobile phone. A mobile phone is a wireless smart
phone that has a microbrowser to access Internet
content. Other names for a mobile phone include
cell phone and wireless phone.

MQe. See MQ Everyplace.

MQ Everyplace. It is designed to satisfy the
messaging needs of lightweight devices and the
requirements that arise from the use of fragile
communication networks.

PDA. Personal Digital Assistant.
 Glossary 379

PCS. Personal Communications Services (PCS)
are wireless services that emerged after the U.S.
Government auctioned commercial licenses in
1994 and 1995. This radio spectrum in the 1.8-2
GHz range is typically used for digital cellular
transmission that competes with analog and digital
services in the 800 MHz and 900 MHz bands.

Persistence. Persistence is a term used to
describe the storage of objects in a database to
allow them to persist over time rather than being
destroyed when the application containing them
terminates. Enterprise Java Bean containers
such as WebSphere provide persistence services
for EJBs deployed within them.

PKI. Public Key Infrastructure.

PvC. Popular short form within IBM for pervasive
computing.

Proxy. Transcoding Publisher connects through a
proxy server that is configured with a firewall to
manage network traffic and to protect your
network from outside intrusion.

Push. Push refers to a technology that sends
data to a program without the program's request
(unsolicited).

RMI. Remote Method Invocation (RMI) is a
lightweight distributed object protocol that allows
Java objects to call each other across a network.
RMI is part of the core Java specification. See
http://java.sun.com/products/jdk/rmi/index.html for
more information.

Scalability. Scalability is an abstract attribute of
software that refers to its ability to handle
increased data throughput without modification.
WebSphere handles scalability by allowing
execution on a variety of hardware platforms that
allow increased performance and clustering.

Servlets. Servlets are Java classes that run on
Web servers to provide dynamic HTML content to
clients. The servlets take as input the HTTP
request from the client and output dynamically
generated HTML. For more information, see
http://www.software.ibm.com/ebusiness/pm.html#Servlet
s.

SMS. Short Message Service or SMS is text
message service that enables short messages of
generally no more than 140-160 characters in
length to be sent and transmitted from a cellphone.
SMS is supported by GSM and other mobile
communications systems. Unlike paging, short
messages are stored and forwarded in SMS
centers.

SOCKS. A SOCKS server is a proxy server that
uses a special protocol, sockets, to forward
requests. Transcoding Publisher connects
through a SOCKS server that is configured with a
firewall to manage network traffic and to protect
your network from outside intrusion (it supports
Versions 4 and 5 SOCKS servers).

SSL. Secure Sockets Layer. A secure protocol
used for authentication and encryption. SSL can
be used over HTTP, RMI, Telnet and other
protocols.

Stand-alone Network Proxy. When the IBM
WebSphere Transcoding Publisher is used as a
normal proxy in a browser, the data that flows
from the original source will be transcoded in the
proxy according to the device and network profile
needed.

Stylesheet Transcoder. Stylesheet Transcoder
is a transcoder that selects the style sheet and
applies it to an input Extensible Markup
Language (XML) document to produce a version
that is appropriate for the target device.

TCP/IP. TCP/IP is a set of protocols developed to
allow cooperating computers to share resources
across a network.

TDMA. Time Division Multiple Access. A second-
generation digital cellular network standard.

Text Transcoder. Text Transcoder is a
transcoder that can modify elements of a text
document based on device, network and,
potentially, user preference information. The
primary use of this Text Transcoder is to modify
Hypertext Markup Language (HTML) documents
to remove unsupported elements, reduce space
usage, replace features such as images or
frames with links, and otherwise tailor documents
to allow for their better display on devices with
screen limitations.
380 Mobile Commerce Solutions Guide using WebSphere Commerce Suite V5.1

TLS. Transport Layer Security. The standard
(IEFT) security protocol on the Internet. It is
expected to eventually supersede SSL.

Transcoder. Transcoder is a program that
modifies the content of a document.

Transcoding. Transcoding is a new technology
that gives you the ability to make Web-based
information available on handheld and other new
type devices economically and efficiently, or on
the slow network connections like a dial up
modem connection. With transcoding, users
receive information (text and images) tailored to
the capabilities of the devices they are using and
also tailored to the capacity of the network being
used.

Transcoding is also the process whereby the
MEGs modify the request and generate the
original resource and all of the document (or
resource) editing (or transcoding).

Tunnel. A tunnel is an intermediary program
which acts as a blind relay between two
connections.

UMTS. Universal Mobile Telecommunications
System is the European implementation of the 3G
wireless phone system. UMTS, which is part of
IMT-2000, provides service in the 2 GHz band and
offers global roaming and personalized features.
Designed as an evolutionary system for GSM
network operators, multimedia data rates up to 2
Mbps are expected using the W-CDMA technology.
In the meantime, GPRS and EDGE are interim
steps that will speed up wireless data for GSM. For
more information, visit http://www.umts-forum.org.

URL. Uniform Resource Locator. The URL
specifies the Internet address of a file stored on a
host computer connected to the Internet.

VXML. Voice XML is an extension of XML that
defines voice segments and enables access to the
Internet via telephones and other voice-activated
devices. AT&T, Lucent and Motorola created the
Voice XML Forum to support this development. For
more information, visit http://www.vxml.org.

Voice XML. See VXML.

WAP. Wireless Application Protocol. The point of
this standard is to serve Internet contents and
Internet services to wireless clients and WAP
devices, such as mobile phones and terminals. The
authoritative source for WAP is
http://www.wapforum.org.

WAS. IBM WebSphere Application Server.

Web Application Servers. A Web application
server is a software program designed to manage
applications at the second tier of three-tier
computing, that is, the business logic
components. A Web application server manages
applications that use data from back-end
systems, such as databases and transaction
systems, and provides output to a Web browser
on a client. For more information see
http://www.software.ibm.com/ebusiness/appsrvsw.html

Web browser. To access the World Wide Web,
you must use a Web browser. A browser is a
software program that allows users to access and
navigate the World Wide Web.

Wireless network. Used to transmit data
between wireless devices such as a mobile phone,
PDA, or personal computer without the use of a
physical cable or wire.

Wireless service provider. An organization that
provides wireless services, including cellular
services, satellite services and ISPs.

Wireless LAN. A wireless LAN is a local area
network that transmits over the air, typically in an
unlicensed frequency such as the 2.4 GHz band. A
wireless LAN does not require lining up devices for
line of sight transmission, as IrDA does. Wireless
access points (base stations) are connected to an
Ethernet hub or server and transmit a radio
frequency over an area of several hundred to a
1000 feet, which can penetrate walls and other
non-metal barriers. Roaming users can be handed
off from one access point to another like a cellular
phone system. Laptops use wireless modems that
plug into an existing Ethernet port or that are self
contained on PC cards, while stand-alone desktops
and servers use plug-in cards (ISA, PCI, etc.).

WLP. A modified version of the Point-to-Point
Protocol (PPP) used by the IBM Wireless
 Glossary 381

Gateway to support wireless (non-WAP) client
devices.

WML. Wireless Markup Language. XML-based,
WML tags are used to mark up content in decks
for WAP-enabled devices.

WTE. Web Traffic Express. An IBM caching
proxy.

WTLS. Wireless Transport Layer Security. A
simplified version of TLS designed specifically for
WAP devices. It uses mini-certificates.

WTP. WebSphere Transcoding Publisher.

WWW. The World Wide Web (known as the Web)
is a system of Internet servers that supports
hypertext to access several Internet protocols on
a single interface.

X.509. A digital certificate specification used by
SSL and TLS. Mini-certificates are used by
WTLS.

XML. XML, or Extensible Markup Language, is a
platform-independent and
application-independent way of describing data
using tags. XML (a subset of SGML) is similar to
HTML in that it uses tags to describe document
elements, but different in that the tags describe
the structure of the data rather than how the data
is to be presented to a client. XML has the ability
to allow data providers to define new tags as
needed to better describe the data domain being
represented. For more information see
http://www.software.ibm.com/xml.

XSL. Extensible Style Language. XSL
stylesheets are documents that describe a
mapping between XML documents and visual
data that can be presented to a client in a
browser or mini-browser.
382 Mobile Commerce Solutions Guide using WebSphere Commerce Suite V5.1

Index

Numerics
3G 39

IMT-2000 39
4thpass Kbrowser 60
503i 49

A
Advanced Mobile Phone System

See AMPS
AMPS 20, 38
AvantGo AvantGo 59

B
B2B 5
B2C 5
Bluetooth 69

C
Casio E-125 58
cdma2000 40
cdmaOne 40
CDPD 38

network architecture 38
Cells 21
Cellular Digital Packet Data

See CDPD
checkDeviceFormat 88, 213

creating the method 215
description 213

cHTML 66
Circuit-switched networks 22
Command registration

WCS command 263
Compact HTML

See cHTML
Compaq iPac 58
Content 64

auto selection 242
deployment 238
managed by adapter 242
managed by model 242

Content development 233
© Copyright IBM Corp. 2001
advanced example 238
Content management 226

auto content selection 229
configuration 89, 231
define the adapter default model 228
deploying multiple adapters 222
description 227
PvC database tables 226
reference information 359

Cookies 73
non-secure session cookie 73
secure authentication cookie 73

Creating
a PvC adapter 205
custom PvC command 255
device-specific content JSPs 225

CyberCash 137

D
DB2 Everyplace 126
Deploy sample store 183
Deployment

content 238
deploy the PvC adapter 88
deploy the PvC adapter JAR 88
PvC custom command 262

Development environment 160
high level install steps 162

Device control 86, 94
browser 95
markup language 94
mobile devices 94

Device detection 208
Device registration form 235
Device-specific content JSPs 232
Divided large form 236
Download the additional materials 180
Dual-Slot phones 132

E
EdgeMatrix WAPman 60
EPOC 62
 383

Ericsson R380 58
Nokia 9210 Communicator 58

Ericcson
R380 273

Ericsson 40
R380 58

Everyplace Wireless Gateway 123
architecture 124
install 172
m-commerce considerations 125
NAS/RAS 170
overview 124

EWG
See Everyplace Wireless Gateway

G
General Packet Radio Service

See GPRS
getDeviceMode 88
getDeviceModel 216

creating the method 216
description 216

getTerminalId 88, 217
description 217
naming the adapter 218

GPRS 32
border gateway (BG) 35
class of device

class A 35
class B 35
class C 35

gateway GPRS support nodes (GGSN) 35
network infrastructure 34
packet control unit (PCU) 34
serving GPRS support nodes (SGSN) 34

GSM 24
architecture 28
authentication center (AuC) 30
authentication protocol 30
base station controller (BSC) 29
base transceiver station (BTS) 29
encryption key 31
equipment identity register (EIR) 30
gateway MSC 29
home location register (HLR) 29
mobile switching center (MSC) 29
network management center (NMC) 30
operations management center (OMC) 30

SIM 25
subscriber 27
visitor location register (VLR) 29

H
Handheld Device Markup Language

See HDML
Handover 21
Handspring Blazer 59
Handspring Visor 58
HDML 65

content management script 269
sample code 269

HDML toolkits 266
HP Jornada 58
HTML 64
HTTP protocol 41
HyperText Markup Language

See HTML

I
IBM WorkPad PC 58
IMEI 27
i-mode 46

implementation guidelines 291
NTT DoCoMo 46

IMT-2000 39
3G 39

Intellisync Browse-it 59
International Mobile Equipment Identifier

See IMEI
International Mobile Telecommunications-2000

See IMT-2000
ISP 67

J
J2ME 67

NTT DoCoMo 503i cell phone 49
JavaBean 120
J-PHONE 46

K
KDDI 46

L
LDAP 341
Logon timeout 97
384 Mobile Commerce Solutions Guide using WebSphere Commerce Suite V5.1

M
Market study 74
Markup languages 64, 94

cHTML 66
HDML 65
HTML 64
WML 65
XHTML 67
XML 66

m-commerce
application design 81
application development 81
considerations for WTP 122
defined 5
device control 86
EWG considerations 125
logon timeout security 97
market study 74
new business models 11
objectives 5
opportunities 7
restricted command execution 98
security enhancements 87
selection guidelines 77
session control 86
testing the application 83
URL buffering 87, 101
WES considerations 112

m-commerce direct 76
computing flow 76
defined 76
design guidelines 200
development for WAP 275
development process 203
pros and cons 79

m-commerce using WTP 76
application runtime 77
content management script 306
defined 76
design guidelines 302
pros and cons 80
sample code 306
sample HTML and XML JSPs 306
sample PvC adapter 306

MIME filter 120, 123
Mobile Connect 127
Mobile devices 6, 57

cons 63
display color, size, res. 96

pros 63
wireless laptop 62
wireless PDA 58

Mobile market penetration 8
Europe 10
Japan 8
US 11

Mobile phone 6, 57
Mobile wallet 133
Mobitex 36

external access protocols 37
network architecture 36

MQSeries Everyplace (MQe) 125

N
NAS 170
Network proxy 119
Nokia 40
Nokia 9210 Communicator 58
Nokia WAP Toolkit V2.1 169
Nokia Wap Toolkit V2.1 272
NTT DoCoMo 40, 46

503i 49
503i Java architecture 50
i-mode 46

O
Official site 47
OmniSky OmniSky 59

P
Packet-switched networks 22
Palm 58

HTTP browsers 59
AvantGo AvantGo 59
Handspring Blazer 59
Intellisync Browse-it 59
OmniSky OmniSky 59
Qualcomm EudoraWeb 60

Palm Query Application 288
Palm V 58
Palm VII 58
WAP browsers

4thpass Kbrowser 60
EdgeMatrix WAPman 60

Web Clipping 284
browser 60
 Index 385

Web clipping
design guidelines 284
development guidelines 286
example 288
testing 286, 287

Password reentry 234
Password reentry form 234
Payment technologies

dual-slot 132
mobile wallet 133
SET 130
SIM 134
SmartCards 130
SSL 130
WAP WTLS 131

PDA
Compaq iPac Pocket PC 58
EPOC 62
Handspring Visor 58
IBM WorkPad PC 58
Palm VII 58

PDC 39
Personal Digital Assistant

See PDA
Personal Digital Cellular

See PDC
PocketPC 61

Casio E-125 58
Compac iPac 58
HTTP browser 61
WAP browser 61

PQA
See Palm Query Application

PrintHttpRequest 208
Proxy 123
Psion Series 58
PvC adapter

checkDeviceFormat method 213
create an adapter class 210
creating a PvC adapter 206
definition 89
definition XML file 220
deploying multiple adapters 220
deploying the adapter 218
framework overview 87
getDeviceModel method 216
getTerminalId method 217
identify device type 208
sample code 206

PvC adapter definition 330
HTTP adapter attribute 332
IP adapter attribute 333
PvC adapter attribute 333
sample 334

PvC adapter framework 16
reference information 329

PvC command
WCS command registration 263

PvC commands 16, 90, 256
create a custom command 259
deploy a custom command 259
PVCBufferURL 91
PVCBufferUrl 257, 351
PVCChangeDevice 90, 256, 347
PVCRegistration 90, 256, 340
PVCRegistrationDevice 90, 256, 344
ReEnterPassword 91, 257, 353
reference information 339
usage scenarios 257

PvC data beans 16, 91, 232
PVCBufferDataBean 91, 356
reference information 355
UserPVCDeviceDataBean 91, 356

PvC database tables
PVCBinding 364
PVCBuffer 364
PVCDEVMDL 360
PVCDEVSPEC 363
PVCMDLSPEC 361
PVCSession 364
reference information 359

PVCBinding 364
PVCBuffer 364
PVCBufferDataBean 91, 356
PVCBufferUrl 91, 102, 351

example 353
syntax 352

PVCChangeDevice 90, 347
example 350
syntax 349

PVCDEVMDL 360
PVCDEVSPEC 363
PVCMDLSPEC 361
PVCRegistration 90, 340

example 342
syntax 341

PVCRegistrationDevice 90, 344
example 346
386 Mobile Commerce Solutions Guide using WebSphere Commerce Suite V5.1

syntax 345
PVCSession 364

Q
Qualcomm EudoraWeb 60

R
RAS 170
Redbooks Web Site 373

Contact us xv
ReEnterPassword 91, 353

example 354
Restricted command execution 98
Reverse proxy 119
REVO PLUS 58
Roaming agreement 22
Runtime environment 141

high level install steps 144
testing 142

S
Sample code defined 180
Sample store overview 181
Secure Electronic Transaction

See SET
Secure Sockets Layer

See SSL
Security

logon timeout 97
restricted command execution 98
user registration 98

Security enhancement 87
Session control 86, 92

PvC adapter 92
unique identifier 92

Session management 72
cookies 73
URL rewriting 73

Session time-out 234
Session time-out form 234
SET 130, 137
Short Message Service

See SMS
See SMS

Short Message Service Center 27
SIM 26, 134

card 27

Simulators 169
cons of using a simulator 169
pros of using a simulator 168

SmartCards 130
SMS 27, 54

defined 54
SSL 130
Symbian

EPOC 62

T
Test environments 167

using simulators 168
using simulators and gateways 168
wireless hardware

Internet 171
intranet 170

Testing 83
runtime environment 142
simulators 169
toolkits 167

Nokia Wap Toolkit V2.1 169
UP.SDK for WAP V3.2, V4.1 169
UP.SDK V3.2 for HDML 169

Toolkits and simulators 167

U
UMTS 40
Universal Mobile Telecommunications System

See UMTS
UP.SDK for WAP 273
UP.SDK for WAP V3.2 169
UP.SDK for WAP V4.1 169
UP.SDK V3.2 for HDML 169, 266
URL buffering 87, 101
URL rewriting 73
User registration form 235
UserPVCDeviceDataBean 91, 356

V
VisaNet 137
VisualAge for Java

create a package 207
create a project 207
export to a JAR 219

Voice XML 69
Voluntary site 47
 Index 387

VXML 69

W
WAP 42

architecture 45
browser 60
content management scripts 274
sample code 274
sample PvC adapter code 274
sample WLM content JSPs 274
WAP stack vs Internet stack 44
WML 44
WTLS 131

WAP toolkits 272
W-CDMA 40

DS-CDMA 40
WCS V5.1

device control 86
messaging subsystem 55
programming mode 72
session control 86
session management 72
systems architecture 72

Web Clipping 52, 288
proxy 53
proxy server 61
UDP 53

WebSphere Commerce, Market Place Edition 14
WebSphere Everyplace Suite 108

components 109
m-commerce considerations 109
overview 108

WebSphere Payment Manager 136
Cassette Developer’s Toolkit 137
overview 136
supported payment methods 137

WebSphere Payment Manager Framework 137
WebSphere Transcoding Publisher 115

administration 120
architecture 116
deployment model

JavaBean 120
MIME filter 120
network proxy 119
reverse proxy 119

device profiles 118
integration with WCS 300
m-commerce considerations 122

MIME filter 147
configuration 149
configuration for WTP 149
install MIME filter 146

overview 116, 296
transcoders 117

WebSphere Transcoding Toolkit 163
Profile Builder 165
Request Viewer 164
Snoop MEGlet 166
Transform Tool 163

WES
See WebSphere Everyplace Suite

Wireless Application Protocol
See WAP

Wireless LAN 40
Wireless laptop 7, 62
Wireless networks 20

cdma2000 40
cdmaOne 40
CDPD 38
cells 21
generations 23
GPRS 32
GSM 24
history 20
IMT-2000 39
Mobitex 36
PDC 39
UMTS 40
W-CDMA 40

Wireless PDA 6, 58
Wireless protocols 41

HTTP protocol 41
i-mode 46
WAP 42
Web Clipping 52

Wireless service provider 67
Wireless Transport Layer Security (WTLS) 131
WML 44, 65
WTP

See WebSphere Transcoding Publisher

X
XHTML 67
388 Mobile Commerce Solutions Guide using WebSphere Commerce Suite V5.1

(0.5” spine)
0.475”<

->0.875”
250 <

-> 459 pages

M
obile Com

m
erce Solutions Guide using W

ebSphere Com
m

erce Suite V5.1

®

SG24-6171-00 ISBN 0738422274

INTERNATIONAL
TECHNICAL
SUPPORT
ORGANIZATION

BUILDING TECHNICAL
INFORMATION BASED ON
PRACTICAL EXPERIENCE

IBM Redbooks are developed by
the IBM International Technical
Support Organization. Experts
from IBM, Customers and
Partners from around the world
create timely technical
information based on realistic
scenarios. Specific
recommendations are provided
to help you implement IT
solutions more effectively in
your environment.

For more information:
ibm.com/redbooks

Mobile Commerce Solutions
Guide using WebSphere
Commerce Suite V5.1

IBM m-commerce
architecture and
functionality

Design and
development
guidelines for
m-commerce

Sample code for WAP
WML, HDML, Palm,
and WTP

This redbook provides developers and architects with the
knowledge to develop and deploy m-commerce Web sites
using WebSphere Commerce Suite V5.1.

This book describes the concepts related to m-commerce,
such as wireless technologies, development methodology for
building m-commerce Web sites, and features in WebSphere
Commerce Suite V5.1 for m-commerce. Also included are
integration considerations regarding IBM wireless
middleware and payment options.

Detailed instructions are provided for setting up your
runtime, development, and test environments. We provide a
sample store and code to demonstrate IBM m-commerce
functionality using WebSphere Commerce Suite V5.1.

Included are development guidelines for mobile devices
directly accessing device-specific content JSPs. Samples
and guidelines are included for WAP WML, HDML, Palm, and
i-mode.

The book also provides design and development guidelines
for mobile devices using WTP to access WebSphere
Commerce Suite HTML and XML content JSPs.

Back cover
Acrobat bookmark

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

	Front cover
	Contents
	Preface
	The team that wrote this redbook
	Special notice
	IBM trademarks
	Comments welcome

	Part 1 Introduction to mobile commerce
	Chapter 1. Introduction
	1.1 Mobile commerce overview
	1.1.1 m-commerce defined
	1.1.2 Key objectives of m-commerce
	1.1.3 Mobile devices
	1.1.4 Challenges

	1.2 m-commerce opportunities and market drivers
	1.2.1 m-commerce opportunities
	1.2.2 Mobile market penetration
	1.2.3 Technology
	1.2.4 New business models
	1.2.5 Customer needs

	1.3 IBM m-commerce
	1.3.1 m-commerce using WebSphere Commerce Suite V5.1

	1.4 Structure of this redbook

	Chapter 2. Wireless technologies
	2.1 Wireless networks
	2.1.1 Mobile communications network history
	2.1.2 GSM
	2.1.3 GPRS
	2.1.4 Mobitex
	2.1.5 CDPD
	2.1.6 PDC
	2.1.7 IMT-2000
	2.1.8 Wireless LANS

	2.2 Wireless protocols
	2.2.1 HTTP protocol
	2.2.2 WAP
	2.2.3 i-mode
	2.2.4 Web Clipping
	2.2.5 Short Message Service (SMS)

	2.3 Mobile devices
	2.3.1 Mobile phones
	2.3.2 Wireless PDAs
	2.3.3 Wireless laptops
	2.3.4 Mobile device pros and cons

	2.4 Content and markup languages
	2.5 Wireless service providers
	2.6 Next-generation technologies

	Chapter 3. m-commerce development methodology
	3.1 Understanding WCS V5.1
	3.1.1 WCS V5.1 systems architecture and programming model
	3.1.2 Session management

	3.2 Market study of the customer environment
	3.3 Existing or new site
	3.4 Customer requirements
	3.5 m-commerce implementation approaches
	3.5.1 m-commerce direct
	3.5.2 m-commerce using WTP - application runtime topology
	3.5.3 Guidelines for selecting the implementation approach

	3.6 Application design considerations
	3.7 Application development
	3.8 Testing the m-commerce application

	Chapter 4. m-commerce features and functionality in WCS V5.1
	4.1 WCS V5.1 m-commerce enablement overview
	4.2 WCS V5.1 m-commerce enablement features
	4.2.1 PvC adapter framework
	4.2.2 PvC commands
	4.2.3 PvC data beans

	4.3 Session control
	4.3.1 Unique identifier
	4.3.2 PvC adapter

	4.4 Device control
	4.4.1 Differences between mobile devices
	4.4.2 WCS V5.1 functionality for device differences

	4.5 Security
	4.5.1 Logon timeout
	4.5.2 Restricted command execution
	4.5.3 User registration mode

	4.6 URL buffering
	4.6.1 PVCBufferUrl command b_new mode
	4.6.2 PVCBufferUrl command b_update mode
	4.6.3 PVCBufferUrl command b_exec mode

	Chapter 5. IBM wireless middleware
	5.1 IBM WebSphere Everyplace Suite (WES)
	5.1.1 WES overview
	5.1.2 Considerations for m-commerce
	5.1.3 Where to find more information

	5.2 IBM WebSphere Transcoding Publisher (WTP)
	5.2.1 WTP overview
	5.2.2 Considerations for m-commerce
	5.2.3 Where to find more information

	5.3 IBM Everyplace Wireless Gateway (EWG)
	5.3.1 EWG overview
	5.3.2 Considerations for m-commerce
	5.3.3 Where to find more information

	5.4 IBM MQSeries Everyplace (MQe)
	5.5 IBM DB2 Everyplace
	5.6 IBM Mobile Connect

	Chapter 6. m-commerce payment solutions
	6.1 Payment technologies overview
	6.1.1 Payment solutions for PC browser clients
	6.1.2 Payment solutions for mobile devices

	6.2 IBM WebSphere Payment Manager
	6.2.1 WebSphere Payment Manager overview
	6.2.2 Supported payment methods

	Part 2 Setting up your m-commerce environment
	Chapter 7. m-commerce runtime environment
	7.1 WCS V5.1 runtime environment installation
	7.1.1 ITSO test runtime environment
	7.1.2 WCS V5.1 high-level installation steps

	7.2 WTP V3.5 MIME filter installation
	7.3 Configuring WTP V3.5 as a MIME filter
	7.4 WCS V5.1 messaging configuration
	7.4.1 Configure the WCS V5.1 messaging services
	7.4.2 Define the message content

	7.5 Where to find more information

	Chapter 8. m-commerce development environment
	8.1 Development environment
	8.1.1 ITSO development environment
	8.1.2 Development environment high-level installation steps

	8.2 WebSphere Transcoding Toolkit
	8.2.1 Transform Tool
	8.2.2 Request Viewer
	8.2.3 Profile Builder
	8.2.4 Snoop MEGlet

	8.3 Test environments and tools
	8.3.1 Toolkits and simulators
	8.3.2 Real wireless hardware - intranet testing
	8.3.3 Real wireless hardware - Internet testing
	8.3.4 Everyplace Wireless Gateway installation

	8.4 Where to find more information

	Chapter 9. m-commerce sample store and sample code
	9.1 Download sample store and sample code
	9.2 Sample store overview
	9.2.1 PvC Fashion sample store
	9.2.2 Web Fashion sample store

	9.3 Deploy sample store to WCS runtime
	9.3.1 Create a store template
	9.3.2 Create a store from a template
	9.3.3 Publish the PvC Fashion sample store from Store Services
	9.3.4 Create an alias for the store
	9.3.5 Deploy PvC adapter and data beans
	9.3.6 Configure content management
	9.3.7 Verify PvC Fashion sample store

	9.4 Prepare the development environment

	Part 3 m-commerce direct implementation
	Chapter 10. m-commerce direct design and development process
	10.1 m-commerce direct application design guidelines
	10.2 m-commerce direct development process

	Chapter 11. Creating and deploying a PvC adapter
	11.1 Creating a PvC adapter
	11.1.1 Create a project in VisualAge for Java (VAJ)
	11.1.2 Create a package in VAJ
	11.1.3 Identify the device type
	11.1.4 Create an adapter class
	11.1.5 The checkDeviceFormat method
	11.1.6 The getDeviceModel method
	11.1.7 The getTerminalId method

	11.2 Deploying a PvC adapter
	11.2.1 Exporting the PvC adapter from VAJ to a JAR file
	11.2.2 Deploying the PvC adapter JAR to the WCS server
	11.2.3 Adding a PvC adapter definition to the WCS instance XML file

	11.3 Deploying multiple PvC adapters
	11.3.1 PvC adapter definition
	11.3.2 Content management configuration

	Chapter 12. Create, deploy and manage content
	12.1 Content management configuration
	12.1.1 Content management
	12.1.2 Content management configuration

	12.2 Create device-specific content JSPs
	12.2.1 PvC data beans
	12.2.2 Content development
	12.2.3 Content examples of PvC features

	12.3 Deploy content
	12.4 Advanced content and configuration example
	12.4.1 Auto selection of content
	12.4.2 Reflection of terminal specification to JSP view
	12.4.3 Content managed by adapter
	12.4.4 Content managed by model

	Chapter 13. Creating custom PvC commands
	13.1 WCS V5.1 PvC command overview
	13.1.1 PvC command summary
	13.1.2 Scenarios for using the PvC commands

	13.2 Create and deploy a custom PvC command
	13.2.1 Create a custom PvC command
	13.2.2 Deploy the custom PvC command

	Chapter 14. HDML implementation sample
	14.1 HDML toolkits and test clients
	14.1.1 UP.SDK V3.2 for HDML
	14.1.2 Mobile device hardware

	14.2 Sample code for HDML
	14.3 m-commerce direct development for HDML

	Chapter 15. WAP implementation sample
	15.1 WAP toolkits and test clients
	15.1.1 Nokia WAP Toolkit V2.1 and simulator
	15.1.2 UP.SDK for WAP
	15.1.3 WAP mobile device hardware

	15.2 Sample code for WAP
	15.3 m-commerce direct development for WAP

	Chapter 16. Palm implementation sample
	16.1 Palm HTML browser implementation
	16.1.1 Design guidelines
	16.1.2 Development guidelines
	16.1.3 Palm development tools
	16.1.4 Sample code

	16.2 Palm Web Clipping implementation
	16.2.1 Design guidelines
	16.2.2 Development guidelines
	16.2.3 Testing
	16.2.4 Problems
	16.2.5 Example
	16.2.6 Conclusion

	16.3 Where to find more information

	Chapter 17. i-mode implementation guidelines
	Part 4 m-commerce using WTP implementation
	Chapter 18. m-commerce using WTP implementation and design
	18.1 Implementation considerations
	18.1.1 WTP overview
	18.1.2 Architecture for WCS-WTP integration

	18.2 Application design guidelines using WTP
	18.2.1 Introduction
	18.2.2 Supported features
	18.2.3 Usability
	18.2.4 Trade-off

	Chapter 19. m-commerce using WTP application development
	19.1 Introduction
	19.2 Sample code for WTP
	19.3 HTML versus XML
	19.3.1 HTML content using WTP
	19.3.2 XML content using WTP

	19.4 Selecting the right JSPs
	19.5 Creating a generic PvC adapter
	19.5.1 PvC adapter overview
	19.5.2 Creating the PvC adapter
	19.5.3 Deploying the PvC adapter
	19.5.4 Content management

	19.6 Creating the content JSPs
	19.7 WCS caching with WTP

	Part 5 Appendixes
	Appendix A. PvC adapter framework reference
	PvCAdapterImpl class and methods
	PvC adapter definition for the WCS instance XML file
	HTTP adapter attribute
	PvC adapter attribute
	IP adapter attribute
	Excluded command
	Protected command
	Sample usage for PvC adapter definition for WCS instance XML file

	Appendix B. PvC command reference
	PVCRegistration
	PVCRegistrationDevice
	PVCChangeDevice
	PVCBufferUrl
	ReEnterPassword

	Appendix C. PvC data bean reference
	PVCBufferDataBean
	UserPVCDeviceDataBean

	Appendix D. PvC database tables and content management reference
	PVCDEVMDL
	PVCMDLSPEC
	PVCDEVSPEC
	PVCBinding
	PVCSession
	PVCBuffer
	Content management reference
	PVCDEVMLD table: define adapter default model
	PVCDEVSPEC table: define minimum spec and JSP root
	PVCMDLSPEC table: PVCDEVMDL and PVCDEVSPEC relationship

	Appendix E. Additional material
	Locating the Web material
	Using the Web material
	System requirements for downloading the Web material
	How to use the Web material

	Related publications
	IBM Redbooks
	Other resources

	Referenced Web sites
	How to get IBM Redbooks
	IBM Redbooks collections

	Special notices
	Glossary
	Index
	Back cover

