

ibm.com/redbooks

Mobile Applications with IBM
WebSphere Everyplace Access
Design and Development

Peter Kovari
Bernard Van Acker

Anna Marino
Jim Ryan

Kim Lun Tang
Christoph Weiss

Mobile Web applications using Application
Server and Transcoding Publisher

Voice applications using Voice
Server

Mobile extensions to
Patterns for e-business

Front cover

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

Mobile Applications with IBM WebSphere
Everyplace Access Design and Development

October 2001

International Technical Support Organization

SG24-6259-00

© Copyright International Business Machines Corporation 2001. All rights reserved.
Note to U.S Government Users – Documentation related to restricted rights – Use, duplication or disclosure is subject to
restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

First Edition (October 2001)

This edition applies to WebSphere Everyplace Access Offering V1R1 on Windows NT, and AIX.

Comments may be addressed to:
IBM Corporation, International Technical Support Organization
Dept. HZ8 Building 662
P.O. Box 12195
Research Triangle Park, NC 27709-2195

When you send information to IBM, you grant IBM a non-exclusive right to use or distribute the
information in any way it believes appropriate without incurring any obligation to you.

Take Note! Before using this information and the product it supports, be sure to read the
general information in “Special notices” on page 421.

Contents

Preface . xiii
The team that wrote this redbook. xiii
Special notice . xv
IBM trademarks . xvi
Comments welcome. xvi

Part 1. Introduction. 1

Chapter 1. Introduction to IBM WebSphere Everyplace Access V1R1. . . . 3
1.1 Definitions . 4
1.2 Business drivers . 4
1.3 WebSphere Everyplace Access in this book . 6
1.4 Run-time applications . 7

1.4.1 WebSphere Application Server . 7
1.4.2 WebSphere Transcoding Publisher . 7
1.4.3 WebSphere Voice Server . 7

1.5 Development applications . 8
1.5.1 WebSphere Studio . 8
1.5.2 VisualAge for JavaEE . 8

Chapter 2. Overview of mobile technologies . 9
2.1 Technology background . 10
2.2 Mobile accessibility . 10
2.3 Wireless networks . 11

2.3.1 Mobile communications network history . 11
2.3.2 GSM . 13
2.3.3 GPRS . 14
2.3.4 Mobitex . 14
2.3.5 CDPD . 15
2.3.6 PDC. 16
2.3.7 IMT-2000. 16
2.3.8 Wireless LANS . 17

2.4 Wireless protocols . 17
2.4.1 HTTP protocol . 18
2.4.2 WAP . 18
2.4.3 M-services. 19
2.4.4 i-mode . 19
2.4.5 Web Clipping. 20

2.5 Mobile devices . 22
© Copyright IBM Corp. 2001 iii

2.5.1 Phones for voice interaction . 22
2.5.2 Mobile phones. 22
2.5.3 PDAs . 23
2.5.4 Wireless laptops . 27
2.5.5 Mobile device pros and cons. 28

2.6 Emulators and mobile clients . 29
2.7 Content and markup languages . 30
2.8 Wireless Service Providers. 30
2.9 Where to find more information . 31

Chapter 3. Overview of speech technology . 33
3.1 Speech-enabled versus text-based applications 34

3.1.1 Benefits of voice applications . 35
3.1.2 Limitations of voice applications . 35

3.2 Speech recognition. 36
3.2.1 System architecture . 39
3.2.2 Natural Language Understanding and Dialog Management 42
3.2.3 Application styles . 43
3.2.4 Speech recognition errors . 44
3.2.5 Recognition performance . 46

3.3 Speech synthesis . 47
3.3.1 Synthesizer architecture . 49
3.3.2 Quality assessment for TTS . 52

3.4 IBM ViaVoice . 54
3.4.1 Multilingual support for ViaVoice . 54
3.4.2 ViaVoice limitations . 55

3.5 Examples of voice-enabled applications . 56
3.5.1 Speech reco applications . 56
3.5.2 TTS applications . 57

3.6 Future development . 59
3.7 Where to find more Information . 62

Part 2. Patterns for e-business . 63

Chapter 4. Patterns for e-business . 65
4.1 Using Patterns for e-business . 66
4.2 Business patterns. 67
4.3 Integration patterns . 69
4.4 Composite patterns . 70
4.5 The patterns used in this book . 71
4.6 Where to find more information . 71

Chapter 5. Application patterns . 73
5.1 Application patterns . 74
iv Mobile Applications with IBM WebSphere Everyplace Access Design and Development

5.2 Application patterns for Access integration . 75
5.2.1 Pervasive Device Access application pattern 75

5.3 Application patterns for Self-Service. 76
5.3.1 Stand-Alone Single Channel application pattern. 77

Chapter 6. Runtime patterns . 79
6.1 Runtime nodes . 80
6.2 Runtime pattern for the Self-Service application 82

6.2.1 Basic Runtime pattern. 83
6.2.2 Runtime variation . 84

6.3 Runtime pattern for the Pervasive Device Access 85
6.3.1 Base Runtime pattern . 85
6.3.2 Runtime pattern variation . 87

6.4 Gateway placement . 88

Chapter 7. Runtime product mappings . 89
7.1 Selecting products . 90
7.2 Product mappings . 91

7.2.1 The WebSphere Everyplace Access V1R1 offering 94
7.2.2 Additional products for the offering . 96

7.3 WebSphere Transcoding Publisher considerations 97
7.3.1 Proxy model . 97
7.3.2 Filter model in WebSphere Application Server 98
7.3.3 Running JavaBean transcoders . 98
7.3.4 Choosing the right model . 98

7.4 Where to find more information . 99

Part 3. Wireless Internet application: guidelines . 101

Chapter 8. Solution design . 103
8.1 The different modes of pervasive computing 104

8.1.1 Synchronous . 104
8.1.2 Notification . 105
8.1.3 Asynchronous . 105
8.1.4 Voice . 106
8.1.5 Multimodal. 107

8.2 Decision tree . 107
8.2.1 Device classes . 107
8.2.2 The decision tree. 108
8.2.3 When to apply tweaking . 113
8.2.4 Custom solutions. 115

8.3 Visual design . 115
8.4 Non-visual design: voice . 116

8.4.1 Challenges of voice versus visual applications 116
 Contents v

8.4.2 Voice applied to the decision tree . 119
8.4.3 Other aspects of voice related to solution design 120

Chapter 9. Application design . 121
9.1 Web application . 122

9.1.1 Model-View-Controller. 126
9.1.2 Sample Web application . 128

9.2 Extending a Web application to a mobile application 130
9.2.1 Extending the architecture . 131

9.3 Mobile architecture . 132
9.3.1 Web Intermediaries . 134
9.3.2 A mobile application . 137
9.3.3 IBM WebSphere Transcoding Publisher . 141

9.4 Design patterns . 146
9.4.1 Object . 148
9.4.2 Command pattern . 149
9.4.3 Template pattern . 149
9.4.4 Factory pattern . 150
9.4.5 Proxy pattern. 151
9.4.6 Advantages of patterns . 151

9.5 Where to find more information . 152
9.5.1 IBM . 152
9.5.2 Outside of IBM . 152

Chapter 10. Application development . 153
10.1 Web application elements . 154

10.1.1 Java servlet . 154
10.1.2 JSPs . 154
10.1.3 JavaBeans . 156
10.1.4 Enterprise JavaBeans . 157
10.1.5 XML. 159
10.1.6 XSL . 160
10.1.7 XSLT . 161
10.1.8 HTML, cHTML, HDML, WML . 162
10.1.9 VoiceXML . 164

10.2 Development tools . 166
10.2.1 WebSphere Studio . 166
10.2.2 VisualAge for Java . 173
10.2.3 Development tools in WTP . 176
10.2.4 XML tools . 179
10.2.5 Voice SDK. 180

10.3 Tools for testing the application . 182
10.3.1 Overview . 183
vi Mobile Applications with IBM WebSphere Everyplace Access Design and Development

10.3.2 Testing the HTML application . 183
10.3.3 Testing the simplified HTML application . 184
10.3.4 Testing the WML application. 187
10.3.5 Testing the cHTML application . 189
10.3.6 Testing the Voice application . 190
10.3.7 Other emulators . 190

10.4 Best practices. 192
10.4.1 Device management . 192
10.4.2 Session management . 193
10.4.3 Managing the content for different devices 193

10.5 Development roles and responsibilities. 194
10.6 More information . 195

10.6.1 IBM related . 195
10.6.2 Not IBM related . 195

Chapter 11. System management . 197
11.1 General system management . 198
11.2 IBM HTTP Server . 199
11.3 WebSphere Application Server . 200

11.3.1 Administration console . 200
11.4 WebSphere Transcoding Publisher . 202

11.4.1 Administration console . 202
11.4.2 Common LDAP directory . 204

11.5 WebSphere Voice Server . 204

Chapter 12. Security . 205
12.1 Introduction . 206
12.2 Mobile versus conventional communications 207

12.2.1 Authentication . 207
12.2.2 Confidentiality and message integrity . 212
12.2.3 Authorization . 214
12.2.4 Non-repudiation. 215
12.2.5 Secure boundary. 217

12.3 Security technologies for wireless transactions. 217
12.3.1 Security Socket Layer (SSL) . 217
12.3.2 Wireless Transport Layer Security (WTLS). 218
12.3.3 Public key cryptography . 218
12.3.4 Elliptic Curve Cryptography (ECC) . 219
12.3.5 Public Key Infrastructure (PKI) . 219

12.4 Apparent problems in wireless security. 221
12.4.1 Broken secure connection in the WAP gateway 222
12.4.2 Other gateways . 223
12.4.3 The WebSphere Transcoding Publisher and encrypted content. . 225
 Contents vii

12.5 More Information . 226

Chapter 13. Performance . 227
13.1 Load balancing . 228

13.1.1 Network Dispatcher approach . 228
13.1.2 DNS approach. 229
13.1.3 Reverse proxy approach . 230

13.2 Scalability . 231
13.3 Availability . 232
13.4 Caching . 233
13.5 Turning on transcoding . 236
13.6 Where to find more information . 237

Part 4. Scenarios . 239

Chapter 14. Base sample overview . 241
14.1 The base sample . 242
14.2 The scenarios. 242
14.3 The presentation logic . 243

14.3.1 The three tier servlet architecture . 243
14.4 The business logic . 245

14.4.1 Data model . 245
14.4.2 Access Beans . 246

14.5 Model diagram for the application . 247
14.6 Site map for the application . 249

14.6.1 Publishing . 250
14.7 Walkthrough . 252

14.7.1 Login scenario . 252
14.7.2 Portfolio . 253

14.8 Summary . 254

Chapter 15. Application for interactive mobile devices 255
15.1 Direct approach . 256

15.1.1 Design issues . 256
15.1.2 Test clients for development . 263
15.1.3 New and modified code. 264
15.1.4 Developing the content JSPs . 264

15.2 Content transcoding (HTML source) . 268
15.2.1 Preferences. 269
15.2.2 Annotators . 271
15.2.3 Text clipping . 284
15.2.4 Guidelines for content transcoding . 290
15.2.5 HTML to cHTML . 290

15.3 Universal transcoding (XML source) . 293
viii Mobile Applications with IBM WebSphere Everyplace Access Design and Development

15.3.1 Converting XML to different markup languages 294
15.3.2 Trade2 example . 296
15.3.3 Design decisions . 296
15.3.4 Defining the class concept . 297
15.3.5 Defining XML structures . 298
15.3.6 Creating XML files . 299
15.3.7 Developing the XSL files and the user interface 300
15.3.8 Implementing the XML solution . 302
15.3.9 Registering the StyleSheets in WTP . 304
15.3.10 Testing the application . 307

Chapter 16. Voice application. 309
16.1 WebSphere Voice Server . 310
16.2 Direct approach . 313

16.2.1 The voice site . 313
16.2.2 Application design . 317
16.2.3 Application development . 325
16.2.4 Trade2 voice application . 327

16.3 Content transcoding (HTML source) . 328
16.3.1 Full HTML-to-VoiceXML transcoding . 328
16.3.2 Annotators . 329
16.3.3 Setting up the HTML-to-VoiceXML transcoder 330
16.3.4 Result of the HTML-to-VoiceXML transcoder 333
16.3.5 Trade2 application. 334

16.4 Universal transcoding (XML source) . 335
16.4.1 Design decisions . 335
16.4.2 Designing the class concept . 336
16.4.3 Developing XML files . 337
16.4.4 Developing the XSL files . 338
16.4.5 Register the StyleSheets in the WTP . 339
16.4.6 Testing the application . 340
16.4.7 Further directions . 340

16.5 Hybrid coding . 340
16.6 Where to find more information . 342

Chapter 17. Application for both interactive mobile device and voice. . 343
17.1 Introduction . 344
17.2 Universal transcoding . 344
17.3 Content transcoding . 345
17.4 Multimodal applications . 346

17.4.1 Multimodal applications in WebSphere . 348
17.4.2 VIWO. 350
17.4.3 Future developments . 352
 Contents ix

Part 5. Working example . 353

Chapter 18. Development environment for the sample application 355
18.1 The development environment . 356
18.2 Application database . 356
18.3 WebSphere Studio . 356

18.3.1 Importing the Studio Archive File . 357
18.3.2 Publishing a WebSphere Studio project . 357

18.4 VisualAge for Java configuration . 359
18.4.1 Adding DB2 libraries to VisualAge for Java 360

18.5 Importing the VisualAge for Java repository file 361
18.5.1 Rebuilding the EJBs . 363
18.5.2 Exporting the deployed EJBs . 364

18.6 WebSphere Test Environment configuration 365
18.6.1 Setting up a new Web application under WTE 365
18.6.2 Adding MIME Types to WTE. 366
18.6.3 Publishing the Studio project into WTE. 367
18.6.4 Starting the WebSphere Test Environment. 368
18.6.5 Starting the EJB server . 370

18.7 WebSphere Voice Server SDK configuration 371
18.8 WebSphere Transcoding Publisher configuration 371

18.8.1 Setting up the Voice transcoder . 371
18.8.2 WTP preference profile for voice application 372
18.8.3 Registering the StyleSheets . 374

18.9 TradeAppServlet configuration for voice . 380
18.10 StyleSheet import . 381

Chapter 19. Runtime environment for the sample application 383
19.1 Runtime enviroment for the sample application 384

19.1.1 Runtime environment . 384
19.2 Installing and configuring the runtime environment 385

19.2.1 Database node . 385
19.2.2 Web application node without Transcoder 386
19.2.3 Standalone Transcoder node . 388
19.2.4 Web application node with Transcoder . 388
19.2.5 Voice Server node. 390

19.3 Deploying the sample application . 391
19.3.1 Prerequisites . 391
19.3.2 NT . 392
19.3.3 AIX . 392
19.3.4 Configuring WTP for the Trade2 application 393

19.4 Entry point for the Trade2 Web application 394
19.5 Testing the application . 395
x Mobile Applications with IBM WebSphere Everyplace Access Design and Development

19.5.1 Test sequence. 395
19.5.2 Direct . 396
19.5.3 Content transcoding . 396
19.5.4 Universal transcoding . 396

19.6 Notes for other platforms . 397

Part 6. IBM Web and wireless solutions . 399

Chapter 20. Introduction to WebSphere Everyplace Suite 401
20.1 What is it for? . 402
20.2 Extending capabilities. 402

20.2.1 Editions . 402
20.3 Connectivity services . 403

20.3.1 Notification . 403
20.3.2 Asynchronous communication . 403

20.4 Security . 403
20.5 Summary . 404

Chapter 21. Other products . 405
21.1 WebSphere Portal Server . 406
21.2 WebSphere Personalization Server . 407
21.3 SecureWay Wireless Gateway . 409
21.4 WebSphere Translation Server. 410
21.5 Where to find more information . 411

Part 7. Appendixes . 413

Appendix A. Additional material . 415
Locating the Web material . 415
Using the Web material . 415

System requirements for downloading the Web material 416
How to use the Web material . 416

Related publications . 417
IBM Redbooks . 417

Other resources . 418
Referenced Web sites . 418
How to get IBM Redbooks . 419

IBM Redbooks collections. 420

Special notices . 421

Glossary . 423

Index . 429
 Contents xi

xii Mobile Applications with IBM WebSphere Everyplace Access Design and Development

Preface

This redbook provides application designers and developers with a broad
overview of mobile e-business application design and development using
WebSphere Everyplace Access V1R1.

Part 1, “Introduction” on page 1, introduces the offering itself, and some of the
mobile technologies together with the voice technologies used in mobile
e-business applications.

Part 2, “Patterns for e-business” on page 63, gives an overview of the Patterns
for e-business, then shows the use of Patterns in the mobile e-business
environment.

Part 3, “Wireless Internet application: guidelines” on page 101, provides design
and development guidelines for mobile e-business applications based on the
products bundled in WebSphere Everyplace Access V1R1.

Part 4, “Scenarios” on page 239, provides detailed information about the sample
application by discussing different scenarios. The sample application is based on
the Trade2 Web application, which has been enabled for mobile access.
Scenarios are different approaches to how the application is designed and which
technologies are exercised.

Part 5, “Working example” on page 353, provides detailed instructions for setting
up the development and run-time environment together with the Trade2 sample
application.

The team that wrote this redbook
This redbook was produced by a team of specialists from around the world
working at the International Technical Support Organization, Raleigh Center.

Peter Kovari is a WebSphere Specialist at the International Technical Support
Organization, Raleigh Center. He writes extensively about all areas of
WebSphere. His areas of expertise include e-business, e-commerce, and mobile
computing. Before joining the ITSO, he worked as an I/T Specialist for IBM in
Hungary.
© Copyright IBM Corp. 2001 xiii

Bernard Van Acker is an IT Specialist candidating for IT Architect at IBM Global
Services Belgium. He has over seven years of experience in developing
groupware, intranet and interactive Internet applications in numerous projects.
He holds a Master’s degree of Sciences in Econometrics from the London School
of Economics and degrees in Law and Applied Economics obtained in Belgium.
He is a Certified Lotus Professional in Application Development for Notes, and a
certified Solution Developer for WebSphere Application Server. His current areas
of expertise include Java server programming, groupware/workflow applications
and PKI. Currently, he is gaining expertise in the different aspects of pervasive
computing.

Anna Marino is a Voice Systems Consultant in IBM Hursley Development Labs,
UK. She holds a Master’s degree in Computer Science and has recently joined
IBM after having undertaken research in the field of Evolutionary Algorithms. Her
interests include Artificial Intelligence, Cognitive Psychology and Security. At
present, she is gaining expertise in the design and implementation of
multichannel access applications.

Jim Ryan is a WebSphere Specialist with the WebSphere Innovation Centers in
the United States. Jim has been with IBM for over 12 years. Prior to his work in
the WebSphere Innovations Centers, he worked for five years in ibm.com. He
has 14 years of experience in application design and development, specializing
in networking. Currently he is working toward a Master’s degree in Computer
Science at Rensselaer Polytechnic Institute.

Kim Lun Tang is a Software Engineer in IBM Germany in Cologne. He holds a
Bachelor’s Degree in Computer Science which he obtained in the UK. After
finishing his studies, he joined IBM Germany for three years. His areas of
expertise include e-Commerce, payment solution, security and object-oriented
software development. At present he is gaining expertise in pervasive computing.

Christoph Weiss is an IT Specialist at IBM Global Service in Heidelberg,
Germany. He holds a degree in Economics and Computer Sciences from the
Berufsakademie Stuttgart, Germany. He has three years of experiences in the
fields of wireless computing, XML and object-oriented software development.
At present he is involved in delivering multiple channel access solutions to IBM
customers.

Thanks to the following people for their invaluable contributions to this project:

Kathryn Britton - Senior Technical Staff Member, WebSphere Transcoding
Publisher
John Ganci - International Technical Support Organization, Raleigh Center
Jonathan Adams - IT Consultant SWG Technical Strategy, IBM UK
Leo Marland - Senior Consulting IT Architect, IBM Canada
xiv Mobile Applications with IBM WebSphere Everyplace Access Design and Development

Thanks to the following people from the International Technical Support
Organization, Raleigh Center:

Gail Christensen
Rufus Credle
Linda Robinson
Juan Rodriguez
Carla Sadtler
Margaret Ticknor
Jeanne Tucker

Thanks to the following IBM employees:

Iva Anderson - Manager, WebSphere Transcoding Publisher Development
Richard K Brassel - Software Engineer, WebSphere Transcoding Publisher
Ralph Case - IBM WebSphere Connectivity and Edge Solutions
George Clelland - DirectTalk & Message Center technical support
Stan J Cox - Programmer, WebSphere Performance
Chris Cross - Engineer, Client and Server Speech
Brenda Horowitz - Software Engineer, IBM Voice Tools
Steve Ims - WebSphere Connectivity and Edge Solutions
Marshall Lamb - Chief Programmer, WebSphere Transcoding Publisher
Jennifer Lanier - WebSphere Transcoding Publisher Development
Anu Mannar - Market Manager, IBM Software Group
Nick Metianu - Manager, Voice Tools Development
Robbie J Minshall - Test / Development, WebSphere Performance
Brian Pickering - Speech Technologist, Voice System Services
Frank Seliger - Security Architect, IBM Pervasive Computing Division
Henry Welborn - Wireless Gateway Development
Anthony Wrobel - PVC Websphere Everyplace Suite Development

A special thank you to the Voice System Services Team in Hursley, UK for their
invaluable help during the whole project.

Special notice
This publication is intended to help developers, I/T architects, I/T specialists, and
consultants design, develop, test, and deploy mobile Web applications. The
information in this publication is not intended as the specification of any
programming interfaces that are provided by WebSphere Everyplace Access
V1R1 offering.
 Preface xv

IBM trademarks
The following terms are trademarks of the International Business Machines
Corporation in the United States and/or other countries:

Comments welcome
Your comments are important to us!

We want our IBM Redbooks to be as helpful as possible. Send us your
comments about this or other Redbooks in one of the following ways:

� Use the online Contact us review redbook form found at:

ibm.com/redbooks

� Send your comments in an Internet note to:

redbook@us.ibm.com

� Mail your comments to the address on page ii.

e (logo)®
IBM ®
AIX®
AS/400®
CICS®
DB2®
DirectTalk®
Everyplace™
IMS™
NetView®
OS/2®
PAL®

Redbooks™
Redbooks Logo ™
SecureWay®
SP™
ViaVoice®
VisualAge®
WebSphere®
WorkPad®
Lotus®
Notes®
Domino™
xvi Mobile Applications with IBM WebSphere Everyplace Access Design and Development

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/contacts.html

Part 1 Introduction

Part 1
© Copyright IBM Corp. 2001 1

2 Mobile Applications with IBM WebSphere Everyplace Access Design and Development

Chapter 1. Introduction to IBM
WebSphere Everyplace
Access V1R1

Today, developers and architects view mobile applications as a special case or
niche. Over the next couple of years, mobile applications will be integrated into
nearly all Web sites.

This book describes the WebSphere Everyplace Access offering and how it can
be used to design, develop and deploy mobile Web applications.

The offering bundle includes a wide variety of software, which enables a Web
application to be accessible using different types of devices, such as mobile
phones with Internet capabilities, PDAs, phones using voice, and so on...

This chapter will introduce the WebSphere Everyplace Access offering.

The second chapter will give a short overview of mobile technologies.

The third chapter in this first part of the book will discuss the voice technologies.

1

© Copyright IBM Corp. 2001 3

1.1 Definitions

Pervasive, mobile, wireless and many other terms constitute a confusing
terminology which makes it difficult to have a common understanding of our
topic. The problem always starts with classifying sophisticated systems, when it
is discovered that the terms mean different things to different people. For the
sake of consistency in this book, the terms will be used as shown in Figure 1-1:

Figure 1-1 Terminology

The term mobile applications also needs some explanation. Mobile in this
context means that the application is not only accessible from a desktop browser
but also from different types of devices, using different connections, from different
locations.

In this book, those mobile Web applications, which must be adapted to the
specific requirements of mobile clients, will be introduced.

1.2 Business drivers

The Internet has built up a great network and people have learned how to take
advantage of the huge amount of content available through it. Mobile applications
and wireless access are the next step. Nowadays, the problem is not whether the
required information is available, but how fast and easily it is accessible.

pervasive computing

mobile applications

wireless access
4 Mobile Applications with IBM WebSphere Everyplace Access Design and Development

The mobile solution space is an endless landscape because there are so many
possibilities and requirements. Nowadays, there are no regulations and no
convergence between the different specifications; the whole field is developing
fast.

To meet the maximum number of requirements, an accurate and solution-specific
market study is an essential part of the project. It can help to narrow down the
possibilities and determine the necessary resources and applicable
technologies. The customer also gets a clear view of the possibilities, and can
specify his/her requirements accurately.

“Many IT organizations today are overwhelmed by the prospect of trying to tackle

wireless development with already strained resources. In addition, the demand

for mobile applications is often urgent, as companies come to view wireless tech-

nologies as a strategic means of seizing competitive advantage.” - from the doc-

ument Wireless Enterprise Applications for Mobile Information Management -

Development Options and Business Decisions, Palm Inc.

This book discusses the WebSphere Everyplace Access V1R1 offering. We will

talk about how to develop a mobile Web application to meet different business

requirements using this offering.

WebSphere Everyplace Access delivers value to three types of businesses, as
shown in Figure 1-2:

Figure 1-2 Business types using WebSphere Everyplace Access

Wireless
Service
Provider

Hosting
Service
Provider

Enterprise

Internet Internet

wireline
voice

network

wireless
data

network

wireless
voice

network
 Chapter 1. Introduction to IBM WebSphere Everyplace Access V1R1 5

The three types of businesses are:

1. Enterprise - The original source of information and services.

2. Wireless Service Providers - The gateway for mobile devices to the Internet.
Mobile Service Providers (MSP) focus on services to the end-users.

3. Hosting Service Providers - These focus on providing extended and
outsourced services for enterprises.

Any of these types of businesses might deploy the WebSphere Everyplace
Access offering. Furthermore, some of these deployments involve integration
among the different businesses.

1.3 WebSphere Everyplace Access in this book
This book will show how to design and develop mobile e-business applications
using WebSphere Everyplace Access. It is important to understand that we only
include those solutions in this book which are based on this offering. There are
many other mobile solutions in existence which require services that this offering
cannot provide.

WebSphere Everyplace Access provides great flexibility for mobile application
development; it utilizes the existing infrastructure and builds from the existing
solution. However, this also means that, since it relies on the underlying
infrastructure, it does not provide all the required services (for example,
end-to-end security).

For more information about other offerings within WebSphere Everyplace Suite,
refer to Chapter 20, “Introduction to WebSphere Everyplace Suite” on page 401.

The following sections list the individual products bundled in the WebSphere
Everyplace Access offering.

Note: This offering is only one component of a solution for MSPs. For a
complete solution, MSPs should consider IBM's WebSphere Everyplace Suite
offering (which includes the principal components of the Everyplace Access
offering); for more information, see Chapter 20, “Introduction to WebSphere
Everyplace Suite” on page 401.

Note: Throughout this redbook, we will refer to WebSphere Everyplace
Access as WEA.
6 Mobile Applications with IBM WebSphere Everyplace Access Design and Development

1.4 Run-time applications
WebSphere Everyplace Access has three different run-time server applications
to run the mobile Web applications. To find out more about these run-time
applications and run-time patterns, refer to Chapter 6, “Runtime patterns” on
page 79.

1.4.1 WebSphere Application Server
WebSphere Application Server is the foundation for Web applications. This Java
application server ensures the run-time environment for the server side
application and its modules.

WebSphere Application Server Advanced Edition not only provides the run-time
environment for basic Web applications, but also provides the EJB run-time for
Enterprise Java Beans.

1.4.2 WebSphere Transcoding Publisher
WebSphere Transcoding Publisher is a key component in mobile solutions. It is
an intermediary server between the client and the server, and handles the
transformation from the source content coming from the server to the solution to
the client’s specific requirements.

1.4.3 WebSphere Voice Server
WebSphere Voice Server brings voice enablement to mobile solutions. It runs
VoiceXML browsers for the telephone clients, these can connect to the Web
application on one end and can serve the phone clients on the other end.
WebSphere Voice Server requires additional elements to switch the IP-based
communication to the non-IP-based phone network.

WebSphere Voice Server comes with the WebSphere Voice SDK, which is the
development toolkit for VoiceXML applications.
 Chapter 1. Introduction to IBM WebSphere Everyplace Access V1R1 7

1.5 Development applications
WebSphere Everyplace Access also provides development applications to allow
developers to implement their solution. The following are included:

1.5.1 WebSphere Studio
WebSphere Studio is an integrated development environment for WebSphere
Application Server. The Studio provides a well-designed workbench for the user,
and the whole project is managed with all the assets included in the project.

WebSphere Studio has recently introduced several enhancements for mobile
applications, such as new markup language support, a new servlet and
JavaServer Pages for mobile devices.

1.5.2 VisualAge for JavaEE
VisualAge for Java is the integrated development environment for Java. It
provides a workbench to develop, debug, test and run all sorts of Java
applications. The WebSphere Test Environment is built into it, which allows the
developer to run and debug the Web application without a WebSphere
Application Server.

WebSphere Studio and VisualAge for Java are integrated together, so they
manage the Java source code and byte code between the two workbenches.
8 Mobile Applications with IBM WebSphere Everyplace Access Design and Development

Chapter 2. Overview of mobile
technologies

This chapter provides readers not familiar with the concept with a foundation for
understanding today’s mobile technologies.

The chapter is organized into the following sections:

� Wireless networks

� Wireless protocols

� Mobile devices

� Content and markup languages

� Service providers

To read more about mobile technologies, refer to the IBM Redbook entitled
Mobile Commerce Solutions Guide using WebSphere Commerce Suite V5.1,
SG24-6171.

2

© Copyright IBM Corp. 2001 9

2.1 Technology background
The next generation of mobile technologies is ready, and will quickly become
widespread. These technologies provide wide bandwidth, a large screen, and
plenty of computing power. They have all the capabilities of the powerful,
wire-connected desktops regarding network access and applications.

Handheld devices will not have larger screens in the future, but will have stronger
computing power and wide bandwidth access.

Problems like session management, lack of security and standards will be solved
by that time.

“The wireless world is changing quickly. Not only are new technologies and
standards emerging, but the market now has such momentum that it is attracting
a constant influx of new ideas, vendors and product entries. Make sure you have
a high level confidence that the wireless platform you choose is open to broad

vendor participation and able to incorporate advances from all directions.” - from

the document Wireless Enterprise Applications for Mobile Information Manage-

ment - Development Options and Business Decisions, Palm Inc.

2.2 Mobile accessibility
The term mobile covers a wide range of different devices. The mobile area is just
emerging and changing very fast, and new devices are being developed every
day. These devices have different types and modes of connections to the
networks. The following list gives an idea of the connection types that exist today:

� Infrared (IR) or cable connection between the device and a cell phone.

� Synchronization cradle connected to a machine or directly to the network.

� Dial-up wireline connection to a network.

� Wireless connection to a network server.

� Fixed wireless LAN within office buildings, airports, hotels, convention
centers, etc.

� Wireless Personal Area Networks (PAN), connecting devices together within a
very short range.

� Voice - wireless, wired.
10 Mobile Applications with IBM WebSphere Everyplace Access Design and Development

2.3 Wireless networks
Wireless networks are used to transmit data between mobile devices or personal
computers using wireless adapters without the use of a physical cable or wire. In
this section, we will describe these wireless networks.

2.3.1 Mobile communications network history
In cellular radio networks, the area covered by one base station is reduced and
other base stations are installed with small overlapping areas. Adjacent cells
need to use different frequencies to avoid interference, but the same frequency
can be reused in non-adjacent cells, as seen in Figure 2-1.

Figure 2-1 Frequency reuse

Because the coverage area is split into many cells, it may happen that a moving
user passes from one cell to another. In this case, in order to guarantee the
highest communication quality, the mobile device needs to switch to one of the
frequencies of the new cell.

Networks are either circuit-switched or packet-switched. With circuit-switched
networks, the network resources are assigned to a single connection for the
whole duration of the communication. This dedicated channel remains allocated
even in those time frames when no data is sent over the channel. Voice traffic is
typically sent over circuit-switched connections. Data services are very different
in nature from voice services. In typical voice communications, you usually have
very short idle times between two consecutive transmissions, which means that
the allocated channel is intensively used during the communication. The situation
for data traffic is quite different. Consider the case of a user browsing the
Internet. When a user sends an HTTP request from a PC browser client, they

Frequency 1

Frequency 4

Frequency 1

Frequency 3

Frequency 3

Frequency 2

Frequency 4

Frequency 2

Frequency 1Frequency 1Frequency 1
 Chapter 2. Overview of mobile technologies 11

then receive a response page for display of the content. In this phase, the user is
operating offline and is not using the network. At that time, the resource could be
assigned to other users waiting to transmit. This is the typical situation of data
services and in such cases a packet-switched technology is highly preferable.

In packet-switched networks, no permanent channel is allocated to a single
connection. Data is transmitted in the form of packets and the network resources
are allocated on-demand. This also means that any single channel can be
shared among different users and that the network resources are better
exploited, because they are allocated only when effectively needed.

Wireless network generations
When looking at how wireless networks have evolved, the different phases and
characteristics of wireless networks are often referred to as generations: 1G for
the first generation, 2G for the second generation, and so on. Today, the latest is
the 4G, which is under development.

The first generation (1G) cellular systems were analog and implemented with
such technologies as AMPS. The network was introduced in 1983 in the United
States and was used for voice capability.

Second-generation (2G) systems were introduced in the 1990s. Some of the
technologies implemented include TDMA, CDMA, and GSM. 2G systems were
used primarily for voice.

Some 2.5G systems have been implemented recently, such as HSCSD and
GPRS. HSCSD is a circuit-switched extension of GSM that allows an increase in
the bit rate by combining more than one timeslot in the GSM radio interface.
GPRS can be considered a packet-based extension of GSM and provides higher
data throughput.

Third-generation (3G) systems are expected to be implemented over the next few
years and will be called IMT-2000. 3G networks provide higher-speed
transmission to support high-quality audio and video, as well as global roaming
capability.
12 Mobile Applications with IBM WebSphere Everyplace Access Design and Development

This evolution path of wireless network generations is represented in Figure 2-2.

Figure 2-2 Evolution path from GSM to UMTS

2.3.2 GSM
The standard was proposed in 1982 and completed in 1990, and the first
networks were deployed in 1991. The main reason behind the introduction of
GSM in Europe was to provide a common standard for European cellular
communications, which allowed subscribers to roam throughout Europe and
access cellular networks in each country with the same equipment.

Today, GSM is the most important and widespread mobile standard worldwide.
Many variants of GSM have been created for different frequency ranges. GSM
technology in the form of DCS1900 is available in North America, and often
referred to as Personal Communications Services (PCS) systems.

In a GSM network, the subscriber is considered an entity separate from the
device. This means that the subscriber identity can be transferred from one
physical phone to another, without reprogramming the device. This is
accomplished by means of a Subscriber Identity Module (SIM), which is a small
smartcard inserted into the mobile phone.

Each GSM subscriber is uniquely identified by the International Mobile
Subscriber Identity (IMSI), which is stored on the SIM card.

2G

2.5G

3G

GSM
9.6 Kbps

HSCSD
57.6 Kbps

GPRS
172.4 Kbps

EDGE
384 Kbps

UMTS
2 Mbps

1998 1999 2000 2001 2002
 Chapter 2. Overview of mobile technologies 13

The physical device is identified by the International Mobile Equipment Identifier
(IMEI), which is embedded in the device.

One important service of the GSM network is the Short Message Service
Point-to-Point (SMS-PP). It allows the GSM phone to send and receive short
messages, using the network’s control channel to transfer the information. This
means that no circuit-switched connection is established and the message can
be stored, then forwarded when the phone is able to accept the message. The
GSM Short Message Service allows the phone to act as a two-way alphanumeric
pager.

2.3.3 GPRS
General Packet Radio Service (GPRS) is the packet-based extension of the GSM
network. GPRS is a fundamental step in the migration from GSM to 3G networks.
GPRS can support data traffic over packet-based connections with a higher bit
rate than GSM (up to 172.4 kbps). GPRS introduces three additional coding
schemes (CS) for the data that is transmitted across the radio interface, with
respect to the single coding scheme existing in GSM. These coding schemes
provide different degrees of error correction and, consequently, different
bandwidths.

One important consideration is that most GSM operators are building GPRS on
top of the existing GSM infrastructure and are continuing to use GSM for voice
traffic. This means that the radio resources must be shared between GSM and
GPRS traffic and all timeslots cannot be allocated at one time. One important
feature of GPRS and, more generally, of all packet-based networks is that the
user is always connected to the network. Value-added services based on
information push, such as online e-mail and remote monitoring, provide great
advantages from this kind of network.

The GSM technology, even if based on a circuit-switched core network, is
packet-based as far as the radio interface goes, because information is
transmitted in bursts over the air interface. GPRS can be built on top of the
existing GSM infrastructures, thus allowing a partial reuse of the pre-existing
equipment.

2.3.4 Mobitex
The Mobitex technology was originally developed in Sweden in 1984. This
network now operates in 23 countries. Mobitex is the network used in the U.S. by
Palm.Net, as well as by many other wireless service providers.
14 Mobile Applications with IBM WebSphere Everyplace Access Design and Development

The data rate of a Mobitex wireless channel is 8 kbps. The network latency is
relatively high and varies significantly. Both mobile devices and fixed terminals
are treated equally in terms of addressing. Any entity can communicate with
every end system in the Mobitex network. It is even possible to address end
systems at other network providers if they are interconnected. Mobitex takes care
of all the needed routing. So, different Mobitex networks may be interconnected
and packets may be transferred between them, in the same way that you would
establish international phone calls or communication between two telephone
carriers. Mobitex mobile and fixed terminals are both identified and addressed by
a Mobitex Access Number (MAN), which has an eight-digit value. MANs are
unique worldwide and are assigned by the device manufacturer. Every Mobitex
network provider has its own address range to assign MANs to fixed terminals. A
Mobitex mobile device even keeps its MAN when roaming between different
network providers.

Mobitex has been designed to be a messaging system, where small amounts of
data have to be transmitted at irregular intervals. The transmission
characteristics are not well suited to routing IP traffic. One problem is the high
variance in network latency, which makes it hard for the network to decide
whether a packet should be regarded as lost or simply delayed.

2.3.5 CDPD
Cellular Digital Packet Data (CDPD) is a wireless, packet-switched network
technology. It was built on top of the AMPS infrastructure by adding the required
capabilities for packet management and routing. Roughly speaking, CDPD is the
packet-based extension of AMPS, which is circuit-switched, exactly as GPRS is
the packet-based extension of GSM.

CDPD inherently uses Internet Protocol (IP) as the protocol for sending and
receiving data. IP includes protocols that take care of such essential functions as
authentication and encryption, and provides a maximum raw data throughput of
19.2 kbps.

The wireless CDPD Network Controllers, connected to the base stations, route
the packet traffic between the CDPD phones and the Internet, and also manage
the handover between cells. One of the most useful features of CDPD is the
ability to find open voice channels and use them for data.

Since CDPD relies on an AMPS cellular network, it is not available outside of
North America and some Latin American countries.
 Chapter 2. Overview of mobile technologies 15

2.3.6 PDC
Personal Digital Cellular (PDC) is a Japanese cell phone standard. The data
transmission rate is 9.6 kbps. Almost all the cell phones used in Japan are based
on PDC.

2.3.7 IMT-2000
International Mobile Telecommunications-2000 (IMT-2000) is a 3G wireless
system. IMT-2000 offers support for a wide range of mobile devices and includes
links to terrestrial and/or satellite-based networks; the terminals may be designed
for mobile or fixed use.

Key features of IMT-2000 are:

� Support of different access networks, both terrestrial and satellite.

� Multi-mode and multi-band terminals.

� Virtual Home Environment (VHE) - the user should have access as much as
possible to the same set of services and to the same look and feel, regardless
of the access network, the terminal capabilities, and the current location.

� Very high data throughput.

� Worldwide roaming capability.

� Capability for multimedia applications.

UMTS
The Universal Mobile Telecommunications System (UMTS) is the European
implementation of the 3G wireless phone system. UMTS, which is part of
IMT-2000, offers global roaming and personalized features. UMTS was designed
as an evolutionary system for GSM network operators, and offers impressive
data rates of up to 2 Mbps. UMTS uses the W-CDMA technology. GPRS and
EDGE are interim steps that will speed up wireless data for GSM.

W-CDMA (DS-CDMA)
The Direct Spread - Code Division Multiple Access (DS-CDMA) specification is
supported by Ericsson (Sweden) and Nokia (Finland). This technology will be
used mainly in Europe and Japan. The data translation rate is 64 kbps for
upstream and 384 kbps for downstream.
16 Mobile Applications with IBM WebSphere Everyplace Access Design and Development

cdmaOne
Code Division Multiple Access (CDMA) is a specification of wireless
communication. Voices from multiple users are transformed by multiplying
different codes and transferred all together as one frequency. The receiver can
detect only the sender’s voice and decode it. The cdmaOne is one standard of
3G cell phones that uses the CDMA protocol. It is used in North America and
Asia. The data transmission rate is 14.4 kbps.

CDMA2000 (MC-CDMA)
The Multi Carrier - Code Division Multiple Access (MC-CDMA) specification is
supported by Qualcomm (US) and Lucent Technologies (US) and will be the
North American standard. Compared to W-CDMA, it is easier for the carriers of
cdmaOne to migrate their facilities or learn management know-how. The
maximum data translation rate will be 14.4 kbps while fast moving, 384 kbps
while slow moving, and 2 Mbps while at a standstill.

2.3.8 Wireless LANS
A wireless LAN is a local area network that transmits over the air, typically using
an unlicensed frequency such as the 2.4 GHz band. A wireless LAN does not
require lining up devices for line-of-sight transmission such as IrDA. Wireless
access points (base stations) are connected to an Ethernet hub or server and
transmit a radio frequency over an area of several hundred to a thousand feet.
This frequency can penetrate walls and other non-metal barriers. Roaming users
can be handed off from one access point to another like in a cellular phone
system. Laptops use wireless modems that plug into an existing Ethernet port or
that are self-contained on PC cards, while stand-alone desktops and servers use
plug-in cards (ISA, PCI, etc.).

There have been numerous proprietary products on the market for home and
office, but now most manufacturers are adopting the standard IEEE 802.11b,
which defines a maximum data rate of 11 Mbps. Bluetooth and HomeRF are
other home and small-office technologies. Such systems have a more limited
range and do not support roaming. Small wireless LANs are sometimes called
personal area networks (PANs), since one of their primary uses is to serve an
individual connecting a laptop or PDA to a desktop machine.

2.4 Wireless protocols
Wireless protocols are used to connect mobile devices to the Internet. Many of
the wireless protocols have defined architectures that optimize the use of the
radio resource and also minimize the capabilities required for the device.
 Chapter 2. Overview of mobile technologies 17

2.4.1 HTTP protocol
The most obvious way of accessing Web-based applications from a mobile
device is to use the same protocol and content type used when accessing the
Internet from PC browsers over a wireline network connection.

This approach, which is very suitable for wired connections, presents many
limitations when adopted over wireless networks. In fact, when using TCP/IP
based protocols (such as HTTP) over wireless mobile networks, you have to deal
with the fact that radio networks usually have much less bandwidth and a higher
latency than local or wide area networks. Moreover, wireless connections are
less stable in nature than wired connections and also unpredictable in terms of
availability. TCP/IP-based protocols work well over wireless connections.
However, the performance is slow.

Additionally, most mobile devices have limitations in display capabilities and may
not be able to deal with all the features of full HTML. Sending full HTML to mobile
devices can be useless in some cases, considering that some of this information
will be ignored by the client browser. Due to the limited bandwidth and capability
of mobile devices, simplified markup languages have evolved that are optimized
for the limited bandwidth available and the limited capabilities of the mobile
device.

As the next-generation networks (for example, IMT-2000/UMTS) become
available, providing very high data throughputs, the HTTP/HTTPS protocols and
HTML markup language become a much more viable solution for mobile devices.

2.4.2 WAP
The Wireless Application Protocol (WAP) is a standard for providing cellular
phones, pagers, and other handheld devices with secure access to e-mail and
text-based Web pages. Introduced in 1997 by Phone.com, Ericsson, Motorola
and Nokia, WAP provides a complete environment for wireless applications that
includes a wireless counterpart of TCP/IP and a framework for telephony
integration, such as call control and phone book access.

WAP features the Wireless Markup Language (WML), which was derived from
Phone.com's HDML and is a streamlined version of HTML for small-screen
displays. It also uses WMLScript, a compact JavaScript-like language that runs in
limited memory. WAP also supports handheld input methods such as a keypad
and voice recognition. Independent of the air interface, WAP runs over all the
major wireless networks in place now and in the future. It is also
device-independent, requiring only minimum functionality in the unit so that it can
be used with a wide variety of phones and handheld devices.
18 Mobile Applications with IBM WebSphere Everyplace Access Design and Development

WAP was developed because of the strong limitations of both mobile devices and
wireless networks. Most wireless devices are often very limited in terms of
display, processing power and available memory. Moreover, wireless networks
themselves are characterized by limited bandwidth and high latency. In order for
wireless devices to be able to access Internet content in a way similar to wireline
PC browser clients, WAP was developed.

2.4.3 M-services
Mobile Services (M-services) are a new initiative from the WAP Forum. After a
couple of years developing the Wireless Application Protocol, the Forum has
started to work out a new protocol to replace the WAP. WAP technology reached
its new version, but the coming communication technologies require new
services and support on the application level.

The new protocol is supposed to be based on WAP, building from the best
technologies, and leaving the weaknesses behind.

M-services bring new functions and features to the handheld devices on the
application level, for example: enhanced application support for the devices,
advanced GUI and peripheral support, and modular, pluggable software.

For more information about M-services, refer to Openwave’s Web site for
documentation at http://www.openwave.com.

2.4.4 i-mode
i-mode is a wireless service developed by NTT DoCoMo in Japan. It is designed
to provide mobile phone voice service, Internet and e-mail access. The i-mode
protocol uses compact HTML (cHTML) as its markup language for the same
reasons that WAP use WML.

In order to develop i-mode applications, you will need to enter into a
confidentiality agreement with NTT DoCoMo. The agreement will allow you
access to the i-mode proprietary APIs to develop secure i-mode applications.
NTT DoCoMo’s i-mode service is predominately used in Japan.

There are three major carriers for wireless connectivity of mobile phones in
Japan:

� NTT DoCoMo
� KDDI
� J-PHONE
 Chapter 2. Overview of mobile technologies 19

Each of the carriers provides Internet connectivity service for their mobile phone
users. Each has a gateway center to translate the wireless transmission from the
mobile phone to the TCP/IP protocol so that it can be sent over the Internet.

The carrier provides Internet e-mail service with an address such as
xxxx@docomo.ne.jp. There is a one-to-one correlation of e-mail address and
phone number. The outbound e-mail is transferred through the gateway to the
Internet. The inbound e-mail is routed through the gateway and notification is
sent to the mobile phone that an e-mail has been received.

Each carrier in Japan has an Official Site service. The content provider (Web site
or commerce site) needs to register with the carrier to become an Official Site.
Once the content provider is approved as an Official Site, it gains access to many
benefits from the carrier. For example, Official Site content providers are listed on
the home page of mobile phones serviced by the carrier. The carrier acts as a
portal site when the user of the mobile phone accesses the Internet. This feature
is always turned on and is not customizable by the user.

The carrier can use the mobile phone unique identifier (in some cases, that is
supplied by the carrier gateway) and the IP address of the carrier gateway to
build a secure system.

Voluntary Site access is free. All that is needed to make content available for a
Voluntary Site is the appropriate markup language. One disadvantage is that you
cannot get any mobile device-related information from the carrier.

2.4.5 Web Clipping
Web Clipping is a proprietary technology developed by Palm. The main elements
that constitute the Web Clipping architecture are the Palm device, a Web
Clipping proxy server, and the content server. In order to support Web Clipping, a
special piece of software called a Clipper must be present on the Palm device.
This application is a built-in component of all new Palm devices since the Palm
VII. However, some third-party software (for example, OmniSky) can be used to
make Web Clipping applications available also on Palm V and IBM WorkPad
devices. The Clipper is able to interpret and properly render a proprietary format
called Web Clipping Application (WCA) format. This format makes it possible to
reduce the amount of data transferred over the air and the required storage on
the Palm. The content that is retrieved from the content server is in HTML format.
The Web Clipping proxy is in charge of translating the HTML content into this
proprietary WCA format. There are many available proxies that can be used for
this, all hosted by Palm.Net. Web Clipping uses the HTTP/HTTPS protocols.
20 Mobile Applications with IBM WebSphere Everyplace Access Design and Development

There are two main components to consider when writing Web Clipping
applications:

� The Web Clipping application itself, which has to be installed on the device.

� The server side application, which returns the result pages to the device.

A Web Clipping application is like a small Web site stored locally. The starting (or
index) page usually provides a form, that is, a list of links, which are the gateways
to the live data provided by the server.

Result pages (clippings) are returned by the server side application as a
response to the request from the Web Clipping application. The result pages are
written in HTML.

Web Clipping proxy server
A key component of the Web Clipping solution is the Palm Computing Web
Clipping proxy server that resides at the 3Com Corporation’s data center. The
Web Clipping proxy server is responsible for converting the standard Internet
protocols and content from a Web page into a form that is tuned for transmission
across a wireless network and for display on a small device.

Figure 2-3 Web Clipping proxy server

As shown in Figure 2-3, the Web Clipping proxy server uses the standard
Internet protocols (TCP, HTTP, SSL) to access Web servers. To ensure
compatibility, the requested pages are in HTML format.

Wireless
Data Network 3Com Data

Center

Compression
Encryption

UDP

HTTP
SSL
TCP

Palm

Sports

Internet

Travel

Directions

Stocks
News

Base Station

Base Station

Base Station
 Chapter 2. Overview of mobile technologies 21

The Web Clipping proxy server implements a reliable layer over the UDP protocol
to talk to the Palm device; this protocol reduces latency and conserves battery
power relative to using TCP.

In Web Clipping, encryption and authentication between the handheld device
and the Web Clipping proxy server is performed by Elliptic Curve Cryptography
from Certicom Corporation, which offers extremely high levels of security at small
key sizes. On the server side, the high-strength SSL is used for encryption and
authentication between the Web Clipping proxy server and Web servers
providing HTML content.

2.5 Mobile devices
We have placed the mobile devices into three categories to better describe the
specific features that they offer. In practice, there is an ever-growing number of
hybrid devices. For example, the Ericsson R380 WAP phone also has the
capabilities of a PDA.

2.5.1 Phones for voice interaction
Everyone is familiar with phones with either analog or digital connections. In most
cases, voice applications use not only the voice input and output but the numeric
keypad as well. The keypad is capable of sending interactive responses from the
user, which is faster, more reliable and easier than using voice for the same
function.

For voice applications, it does not matter if the device is a wireless (mobile)
phone or a normal desk phone. The key is that the application is mobile, not the
phone itself, which means that the user can reach the same application on any
phone from anywhere. If the phone is a wireless one, it means that the user has
more freedom to use the same phone anywhere.

2.5.2 Mobile phones
When we refer to a mobile phone in this redbook, we are talking about mobile or
wireless phones that have a microbrowser to access Internet content. Other
names for a mobile phone include cell phone and wireless phone.

A standard mobile phone includes the following capabilities:

� Voice

� Messaging (SMS or WAP push)

� Data (can access Internet content through a microbrowser)
22 Mobile Applications with IBM WebSphere Everyplace Access Design and Development

2.5.3 PDAs
A Personal Digital Assistant (PDA) is a handheld computer with a wireless
interface that serves as an organizer for personal information. PDAs often have a
pen-based stylus to tap selections on menus and to enter printed characters. The
unit may also include a small on-screen keyboard that is tapped with the pen.
Data is synchronized between the PDA and desktop computer via cable or
wireless transmission.

We are interested in PDAs that have wireless transmission capability and include
a Web browser. The major operating systems for PDAs are Palm OS, Epoc, and
Windows CE. Table 2-1 displays the major wireless PDAs, operating systems,
device manufacturers, and protocols used.

Table 2-1 PDA operating systems, manufacturers and protocols

Palm
The base for this solution is not the device, but the operating system (OS). The
OS called PALM OS is used with a wide range of devices, including the Palm, the
IBM WorkPad, and the HandSpring Visor. This device has built-in mobile
capabilities, and works as a mobile phone with a data connection.

PDA
type

PDA
operating system

PDA
manufacturer

Protocol

Palm PALM OS Palm III, V, VII, m505,
m510

HTTP, WAP,
Web Clipping

IBM WorkPad PC HTTP, WAP,
Web Clipping

Handspring Visor HTTP, WAP,
Web Clipping

PocketPC Microsoft Windows CE Compaq iPac HTTP, WAP

HP Joranda HTTP, WAP

Casio E-125 HTTP, WAP

EPOC Symbian Epoc32 Ericsson R380 WAP

Nokia 9210 Communicator WAP

PSION Series 5mx,
Series 7, REVO, REVO
PLUS

WAP
 Chapter 2. Overview of mobile technologies 23

Like many other operating systems on the market, the Palm OS comes in
different editions. The most widely used editions are: V3.x and the latest, V4.0.
All the versions are improvements on the previous versions. It is important to
note that some of the software relies on a specific version of the OS.

Palm OS has the capability of running several different browsers to access
Internet content, including:

� HTTP browser

� WAP browser

� Web Clipping browser

HTTP browser
The HTTP browsers on Palm OS are like any other HTTP browser used to
access Internet content, such as Netscape Navigator or Microsoft Internet
Explorer.

From a mobile Web application standpoint, there are some key features required
by the browser:

� Secure Socket Layer (SSL)

� Forms

� Cookies

There are several HTTP Web browsers available for Palm OS as follows:

� Intellisync Browse-it

This browser features impressive display capabilities, even for the small PDA
screen. The browser supports a secure connection and cookies, and the
proxy server is configurable. The browser requires a proxy server from the
service provider. The software and the proxy service are available at no
charge.

� Handspring Blazer

This is a great browser for a small device such as a PDA. It has all the
required capabilities, such as images (black and white, gray, color), security
(requires a proxy at the provider), cookies, and HTTP proxy. It supports
HTML, WAP (WML/HDML), and cHTML. The browser and the service are not
free anymore; however, the browser is shipped together with the Handspring
PDAs.
24 Mobile Applications with IBM WebSphere Everyplace Access Design and Development

� AvantGo AvantGo

This browser, just like the previous one, supports all the necessary functions.
The presentation is average. It does not support an HTTP proxy server, but
this is not required. AvantGo is a well-known and long-running product that is
available at no charge. It requires a proxy server for content providing. The
service is free.

� OmniSky OmniSky

The OmniSky browser is basically the same as the Palm VII built-in Web
Clipping viewer.

� Qualcomm EudoraWeb

This is the only browser at this time that uses a true SSL connection.
Unfortunately, the software is not free. The browser comes with all the
required features, and supports a proxy. Using the software with the Palm OS
Emulator, the Name Server IP address has to be defined (use the nslookup
command at the command prompt to determine the Name Server IP).

There are many other HTML Web browsers for PALM OS; every day, a new one
is coming out. The presentation is constantly improving, most of the required
features (cookies, HTTP proxy, etc.) are supported, and strong encryption is
used.

WAP browser
Palm uses the same WAP browsers as WAP phones. The main difference is the
size of the screen.

Some WAP browsers are:

� EdgeMatrix WAPman

This is a commercial WAP browser with WTLS security features.

� 4thpass Kbrowser

This is a browser that does not require WAP gateway, and operates over
HTTP.

These browsers provide a big screen with WAP wireless access. Considering the
air-time and the small amount of content, it is reasonable to use WAP browsers
on a Palm device.
 Chapter 2. Overview of mobile technologies 25

Web Clipping browser
To achieve the goals of long battery life, low service cost and Internet-like
performance with low bandwidth, Palm Computing took a different approach to
accessing information on the Web. Browsing does not make sense for a
handheld device with a small screen and low bandwidth. The Web Clipping
solution is like clipping an article out of a newspaper to get the part that is
needed, and nothing more.

Proxy servers
Some of the above-mentioned browsers require a server called a proxy, which is
a server between the Web browser client and a Web server. The proxy is
necessary for security purposes. These small devices are usually not capable of
calculating heavy encryption keys, such as SSL. Therefore, the device uses a
light (but strong enough) encryption method between the client and the proxy;
then the proxy connects to the Web server using SSL.

The problem is that the client cannot do anything with server certificates,
because the proxy handles the security. Usually, proxies only accept certificates
predefined by the service provider (which runs the proxy). If the destination Web
server certificate is not in the proxy database, the client cannot connect to the
site securely. This is a common problem during the development of Palm Web
applications.

PocketPC
PocketPC devices use the Microsoft Windows CE (WinCE) operating system.
The latest version (3G) is called PocketPC, which is similar to the well-known
Windows operating system, but optimized and developed especially for
PocketPC mobile devices.

The Pocket PC uses a customized version of the Windows CE 3.0 operating
system, built by Microsoft and used specifically in Personal Digital Assistants
(PDAs), such as the Compaq iPaq and the Hewlett-Packard Jornada. While this
customized version is only used in PDA-type devices, Windows CE 3.0 can be
used in a wide variety of devices including industrial automation devices, Internet
access devices, Web terminals, kiosks, consumer electronics, or retail and
point-of-sale devices.

HTTP browser
WinCE/PocketPC is capable of running more advanced Web browsers, such as
the WinCE/PocketPC version of Internet Explorer called PocketIE. The software
is freely available for download from the Internet.

The browser supports the required features to access any Web site with support
such as SSL, cookies, and proxy server configuration ability.
26 Mobile Applications with IBM WebSphere Everyplace Access Design and Development

If the recommended design method is using simplified HTML, cut down the
content; avoid using big images, nested tables, JavaScript, and Java.

WAP browser
Since WinCE/PocketPC devices are powerful enough to run sophisticated Web
browsers, the availability of WAP browsers is very limited. Eventually, an
application may require a WAP browser on a WinCE/PocketPC device, but there
are better applications.

Some examples of WAP browsers for WinCE/PocketPC are:

� Ezos’s EzWAP V1.0 for all Windows platforms

� Ezos’s EzWAP V2.0 for PocketPC only

EPOC
Symbian’s EPOC is an emerging operating system on the wireless PDA market.
Some examples of manufacturer devices that use EPOC are:

� PSION Series 5mx, Series 7, REVO, REVO Plus

� Ericsson R380

� Nokia 9210 Communicator

You may notice that the devices are very different from each other. The operating
system for these devices is EPOC, but the applications are different.

HTML browser
The most powerful browser for EPOC is the latest version of the freely available
browser called OPERA. This browser was originally available for PCs.

WAP browser
Since the Ericsson R380 and the Nokia 9210 are mobile phones or
communicators, they have built-in WAP browsers.

2.5.4 Wireless laptops
This category includes laptops, notebooks, or portable PC browser clients that
have a wireless interface to the network for Internet access. These clients use
standard TCP/IP protocols and a standard browser, such as Netscape Navigator
or Microsoft Internet Explorer. The wireless connection is usually much slower
than wireline-based network clients.
 Chapter 2. Overview of mobile technologies 27

2.5.5 Mobile device pros and cons
The following is a list of pros and cons for mobile devices. Keep in mind that this
list is not exhaustive.

Pros of mobile devices
� Portability

The user can receive information anytime and anywhere by e-mail or a direct
phone call. This enables people to receive information instantly.

� Easy operation

Mobile devices can be switched on instantly. The user can operate a cell
phone with a single hand, or even with just one finger or thumb. Also, a power
cable is not needed.

� Low cost

Mobile devices consume very little power, and are relatively cheap compared
to a PC browser client.

Cons of mobile devices
� Quality of line connection

The connection speed to the Internet is relatively low. The connection can
sometimes be terminated when a user is simply going outside because of
interference, being out of range, or out of frequency.

� Security

The biggest problem in this area is the lack of security standards; each
manufacturer and service provider has its own proprietary solution for
security.

Unfortunately, the devices cannot use strong encryption, because they have
weak computing capabilities, which makes it more difficult to provide a
standard for security.

Typically, the password is not visible when you enter it on a PC (* is shown).
On a mobile phone, the four or six digits of numeric characters are often used
and the codes are visible, resulting in lowered security.

� Poor user interface

It is difficult to enter characters from a standard keypad on a mobile device.

The key layout is different from device to device and there is no pointing
device supported as in Windows.

� Small display and cache
28 Mobile Applications with IBM WebSphere Everyplace Access Design and Development

� No cookie support (in certain devices)

It is not easy to maintain sessions between a mobile device and Web servers
without a cookie. Some alternate techniques should be used.

Session management, just like security, is a problem. An alternative to
cookies is using unique ID for the devices, but not all devices or gateways
support retrieving a unique identifier.

� No client side scripting support

� URL length limitation

On some devices, the maximum length of a URL is 400 bytes.

2.6 Emulators and mobile clients
During development, emulators and real mobile clients (devices) are utilized. It is
important to understand the difference between these terms. The following
paragraphs give a high-level overview of the following:

� Real devices

� Emulators

� Simulators

Real devices are the best for development and testing. The problem with real
devices is that they are expensive and usually require additional infrastructure,
which makes them even more expensive. Furthermore, real devices can be
slower than emulators, because of the real environment.

Emulators are the software equivalent of the original device. The wireless
emulators, introduced in this book, are running on a desktop client. The
emulators provide the same user experience on the screen, but they are
emulating the network connection to the Internet via the operating system’s
network connection. Usually, emulators are running the same code as the real
devices; the ROM images from the devices are interpreted by the emulator and
the same applications are running real-time on the emulator machine. Emulators
are easy to use and inexpensive. Unfortunately, they are not perfect copies of the
original devices. However, they are perfect for development and for unit testing.

Simulators are special devices which copy the behavior of the original device.
The point is to simulate the runtime environment of the device. In most cases,
simulators also have monitoring, debugging and tracing facilities built in.
Simulators are expensive devices, and are best for hardware development.
 Chapter 2. Overview of mobile technologies 29

2.7 Content and markup languages
Markup languages are a set of labels that are embedded within text to distinguish
individual elements or groups of elements for display or identification purposes.
The labels are typically known as tags. Markup languages identify elements
within a continuous stream of text.

Our intention is not to document how to use the following markup languages, but
to provide insight on how they are used within the context of mobile application:

� HTML
� HDML
� WML
� cHTML
� XHTML
� VoiceXML
� XML

To find out more about the different markup languages, see Chapter 10,
“Application development” on page 153.

2.8 Wireless Service Providers
A wireless service provider is an organization that provides wireless services to
its customers, including cellular services, satellite services and Internet Service
Providers (ISPs). In this redbook, we are interested in wireless service providers
that provide Internet access. When developing mobile applications, it is very
important to understand the wireless technologies supported by the wireless
service provider in the targeted mobile user’s area. The wireless service provider
dictates the wireless network type, wireless protocol and thus the markup
language used for application development, as well as the supported mobile
device type. In addition, it is important to understand the specifications of the
wireless service provider protocol gateway.

The protocol gateway of the wireless service provider, such as a WAP gateway,
can vary in specification and support. For example, one service provider may
support session control of mobile devices by its WAP gateway, and another
provider may not.

Nowadays, service providers are expanding their business and providing
different services for their customers in different fields, such as e-commerce on
mobile devices (m-commerce), one-way and instant messaging, entertainment,
news, financial services, supplementary services for phones, and so on.
30 Mobile Applications with IBM WebSphere Everyplace Access Design and Development

2.9 Where to find more information
To find out more about these topics, please refer to Mobile Commerce Solutions
Guide using WebSphere Commerce Suite V5.1, SG24-6171.
 Chapter 2. Overview of mobile technologies 31

32 Mobile Applications with IBM WebSphere Everyplace Access Design and Development

Chapter 3. Overview of speech
technology

This chapter introduces the underlying mechanisms behind speech technology.
Voice applications fall into two categories: those using speech recognition and
those synthesizing speech from text. After a brief description of each type of
voice application, we will discuss potential benefits of voice-enabled products in
different business areas.

3

© Copyright IBM Corp. 2001 33

3.1 Speech-enabled versus text-based applications
As competition in the industry began to increase over a decade ago, it was no
longer enough to allow users access to information via an automated system 24
hours a day and 365 days a year. Although services would continue to grow in
sophistication, as shown when speech recognition was included, it was also
crucial to make sure that the user’s specific needs were addressed. This meant
concentrating on how the user felt about the service. This move has been termed
Customer Relationship Management (CRM) or, as access to call centers,
automated services and information services has proliferated on the Internet,
e-CRM.

However, businesses are exposed to customers without geographical boundaries
and customers may not have constant access to devices that are physically
connected to a network. Wireless devices have invaded the market and have
already gained popularity among the general public. Modern customers require,
then, an increased degree of freedom when contacting call centers, possibly via
wireless communications. It is believed that by the end of the year at least 40% of
Web access will be done from wireless devices. For this reason, companies who
want to stay competitive in the market need to adapt to the new business
requirements. It is not expected that traditional methods of accessing information
will be replaced, but rather that new ones will be added to increase flexibility.
Speech is the obvious choice for extending access modalities, since it is the most
natural form of communication. Furthermore, voice frees customers from being
dependent on applications where selections could only be made using Dual Tone
Multi Frequency (DTMF) tones (that is, the telephone keypad) or mouse clicks. In
other words, speech enables users to interact naturally with applications, freeing
them from the limitations of DTMF applications. With appropriate use of
technologies, it can even allow users to control the automated system rather than
the system controlling the user.

We next describe the advantages and potential limitations of adopting
voice-enabled solutions. At present, voice applications do not have a specific
standard for their implementation. However, according to the ISO9241 (originally
developed for visual media applications), interfaces should meet the following
criteria:

1. Effectiveness

2. Efficiency

3. User satisfaction

This means that voice applications need to provide sufficient information to the
user to allow the completion of a given task in a productive way.
34 Mobile Applications with IBM WebSphere Everyplace Access Design and Development

3.1.1 Benefits of voice applications
The introduction of voice as an additional communication form to deploy
applications undoubtedly has numerous advantages, one being the ability to
access information without a computer. This feature has been a barrier for
communications in the past years, since people did not always have an active
network connection, for example when travelling. The use of telephony interfaces
has significantly improved the availability of information and voice-enabled
applications have made possible continuous access to remote data with the
added benefit of anonymity (though not necessarily in all cases).

Another advantage of voice applications is the speed of information retrieval.
Although voice recognition may be quite complex and not totally reliable (we will
see how voice recognition depends on the language and the speaker), it
facilitates the location of specific information by means of keywords or
sentences.

Voice applications typically use short, meaningful sentences to present the
operator with the available options. This has the advantage of focusing the
attention of the caller to the important parts of the application, whereas a
conventional Web site is normally filled with additional advertisements, images
and other pieces of information which may confuse and distract the user, rather
than guide him/her.

Additionally, voice-enabled products have introduced a new dimension to the
human-computer interface, as computers are now able to emulate a distinctively
human feature: speech.

3.1.2 Limitations of voice applications
Voice applications have a few significant limitations at present. Unlike their
traditional text-based counterparts, voice applications are only allowed to present
information sequentially. This means that the user must carefully listen to and
understand each element that is spoken. For this reason, it is not trivial to decide
how much information actually needs to be presented to users. Too little
information can create ambiguity, misunderstandings and the feeling of a rather
unnatural approach. Conversely, too many details may lead to confusion and the
user may then waste time trying to correct his/her mistakes. Hence, a good voice
application represents a balanced compromise that avoids too much or too little
information.

Another strong limitation of voice-enabled applications is the lack of persistence.
This means that these applications are incapable of retaining information over
time. In fact, while it is possible to keep visual details on a screen indefinitely,
speech is, by definition, a transient serial process. Persistence allows the user to
 Chapter 3. Overview of speech technology 35

maintain a link with the context of the application and to review part or all the
information presented by scrolling pages on a screen. The lack of persistence is
usually overcome by re-prompting for information when required (or after a
certain time, if no other action is requested). However, this solution is not ideal,
since the user is overloaded with details he/she may not need (as opposed to
using visual information, where the user can choose what he/she wishes to see
again). For further details, see also “Mental load” on page 117.

Voice-enabled applications have added an extra level of communication between
humans and artificial systems. However, the capacity to recognize words and to
speak them out using an artificial system is not as flexible as we could imagine.
Features like gender, loudness or dialects significantly affect the understanding
of spoken words and sentences, while speech production lacks the capacity to
associate a meaning to text, resulting in a very limited adaptability of intonation.

3.2 Speech recognition
The capability of computers to recognize human voice is called Automatic
Speech Recognition (ASR). This process converts sound waveforms into text.
Hence, another way of referring to it is speech-to-text. The development of
speech recognition systems is not an easy task, since many problems need to be
addressed:

� Human voices vary significantly from speaker to speaker because of accent,
intonation and other characteristics such as the gender of the speaker.

� A voice is generally mixed with noise during a conversation.

� People usually have a multitude of ways of referring to the same concept. For
example, if a user asks somebody to pick up a book from a table, any of the
following sentences may be used for the request.

• Can you bring me that book, please?

• Could you please bring me that book?

• May I ask you to bring me that book, please?

• Would you mind bringing me that book?

The listener, then, needs not only to understand the words in the sentence but
also to interpret them and perform the requested action. Unfortunately, being
able to reproduce such a degree of flexibility into an artificial system is no easy
task. Humans are trained to recognize speech with a high degree of variability
both in voice and scope (that is, the topic of the conversation, like sports, travel or
arts) and, although theoretically feasible, it is not possible to reproduce this skill
accurately in an artificial system because of resource (like memory and storage)
and performance constraints. In fact, speech recognition needs to be a real-time
36 Mobile Applications with IBM WebSphere Everyplace Access Design and Development

process to be of practical use for automated services. To help reduce response
times, speech recognition usually takes place within a well defined context, such
as making travel arrangements. This restriction bounds the number of words that
a speaker may use (you would not expect the speaker to describe his car or talk
about his job in this context, for instance) and simplifies the recognition process.

Depending on the features associated with the identification, voice recognition
systems can be classified according to their enrollment and speaking mode.
Enrollment accounts for the source of the speech, that is, the same speaker or
any potential one. The speaking mode refers to the temporal continuity of
speech. Both categories have two options, which are briefly described here:

� Speaker-dependent system

This system is tuned to recognize the voice of a specific speaker. In this case,
it is possible to take advantage of a detailed design, where many variables
can be determined with high precision. Consequently, the identification is very
accurate, but the solution is fairly rigid in the sense that another speaker
would probably be less well recognized.

� Speaker-independent system

With this system, speech recognition occurs for any speaker of a given
language. This is arguably the most flexible solution, but also the most difficult
to implement. Although the underlying models are similar for
speaker-dependent and the speaker-independent recognition, for the latter
significantly more data has to be used for training to ensure robust and usable
statistics. By comparison with speaker-dependent recognition, results may
turn out to be less accurate. Furthermore, if extensive training and testing are
required, this option can become a little more expensive than the
speaker-dependent system.

There is also a third possibility, which is to develop a speaker-adaptive system
where the recognition is automatically adapted for a new speaker. However,
this approach has not been implemented as often as the previous two.

Speech applications can also be categorized according to the modality with
which the recognition takes place:

� Discrete speech recognition

The identification is based on words, which are clearly identified by a starting
and ending point. For this reason, a typical speaker is usually required to
provide additional pauses to separate them. Although the identification
accuracy is improved, the process is not user-friendly for the speaker and
errors can be introduced because of the subjective interpretation of the pause
length.
 Chapter 3. Overview of speech technology 37

� Continuous speech recognition

People normally concatenate words when speaking and a recognition system
should account for that. However, the continuity of speech introduces further
complexity in the recognition model because it is more difficult to identify the
beginning and the end of words. The sound articulation changes when two or
more words are pronounced without interruption and speed tends to increase.
As a result, the recognition task becomes harder.

Speech recognition is now used in a variety of applications as described in
Section 3.5.1, “Speech reco applications” on page 56. However, there are
only two ways of deploying solutions embedding speech recognition: dictation
and control and command:

� Dictation

A dictation application uses recognition to interpret speech and translates it
into a text format. One of the limitations typical of these applications is the
number of words that the ASR engine can actually identify. Generally
speaking, dictation has to tackle the problem of unseen words in such a way
as to minimize errors. However, when the application is designed to respond
to a specific need, for example the transcription of mathematical formulas, the
vocabulary is quite restricted and the identification can be very accurate.

� Control and command

Applications in this category translate voice into actions. Hence, a system
incorporates some logic that maps specific words to commands. For example,
if such an application is used to control a computer and the operator says
“Close”, he/she may very likely wish to “kill” the active window. Clearly, people
have several ways of expressing a given concept and in the above example
the operator could have also used expressions like “Shut down the window” or
“Exit”. Moreover, the same control may need to be associated with different
actions depending on the context in which it was issued. So, for instance, the
word “Exit” can also refer to the ending of an application rather than the
closing of the active window. For this reason, the development of the logic
used to control other applications can be very complicated. One possible way
to solve this problem is to set up rules to determine the receiving object of an
action. For example, we could imagine a scenario where if a command is
issued and there are applications running in a window, the applications are
the first recipients of the controls (each with a given priority, possibly). When
no applications are running, the action is received by the window itself. So, if
there is a word processing session and the operator issues an “Exit” control,
the active document is closed first.
38 Mobile Applications with IBM WebSphere Everyplace Access Design and Development

3.2.1 System architecture
Speech is processed by a speech recognition engine. It is basically software that
implements the algorithm to perform the identification. It receives input speech in
waveforms and translates it into text. Figure 3-1 provides a schematic
representation of speech recognition and identifies all relevant components
involved in the process.

Figure 3-1 Schematic representation of the speech recognition process

When speech is input to the engine, it comes as a continuous sequence of
sounds that includes meaningless information, like pauses for example. Hence,
some form of preprocessing is needed before the actual recognition is
performed. In technical terms, the identification takes place with utterances.

Utterances
An utterance is any sound occurring between two consecutive pauses (or
silences). It may be a letter, a single word or a whole sentence. Both the
beginning and the end of an utterance are clearly identified by pauses of a given
length. This value is, in fact, a parameter that can vary depending on the
application; it is tuned during training. A speech recognition engine also identifies
pause time-outs, that is, lengthy pauses with no occurrence of speech. This does
not necessarily mean that the operator is not speaking at all (there may still be
background noise), but simply that the intensity of any incoming sound is below a
certain threshold and that the recognition process will therefore fail. This feature
can be quite useful when building voice-enabled applications, since it is possible
to use time-outs to replay information to the user.

pre-processing

speech
analysis

pattern
matching

acoustic
model

Speech recognition engine

Recognized
speech

utterances

original
speech

system
dictionary

user
dictionary user

dictionary
 Chapter 3. Overview of speech technology 39

Dictionaries and grammars
Utterances that need to be recognized by a speech engine are stored in a
dictionary. This represents the knowledge domain of the application in the sense
that it specifies the only words that can be recognized. A dictionary can include
multiple instances of the same word or sentence if the speaker is believed to use
different ways to refer to it (for example, versions of “yes” are typically “yeah” or
“yea”). However, for control and command applications, the ability to identify
words is not sufficient per se. The application needs to recognize the request for
an action within a given utterance and, as mentioned earlier, users can refer to
the same concept in a variety of ways. When too many alternatives exist, then
grammars can also be used as a mean to restrict the number of allowed word
combinations. Artificial grammars represent the syntactic rules that a language
must follow. It contains a description of valid concatenations of phonemes and
words. Although the use of grammars and dictionaries may seem a restriction of
flexibility for application design, in fact it is not. A voice-enabled application may
use multiple grammars and dictionaries, each of which provides the speech
engine the context in which the recognition process takes place. Speech engines
do not support concurrent use of grammars, but they allow the possibility to
switch between them at any time during the application. Moreover, dictionaries
can be of two types: system and user-defined. The former contains general terms
for the application and cannot be modified. The latter include customized
expressions that need to be recognized in a given context. Applications using
speech recognition can have multiple user-defined dictionaries. It is worth
mentioning that in VXML applications, the concept of a dictionary is not
separated from that of grammar. Grammar refers to both concepts.

Speech analysis
The incoming audio signal also contains background noise. This makes the
identification process harder, as the actual speech needs to be separated from
the background noise. For this purpose, it is necessary to provide the speech
engine with a suitable acoustic model, that is, a model that describes the features
of the environment where the speech occurs and accounts for the noise. Speech
is normally processed before it is actually suitable for recognition. In fact, the
identification process matches features of the incoming sound waves with some
patterns stored during training. However, it is necessary to extract those features
from the waveforms. The first step of this process is to digitalize waveforms, as
shown in Figure 3-2 on page 41. The original signal is transformed into a
smoother and more regular one using a filter, like FIR or IIR for example. It is
then sampled to extract pulses. The number of samples taken depends on the
source of the speech. A telephone conversation is normally sampled at 8 kHz
(8000 times/second), but if the source is a digital audio system, the signal is
sampled at 48 kHz (the average is 44 kHz).
40 Mobile Applications with IBM WebSphere Everyplace Access Design and Development

Figure 3-2 Digitalization process for a speech waveform

The digitalized waveform is subsequently processed to extract spectral features.
These are simply fundamental characteristics of speech that are used for
recognition. Although it should be possible to perform the identification with the
digitalized waveforms, the use of spectral features reduces speech variability by
smoothing the effects of periodicity, pitch or other source information (such as
voiced or fricated segments of speech). However, it is worth mentioning that the
elimination of source information affects the recognition of languages, such as
Chinese for example, where tones represent a significant detail. Spectral
features aim to capture the dynamics of the vocal tract movements. Typically, the
information is computed over short-term windows (20-30 ms) but the details refer
to shorter intervals (10-20 ms). In order to increase the robustness of the
recognition against the distortion introduced by the device noise, spectral
information is often processed to remove such side effects. Templates are used
to estimate probabilities of the spectral features, which are needed to establish
likelihood within the incoming speech.

Pattern-matching algorithm
The features extracted from the input speech are matched with an acoustic
model that has been previously stored in the system, and are subsequently
decoded into text using the acoustic model information. The most prevalent
technique for this purpose is based on Hidden Markov Models (HMMs), a simple
and fairly robust algorithm that is easy to implement and understand. The idea
behind this technique is that speech is modelled by identifying regions in the
space of acoustic signals. Sequences of acoustic features are treated as chains
of processes, which can be described with a hidden Markov chain. When a
sequence of features is presented, the model generates a match based on the
maximum probability of observing a sequence of features when a given word is

sample

rough waveform

smooth waveform

filter

digitalized signal
 Chapter 3. Overview of speech technology 41

pronounced. The probabilities involved in the computation are derived from the
acoustic and the language models. The complexity of the search depends on the
size of the vocabulary as well as the type of recognition required (that is, used for
dictation or to trigger commands). Typically, for dictation and applications with a
small dictionary, the search can be performed in a single step. For larger
vocabularies and control applications, a multiple steps search is needed. The
algorithm first computes a short list of potential candidates, then compares the
probabilities with the selected hypothesis.

Other approaches have recently been considered. Some use artificial neural
networks (NNs) as a pattern-matching technique. In this case, a neural network
architecture is trained with examples of speech signals to tune its parameters.
Later, the trained neural network is used to process an incoming speech signal
and match it with the closest pattern (one of those learned during the training).
Hence, in this case it is vital to provide an appropriate set of examples during
training. Other approaches try to model speech using linear dynamics to account
for the continuity of speech.

Once the acoustic model has been identified, the speech data can be translated
into text using a decoding algorithm. Viterbi and Baum-Welch search algorithms
are widely used for this purpose. Before the actual search takes place, the
algorithm determines a set of valid strings of phonetic categories. This is simply a
collection of information that specifies sequences of phonemes with grammar
details (such as in what order words can occur). The search determines, based
on probabilities, the most likely category sequence that matches the input data.
The path followed by the algorithm to identify the category determines the word
that was originally spoken.

3.2.2 Natural Language Understanding and Dialog Management
Along with speech recognition, two other approaches need to be considered:
Natural Language Understanding and Dialog Management. Although each of
them has specific features, sometimes the three terms are used interchangeably.

Natural Language Understanding (NLU) is a powerful language processing
technology which significantly increases the flexibility and natural feel for
speech-enabled voice applications. It takes the results of the (continuous)
recognition engine and begins to interpret what the user requires from the
application, extracting and interpreting the relevant pieces of information. For
example, in a flight-booking application, the user may say “I wanna fly from
London to Boston next Wednesday in the afternoon.” The recognizer returns the
text string; then, without NLU, the application must now try to parse the text to
find out the departure airport, destination, date and time. With NLU, however,
these pieces of information are automatically retrieved. London is identified as
the departure airport and Boston as the destination. For the date and time, the
42 Mobile Applications with IBM WebSphere Everyplace Access Design and Development

NLU further converts “next Wednesday” to an actual date (based on the platform
date settings) and interprets “in the afternoon” to mean: anytime between 12 p.m.
and 12 a.m. The application script can then continue without the need for difficult
programming.

Along with NLU, Dialog Management (DM) takes care of the application flow. It is
based on a description of the task to be achieved. For instance, in a
flight-booking application, the caller will need to say where they are travelling to,
where they are leaving from, when they intend to travel, and so forth. Each of
these pieces of information is equivalent to the boxes to be filled in on an
application form or indeed in an Internet-based application run through a Web
browser. Some of the boxes will be optional; and some will have default
information provided, which the user may wish to accept or overwrite. The DM
takes the output from the NLU component and fills out as many boxes as it can.
Where the caller or user has not provided the information, the DM then decides
how the voice application needs to ask for the information, that is, what to do
next. Coupled with continuous speech recognition, NLU and good quality TTS,
the DM can produce dynamic and natural conversations each and every time the
application is called; these can change automatically depending on how different
users interact with the application, or how the same user might interact on
different occasions.

3.2.3 Application styles
Speech recognition applications are usually in the form of interactions with the
user, that is, in the form of dialogs. There are three possible types of dialogs:

� Directed

� Mixed initiative

� Natural language

In the first case, the user is not allowed to interrupt any system prompt before
he/she is actually asked to provide some information. This is obviously the most
rigid type of interaction, as the user has no real choice but to follow the prompts
and give input when requested. We can say that the system is controlling the
application. A typical directed dialog looks like this:

System: How can I help you?

User: I wish to book a flight.

System: What is your destination?

User: Atlanta, Georgia.

System: Where do you wish to depart from?
 Chapter 3. Overview of speech technology 43

User: Chicago O’Hare Airport, please.

System: What time do you wish to leave?

Mixed initiative dialogs occur when the user can interrupt system prompts and
supply the required information as well as take the initiative to supply extra data
(useful information) that the application will request at a later stage. This way, the
time the user needs to wait for an action to be performed (which could be to
retrieve data, perform a transaction or transfer to an agent) is reduced. The
application structure is still followed in a fairly strict manner, but the user may skip
steps by providing extra data. The following example illustrates this type of
dialog:

System: How can I help you?

User: I wish to book a flight to Atlanta, Georgia.

System: Where do you wish to depart from?

User: Chicago O’Hare Airport, please.

System: What time do you wish to leave?

The most flexible type of dialog is known as natural language because the user
has the capability to interact with the application in a very natural way. He/she
can provide extra information at any time during the application, and use
context-dependent data that the application needs to resolve (providing the
words used are included in the grammar). Of the three types of dialogs, this one
offers the user the best possibility of driving the application, within certain
boundaries, of course. Following is an example:

System: How can I help you?

User: I wish to reserve a business class flight from Chicago to Atlanta.

System: What time do you wish to leave?

3.2.4 Speech recognition errors
Speech engines typically compute confidence indexes for the utterances
received in input and, based on this value, the system decides whether or not to
accept the computed translation. When the output of a recognition process is not
accepted, we say there is rejection. This does not mean that an error has
occurred, but simply that the available response has a low level of confidence
and might not be the most appropriate match. In fact, rejection was originally
performed by human operators and was later included in the engine as part of
the recognition process.
44 Mobile Applications with IBM WebSphere Everyplace Access Design and Development

Possible types of rejections are:

� False rejection

This occurs when a correctly spoken word has a low level of confidence and is
considered to be wrongly recognized. This can often happen because of bad
pronunciation or other spurious errors as mentioned later in this section.

� Correct rejection

This prevents illegal or unclear words to be accepted by the engine as valid.
Words can be invalid because they do not appear in any dictionary used by
the speech engine

� Inter-word rejection

The matching algorithm may return several candidates for the text with the
same confidence level. Unless the engine has some logic to select one of
them, it is not possible to return a value and the word is rejected even though
it may be valid.

� Out-of-dictionary/out-of-grammar rejection

This type of rejection occurs when a given utterance is neither identified in the
dictionary nor in the grammar (if it is a sequence of words). Clearly, this error
overlaps with other forms of rejection, depending on the original cause of the
problem; for example, a word can be classified as out of dictionary because of
added background noise.

Speech recognition is not always perfect and errors can occur at any time.
Human speech perception is also affected by errors because of misunderstood
words. However, from the standpoint of ASR, errors can be classified a follows:

� Insertion

When the output of a speech engine produces text that was not originally
spoken, we say that an insertion has occurred. This can happen either
because an illegal word is identified as correct (this condition is usually called
false acceptance), because added noise modifies the features of the incoming
speech or because the engine has performed an incorrect word segmentation
and the recognition is performed on the wrong utterance.

� Deletion

This phenomenon occurs when the text resulting from a recognition process
lacks part of the information that was originally spoken. Also in this case, the
error can occur because of bad word segmentation or because a valid word is
recognized with a low level of confidence (false rejection). In the latter case, a
very likely cause of the error is pronunciation, especially when non-native
speakers are involved.
 Chapter 3. Overview of speech technology 45

� Substitution

It may also happen that the speech contains only valid words but the engine
matches them with the transcription of different ones. In this case, some
utterances of the original speech have been misinterpreted.

There are also some other minor causes of errors, such as for example when a
speaker starts talking over a prompt and the underlying application does not
allow barge-in or the prompt ends with a noticeable delay (usually more than 300
milliseconds). In this case, part of the speech is lost, resulting in an incomplete
recognition; the user is very likely to repeat again what was spoken, resulting in a
confusing situation for the recognition engine. This phenomenon is also called
stuttering effect. Errors can also be triggered because of the absence of
incoming speech. An operator may not be aware of the words allowed at a
particular stage of an application and, by the time a decision is made, a time-out
error is detected. Another typical cause of error for telephone speech recognition
is the increased loudness of speech when the surrounding environment is noisy.
The effect, known as lombard speech, causes recognition problems because of
the modified feature extracted from the waveforms.

3.2.5 Recognition performance
Speech recognition can reach almost 100% accuracy on some applications.
However, the performance varies greatly depending on the type of system used,
such as for example speaker-dependent or speaker-independent, and the
acoustic model implemented (it is obviously harder to recognize speech from a
car when the system has been trained with a model suitable for telephone
conversations).

Accuracy can be measured in two different ways, each of which provides
information from a different perspective.

� Perfect word match

In this case, the efficiency of the identification is measured on the basis of
words matching exactly some entry in the dictionary. It is not relevant if an
alternative way to express the same concept exists, but it is important that the
system recognizes precisely what is being spoken. Statistics like this
constitute a good performance evaluation for dictation applications, where the
crucial activity is the transformation of speech into its equivalent text format.
The higher the percentage of exact word matches, the more reliable the
system.
46 Mobile Applications with IBM WebSphere Everyplace Access Design and Development

� Correct action

Speech recognition may not be perfect, but if the application is still able to
issue the right action, then it can be considered very accurate nonetheless. In
many applications it is more relevant that the command resulting from a voice
instruction be correctly chosen rather than that the vocal representation of the
control be perfectly matched. For example, speech engines embedded in
control and command applications are better evaluated with this kind of
statistics. This does not prevent us from using the previous method as well.
However, data related to correct action accuracy give us an indication of the
application fault tolerance, that is, the capability of the application to respond
well to poorly recognized speech.

Typically, performance is analytically measured by a word error rate index, that is,
the percentage of misidentified words in the vocabulary. This rate has decreased
significantly over the past years because of substantial technology advances in
speech recognition. For applications with limited word span, the error rate can
reach values below 1% but there are domains with a 50% probability of errors.
The error rate can also be estimated by the number of spoken words that are not
present in the dictionary. This is, in fact, an upper limit to the former
measurement. Table 3-1 reports typical figures for coverage of unseen
text-based on the size of the dictionary used. This means that error rates are at
most the values reported in the last column of the table.

Table 3-1 English text coverage and error rate based on dictionary size

However, for languages with more inflections, errors are usually higher than
those reported in the table. In this case, extra words are required to compensate
the loss, though improvement is minimal.

3.3 Speech synthesis
The ability to generate speech from written text is called speech synthesis or
Text-To-Speech (TTS). More specifically, TTS represents the ability to produce
speech, using a grapheme-to-phoneme translation, with a computer-based
system (also called engine). Voice synthesis is considerably different from the

Dictionary
size (words)

Coverage Estimated error

20000 94.1% 5.9%

64000 98.7% 1.3%

100000 99.3% 0.7%

200000 99.4% 0.6%
 Chapter 3. Overview of speech technology 47

ability to concatenate pre-recorded words or sentences using some underlying
logic. The latter, known as Voice Response Unit (VRU) often uses pre-recorded
human voice segments because of the limited vocabulary required for
applications. This feature cannot be used in TTS, as it is practically impossible to
prerecord all possible words that the system may need to read out. For this
reason, a TTS engine incorporates the knowledge that is needed to perform
reading.

As opposed to pre-recorded speech, automatic speech production allows larger
flexibility and application domains. Similarly, its resource requirements, both in
terms of hardware and software, are clearly distinct from those of pre-recorded
voice segments.

Table 3-2 on page 49 shows a comparison between TTS and pre-recorded
audio, based on the following criteria:

1. Hardware resources, that is, memory and storage.

2. Vocabulary, that is, the number of words that can be spoken by a given
application.

3. Quality of voice (the natural feel).

4. Customizability of voice, that is, the capability to tune features like speed,
gender or age of the artificial speaker, as well as language accents.

5. Intelligibility, that is, clear understanding of spoken words.

6. Flexibility, that is, the capability to adapt the synthesizer to a context different
from the one normally used.

7. Cost, that is, the expenditures associated with the production of the text or
pre-recorded audio.
48 Mobile Applications with IBM WebSphere Everyplace Access Design and Development

Table 3-2 Comparison between TTS and pre-recorded audio solutions

* This include unlimited vocabulary, that is, the capacity of using TTS to generate pronunciation for
ASR, the possibility of user dictionaries and phoneme mouth data (information about mouth
movements associated with a given phoneme).
** This refers to the costs associated with the use of recording studios and professional speakers.

3.3.1 Synthesizer architecture
Reading a text is not one of the simplest skills to emulate using artificial
resources. This is because of the different components that determine the way in
which a text is pronounced. Spelling rules, intonation and context are just some
of them. Each of the components needs to be modeled and implemented in a
TTS engine. TTS is made up of two modules: a Natural Language Processing
(NLP) module and a Digital Signal Processing (DSP) module, as shown in
Figure 3-3.

TTS Pre-recorded audio

Hardware resources low storage and memory large storage, small
memory

Vocabulary unlimited limited

Quality of voice mainly mechanical mainly natural

Customization of voice unlimited and easy audio needs re-recording

Intelligibility generally quite good very good

Flexibility unlimited* none

Cost minimal expensive**
 Chapter 3. Overview of speech technology 49

Figure 3-3 Schematic representation of a TTS process

Natural Language Processing module (NLP)
The first stage of speech synthesis is the transformation of the text to be read
into its phonetic form, including intonation and rhythm. This process is carried out
sequentially by different components of the NLP module, as depicted in
Figure 3-4. Once the text is received by the NLP module, it undergoes two
processes: a text analysis and a text-to-sound conversion. The analysis, also
referred to as text normalization, consists of the following actions:

1. Parsing the text to identify words, numbers, abbreviations and the end of
sentences. The last information can be very difficult to retrieve because of
ambiguities caused by abbreviations, writing styles or misuse of punctuation.
However, the problem is generally solved by using regular grammars.

2. Identifying for each word the speech categories it could represent: subject,
verbs, adjectives, etc. The information is determined statically, that is, without
accounting for any dependency between the words.

3. Reducing the number of possible categories by using NNs, Markov Models
(MMs) or Classification and Regression Trees (CART) to identify syntactic
dependencies between words.

4. Finding the text structure and organizing words in phrase-like bits to be
converted into sound.

Text to Speech engine

Natural Language
Processing

Digital Speech
Processing

Please, say
the name of
the person
you want
to call.
50 Mobile Applications with IBM WebSphere Everyplace Access Design and Development

Figure 3-4 The Natural Language Processing component of the TTS engine

After analysis, the text is transformed into its phonetic equivalent using a
dedicated software component. The conversion could easily be arranged using a
table or a dictionary to match words with their phonetic equivalent. However, few
problems need to be considered. Regardless of the size of the table, words are
not usually stored with all their variants, such as masculine/feminine,
singular/plural, conjugations, etc. Hence, the identification process need to be
supported by a certain set of rules to help the system determine the base word to
be searched. Other problems may occur because of ambiguity. There are words
with the same spelling but different phonetic equivalents that depend on the
context of the sentence. An example is the verb “to read”, which is spelled exactly
the same way in all its tenses but it is pronounced differently. Also, there may be
ambiguities because some words are used both as nouns and verbs (like “figure”
for example) or because words can be pronounced differently when part of a
sentence. In this case, the phonetic translation needs to be supported by rules
determining exceptions to the standard conversion process. Together with the
phonetic translation, the NLP module determines the intonation and rhythm
indicated for the text to be read. Properties like pitch, loudness, rhythm and a few
others are collectively referred to as prosody. These features not only make the
synthesized speech sound more natural, but also provide details like word focus
and relationships.

Digital Signal Processing Module (DSP)
The phonetic transcription of text is read out using the DSP module. This
component of the TTS engine accounts for the production of speech from
phonetics. In order to provide a realistic output, articulatory constraints need to
be taken into account. This can be done either by using a set of rules describing

Text analysis

NLS component

Text-to-speech
conversion

word list
part of speech
phrase parsing

phonetics
intonation
rhythm
 Chapter 3. Overview of speech technology 51

the influences between phonemes or by storing examples of concatenations of
phonemes and using them to build up more complex acoustic units. It is at this
stage that features like pitch or frequency are incorporated. The synthesis is
either articulation-based, rule-based or concatenation-based.

Articulation-based synthesis
The production of speech is based on the physics of sound production and the
physiology of speech. Equations of physics describe the radiation of sound
waves from the mouth. Unfortunately, this approach is far too costly and complex
to be used in practical applications and it leaves many problems still unsolved.

Rule-based synthesis
This approach is based on the dynamic evolution of speech. Typically, the
synthesis is done using formants, large concentrations of energy from which it is
usually possible to identify phonemes with a high degree of reliability. Formants
refer to voiced phonemes only and are very difficult to estimate from speech
data. For this reason, a good synthesis requires a significant trial and error
process, which does not guarantee a high degree of naturalness unless the right
rules are applied. A rule-based synthesizer requires many parameters (up to 60)
to be tuned and analyzed and a thorough knowledge of the data to be handled.
However, this method provides the possibility to study speaker-dependent voice
characteristics. These can be used to build rules to switch between different
synthetic voices in a relatively simple way.

Concatenation-based synthesis
This is speech synthesis based on concatenation of speech sound blocks stored
in a database. The creation of the database plays a vital role in determining the
quality of the synthesized speech. The major advantage of this solution is that all
acoustic aspects of a real speaker are taken into account. However, because of
this high degree of specialization, when a new voice or style need to be added,
the database containing the speech blocks has to be re-segmented and
re-analyzed. Also, a new set of recording details is required for each type of
addition: whether it is a male or female voice, whether the speech is fast or slow,
or whether the voice is young or age-marked.

3.3.2 Quality assessment for TTS
Synthesized speech certainly does not compare with natural human voice, but
how close can we get? Nowadays, there is an increasing number of TTS
products available on the shelf, each with its own features.
52 Mobile Applications with IBM WebSphere Everyplace Access Design and Development

But what does quality mean in this context? At first glance, quality can be
associated with the following characteristics:

1. Naturalness

2. Intelligibility

3. Pleasantness

A good TTS engine needs to produce speech that is as close as possible to a
true human voice, while keeping speech understandable, clear and pleasant.
TTS engines can usually model both female and male voices and it is often the
case that female voices are clearer than their male counterpart. Other studies
report male voices as being more intelligible because the fundamental frequency
and formants range is more suitable for telephone conversations. Furthermore,
the modeling adopted for TTS with female voice produces less robotic and more
pleasant speech.

When evaluating the quality of synthetic speech, the following elements are
typically taken into account:

• segmental rendering

• stress, rhythm and intonation accuracy

• variability of speaking rate

• control of intonation

• voice quality

• dialectal variation

However, on what basis is it possible to claim that a given TTS product performs
better than another one? Is it because we can hear a better sound or because we
there are not so many mistakes? Comparing different TTS methodologies is not
easy because of all the different components that contribute to the synthesis. For
example, a TTS engine may incorporate language-specific knowledge like
accents or dialects, and artificial voice can be listened to in a variety of
environments, such as over the telephone or through a speaker in a car. These
settings affect the subjective perception of speech. Hence, if quality is evaluated
by measuring the degree of human perception, the assessment may be impaired
by the listener’s capacity for understanding what it read out or by tiredness (when
multiple products are sequentially tested). Researchers have looked into possible
objective methods of assessing synthesized speech, for example the use of
resynthesized speech (a method to code natural speech into parameters that can
be used by a synthesizer). This way, a comparison between the natural and the
artificial waveforms generated by the TTS engine gives an estimation of the
degree of naturalness of the synthetic voice.
 Chapter 3. Overview of speech technology 53

The concept of naturalness has been so far used in an intuitive manner, but it still
has not been properly defined. What can be perceived as natural, especially
when an objective evaluation is required? The answer is based on phonetic
theories stating that a speaker usually adapts to a listener in order to minimize
the cognitive load during perception. This means that the speaker is able to
capture signs of fatigue, comprehension problems or other behaviors and act on
the speech accordingly. Although this phenomenon can be identified in human
speakers, it is not yet available for synthesized voice. Hence, naturalness is
somehow compromised by the inability to adapt to the listener. Research in this
area is still ongoing, but it is possible to measure the extent to which an artificial
voice emulates characteristics of a natural one. These characteristics have been
modeled and parametrized using human waveforms and are compared against
the synthesized ones.

The quality of TTS products still lacks a solid ground for quality tests because the
speaker/listener interaction does not influence the evaluation of the speech
production.

3.4 IBM ViaVoice
IBM ViaVoice is a family of products providing both ASR and TTS capabilities.
The speech recognition engine supports dictionaries containing approximately
200,000 words and is equipped with tools to generate customized grammars and
user dictionaries.

The TTS engine is a rule-based speech synthesizer.

3.4.1 Multilingual support for ViaVoice
The IBM ViaVoice TTS engine is capable of synthesizing speech in different
languages. However, an engine is only capable of producing speech for a single
language. Table 3-3 shows information about the languages supported by IBM
ViaVoice with respect to the platform where the engine is installed. It clearly
appears that ViaVoice can be used across different platforms, although many
languages are not yet available on the market.

Table 3-3 Language support for IBM ViaVoice

Language WIN NT/95/98 AIX Solaris Linux

US English Yes Yes Beta Yes

UK English Yes Yes Beta Planned

French Yes Yes Beta Planned
54 Mobile Applications with IBM WebSphere Everyplace Access Design and Development

*not all dialects of Japanese and Chinese are currently suppor ted

3.4.2 ViaVoice limitations
Although it is possible to find products with multilingual support, a given ViaVoice
engine is only capable of synthesizing speech for a single language. Multilingual
support still exists but it implies the use of some form of logic to switch between
several TTS engines, each of which supports a different language.

ViaVoice, like other TTS engines, still lacks a high degree of naturalness in some
situations, especially because of the limited prosody associated with the text.
Unfortunately, intonation and rhythm are affected by the sentence parsing
process, which is itself dependent on the original text. So, for example, the list in
Table 3-4 does not appear as such when spoken by a TTS engine. In fact, the
parsing neither identifies logical sentences, reflecting the intention of the original
writer, nor expresses correctly conventional symbols like “1/5” (one fifth), which is
spelled instead.

Table 3-4 Example of parsing error in ViaVoice TTS

This does not impair the overall quality of the product, since the limitations are
determined by the need for further development in speech synthesis, as
mentioned in 3.6, “Future development” on page 59.

German Yes Yes Beta Planned

Italian Yes Planned Planned Planned

Spanish Yes Planned Planned Planned

Portuguese Yes n/a n/a Planned

Japanese Yes* Planned n/a Planned

Chinese Yes* Planned n/a Planned

Finnish Planned n/a n/a n/a

Language WIN NT/95/98 AIX Solaris Linux

Original text ViaVoice TTS parsed sentences

1. Open a new command window
2. Resize it to be 1/5 of your screen
3. cd to \temp
4. Type setup.exe

1.Open a new command window
2.Resize it to be 1 slash 5 of your screen
3. CD to slash temp
4.Type setup.exe
 Chapter 3. Overview of speech technology 55

We mentioned earlier that the ViaVoice TTS engine is a formant-based
synthesizer and that there are two different approaches to voice synthesis.
Hence, ViaVoice does not yet offer a concatenation-based solution that allows
potential customers a comparison of performance and a chance to select the
most suitable approach for their application domain. The concatenation-based
synthesizer has already been planned, however, and it is currently under
development and testing.

3.5 Examples of voice-enabled applications
This section describes potential applications of both ASR and TTS. The list is not
meant to be complete and is provided for guidance only. References to specific
products are only included for information completeness.

3.5.1 Speech reco applications
This section discusses some applications built on speech reco.

Voice dialing
A good example of a control and command application is the so-called directory
dialer, a product that enables the users to place calls using the name of the
person to be reached. Unlike other similar applications that need the user to type
DTMF tones to make selections, the directory dialer embeds speech recognition
technology to identify the name of the person to call. Then, it retrieves the
correspondent telephone number from a database and automatically dials while
the user is waiting. When the recognition is not sufficiently clear, the user is
prompted with either a message asking him/her to say the name again or with
some kind of choice. For example, when the directory contains multiple entries
corresponding to the same name, the dialer prompts the user with all available
entries and waits for a decision. In other cases, when the name identified by the
recognition process is not a good match, the user can decide whether to keep
dialing or try to query the system again.

A similar application, known as voice dialing, is available on mobile telephones.
The user of the telephone can associate each entry of its personal address book
with a voice segment containing the spoken version of the name. The user is
required to record the segment a few times in order to allow the underlying voice
reco software to train and adapt to the speaker’s voice. The user can then dial
simply by speaking the name of the desired person. The input sequence is
matched with one of the previously stored segments and a call is placed to the
associated telephone number.
56 Mobile Applications with IBM WebSphere Everyplace Access Design and Development

Voice-activated applications
This category includes all applications where voice can be used either as a
navigation tool or as a mean to trigger actions. A very good example is the use of
voice to manage resources. So far, this feature has been used mainly to help
people with disabilities and provide them access to computer facilities.
Nowadays, voice commands can also be used, for example, for house
appliances (switching TVs, microwaves or lamps on or off). In this case, an
underlying computer network is needed to connect the appliances to the
application that includes a speech recognition engine.

Voice can also be used in a more conventional way to browse virtual menus that
are “spoken” to the user (or even traditional menu-based information). In this
case, the speaker follows virtual links by pronouncing a specified word or
sentence that is recognized by the engine.

3.5.2 TTS applications
TTS applications are countless and the last years have seen an increasing use of
TTS technology in a variety of areas, especially because a growing number of
languages is supported. Synthesized speech has become particularly helpful to
people with disabilities, as it has enabled them to access facilities that could have
not been used otherwise. However, this does not represent an exhaustive
domain for TTS, which can provide significant improvements in everyday
activities. Following is a list of some application areas.

Augmentative communication
This category refers in a general way to applications designed to enhance
information accessibility. People with speech disabilities can use a device to
compose text and convert it into voice. Similarly, blind people can be read out
information that would normally be available only in a visual format.

Computer access
Applications in this area usually include a speech recognition engine. The idea is
to interact with other computer applications using voice-activated commands
(where applicable) and to receive information in a spoken format. Clearly, the
level of detail of the information returned does not equal that which can be
provided using other devices (like video or paper for example).
 Chapter 3. Overview of speech technology 57

Talking pages
Many services today are available in vocal format. Some companies have
redesigned their applications to be suitable for a vocal media. The user dials a
dedicated number and selects the required service using DTMF tones or speech.
The application reads back the selected information. In some cases, applications
like this can instead be implemented using VRUs if the content to be spoken is
static or follows a predetermined format.

In-car navigators
These applications are designed to provide drivers with directions to reach their
selected destination. The driver simply provides details about the desired
location (optionally, the starting point if no GPS information is available) and the
system gives back driving directions via speech, such as “Turn right on highway
54.”

Games
An increased number of game companies try to make their characters as close
as possible to reality. This involves the use of voice technology, both for ASR and
TTS (depending on the game). More sophisticated characters also simulate
facial movements when speaking.

IBM MessageCenter for DirectTalk
This application uses both speech recognition and speech synthesis; it is part of
the IBM Universal Messaging solution.

Communication nowadays plays a vital role in business and the possibility to
retrieve and send information anytime and anywhere is definitely an advantage.
The application is designed to provide the user with the capability to access
messages using a variety of devices. This means that information from different
sources (such as e-mail, fax, voicemail) can be accessed using the same device.
The base product on which this application runs, named DirectTalk, is a VRU
application with integrated Computer Telephony Interface (CTI) capabilities.

How can a user access messages using a single device? Currently supported
devices are:

� Telephone

Voicemail messages can be accessed with no problem using a telephone, as
this is the typical device used to create them. However, a remote connection
to an e-mail server allows the user to handle e-mail messages, including
faxes. The connection can be listened to using a TTS engine and a reply can
be sent by recording a voice message over the telephone (this message will
be translated into text using speech recognition). Fax handling is a bit more
restricted, as the fax can only be redirected to a different user or to a local fax
machine for printing.
58 Mobile Applications with IBM WebSphere Everyplace Access Design and Development

� Web

A GUI shows the user the login session needed to identify the settings and
access permission for that user. E-mail and voicemail messages are shown in
a list. Voicemail messages are presented using audio files (.wav, .au) that the
user can play and listen to. Faxes are converted to a graphical format (.tiff)
and shown on the screen as images. The user can decide to redirect the
image to a printer for a hard copy.

� WAP

The wireless component of this product has limited functionality at present but
can already support simple message handling (without fax) and basic change
of settings via the WAP interface.

� Fax machine

Currently, this is only used to receive faxes as a result of a telephone
redirection.

3.6 Future development
Despite the fact the speech recognition research has made much progress in the
last years, there is still a lot to be done. The algorithms currently used fail in a
variety of situations, from a simple voice alteration to a change of environment.
Therefore, most of the efforts will be directed towards an enhancement of
performance for the recognition.

Portability
Current speech recognition works very well in a given context, but performance
gets significantly worse when the situation changes. Normally, one should collect
new data and retrain the system. However, this is a rather expensive and
time-consuming procedure and it is not always worth the effort when the context
might be changing again. One possible way to improve portability is to increase
the size of the vocabulary and the number of rules in the grammar. However,
regardless of the size of these databases, there is always a chance for
unpredicted context and the problem then resurfaces. The introduction of some
form of dynamic update for both the grammar and the vocabulary may be the
answer, but other questions need to be addressed, such as deciding when the
upgrade should be done and how.

Adaptation
This refers to the ability of the recognition process to adapt to new conditions,
such as for instance a change in the hardware used to input speech. The more
constraints one can put on the incoming speech, the better performance can be
achieved. However, this approach leads to a lack of flexibility in the system and
 Chapter 3. Overview of speech technology 59

may turn out to be a negative point. It is not unusual to upgrade pieces of
technology like microphones or telephones (they may also simply need to be
replaced due to breakage), but such a simple action can have a serious impact
on recognition. Some of the characteristics of the device used to input speech
are included in the acoustic model to improve performance and these features
are often device-dependent. Hence, when the device changes, the model is no
longer a valid description of the underlying environment, and performance is
negatively affected.

Out-of-vocabulary words
As described in Section 3.2.1, “System architecture” on page 39, a vocabulary
contains all the words that a voice recognition engine should identify. However, it
is not possible to guarantee that a speaker will never use a word not included in
the vocabulary, since he/she may not be aware of what the vocabulary contains.
At present, the recognition process tries to identify the closest match for the input
received, because it is not able to distinguish whether a given word belongs to
the vocabulary or not. This behavior is not desirable for control and command
applications since a wrong action will be invoked. A good way to solve this
problem might be to use minimum threshold levels for the word match. In this
case, when a match is very poor, an out-of-vocabulary exception can be fired and
a message can be sent to the speaker. The negative side of that is that,
depending on the threshold, words that do belong to the vocabulary might be
misclassified as not belonging to it.

Robustness
Robustness and its various aspects will possibly be one of the most challenging
areas in speech recognition in the coming years. Communications are changing
very rapidly and speech engines need to quickly adapt to the new media and to
the needs of the potential users of the system. For example, though speech
recognition can be very accurate for certain applications, it is also true that
accuracy can drop down sensibly when a non-native speaker is involved. The
same is also true for native speakers with a strong regional accent. Although our
ear can easily be trained to identify words regardless of accent and intonation, a
speech recognition system cannot do so yet. In fact, this aspect of robustness is
strictly linked with problems of adaptability and out-of-dictionary words, as
regional accents influence the perception of speech. Robustness is also affected
by transient interferences on telephone conversations and recognition of speech
coming from devices with low signal-to-noise ratio. Hence, this represents
another potential area for improvements.
60 Mobile Applications with IBM WebSphere Everyplace Access Design and Development

Spontaneous speech
During a normal conversation, it may well happen that people sneeze, cough or
hesitate before takings there may also be a conversation between people in the
background. In all these circumstances, speech recognition performs quite
poorly because the added noise affects the quality of the actual speech. It is
certainly desirable to have a system where all these conditions could easily be
dealt with.

Language modeling
Currently, speech technology is far from being human-like because of the various
limitations imposed to perform both recognition and synthesis. However, the
constant rise in mobile device use is causing a push for a wider use of voice
technologies as well. ASR and TTS can offer functionalities that are not available
in natural language, such a random access of data, remote data access and
sorting. A breakthrough in the use of these resources will only be possible when
improved language modeling is available. New models should be able to remove
much speech variability caused by accents and external noise (for ASR) as well
as synthesize voice using appropriate intonation and pauses. Statistical models
are not able to capture all speech features and the use of other techniques
(especially for the prosody) could be a successful approach to improving the
accuracy of both ASR and TTS.

Dynamics modeling
ASR and TTS normally treat the information contained in window frames as is,
without dynamics. However, speech is very dynamic and this form of variability
need to be taken into account.

Prosody
As mentioned earlier in this chapter, prosody provides information about
intonation, rhythm, etc. Prosody is significantly affected by the use of punctuation
in TTS. In fact, when no punctuation is found in a long sentence, a human
speaker naturally breaks the words into phrases of smaller length. However, an
artificial system is not able to perform this task because of the inability to
associate a meaning to the words being spoken. Consequently, sentences are
identified by proper punctuation marks (like full stops, question marks and
exclamation marks), as a TTS engine is unable to place pauses autonomously.

Prosodic information is neither available for synthesized speech nor captured
during recognition, although it notably improves naturalness (for speech
synthesis) and understanding (for speech recognition). Currently, the major
problem to be solved is the integration of such information in the overall engine
architecture.
 Chapter 3. Overview of speech technology 61

3.7 Where to find more Information
� MFCC: see http://ccrma-www.stanford.edu/~unjung/mylec/mfcc.html.

� Text coverage: see http://cslu.cse.ogi.edu/HLTsurvey/ch1node8.html.

� Speech rejection: see B. Balentine, D. P. Morgan and W. Meisel, How to Build
a Speech Recognition Application.

� Direct Talk: see
http://www-4.ibm.com/software/speech/enterprise/ep_2.html for further
details.

� Speech recognition: M. Schroeder (ed.), Speech and Speaker Recognition.

� A. Waibel and K.-F. Lee (ed.), Readings in Speech Recognition.
62 Mobile Applications with IBM WebSphere Everyplace Access Design and Development

Part 2 Patterns for
e-business

Part 2
© Copyright IBM Corp. 2001 63

64 Mobile Applications with IBM WebSphere Everyplace Access Design and Development

Chapter 4. Patterns for e-business

Patterns for e-business are a group of proven, reusable assets that can help
speed the process of developing applications. Some of these assets are:

� Architectural design patterns

� Runtime patterns and matching product mappings

� Design and implementation guidelines

� Code

Patterns for e-business provide development architects with a finite number of
well-defined requirements which can be used for optimization of their solutions.

Application developers will find similarities between the Patterns for e-business
and object-oriented application design patterns. Both of these are based on
proven experience and provide systematic solutions for well-defined situations.
While one deals with objects within an application, the other deals with elements
within a solution architecture.

4

© Copyright IBM Corp. 2001 65

4.1 Using Patterns for e-business
The Patterns for e-business approach enables architects to implement
successful e-business solutions through the reuse of components and solution
elements from proven successful experiences. It is based on an analytical and
systematic approach to solution design. This approach uses a sequence of steps
that cover much of the implementation process, from the business definition to
the architectural design, the application development and the system
management.

The patterns approach is based on a set of layered assets which can be
exploited by any existing development methodology. These assets include:

� Business patterns that identify the interactions between users, businesses
and data.

� Integration patterns that tie multiple Business patterns together when a
solution cannot be provided based on a single Business pattern.

� Composite patterns that represent commonly occurring combinations of
Business patterns and Integration patterns.

� Application patterns that provide a conceptual layout describing how the
application components and data within a Business pattern or Integration
pattern interact.

� Runtime patterns that define the logical middleware structure supporting an
Application pattern. Runtime patterns depict the major middleware nodes,
their roles, and the interfaces between these nodes.

� Runtime product mappings that identify tested, optimal software
implementations for each Runtime pattern.

� Best practice guidelines for design, development, deployment and
management of e-business applications.

You can see these assets and their relation to each other in Figure 4-1.
66 Mobile Applications with IBM WebSphere Everyplace Access Design and Development

Figure 4-1 The patterns approach

Customer requirements are typically based on business needs or problems. Let
us assume that these requirements are clear and that the objectives are well
defined. The design starts from an abstract description based on the customer’s
requirements and reaches its final stage, based on a set of tools and
components, in our case the IBM framework and Open Standards.

Finding the right solution is only possible by going through many architectural
steps, where decision after decision leads you to the optimal solution. A set of
well-defined options and proven experiences can help the architect make the
necessary decisions. The Patterns for e-business include both these options and
proven experiences.

4.2 Business patterns
Business patterns, as the name implies, represent common business problems.
To understand a business requirement from an IT perspective, it is often easier to
find an appropriate Business pattern for that requirement, then start the
discussion from that point.

Application patterns

Runtime Product mappings

Runtime patterns

Open Standards

Composite patterns

Integration patternsBusiness patterns

Composite patterns

Integration patternsBusiness patternsBusiness patterns

IBM Framework

Customer Requirements

M
ethod
ology
 Chapter 4. Patterns for e-business 67

The four primary Business patterns are defined in Figure 4-2.

Figure 4-2 Business patterns

Self-Service business pattern
The Self-Service business pattern, also known as the User-to-Business pattern,
represents the general case of internal and external users interacting with
enterprise transactions and data.

Collaboration business pattern
The Collaboration business pattern, also known as the User-to-User pattern,
applies to the use of e-mail and shared documents. The most popular
implementation of this pattern is synchronous peer-to-peer applications, where
users are connected to each other so that they can exchange messages and
data online. An example is instant messaging.

Information Aggregation business pattern
The Information Aggregation business pattern, also know as the User-to-Data
pattern, represents the use of tools to aggregate and distill useful information
from large volumes of data, text, images, video, and so on. Some examples of
this are business intelligence, knowledge management, and Web crawlers.

Extended Enterprise Business pattern
The Extended Enterprise business pattern, also known as the
Business-to-Business pattern, represents programmatic communications
between parties who do not belong to the same company. An example is supply
chain management.

Business
patterns
Business
patterns

Self-Service
pattern

Self-Service
pattern

Extended
Enterprise

pattern

Extended
Enterprise

pattern

Information
Aggregation

pattern

Information
Aggregation

pattern

Collaboration
pattern

Collaboration
pattern
68 Mobile Applications with IBM WebSphere Everyplace Access Design and Development

4.3 Integration patterns
Integration patterns provide the “glue” to combine Business patterns to form
solutions (see Figure 4-3).

Figure 4-3 Integration patterns

There are two patterns in this category, the Access Integration pattern and the
Application Integration pattern.

Access Integration pattern
The Access Integration pattern provides users with consistent and seamless
access to various applications using different access mechanisms. It becomes
relevant when:

� These applications need to be accessed using multiple devices, such as PC
browsers, mobile devices, voice response units, or PDAs.

� Users need access to multiple applications and information sources without
every application requiring its own sign-on in order to establish a separate
security context.

� It is necessary to provide a common look and feel to these applications.

� The user wishes to customize the choice of applications and how they are
presented.

� The customer does not want to rewrite the applications and does not want to
make significant modifications to the code.

Application Integration pattern
Application patterns that apply to Application Integration patterns are different
from those that apply to Business patterns in that they do not, by themselves,
solve a business problem. They are used in combination with Business patterns
to provide for the seamless integration of back-end applications and data.

Integration
patterns

Integration
patterns

Application
Integration

pattern

Application
Integration

pattern

Access
Integration

pattern

Access
Integration

pattern
 Chapter 4. Patterns for e-business 69

4.4 Composite patterns
Often, the solutions to e-business problems will be more complex than any which
can be defined by any individual Business or Integration patterns. To solve these
problems, we need a custom design.

Composite patterns provide the ability to combine multiple Business and
Integration patterns into one solution. For example, Figure 4-4 shows an example
of a custom design. In this example, a composite pattern for a trading exchange
solution is built using the two Integration patterns, Self-Service business pattern
and Information Aggregation pattern. The Business patterns in italics are
optional.

Figure 4-4 A Composite pattern for a trading exchange

Some Composite patterns that have been identified are:

� Account Access
� Electronic Commerce
� Portal
� Buy-side Hub
� Sell-side Hub
� Trading Exchange

S e lf-S e rv ic e

C o lla b o ra t io n

In fo rm a tio n A g g r e g a tio n

E x te n d e d E n te rp r is e

A
cc

es
s

In
te

g
ra

ti
o

n

A
pp

lic
at

io
n

In
te

gr
at

io
n

70 Mobile Applications with IBM WebSphere Everyplace Access Design and Development

4.5 The patterns used in this book
This book will focus primarily on the Access Integration pattern. It will illustrate it
using the WebSphere Everyplace Access offering to provide a seamless
common access to back-end applications. The application in this instance will be
an example of the Self-Service business pattern.

4.6 Where to find more information
� Patterns for e-business Web site available at

http://www.ibm.com/developerworks/patterns

� Patterns for e-business resources available at
http://www.ibm.com/developerworks/patterns/library/index.html
 Chapter 4. Patterns for e-business 71

72 Mobile Applications with IBM WebSphere Everyplace Access Design and Development

Chapter 5. Application patterns

This chapter introduces Application patterns, and discusses the following
questions:

� What is the coarse-grained application structure?

� How are the tiers linked?

� Where is the data?

In particular, we will take a look at the Application patterns used in this book.

As mentioned previously, the discussion in this book centers around a sample
solution based on the Access Integration pattern and the Self-Service business
pattern. The Application pattern used for the Access Integration pattern provides
pervasive device access to the application and we will examine this. The
application itself is built based on the Self-Service business pattern and we will
take a look at the Application pattern it implements also.

5

© Copyright IBM Corp. 2001 73

5.1 Application patterns
Application patterns use logical tiers to illustrate ways of configuring the
interaction between users, applications, and data. The chosen Application
pattern is later associated with a Runtime pattern by mapping the logical tiers to
runtime nodes. An Application pattern shows the principal layout of the
application, focusing on the shape of the application, the application logic, and
the associated data. It does not show middleware or the files or databases where
Web pages can be stored.

In the previous chapter, we discussed the Business and Integration patterns,
including how to select the appropriate pattern for your solution. The Application
patterns represent the next step necessary in designing the solution. This level is
still abstract, but we are getting closer to the realization of the solution.

Each Application pattern describes the following:

� Structure

– Coarse-grained components (tiers) of the application
– Interactions between the coarse-grained application components

� Placement

– How do we split up processing?
– Where do we place data?

� Integration

– Loosely coupled versus tightly integrated
– Impact on back-end systems

These elements represent an abstract layer describing the application
components. They represent application and data placement, derived from the
business requirements, but also taking real IT requirements into consideration.

Figure 5-1 shows a legend for all the Application pattern’s diagrams.
74 Mobile Applications with IBM WebSphere Everyplace Access Design and Development

Figure 5-1 Legend for Application pattern diagrams

5.2 Application patterns for Access integration
Three Application patterns have currently been identifed for the Access
integration pattern:

� Pervasive Device Access

� Single Sign-On

� Personalized Delivery

Each of these Application patterns is designed to provide a single, consistent,
and seamless access mechanism to applications that would otherwise require
the use of several different access mechanisms. These patterns are not mutually
exclusive and you could very well find more than one implemented in a solution.

This book focuses on the Pervasive Device Access pattern, which supports
mobile e-business solutions.

5.2.1 Pervasive Device Access application pattern
The Access Integration pattern is used to provide consistent access to various
applications using multiple device types. In order to provide pervasive device
access to an existing Business pattern, we therefore need to use an Access
Integration application pattern. This Application pattern brings a new tier into the
architecture. This tier is responsible for the pervasive extensions to the original
application. The function of this tier is to convert the HTML issued by the
application presentation logic into a format appropriate for the pervasive device.

Figure 5-2 on page 76 shows the Application pattern for pervasive device
access.

Application node
containing new or
modified components

Application node containing
existing components with
no need for modification or
which cannot be changed

Read/write data

Metadata
Templates

Transient Data
Work in progress
Cached committed
data
Staged data

Read-only data
 Chapter 5. Application patterns 75

Figure 5-2 Pervasive Device Access application pattern

The connections between the elements used in this book are all synchronous.
Although pervasive devices can maintain asynchronous connections like
notification synchronization, these services are beyond the scope of this book.

5.3 Application patterns for Self-Service
The Self-Service business pattern is important from our perspective, because in
many cases the mobile application is based on an existing Web application.
Since the most popular Web applications for mobile e-business are the
Self-Service Web applications, we have to pay particular attention to this
Business pattern.

Figure 5-3 shows the seven currently identified Application patterns for the
Self-Service business pattern.

Synchronous
Pervasive

Device Access
Tier

Application 1

Application 2

Pervasive
Device Asynchronous

Synchronous
76 Mobile Applications with IBM WebSphere Everyplace Access Design and Development

Figure 5-3 Self-Service business patterns

5.3.1 Stand-Alone Single Channel application pattern
The application in this book is based on the simplest pattern, the Stand-Alone
Single Channel application pattern. This pattern provides for stand-alone
applications that have no need for integration with existing applications or data. It
assumes one delivery channel, most likely a Web client, although it could be
something else. It consists of a presentation tier that handles all aspects of the
user interface, and an application tier that contains the business logic to access
data from a local database. The communication between the two tiers is
synchronous. The presentation tier passes a request from the user to the
business logic in the Web application tier. The request is handled and a response
sent back to the presentation tier for delivery to the user.

CRM
LOB

synch/
asynch

synch/
asynch

Agent

Decomp
synch synch/

asynch

Presentation
synch

Application

synch synch/
asynch

Presentation
Web

Application Back-end
Application

Back-end
Application

synch Host
Application

Pres.
synch Host

Application

synch
Router

synch
Back-end

Application

Back-end
Application

Presentation1

Presentation2

Presentation1

Presentation2 Back-end
Application

Back-end
Application

Back-end
Application

Back-end
Application

Presentation1

Presentation2

Stand-Alone Single Channel

Directly-Integrated Single Channel

As-Is Host

Customized Presentation to Host

Router

Decomposition

Agent
 Chapter 5. Application patterns 77

78 Mobile Applications with IBM WebSphere Everyplace Access Design and Development

Chapter 6. Runtime patterns

The Application pattern can be further defined into more explicit functions to be
performed. Each function is associated with a runtime node. In reality, these
functions, or nodes, can exist on separate physical machines or may co-exist on
the same machine. In the Runtime pattern, this is not relevant. The focus is on
the logical nodes required and their placement in the overall network structure.

This chapter will give a general overview of Runtime patterns and how they are
used, but will focus on the Runtime patterns used in this book.

6

© Copyright IBM Corp. 2001 79

6.1 Runtime nodes
A Runtime pattern is represented by a logical node diagram, where each node
has a specific role in the architecture. It defines the topology of the architecture
and node placement. Each Runtime pattern will have nodes that demonstrate
certain service level characteristics, including:

� Availability

� Performance

� Scalability

� Security

Most patterns will consist of a core set of common nodes, with the addition of one
or more nodes unique to that pattern. To understand the Runtime patterns
presented in this book, you will need to review the following node definitions.

User node
The user node is most frequently a personal computing device (PC, etc.)
supporting a commercial browser, for example, Netscape Navigator or Internet
Explorer. The level of the browser is expected to support SSL and some level of
DHTML.

Client node
The client node represents the user interface client such as a browser, mobile
phone, or PDA. This is a more specific instance of the user node.

Gateway node
Gateway nodes switch between the different networks to establish
communication between pervasive devices and the Web applications. This only
means that the two parties can communicate with each other. It does not mean
that they will understand each other. Communicating and passing data between
the two parties is one thing, but adapting the content and translating between
different protocols is another.

Voice Server node
The voice server node has the responsibility of transforming the special voice
application content to voice. Basically it is running numerous VoiceXML
browsers, which are browsing the content from the server side, and handling the
client interaction via the phone (voice synthesization, voice recognition). The
voice server node connects to the servers in the DMZ using HTTP. On the client
side, it has to be switched (using a gateway) to the phone network.
80 Mobile Applications with IBM WebSphere Everyplace Access Design and Development

Load balancer node
The load balancer node provides horizontal scalability by dispatching HTTP
requests among several, identically configured Web server nodes. Using a load
balancer node introduces the need to ensure session affinity.

Transcoding proxy node
The transcoding proxy is an intermediary server that transforms the content
going through it. Different client types require different representations of the
original content. The transcoding proxy transforms the content to a suitable
format for the client. The transcoding proxy can be either a forward-proxy or a
reverse-proxy.

Web application server node
A Web application server node is an application server that includes an HTTP
server (also known as a Web server) and is typically designed for access by
HTTP clients and to host both presentation and business logic.

The Web application server node is a functional extension of the informational
(publishing-based) Web server node. It provides the technology platform and
contains the components to support access to both public and user-specific
information by users employing Web browser technology. For the latter, the node
provides robust services to allow users to communicate with shared applications
and databases. In this way, it acts as an interface to business functions, such as
banking, lending, and HR systems.

Web server redirector node
In order to separate the Web server node from the application server node, a
so-called Web server redirector node (or just redirector for short) is introduced.
The Web server redirector is used in conjunction with a Web server. The Web
server redirector serves HTTP pages and forwards servlet and JSP requests to
the application servers. The advantage of using a redirector is that you can move
the application server behind the domain firewall into the secure network, where
it is more protected than within the DMZ. Static pages can be served from the
DMZ by this node.

Application server node
The application server node provides the infrastructure for application logic and
may be part of a Web application server node. It is capable of running both
presentation and business logic but generally does not serve HTTP requests.
When used with a Web server redirector, the application server node will run
both presentation and business logic. In other situations, it may be used for
business logic only.
 Chapter 6. Runtime patterns 81

Protocol firewall and domain firewall nodes
Firewalls provide services that can be used to control access from a less trusted
network to a more trusted network. Traditional implementations of firewall
services include:

� Screening routers (the protocol firewall in this design)

� Application gateways (the domain firewall)

The two firewall nodes provide increasing levels of protection at the expense of
increasing computing resource requirements. The protocol firewall is typically
implemented as an IP router, while the domain firewall is a dedicated server
node.

Database server node
The database server node provides a persistent data storage and retrieval
service in support of transactional interactions. The data stored is relevant to the
specific business interaction, for example, bank balance, insurance information,
current purchases by the user, etc.

It is important to note that the mode of database access is perhaps the most
important factor determining the performance of this Web application, in all but
the simplest cases.

Directory and security services node
The directory and security services node supplies information on the location,
capabilities and various attributes (including user ID/password pairs and
certificates) of resources and users, known to this Web application system. The
node may supply information for various security services (authentication and
authorization) and may also perform the actual security processing, for example,
to verify certificates. The authentication in most current designs validates the
access to the Web application server node part of the Web server, but it can also
authenticate for access to the database server node.

6.2 Runtime pattern for the Self-Service application
In order to understand the complete concept, it is best to start with the basic
elements. In this case, the Access integration pattern provides a service to
enhance the Self-Service application. If we were running our application without
the mobile access integration, we would choose a Runtime pattern for the
Self-Service application pattern. There are multiple Runtime patterns defined for
this business pattern and you can see each of them in detail by referring to
Self-Service Patterns using WebSphere Application Server V4.0, SG24-6175.
82 Mobile Applications with IBM WebSphere Everyplace Access Design and Development

Of the available Runtime patterns, we chose two basic patterns as a basis for our
Self-Service application implementation.

6.2.1 Basic Runtime pattern
This Runtime pattern provides an initial implementation with an entry-level
footprint. It is a simple yet effective way to make the solution available. The basic
pattern uses a minimum of runtime nodes, yet provides a measure of security by
putting all sensitive persistent data behind a firewall.

While it does not provide scalability or failover capabilities, it is a good starting
point from which you can easily progress to Runtime patterns that do provide
these functions.

Figure 6-1 Basic Runtime pattern: Stand-alone Single Channel application pattern

The presentation logic and business logic of the application are provided by a
single Web application server node in a Demilitarized Zone (DMZ). The data to
be accessed from the business logic is behind the domain firewall in the internal
network.

Outside World Demilitarized Zone
(DMZ)

Internal Network

Client or
User node

Web
Application

Server
IP Network

P
ro

to
co

l f
ir

ew
al

l

D
o

m
ai

n
fi

re
w

al
l

Presentation Application

Stand-alone Single Channel

Database

Directory &
Security
Services
 Chapter 6. Runtime patterns 83

In addition to the network security provided by the firewalls, application-level
security is provided by the Web application server node. The user information
required for authentication and authorization is stored in the directory and
security services node behind the domain firewall in the internal network.

6.2.2 Runtime variation
This Runtime pattern focuses on the network security aspects. A typical
requirement is often the need to separate the Web server node from the Web
application server node, most likely in order to place the application server node
behind a DMZ into a secure environment. The corresponding Web server node
can be placed inside the DMZ behind a firewall.

This separation of the Web server node from the application server node is done
by means of the Web server redirector. The Web server node, acting as a
redirector, serves static HTML pages but forwards servlet and JSP requests to a
dedicated server.

Figure 6-2 Basic Runtime pattern variation: Stand-alone Single Channel

Outside World Demilitarized Zone
(DMZ)

Internal Network

Database

Client

Web Server
Redirector

Application
ServerIP Network

P
ro

to
co

l f
ir

ew
al

l

D
o

m
ai

n
 fi

re
w

al
l

Presentation Application

Stand-alone Single Channel

Directory &
Security
Services
84 Mobile Applications with IBM WebSphere Everyplace Access Design and Development

This variation uses one Web server node and one application server node,
effectively splitting the function of a Web application server node across two
machines. In this case, the application server resides in the internal network to
provide it with more security. The application server node will run both
presentation and business logic.

The Web server node remains in the DMZ and serves static pages. A Web server
redirector is used to forward the requests from the Web server node to the
application server. Using a redirector could affect performance, so the options for
implementation should be compared.

This pattern is especially useful when you do not expect many clients to access
the server simultaneously and when you want to have additional security by
separating the Web server node from the application server node.

6.3 Runtime pattern for the Pervasive Device Access
Now that we have the basic patterns identified for the application, we will go a
step further and combine these with the nodes needed to incorporate pervasive
access functions. The various combinations will become the basis to form
Runtime patterns for the Pervasive Device Access application pattern.

6.3.1 Base Runtime pattern
The base Runtime pattern shown in Figure 6-3 on page 86 extends the basic
Self-Service runtime pattern to allow a wide variety of pervasive devices to
participate in the e-business solution. This gives a much richer user experience
on the one hand, and extended functionality on the other.
 Chapter 6. Runtime patterns 85

Figure 6-3 Runtime pattern for mobile Web applications

This pattern assumes that there will be incoming requests for the application
from both IP and non-IP networks. The non-IP network consists of wireless
networks (GSM, CDPD, etc.), and phone networks (PTSN). In order to access
the IP-based networks (Internet or intranet), a special gateway is required.
Phone networks require Voice over IP gateways to connect the analogue or
digital lines connection to the IP-based, packet-switched networks. Wireless
networks also have to use gateways to handle the connections, translate the
protocols, and connect to IP networks (for example WAP or i-mode).

The voice server node provides voice enablement, while the transcoding proxy
(Web intermediary) provides mobile enablement. The term mobile enablement
may sound strange, since this pattern by definition implies enablement for mobile
devices. However, in this instance mobile enablement refers to enabling the Web
application, not the architecture, for mobile access. Although this mobile
enablement does not include all the pervasive devices, remember the
terminology we follow in this book (refer to 1.1, “Definitions” on page 4).

O u ts ide W o r ld D e m ilita riz e d Zo n e
(D M Z)

In te rn a l N e tw o rk

D a ta b a s e

G a te w a y

C lie n t

IP
N e tw o rk

M o b ile C lie n t

N o n -IP
N e tw o rk

M o b ile E x ten s io n

Vo ic e
S erv e r

Tr
an

sc
od

in
g

P
ro

xy

P
ro

to
co

l f
ir

ew
al

l

W eb
A p p lic a tio n

S erv e r

Vo ice E n ab lem e n t

M o b i le E n ab le m e n t

D ire c to ry &
S e c u r ity
S e rv ic e s

D
om

ai
n

 fi
re

w
al

l

P e rv a s iv e
D e v ic e A cc e s s

T ie r

A p p li ca tio n 1

A p p lic a tio n 2

P e rv a s iv e
D e v ic e

P e rv a s iv e D e v ic e A c c e s s
86 Mobile Applications with IBM WebSphere Everyplace Access Design and Development

6.3.2 Runtime pattern variation
This variation changes the basic runtime pattern slightly by moving the business
logic into the internal network to provide enhanced security.

Figure 6-4 Mobile variation extended

The Web application server is split into two nodes, the Web server redirector and
the application server. The Web server redirector performs the functions of an
HTTP server, serving static pages. Other requests are forwarded to the
application server, where the bulk of the application logic resides.

The transcoding proxy node is connected to the Web server redirector.

Outside World Demilitarized Zone
(DMZ)

Internal Network

Gateway

Client

IP Network

Mobile Client

Non-IP Network

Mobile Extension

Voice
Server

Tr
an

sc
o

d
in

g
P

ro
xy

P
ro

to
co

l f
ir

ew
al

l

Voice Enablement

Mobile Enablement

Database

Web Server
Redirector

Application
Server

D
o

m
ai

n
 f

ir
ew

al
l

Pervasive
Device Access

Tier

Application 1

Application 2

Pervasive
Device

Pervasive Device Access

Directory &
Security
Services
 Chapter 6. Runtime patterns 87

6.4 Gateway placement
In every mobile solution, there must be a gateway somewhere in the architecture.
It is fairly obvious in the logical architecture where to put the gateway. The
question is, where should the gateway be physically? There are three choices:

� In the enterprise
� At the ISP
� At the carrier

Placing the gateway in the enterprise is the most expensive choice, not only
because of the cost of a gateway, but because of having to achieve the
availability required.

The ISP, on the other hand, can absorb the expenses of a gateway. In addition,
high availability can be achieved. However, security could be weak in this case.

The most obvious choice is to put the gateway at the carrier’s site. The costs are
absorbed by the carrier, they guarantee availability, and you have the assurance
that the gateway will work with that carrier. However, keep in mind that this last
point could also turn out to be a disadvantage because the gateway will only
serve the connections coming through that provider.
88 Mobile Applications with IBM WebSphere Everyplace Access Design and Development

Chapter 7. Runtime product mappings

Runtime product mappings are the key needed to complete the solution. In
product mappings, the nodes in the Runtime patterns are populated with
products. Refining the solution down to the product level allows you to take into
consideration configuration and deployment options of the products that can
impact the architecture or application design. The best example of this can be
seen in the WebSphere Transcoding Publisher deployment modes, which can
change the architecture as well as the application itself.

7

© Copyright IBM Corp. 2001 89

7.1 Selecting products
Selecting products means selecting hardware and software elements as well.
Choosing the right elements is always difficult because of various considerations
which must be taken into account. In some cases, decisions are made
considering not only the technical and logical points but other factors such as
expenses, existing knowledge, or time.

The following considerations should be taken into account during the design:

� Platform

Choosing the right platform depends on several other points. The platform in
this context means the operating system and the underlying hardware.

� Homogenous/heterogeneous solution

This is closely related to the platform, whether the solution deals with different
platforms (heterogeneous), or just one (homogenous).

� Availability

Availability is very complex from the architecture standpoint. It is related to the
number of systems. The higher the redundancy, the higher the availability;
this also means higher costs. It is very important to ensure just the right level
of availability; less than required can cause loss of business, more than
required can raise the costs.

� Performance

Performance has influence on the end user experience and has a significant
impact on the business. Users want fast responses, and the system has to
perform well, no matter what kind of application is involved.

� Security

Security has always been an issue. It depends on the business, and becomes
very important for mission-critical applications. Just as with availability, the
right level of security has to be found. Security can be very strict or stay at a
basic level; this depends on the requirements.

� System management

Solutions cannot stand alone without any system management. E-business
solutions are moving towards centralized system management, but users still
have to deal with multiple tools to manage the system within their solution.
90 Mobile Applications with IBM WebSphere Everyplace Access Design and Development

� Time

Building a solution takes some time. There is always the question: how long is
it going to take?

Choosing the right technologies and finding the fastest way to apply them are
two different things. Developing the solution is a matter of time; it depends on
the chosen technology, the existing knowledge and the available resources.

� Money

Money has the biggest influence on the solution. Since this is a technical
book, it is beyond its scope to analyze the various aspects of the influence of
money on the implementation.

7.2 Product mappings
Up to now, the designs have not specified concrete products or even concrete
technology for the solution. These patterns are open for any solution; they show
a path for any implementation.

The following product mappings will show that everything required to implement
the Runtime patterns is included in the WebSphere Everyplace Access offering.
The offering provides all the components required for a mobile e-business
solution. Not only is the runtime environment provided, but products for the
development environment are provided as well. The development environment
and the products will be discussed later in this book.

Figure 7-3 shows products that can be used to implement the basic Runtime
pattern for the Pervasive Device Access application pattern. This Runtime
pattern is discussed in 6.3.1, “Base Runtime pattern” on page 85.
 Chapter 7. Runtime product mappings 91

Figure 7-1 Product mapping for basic Runtime pattern

Figure 7-2 shows products that can be used to implement the basic Runtime
pattern variation discussed in 6.3.2, “Runtime pattern variation” on page 87.

Outside World Demilitarized Zone
(DMZ)

Internal Network

Gateway

Client

IP Network

Mobile Client

Non-IP Network

Voice
Server

Tr
an

sc
od

in
g

P
ro

xy

P
ro

to
co

l f
ir

ew
al

l

DatabaseWeb
Application

Server

D
o

m
ai

n
fir

ew
al

l

Windows NT4 + SP6a
WebSphere
Transcoding Publisher
3.5.1

Windows NT 4 + SP6a
IBM HTTP Server 1.3.12
WebSphere Application
Server 3.5 FP4

Windows NT
4 + SP6a
DB2 UDB 6.1
FP4

Windows NT 4.0 +
SP6a
WebSphere Voice
Server 1.5
92 Mobile Applications with IBM WebSphere Everyplace Access Design and Development

Figure 7-2 Product mapping for Runtime pattern variation

The last product mapping, shown in Figure 7-3, does not have a matching
Runtime pattern. This is because it is an implementation specific to a particular
product, WebSphere Transcoding Publisher. Runtime patterns show common
architectural patterns that could be implemented by multiple product sets. This
implementation shows a specific feature available in a particular product. More
information on the placement of the WebSphere Transcoding Publisher can be
found in 7.3, “WebSphere Transcoding Publisher considerations” on page 97.

Outside World Demilitarized Zone
(DMZ)

Internal Network

Gateway

Client

IP Network

Mobile Client

Non-IP Network

Voice
Server

Tr
an

sc
o

d
in

g
 P

ro
xy

P
ro

to
co

l f
ir

ew
al

l

Database

Web Server
Redirector

Application
Server

D
om

ai
n

fir
ew

al
l

Windows NT4 + SP6a
WebSphere
Transcoding Publisher
3.5.1

Windows NT 4.0 +
SP6a
WebSphere Voice
Server 1.5

Windows NT
4 + SP6a
DB2 UDB 6.1
FP4

Windows NT 4 +
SP6a
IBM HTTP
Server 1.3.12
OSE Remote

Windows NT 4 + SP6a
WebSphere Application
Server 3.5 FP4
 Chapter 7. Runtime product mappings 93

Figure 7-3 Product mapping specific to the product set

In all of these product mappings, the products shown were implemented in
Windows NT. It is important to note, however, that they are available for other
platforms as well. This gives you a wide range of choice for hardware and
operating systems. In Chapter 19, “Runtime environment for the sample
application” on page 383, the runtime environments for two different platforms
and two different scenarios are discussed.

7.2.1 The WebSphere Everyplace Access V1R1 offering
The following tables show the products that were used in the product mappings
and the platforms on which they are available. These products are available with
the WebSphere Everyplace Access offering. To find out more about these
products, see the list of references in 7.4, “Where to find more information” on
page 99

Outside World Demilitarized Zone
(DMZ)

Internal Network

Gateway

Client

IP Network

Mobile Client

Non-IP Network

Voice
Server

P
ro

to
co

l f
ir

ew
al

l

Web Server
Redirector

D
o

m
ai

n
fi

re
w

al
l

DatabaseApplication
Server

WebSphere
Transcoding
Publisher 3.5.1

Windows NT 4 + SP6a
WebSphere Application
Server 3.5 + FP4

Windows NT 4 +
SP6a
IBM HTTP
Server 1.3.12
OSE Remote

Windows NT
4 + SP6a
DB2 UDB 6.1
+ FP4

Windows NT 4.0 + SP6a
WebSphere Voice
Server 1.5

Tr
an

sc
o

di
ng

 f
ilt

er
94 Mobile Applications with IBM WebSphere Everyplace Access Design and Development

The WebSphere Application Server serves as the Web application server node in
the solution. It has a tight integration with the Web server (IBM HTTP server).

Table 7-1 WebSphere Application Server

The WebSphere Transcoding Publisher is the intermediary application which
transcodes the content from one transcoder to another. The transcoders are
pluggable items under the server, and new ones are being introduced on a
regular basis.

Table 7-2 WebSphere Transcoding Publisher

WebSphere Voice Server is a standalone server application which runs the
VoiceXML browser for each user. It also talks to the VoIP gateway on one side
and to the Web application on the other. The server has different editions for the
different platforms.

Table 7-3 WebSphere Voice Server

WebSphere Application Server

Version Advanced Edition 3.5

Update Fixpack 4

Available platforms � AIX
� Windows NT 4 / Windows 2000
� Linux
� Solaris
� HP-UX

Additional � IBM JDK 1.2
� DB2 Runtime Client v6.2 (fixpack 4)

WebSphere Transcoding Publisher

Version 3.5.1

Update � HTML-to-VoiceXML transcoder
� Additional device profiles

Available platforms � AIX
� Windows NT 4 / Windows 2000
� Linux
� Solaris

WebSphere Voice Server

Version 1.5

Available platforms � AIX (DirectTalk platform)
� Windows NT 4
 Chapter 7. Runtime product mappings 95

The database server that comes with the WebSphere Everyplace Access
offering is intended for use by WebSphere Application Server as a administrative
repository.

Table 7-4 DB2 UDB

The IBM HTTP Server comes with WebSphere Application Server. This server is
based on the Apache OpenSource HTTP Server. It provides the Web server
services for the Web application.

Table 7-5 IBM HTTP Server

7.2.2 Additional products for the offering
In addition to the products illustrated by the product mappings, the WebSphere
Everyplace Access offering includes several other products.

Secureway Directory Server
The Secureway Directory Server provides an LDAP directory server and services
for the solution. LDAP is utilized in several situations, for example centralized
security and common directory services for distributed components.

WebSphere Edge Server
WebSphere Edge Server is a multipurpose server. It provides load balancing, a
caching proxy, and content distribution.

DB2 UDB

Version 6.1

Update Fixpack 4

Available platforms � AIX
� Windows NT 4 / Windows 2000
� Linux

IBM HTTP Server

Version 1.3.12

Available platforms � AIX
� Windows NT 4 / Windows 2000
� Linux
96 Mobile Applications with IBM WebSphere Everyplace Access Design and Development

Secureway Firewall
In our architecture, the firewalls are running the Secureway Firewall product.
Since it is more like a network component, it is not closely related to the other
products. It is only mentioned in this list because it is an essential part of the
architecture and security.

7.3 WebSphere Transcoding Publisher considerations
WebSphere Transcoding Publisher provides three different deployment modes
for running a transcoder. These options are all available for building a mobile
e-business application, though not every one is optimal.

The different WTP deployment modes are:

1. As a proxy (network intermediary)

2. As a filter running in IBM WebSphere Application Server

3. As JavaBeans

7.3.1 Proxy model
In this configuration, WebSphere Transcoding Publisher is a single service
that tailors content coming from many different Web servers. The proxy
intercepts HTTP requests and responses as they flow between the user and
the Web server. However, this configuration does not tailor content that is
encrypted between the user and the Web server.

If you run Transcoding Publisher as a network proxy, you can use it with or
without a cache server. If you use a cache server in your network,
WebSphere Transcoding Publisher can use it to store and retrieve transcoded
Web pages and intermediate results. This may enable WebSphere
Transcoding Publisher to avoid repeating the transcoding of frequently
accessed pages.

If you run WebSphere Transcoding Publisher as a network proxy, and your
network uses a cache server or a firewall, you will need to supply the
addresses and port numbers used by these servers when you configure
WebSphere Transcoding Publisher.
 Chapter 7. Runtime product mappings 97

7.3.2 Filter model in WebSphere Application Server
In this configuration, WebSphere Transcoding Publisher tailors the content
generated by a single Web server. When running as a filter, Transcoding
Publisher can tailor content before it is encrypted and sent to a user. However,
when you run WebSphere Transcoding Publisher as a filter, you cannot use
network preference profiles or the Request Viewer from the WTP Toolkit.

If you use WebSphere Application Server in your network, running Transcoding
Publisher as a WebSphere Application Server filter enables you to tailor the
output of other filters and servlets for your pervasive devices. If you use
encryption within the WebSphere Application Server, then you must use
WebSphere Transcoding Publisher as a filter so that it can modify content before
it is encrypted. If you do not use encryption, then you could run WebSphere
Transcoding Publisher either as a filter or as a proxy. The filter deployment model
changes the runtime environment a bit. Figure 7-3 on page 94 reflects the new
Runtime pattern.

7.3.3 Running JavaBean transcoders
The modules inside the Transcoding Publisher transcoding server that modify
content are called transcoders. The transcoders are also provided as Java
beans, which can be run independently of WebSphere Transcoding Publisher
(WTP). This provides a means for other server programs, such as servlets,
independent content-providing programs, or JavaServer Pages (JSPs) to invoke
single transcoders directly. The JavaBean wrapper provides the transcoder with
the same information about the system and request that it receives inside the
WebSphere Transcoding Publisher transcoding server, so that it operates the
same way in both contexts.

7.3.4 Choosing the right model
In the runtime environment, you can set up WTP either as a proxy or as a servlet
filter. The primary question is whether to apply security to the front-end (in this
case, how strict must the security be?) or to run the site without security.

If secure connections are not required for the front-end, then WTP can run either
as a forward or a reverse proxy. If security is an essential component, and in
most cases it is, then you should consider using the servlet filter option. There
are trade-offs to using this model, but if security is an issue, it is always worth it.

Although security is a requirement, you can always put the transcoder proxy
in-house together with the gateway. The main problem is that the Web
intermediaries are wedged between the client and the content server. In this
case, the content transmitted between the two parties cannot be encrypted
98 Mobile Applications with IBM WebSphere Everyplace Access Design and Development

because the Web intermediary has to work on the content. If you put the gateway
in-house together with the Web intermediary, then the client can connect to the
gateway securely, and you have a better chance of securing the connection
between the gateway and the content server, even if the transmitted content is
not encrypted between the two ends.

Choosing between forward-proxy and reverse-proxy
� Forward-proxy

This is the easiest configuration; during development, this is also the most
efficient. WTP can be used for accessing any HTTP server, which gives
freedom to the client, but also puts a load on WTP.

The problem with this setup is that not all of the devices support configuring a
proxy for accessing the Web. They cannot use WTP to pull up the correct
information.

� Reverse-proxy

The advantage of this setup is that the client does not have to specify the
proxy for accessing the Web, so every client can reach WTP. The clients are
only able to access the preconfigured HTTP server, which, in terms of
performance and loading, is much more efficient.

The problem with the reverse-proxy is that the URLs in the content have to be
rewritten; so the hard-coded links (for example JavaScript) will not work within
this setup.

In a runtime environment where security is not an issue, in terms of front-end
content provisioning, the reverse-proxy provides better loading on WTP and
gives more flexibility to the clients.

7.4 Where to find more information
� For more information about WebSphere Application Server, go to:

http://www.ibm.com/software/webservers/appserv/

� WebSphere Transcoding Publisher:
http://www.ibm.com/software/webservers/transcoding/

� WebSphere Voice Server:
http://www.ibm.com/software/speech/enterprise/ep_1.html

� IBM HTTP Server: http://www.ibm.com/software/webservers/httpservers/

� WebSphere Edge Server:
http://www.ibm.com/software/webservers/edgeserver/
 Chapter 7. Runtime product mappings 99

� DB2 UDB: http://www.ibm.com/software/data/db2/udb/

� Secureway Firewall:
http://www.tivoli.com/products/index/secureway_firewall/
100 Mobile Applications with IBM WebSphere Everyplace Access Design and Development

Part 3 Wireless
Internet
application:
guidelines

Part 3
© Copyright IBM Corp. 2001 101

102 Mobile Applications with IBM WebSphere Everyplace Access Design and Development

Chapter 8. Solution design

This chapter introduces the possible solutions for implementing mobile Web
applications. The discussion will focus on design details, in preparation for the
next two chapters, where application design and application development will
take place.

First, we introduce the different pervasive computing modes to provide a general
overview on communication; then the discussion will focus on synchronous
mode.

The most essential part of the chapter describes the decision tree, which depicts
the most important decisions and options for the appropriate solution during
design time.

Finally, we briefly mention the distinctions between the design for a visual and a
non-visual (voice) application.

8

© Copyright IBM Corp. 2001 103

8.1 The different modes of pervasive computing
In a pervasive world, mobile devices are a subset of all those devices in our daily
life which have something to do with computing, from the intelligent
Internet-enabled refrigerator to a PDA organizer or the massive “intelligent”
buildings (where computers are controlling the whole building).

What is a computing mode?

Computing modes are a kind of representation at the highest level, where
different devices are communicating through various networks using specific
protocols.

These modes are not only possible options; they can be mixed in one solution,
even in one application on one device.

Pervasive computing is beyond the scope of this book. We will only address the
mobile computing scenarios.

Figure 8-1 and the following sections describe in some detail the possible modes
for solution design.

Figure 8-1 Computing modes

WebSphere Everyplace Access only deals with the communication modes
shown within the shaded areas.

8.1.1 Synchronous
The synchronous mode is the best known mode, since it has received great
attention from the public. In fact, one of the goals of the “wireless Web” is to
extend e-business applications to mobile devices.

Synchronous

Asynchronous

Notification

Multi modal

Voice
104 Mobile Applications with IBM WebSphere Everyplace Access Design and Development

In our case, we made the following assumptions:

1. The computing mode is synchronous.

2. The end user is a thin client and the application runs on the server side.

Definition: Synchronous communication requires that each end of a
communication exchange respond in turn without initiating a new
communication.

For example, a WAP phone connects to a Web application. The communication
between the WAP phone and the Web server is synchronous, as are the
requests and the responses during the session.

8.1.2 Notification
There is a notification application at work when the client receives information
without having to take the initiative; this is also called push. This communication
mode requires the network to be always on, which enables applications to send
messages to the device over the network.

We can make a distinction between:

� The PC-based notification applications, for example, in the context of a chat
application, the notification received when a new person comes in.

� The notification of pagers and PDAs via the paging network.

� The Short Message Services (SMS) notification:

– A widely used message service over GSM networks.

– The WAP push is a more general architecture (also defined by the WAP
forum) that allows to push information to WAP devices. This can be
provided by SMS but also via other protocols such as SMTP (Simple Mail
Transfer Protocol).

� Voice notification, an application that provides acknowledgement via a
telephone using pre-recorded messages.

8.1.3 Asynchronous
The best known asynchronous applications are mail and messaging applications.
A common characteristic of these applications is that synchronization has to be
done explicitly in order to get the data through.

Note: In this book, we will not cover the notification communication mode.
 Chapter 8. Solution design 105

Definition: Asynchronous mode pertains to communications that proceed
independently of each other until one connection needs to interrupt another
connection with a request.

Another form of asynchronous communication is one where synchronization,
possibly wirelessly, occurs between devices and user workstations. In this case,
a set of data or content is synchronized between the two parties. After the
synchronization, both devices can work with the same set of data; which could be
different until the next synchronization. For example, the address book in the
PDA is synchronized with the address book in a desktop PC with a mailing
application.

An emerging data format is the SyncML, a synchronization Markup Language
providing a unified way of synchronizing data between the mobile device and the
networked device (for example PDA and a networked PC). A concrete example
of this is to have mail messages marked “read” on a PDA when the
corresponding message has actually been viewed in the original application.
More information about SyncML can be found at http://www.syncml.org.

8.1.4 Voice
Voice applications access back-end applications using different methods. In our
case, speech recognition or DTMF tones are used to process user inputs. On the
other end, synthesized speech or pre-recorded audio snippets provide output
facilities for information.

Voice applications require additional elements to be implemented into the
architecture, since the end-user device is a phone. While the previous
communication modes already had some kind of network connection to transfer
data, human voice, as a form of interaction, requires a special gateway, which
enables the transmission of voice over a data network (for example the Voice
over IP gateway).

An emerging standard is VoiceXML, a markup language specifically designed for
voice applications. Further details about the design of voice applications will be
provided later in the book in section 8.4, “Non-visual design: voice” on page 116.

Note: In this book we will not cover the asynchronous communication mode.

Note: VoiceXML is governed by the VoiceXML forum, which was founded in
1999 by IBM, Lucent, Motorola and AT&T. More information can be found at
http://www.voiceXML.org/
106 Mobile Applications with IBM WebSphere Everyplace Access Design and Development

8.1.5 Multimodal
The ability of a device or application to support several modes of interaction
simultaneously is called “Multimodal interaction”.

In 17.4, “Multimodal applications” on page 346 we will introduce a multimodal
application known as VIWO (Voice in WAP out), where the input is human voice
and the output is a set of WML pages.

8.2 Decision tree
The decision tree in Figure 8-2 seeks to provide guidance in the design of an
effective front-end solution for your mobile Web applications. Starting from a
high-level description, the discussion will move down to the final solution by
following a branch at each node on the tree. When multiple options are available
at a node (decision point), questions and a set of answers regarding the solution
will help to find the right path.

8.2.1 Device classes
The expression device class refers to an identifiable class of devices (or set of
devices) that has a different realization of content, that is, a particular view of the
document. These classes are easily separated based on the adopted markup
language or a particular network or device profile, as shown in Table 8-1; the list
is not exhaustive and it is provided for clarity of exposition.
 Chapter 8. Solution design 107

Table 8-1 Device classes

8.2.2 The decision tree
We start from the top node, which has the label System. This also assumes that
the solution designer has a clear understanding of the customer requirements,
and has a plan about the application itself and about the functionalities.

The white label boxes are options; the designer can choose between the options
on a level.

The shaded boxes are also options, but they represent technology options, which
the solution will be based on.

Decision points raise questions and also provide a set of answers. They help the
designer choose between options.

We use the tables (following Figure 8-2) together with the decision tree.
Whenever we get to a decision point, we look up the table related to that decision
point and go through the questions. Depending on our answers, and the answers
we find below the questions, we make a decision to get to the next option. We do
this until we get to a final solution.

The objective is not only to find the right solution for the applications, but also to
learn about the possibilities and the applicable technologies while making the
decisions.

Device Markup language Bandwidth

Desktop
PC/Workstation

HTML wide

Wireless PC HTML low

WAP devices HDML, WML low

i-mode devices cHTML low

PDAs *ML low

Phone using voice VoiceXML not applicable
108 Mobile Applications with IBM WebSphere Everyplace Access Design and Development

Figure 8-2 Decision tree

The following tables represent the decision points (nodes); each table includes
the questions and answers for a decision point.

Table 8-2 Decision #1

A multitier Web application separates the business and the presentation logic
within the application logic.

rewriteable

directnon-direct

WTP
HTML->*ML

WTP
XML+XSL->*ML

"tweaking"

non-rewriteable

system

non-existingexisting

D3

D1

D2

D4

option 1option 2

option 3option 4

option 6

option 8

option 9

Dn decision points solutions options

option 5

option 7

D5

Is the starting point an existing system or new development?

Option #1: Non-existing Option #2: Existing

The whole solution has to be developed. The mobile solution has to suit to the
existing system.
The key is having all the documentation of
the application to start with.
 Chapter 8. Solution design 109

Presentation logic handles the user interaction, controlling the flow and
generating the content. The presentation logic maps and interprets the user
interface to the business logic, which is the digital realization of all the business
related data and functions.

It is important to understand that the presentation logic is not only generating the
content, but also controls the user interaction flow. This makes the presentation
logic capable of handling not only different kinds of content types but different
kinds of interaction flows as well.

Table 8-3 Decision # 2

The term rewriteable deserves some additional explanation. It means that the
environment in which the presentation layer (typically servlets and JSPs) is developed is
accessible for new development; this also means that one should at least be able to develop
new servlets and new pages (either dynamic or static) in the existing application
environment. We call these components presentation layer components
(seeFigure 8-3).

O #3: Rewriteable O #4: Non-rewriteable

Is the presentation rewriteable?

The presentation layer components (see
definition above) are accessible in “write
mode”, or adding new components.
Source code required in most cases.

There is no way to redesign or rewrite the
presentation. In this case a Web
Intermediary (transcoder) is required to do
the job.

An existing site can already support mobile devices. In this perspective, is there
a case for modifying or adding presentation layer objects?

The current site, equipped with new
technologies, is not yet considered to be
fully ready. In other words, there are
benefits to modifying or adding
presentation layer components. The
presentation layer components are
accessible at a reasonable cost.

The site is running fine, the content is
presented in a well-formatted fashion, and
there is no need to rewrite the logic. It is
rather difficult to access the presentation
layer components. The cost of modifying
the existing presentation layer
components is too high compared with the
benefits.
110 Mobile Applications with IBM WebSphere Everyplace Access Design and Development

Figure 8-3 Presentation layer components

The presentation layer components are responsible for representing the content
to the users. The presentation logic itself depends on the business logic, shown
implemented, as in Figure 8-3, by the back-end components. The Web
applications are responsible for producing the content (using the back-end
components) and provide interaction with the user (via the presentation
components).

The term non-rewriteable, as opposed to rewriteable, means that there is no
write access at all to the presentation layer components (not even to add new
ones) or that this access is too costly compared to the benefits. The only thing on
which we can base the new content, if applicable, is the output content, for
example HTML output. A typical example for this scenario is the situation of a
service provider, which is usually not allowed to access the application of its
customers.

Please note that rewriteable does not mean that there is access to the other
components. We assume that the business logic behind the application is well
designed so that there is no need to modify it; we only have to work on the
presentation layer.

As shown in the decision tree, a non-existing application is also rewriteable,
which is logical; application development starts from scratch.

*ML pages

Servlets

JSPs

View beans

Result beans

Command
beans

EJBs

....

presentation layer components back-end components
ne

tw
or

k

 Chapter 8. Solution design 111

This does not mean that we can restrict the changes to any of the pages and the
JavaServer Pages only. There are many cases in which the devices are so
different that access to other components, such as servlets and view beans, is
affected. The capabilities of the different devices should be taken into account; in
some cases, the existing presentation logic behind those pages could not match
(or had difficulty matching) the other device classes.

For example:

� A sophisticated query with a desktop PC’s browser can be very easy: it only
requires filling out a couple of fields on a form. But the same query on a
mobile phone using a WAP browser cause difficulties because of the
limitations of screen, memory, and so on.

� Using image maps on a Web page to determine the position on a map can
cause problems. Some of the small devices do not have pointing devices, not
to mention voice access.

Table 8-4 Decision #3

O #5: Direct O #6: Non-direct

Existing system or not?

In the case of a non-existing system or if
adding a new device class, the whole UI
has to be written for each device class.

In an existing system, there are methods
to leverage the existing content, and take
advantage of it, to make the development
easier.

Number of different devices accessing the application?

The application is designed to be
accessible by a maximum of two different
types of devices.

The site should support a wide variety of
device types (more than two types).

Number of pages that have to be written?

The wireless site consists of only a couple
of pages. For example, these may be only
some short database queries that have to
be written in JavaServer Pages.

The wireless site has many pages. For
example, the whole site content should be
accessible using wireless devices.

Is voice application also required?

Implementing a VoiceXML application
directly is possibly the easiest way.

There are solutions to re-use the existing
content to produce VoiceXML, but they all
need some workaround. Probably the
easiest solution is to use XML and XSL to
generate VoiceXML.
112 Mobile Applications with IBM WebSphere Everyplace Access Design and Development

In the case of a non-direct solution, the following table helps to make the decision
between two different approaches, where both use WebSphere Transcoding
Publisher.

Table 8-5 Decision #4

XML and XSL
In the previous section, we made a distinction between using a transcoding node
and using XML together wit XSL. The two technologies are completely different,
and require different application designs as well.

Transcoding works on the existing content, and only addresses the content. XML
and XSL address the content from two perspectives, one being the data (XML)
and the other the visualization (XSL).

Find more information about XML and XSL in 10.1.7, “XSLT” on page 161.

8.2.3 When to apply tweaking
Tweaking means that we want to adapt a given content to a device (to get the
most out of it) using the same class of devices.

For example, we created content for WAP-enabled devices in WML. WAP
devices have different characteristics. There are differences in screen size, and
some might accept images, while others might not. These devices use the same
content, but each of them might have a different profile.

O #7: WTP using transcoding O #8: WTP using XML and XSL

Quality of the expected result?

Using simple, easily transcodable pages
can result in good quality, but usually a
draft result is achieved on most devices.

This is used to reach the best presentation
on the devices.

How much effort is invested in development?

This solution requires the least amount of
work.

Much more work is required to achieve the
result. Different XSLs have to be written
for each device.

Is voice implemented?

Voice using transcoding is the easiest
solution, and requires the least effort,
compared with the XML solution.

VoiceXML pages are structured differently
from other content, and applying
Stylesheet could be difficult. The voice
application has a different flow, and the
pages are more fragmented.
 Chapter 8. Solution design 113

In order to adapt the content to those devices, we could categorize the devices
according to different preferences. For each category, we would then use
different transcoders to adapt the specific features.

Table 8-6 Decision #5

Technically, tweaking refers to the application transcoding to the final
(device-specific) content. Transcoding is done by using different device profiles or
deploying customized transcoders, that is, developed MEGs or MEGlets.

Tweaking can work on directly coded content, or on content generated using
XML data and XSL.

Using device profiles
Defining device profiles is the easiest way to implement some form of tweaking.
WTP has the following classes of features for a device, which are applicable to a
profile as a parameter:

� Output type preferences

� Image preferences

� HTML browser preferences

� Java/XML preferences

� Fragmentation preferences

� Device-specific preferences

The developer can set up the profiles using the Profile Builder; to create a new
profile, refer to “Creating a new device profile” on page 331, or modify an existing
one.

O #7: Not worth using tweaking O #8: Worth using tweaking

Complexity of the site? (frames, tables, content...)

There are no frames; we have very simple
tables (queries), straight, linear content,
few images, no client-side scripts (for
example JavaScript)

The site uses many frames, sophisticated,
nested tables, many images, different
topics on one page, client-side scripts.

How do we reach the maximum capabilities on most devices?

A good, but not perfect result can be
achieved with WTP solutions. The result is
close to the expected content.

We get the most out of the device
capabilities. A sharper, more accurate
result is achieved on different devices.
114 Mobile Applications with IBM WebSphere Everyplace Access Design and Development

A good example of tweaking is when the user accesses a site with a wireless PC
(laptop with wireless adapter) and the low bandwidth requires cutting down the
content. The site already has simplified HTML content for wireless PCs, but the
user only needs text based documents without pictures, so the client is the
command window browser: Lynx. With tweaking, the transcoder can easily
remove the images from the document and the JavaScripts.

8.2.4 Custom solutions
WTP supports transcoders written either using Web Intermediaries (WBI) v4.5
API or Java Servlet v2.1 API. They are referred to as MEGs or MEGlets,
depending on the applied API.

Custom solutions give the highest flexibility to the developer with WebSphere
Transcoding Publisher. Developers are encouraged to develop their own MEGs
or MEGlets. Of course, more work is required, but this will give the best results
using transcoding.

It is also possible to develop a totally new transcoder for WebSphere Transcoding
Publisher, which can transcode the content more precisely to the required device
or into the required format. For example:

� Document transcoding into PDF (Portable Document Format)

� Video or audio stream transcoding

The possibilities with custom solutions are endless; it is up to the solution
designer to find out if the solution requires a new MEG, MEGlet or transcoder, or
if it can be built upon the existing ones.

Refer to Adding Transcoders to Transcoding Publisher in the online development
guide, and to Section 15.2.3, “Text clipping” on page 284 for more information.

For more information about WTP custom solutions, refer to the IBM Redbook
New Capabilities in IBM WebSphere Transcoding Publisher Version 3.5:
Extending Web Applications to the Pervasive World, SG24-6233.

8.3 Visual design
The visual design of a mobile application is well documented; you can find
documents, papers, and books about designing visual user interfaces for Web
applications.

Refer to the IBM Redbook Servlet and JSP Programming with IBM WebSphere
Studio and VisualAge for Java, SG24-5755 for more information.
 Chapter 8. Solution design 115

The IBM Redbook The Front of IBM WebSphere Building e-business User
Interfaces, SG24-5488, is also a relevant source of information.

In this book, we will also cover the aspects of visual design in Chapter 9,
“Application design” on page 121.

We will see that designing a mobile Web application poses more challenges
when one wants to implement mobile services as well, and the level of difficulty
increases if voice is included.

Our visual mobile applications follow the well-known Model-View-Controller
pattern for front-end application design. Our applications also leverage from the
Web Intermediary technologies to make the transition from content less difficult.
To find out more about the visual application design, please refer to Chapter 9,
“Application design” on page 121.

8.4 Non-visual design: voice
As we mentioned before, a voice user interface provides input and output to the
application via speech recognition and speech synthesis; it is optionally
completed with other means of input (for example DTMF) and output (for
example pieces of prerecorded audio).

VoiceXML is an XML-based markup language for creating distributed voice
applications in which the input and/or output are through a spoken (rather than
graphical) user interface. Users can access deployed VoiceXML applications
anytime, anywhere, from any telephony-capable device.

8.4.1 Challenges of voice versus visual applications
Most dynamic content that is being considered for a voice application has either
already been rendered visually, such as through HTML pages, or has no
interface representation at all, such as a collection of XML documents or data
from a database. The first thing to understand is that a voice interface implies a
completely different set of rules and expectations for the end user than do
traditional visual interfaces. For instance, visual elements which may make the
document easy to use (navigational bars, "twisties" or expand/collapse nodes) or
visually appealing (embedded graphics, animation or color scheme) may not
work at all in a voice application. Also, visual elements which are not relevant to
the subject of the document, such as advertisements or company banners,
interfere with the end user's ability to get to the core content quickly and easily.

The elements of a good interface are the same, regardless of whether it is
viewed or listened to: it must be clean, intuitive, efficient, and productive.
116 Mobile Applications with IBM WebSphere Everyplace Access Design and Development

Dynamic data which is in some other, non-visual representation, such as XML,
saves you from these visual elements. Even so, an interface must be built for this
data. Understanding the capabilities of the voice browsing system and the user's
expectations for the interface is equivalent to building a usable voice interface,
especially if your background is in developing visual Web applications.

The following paragraphs explore in more detail some of the most important
differences between a visual application and a voice application.

Mental load
One of the most important differences between a visual and audio interface is the
amount of data which can be represented and processed. Web (HTML) pages
often offer a vast amount of information, but users have been trained to use
common navigational elements to retrieve the desired data. The page sits in front
of the user for as long as it is needed by the user to analyze the information. It is
also possible to move back quickly through previous pages to review the content.

Contrast this with a voice application. Users typically access such an application
through a phone, meaning that once they have heard it, it is gone, and is usually
difficult or time consuming to get back. Information in a voice application is
transient just like any human-to-human spoken conversation.

Voice application designers need to limit the amount of information presented to
the user, so as to avoid overpowering short term memory. Remember, there is no
document to view and no back button. For example, where a large list of options
may be presented in a visual form, common usability guidelines for voice dictates
that approximately 7 (plus or minus two) options in a list is best.

Note: “Still, high-speed networks will not improve the experience all that

much. If users are wasting time scrolling through Web pages laid out for desk-

top viewing and trying to locate the “needle” of information they are seeking in

an enormous “haystack” of content, they are not working productively. The

whole point of providing wireless mobile access to mission-critical applications

is lost in the execution” - from the document Wireless Enterprise Applications

for Mobile Information Management - Development Options and Business

Decisions, Palm Inc.
 Chapter 8. Solution design 117

Navigation and error recovery
We are all familiar with navigating HTML pages. The common use of navigation
bars, self-describing hyperlinks, and the Forward and Back buttons make it easy
to get where you need to go and understand where you are. If there is an error,
the Back button gets you back to a safe location where you can try again.

In voice applications, it is not obvious to the user where he/she is in the
application. For navigation, you must provide a consistent approach to traversing
menus and pages of data, such as always offering a link back to the main menu
first, followed by links to content, then by a link to exit the application. The link
wording needs to be concise (one to three words) yet descriptive and
representative of the current area of the application. In visual Web pages, you
can intersperse links to distantly related material and not cause the user to lose
focus of the subject matter. In a voice application, the user can quickly lose track
of what he/she has heard and forget where he/she is, forcing him/her to go
through the rest of the links to find the one that repeats the options or returns to
the previous menu. Exercise restrain in how much data is presented to the user
and ensure that all of the data is closely related in subject.

Error recovery is often simpler in a visual application. You recognize that you are
typing something incorrectly and fix it before it is submitted, or resubmit input by
going back and trying again. You click the wrong link, so you use the Back button
to try another one. With voice applications, you not only have to contend with the
possibility of providing the wrong input, but with the system's ability to understand
what you say.

Voice applications need to be designed in such a way as to make it easy for the
user to retry an input, or limit the user's choices of input to minimize the risk of
error. In a visual representation, data is randomly accessed, and input can be
given at almost any time. In voice applications, data is read sequentially and
input (voice recognition) can only be processed at certain times. Barging-in,
which refers to a voice application’s allowing the user to interrupt the data being
read with a request, should be considered. Controlling when voice input is
allowed in general is a function of the voice browser, not VoiceXML.

User characteristics
More than in visual applications, the user has to be familiar with the tasks
proposed, since there are no elements illustrating them. In that respect also, one
has to recognize the typical vocabulary to describe tasks, which can vary from
region to region, even for the same language.
118 Mobile Applications with IBM WebSphere Everyplace Access Design and Development

Wording and input processing
Modern speech recognition processing is built around recognizing known words
and phrases. It is easier for software to distinguish between spoken phrases
made up of several phonemes and dynamic phonetic characteristics between
spoken letters, such as when spelling a word. It is very difficult for voice
recognition software to tell the difference between P and B, especially if the user
is on a cell phone in a public place or in a moving vehicle, but it is easier to
recognize a specific phrase.

When a voice application requires text input, that input must be limited to a
well-understood and bounded grammar, or specification of valid input. When the
grammar can be limited to a (short) list of words from which to choose, such as
through a navigation menu or selection list, then the voice browser needs only to
concentrate on understanding those set inputs. The grammar must either be
generated as part of the page, or dynamically generated as part of the
application logic, such as from a database of grammars.

Requiring the user to spell an entry, such as a name, account number, or
restaurant name, can cause unrecognized input or erroneous results. The
possible exception is numeric input, where the grammar is limited to the numbers
0 through 9. These ten characters are more or less phonetically unique and most
voice recognition systems have less difficulty differentiating between them. For
this very reason, many voice applications owners will issue numeric IDs or
personal identification numbers (PINs) to their users to authenticate themselves
to the voice application system. Since most billing and banking account numbers
are numeric, voice-based financial applications have become widespread.

8.4.2 Voice applied to the decision tree
As mentioned in the previous section, the differences between visual and
non-visual applications are such that in most situations, voice applications can be
directly coded in VoiceXML using the IBM WebSphere Voice Server SDK or an
equivalent product. However, WTP may be a more productive solution,
particularly when it is used in combination with a native VoiceXML application, if
any of the following situations occur:

� The user already has an existing visual Web site (in HTML) or data in XML.

� The user wants to present the same basic data on multiple output devices,
one of which is a telephone.
 Chapter 8. Solution design 119

In this case, which corresponds to the non-direct approach (see option 6 in
Figure 8-2 on page 109), you should refer to the sections below, which discuss in
more detail the following usage scenarios:

1. Converting XML data directly to VoiceXML through the application of XSL
stylesheets (see option 8 in Figure 8-2),

2. Transcoding (see option 7 in Figure 8-2) by either:

a. converting a Web site into a VoiceXML application, or

b. mining Web content for reuse in a VoiceXML application.

8.4.3 Other aspects of voice related to solution design
Currently, applications with embedded voice synthesis, which may be used to
read transcoded HTML content, sound very artificial. Until voice synthesis
becomes more natural (hopefully in the near future), most companies will still
prefer voice applications written totally in VoiceXML and incorporating
prerecorded human voice cues. Only dynamically generated content needs to be
read synthetically, but, as previously described, it can still make use of
prerecorded voice snippets.

Deciding whether to use voice snippets instead of synthesized voice is important.
If voice snippets are to be used, where should this happen? The following
considerations should be taken into account:

� Voice snippets sound much better, and provide a better user experience.

� Maintaining the pre-recorded voice parts requires some organization. The
same voice should be used throughout. However, maintaining a voice site is
probably the cheapest solution of all.

� Do not forget to put the identical text for the voice snippets into the VoiceXML,
so the text browser can also handle that part.

� Prerecorded audio takes up much more disk space, depending on its quality,
than the synthesized one. On the other hand, prerecorded audio requires less
processing from the server.
120 Mobile Applications with IBM WebSphere Everyplace Access Design and Development

Chapter 9. Application design

This chapter addresses application design, which is a very important issue in
software development. The main focus point will be an architecture that can deal
with the new challenges in mobile application. Time is changing as well as the
demands on applications. New technologies are emerging every day and good
Web applications must be able to adapt to these new technologies very quickly.
Speed is a key to the success of an application. Who is the first on the market
with that new technology? Also, the flexibility to adapt to these technologies will
be a crucial asset.

There are Web applications implemented for offering services in the intranet of a
company and there are Web applications implemented for offering services for all
users on the Internet. Obviously, these two types of applications are of a different
nature and also intended for different types of users, but they have gone through
the same consistent application design. The functions and features that each
application should support are implemented, and the flexibility for easy
maintenance and enhancement is present.

The market is irrevocably changing and mobile applications regularly show as
many new features as the Web itself now. The technology of mobile applications
is emerging steadily and many already established applications on the Web will
need to be enhanced to adapt to this new technology. There are many issues to

9

© Copyright IBM Corp. 2001 121

consider in order to design an application with a high degree of flexibility and
enhance an application having mobile features. Some examples are object
technology, design patterns, object reuse, and so on. All these issues will be
discussed in the forthcoming sections.

9.1 Web application
Normal Web applications include some interaction with the user. An initial
request is triggered by the user when the URL is typed into the browser. Most
applications will reply with a simple welcome page to the user. Then the user has
to input some information to the page; for example, if it is a login page, the user
will input a user name and password to gain access to that site. The request is
passed back to the server, which checks and validates the inputs made by the
user, then responds with a dynamically generated result page.

This scenario is a very simple one, but there is actually a well-thought design
behind it. Commonly, the data flow of an application is concentrated on the
server side and little or none of the business logic is revealed on the client side.
The reason for that to avoid distributing the logic. The server should be in control
of all the logic and every change can then be easily realized on the server side.
Web application architecture often implements a design pattern called
Model-View-Controller (MVC). Section 9.1.1, “Model-View-Controller” on
page 126 will discuss the MVC pattern in more detail.

Figure 9-1 depicts a sample Web application that provides a high degree of
flexibility at a low cost.
122 Mobile Applications with IBM WebSphere Everyplace Access Design and Development

Figure 9-1 A sample Web application (1)

An implemented Web application based on this pattern can have many additional
features.

� All components are defined logically.

� Each one is assigned one function.

� A defined interface controls the data flow between components. Hence, only
the interface has to be changed in case of an extension.

� Each component can be implemented as another pattern as well. This leads
to a higher degree of flexibility and reusability of each component.

� Cost is reduced.

� Quality is higher.

� Flexibility is high.

� Reusability is high.

RMI HTTP

XML

Order
EntryOrder

EntryPlace
Order

Order
EntryOrder

EntryCreate
Order

Order
EntryOrder

EntryCommit
Order

EJB/J2EE

IIOP

CORBA

TCP/IP

Operating Systems
 Chapter 9. Application design 123

Not only are the functions reusable, but the design, patterns and framework are
as well. The application is divided into an application service layer and a
server-side business layer.

Figure 9-2 A sample Web application (2)

RMI HTTP

XML

Order
EntryOrder

EntryPlace
Order

Order
EntryOrder

EntryCreate
Order

Order
EntryOrder

EntryCommit
Order

EJB/J2EE

IIOP

CORBA

TCP/IP

Operating Systems

Application service layer

Server-side business components

Service A Service B Service C
124 Mobile Applications with IBM WebSphere Everyplace Access Design and Development

� Application layer

The application service layer will take care of all components supported by
the application. There can be as many components as needed. Each function
is encapsulated in its own component. Any changes required to the service
result in the modification of this function without affecting others.

� Server-side business layer

The Server-side business layer handles all functionalities and business logic
required to process a service. An advantage of this is that every process
required by a specific logic is hidden from the application service layer. Only a
known interface is used to communicate between these two layers. Therefore,
the interface is the main connection for the application service layer to pass
any information to the server-side business layer.

Of course, the same interface is the only connection for the server-side
business layer to send information back to the application. Hence, the
interface must also be carefully maintained. Through the separation of the
application layer and the business layer, services can be created rapidly and
customer feedback is received more quickly. Also, it is easy to adapt to any
future market changes. Although the application is so well-defined, the
server-side business leayer and its components are only one part of a
complete application.

A server-side component can be seen as a component which is small enough to
reuse and maintain a function. On the other hand, the whole server-side
business layer should be large enough to deliver, deploy and support the whole
business logic. Through this separation, the whole server-side business layer can
be delivered as a self-contained package. To do this, a standardized interface is
the only means that should be used. This makes this layer easier to build for
customization, composition and collaboration with other components. For
example, if an already established system has to be extended with new
functionalities, but the whole system cannot be modified, then the customization,
composition and collaboration feature comes into effect.

This key issue will remain important through the whole chapter. In the upcoming
chapters, this issue will be further described, but first a pattern will be discussed
that is widely used to support such an implementation.
 Chapter 9. Application design 125

9.1.1 Model-View-Controller
The Model-View-Controller paradigm is a way of breaking up an application into
three parts: the Model, the View, and the Controller. Each component handles a
specific type of logic. The primary objective of MVC when it was first developed
was to map input, processing and output into the GUI realm. For example, the
user clicks a button, an event is triggered and processed, and the output is
shown in the window.

Further details about this model can be found in E. Gamma, R. Helm, R.
Johnson, and J. Vlissides, Design Patterns: Elements of Reusable
Object-Oriented Software.

Figure 9-3 Input/output processing

Actually, this is a simple design, but a powerful one. The application development
very much depends on input and output. How to process a specific event
depends on the underlying business logic. In the GUI realm, the output of an
event depends on the operating system and on the Windows system, but if we
apply this consideration to a general application, then the output depends very
much on the input.

In a general application, the input can be a specific hardware device or some
specific data that identifies a client. For example, in the mobile realm, a piece of
hardware can be a wireless phone or a PDA. These are different hardware
devices that need differently supported presentations. The same output has a
different presentation on a wireless phone and on a PDA. The important fact to
remember is that an application should be client-independent.

Input Processing Output

Controller Model View
126 Mobile Applications with IBM WebSphere Everyplace Access Design and Development

An application that is only designed to support a specific type of client can be
considered a “bad” application. For example, consider information that is
requested by a mobile phone and by a PDA. The same information is being
requested by the two different hardware devices. Why should applications be
differently designed and implemented if they use the same business logic?
Having two applications serving the same information results in duplicate
components, duplicate maintenance and duplicate costs.

How to avoid this problem will be explained later. First, the features and
responsibilities of this methodology will be discussed.

� Controller

The Controller is the means by which the user interacts with the application.
The user makes a request to the server. The Controller must first validate the
request and the current session of the user. The user’s input data is then
made available by the Controller to the Model. For example, parameters are
mapped to an independent data format of the Model. The business logic
module is then invoked with the parameters as input arguments. This way of
invoking the business logic might also be implemented as a pattern.

� Model

The Model defines a means to represent the business logic of the application.
Model objects represent the data objects of the application. An MVC
application should have all of its data encapsulated in Model objects. Hence,
data that is part of the persistent state of the application can be stored on a
local file system or database server. This is very helpful in initializing the
application when the data is loaded. A Model object contains only information
presented by the View and methods that allow the Controller to change
information in response to user interaction. A Model object should not deal
with how data is presented; this also means that a Model object has no
connection with the user interface.

For example, if a Model object represents a person and his/her date of birth,
then there should be no information about the birth date formatting in the
Model object, because birth date formatting is actually the presentation of a
piece of information, which has nothing to do with the business logic. In
general, a Model object should have nothing to do with interface and
presentation issues.
 Chapter 9. Application design 127

� View

The View provides the interface communication with the client. All data which
is a response to a request from the user will be passed to a View object. It is
then the responsibility of a View object to decide which part of the Model
object should be displayed. A View object can display all of the responding
data or part of it. The data can also be displayed in a different language
according to the user’s language settings. The main purpose of a View object
is only to present the data correctly to the user.

Developers should design the classes according to these three components. The
MVC makes it easier to maintain an application, if the look and feel of this
application is going to be changed frequently. In that case, only the View
component needs to be changed without interfering with the business logic. Also,
if a Web site needs to maintain different languages, then different interfaces can
be used without interfering with the business logic. For more information, see A.
Leff and J.Rayfried, IBM Research Report Web-Application Development Using
Model/View/Controller Design Pattern.

An example of a Web application built according to this model will be introduced
next.

9.1.2 Sample Web application
A simple Web application architectured with the MVC design pattern (see
Section 9.1.1, “Model-View-Controller” on page 126) can be, for example, a
Java-based approach running on an application server.

� The servlet is implemented as the Controller.

� Enterprise JavaBeans is implemented as the Model.

� The JavaServer Pages are implemented as the View.

This approach uses servlets in front as the Controller to receive all input from the
user. Some kind of validation of the input is done inside this module and passed
to the Model. In this case, Enterprise JavaBeans functions as the Model to
implement the business logic behind it. Important information is made persistent
and stored in a database. A response is created to the user’s initial request and
the response data is passed to the View, which is implemented using JavaServer
Pages. In this module, all business independent data is formatted and prepared
for presentation. Depending on the input, some data, or all of it, is presented to
the user. Here, the View can decide which language to use to suit the user’s
preferences.
128 Mobile Applications with IBM WebSphere Everyplace Access Design and Development

Figure 9-4 Data flow of a Web application

Here is a description of the main steps implemented to support this data flow
(see Figure 9-4):

1. The servlets receive the input data.

2. The servlets apply validation to the data and format them to
application-independent format for Enterprise JavaBeans.

3. The data is passed to the Enterprise JavaBeans.

4. The business logic is applied to the data by Enterprise JavaBeans.

5. Important data is serialized and stored in the database.

6. Response data is prepared for the View.

7. The View takes the data and apply the presentation of the data through
JavaServer Pages.

8. The formatted data is sent back to the client.

This is a very simple approach, but the necessary functions and components are
divided logically according to the MVC design. All features and advantages of an
MVC design pattern are therefore adapted to this approach.

A Web application with this type of architecture may have the flexibility to be
enabled for mobile access. However, when this kind of traditional Web application
was built, no one had ever thought about a mobile environment. What does a
Web application need to support a mobile client? What does the mobile
application look like? All components used in this Web application are limited to
clients using desktop HTML browsers. To enable the application for other types
of clients, additional components are needed to the ones introduced in Figure 9-4
on page 129.

6

Model

EJB

4

1 3

View

Java Server
Pages

7

Controller

Servlets

2

5

8

Database
 Chapter 9. Application design 129

Consider that the mobile world includes many different mobile devices. Each of
them has different underlying standards, interfaces and presentations. To
accomodate all of these features, some new components must be introduced.
For example, mobile devices use other markup languages than a PC’s desktop
browser, such as VoiceXML for Voice Server, WML for WAP, XML or cHTML for
i-mode. Please refer to Figure 10 on page 153 for more details on these markup
languages. How can an application be extended in order to fulfil these
requirements?

9.2 Extending a Web application to a mobile application
Recently, the usage of mobile devices has increased. Whether it is a PDA, a
mobile phone or a wireless laptop, more and more people are using mobile
devices to receive information or trigger an action. Nowadays, people can also
use their mobile phones to buy goods. The technology of mobile devices has
come to a point where it offers the capabilities to make business attractive and
encourages consumers to invest more in mobile services. As mobile devices
become more and more powerful, their functionality is improving as well. The
challenge is to develop new mobile applications or set up new mobile
infrastructures for new businesses or services.

As the Internet grows, new technologies have emerged to help build Web
applications. Early on, there were several CGI modules, then, as the Java
programming language emerged, servlets became the counterpart to CGI
modules in this approach. Later, to support the presentation layer, the
JavaServer Pages technology was introduced. At the time, these yehnologies
were designed for use in a Web application and not in a mobile application.
Therefore, easy adaptation of these technologies to a mobile application cannot
automatically be taken for granted. Mobile applications must handle several
different markup languages to support different type of devices. Recall that
different mobile devices communicate differently.

Mobile devices speak a different markup language than normal Web application
do. Mobile applications must not only understand these markup languages, but
also respond in the same markup language as the client. Also, the output of a
mobile device is limited to its size and dimensions. Nowadays, widely used
markup languages are XML, HTML, WML, cHTML, VoiceXML, and so on.
130 Mobile Applications with IBM WebSphere Everyplace Access Design and Development

9.2.1 Extending the architecture
When talking about extending a Web application, two scenarios must be
considered:

1. A Web application is already established and needs some kind of migration.

2. A mobile application is being built from scratch.

The first scenario is actually the more complicated one, because the Web
application might be in production already and delivering services to thousands
of users. All the data presented to users exists already either in static or dynamic
HTML pages. The customer does not want a significant overhaul of the design or
structure of the Web application. The main concern of the customer will be to
keep costs to a minimum and time spent to a minimum. Therefore, a temporarily
shutdown of the Web application is not affordable. Because of this, many
developers will work to make their application highly flexible and reusable.

The second scenario is one in which the developer can build a whole new system
from scratch. The developer can, and should, take all the mobile application’s
additional features into consideration. If that is to be feasible, the developer
needs a consistent process to create a mobile application which is highly flexible,
inexpensive to implement and easy to extend.

One way to overcome the challenges faced within the two scenarios is to put
some new components in front of the Controller module and View module. These
new components must have the following abilities:

1. The ability to receive inputs from clients of any type, such as a normal
Controller in an MVC design pattern. Input devices must be examined and its
type determined by the application, input data need to be translated to a
format that a Web application can understand. Specific information pertaining
to any hardware devices should be stored temporarily in order to have it
available for the presentation.

2. The ability to present the data to the user, independently of the client’s nature.
Device-specific values should be used to format the response data to suit the
client’s device.

3. The ability to modify the response data that is provided by the Web
application and to insert it back into the stream. For example, if the client is a
WAP client and cannot display large pictures, then it should be removed.

4. The ability to format to the device-specific language. For example, if the client
is a WAP client, then the response data has to be formatted as needed.
 Chapter 9. Application design 131

Figure 9-5 A new component

Each new component functions as a Web Intermediary. This is because it sits
between the client and the Web server (see Figure 9-5) and has the capabilities
to alter the data, as described above.

This component must also have the flexibility to run as a stand-alone server or a
servlet in a servlet engine. This gives more flexibility to an already established
application in the way it will integrate this component.

The next section will present a whole new architecture, including the new Web
Intermediaries. We will also address how this component can be integrated into
the application.

9.3 Mobile architecture
Section 9.1, “Web application” on page 122 has already revealed the problems
and concerns with the process of a service, which could lead to high costs and a
high degree of inflexibility for a Web and mobile application. Section 9.1.1,
“Model-View-Controller” on page 126 and Section 9.1.2, “Sample Web
application” on page 128 have described a Web application architectured with
the MVC pattern. This section will discuss the integration of a new component
into these systems without the need for significant modification to a current
system, all the while keeping the advantages of MVC patterns.

Note: The technical term Web Intermediary is not an industry standard term,
but it is widely used. In this book, we will use this term, because it is very
descriptive and more general than transcoder or even the product name IBM
WebSphere Transcoding Publisher.

Controller/View

Receive

Present

Modify
132 Mobile Applications with IBM WebSphere Everyplace Access Design and Development

This means that the new architecture will still have the logical divisions of Model,
View and Controller components, but will have the advantage of being
client-independent.

The term independent, in this situation, means that:

1. Requests are accepted regardless of their markup languages: this is a basic
requirement for supporting multiple clients.

2. The content of the data is presented in an uniform way: no matter the form of
the incoming request, the content must be representable first.

3. Data can be modified, but only if the content of the data is understood.

4. The client’s device type can be determined: with this ability, the response can
be created to suit client’s device.

5. The content can be translated to another format: this is the main requirement
to support multiple clients.

6. Some parts of the content can be cut out: different client devices have
different resources to handle a response; a mobile phone, for example,
cannot handle a huge load of data as a normal desktop browser can.

If the new mobile architecture is extended with these features, suddenly the
architecture becomes more powerful. How can this be implemented?

Delivering all these features without changing the current system means that a
new component must be introduced and placed between the request and the
Controller components. This component must be able to accept the request and
forward it to the server. A proxy will fit very well into this situation. Additionally,
this component can also monitor and edit the incoming data, and even generate
new data and replace it with the incoming data. With these capabilities, this new
component has the power to achieve the above listed goals. The problem of how
to customize existing content to a new application and deliver it is not new. The
introduction of Extensible Markup Language (XML) has created a new
opportunity to address this problem. However, with the growth of mobile devices,
new constraints on this solution have also emerged. Somehow, a better solution
must be thought out and defined.

These features are already defined as a concept called Web Intermediaries
(WBI, pronounced “webby”), which will be introduced in detail in the following
chapter. First, the concept of Web Intermediaries and its underlying techniques
will be discussed, then the whole new architecture will be presented, and lastly,
an example of an implementation will be provided.
 Chapter 9. Application design 133

9.3.1 Web Intermediaries
Web Intermediaries are a kind of entity that lies along an information stream.
Once positioned on a stream, data can be modified, monitored or even
generated and inserted back into the stream. This concept allows incoming or
outgoing data of a system to be altered. Intermediary-based components are
extremely useful if the data producer or server and the data consumer (a browser
client or a wireless device) cannot be altered. The original data flow is not
disturbed by these Web Intermediaries. On the contrary, all data is passed back
to the flow.

The fundamental communication mechanism of the Web is the Hypertext
Transfer Protocol, or HTTP. HTTP is a stateless request-response protocol. A
client connects to the server, a request is submitted to the server, which
responds with the requested data and closes the connection. This is a direct
connection of a client to a server. Most Web sites are secured by a firewall and a
proxy. In the case of a proxy, the request is sent to the proxy, which retrieves the
requested data from the server and returns it back to the client. Web
Intermediaries can function as a proxy to observe and alter data on the flow.

Figure 9-6 WBI is between the client and the application

Web Intermediaries architecture
Web Intermediaries are composed of three kind of agents:

� Monitor agents

The monitor agent receives a copy of the request-response stream, but is not
able to alter any data in that stream. Although a monitor agent cannot
participate in the processing of the data, it can be used to perform related and
supporting tasks. For example, a monitor can keep track of which pages a
user has visited.

WBI
134 Mobile Applications with IBM WebSphere Everyplace Access Design and Development

� Editor agents

The editor agent intercepts the communication stream, receiving the
information of that stream and delivering a modified version of it. Edited data
can be created from the incoming stream or any other available information
source. Editors can be placed either in the request part or the response part
of a stream. One fundamental role of the request editor is to transform
incoming data from one format to another. For example, if the body of
incoming data is in WML, then the request editor can transform it into HTML
and place it back into the stream.

� Generator agents

The generator agent accepts the request either directly from the stream or as
output from a request editor. It has the ability to convert a request into a
response. It passes a request to the Web server, retrieves the response and
returns it to the client. In general, it performs the job of an HTTP proxy.

These three agents are also referred to as MEG (Monitor, Editor, Generator).
MEG represents the building block of Web Intermediary plug-ins. Each agent has
a defined priority and circumstation when an agent is triggered. The whole flow of
data is controlled by a set of rules and, under a certain condition, an agent is
triggered (see Figure 9-7).

Figure 9-7 A transaction flows through a series of WBI MEGs

Depending on the function of an agent, fields such as request header, response
header, content-type, user-agent or even the body of the data can be altered
accordingly. The content of the body can also be transformed from one markup
language to another. This is what makes Web Intermediaries so powerful and
useful for integration into a Web application, so that the features may be
enhanced to the level of a wireless application.

G

G

RE RE

EE

M M

RE M

E G

Request Editor

Editor

Monitor

Generator
 Chapter 9. Application design 135

Furthermore, in the Web Intermediaries environment, it is also possible to
register as many MEGs as needed. Depending on the number of devices an
application supports, there can be a MEG registered for each device. This allows
an application to become multiple device independent. Such a scenario is shown
in Figure 9-8.

Figure 9-8 Multiple MEG plug-ins in WBI

With the integration of Web Intermediaries, an application does not need to
contend with a specific type of client. Furthermore, the other components of the
application, such as the Web server, application server or database server, do
not need to be modified or adapted to this new component. Web Intermediaries
will be simply put in front of the Web server running as a proxy or as a servlet
inside an application server. This way of adding a new feature to an already
existing or new application will not harm the system, but provides a highly
customizable environment.

We will now look at what the architecture of an application looks like after the
integration of Web Intermediaries.

G3aRE1

M1

E2 G2

G4 G4aE2

G2G1

RE1

Plugin 1 Plugin 2 Plugin 3

request

response

RE M

E G

Request Editor

Editor

Monitor

Generator
136 Mobile Applications with IBM WebSphere Everyplace Access Design and Development

9.3.2 A mobile application
We will now discuss the new mobile architecture integrated with the Web
Intermediaries. As previously discussed, the integration of Web Intermediaries
will enhance the Web application to the level of a mobile application. Recall that a
recommended design pattern for an application is the MVC design pattern (see
Section 9.1.1, “Model-View-Controller” on page 126 for more information). How
does the integration of WBI affect the architecture? Some modifications will be
expected, but to what extent?

The next scenario concerning the architecture will use Web Intermediaries as a
proxy, because this is the best way to extend an application and does not affect
the other components in the system. Later on, the proxy can be easily extended
to load-balance the traffic. A proxy provides a single access point to all clients,
and if the traffic reaches a peak that cannot be handled by a single proxy, then an
extension through a second proxy will relieve the load. It is also easier to
implement the high availability of a proxy.

Data flow with Web Intermediaries
In the MVC design pattern, the Controller module has the responsibility of
receiving input from the clients. Presentation of the response data to the client is
provided by the View module. Now, with the integration of the Web
Intermediaries, the responsibility and functionalities of the Controller and View
modules have shifted. Web Intermediaries have the power to monitor, edit and
generate the data stream as it arrives. As stated above, the easiest way to run a
Web Intermediary is to implement it as a proxy. Keeping this in mind, the whole
mobile application has a new data flow (seeFigure 9-9).

Figure 9-9 A mobile data flow

1

Web
Server

MEG

Web
Intermediaries

2 3

456

Mobile
Client
 Chapter 9. Application design 137

1. A client makes a request to the Web site.

2. The proxy (Web Intermediary) receives the request. Depending on the
request header and the data stream, the body of the data may be transcoded.

3. Modified request headers and transcoded data are forwarded to the Web
server.

4. The Web server responds to the proxy with the requested data.

5. The proxy modifies the response header as appropriate and transcodes the
data back to the client’s markup language for viewing.

6. The transcoded data is sent back to the client.

Web Intermediaries also have the ability to modify the incoming and outgoing
data stream. The incoming stream needs some modification because of the
request header fields and perhaps also to transcode the body of the data so as to
allow the Web server to understand it. The outgoing stream needs some
modification as well, perhaps to transcode the body of the data back to the client,
to adapt the response header values to the client and/or to format the
presentation of the data stream.

For example, let us imagine that a mobile phone is accessing a Web site through
Web Intermediaries set up as a proxy, and that the request is in WML. The
request cannot be understood by the Web server. Having a MEG registered in
WBI, acting as a transcoder that is able to understand WML and also able to
transform the content of the data into, for example, HTML, allows this Web
application to serve WAP clients. The MEG transcodes WML into HTML,
modifies the request header values as needed and forwards the transcoded data
to the Web server. The Web server responds with some data, the MEG
transcodes the data back to WML, modifies the response header, the
presentation and the language to suit the client’s device and passes the data
back to the WML client.

This leads to a new separation of the logical modules inside the MVC design
pattern (see Section , “Mobile architecture” on page 138).

Mobile architecture
In this scenario, some of the Controller module’s responsibility has shifted to the
Web Intermediaries. This is because Web Intermediaries can alter and transcode
the data submitted by the client, but only so as to allow the Web server to
understand it. Some of the responsibility of the View module has also shifted to
the Web Intermediaries, because Web Intermediaries can format the
presentation of the response data for a specific client device. For example,
images can be replaced with linksto accomodate the client’s limitations.
Figure 9-10 on page 139 shows a sample architecture.
138 Mobile Applications with IBM WebSphere Everyplace Access Design and Development

Figure 9-10 Sample mobile architecture

The tasks and responsibilities of each logical module have shifted between Web
Intermediaries, Controller and View, except for those of the Model. There is no
longer a clean separation between them. To what extent have the responsibilities
changed for each component?

� Controller

This component should still have the function and responsibility to prepare
and map incoming data to device- and business-independent data, because it
remains the entry point of the business logic. If the incoming data is written in
another markup language, then the Controller should simply reject the
request. The interface to invoke the business logic is only known to this
component and makes the whole system easier to control.

The Controller has to handle the application flow as well, which could be
different for each kind of device. For example, filling out a long, sophisticated
form on a PC browser is different from using a WAP phone, and very different
from using a voice application. The PC browser can pull up the whole form,
then the server can validate after submission; if anything was wrong, or
missing, the server can send back the page pointing out the errors. The WAP
phone does not have that much space at its disposal; the application has to
collect the information field by field, performing the validation each time. Using
voice is the most difficult; the user does not want to read a whole page to fill
out a form. Design must also be impeccable because of the grammar
involved.

Model

Controller

View

Web
Server

Application
Server

Controller/View

Web Intermediaries

R
eq

ue
st
 Chapter 9. Application design 139

� View

This component still has the function and responsibility of deciding which
parts of the data are going to be presented to the client. T The response
should only contain the overall presentation layout. Issues like language
selection and tweaking should not be handled here. The decision as to what
data is going to be presented to the client is still the responsibility of this
module.

� Web Intermediaries

The final presentation has to be created here. Web Intermediaries must look
up the request and response header values to determine the correct final
presentation to the client. If transcoding is needed, it should be performed
here appropriately. Language selection is performed here as well, because it
is very easy to apply some StyleSheets in Web Intermediaries instead of
changing the logic of the View module. Tweaking should be performed here
as well, for example by inserting an image with a lower rate or by removing an
image, to accomodate the client’s device.

Though the View and the Web Intermediaries are symbionts, the View part has
to stand without the Web Intermediaries. There are different levels of integration
and dependencies between them:

� The View component can represent the whole content without any Web
Intermediaries; we can see this in any traditional Web application, or in our
case in the direct approach for mobile devices.

� The View component is independent of the Web Intermediaries, but not for all
the clients. For example, the application may work well producing HTML
content, but the devices are not able to access the content. The Web
Intermediary runs independently and transcodes the original content to the
required format. The same thing happens with tweaking.

� The View component and Web Intermediaries are tightly related; when the
View component generates only one part of the content, the final presentation
is produced by the Web Intermediaries. For example, a View element, a
JavaServer Page, creates XML, content then the transcoder applies the
StyleSheet to that XML.

It seems that this approach is difficult to maintain and implement, but with
well-defined tasks assigned to each component it is much easier to achieve than
to modify the existing Controller and View components. The approach now
shows a clean separation of all components. This makes this design easier to
maintain and enhance in the future. Each component can be easily
load-balanced to gain a higher performance. It is also easier to turn this system
into a highly available system. A very high degree of flexibility has also been
achieved .
140 Mobile Applications with IBM WebSphere Everyplace Access Design and Development

Figure 9-11 Mobile application with Web Intermediaries

This approach is the final recommended design pattern for a mobile application
(see Figure 9-11). Certain issues such as devices, performance, high availability,
reusability, client independence, multiple languages, and patterns are addressed
and can be handled appropriately. Following is an example of the mobile
approach using this architecture.

9.3.3 IBM WebSphere Transcoding Publisher
IBM is leading the way in the mobile computing field to bring the technologies of
the mobile world together with the strength and integration of the IBM server and
software family of products in order to create mobile solutions. Mobile computing
and pervasive computing provide a series of technologies that enable people to
accomplish personal and business tasks. Pervasive computing allows users to
access enterprise applications, synchronize their data and receive updates from
the network. Mobile devices give user access to information regardless of time
and location.

IBM has defined a set of pervasive computing products to satisfy user
requirements. One product which allows the two described scenarios to be
extended to a mobile application is IBM WebSphere Transcoding Publisher. This
application acts as a transcoding service that can filter, enhance, convert or
reformat content to enable access to data by different devices. Transcoding is a
general concept, not bound to any markup languages, formats, or products. In
the pervasive realm, transcoding has been found useful in adapting markup
languages, in exchanging data between two systems, and in preserving
bandwidth where limited. Transcoding can be done on binary data, such as
images, as well as on text data, but most transcoding will be applied to text

Controller/View

Web
Intermediaries

proxy

Web
Server

Application
Server

Controller
Servlet

View
JSP

Model
EJB

Database

Broadcast
Station

Gateway Firewall

clients
 Chapter 9. Application design 141

streams. Transcoding can be a very powerful service that relieves the workload
and difficulty of having a page designed in several versions, each specific for one
client type. Also, it eliminates the necessity of writing interface code for
heterogeneous systems.

For example, a user is using a browser to access the welcome page of a specific
Web site; the Web site answers with a respond page, the transcoder formats this
respond page to suit the output to the browser. Another user is accessing the
same Web site with a mobile phone; the Web site sends the same respond page
to the transcoder and the transcoder formats the respond page to suit the mobile
phone. The Web site does not need to have two versions of the welcome page to
maintain, one version for a browser and the other version for a PDA. One page,
for example in HTML or XML, is all the Web site needs to maintain. The rest of
the formatting to a specific device or markup language is the responsibility of the
transcoder. The Web site can also maintain different types of markup languages.

Editors
IBM WebSphere Transcoding Publisher contains two types of editors, the text
editor and the image editor. Beyond that, IBM WebSphere Transcoding Publisher
has a standard set of transcoders available to convert HTML documents and
reformat images. The transcoder also has the function of caching the respond
page. If the same page is requested again by another client, the Transcoding
Publisher can retrieve that page from the cache and return it to the client without
forwarding the request to the Web server again.

This powerful product brings about the following result for the two scenarios
mentioned above: existing Web applications do not need to modify their current
resources, because the transcoding part will be carried out in the transcoder; this
is the only application that needs to be integrated into the existing system. New
systems can still build the application as a usual Web application and integrate
the transcoders into the system.
142 Mobile Applications with IBM WebSphere Everyplace Access Design and Development

Figure 9-12 WebSphere Transcoding Publisher components

The concept of transcoders and plug-ins inside IBM WebSphere Transcoding
Publisher is based on the concept of Web Intermediaries which was discussed in
9.3.1, “Web Intermediaries” on page 134. It is built upon a transcoding framework
which provides common services to the registered transcoders and plug-ins. The
framework also supports transcoders written against the Web Intermediaries API
or servlets written against the Java servlet API.

Architecture
IBM WebSphere Transcoding Publisher can run in three different modes. It can
be deployed as a proxy, as a servlet filer, or as a set of JavaBeans. For more
information about the runtime modes of WebSphere Transcoding Publisher, refer
to Section 7.3, “WebSphere Transcoding Publisher considerations” on page 97.
Delivering a well-defined solution requires careful considerations in application
design. There are many important key issues to be considered, such as the
devices to be supported, the format of the data source, the developer’s skills, as
well as flexibility, maintenance and performance considerations.

The mobile architecture that we will introduced will use IBM WebSphere
Transcoding Publisher running as a proxy on a separate machine, because this
provides the most flexible and high performance solution. The transcoder can
also be easily clustered into a high availability environment. The performance will
take an extra boost as well.

Transcoding framework

Administration

Developer
toolkit Profiles Image

Engine

Text
Engines
HMTL

Text
Engines

XML

Other IBM
transcoders

Third party
transcoders

Common rules for performing transformations
Common framework for plug-in interoperability

Framework configuration
User preference and device profiles
Registration of stylesheets

Existing plug-in modification
Custom plug-in development
New profile development

Knowledge of device, user, application or
network preferences to control transforms

Readily available transformation plug-ins

Customer-provided transformation plug-ins
 Chapter 9. Application design 143

Figure 9-13 A mobile architecture

In this architecture, IBM WebSphere Transcoding Publisher is set up in front of
the network path as a proxy. The function of a proxy inside the Internet or intranet
is to cache responses and therefore reduce a repoll of each request to the data
source. In the lab environment, there is no cache server set up for this purpose. If
the user so wishes, he/she can choose to use a cache server. Another function of
a proxy is to provide a single point of entry/exit to/from an internal network. A
firewall can be placed between the client and the transcoder, and between the
transcoder and the application server to ensure security. The application server
and its servlet engine remain in the same chain of the network. What does the
data flow looks like if a request is received?

Data flow
A sample description of the data-flow for an HTTP client and WAP is as follows:

HTTP
1. The client makes a request to the transcoding proxy for a resource, which can

be an image, a text/HTML page, or a text/xml page.

2. The transcoding proxy is able to edit the URL and other header fields and
header values. Information about the device given in the request is also
saved. The transcoding proxy then forwards the request to the Web server to
acquire the requested object.

3. The Web server returns the object that the transcoding proxy asked for.

Web
ServerBroadcast

Station
Gateway Firewall

M

E

G

Wireless-to-Web
Format

Transcoding Proxy

clients
144 Mobile Applications with IBM WebSphere Everyplace Access Design and Development

4. The transcoding proxy uses the initially stored information about the client to
apply the converting and formatting on the response page.

5. Te converted or formatted page is sent to the client.

WAP
1. The wireless client makes a request that is converted to HTTP by the WAP

gateway.

2. The WAP gateway forwards the request to the transcoding proxy.

3. The transcoding proxy edits the URL and other header fields and header
values, if necessary. Information about the device given in the request is also
saved. It then forwards the request to the Web server to acquire the
requested object.

4. The Web server returns the object that the transcoding proxy asked for.

5. The transcoding proxy uses the initially stored information about the client to
apply the converting and formatting to the response page. In this case, the
requested page is formatted into WML.

6. The WML page is sent to the WAP gateway.

7. The WAP gateway converts the text WML page into wireless-ready form for
the wireless client.

According to the description of the data flow, the logical separation of
components is, in this environment, no longer transparent, as in the presented
MVC pattern. Recall that each component was assigned a task. In this
architecture, the transcoding proxy mixes up two logics together. These are the
Controller and the View components. The transcoding proxy must validate and
modify the information of each request made by a client initially before forwarding
it to the Web server, also storing information if necessary. This is to some extent
controlling the request as the Controller should do, but the transcoding proxy is
not validating and modifying the content of the request. The main data in the
content is disregarded by the transcoding proxy.

The transcoding proxy does not need to know anything about the interface. This
is done by the Controller, in our example the servlets. The servlets map the data
supplied by the client to independent data that is understood by the Model. Also,
the transcoding proxy applies its presentation to the result of the View
component, in our example the JavaServer Pages. Here, the transcoding proxy is
converting and formatting the resulting data to a new presentation, but it does not
have the ability to decide which part of the Model object is going to be presented
to the client.
 Chapter 9. Application design 145

Section 9.1.1, “Model-View-Controller” on page 126 stated that the View model
takes control of which data to present and this ability does not apply to the
transcoding proxy. The transcoding proxy disregards the content of the response
object, simply applies converting and formatting to the object and returns it to the
client. Of course, converting and formatting changes the presentation, but only to
suit the client’s device. In this case, the client has limitations in displaying the
information. No loss of important information due to converting or formatting
should occur. The transcoding proxy has a hybrid status inside the architecture.
Although there is now an overlapping in the architecture related to the purpose of
each logical component, this will not harm the application. The logic of the
application was not changed for the transcoding proxy. There was no need to
change the data source or any objects in the application because of the
integration of the transcoding proxy. An important design consideration here is
state management. As of today, WAP phones do not support cookies, which
means that state management and session identity are maintained by the WAP
gateway.

The architecture presented in Figure 9-13 on page 144 provides a new way to
design a mobile application. Many types of devices are supported through this
architecture, but there are also some limitations because of some types of
devices. Still, the underlying MVC pattern is not altered. Instead, a new logical
component is introduced to handle device-specific data. This is important to
expand the usability of the system. A higher flexibility is achieved and the system
is easily maintained. If the performance and throughput of the system need to be
improved, this scenario is easy achievable.

More details about IBM WebSphere Transcoding Publisher can be found on the
following Web site: http://www-4.ibm.com/software/webservers/transcoding/.

9.4 Design patterns
Design patterns are common strategies for developing reusable object-oriented
components. More precisely, they are a special way to solve a specific group of
problems. Contrary to design concepts or application frameworks, patterns are
not out-of-the-box solutions that can be taken off the shelf and deployed in the
application. It is an approach that helps design by analyzing the code from other
projects or applications.

You might find that you have used a special way to solve a class of problems in
your application. This is what we call a pattern. The process of discovering a
pattern is also widely called pattern mining.

For the application design, we want to take a better look at the design patterns.
Beyond those, there are also architectural and analytical patterns.
146 Mobile Applications with IBM WebSphere Everyplace Access Design and Development

The design patterns can be classified into three groups: creational patterns
structural patterns and behavioral patterns.

The Creational patterns are used generate new objects instead of using the
common “new” operator. This allows the system to be more flexible. One
example is the Prototype pattern, which can be used for complex objects. Instead
of creating a new instance of the class, a copy of the object is used. This can
save time and make the instantiation easy for the new object.

The Structural patterns are used to combine and compose groups of objects
into larger structures. The main advantage of Structural patterns is that they does
not modify the connection between the objects when there are changes in the
system. One example is the Proxy pattern.

The third group includes the Behavioral patterns. They are used for
communication between the objects as well as for the flow control in a program.
One example is the Chain of Responsibility pattern. This pattern provides the
ability for different classes to handle one request without knowing the other
requests. The request is passed in a specific order along the classes until one
class can handle it.

Each group contains a set of different patterns. You can find the definitions for
them in discussion or e-mail groups or in other publications. As new patterns
appear, others disappear. The most important design patterns are defined in
Gramm, Helm, Johnson and Vlisside, Design Patterns: Elements of Reusable
Software. It includes descriptions and examples of twenty three of the most
commonly used design patterns.

In the next sections, we will focus on the three-tier class model of our Trade2
example. We will outline the different patterns that we have either used or
recognized in the application. We will discuss and outline the impact of the
patterns on the Trade2 application. Figure 9-14 on page 148 gives an overview of
the different Trade2 example patterns.
 Chapter 9. Application design 147

Figure 9-14 Used patterns in the Trade2 example

9.4.1 Object
This section explains the term object in a few sentences to get a common
understanding before discussing the patterns.

Objects are abstract entities of the real world or of a system. An object consists
of the following three parts:

� Identity: Every object is unique and has its own identity. The identity can be
used to distinguish between objects.

� State: The state of an object includes its structure as well as the values for the
property. Other objects can be referenced by using them as a value.

� Behavior: The behavior covers the functionality of an object. The functionality
is given in the defined fields and methods of the object. In every
object-oriented language, methods consist of a signature (including the name,
parameter and type of the method) and the implementation itself.

Objects are defined by object type. Class concepts can be used to group single
or similar object types. Every object has to include at least one constructor
method for creating the object. Additionally, it can contain a destructor for
removing the object and several methods for implementing functionality.

For more information about object-oriented technology, please refer to
http://java.sun.com/docs/books/tutorial/java/concepts/object.html

TradeAppServlet

TradeServletAction

TradeAction

TradeConfig
request

response
JSP

properties

dispatch

Clients

Abstract

TradeServletAction
package direct.html

TradeServletAction
package direct.wml

...

EJB Access Beans EJB

put into
the
scope

Objects

Tier 1

Tier 2

Tier 3

back-end

Database

command pattern

proxy pattern

template pattern
148 Mobile Applications with IBM WebSphere Everyplace Access Design and Development

9.4.2 Command pattern
Although the Command pattern is not used in the Trade2 example, it has some
similar concepts. It is important for us to introduce this pattern because it can be
widely found in other projects. Most of the well-designed, structured Web
applications use the Command pattern as the Controller for the application.

First, the Command pattern belongs to the Behavioral pattern class. As the
Chain of Responsibility pattern, it deals with requests from the user interface.
More precisely, the Command pattern has the responsibility of forwarding the
request to only one module, which was specified beforehand.

The functionality is normally provided by using a command interface. In this way,
the user interface is separated from the program modules. The client does not
need to know anything about the action itself and other objects. Changes in the
program modules do not affect the client-side programs. Another advantage of
the Command pattern is that every action is stored in a separate object.
Therefore, it is possible to write a simple undo algorithm for each action.

9.4.3 Template pattern
The Template pattern belongs to the Behavioral patterns class. The idea of the
Template pattern is to provide a predefined parent schema; you only have to add
additional implementations to the derived classes and objects of the schema.
The best example is an abstract class, with predefined fields and methods. The
derived classes have to define and implement additional logic to this.

The design and implementation of the abstract TradeServletAction of the Trade2
example follows the Template pattern. Subclasses like the
direct.html.TradeServletAction or direct.wml.TradeServletAction are derived from
this class and implement additional logic.
 Chapter 9. Application design 149

Figure 9-15 gives an overview of the inheritance of the classes for the Trade2
example:

Figure 9-15 Class diagram of the Trade2 example

9.4.4 Factory pattern
The Factory pattern belongs to the class of Creational patterns. It helps you to
create new objects of a specific group with a given set of attributes. Therefore, it
has to handle several subclasses of the group. Depending on the attributes, one
instance of the subclasses ise returned. Figure 9-16 gives you an overview how
Factory patterns work:

Figure 9-16 Overview of the Factory pattern

Factory
return instance of new class

depending on parameter,
for example, instance of
class ac

request for new class

given parameter xy

a

ab ac
150 Mobile Applications with IBM WebSphere Everyplace Access Design and Development

On the left-hand side of the figure, you can see the parent class a and the
corresponding two subclasses ab and ac. The Factorypattern manages the
instantiation of the classes and returns the appropriate object. In the figure’s
example, it returns the class ac for the given parameter xy.

We have talked about the abstract TradeServletAction in the previous section.
We have outlined that the abstract class identifies the use of the Template
pattern. However, the creation of the derived TradeServletAction classes can
also be categorized as a Factory pattern. Depending on the attribute User-Agent
and the chosen method (xml or direct, for example), the appropriate class and
package are chosen. The only exception is that the Trade application is not using
a separate class for this function. However, we can define the process of the
creation of the object as a kind of Factory pattern. This is just an example of how
easily patterns can overlap in an application.

9.4.5 Proxy pattern
The Proxy pattern belongs to the Structural patterns class. It helps you to hide
the complexity of an object by providing a simple object interface. The simple
object provides the same methods. It passes the request to the complex model
and takes care of returning the results. This way, all the methods and the entire
functionality of the complex model can be accessed. In addition, it can provide
access control to the original model or it can create the model before the object
has been accessed. This means that the object is not immediately created with
the instance call. This can save additional computing resources.

In the Trade2 application, you can find the Proxy pattern within the EJB Access
Bean. The EJB Access Bean helps you to hide the complexity of the EJB
interface. You do not have to write code to access the Remote and Home
interface of the EJB object.

For more information about EJB, refer to http://java.sun.com/products/ejb/

For more information about Access Beans, refer to the Visual Age for Java
product and programming guides.

9.4.6 Advantages of patterns
As mentioned in the introduction, the main focus of patterns is reusability. The
Solutions patterns can be easily adapted to new projects. Reusable components
can be, for example, object models, class designs or even code. Therefore,
patterns help to improve and to speed up the design and the development
phases.
 Chapter 9. Application design 151

Another advantage of using patterns is the possibility to change the code without
having to change the whole application (see for example the Bridge or the
Adapter patterns). In addition, less effort is required to maintain the application.
New functionality can be added more easily in the application and the system is
substantially more flexible.

9.5 Where to find more information

9.5.1 IBM
� Avrahm Leff and James T. Rayfried, IBM Research Report Web-Application

Development Using Model/View/Controller Design Pattern.

� Information about WBI:
http://www.cssrv.almaden.ibm.com/wbi/intermediaries.html

9.5.2 Outside of IBM
� Gramm, Helm, Johnson and Vlisside, Design Patterns - Elements of

Reusable Software.
152 Mobile Applications with IBM WebSphere Everyplace Access Design and Development

Chapter 10. Application development

This chapter discusses application development and explores with a greater level
of detail the topics presented in the previous two chapters (see Chapter 9.,
“Application design” on page 121 and Chapter 8, “Solution design” on page 103).
The chapter is divided into four parts:

1. The Web application elements section gives a short overview of the
components used by Web applications. The common Java elements, as well
as the different markup languages, are discussed.

2. The second section describes in detail the different development tools
proposed for the offering, and how the tools can be used effectively. This
includes a developer’s guideline as well as the interlink between the products
and the supported team development.

3. The third section introduces the various tools for testing the applications. It
presents mainly the desktop-based simulating tools to access and test a
mobile Internet application.

4. In the last section, we talk about the best practice pattern. We provide
answers to some common questions as well as tips and hints for a fast start to
setting up a mobile Internet solution.

10
© Copyright IBM Corp. 2001 153

10.1 Web application elements
A Web application environment consists of different components. In this section,
we will give an overview of the most common technologies. The focus is set on
the Java elements and the different markup languages for the mobile devices.

10.1.1 Java servlet
Java servlets are used to provide dynamic Web content based on an HTTP
request. In general, they are server-side Java programs, so they offer all the
advantages of the Java language. Servlets are object-oriented and can utilize the
full Java API. This allows the developer to use predefined and implemented code
and methods easily. The Java servlet can take advantage of the built-in memory
control of the Java Virtual Machine (JVM). For example, unused objects are
automatically removed by the garbage collector.

Sun’s Java Servlet API also defines a session object. The Java servlets are able
to store information about the session, such as user data input or user
preferences, in the context memory.

Unlike common server-side programs using CGI, Java servlets can be deployed
on each Web server (with servlet support) without advance compilation.
Furthermore, the servlets are only compiled and initialized once in the runtime
environment. For the incoming request, an instance of the appropriate servlet is
used. This strategy ensures a higher performance compared to scripting
languages.

There are many tools on the market for developing Java servlets. The offering
also provides the development tools: IBM VisualAge for Java 3.5 and WebSphere
Studio 3.5. Both tools can be combined for quick application development. We
describe these components in detail in 10.2.1, “WebSphere Studio” on page 166
and 10.2.2, “VisualAge for Java” on page 173.

For more information, please refer to the redbook Programming with VisualAge
for Java, SG24-5264.

10.1.2 JSPs
JavaServer Pages (JSPs) are used to generate the formatted output for a Web
page response. JSPs do not include any business logic. They are useful in
separating the development of the Web site from the Web page design. It is
possible to define clear responsibilities for the Web application development. On
154 Mobile Applications with IBM WebSphere Everyplace Access Design and Development

one hand, the Web page designer does not have to know how to obtain dynamic
data, but only where to place it, and can therefore concentrate on the look and
feel of the Web page. On the other hand, Java programmers do not have to
handle layout issues. Their focus is to provide the logic for the application.

The dynamic content of the Web pages is typically provided by a JavaBean (see
10.1.3, “JavaBeans” on page 156). JavaBeans are reusable software
components that can be created by other Java objects, such as for example
Enterprise Java Beans (EJBs) or Java servlets. Through the use of a special
scripting language, the data in the JavaBean can be accessed from the JSP.

The output of a JSP can be any type of document; in our case the following ones
were used:

� HTML

� WML

� XML

� Related HTML markup languages, like cHTML

� Other XML-based languages, like VoiceXML

JSPs are used in the common MVC model in the View component. The servlet
dispatches the request to the JSP. Figure 10-1 gives an overview of how JSPs
are used in this context.

Figure 10-1 Interaction between Java components and Web application objects

ServletUI
request EJB

Database

Java
Bean

HTML
JSP

CHTML
JSP

W ML
JSP

Voice
XML
JSP

HTML
Page

CHTML
Page

W ML
Page

Voice
XML
Page

put into
thescope
 Chapter 10. Application development 155

The servlet receives an request from the client and invokes an EJB to fulfill this
request. The EJB collects the data from a database, then instantiates and sets a
JavaBean.

The JavaBean then has to be put into the scope, so the JSP can reach it as an
object through the application server.

Depending on the client, the servlet now dispatches the request to the
appropriate JSP file. For example, WML JSP files are used for WAP devices,
while for a normal desktop browser, HTML JSP files will be invoked from the
servlet.

A simple way to develop JSP files is to use WebSphere Studio (see 10.2.1,
“WebSphere Studio” on page 166). It provides wizards and additional
functionalities for creating and editing JSPs. The WebSphere Test Environment
in VisualAge for Java allows you to test the JSP files in conjunction with your Web
application (see 10.2.2, “VisualAge for Java” on page 173).

10.1.3 JavaBeans
JavaBeans are simple component classes in the Java language and are mainly
utilized as reusable objects. The following rules must be applied to a JavaBean:

� Public class
� Public constructor without arguments
� Setter and getter methods for accessing the properties

The setter methods are used to set values for certain fields of an object. It is not
possible to access and set them directly, so with getter methods, values can be
retrieved from the object. Furthermore, it is possible to define events for the
bean, in case the JavaBean is able to interact with other beans.

Most development environments support the instrospector feature for JavaBean
development. This feature allows users to modify the bean using a visual
interface. Note that you can normally use this feature only when the syntax rules
are implemented correctly. The developer of a JavaBean can also provide the
structure and further information about the bean via the JavaBean Information
class.

In the Java servlet and JSP Web application context, JavaBeans are mainly used
as a kind of a container for data exchange between different components. For
example, an EJB object providing the business logic can instantiate the bean and
set the properties values. The JSP is then able to retrieve the data by using the
getter methods of the bean.
156 Mobile Applications with IBM WebSphere Everyplace Access Design and Development

JSPs can reach the JavaBeans as objects via the application server. In order to
be accessible, the bean has to be put into the scope of the Web application. The
following three scopes are available during runtime:

1. Application: the object is accessible while the application server is running.

2. Session: the object is only available for the session it has been created in.
The object disappears together with the session.

3. Request: the object is available during the request; after the response has
been sent out, the object disappears.

JavaBeans are typically distributed in .jar files.

For JavaBeans development, we recommend the two IBM tools IBM WebSphere
Studio 3.5 and IBM VisualAge for Java 3.5 (see 10.2.1, “WebSphere Studio” on
page 166 and 10.2.2, “VisualAge for Java” on page 173 for more details).

For more informations on JavaBeans, please refer to
http://java.sun.com/products/javabeans/

10.1.4 Enterprise JavaBeans
The EJB 1.0 specification was announced by Sun Microsystem in March of 1998.
The main focus and advantages of Enterprise JavaBeans (EJBs) are to separate
the business logic of an application from the middleware supporting it.

The EJBs are deployed and managed in the application server in a container
framework. One container can include one or more beans. To split up the
development, management and handling of EJBs, the following roles are defined:

� Provider: develops the business logic
� Deployer: deploys the EJBs
� Application Assembler
� Container Provider
� Server Provider
� System Management

Every EJB consists of a Remote and a Home Interface. The name of the EJB
Home Interface is stored in the JNDI directory. One way for clients to access the
EJB is to use this Home Interface. It allows clients to create, find and remove EJB
instances. Another approach is to use AccessBeans. They hide the complexity of
the EJB interface, but offer the client the same functionality.

An Enterprise JavaBean can be either a session bean or an entity bean.
 Chapter 10. Application development 157

Session beans
There are two different kinds of session beans:

� stateful
� stateless

A stateful session bean typically lives as long as the client session does. One
important feature is that it can be made passive or active by the container. That
means that the EJB, including all information about the session, can be stored
and accessed again by the application.

Stateless session beans are instantiated for each client request. They cannot be
made active or passive by the container. Therefore, they are not able to store any
information about the session and the request flow. The instances of a stateless
session bean are equal to one another. It is common for the container to have a
small pool of instantiated stateless session beans of the same type, in case an
instance of the same stateless session bean can be used for different requests.

Entity beans
Entity beans are used to represent persistent data. One common practice is to
obtain the data from a relational database. Another is invoking another
application or, for example, a CICS transaction.

The entity beans can be categorized into two groups, namely BMP and CMP.

BMP - Bean Management Persistence
Bean management persistence means that the EJB provider has to ensure the
persistence of the EJB. It requires additional logic and code; because of this,
BMP is not recommend for large projects with a focus on portability and
scalability. There is no guarantee that an BMP EJB can be easily deployed to
another Web application server.

CMP - Container Management Persistence
Here, the persistence of the EJB is ensured by the container. No additional code
has to be added to the business logic of the EJB. The business logic remains
untouched and can be deployed easily on different Web application servers; for
example, the IBM WebSphere Application Server provides CMP for EJBs.

An entity bean uses a unique key to identify its home. This unique key can be
used to create or find the instance of an EJB. Note that the unique key has to be
serializable to match the specifications.

More information on EJBs can be found on the following Sun Web page:
http://java.sun.com/products/ejb/
158 Mobile Applications with IBM WebSphere Everyplace Access Design and Development

10.1.5 XML
XML stands for eXtensible Markup Language. It is a subset of the SGML
standard and is also used to define markup languages like WML or SyncML.

XML is an easy to use language for describing any content. Developers can
define their own markup language tags or elements. They can ensure that their
XML dialect best fits their application needs. In general, XML documents include
only data. They do not include any formatting information used to present the
content; this information is stored in a separate Extensible StyleSheet Language
(XSL) file. Only this XSL file is used to display the data in an appropriate way on
the client browser. An XSL file and the XML data document are merged by using
the Extensible StyleSheet Language Transformation (XSLT). We will discuss XSL
and XSLT later (see 10.1.6, “XSL” on page 160 and 10.1.7, “XSLT” on page 161).
Below is a very basic XML example of the enhanced Trade2 application:

Example 10-1 Enhanced Trade2 application

<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE account SYSTEM "/trade/xml/simphtml/res/Trade.dtd">
<account>

<userid>James</userid>
<fullname>James Howart</fullname>
<address>Bakerman street downtown Raleigh</address>
<email>jhowart@wherever.com</email>
<creditcard>56789-99-1234</creditcard>

</account>

The example shows that an XML document typically consists of three parts. The
first part is the XML declaration. It specifies the used XML version as well as the
character encoding. Furthermore, the XML declaration may indicate if the
document is logically complete; otherwise, a reference to an external entity is
included.

The second part is the Document Type Definition (DTD). This element is
optional. Normally, it is used to define the grammar for the XML file and to
validate the XML data against this grammar. If there is a DTD, the user can
reference it internally or externally. In the first case, one DTD is included in the
XML file. In the second case, the DTD is referenced by a pointer and stored in
the server file directory.
 Chapter 10. Application development 159

Furthermore, the DTD can be defined by a public or non-public entity. For a
public entity, the keyword PUBLIC is used. Non-public entities are referenced by
the keyword SYSTEM. For the shown XML example, we built our own DTD file and
stored it in the directory of the server. You can find the reference as well as the
keyword SYSTEM in the XML data files. Fore more information about the XML
Trade2 application, please refer to 15.3, “Universal transcoding (XML source)” on
page 293.

The third part is the body of the document, which contains the data described in
a structured way. Each piece of information is represented by a tag that can
contain elements and attributes. As discussed before, the XML document does
not include any formatting information to present the data.

An XML document must obey specific syntax rules. For example, one rule states
that every element must consist of a start and end tag. An example for this rule is
the tag userid (<userid>James</userid>). If an element is empty, no explicit end
tag is needed. Instead, the end sign is included in the first tag (<userid/>).
Nested elements are allowed if the proper order is matched.

The XML documents can be classified into two categories:

� Well-formed XML documents:
A well-formed XML document satisfies the strong syntax requirements. No
special additional DTD is needed. Therefore, a non validating XML parser is
able to read and parse the document

� Valid XML documents:
A valid XML documents applies the strong syntax rules and matches the legal
structure defined in the DTD. A validating XML parser is able to read the
document.

In practice, XML is used widely to share, store and exchange information
between applications or computer systems in business settings. An example of
an application where XML is becoming more and more popular is EDI (Electronic
Data Interchange). Here, XML is used to exchange and share data and
information between different companies.

More information about XML can be found at the following Web address:
http://www.w3.org/XML

10.1.6 XSL
The Extensible Stylesheet Language (XSL) is used for the presentation of an
XML document. XSL can produce various output documents, for example HTML,
WML, cHTML and VoiceXML.
160 Mobile Applications with IBM WebSphere Everyplace Access Design and Development

XSL is fundamentally based on two existing standards: Cascading StyleSheets
(CSS) and Document Style Semantics and Specification Language (DSSL).

By using XML and XSL, data description and data presentation are separated. In
this case, it is possible to define clear roles and responsibilities within the Web
application development. As a consequence, the XSL developer does not have to
deal with the dynamic data and can change or amplify the user interface without
touching the business logic. Note that XSL does not require a DTD for either the
source or the result document.

Examples of XSL files can be found in the XML Trade2 applications (see 15.3,
“Universal transcoding (XML source)” on page 293).

For more information on XSL, please refer to http://www.w3.org/Style/XSL

10.1.7 XSLT
Extensible Stylesheet Language Transformation (XSLT) is the common language
used to translate an XML document into another output format by applying the
appropriate StyleSheet for it.

Figure 10-2 gives an overview of the translation process using a XML input
source and a XSL file.

Figure 10-2 Interaction between XML, XSL and XSLT

HTML Page

CHTML Page

WML Page

Voice XML Page

XSLT

XSL
Voice XML

XSL
CHTML

XSL
HTML

XSL WML

XML
 Chapter 10. Application development 161

In translating an XML document, the following steps are processed by the XSLT:

� Parsing and validating the XML document

� Parsing and validating the XSL document

� Applying appropriate patterns to parts of the source tree

� Calling and applying the templates within the matching patterns

As mentioned before, the output format of the XSLT process can be another XML
document or, for example, an HTML or WML file. Typically, a control element in
the application has to choose the right XSL file. In our Trade2 example, we used
the WTP to do the matching (see 15.3.9, “Registering the StyleSheets in WTP”
on page 304).

To develop XML applications, one can use predefined classes from Apache.
These classes cover the whole XML, XSL and XSLT development, giving the
developers the whole API. For details, please refer to http://xml.apache.org.

The specification for XSLT can be found at the following Internet address:
http://www.w3.org/TR/xslt

10.1.8 HTML, cHTML, HDML, WML
This section provides an overview of the most common and important visual
markup languages for mobile Web applications.

HTML
Hypertext Markup Language (HTML) is the common language for creating and
publishing documents for the World Wide Web. It is based on SGML and used to
display hypertext information on traditional Web browsers such as Netscape
Navigator or Internet Explorer.

The simplest method to create and process an HTML document is to use a text
editor. But there is also a wide range of visual programming tools for WYSIWYG
development, one of which is included in the offering the IBM WebSphere Studio
3.5. It offers several wizards and the Page Designer as a visual editor to create
the HTML files (see 10.2.1, “WebSphere Studio” on page 166).

In addition to the defined tag set, you can use Cascading StyleSheets (CCS),
JavaScript and Java Applets to improve the functionality, look and feel of an
HTML page.

For more information about HTML, please refer to http://www.w3.org./Markup/
162 Mobile Applications with IBM WebSphere Everyplace Access Design and Development

Compact HTML
Compact HTML (cHTML) was developed and announced in 1999 by the
Japanese telecommunications provider NTT DoCoMo. It was specified to fit the
new requirements of small wireless devices such as mobile phones. cHTML is
actually the used markup language for the i-mode standard.

Basically, cHTML is a well-defined subset of HTML versions 2.0, 3.2 and 4.0, so
it is based on SGML. It has no support for Java or any scripting language. Only
GIF images can be displayed on an i-mode browser.

More information on cHTML can be found at
http://www.w3.org/TR/1998/NOTE-compactHTML-19980209/

For more information on i-mode, please refer to http://www.nttdocomo.com/i/

HDML
Handheld Device Markup Language (HDML) is a specialized version of HTML. It
is designed to enable wireless pagers, cell phones, mobile phones and other
handheld devices to obtain information from Web pages. HDML was developed
by Phone.com (formerly Unwired Planet) before the WAP specification was
standardized. It is a subset of WAP with some features that were not included in
WAP.

HDML is still widely used in the US and has several million users in Japan,
although the dominant markup language and service are cHTML used with
i-mode. The UP.Browser developed by OpenWave Phone.com provides support
for HDML markup. While HDML is widely used, this standard is rather dated, and
in some areas is disappearing.

WML
The Wireless Markup Language (WML) is defined by the WAP Forum. Like
cHTML, it was developed to meet the requirements of small appliances such as
mobile phones or PDAs; WML is based on XML.

The content of an WML file can be viewed with any WAP browser. Unfortunately,
as in HTML, the visual presentation of a WML document depends on which
browser is used for display. For example, the user can notice differences in the
look and feel when testing a WML application with a Nokia or Phone.com
browser.

The defined tag set for WML is similar to those of HTML and cHTML. However,
only so-called “wbmp images” can be displayed on the device. A WML document
is organized into cards and decks. a deck is the unit sent to a wap Browser to
answer a request. It can contain one or more cards.
 Chapter 10. Application development 163

A WML card is the unit that is shown on the screen of a WML browser. Cards are
typically interlinked with each other using the common link technology. Note that
the possible deck size permitted for a specific device can vary because of
different browsers.

For details about WML and WAP, please refer to http://www.wapforum.org

XHTML
Extensible HTML (XHTML) is a combination of HTML 4.0 and XML 1.0
streamlined into a single format for the Web. XHTML is expected to become the
standard format for Web pages. XHTML also makes it possible for Web pages to
be developed with different sets of data, for different types of browsers used to
access the Web. Increasingly, handheld devices are used for the Web that must
download abbreviated pages because they do not have screen displays large
enough to handle the graphics.

10.1.9 VoiceXML
The Voice Extensible Markup Language (VoiceXML) is based on XML. It is used
to create distributed voice applications based on existing or new Web
applications. These applications can be accessed from the user by telephone. It
is also possible to refer to VoiceXML as a non visual markup language, because
the output is not presented visually to the user.

VoiceXML includes the following features:

� recognition of spoken input
� synthesized speech output
� digitalized audio
� DTMF (telephone key input)
� recording of spoken words
� dialog flow control
� scoping of input
164 Mobile Applications with IBM WebSphere Everyplace Access Design and Development

The following example gives you an overview of what a VoiceXML file looks like:

Example 10-2 A VoiceXML file

<vxml version="1.0">
<form id="intro">

<property name="bargein" value="false"/>
<block>

<prompt>
<audio src="/trade/direct/vxml/intro.au">

Welcome to the IBM Webpshere Everyplace Access Redbook Trading Demo. Please
speak your userid and password when prompted. If you do not have a userid,
please go to the web site to register.

</audio>
</prompt>
<goto next="/trade/direct/vxml/login.vxml"/>

</block>
</form>

</vxml>

The main difficulty VoiceXML applications have is recognizing the spoken input.
Therefore, a grammar is used. All possible and expected input from the user has
to be defined and stored in the grammar.

As mentioned above, it is also possible to include pre-recorded audio files in a
VoiceXML document. This offers the user real human interface instead of the all
too common robotic touch of synthesized speech. However, a greater effort is
needed to maintain pre-recorded audio files, and the application loses some of
its flexibility.

Other important features of VoiceXML are say what you hear, barge-in and
built-in commands such as quit and help that are automatically handled by the
voice browser for each VoiceXML document.

To develop VoiceXML applications, IBM WebSphere Studio 3.5 can be used (see
10.2.1, “WebSphere Studio” on page 166); this tool offers different wizards and
an editor with code assistance to create the documents. To test the VoiceXML
files within your application, you can use the IBM WebSphere Voice Server SDK
(see 10.2.5, “Voice SDK” on page 180).

More information on VoiceXML can be found at the following Web address:
http://voicexml.org

A very useful resource for VoiceXML is the Programming Guide, which comes
with WebSphere Voice SDK.
 Chapter 10. Application development 165

10.2 Development tools
The next section gives an overview of the development tools recommended for
building a multiple channel Web application. The focus is on the main features
which support a quick and effective development.

10.2.1 WebSphere Studio
WebSphere Studio is an integrated development environment which can be used
to create, manage and process Web application resources such as HTML
documents, images, Java objects, and so on.

The new 3.5 version of WebSphere Studio includes an enhancement for
developing applications for mobile devices. It supports the widespreaded markup
languages VoiceXML, cHTML and WML.

In the next sections, we will discuss and outline the most important features of
WebSphere Studio. We will introduce the different wizards, the team
development and the publishing facility in detail.

For the Trade2 example application, the Advanced Edition of WebSphere Studio
3.5 was used. Note that not all features described in the next paragraphs are
available in the Entry Edition or the Professional Edition.

More information about the WebSphere Studio can be found in the following
Redbooks:

� How about Version 3.5? VisualAge for Java and WebSphere Studio Provide
Great New Function, SG24-6131.

� WebSphere Personalization Solution Guide, SG24-6214
� Version 3.5 Self Study Guide: VisualAge for Java and WebSphere Studio,

SG24-6136

Wizards of WebSphere Studio
For straightforward application development, WebSphere Studio contains the
following wizards:

� SQL Wizard
� Database Wizard
� JavaBean Wizard
� Content Wizard
� User Wizard
166 Mobile Applications with IBM WebSphere Everyplace Access Design and Development

Please note that while wizards are used to help in the development process, they
will not provide final solutions. Most of the results from the wizards are only
useful for creating prototype applications, or generate a skeleton for application
development.

The wizards can be found and invoked from the Tools menu in the Studio
Workbench (see Figure 10-3).

Figure 10-3 Wizards in the Studio Workbench

The SQL Wizard allows the developer to create SQL statements. A visual menu
guides the developer through the steps. In the first step, the database connection
is chosen. Then the developer can choose all the necessary tables and rows
from a list. Later on, the tables may be joined. In the last steps, the guide allows
the developer to add conditions to the query and enhance the statement with
other SQL commands.

The Database Wizard uses the created SQL statement to generate documents
and classes for the Web query. In the first step of this wizard, the developer has
to decide between creating a Servlet Model or a JSP Model.

� First, we want to take a better look at the Servlet Model wizard. In the first
step of the Servlet Model, the developer can select the markup languages for
the application. At the moment HTML, cHTML, WML and VoiceXML are
supported; multiple selections are allowed. The developer must define which
of the parameters of the SQL statement should be provided by the user. For
the chosen parameters, the wizard creates an input page. This input page will
be presented to the user before the SQL statement at the beginning of the
application. For processing the request, the wizard creates a Java servlet and
a servlet configuration file. Database access is handled by a JavaBean using
a JDBC connection. To print out the results to the user interface, the wizard
generates a result page JSP. Two additional error-handling JSPs for database
and general errors are provided as an option.
 Chapter 10. Application development 167

� In the JSP Model, only JSP files are used. This means that the request
processing, database access and generating of output is handled by a JSP
file. All tasks are centralized in the JSP file.

To match the common MVC model and gain the use of a code that is easy to
maintain, the use of the Servlet Model is recommended.

Example 10-3 shows the hierarchy of the generated servlet:

Example 10-3 Hierarchy of the servlet

Object
javax.servlet.GenericServlet

javax.servlet.http.HttpServlet
com.ibm.servlet.PageListServlet

com.ibm.webtools.runtime.AbstractStudioServlet
com.ibm.webtools.runtime.StudioPervasiveServlet

The JavaBean Wizard helps you to generate code for input HTML files, as well as
a servlet and a result JSP page for a given JavaBean. As in the Database
Wizard, a JSP file for general and database errors can be produced.

The User Wizard and the Content Wizard are used to define personalization
rules for the Web application. With the User Wizard, the developer can define
attributes and roles for the users. The Content Wizard is used to define attributes
of the content. By defining these parameters settings, the application gains the
possibility of dynamically generating and providing content depending on the
user settings and preferences.

Personalization is not used in the Trade2 example. For more details about this
topic, please refer to the WebSphere Personalization Solution Guide,
SG24-6214.

Team development support
The most common way of enabling WebSphere Studio for team development is
to place the project file on a shared network drive. In this case, WebSphere
Studio automatically manages the resources using check out and check in on
assets.

Check out is used to modify and edit a specific document from the project. For
every checked out document WebSphere Studio creates a local copy in the
following directory of the developers machine:

<WebSphere Studio Install Folder>\check_out\<project name\<folder>
168 Mobile Applications with IBM WebSphere Everyplace Access Design and Development

All changes are stored on the local copy first, until the document is checked in
again. Checked out files are marked with a red check mark placed in front of the
file name. Other developers can only obtain non writable copies of checked out
files. In order to avoid conflicts, it is recommend that the publishing of the
resources only be done when all resources are checked in. It is possible to get a
list of all the checked out documents and users by choosing Project -> Check
Out Info from the workbench menu.

Figure 10-4 Example for the overview of the checked out files

To extend the team development support, additional Version Control software
can be added to the WebSphere Studio environment. If you are using
WebSphere Studio together with VisualAge for Java, it is recommend that you
use the same repository.

Publishing
Publishing is used to deploy the project resources. WebSphere Studio has
multiple publishing stages; by default, every project provides two: the Test stage
and the Production stage. These can be customized by defining the publishable
resources and setting up the publishing targets (Web application directories). In
general, documents can be published to a file system or to an FTP host. An
example for a Test stage is the VisualAge for Java WebSphere Test Environment
(WTE). In WTE, all resources can be tested together with the other Web
components before they are deployed to a productive Web application server. It
is also possible to define new Publishing Stages in WebSphere Studio to meet
specific needs. The developer is able to deploy the resources to any Web
application environment (for example, a multiple productive Web applications
server).
 Chapter 10. Application development 169

For information about setting up a Publishing Stage and for more details, please
refer to Section 18.3.2, “Publishing a WebSphere Studio project” on page 357.

Site tools
To develop and enhance the user interface, WebSphere Studio provides the
following additional tools:

� Page Designer: This tool is used to create and edit documents such as JSPs
and HTML files. It offers three different views of the source: a WYSIWYG
(What You See Is What You Get) editor referred to as the normal view, the
HTML source view and the preview in a browser.

The Page Designer cannot be used for mobile markup languages such as
VoiceXML and WML. For VoiceXML, WebSphere Studio provides a special
VoiceXML editor with code assistance.

The WebSphere Studio default application for WML editing is Notepad. As
long as Notepad is only a simple text editor, we recommend that you use the
standard WML SDKs, such as the Nokia Toolkit or others. The best WML
developer environment provides visual code assistance, debugging facilities
and a graphical user interface for testing (see 10.3.4, “Testing the WML
application” on page 187).

WML, cHTML, and VoiceXML support in WebSphere Studio includes
document parsing and validating.

� Animated GIF Designer and WebArtDesigner: Both tools can be used to
create and process images and clip art.

� Page Detailer: This tool is an additional program for WebSphere Studio. It is
used to measure the performance of a Web application, on a single page
level.

Using WebSphere Studio with VisualAge for Java
WebSphere Studio 3.5 has the capability of interlinking itself with VisualAge for
Java. The developer has the possibility of making Java classes and source code
exchanges between both applications.

To set up the link, make sure that VisualAge for Java and WebSphere Studio are
correctly installed on the same machine. The other necessary tools are installed
by selecting Project -> VisualAge for Java - Install Studio Tools in VisualAge
from the WebSphere Studio menu bar. In addition the Remote Access to Tool
API in the Option panel in VisualAge for Java has to be started. We recommend
that you enable the automatic start option for the tool.
170 Mobile Applications with IBM WebSphere Everyplace Access Design and Development

The established interlink can be used as follows:

� From WebSphere Studio:

– Sending Java source files to the VisualAge for Java Workbench:
Select the Java file; by right-clicking it, you obtain a pull-down menu with
the option to send the file to the VisualAge for Java Workbench.

– Importing Java source files and classes from VisualAge for Java.
Choose the Import option from the menu bar.

– Updating Java source files and class files from VisualAge for Java:
Select the files again; the pull-down menu invoked by right-clicking them
allows you to update the files.

� From VisualAge for Java:

– Importing the Java source file from WebSphere Studio project.

– Sending Java class files to a WebSphere Studio project.

– Checking the status of existing VisualAge for Java Java files in a
WebSphere Studio project.

Please make sure that you have selected the right WebSphere Studio project for
use with VisualAge for Java (to do this, select Tools -> WebSphere Studio
Tools -> Set Studio Project).

If you are only using VisualAge for Java to develop and deploy (compile) the code
for your Web application, it is recommend that you use the same CVS facility for
WebSphere Studio (see “Team development support” on page 168).

Other features of WebSphere Studio
The following sections will introduce some other features of WebSphere Studio
related to our mobile Web application development.

Annotators
Annotators (see Figure 10-5) are useful in customizing a Web page using
clippers added to the document as XML tags. This code defines which elements
should be kept, removed or replaced. The interpretation of a file including
annotators is done by the annotator engine. The engine is provided by the
WebSphere Transcoder Publisher (see 15.2.2, “Annotators” on page 271).

To add and edit annotators in WebSphere Studio, the developer can use the
Page Designer. Modifications can be easily made in the normal view using the
context-sensitive options of an element, or coded directly using the HTML editor.

Note: WebSphere Studio and VisualAge for Java have to run on the same
machine in order to exchange files.
 Chapter 10. Application development 171

Please note that only internal annotators are supported with WebSphere Studio
at the moment.

Figure 10-5 Annotation in WebSphere Studio

Java compiler
You can compile your Java source classes directly in the WebSphere Studio
environment. As a default, WebSphere Studio provides the two JDK versions
1.1.8 and 1.2.2. The compilers can be customized via the menu option Tools->
Preferences. Here, it is possible to specify the directories of the compiler as well
as the appropriate classpath.

Hints and tips

The development of the Trade2 application is based on WebSphere Studio 3.5
and VisualAge for Java. We will give here a short overview of our
recommendations regarding WebSphere Studio and the development of an
application for multiple devices.

� Team development: You must place your project file on a share network drive
so that everybody can access the assets and automatically use the editing
management feature of WebSphere Studio.

� Interlink Studio / VisualAge for Java: By installing the required tools, you can
easily access both resources and can exchange and control the Java class
and source files of your project. Make sure that you enable the autostart
option of the tool.
172 Mobile Applications with IBM WebSphere Everyplace Access Design and Development

� We have found that the WML and VoiceXML markup languages support
exhibits strange behavior under certain circumstances. We recommend that
you switch off the parser option for these files, so that when the developer
checks in the files, they will not be parsed. This means that the content will
remain the same and no validation will be done; there are some trade-offs
when using this method, because the links will not be handled by WebSphere
Studio. On the other hand, if the files are valid, they have no errors and the
paths are correct then they will be published correctly.

10.2.2 VisualAge for Java
The VisualAge for Java (VAJ) environment offers a development environment for
the whole life cycle of a Java application. It is split up into four main parts: Code
Editor, Repository Management, Debugger and Test Environment. The next
paragraphs outline the most useful tools for developing an integrated Web
application. We will discuss the WebSphere Test Environment, the team
development support and the debugging feature. For information about using
VisualAge for Java with WebSphere Studio, please refer to “Using WebSphere
Studio with VisualAge for Java” on page 170.

Fore more information about VisualAge for Java and the integrated development
tools, please refer to the following Redbooks:

� Programming with VisualAge for Java 3.5, SG24-5264
� Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for

Java, SG24-5755
� How about Version 3.5? VisualAge for Java and WebSphere Studio Provide

Great New Function, SG24-6131
� Version 3.5 Self Study Guide: VisualAge for Java and WebSphere Studio, SG

246136

WebSphere Test Environment
The WebSphere Test Environment (WTE) is one of the most valuable features of
VisualAge for Java 3.5. It provides an application and Web server environment
on a developer machine. It can be used to test and debug all the resources for a
Web-based application. The WTE is launched by selecting Workspace -> Tools
-> WebSphere Test Environment... from the menu bar. It consists of two main
parts, namely the Servlet Engine and the Persistence Name Server. The latter
enables the environment to use JNDI services. Furthermore, you can change the
settings for the JSP monitoring in the WTE Control Center and register new
databases for JNDI. Figure 10-6 gives an overview of the different components in
the environment.
 Chapter 10. Application development 173

Figure 10-6 Overview of WTE

A major advantage of WTE is that any change in the source code is immediately
compiled and hotlinked to the current application. Because of this, it is not
necessary to restart the Servlet Engine. The only exception to this rule is the
init() function of a Servlet, because it is only invoked once, during the setup of the
runtime environment. It is also possible to access and interact with other Web
resources and services such as LDAP directories or Web servers outside the
WebSphere Test Environment.

As shown in Figure 10-6, the WTE also includes a JSP monitor. This feature
allows you to monitor the execution of a JSP file and to debug it step by step. It is
possible to set different breakpoints in the JSP code in order to control the
document output.

The JSP execution monitor is enabled by selecting JSP Execution Monitor
Options -> Enable monitoring JSP execution from the WTE Control Center.
The compiled code of a JSP file is stored in the JSP Page Compiler Generated
Code project folder of the VisualAge for Java environment.

Note: VisualAge for Java and WTE support the JSP.91 and JSP 1.0 standard.
As a default, the JSP.91 version is used: To change the version, you have to
update the default_app.Webapp properties file.

WebSphere Test Environment

Servlet Engine

Persistance Name
Server

JSP Monitor

Database Registry

Web Application

Servlet

JSP

JSP Compiler
174 Mobile Applications with IBM WebSphere Everyplace Access Design and Development

Team development support
The Team Repository is used for the version control for VisualAge for Java. It is a
built-in software component and operates on an “edition, version and release”
model. The developer is able to store multiple editions of project items in the
repository. In order to grant the access to every developer, the Team Repository
is typically stored on a network server.

VisualAge for Java also offers the possibility to define and set up different roles
and permissions for the developers.

A Team Repository can be loaded and browsed by selecting Window ->
Repository Explorer from the VisualAge for Java menu bar. From this window,
the developer can compare different editions and versions. Furthermore, stored
solutions, projects, packages, classes and methods can be added to the
workspace; by selecting Admin -> Change Repository from the menu bar the
repository can be changed. It is possible to work on different projects with a
separate version control.

Please notice that deleted items from the workspace still exist in the Repository.
For more information about the Team Repository, please refer to the
Administration Guide of VisualAge for Java.

Debugger
The VisualAge for Java Debugger can be used to step through the code during
runtime; it is therefore possible to control the flow of the application. All triggered
methods and variables are shown. The developer is able to step through the
different logical levels and views of the application code.

To activate the Debugger, the developer has to set breakpoints inside the code.
When the breakpoint is reached during runtime, the Debugger feature appears.
Please note that changes to the code in the Debugger window are reflected
directly in the workspace.

The Debugger window is divided into a Debug page and a Breakpoint page. The
Debug page gives you an overview of the code invoked, the visible variables,
their value and their current state. The value and the state can be controlled and
changed by the inspectors.

The Breakpoint page provides management for setting the breakpoints inside the
code.

Important: Make sure that the breakpoints are enabled under the menu called
by selecting Window -> Debug -> Global Enable Breakpoints.
 Chapter 10. Application development 175

10.2.3 Development tools in WTP
The WebSphere Transcoder Publisher contains the following four development
tools:

� Transform Tool
� Request Viewer
� Profile Builder
� API for developing new transcoders

They can be used to customize and extend WTP in order to satisfy the
customer’s needs. We will discuss them in the next few sections. For more
information about WTP, please refer to the following IBM Redbook: New
Capabilities in IBM WebSphere. Transcoding Publisher Version 3.5, SG24-6233.

Transform Tool
The Transform Tool allows you to easily change the profiles in WTP and to
preview the generated results and effects. It is useful in testing various
transcoding options or new XSL StyleSheets.

The first step to start testing with the Transform Tool is to select an input source.
The input source can be of one of the following types:

� HTML
� cHTML
� XML
� any XML defined language (WML, VoiceXML, etc.)
� image (GIF, JPEG)

In the second step, the Target Device and the Target Network have to be
selected. The defined actions in those profiles will be used for the transcoding of
the input source.

The transcoding process itself is invoked by clicking the Transcode button on the
toolbar. The result is shown in the right panel of the application. The generated
output can be saved for further purposes by selecting File -> Save Transcoded
Content.

Request Viewer
The Request Viewer is a useful debugging tool for the WebSphere Transcoding
Publisher. It monitors the request flow through the transcoding proxy. It also
observes the whole operation during the flow from the triggering point on. The
developer can see which plug-ins are invoked and when they are invoked. This
can help to understand how WTP is working and also help to determine
problems or find system bottlenecks.
176 Mobile Applications with IBM WebSphere Everyplace Access Design and Development

The Request Viewer consists of two views: the Server Configuration panel and
the Request Processing panel. The Server Configuration panel shows the
current state of WTP with the registered components. The displayed plug-ins on
the panel contain the different MEGlets installed in WTP.

The Request Processing panel monitors the dynamic process of an incoming
request. It displays the triggered plug-ins and their associated MEGs. For every
invoked MEG, the input source and the modified output source are shown.
Figure 10-7 provides an example of an XML request of the Trade2 application
processed by the Request Viewer.

Figure 10-7 Example of a request processed by the Request Viewer

Profile Builder
WTP already provides preference profiles for the most commonly used devices.
The Profile Builder helps the developer to extend this list and to create new
profiles. It is possible to match new upcoming requirements, such as new mobile
phones, PDAs or network types.

Note: The Request Viewer should only be used for development and
debugging purposes, and not in a runtime environment. Furthermore, it is
necessary to stop running WTP services before you can use the tool.
 Chapter 10. Application development 177

After launching the Profile Builder, the developer can choose between the
following options:

� Create a new profile.
� Create a new profile using an existing profile as a template.
� Edit an existing profile.

A new profile is created in four steps. First, the developer has to decide between
setting up a new device profile or a new network profile. Device profiles are used
to adapt new devices to your application. They are used to determine which
content should be delivered to the device. A network profile gives the developer
the opportunity to set up rules in order to optimize network traffic.

During the second step, the developer has to specify conditions under which the
profile should be used. To define the rules, the HTTP headers of a request are
used, usually from the User-Agent field.

The third step involves working with preferences. WTP provides various defined
preferences that can be adapted to the specific needs of the profile. After
selecting a preference, the developer can choose to mark it either as editable or
view-only. In the editable state, the parameters can be changed in the
Administrator Console of WTP. View-only parameters can only be changed
through the Profile Builder.

One example for a preference you can adopt to your profile is the Fragmentation
preference. With this preference, you can specify the maximum number of bytes
you want to send to the device. This can be useful, for example, for WAP or
i-mode applications with restrictions on the client browser side.

The last step is to save the profile and to register it at the Administrator Console
of WTP by clicking Register -> Preference Profile. The new profile can also be
supplied to other Web applications, customers or vendors.

Note: The Profile Builder is not shipped with the WTP install package; you can
download it for free from the following Web site:
http://www.ibm.com/software/webservers/transcoding

For details on the installation of the Profile Builder, please refer to the included
instructions.

Tip: To combine several clauses, you can use a logical operator. WTP
supports the following symbols: ! for negotiation, & for logical AND, | for logical
OR. Furthermore, it is possible to use the asterisk symbol at the beginning of
the arguments.
178 Mobile Applications with IBM WebSphere Everyplace Access Design and Development

The second way to create a new profile is to use an existing one as a template.

The third possibility is to edit an existing profile and modify the preferences. As in
the second case, the developer is able to modify the editable as well as the
view-only grouped parameters.

Developing new transcoders
The Transcoder Publisher framework is a pluggable framework. Everybody has
the opportunity to develop new transcoders to match new devices or new
transcoder needs.

To conform to WTP, the new transcoders have to be written against either the
Web Intermediaries (WBI) Version 4.5 API or the Java Servlet 2.1 API.

For more information about writing new transcoders, please refer to the WTP
Developer’s Guide (provided with the WTP package). More basic relevant
information can be found in Section 15.2.3, “Text clipping” on page 284.

10.2.4 XML tools
At this time, the offering does not includes an XML generating and editing tool.
The default tool is Windows Notepad for editing. We can recommend other
applications which we found useful during the development of this redbook.

XML Spy 3.5
XML Spy 3.5 is a third party product used to develop XML-based applications, or
simply to edit XML documents. It provides several powerful and easy to use tools
for XML, XSL and XSLT processing. The tool allows you to create, handle and
process the different resources.

One example of the provided features is the array of different possible views for
an XML document. The developer also has the opportunity to generate the
appropriate DTD structure automatically.

Note: Please make sure not to store the file in the \etc directory of WTP. This
can cause problems during the registration of the new profile.

Note: An existing profile has to be registered again before changes to the
profile can take effect.
 Chapter 10. Application development 179

Another example is the support of different XSLT processors. The individual
modules can be downloaded from the Website and plugged into the installed
product. Through the XSL option menu, it is possible to switch between the XSLT
engines. Furthermore, XML Spy offers an enhanced scripting environment.

To evaluate the product, it is possible to obtain a 30 day trial edition key from the
XML Spy Web site. For more information about the product please refer to
http://www.xmlspy.com

Other XML and Web development tools
Other XML and Web development tools can be found on the IBM Alphaworks
site: http://www.alphaworks.ibm.com

10.2.5 Voice SDK
The IBM WebSphere Voice SDK 1.5 is a toolkit used to test your VoiceXML
application on a desktop system. As shown in Figure 10-8, the product itself
consists of the following parts:

� VoiceXML Browser:
The VoiceXML Browser is used to interpret the VoiceXML files and to control
the other modules inside the SDK. It also includes the DTMF simulator. This
simulator can be used to recognize the input of numbers.

� IBM ViaVoice Speech Recognition engine:
The Speech Recognition engine is used to recognize the spoken input in
order to match it to the defined grammar of a VoiceXML file.

� Text-to-Speech engine:
The Text-to-Speech engine (TTS engine) generates the synthesized speech
output.
180 Mobile Applications with IBM WebSphere Everyplace Access Design and Development

Figure 10-8 Overview of the IBM WebSphere Voice SDK

The SDK offers the developer a telephone acoustic model and an audio setup
utility. The telephone acoustic model simulates the behavior of a telephone
installation. It helps to adapt the application to a real telephone environment
during development. The audio setup tool allows the developer to set the
microphone and speech environment of the SDK.

For testing a VoiceXML application, the SDK provides two runtime modes:

1. Audio - plays the audio files, synthesizes speech, and recognizes speech.
Input can be given via the microphone, the keyboard or the displayed DTMF
keypad.

2. Text - writes the text to the console and replaces the audio files with the
description. Input can be given via the keyboard or the displayed DTMF
keypad.

The Voice Browser also handles cookies sent by the application. Please note that
the cookies’ information is only stored during the session. Unlike for set cookies
on a desktop browser, the information is deleted after the session.

To develop the VoiceXML files, we recommend that you use the IBM WebSphere
Studio 3.5 (see 10.2.1, “WebSphere Studio” on page 166).

Tip: If the DTMF simulator is closed, it can only be restarted by stopping and
restarting the VoiceXML Browser.

Audio or
Synthesized
Speech Out

Voice In

VoiceXML Browser http request

http response

(Voice XML)

Web Application Server

Speech
Recognition

Engine

Text-to-Speech
Engine

Simulated
DTMF In DTMF

Simulator

Voice XML
Applications

Business Logic

...
EJBs

Servlets
 Chapter 10. Application development 181

Proxy settings for WebSphere Voice SDK
The launcher .bat files for WVS SDK can be found in the directory: <WVS SDK
install directory>/bin; the files are: vsaudio.bat and vstext.bat.

In order to access the WebSphere Transcoding Publisher proxy server, you have
to set up the WVS SDK to use the proxy for connection.

The proxy settings resemble the following piece of code:

-DproxySet=true -DproxyHost=proxyserver -DproxyPort=proxyport

Find the :Execute line in your .bat file, then add the parameters according to your
setup after the Java runtime, but before the classpath settings. The line should
look like this:

"%VSJREPATH%java" -DproxySet=true -DproxyHost=my.proxy.dom
-DproxyPort=8088 ... - classpath ...

For more information about the IBM WebSphere VoiceXML SDK 1.5 and other
voice-related products from IBM, please refer to:
http://www-4.ibm.com/software/speech/

10.3 Tools for testing the application
In the development process, it is very important to test the application throughout
the whole process.

Developing a user interface for Web applications is more like editing and testing
repeatedly until the result is satisfactory. Unfortunately, the Web application
development tools lack WYSIWYG editors which developers could use instead of
testing the applications with real devices or emulators.

The best solution is to use emulators for testing the applications. These
applications ensure the same user experience as the original applications.

Important: Make sure that you include the dash before the parameters, and
watch out for upper case and lower case characters.
182 Mobile Applications with IBM WebSphere Everyplace Access Design and Development

10.3.1 Overview
Developing an application is an iterative process. At the end of every
development cycle, you must test your application in order to satisfy the defined
requirements. Typically, enhanced tools, including debugging facilities, are used.

This section gives an overview of recommended testing tools. We will discuss
how to use them, and give you some additional tips.

10.3.2 Testing the HTML application
The Trade2 application can be tested on any desktop PC with a browser such as
Internet Explorer or Netscape Navigator. If you are using WTP as a proxy, please
make sure that the proxy settings of the browser are set properly. In Netscape
Navigator, the proxy settings can be accessed by clicking Edit -> Preferences ->
Advanced -> Proxy. Figure 10-9 shows the proxy server settings panel for
Netscape Navigator.

Figure 10-9 Proxy settings for Netscape Navigator

For Internet Explorer, choose Tools -> Internet Options -> Connections ->
LAN Settings. Figure 10-10 on page 184 shows the proxy server settings panel
for MS Internet Explorer.
 Chapter 10. Application development 183

Figure 10-10 Proxy settings for Internet Explorer

If you are using WTP as a reverse proxy you do not have to modify your proxy
settings.

10.3.3 Testing the simplified HTML application
The simplified HTML Web application runs on a simple desktop PC’s browser,
such as Netscape Navigator or MS Internet Explorer. The difference between the
normal HTML and the simplified HTML is that, because of the low bandwidth, the
client requires content that is less rich than the original. For example, the client is
a laptop and it connects to the network using a wireless GSM modem.

In our sample application, we support the following two browser clients: Lynx and
Opera.

Lynx
Lynx is a character-based Web browser (see Figure 10-11) running in the
command window or terminal. This browser comes from the Linux community
where it is still very popular, because it is fast and runs on a non-graphical
terminal.

The browser runs on several platforms and the application, together with source
code, is freely available on the Internet.
184 Mobile Applications with IBM WebSphere Everyplace Access Design and Development

Figure 10-11 Lynx browser

How to set up
Lynx has a configuration file: lynx.cfg, where you can set up the proxy for
transcoding. Pay attention to this line in the file:

#http_proxy:http://some.server.dom:port/

Remove the comment sign (#) and fill in the server name and port number
parameters; the line should then look like this:

http_proxy:http://my.transcoder.dom:8088/

How to test
The sample application is looking for the Lynx token within the User-Agent field.

Open a command window or a terminal window, change the directory to the Lynx
binary, then start Lynx.

The starting screen will come up; use the G (goto) key to type in the location.
Type in the requested URL, then press the Enter key.

You can navigate the page using the spacebar and the Enter key. For help, use
the ? key.

Get the software
Lynx is available for download on the following site: http://lynx.browser.org/
 Chapter 10. Application development 185

Opera
Opera is one of the best Web browsers available for several different platforms. It
has all the professional features of Netscape Navigator or MS Internet Explorer,
and many other enhancements and new features.

In our sample application, we have used Opera to test the simplified HTML
pages with colors and pictures (see Figure 10-12).

Figure 10-12 Opera Web browser

How to set up
Opera has a well-designed setup window to configure your browser. From the
menu, choose File -> Preferences, or press Alt-P. In the left pane, select the
Connections option; the connection properties will appear in the right pane.
Click the Proxy servers... button, then set up your transcoder server as an HTTP
proxy with the appropriate server name and port.

How to test
The sample application looks for the Opera token within the User-Agent field.

Start the browser on your machine; you will see a GUI similar to that of any other
desktop browser. There is a text box for the URL below the main toolbars and
above the viewer window.
186 Mobile Applications with IBM WebSphere Everyplace Access Design and Development

Get the software
The software is available on several platforms: Windows 95/98/ME/NT4/2000,
Windows 3.1 or NT 3.5, Solaris, OS/2, Macintosh (Power PC), Linux (x86), Linux
(Sparc), Linux (Power PC), EPOC Release 5 & Release 3, BeOS.

The official Opera site can be found at http://www.opera.com

10.3.4 Testing the WML application
The WAP application runs on WAP-enabled phones. Since WAP is a
specification, different manufacturers have different implementations for their
browsers. Just in case, developers should test their application using different
WAP emulators (for an example, see Figure 10-13).

Figure 10-13 Nokia Toolkit WAP emulator

Nokia Toolkit 2.1
The Nokia Toolkit is a WAP development tool which has a built-in WAP browser.
It is fully a Java application, and has several useful features:

� Multiple visual user interfaces (blueprint 6210, 7110)

� Use of customized HTTP connections or WAP Gateway

� Different code views and debugger

How to set up
From the menu, choose Toolkit -> Device Settings to access the configuration
for the emulator. There you can set up the connection you have: HTTP or WAP
Gateway. There is also a switch for cookies and authentication; if you want to use
a proxy for your connection, there are the HTTP proxy settings as well.

How to test
After starting the emulator, two windows will appear; one is the workbench for
development with several helpful views, the other is a phone with screen and the
keypad.
 Chapter 10. Application development 187

Use the workbench to connect to the required site, type the URL in the location
text box below the menu, then click Enter. The result will appear on the phone;
you can then navigate on the page using the phone’s keypad.

The advantage of the Nokia Toolkit is that, in the workbench, the developer can
follow the recent actions, and can even debug the source code downloaded to
the phone.

Get the software
The Nokia Toolkit is available for download on the Nokia corporate Web site. Go
to the http://www.nokia.com/corporate/wap/sdk.html page, register (it is free);
you will then be able to download the Toolkit.

UP.browser
UP.browser comes from a company called Openwave. The emulator is their own
implementation of the WAP specification (see Figure 10-14).

Figure 10-14 UP.browser WAP emulator

How to set up
The UP.browser offers a configuration for the connections; open Settings ->
UP.Link Settings in the menu. There you can set up the connection, whether
going through an HTTP connection, using proxy servers if necessary, or using
UP.Link servers for the connection.

How to test
Start the UP.browser; it is actually called UP.Simulator after installation. Two
windows will appear as with the Nokia Toolkit: one for the terminal where the
developer can follow the actions, the other for the phone where the test is
occurring.
At the top of the phone’s window, below the menu, there is a text box for the URL;
type in the requested URL, then click Enter.
188 Mobile Applications with IBM WebSphere Everyplace Access Design and Development

Get the software
UP.bowser is available for download on the Openwave company’s site:
http://developer.openwave.com

10.3.5 Testing the cHTML application

Wapprofit.com i-mode emulator
Wapprofit’s i-mode emulator is an early application for i-mode emulation. It is
very simple and works well with the i-mode sites. For development purposes, it is
good enough to test the application.

Figure 10-15 i-mode emulator

How to set up
Unfortunately, the emulator does not provide any option for configuration. The
solution is to use the transcoder as a reverse proxy, to avoid the proxy
configuration on the client.

How to test
Since this i-mode emulator has a different User-Agent than the real devices, in
our sample the transcoder is looking for a device with the following condition:

User_Agent\=*Microsoft URL Control*

To access a URL, type it in the text box at the top of the emulator window, then
click the icon next to it.

For navigation, use the cursors below the phone’s display and the numbers on
the phone’s keypad.

Get the software
Wapprofit.com i-mode emulator is available for download on the official Wapprofit
site at http://www.wapprofit.com
 Chapter 10. Application development 189

10.3.6 Testing the Voice application
A voice application can be best tested with the IBM WebSphere Voice SDK 1.5. It
simulates a telephone interface on a desktop system by using the microphone
and speaker of the system. Additionally, it provides a DTMF GUI to allow key
input. For more details, please refer to 10.2.5, “Voice SDK” on page 180.

10.3.7 Other emulators
There are other emulators for several other mobile devices, not shown in this
redbook. It was a difficult decision as to which one to choose, because there are
several professional emulators with advanced features in existence.

PALM OS emulator
Palm OS is a well-know operating system for the Palm devices. This operating
system (OS) was developed especially for handheld devices. It provides
advanced functions and features for PDAs.

Palm OS provides several development environments to develop applications for
this OS. This makes it easier to find the right application even for Web browsing,
because the development community for Palm OS is very large and growing day
by day.

Palm OS has many Web browsers with different presentations and features; it
has WAP browsers as well, and it is worthwhile to mention that Palm has its own
viewer which works together with the Web Clipping applications--the traditional
Palm Web service.

The Palm OS emulator (see Figure 10-16 on page 191) runs the whole Palm
platform in a Win32 environment, with additional features such as dynamic
application upload, debugging, multiple ROM images, and so forth.
190 Mobile Applications with IBM WebSphere Everyplace Access Design and Development

Figure 10-16 Palm emulator browsing an HTML site

Windows CE emulator
Microsoft has a Windows-like emulator for handheld devices called Windows CE,
which runs on several devices. The OS provides the same functions and services
as the Windows 95/98/ME.

It also runs several Web browsers, the most advanced of which is the Pocket IE,
which is an Internet Explorer adaptation.

The WinCE emulator runs on Windows NT and brings the OS onto the desktop,
with some additional features to help development and handle emulator
functions.

EPOC emulator
EPOC is a young OS for handheld devices developed by Symbian. It now runs on
several devices, such as all the PSION handhelds and the Nokia
Communicators. The OS is specially developed for handheld devices and has
capabilities to support the mobile applications.

The emulator runs in a Win32 environment as a fully functional OS.
 Chapter 10. Application development 191

Ericsson R380 emulator
The Ericsson R380 emulator looks like the other WAP phone emulators, but the
difference is that the R380 originally runs EPOC. From the developer’s
standpoint, the built-in WAP browser is the most useful: it has the same behavior
as the original browser on the phone. It is an ideal testing environment for this
Ericsson phone with an advanced WAP browser.

Figure 10-17 Ericsson R380 emulator

This WAP emulator requires a WAP gateway set up on the network.

10.4 Best practices
The following sections discuss some of the best practices for certain situations,
which we have found useful in our application.

10.4.1 Device management
When setting up a mobile Web application, you must deal with different devices
and protocols. Examples are HTML, cHTML (i-mode), WML (WAP) and
VoiceXML. Inside your application, you have to distinguish which device and
which application to choose in order to select the appropriate markup language.
The best way to do this is to take advantage of the User-Agent field from the
request header and to use it as a selection criterion. The value for this field is
unique for each browser model; the Trade2 application will also use this field.

The logic to distinguish between the devices can be placed in different modules
of the application. One possibility is to use a controller servlet that automatically
chooses the appropriate JSP file to produce the content. In this case, additional
logic has to be added to this servlet. Another possibility is to use the WTP
environment by setting up multiple profiles to match the different devices and
192 Mobile Applications with IBM WebSphere Everyplace Access Design and Development

browsers. To select the correct markup language, these profiles can be used in
combination with your View component (for example, XSL StyleSheets managed
by the WTP). More details about the Profile Builder in WTP can be found in
chapter 10.2.3, “Development tools in WTP” on page 176.

10.4.2 Session management
Session management is one of the key components of a Web application. It is
used to identify a session between a client and the server. The server is able to
store information about the session related to the client. This information can be,
for example, the user ID of the client used for identification in every request. The
most common way to implement session management is through the use of
cookies. Cookies are small information units stored on the client side that can be
accessed and modified by the server.

Other possibilities are URL rewriting and hidden fields. The URL rewriting
technology stores the session information in the request. Typically, a session ID
or identity is added, so the requested URL is unique for each session. The
hidden field strategy uses hidden input fields to identify the session. Typically, as
for URL rewriting, a session ID is added.

We recommend the use of cookies; it is the easiest approach and can be
implemented with the least effort. For the most mobile devices, the support of
cookies is available at the gateway. If the mobile device cannot handle cookies,
the gateway can take over that function from the client, since the gateway
handles the connection together with the session.

One example is the IBM WebSphere Voice Server. It allows storage and
processing of cookies for the duration of the session. The most commonly used
WAP gateways also provide cookie support. For the other solutions, additional
implementation logic is needed.

10.4.3 Managing the content for different devices
The problems involved in developing a mobile solution are many. The most
common problem will be that, depending on your application, you have to take
care of the request and response flow between the client and the server. It may
be that you have to add additional functionality to meet the requirements of the
multiple devices.

One example is the registration forms. For HTML and WML browsers, it is just a
form sent by one request to your device. After filling out the form, you easily send
it back to the application using a Submit button or link. Implementing the same
scenario for a voice application will produce a different flow, because you have to
provide the grammar for the VoiceXML document in order to be able to recognize
 Chapter 10. Application development 193

the voice. The user friendly way would be to start with the city code and then
provide the possible districts and streets in a new response. However, most voice
applications do not offer a registration possibility. In order to use the service, the
customer typically has to register on a Web page first, as in the Trade2 sample
application.

Another problem with applications supporting different devices is the amount of
data generated by the response. You can take the portfolio page of the Trade2
application as an example. The page contains a huge amount of data visually
displayed as a table for an HTML browser. To match the capability of the mobile
devices (maximum deck size as well as the screen size), you have to fragment
the data. The best way to control this fragmentation is to add additional logic to
the application. The output for the device will be generated in an appropriate
form. This solution requires more effort during development.

Another possibility is to use the offered fragmentation feature of WTP. It helps to
break down the amount of data and to adapt it to the browser’s needs. All
resulting fragments are stored locally in the cache of the WTP and are connected
using links.

For fragmentation information, please refer to New Capabilities in IBM
WebSphere Transcoding Publisher Version 3.5 Extending Web Applications to
the Pervasive World, SG24-6233.

10.5 Development roles and responsibilities
The following roles are identified during mobile Web application development:

� Solution Architect - the person who designs the solution, including the
architecture and the application.

� DataBase Designer - the person who designs and builds up the database,
planning the database population, and planning for conversion or mass load.

� XML designer - the person who takes care of the XML documents, defines the
grammars (DTD), matches the schema with the database structure, and
ensures the interoperability between applications.

� Application developer - there are several type of application developers; in our
case, they are Java developers. They provide the presentation and the
business logic for the application.

� HTML Designer - mostly HTML coders, they take care of the ergonomic
design, of implementing HTML files (JSP, XSL,...), and of coordinating the
graphic designers.
194 Mobile Applications with IBM WebSphere Everyplace Access Design and Development

� Other ML Designers - like the HTML designers, they have the same
responsibilities, but their knowledge is based on other markup languages
(WML, cHTML, ECMA Script, etc.).

� Voice Application Developer - this kind of developer is specialized in voice
applications, and has a deep knowledge in VoiceXML.

� System engineer - this person builds up the infrastructure based on the
architecture.

� Tester - this person tests the application and provides feedback to the
developers and the designers.

10.6 More information

10.6.1 IBM related
� IBM Redbook: The XML Files: Using XML and XSL with IBM WebSphere

V3.0, SG24-5479

� IBM Redbook: Enterprise JavaBeans Development Using VisualAge for Java,
SG24-5429

10.6.2 Not IBM related
� More information on Java servlet, JSPs, JavaBeans and Enterprise Java

Bean can be found on the following Web site: http://java.sun.com/products

� More information about XML, XSL and XSLT as well as HTML and cHTML
can be found under the following Web address: http://www.w3.org
 Chapter 10. Application development 195

196 Mobile Applications with IBM WebSphere Everyplace Access Design and Development

Chapter 11. System management

This chapter will discuss system management for a mobile application based on
WebSphere Everyplace Access V1R1.

System management is not a trivial task in any environment. This book covers
the Web application part of the whole mobile solution.

11
© Copyright IBM Corp. 2001 197

11.1 General system management
Once the application development is complete and testing is done, it is time to
start implementing the systems management phase. In this phase, application
deployment into the runtime environment is the focus. It covers the set of
post-implementation activities that have to be performed on a routine basis in
system management.

System management typically involves the following:

� Application management

� Performance monitoring

� Availability management

� Security management

� Disaster recovery

� Operating system and network administration

� Asset management

� Software distribution

� Problem reporting

� Change management

Looking at this extensive list of activities, it is obvious that system management is
a very important part of the whole process. In fact, each of these activities
requires highly specific skills and professional experience to perform
competently. System management also requires a set of tools to perform the
tasks.

Incorporate system management considerations in the early phases of your
design, since what you design will affect how you eventually manage it.
Conversely, the tools available to manage your system also affect your
application design. To explain each system management activity in detail is
beyond the focus of this redbook. What we will focus on are the key system
management activities related to applications based on WebSphere Everyplace
Access V1R1.
198 Mobile Applications with IBM WebSphere Everyplace Access Design and Development

11.2 IBM HTTP Server
IBM HTTP Server provides a Web browser-type administration client.

In order to access the Administration service, the IBM HTTP Administration
service or daemon has to be started.

In Windows NT, open the service panel and navigate to the IBM HTTP
Administration service; click push the Start button.

In AIX, open a terminal if you do not have one open, change the directory to
/usr/...., then start the administrator daemon by typing in: ./adminctl start.

There is one more step: setting up the user name and password for the
administrator. In order to do that, run the following commands:

In NT:

cd <IBM HTTP Server directory>
htpasswd -mb conf/admin.passwd <admin user name> <admin password>

In AIX:

cd /usr/HTTPServer/bin
htpasswd -mb ../conf/admin.passwd <admin user name> <admin password>

Once the service or the daemon is running, the administrator can access the
Administration page on the server. To access the start page, use the following
URL:

http://<your server address>:8008

Then type in the administrator user name and password which you set up
previously.

The Administrator site is basically an interactive, graphical user interface for the
configuration file (httpd.conf). You will find all the configurable options under this
interface, as in the config file.

The advantage is that the configuration has a better view, via the GUI;
furthermore, the administrator does not have to have access to the configuration
file itself in the directory structure.

Important: In some cases, the Administration service will not start, mostly
because the configuration file needs some modification. Open the admin.conf
file in the conf directory and add the following line:

ServerName <your server’s fully distinguished name>
 Chapter 11. System management 199

For more information about how to set up the IBM HTTP Server, use the help
guide that comes with the server itself, accessible from the Administrator site.

11.3 WebSphere Application Server
WebSphere Application Server provides two different approaches to accessing
administrative tasks.

� One is the WebSphere Administration console, which is a GUI for
administrators.

� The other option is to use the XML configurator, where one can administrate
the whole application server by writing plain XML files and feeding them into
the XML configurator. The XML configurator will validate and process the
config file and make the modifications to the application server.

To find out more about the XML configurator, please refer to the redbook
WebSphere V3.5 Handbook, SG24-616.

11.3.1 Administration console
The Administration console for WebSphere Application Server is a GUI for
administrating the application server. The administrator is able to access the
server configurations and administrative tasks as well. The server configurations
are structured as shown in Figure 11-1 on page 201. The structure is arranged
into a hierarchy, and the navigation is an explorer-like navigation. Each level in
the hierarchy represents an application server component; it is either a container
for other components or a resource for other components.
200 Mobile Applications with IBM WebSphere Everyplace Access Design and Development

Figure 11-1 WebSphere server structure

The tasks are accessible from the menu or from the toolbar. Figure 11-2 on
page 202 shows the tasks in the menu.
 Chapter 11. System management 201

Figure 11-2 WebSphere tasks menu

The tasks, like wizards, guide you through windows and panels to do the job.

To find out more about the WebSphere Administration console, please refer to
the redbook WebSphere V3.5 Handbook SG24-6161, page 811.

11.4 WebSphere Transcoding Publisher
WebSphere Transcoding Publisher, just like the WebSphere Application Server,
has a GUI administration console. The purpose is the same: to administer the
server, access the current configuration and modify it.

Since WTP can run on multiple nodes to increase performance and availability,
there is a need for a centralized configuration. WTP allows you to store the
configuration settings in a common directory, where they are shared by the WTP
nodes.

11.4.1 Administration console
The primary tool for administering IBM WebSphere Transcoding Publisher is the
Administration console. The console is a flexible program that adapts itself to
your server configuration and the location of your configuration data.
202 Mobile Applications with IBM WebSphere Everyplace Access Design and Development

The IBM WebSphere Transcoding Publisher Administration console provides the
following functions:

� A tree view of your resources (preference profiles, annotators, transcoders,
and StyleSheets)

� The ability to edit individual resources

� A menu structure to provide access to other tasks

� Help for each window, and a list of How do I... topics

To find out more about the WTP Administration console, please refer to the
redbook New Capabilities in IBM WebSphere Transcoding Publisher Version 3.5
Extending Web Applications to the Pervasive World, SG-24-6233.

To start the Administration console in Windows NT and Windows 2000, select
Start -> Programs -> IBM Transcoding Publisher -> Administration Console.

In AIX, Sun Solaris, and Linux, change the directory to the WTP’s bin directory,
then enter AdminConsole.sh in the command line.

The Administration console is shown in Figure 11-3:

Figure 11-3 WTP Administration console
 Chapter 11. System management 203

11.4.2 Common LDAP directory
Depending on the needs of the architecture, you can choose to store the
configuration information for each IBM WebSphere Transcoding Publisher server
on that server's machine, or you can use a central directory, IBM SecureWay
Directory, to store one or more server models to be used by your IBM
WebSphere Transcoding Publisher servers. Using a central directory enables
you to define common configurations to be used by several servers and to
maintain them from an Administration console anywhere in your network. Then, if
you need to make a change to the shared information (for example, if you need to
add a new StyleSheet or modify a device profile), you can make the change to
the server model; all IBM WebSphere Transcoding Publisher servers that use
that server model will recognize the change.

If you are using a central directory to store server models, you must log in when
you start the Administration console. The user ID and password will be verified by
the central directory. If your login fails, you cannot work with server models.
However, you can work with local server settings without logging in.

Find out more about the common LDAP directory for WTP in the redbook New
Capabilities in IBM WebSphere Transcoding Publisher Version 3.5 Extending
Web Applications to the Pervasive World, SG24-6233, page 212.

11.5 WebSphere Voice Server
After a Voice Server is powered up, the software installation is complete, and the
system is rebooted, the Windows NT Service starts the System Management
component. The System Management component reads the sysmgmt.properties
configuration file. The sysmgmt.properties file is the configuration file for the
WebSphere Voice Server (WVS).

The WebSphere Voice Server does not have a GUI for administrative purposes,
unless we consider the TIVOLI GEM management tool as a GUI for WVS. WVS
offers a command line program: vvsm, which can perform administrative tasks.

For example you can start the VoiceXML browsers by issuing the vvsm start
command.

To find out more about administrating the WebSphere Voice Server, please refer
to the documentation included with IBM WebSphere Voice Server Version 1.5
Administrator’s Guide.
204 Mobile Applications with IBM WebSphere Everyplace Access Design and Development

Chapter 12. Security

This chapter discusses the common security issues related to mobile Web
applications.

The WebSphere Everyplace Access offering concentrates on the Web
applications, leaving the system management and security issues for the
underlying architecture.

The following sections will cover the basic security considerations which are
applicable to any Web application. Furthermore, we will cover the issues specific
to mobile applications.

12
© Copyright IBM Corp. 2001 205

12.1 Introduction
The constant growth of the wireless market has triggered a rapid increase in the
number of services and applications for mobile devices such as cellular phones,
PDAs or handled PCs (HPCs). Consequently, there has been an increased
interest in developing new architectures and protocols to meet the requirements
of these applications. One of the requirements for wireless communications is
security. The last years have registered a growing market for messaging,
electronic payments and e-mails (to mention just a few) as well as a great
demand for safe transactions.

Cryptography offers virtually unbreakable solutions (“virtually” because the
algorithm to reverse the coding is known but is computationally unattractive at
present), but the existing architectures need to adapt to this new form of
communications. As a result, several extension packages have been created to
support wireless communications on existing cryptography systems.

Wireless security is difficult to implement, because many different aspects need
to be managed. Currently, there is no single standard for the security of wireless
transactions; industries rely mainly on Secure Socket Layer (see 12.3.1,
“Security Socket Layer (SSL)” on page 217) and Wireless Transport Layer
Security (see 12.3.2, “Wireless Transport Layer Security (WTLS)” on page 218).
Unfortunately, the two protocols are not compatible and the encoded data needs
to be converted into an SSL format in order to be processed by a conventional
network. The re-encryption is usually done inside the gateway by decoding the
original WTLS data and coding it using SSL before passing it to the server. This
feature creates vulnerability in the communications between the wireless device
and the back-end application, because the data is available in plain format on the
gateway for a short time. In some cases, the problem has been avoided by
placing the gateway within the conventional network (hence relying on the
security of transactions in the server domain). However, some security threats
still exist.

Wireless devices, and in particular WAP phones, lack the CPU and memory
power typical of standard systems; therefore, security algorithms need to be run
on limited resources. For this reason, SSL cannot be implemented for
communications between the wireless device and the gateway as the available
computational capabilities are not sufficient to run the RSA encryption algorithm.
A different approach is used instead. Wireless transactions have their own
security protocol, WTLS, which provides only some of the same security features
via a less resource-intensive encryption algorithm like ECC (see 12.3.4, “Elliptic
Curve Cryptography (ECC)” on page 219).

Security on its own does not prevent malicious access to data on wireless
devices.
206 Mobile Applications with IBM WebSphere Everyplace Access Design and Development

Viruses are becoming a growing area of interest for mobile communications
because of the current vulnerability of the devices. The widespread nature of
wireless technology, combined with the continuous use of its associated devices,
has increased the risk for virus attacks. Virtually, it would be possible for a virus
to make transactions using somebody’s else device without the owner realizing it
(at least at the time the violation actually occurs).

12.2 Mobile versus conventional communications
This section gives a brief overview of the differences and the similarities of
security issues and their solutions between HTTP communication, non-HTTP
wireless communications and voice. We discuss the differences between them
and refer you to relevant literature or Web sites for further details.

Security practices focus on five different areas:

� Authentication

� Confidentiality and message integrity

� Authorization

� Non-repudiation

� Secure boundary

Under these requirements, we will consider the following scenarios:

� HTTP clients

� Clients connecting to the network by modem

� Wireless gateway clients

� Non-HTTP wireless clients

� Voice clients

12.2.1 Authentication
We will now discuss the use of standards concerning client and server
authentication. These can be complemented by authentication done at the
application level.

HTTP clients
By HTTP clients, we mean traditional, desktop PC clients with a Web browser.
The security used for this type of client is well known; we briefly recapitulate the
main points of focus in this field.
 Chapter 12. Security 207

Server authentication
The server authentication is routinely done with an X.509 server certificate in the
context of an SSL or a TLS connection; these technologies use PKI (Public Key
Infrastructure).

Client authentication
Typical alternatives for user authentication in standard HTTP communications
include:

� An HTTP authentication challenge, as defined in the HTTP specification by
the World Wide Web Consortium (refer to RFC 2617 on www.w3c.org). This
can be a basic (only slightly protected) or digest (more protected)
authentication. Such a challenge can be issued by an HTTP server (in which
case it is called a 401 www Authentication request) or by a proxy (which
corresponds to a 407 Proxy Authentication request).

� Client X.509 certificates signed by a trusted third party. Using client
certificates is considered to be much more secure than HTTP authentication
challenges, provided the trusted third party has followed stringent procedures
to verify the physical identity of the user. This can be implemented within the
SSL3 or TLS standards.

Clients connecting to the network by modem
Clients, either wireless or wired-connected through a modem, will typically be
authenticated between the client and the entry point to the network by extensions
to the PPP protocol. These protocols are CHAP (Challenge-Handshake
Authentication Protocol) or PAP (Password Authentication Protocol); see RFC
1334 and RFC 1994 on www.ietf.org for more details.

Of course, within that link, SSL or TLS can be used. One could also use WLP
(see below), which requires some software on the client’s part.

Wireless Gateway clients
For the Wireless Gateway clients (a specific Wireless Client component of
Everyplace Wireless Gateway for wireless devices using an IP link), the
authentication is done through the Wireless Optimized Link Protocol (WLP),
which is a modified version of PPP, optimized for wireless use.

WLP (formerly called the ArTour protocol) was created because PPP as such
requires a high number of interactions before the link is actually established,
which may be slow.
208 Mobile Applications with IBM WebSphere Everyplace Access Design and Development

In WLP, the number of packets exchanged when the connection is established is
brought down to six for the logon and to four for the subsequent calls, as long as
the request comes from the same IP address. In addition to that, the IP headers
are also encrypted. Additionally, the exchange of passwords is better protected.

Non-HTTP wireless clients
Non-HTTP wireless clients, such as WAP or i-mode clients, are authenticated
using their specific protocol.

Server authentication
For WAP, within the WTLS specification (for a description of WTLS, see 12.3.2,
“Wireless Transport Layer Security (WTLS)” on page 218), the server
authentication via certificates is recommended. Possible certificates are X.509 or
mini certificates.

Note that the term server authentication in practice here means that the WAP
gateway is authenticated to the client, not the Web-server behind it. The latter
can server-authenticate to the WAP gateway in the context of an SSL
connection. This is illustrated in Figure 12-1.

Figure 12-1 Current secure connections for WAP

A change in this setup has been announced with the implementation of the 3G
networks, where, for securing connections, the use of SSL will be recommended
between the device and the Web server. The server will directly authenticate to
the client device, as illustrated in Figure 12-2 on page 210.

Note: WLP was developed by IBM. It is currently not a generally accepted
standard, but is available as part of the Wireless Gateway client software, and
is heavily used, for example in the automotive industry and on different laptop
systems.

WAP
Gateway

Web
Server

WTLS SSL
 Chapter 12. Security 209

Figure 12-2 Possible secure connections for WAP

For i-mode, we make a distinction between the models predating the 503i-series
and the 503i-series themselves.

For the models predating the 503i series, there is no security such as WTLS
between the device and the gateway. Only SSL is possible with server
authentication between the Web server and the gateway, if requested. This
means that the Web server can authenticate to the gateway, nothing more (see
Figure 12-3).

Figure 12-3 Current secure connections for i-mode, for models prior to the 503i-series

From the 503i-series on, SSL will be possible from the client device to the Web
server, and so it will be possible for the Web server to authenticate directly to the
client device. This is a similar situation to the one described for future (3G) WAP
connections. Two certificates are stored in the 503i-series before shipment; they
are issued by VeriSign and Baltimore (see Figure 12-4 on page 211). Please
note that this is only an option. One can still use the device without specific
data-level security, such as in models prior to the 503i series.

SSL

SSL connection NOT
interrupted here.

WAP
Gateway

Web
Server

SSL

i-mode
Gateway

No specific
network security SSL

Web
Server
210 Mobile Applications with IBM WebSphere Everyplace Access Design and Development

Figure 12-4 Possible secure connections for i-mode, for 503i models

Client authentication
In the case of WAP clients, the same authentication challenge mechanism as
that of HTTP 1.1 applies - it is now a mandatory part of the WAP 1.2.1
specification - but alternative authentication methods are available. Still in the
case of WAP clients, the implementation of client-side certificates, as described
by the WTLS specification (see “Server authentication” on page 209), is still in a
prototype phase at the time of writing this book.

In this area, the Wireless Identity Module (WIM) specification of the WAP forum is
worth mentioning. This gives specifications about a device, possibly
implemented on a smartcard, containing the private key of the client and the
ability to calculate the encryption keys necessary to secure data transmission.
Optionally, it also contains the CA-roots, the entire client certificate, or a URL
pointing to a page where the client certificate can be found. It is technically
possible to store the client certificate in a centralized directory, but the private key
has to stay with the client device. It must not be exposed.

For i-mode, the device identifier can contribute to client identification. For models
prior to the 503i series, this identifier had to be generated by the gateway and
passed through to the content provider. In the case of the 503i-series devices, it
has been announced that they will be able to transfer their own device identifier
directly to the Web server; for more information, see the redbook Mobile
Commerce Solutions Guide, using WebSphere Commerce Suite V5.1,
SG24-6171.

Voice clients
To discuss voice communications, we start from the infrastructure shown in
Figure 12-5.

i-mode
Gateway

SSL connection NOT
interrupted here.

SSL

Web
Server

SSL
 Chapter 12. Security 211

Figure 12-5 Schematic representation of voice infrastructure

If the VoiceXML browser, contained in the voice server, supports SSL with server
authentication as a client, then authentication of the Web server to the voice
server is possible.

This is the case of the IBM VoiceXML browser. It contains a number of
predefined trusted roots.

Under this scheme, when a VoiceXML browser connects to a Web server
providing the VoiceXML application, it will receive the certificate of the Web
server and validate it against one of the voice browser’s trusted roots. This is
especially useful if the Web server is situated outside the private LAN and has to
be accessed via the Internet.

There is no standardized scheme available for client authentication, so it will have
to rely on application-level authentication. This can be a VoiceXML application
requiring a user ID and password, but it should not exclude other alternatives in
the future. For example, some recent evolutions in biometrics include speaker
identification, which is a technique that contributes to user authentication based
on the characteristic features of the speaker’s voice.

12.2.2 Confidentiality and message integrity
This section discusses the standards for confidentiality and message integrity.

HTTP clients
To enable encryption of the dataflow between Web server and Web client,
implementing SSL or TLS, even if it will only be used with server authentication,
is the de facto standard procedure.

Note that encryption is also applied in the SSL connections that have only server
authentication.

PSTN

Voice Gateway Voice Server Web server

Private LAN

IP network
212 Mobile Applications with IBM WebSphere Everyplace Access Design and Development

During the initial SSL connection, a symmetrical encryption key is constructed
and made available on both sides of the connection; this key is used to encrypt
the dataflow. Symmetrical (also called secret key) encryption technologies are
used in SSL and in TLS.

Also in SSL and TLS, a hashed version of the data is sent together with the data
itself to prevent message tampering, that is, modification of data during the
transmission. Upon arrival of the data, the hashed version is compared to a hash
of the received data, to check for message integrity.

Clients connecting to the network by modem
For clients connecting to the network via PPP, that standard does not, as such,
provide encryption.

Of course, as was mentioned under “Clients connecting to the network by
modem” on page 208, SSL or TLS can be used within that link.

Wireless Gateway clients
Wireless Gateway clients are clients that use an WLP connection, which we
discussed earlier. WLP has an option to encrypt the data by using either DES or
triple DES.

Please note that all this takes place at the link level. There is also an option to
use SSL at the data level (socket layer). If, in addition to this, the option to encrypt
the data using WLP was chosen, the data will be encrypted twice.

Non-HTTP wireless clients
Non-HTTP wireless clients, such as WAP or i-mode clients of models from the
503i series on, can also apply encryption.

For WAP connections using the WTLS specification, following encryption
algorithms is possible (DES/TripeDES, IDEA, RC5). The same hashing
algorithms as for SSL and TLS are mentioned in the specification.

Note: By hashing we mean the cryptographic function that transforms a piece
of data into a short, fixed-length piece that represent the original data. Since
two even slightly different pieces of data generate totally different hashes, the
function is explicitly designed to make it impossible for a given hash to find the
corresponding data.
 Chapter 12. Security 213

For i-mode clients, as mentioned in “Non-HTTP wireless clients” on page 209,
the devices prior to the 503i-series have no specific network security (and hence
no encryption like the one provided by SSL or WTLS) between the device and
the gateway. Between the gateway and the Web server, SSL with 40 bit
encryption is possible.

For the 503i series, SSL with 128 bit encryption is applicable as an option
between the device and the Web server.

Voice clients
We only focus here on the segment between the voice browser and the Web
server. If SSL is supported by the voice browser (which is the case, for example,
for the IBM Voice browser in the Voice Server), then logically the packets will be
encrypted there.

Encryption methodologies and standards also exist for audiovisual signals
transmitted digitally between the Voice Over IP gateway and the Voice server
(see for example the standards H.234 and H.235 of the International
Telecommunications Union), but these topics are beyond the scope of this book.

12.2.3 Authorization
Authorization, also called access control, is used to restrict the user’s authorized
access to resources and applications.

A first authorization can be performed by the proxy or the Web server by defining
a protection space and comparing it with user profiles and access control
information stored in, for example, a directory using LDAP.

Authorization can further be refined at the application level.

In general, there are two fundamental approaches to control access: permissions
and capabilities. The permission list stores a list of users, groups, or roles and
what they are permitted to do. The capability list associates a list of resources
and corresponding privileges with each user.

Note: Currently, encryption stops at the WAP gateway (if a gateway is used).
In other words, there is no end-to-end encryption between the WTLS client
and the HTTP server. This problem and its solutions are mentioned in 12.4.1,
“Broken secure connection in the WAP gateway” on page 222.
214 Mobile Applications with IBM WebSphere Everyplace Access Design and Development

12.2.4 Non-repudiation
Non-repudiation means that a user, having launched and approved a transaction
or sent a message, cannot deny this action afterwards (cannot “repudiate” it).

Non-repudiation can be implemented using digital signatures. When digitally
signing something, we are actually using the elements that are part of the Public
Key Infrastructure framework (see 12.3.5, “Public Key Infrastructure (PKI)” on
page 219).

Digital signatures
This section is a short and basic reminder of the principle of digital signatures.

As an example, let us consider Figure 12-6; person A wants to send a signed
document to person B. A hash is made from the document, and encrypted with
the private key of person A. The signed hash (which is, in fact, the digital
signature of the document) and the plain original document are sent to person B.

Figure 12-6 Creation of a digital signature

Figure 12-7 on page 216 shows the digital signature verification process.

message

hashed message

encrypted with private key A

A B
has public key Aprivate key A
 Chapter 12. Security 215

Figure 12-7 Digital signature verification

Person B uses the publicly available public key to decrypt the signed hash (the
digital signature). After that, a hash is calculated from the plain original document
and compared with the decrypted hash.

The validity of this relies on the fact that only A owns a private key and could
have signed the hash. Person A cannot claim that the contents of the documents
have been modified during the transition to person B, because otherwise the
hash would not correspond to the document. In this example, we assume that the
recipient is sure of the identity of the sender. This can be achieved via a valid
certificate.

Applicability of digital signatures
As discussed above, a private/public key pair is essential for creating digital
signatures. Protocols using PKI, such as SSL and WTLS, work with such key
pairs. Simply using SSL or WTLS is not enough, however. Those standards only
contain elements to construct electronic signature mechanisms, which is not
done automatically.

For voice clients, digital signatures using PKI as such are not yet available, so
validation of the transactions should be implemented by other means, such as
application development, possibly combined with other authentication methods.

For more information about Public Key Infrastructure, read Section 12.3.5,
“Public Key Infrastructure (PKI)” on page 219.

message

hashed message

B
has public key A

hash

compare for
validity

hashed message

encrypted with private key A

message

decrypts with
public key A
216 Mobile Applications with IBM WebSphere Everyplace Access Design and Development

12.2.5 Secure boundary
Secure boundary is the ability to protect resources of a private network. This is
achieved by firewall software, with or without proxies. Typical functionality in this
respect includes the screening of incoming packets according to their IP-address
and TCP port number, concealment of addresses from the outside world and
tracking of activity so as to be notified of any suspicious behavior.

12.3 Security technologies for wireless transactions
In the following sections, we briefly discuss the algorithm of the most popular
security system used for wireless transactions. Implementation details and other
types of strictly technical information are not addressed in this book, and the
reader can refer instead to the literature (books, articles or Web sites) mentioned.

We will first give a brief overview of wireless communications security. Security
occurs between the wireless devices and the network, and between the network
and the back-end applications.

12.3.1 Security Socket Layer (SSL)
SSL is a layered protocol that provides a private, reliable connection between
parties where the peer’s identity can be verified. It was developed by Netscape
and submitted to the IETF (Internet Engineering Task Force) as a model for TLS
(Transport Layer Security), while a different protocol named PCT (Private
Communication Transport) was developed by Microsoft. However, SSL has
become widely accepted and it is not only used to secure HTTP transactions with
a HTTPS request. SSL’s major components are the Record Protocol and
Application Data Protocol. The former is used to encapsulate higher level
protocols such as the handshake protocol. The latter is used to encrypt data with
an algorithm agreed upon during the handshake process.

When a request for a connection is sent from a client to a server, a
predetermined sequence of messages is exchanged between the two devices in
order to allow further communications. Hence, after a session has been
established, the handshake process is started.

SSL seeks to provide:

� Cryptographic security between two parties connections

� Interoperability to allow the exchange of information between parties without
releasing any code knowledge
 Chapter 12. Security 217

� Extensibility, to enable the addition of new encryption methods if necessary

� Efficiency, by minimizing the network connection via a caching scheme.

SSL performs authentication using certificates. A certificate contains, among
other items, the issuer’s name and the public key of the host for which the
certificate has been issued. When a system needs to be verified, some data is
sent to it and it must be correctly encoded using the certificate.

12.3.2 Wireless Transport Layer Security (WTLS)
WTLS is the wireless extension of the TLS protocol. TLS was developed to
standardize the use of SSL. It mainly consists of two layers: the handshake
protocol and the record protocol. The handshake protocol sets up a connection
using a public key and negotiates the use of a symmetric key for the
communications, as well as a compression algorithm, if necessary. The record
protocol is directly connected to the transport layer and breaks up incoming
messages into blocks. It encodes each block of data using the symmetric
encryption algorithm that was agreed upon during the handshake process. The
record layer also performs a data integrity check and finally sends the coded
block to the transport layer.

WTLS provides security components for authentication, data integrity and
confidentiality, while a PKI accounts for the missing ones. The wireless extension
to TLS is needed to support datagrams in a low bandwidth and high latency
environment, in order to ensure that the handshake process has been optimized
with the introduction of dynamic key refreshing. This allows the encryption keys
to be updated regularly, resulting in a higher level of security and a faster
handshake process.

12.3.3 Public key cryptography
The RSA Public Key Cryptosystem was invented in 1977 at the Massachusetts
Institute of Technology by Ronald Rivest, Adi Shamir, and Len Adleman.

Rather than using the same key to both encrypt and decrypt the data, the RSA
system uses a matched pair of encryption and decryption keys. Each key
performs a one-way transformation of the data and has the inverse function of
the other; what one key does, only the other can undo.

Note: A datagram is a self-contained piece of data that carries sufficient
information to be transmitted between a source and a destination device
(typically computers). The data is independent of network settings and any
previous exchanges between the devices.
218 Mobile Applications with IBM WebSphere Everyplace Access Design and Development

The RSA Public Key is made available to the public by its owner, while the RSA
Private Key is kept secret. To send a private message, an author scrambles the
message with the intended recipient's Public Key. Once encrypted, the message
can only be decoded with the recipient's Private Key. Inversely, the user can also
scramble data using his/her Private Key; in other words, RSA keys work in either
direction. This provides the basis for the digital signature, because if the user can
unscramble a message with someone's Public Key, the other user must have
used his/her Private Key to scramble it in the first place. Since only the owner can
utilize his/her own private key, the scrambled message becomes a kind of
electronic signature: a document that nobody else can produce.

For more information about RSA, refer to the following Web site:
http://www.rsa.com/rsalabs/rsa_algorithm/index.html

12.3.4 Elliptic Curve Cryptography (ECC)
The security of existing cryptosystems relies on two hard mathematical
problems: the discrete logarithm problem (over a finite field) and integer
factorization. Recently, researchers have introduced the use of elliptic curves in
the definition of cryptosystems. Elliptic curves are mathematical structures that
have been successfully used in a variety of applications and have recently
attracted a significant interest in the field of security. The elliptic curve discrete
logarithm problem requires extensive resources to be found and used for its
solution and it is, therefore, practically impossible to break a cryptographic
system based on this problem.

The algorithm is more complex than RSA and requires a significant number of
system parameters. According to some recent studies, the time required to break
an ECC system grows exponentially with the size of the key, while for an RSA
modulus the growth is only logarithmic. For details, please refer to
http://www.certicom.com/research/wecc3.html

12.3.5 Public Key Infrastructure (PKI)
Security for wireless communications can be achieved by using a dedicated
infrastructure. This is the case of PKI, a system combining public key
cryptography, certificates and a distributed server system to provide the following
aspects of security:

� Identification
� Authentication
� Confidentiality
� Non-repudiation
� Data integrity
 Chapter 12. Security 219

A distributed server system is simply an architecture in which servers distribute
applications to different types of clients in a transparent way. The distribution
takes place over a network. Typically, a root Certificate Authority (CA) issues
certificates to different types of servers in different locations. The servers are
then accessed remotely by clients over the Internet.

How are the different aspects of security implemented in a PKI system?

Authentication
Site authentication can take place in two different ways under PKI. In one case,
the server proves its identify using a certificate. In the other case, the client is
sent a certificate that needs to be installed and used for further connections.
Certificates are issued by a CA upon request by the organization responsible for
the servers. A representative of the organization needs to prove his/her identity,
for example by going personally to the local registration authority for certificates.
The CA, depending on the original request, provide a server authentication
certificate or a signing certificate. In the former case, the certificate is used to
identify the server when a client requests a connection. In the latter case, the
server has been delegated by the CA to authenticate clients.

When a connection between two parties is established, the identity of the party
requesting access must be verified. This is normally done using a certificate. A
certificate implies an underlying form of trust that the person at the other end is in
fact who he/she claims to be.

The threat that someone may step between the two communicating parties and
captures the communication, is called man-in-the-middle. PKI provides the
secure infrastructure to eliminate this threat. CAs play the role of the trusted third
party, and the two communicating parties identify each other via the CA.
Standing between two communicating parties is always a threat; either it is
between two individuals, between two CAs or between a CA and an individual,
but with PKI it is possible to decrease the security risk to almost zero.

Setting up a secure communication always requires a certain level of trust; PKI
can reduce the risk by ensuring a high level of trust.

Authorization
Trusted connections from mobile client devices may have different permissions to
access information on the server. That is why, when a request for a connection is
made, the server verifies the authorizations of the clients to determine what
resources and actions are permitted.
220 Mobile Applications with IBM WebSphere Everyplace Access Design and Development

In a PKI, access to server information is only granted to authorized parties by
means of certificates. These certificates contain two pieces of information: the ID
of the keyholder and the server DNS, which are issued by CAs. Certificates can
also provide information about authorization by enclosing information about the
accessible resources for that particular certificate holder.

Non-repudiation
Non-repudiation is ensured by exercising the Digital signature technique. For
more information, please refer to 12.2.4, “Non-repudiation” on page 215

Confidentiality
Data sent in a PKI is kept confidential by the use of symmetric keys for
encryption and decryption. These keys are constructed at the beginning of each
session, based on a secret message sent by one of the parties involved. That
secret, previously encoded with the receiver’s public key, can only be decrypted
using the receiver’s private key. Because the content is encrypted with the
resulting symmetric key, the receiver is the only authorized person to have
access to the information.

Data integrity
Information that is sent over the network can be corrupted and may not reach its
destination in its original form. PKI provides a way to verify data integrity. The
receiver applies the same hashing algorithm used by the sender to generate a
hash of the data file. Then, the hash sent with the data file is compared with the
one generated at the receiver’s end. If a mismatch is found, this is an indication
that a data loss has occurred.

12.4 Apparent problems in wireless security
The following sections will shed light on a couple of specific security problems in
mobile Web applications.

We will discuss the problem in depth and recommend solutions.
 Chapter 12. Security 221

12.4.1 Broken secure connection in the WAP gateway
If there is a broken secure connection, the WAP gateway opens a security hole in
the communication.

The problem
If we look at Figure 12-1 on page 209, we notice that there are two secure
connections: WTLS and SSL. The encrypted data from WTLS has to be
decrypted in order to be re-encrypted under SSL, and vice-versa. The reason is
that SSL is defined at the transport level (the “TCP” in TCP/IP), and that transport
level protocol is different from the one in WAP.

The consequence of this is that at one moment the data may pass through the
gateway, while at other times or in some contexts this might cause a security
issue.

The solutions
The following paragraphs are discussing the possible solutions and workarounds
for the problem described above.

Current solution
The current fully secured solution is to have the data on a server that serves
WAP requests directly, a so-called WAP server (the official term is “WSP-server”).
In that case, there can be only one WTLS connection from the client device to the
server.

Obviously, in the majority of cases one would like to reuse the resources of the
Web server as well, and hence use a WAP gateway.

Short term recommendation
In the short term, a WTLS specification will come out (if it has not come out by
the time this redbook is published), that will recommend redirection in this case.
This means that requests, going to a WAP gateway (in this scenario, typically a
public one) to a site that wants to establish a secure connection, are sent back to
the client device for redirection to the destination site. At the destination site, a
WTLS connection can be established with the WAP gateway on-site; this is
considered to be more secure than the public connection. This is illustrated in
Figure 12-8.
222 Mobile Applications with IBM WebSphere Everyplace Access Design and Development

Figure 12-8 Recommendation in the short term for securing WTLS connections

1. The WAP client sends a request to the ISP WAP gateway for the customer’s
site.

2. The customer’s content server responds that it wants a secure connection
and gives the ISP gateway routing instructions.

3. The ISP gateway sends a navigation document to the client device for the
customer’s site.

4. The client redirects its call directly to the WAP gateway of the customer, so
that a direct WTLS connection is established between the client device and
the WAP gateway on the customer’s site, which is considered to be more
secure.

Solution for future networks
The WAP recommendation for future networks is expected to be a straight end-to
end SSL connection between the client device and the server, as shown in
Figure 12-2 on page 210.

The reason for this is that in 3G networks, the challenges posed by poor network
reliability and throughput will have at least partially disappeared; in other words,
the connection will behave more like a normal network connection, so that the
heavier SSL will be less of a problem.

12.4.2 Other gateways
The architecture introduced in Figure 12-1 on page 209 has some disadvantages
in certain circumstances.

Development environment
Assume that the development environment within the company has its own
network segment, which connects to the Internet via a firewall. This is a normal
situation.

ISP WAP Gateway

WebSphere
Everyplace
Wireless Gateway

Content Server

wireless network
ISP

customer

2.3.

1.
 Chapter 12. Security 223

During development, in most cases developers use emulators to test their
application. These emulators work like the original devices and require the same
environment and settings to operate.

Problem
In some cases, the original devices and the emulators require a kind of proxy,
simply called a content proxy. The reason why the client requires the proxy is that
the client cannot use the cipher algorithms that are widely used on the Internet
(for example SSL), because they do not have the computing power to perform
the calculations. The client uses a different type of secure connection to a proxy,
using other cipher algorithms (for example ECC). The other advantage is that the
proxy and the client can use a different connection than TCP, and the UDP
connection requires less energy from the clients, which saves the battery. In the
case of PALM, the content proxy also does transcoding for the PALM browser.

The client connects to the content proxy instead of the target server; the proxy
then makes the connection to the target server to retrieve the content and sends
it back to the client.

The problem is that these proxy servers are outside of the internal network, on
the Internet, and the client cannot connect through the firewall, because the
required port and connection are filtered out.

Solution
There are several solutions to this problem, but each solution requires some
changes in the network architecture or configuration.

Server certificates
Based on the previous architecture, developers might want to connect securely
to the Web application located within the internal network.

Problem
The problem is not only that the clients have to go through the content proxy,
which does not have the right to access the server on the internal network; the
secure connection involves another problem. Since the client uses a different
security protocol than required, it cannot handle certificates, so the content proxy
has to accept the target server’s certificate. This means that either the content
proxy has to know the server’s certificate, or the target server has to have a
certificate issued from a trusted CA.

Tip: If the internal network uses SOCKS servers, then the clients can be
SOCKSified and can go through the SOCKS server out to the external
network (Internet). This kind of proxy gives more freedom to the clients.
224 Mobile Applications with IBM WebSphere Everyplace Access Design and Development

The problem is that during development, servers have a dummy, self-signed
certificate which is not acceptable to the content proxy.

Solution
The solution for this problem is to use real certificates, or to acquire a temporary
certificate from a trusted CA.

Another solution is to have the content proxy in-house and register the
self-signed certificates with it.

A third solution is to have the testing machines the clients and the servers out on
the Internet. The deployment during the development can be very problematic.

12.4.3 The WebSphere Transcoding Publisher and encrypted content
WebSphere Transcoding Publisher as a Web intermediary brakes the secure
connection between the application server and the client.

Problem
The WebSphere Transcoding publisher cannot handle encrypted content. This is
logical, since in order to transcode content one has to be able to access the
content as it is.

This means that if the transcoder resides on a separate node from the Web
server, the data between the transcoding publisher and the Web server is not
encrypted.

Solution
To solve this problem, WTP has to be configured as a MIME type filter.

When WTP runs as a servlet filter, an uninterrupted SSL connection can be
established to the Web server, and so the data is encrypted end-to-end.

To clarify this concept, see Figure 12-9 on page 226.

Note: Configuring WebSphere Transcoding Publisher as a filter is only
possible with WebSphere Application Server.
 Chapter 12. Security 225

Figure 12-9 WTP security issues

12.5 More Information
� About Elliptic Curve Cryptography (ECC):

http://wwww.certicom.com/resources/ecc_tutorial/ecc_tutorial.html

� More on ECC:
http://wwww.certicom.com/resources/w_papers/w_papers.html

WTP

secure

secure

open

secure

open

Web
application
server

Web
application
server

Transcoding
Publisher

wireless
gateway
226 Mobile Applications with IBM WebSphere Everyplace Access Design and Development

Chapter 13. Performance

When it comes to handling numerous requests or high-volume sites such as
www.ibm.com, the quality of services a Web server provides to end users depends
on two parameters: network transfer speed and server response time. Network
transfer speed is a matter of connection bandwidth, while server response time
depends on resources such as CPU, RAM and I/O performance. What can you
do when these resources are exhausted and the Web server is struggling against
heavy traffic?

Many would first think of updating the hardware, for example, replacing the CPU
with a faster one, using faster SCSI controllers or even a RAID system with a
very large cache. The result of such an update is high cost and high
maintenance.

Another tentative solution may be to tune the software by adjusting the operating
system parameters, the Web server configuration, the application server
configuration and/or the database parameters, but it is not realistic to expect a
great performance improvement.

A third tentative solution would be to load balance the traffic and have two or
more back-end servers running at the same time to process the requests. Large
traffic loads must be handled properly or users will get slow response time or
refused connections. The site may become unstable or even fail under critical
load conditions. Frustrated users may not visit the site again.

A discussion of how to handle this problem is introduced in upcoming sections.

13
© Copyright IBM Corp. 2001 227

13.1 Load balancing
Load balancing refers to the distribution of the traffic load of one entity to many
entities. A possible approach to load balancing is to increase the number of
back-end servers for parallel processing. This increases parallel processing of
requests as well as throughput. In order to have parallel back-end servers
receiving requests at the same time, another component in the front end must be
set up. This spreads incoming requests out to the available back-end servers.

The next section introduces three different approaches to handling load
balancing.

� Network dispatcher approach

� DNS approach

� Reverse proxy approach

13.1.1 Network Dispatcher approach
Network Dispatcher has an advanced IP-level load balancing mechanism for any
TCP or UDP protocol. Once installed, the dispatcher becomes the entry point of
Web sites to which clients send packets. However, it still remains completely
invisible to clients. A patented algorithm of Network Dispatcher guarantees that
traffic is optimally balanced over the back-end servers. Another key issue is that
the application server returns the response to the client directly without passing
back through the dispatcher. The dispatcher automatically detects the availability
of a back-end server before forwarding the request. This is achieved by issuing a
simple command. Additionally, another machine can be set up as a backup
machine in case of failure.

Figure 13-1 Sample load balancing scenario

WebSphere
Edge Server
(Load Balancer)

WES Backup

WebSphere
Transcoding
Publisher
(Reverse Proxy)

WTP (1)

WebSphere
Transcoding
Publisher
(Reverse Proxy)

WTP (2)

Web
application

server

Web
Server

clients
228 Mobile Applications with IBM WebSphere Everyplace Access Design and Development

Figure 13-1 depicts a sample scenario with IBM WebSphere Transcoding
Publisher. Web servers, application servers and database servers must of course
be clustered in a highly-available environment in order to serve the business logic
and data for processing. For example, IBM HACMP can turn these servers into
high-availability servers.

IBM has developed a product that can load balance the traffic; this product is
called IBM WebSphere Edge Server and comes with advanced functions to meet
the sites’ scalability and availability needs. WebSphere Edge Server includes a
caching proxy component (also known as Web Traffic Express) and a load
balancing component (also known as Network Dispatcher). WebSphere Edge
Server comes with a high availability daemon that can be used for setting up a
backup machine. The features and impact of the caching proxy are discussed in
Section 13.4, “Caching” on page 233.

13.1.2 DNS approach
Another approach to load balancing is the Domain Name System (DNS)
approach, as shown in Figure 13-2.

Figure 13-2 DNS approach

Every time a Web browser requests a URL, for example www.ibm.com/bluepages,
the first step is to resolve the corresponding IP address. This is done simply
through a passive resolver library, which calls a nearby DNS server familiar with
the IP address. Rather than returning a static IP address, the DNS server returns
one of the back-end servers. The decision of which IP address to choose
depends very much on the traffic and technical possibilities.

www2
Web server

wwwN
Web server

www1
Web server

DNS server
Round Robin:
www.foo.com -> www2.foo.dom

GET/bar/quux

Q:www.foo.dom?

Internet

1

2

 Chapter 13. Performance 229

The best in DNS server implementation is still the Berkeley Internet Name
Daemon (BIND). BIND provides a feature called round robin, which maintains a
particular pool of IP addresses and selects one if a request arrives. This pool of
addresses is maintained sequentially, and if the pointer shows the last IP
address, it simply points back to the beginning of the list (see Example 13-1)

Example 13-1 Pool of IP addresses

www.ibm.com IN CNAME www1.ibm.com
IN CNAME www2.ibm.com
IN CNAME www3.ibm.com
IN CNAME www4.ibm.com
IN CNAME www5.ibm.com
IN CNAME www6.ibm.com

This approach seems very attractive, because the traffic is distributed over all the
back-end servers, one by one. Unfortunately, in practice there are some
considerations to be taken into account. To decrease the resolver traffic and
increase the resolver speed, the DNS server caches the resolved data. Caching
time is controlled by a time-to-live (TTL) value, which is appended to each piece
of information. If the value of the TTL is too high, the traffic on DNS servers is
automatically decreased, but on the other hand, the traffic is not distributed over
all back-end servers. If the value of the TTL is too low, the traffic on DNS servers
is increased, because the information expires more quickly, but DNS servers
have to resolve the host name more often. However, better load balancing on the
back-end servers is achieved. The setting of the TTL value depends on the traffic
and the number of back-end servers. Hence, this parameter is
system-dependent.

Once a particular back-end server is resolved, it remains the contact point for
that visitor until the TTL expires. Another problem occurs when one of the
back-end server crashes. In this case, no visitors to this back-end server can
request documents from that server again until the TTL expires.

This approach is simple, but due to caching and the round robin feature, some
restrictions do apply.

13.1.3 Reverse proxy approach
The last approach to load balancing is the reverse proxy approach. A reverse
proxy simply operates in the direction opposite to that used by a normal proxy.
Usually, proxies are used to bundle requests and to reduce bandwidth waste by
caching data. A reverse proxy simply receives a request and translates the URL
to the absolute URL of one of the available back-end servers (see Figure 13-3 on
page 231).
230 Mobile Applications with IBM WebSphere Everyplace Access Design and Development

Figure 13-3 Reverse proxy approach

The reverse proxy itself does not serve any request, but determines a back-end
server, forwards the request to it and sends the response back to the client. No
DNS resolving is needed here, because all traffic must go through the reverse
proxy, and there is no other problem with the TTL. For security reasons, the
reverse proxy can be placed behind a firewall, and a firewall can also be installed
behind a reverse proxy to secure the back-end servers.

In this approach, the reverse proxy is the only entry point to a Web site. This
eases the need for logging and monitoring the Web site. If one of the back-end
server crashes, the reverse proxy simply delegates the traffic to other back-end
servers until the crashed back-end server is reactivated. The only drawback is
that the reverse proxy must rewrite URLs on a massive scale. Hence, a powerful
server is needed to run an URL-rewriting engine and a reverse proxy.

13.2 Scalability
Load balancing the traffic over two back-end servers increases the throughput of
connections per second. This leads to better control of the scalability of the
system. If two back-end servers are not able to handle the load, then another
back-end server can be installed. This feature is known as horizontal scalability,
which is in this case unlimited. Customers can put as many back-end servers on
the same level as traffic requires. Hence, there is more flexibility to determine
how many back-end servers are actually needed. It is worth mentioning that the
back-end servers do not need to be large-scale machines. Medium scale
hardware can be used instead and high costs to buy large-scale machines can
be avoided.

www2
Web server

wwwN
Web server

www1
Web server

DNS server

Rewrite Rule:
/bar/quux/ -> www2.foo.dom/bar/quux

GET/bar/quux

Q:www.foo.dom?

Internet

1

3

WWW reverse proxy

GET/bar/quux2
 Chapter 13. Performance 231

It should be pointed out that trying to increase the scalability of one component
often results in moving the bottleneck of the system from one component to
another. The bottleneck still remains in the system; only the dynamics of the
system have changed. A chain of reactions could be easily triggered. Therefore,
scalability should be viewed with the whole system in mind.

Achieving maximum scalability means that the components must work in
harmony with each other in order to cope with the demand. For example, a
machine with one CPU and 512 MB of RAM running one process of an
application has an average CPU utilization of about 92%. Increasing the number
of processes to four may achieve better throughput, but the average CPU
utilization increases to 100%. Hence, the bottleneck no longer involves the
number of processes but has “moved” to the CPU of the machine. The next step
is to increase the number of CPUs in the system (see Table 13-1).

Table 13-1 Sample statistics

In this case, one back-end server with four CPUs running four processes can
handle 7.46 transactions per second; if there are two or more back-end servers,
the administrator might want to update the CPU of each one and have symmetry
as well (to have the same type of machine in the cluster and not mix up different
machines) within the cluster. A simple addition of processes involves no costs,
but results in an upgrade of hardware which involves costs. Scalability must,
therefore, be planned and investigated concretely before making any changes to
the system.

13.3 Availability
When discussing load balancing, another issue to consider is availability. This is
because the addition of extra back-end servers to serve requests involves higher
availability as well. The more back-end servers are operating, the higher the
availability of these servers. If one back-end server fails because of a hardware
failure, another back-end server continues to process the requests. Of course,

Note: The term bottleneck is a simple way to refer to the most stressed
component in the whole system.

Number of
CPUs

Number of
processes

Memory Average
throughput

Average CPU
utilization

1 1 512 MB 2.57 trans/sec 92%

1 4 512 MB 2.59 trans/sec 100%

4 4 512 MB 7.46 trans/sec 90%
232 Mobile Applications with IBM WebSphere Everyplace Access Design and Development

the throughput is not as high as with two back-end servers working
simultaneously, but this is only a temporary condition until the failed machine has
been fixed. Additional machines can be added temporarily. 99.9% availability can
be achieved by having two or more back-end servers running and serving
requests. This also means that a complete back-end servers failure is
impossible.

Network Dispatcher comes with a cluster daemon that can send and receive
heartbeat from another backup network dispatcher set up on a different machine.
If a network dispatcher failed on one machine, the network dispatcher on the
backup machine can take over.

It is also important to remember to implement a high availability solution to
servers that hold the data source like a database server does. In a common
architecture, there is only one machine running a database server, but there are
many other Web servers to load balance and to ensure a better throughput. In
this case, if the database server fails because of a hardware failure, then the
whole system is down. The data source is gone, no matter how many Web
servers there are to serve the requests. Here, it is a good idea to back up the
database server through high availability to avoid this occurrence.

The more numerous the back-end servers, the more complicated it is to monitor
these servers. Each server must be monitored for failures or machine load.
Therefore, a tool must also be introduced to address this requirement in a
clustered environment. For details on this topic, please refer to Chapter 11,
“System management” on page 197.

13.4 Caching
E-business applications are face with a heavy load from the clients, since in most
cases the client is a simple browser. There is nothing, or maybe just a few minor
functions, running on the clients. The whole application is running on the server
side, even the presentation logic itself, so that only the result documents are
transferred to the clients.

Note: Heartbeat, in a high availability environment, means that a server sends
signals stating that it is still up and running.
 Chapter 13. Performance 233

Interactions and transactions take place via documents sent to the clients, then
filled out and submitted by the user. This represents a very large number of
documents, or, to be more precise, of sets of Web pages. These pages are most
likely the same for each user and sometimes over several transactions. For
example, the Web application starting page is the same for every user; browsing
a catalog involves the same query during each session.

The repetition of pages during interactions makes it possible to speed up
applications using the caching mechanism.

The most computation required from the server is to generate all sets of Web
pages requested by the clients. Since there are pages that are the same, the
application only has to store, or cache, the generated page; then, the next time a
user requests the same document, the application can send the stored page
through instead of generating it again.

Caching is a very important function for every Web application; it can speed up
the applications significantly and dramatically decrease the load on the servers.
That means faster operation and a greater number of clients with access to the
same Web application.

There is nothing more annoying than waiting for a page to download from the
server; companies can lose customers because of the long response time.
Caching can help to reduce the response time.

From a performance standpoint, it is less expensive and more efficient to set up a
cache server then to power up the application server.

Considerations
Since caching is very important, nowadays every application takes advantage of
it. Application designers have to take caching into account at different levels, not
only in runtime, but in development time as well. Caching can occur as in the
following instances:

� The operating system usually takes charge of caching.

� The Web application server takes charge of caching.

� Sometimes, the Web application has a caching mechanism, for example
WebSphere Commerce Suite v5.1.

� There are cache servers in the architecture for real caching.

� The clients are caching the content on their side.

The problem is that it is difficult to keep up with all the caching mechanisms, and
to trace where the content came from.
234 Mobile Applications with IBM WebSphere Everyplace Access Design and Development

It becomes very difficult for developers if they do not have influence on caching
and cannot test the updated code because of the caching mechanism. Switching
off the caching is the best solution; in the case of multilevel caching, it can help to
disable just the right cache storage.

Caching transcoded content
Differentiating between the different types of transcoded content can be a
significant problem. The cache server differentiates the pages based on the
requested URL or a pattern of the requested URL; it can be set up according to
how the cache mechanism operates.

Transcoding occurs between the client and the Web application server; the client
has no influence on the behavior of the transcoder, nor does the Web application.
The following scenarios are possible:

1. Cache server before the transcoder: the server only caches the content from
the Web application server, then the transcoder has to transcode every page
each time, which is time consuming.

2. Cache server after the transcoder: the server will cache the transcoded
pages coming from the transcoder. Since the cache server only checks for the
URL, it will serve the same content to each device, so the first client
accessing the site “chooses” the pages it needs, and the following devices
can only receive the same pages as this first device.

3. Cache server together with the transcoder: this is the ideal solution, because
the server will cache the transcoded pages, and can differentiate between
devices. Each client has to go through the transcoder to take advantage of
caching.

4. Mixed cache servers: caching on different levels is dangerous. Of course, it
has the advantage of more precise and more efficient caching, but it requires
more control and is difficult to set up.

Tip: If all else fails, the best thing to do is to restart the application server and
delete the cache on the disk.

Note: There is an NOP (No Operation) transcoder which only passes through
the content without doing anything. This is ideal for clients that do not require
transcoding.
 Chapter 13. Performance 235

For example, using WebSphere Transcoding Publisher as a servlet filter
together with WebSphere Commerce Suite v5.1 can cause a problem. WCS
v5.1 performs caching based on the URL, but cannot differentiate between
clients. If a client comes with a request, the WCS server generates the
content, the transcoder transcodes, then WCS caches it. The next time
around, another kind of client will get the same content as the first because
WCS v5.1 does not know about client types.

For more information about WCS 5.1 and mobile commerce, please refer to
the redbook Mobile Commerce Solutions Guide using WebSphere Commerce
Suite V5.1, SG24-6171.

Summary
Make sure that you aware of all the caching functions in your Web application
throughout the whole architecture. Work out the best solution for caching and
take into consideration the different device types. In the case of mobile Web
applications, the most efficient caching solution does not always work.

The next release of WebSphere Transcoding Publisher and WebSphere Edge
Server will have tight integration, so more precise, more efficient and more
intelligent caching will be possible for mobile Web applications.

13.5 Turning on transcoding
Using a transcoder in your solution will have an impact on the performance of
your mobile Web application.

Performance
Transcoding works on the existing content.

1. First, the transcoder has to retrieve the content and parse for further
processing.

2. Transcoding is done in several steps; for each step, the document is gone
through and processed.

3. Finally, the transcoder transfers the document to the client.

As you see, transcoding requires computation, which takes time and CPU
utilization.

The performance of transcoding depends on several points:

� The complexity of the page

� The transcoder chosen by the server to process the requested content
236 Mobile Applications with IBM WebSphere Everyplace Access Design and Development

� The transcoded content: document, image or something else

� The logging level

� Caching

� The deployment mode

Caching
The performance of transcoding can only increase using multiple transcoding
server or caching.

For details on caching, please refer to Section 13.4, “Caching” on page 233.

Proxy
The performance of the transcoder also depends on the type of deployment.

Using the transcoder as a proxy gives access to all the servers on the network
without restrictions. The client has only to set up the transcoding server as a
proxy, then go through it to access the target server.

For a Service Provider, this is the right deployment model for a service.

If the transcoder is running within the company and has to transcode documents
from certain servers, then it is better to deploy it as a reverse proxy. In this case,
the transcoder will not have to transcode other servers’ content. This will optimize
the load on the transcoder server.

For more information about the deployment of WebSphere Transcoding
Publisher, refer to Chapter 7.3, “WebSphere Transcoding Publisher
considerations” on page 97 or consult the redbook New Capabilities in IBM
WebSphere Transcoding Publisher Version 3.5 Extending Web Applications to
the Pervasive World, SG-24-6233.

13.6 Where to find more information
For more information, see the IBM white paper WebSphere Edge Server Version
1.03 .
 Chapter 13. Performance 237

238 Mobile Applications with IBM WebSphere Everyplace Access Design and Development

Part 4 Scenarios

Part 4
© Copyright IBM Corp. 2001 239

240 Mobile Applications with IBM WebSphere Everyplace Access Design and Development

Chapter 14. Base sample overview

This chapter will introduce the base sample application for this book. The mobile
Web application scenarios are based on this sample.

Each scenario provides the same functions and the same core modules.

This sample is optimized for desktop PC browsers to try to get the most out of the
HTML specification.

14
© Copyright IBM Corp. 2001 241

14.1 The base sample
The base sample is based on the WebSphere Trade2 example application made
for benchmark testing, and used in the book. The original code can be
downloaded from the following URL:
http://www-4.ibm.com/software/webservers/appserv/wpbs_download.html

In this book, the whole sample is rewritten, a new look and feel applied, and the
front end (presentation logic) is redesigned. Only the back-end (database
application) and the functions remain.

14.2 The scenarios
In this redbook, several different scenarios are implemented based on the Trade2
sample application.

We classify the approaches into scenarios, based on the type of client and the
technology used during the implementation.

These scenarios are grouped into three main classes, and each scenario is listed
under these groups:

1. Application for interactive mobile devices

– Direct coding

– Content transcoding

– Universal transcoding

2. Application for voice

– Direct coding

– Content transcoding

– Universal transcoding

– Hybrid coding

3. Application for both interactive mobile devices and voice

– Universal transcoding

– Content transcoding

– Multimodal applications

Important: The application works together with several desktop Web
browsers, such as Netscape Navigator, MS Internet Explorer, or Opera, but
the presentation is optimized for MS Internet Explorer.
242 Mobile Applications with IBM WebSphere Everyplace Access Design and Development

The scenarios feature different cases, for example WML, cHTML, simplified
HTML, and VoiceXML.

14.3 The presentation logic
A mobile application has to serve many different kinds of clients with different
content type, and some of the clients require a different application flow.

In the traditional situation, there is a site already running and serving content for
traditional HTML browsers. In other cases, where the site is newly developed, the
aim of the development process is to have a rich and elaborate HTML content.

The requirement is to create a site which has all the capabilities to serve the
different clients not just with a different type of content, but also following different
flows and using the same back-end.

This book gives one kind of solution for fulfilling all of these requirements.

14.3.1 The three tier servlet architecture
Figure 14-1 on page 244 shows the architecture for our base sample. It may look
a bit sophisticated at first glance, but this chapter will discuss the concept behind
this model.

First of all, it is important to note that this solution is intended for all our scenarios
in this book. It must be flexible, in case we want to enhance it further or support
new devices.

This sample also stands as a recommendation for designing a mobile Web
application. It would perhaps not be used exactly as it is shown here, but
considerations have been taken into account to ensure validity for all mobile
e-business solutions.
 Chapter 14. Base sample overview 243

Figure 14-1 Three tier servlet architecture

The tree tier architecture separates the following three elements:

� User interface (UI) application flow: control

� Content generation: views and view control

� Database access: access to the model

The first tier (here TradeAppServlet) gets the request, then, according to the type
of device, instantiates the appropriate object at the second tier
(TradeServletAction here). The servlet captures the requested action from the
client and passes to the second tier. The first tier therefore works as a router; it
instantiates the device-specific object, which implements the specific application
flow (control).

The second tier implements the actions for the application. It is
device-dependent, controls the interaction flow according to the device type, and
dispatches the request to the content generator.

The content generation also belongs to the second tier, which is obviously
device-dependent. In order to represent dynamic data in the content, the data
access beans are introduced in the third tier.

The third tier is device-independent like the first tier, so each device-dependent
object can use the same Access Beans. Access Beans take over the difficult part
of programming EJBs, acting as wrappers.

TradeAppServlet

TradeServletAction

TradeAction

TradeConfig
request

response
JSP

properties

dispatch

Clients

Abstract

TradeServletAction
package direct.html

TradeServletAction
package direct.wml

...

EJB Access Beans EJB

put into
the
scope

Objects

Tier 1

Tier 2

Tier 3

back-end

Database
244 Mobile Applications with IBM WebSphere Everyplace Access Design and Development

In summary, the three tier architecture provides a solution for different devices,
separating the request routing, the application flow control and content
generation, and the data access.

With this architecture, the device-specific elements at the front end are fully
separated from the other application elements, and focused into one object only.
This object is practically a class which can of course have other supplemental
classes. Implementing access for a device requires only the development of the
second tier and uses the access points from the first and third tiers.

The only device-specific element is the second tier, where each action takes
place and the content is generated.

14.4 The business logic
We will now discuss the business logic behind the sample application. If we are
to run a real-life application, it has to have real business logic running on the
back-end.

14.4.1 Data model
Figure 14-2 shows the data model for the Trade2 application:

Figure 14-2 Data model for the Trade2 application
 Chapter 14. Base sample overview 245

The following tables exist in the database:

� RegistryBeanTbl: this table holds the user ID, the password, and the status
which tells whether the user is logged in or not.

� ProfileBeanTbl: this table includes the user profile; the full name, address,
e-mail address, and credit card information is stored in this table.

� AccountBeanTbl: all account-related information is placed here.

The three tables above cover the user-related information; they are in a 1-1
connection, which means that each registered user has an entry (record) in each
of the three tables.

� HoldingBeanTbl: this is a 1-0...n relation based on the tr_uid. This table stores
the portfolio for all the users. Each entry is identified by a tr_index number.
The tr_uid and tr_symbol fields refer to RegistryBeanTbl and QuoteBeanTbl.
Each entry also has fields, which describe that holding (price and quantity).

The holdings are stored by transaction and are not accumulated. It could
happen that one user has multiple holdings related to the same symbol, with
different prices and quantities.

� QuoteBeanTbl: the current quote information is stored in this table; in our
example, it holds static records, but in a real-life scenario the current values
from the stock ticker would be here.

� TradeKeysBeanTbl: this is nothing more than a persistent common value to
keep tracking the transactions; since each transaction has a unique
transaction index, this table stores the latest available index for the next
transaction.

14.4.2 Access Beans
In order to handle the EJBs more easily, the sample application uses Access
Beans. The Access Bean wraps the EJB and handles the necessary procedures,
such as context, JNDI lookup, and instantiating.

This method hides most of the more difficult coding portions related to EJBs, and
makes the development easier.

You can create an Access Bean using the EJB framework in VisualAge for Java;
please refer to the VisualAge for Java online help and search for Access Beans.
246 Mobile Applications with IBM WebSphere Everyplace Access Design and Development

14.5 Model diagram for the application
Figure 14-3 shows the object model diagram for the base sample.

Figure 14-3 Object model for the Trade2 Web application

Let us start from the TradeAppServlet at the top of the diagram, where everything
begins. This is the servlet class, which handles every interaction between the
client and the application. The requests and responses, which do not go through
this servlet, are not tightly related to the application.

For example, the starting page called “splash” will not use the servlet, since it has
nothing to do with the application, but only provides content. On the other hand,
the login session will always go through the servlet, since it tightly related to the
application.

The servlet instantiates the TradeServletAction supplemental class, which will
handle all the device-related actions. This is a device-specific class. For example,
this class controls the application flow for a specific device, which can be different
for a WAP phone and for a wireless PC.
 Chapter 14. Base sample overview 247

TradeServletAction has the TradeAction supplemental class, which is a
device-independent class. This class handles all the back-end related services
related to the actions. For example, during the login session, this class will talk to
the Registry EJB via the registry Access Bean to find out whether or not the login
was successful.

There is a utility class for the application, called TradeConfig. This is a static
class; every method, every attribute is static, each object has the same static
view of this class. It holds all the configuration information, retrieved at the
initialization; it also provides utility methods, available for every other class during
the runtime. For example, it has a hash table, which holds the device types with
the names of the directories in which the appropriate content is stored for each
device. It also provides a utility method, getPage, which will return the
appropriate JavaServer Page URI depending on the parameters (device type,
requested action) for the specific device.

There are Access Beans such as:

� QuoteAccessBean

� HoldingAccessBean

� ProfileAccessBean

� TradeAccessBean

They are wrapper classes for the EJBs. The EJBs are:

� Trade:a session bean

� Quote: an entity bean

� Holding: an entity bean

� Profile: an entity bean

� Account: an entity bean

� Registry: an entity bean

These are entity EJBs, and persist in the tables with similar names, for example:
Account EJB in the AccountBeanTbl table.

The Access Bean for the quote EJB is not directly instantiated from the
TradeAction. The reason for this is that each quote has a unique object, and that
object handles the cache for quotes; the purpose of this cache is for the quotes to
be delayed depending on the user.
248 Mobile Applications with IBM WebSphere Everyplace Access Design and Development

14.6 Site map for the application
Figure 14-4 represents the site map for our Trade2 Web application. Each object
represents either a Client Page, a Server Page or a Java class; the arrows
represent links between pages when nothing else is indicated. Other relations
between objects can be:

<<include>>: where the content of the pointing page is included into the parent
page.

<<redirect>>: where the page redirects the request to the next page, without
requiring any interaction.

In links, where an object points to the servlet, the caption of the arrow explains
the action invoked within the servlet.

Figure 14-4 Site map for Trade2 application
 Chapter 14. Base sample overview 249

Here are some notes to better understand the site map:

Figure 14-5 shows a legend for the diagram:

Figure 14-5 Legend for site maps

Dynamic pages represent the JavaServer Pages; those pages are rendered on
the server side. They can include other pages, either static pages or other
dynamic pages.

The static pages are served by the Web server and are written in a specific
markup language, for example HTML.

Forms are document elements; they cannot stand alone and are always included
in either a static or a dynamic page.

Classes are Java classes running under the server-side JVM.

The arrows between the objects represent the direction of the interaction. For
example, if an arrow points from one page to another, this means that the page
where the arrow starts has a link to the page where the arrow ends.

14.6.1 Publishing
The whole Web application is published under the application server, so the Web
assets are placed under the <web application path>/Web directory.

The application requires one servlet, the TradeAppServlet, which can be found
under the <web application path>/servlets directory.

In Figure 14-4 on page 249, you can follow the interaction between the pages,
and the building elements as well.

Each page is structured as in Figure 14-6.

dynamic page

static page

form

class
250 Mobile Applications with IBM WebSphere Everyplace Access Design and Development

Figure 14-6 Page construction

The structure is based on tables. The header, footer, navigation bar and side bar
are JavaServer Pages; these dynamic pages are included in every main JSP
using the JSP include tag.

The header, the footer, and the sidebar are static pages for the whole site,
although the sidebar is usually dynamic on a running site. The sidebar is useful in
providing context-sensitive navigation for the content on the page, compared to
the navigation bar, which controls the whole application flow and is less
context-sensitive.

You might have noticed that there are two different navigation bars: navbar.jsp
and unavbar.jsp; one appears before the login, the other after the login. The
reason for this is that the menu for the application has to change after the user
has logged in.

The two statuses are clearly separated on the site map as well; the bridge
between the two sets of pages is the login page, where the login.jsp is on the "not
logged in" side; then, after successful login, the TradeAppServlet dispatches the
request to the tradehome.jsp, which is on the "logged in" side.

header

footer

na
vi

ga
tio

n
ba

r

si
de

ba
r

 Chapter 14. Base sample overview 251

Here is a sample page from the application: the Welcome screen.

Figure 14-7 Welcome screen

14.7 Walkthrough
These walkthroughs are helpful in understanding and following the application
flow.

14.7.1 Login scenario
From the starting page, the user can access the login page by using the login
link.

On the login page, there are two common fields for logging in a user: the user
name, and the password.

1. In our case, the user name and the password fields are already filled out; this
helps to work with the application. By submitting the login form, the request
goes to the TradeAppServlet with the following parameters:

uid=johnd
passwd=johnd
action=login

2. The servlet checks the User Agent field in the HTTP header, looking for the
supported device type. Considering the device type, the servlet instantiates
252 Mobile Applications with IBM WebSphere Everyplace Access Design and Development

the appropriate class which implements the available actions for that device.
The instantiated class is an implementation of the TradeServletAction
abstract class. Each implementation has the same name as the abstract
class, but sits under a different package name; for example, the WML action
handler class name is TradeServletAction under the trade_client.direct.wml
package; the class for the HTML application has the same name under the
trade_client.direct.html package.

In our case, the base application is tested with Internet Explorer v5.5, so the
client is an HTML browser; the HTML action handler will be implemented by
using trade_client.direct.html.TradeServletAction.

3. The TradeServletAction's doLogin() method is called from the servlet. The
method will immediately instantiate the TradeAction class, which is
device-independent.

4. The doLogin() method within the TradeAction class is called. The method
instantiates the TradeAccessBean, which is an Access Bean that wraps the
EJBs related to the user (registry, profile, account, holdings).

5. TradeAccessBean will run the login through the TradeEJB and return with the
result.

6. TradeActionServlet will handle the login based on the returned value from
TradeAction. If the login was successful, it will call the doHome method to
jump to the starting page after logging in.

7. The doHome method then dispatches the request to the appropriate page by
using the getPage method from the TradeConfig utility class. The getPage
method has two parameters, one for the device type and another for the page
to dispatch to.

The information about mapping for the devices and which page to retrieve is
stored in a .properties file. The TradeConfig class is initialized from the
TradeAppServlet init() method before step 2, then the configuration is read
from the file.

8. The JavaServer Page generates the result page, then the document is sent to
the client.

After the user has logged in, every action goes through the TradeAppServlet until
the user logs out.

14.7.2 Portfolio
The Account function is only available after the user has logged in. The
navigation bar has changed after the login, and there is an option through which
the user can check the stock portfolio. It is a list of stocks listed in the order they
were acquired.
 Chapter 14. Base sample overview 253

1. The user clicks the Portfolio link.

2. First, TradeAppServlet is called, using:

action=portfolio

3. The servlet’s performTask method will instantiate the appropriate class for the
TradeServletAction based on the User-Agent, just as in the login session
previously. The servlet realizes that the action is requesting the portfolio, so it
runs the doPortfolio method of the instantiated TradeServletAction.

4. The TradeServletAction’s doPortfolio method builds up a vector with the
portfolio elements using the TradeAction’s doPortfolio method, which returns
an array of HoldingObjects.

5. The objects come from the TradeAccessBean, which has a getPortfolio
method to retrieve the records from the database using the Holdings EJB
within the Trade EJB.

6. The TradeActionServlet populates a vector with the returned values from
TradeAction, then puts the vector object into the request scope. The
TradeAppServlet dispatches the request to the appropriate JavaServer Page
returned by the getPage method from TradeConfig.

7. The portfolio JSP will acquire the vector object as a JavaBean from the
request scope, and print out the elements through a “for” cycle.

14.8 Summary
The base sample, besides being a real life application, was built to show how to
use a Web application as a starting point for a future mobile application.
254 Mobile Applications with IBM WebSphere Everyplace Access Design and Development

Chapter 15. Application for interactive
mobile devices

This chapter discusses the application development for mobile devices. These
devices can be PDAs, WAP phones or i-mode phones, wireless PCs, or any
other device with a screen. This chapter will not include voice, which will be
discussed in the next chapter.

There are three main scenarios for these devices:

� Direct approach, where the content is written directly in the specific language
of the device, for example, WML for WAP phones.

� Content transcoding, where WebSphere Transcoding Publisher is applied to
transcode the content from HTML to the required content, for example
HTML-to-cHTML for i-mode.

� Universal transcoding, where WebSphere Transcoding Publisher applies the
StyleSheets (XSL) to the XML content to produce the specific content. For
example, we could use the XML data, applying specific XSLs for a wireless
PC client to get a simplified HTML content.

In each scenario, we implement the Trade2 application for different devices: WML
in the direct approach, cHTML for content transcoding, and simplified HTML for
universal transcoding.

15
© Copyright IBM Corp. 2001 255

15.1 Direct approach
This section discusses the aspects of the direct development of a visual mobile
Web application using a WAP example.

15.1.1 Design issues
The following section discusses some micro design issues encountered during
the development of our directly coded content.

In this exercise, we took the existing Trade2 application described in
Section 14.1, “The base sample” on page 242.

We focused on the screens that trigger a transaction and rewrote them in WML.
The flow is basically as follows: the user first gets a welcome page (index.jsp).
The user can either register (register.jsp) or log in (login.jsp), after which he/she
receives the home page (tradehome.jsp). From there the options are:

� Home (back to tradehome.jsp)

� Account (account.jsp)

� Portfolio (portfolio.jsp and further quote.jsp)

� Logout (back to index.jsp)

MIME types
For the development environment and for the runtime environment, it is
necessary to support the text/vnd.wap.wml MIME type and associated MIME
types by the server. To find out how to set up the MIME types for the WebSphere
Test Environment, refer to Section 18.6.2, “Adding MIME Types to WTE” on
page 366, and for IBM HTTP Server and WebSphere Application Server refer to
“Setting up MIME types” on page 387.

Large Forms
As we expected, on some HTML screens we were confronted with forms that
were inadequate to display content on a WAP screen.

Registration
On the registration page, there were too many fields to fit easily into one WAP
screen, as illustrated in Figure 15-1 on page 257:
256 Mobile Applications with IBM WebSphere Everyplace Access Design and Development

Figure 15-1 Original HTML registration window

The first thing to consider is that there are alternative registration methods.

If the user already has, for example, an X.509 client certificate signed by a
trusted third party, then the site will already have a certified proof of the user’s
identity, and one could consider eliminating a number of fields that are not
directly contributing to the identification of the user and should already be
available in public directories.

As we discussed in “Non-HTTP wireless clients” on page 209, many of the
security technologies still have to be implemented.

We assume that the user registers by filling in all the above fields. We must
consider two options:

1. List all the fields on one screen (one card in WML terms).

2. Construct a kind of wizard, with two sets of screens (cards in WML terms)
with four fields in each screen, and implement navigation between the cards.

As illustrated in Figure 15-2, we chose the last option for our purposes. This was
done in order to avoid too much scrolling through one screen, and to provide the
user with a better orientation.

We can split up the registration form into two different cards and send it as one
unit (deck) to the client, since they are strongly related.
 Chapter 15. Application for interactive mobile devices 257

Figure 15-2 illustrates this flow with a UML activity diagram:

Figure 15-2 Login and registration flow for WML

The resulting screen flow can also be represented using the screenshots:

Figure 15-3 Registration wizard under WAP: screen shots
258 Mobile Applications with IBM WebSphere Everyplace Access Design and Development

Update Account
In the HTML version, when the user clicks the Account link, the page as
displayed in Figure 15-4 appears.

Figure 15-4 HTML screen with account details and option to update

This form contains a number of pre-filled fields that the user can change in order
to update the information. When the user then clicks the button Update my
account, the application returns the same screen, with the pre-filled fields.

For HTML, the result might be acceptable, in that the data has effectively been
updated. For some device screens, for example the phone.com devices, input
fields are shown one by one on separate screens and therefore we felt it more
appropriate to split the screen into two parts:

1. Screen with the possibility to view the account data (data is only displayed,
there are no fields). In this case, phone.com users can see all the account
information at a glance. A Modify button brings up the screen described below
(2).

2. Screen that displays fields with a pre-filled date (just as the original HTML
form). An Update button effectively updates the account data, then brings
back the screen described in (1).
 Chapter 15. Application for interactive mobile devices 259

The previous interaction is depicted in the UML activity diagram in Figure 15-5:

Figure 15-5 Account and update account flows UML activity diagram for WAP

A schematic representation of the screens is shown in Figure 15-6:

Figure 15-6 Screen flow when updating account information

Note that for usability, a Back button (or similar functionality) should always be
provided. It can either bring the user to a previous card on the deck or to another
screen.
260 Mobile Applications with IBM WebSphere Everyplace Access Design and Development

Portfolio
To convert the portfolio screen to a WAP screen is another challenge (see
Figure 15-7).

Figure 15-7 HTML version for the portfolio application screen

Obviously, we had to apply fragmentation to this screen, because of the limitation
in screen size of WAP devices. This was done in two steps:

1. Split the table into one screen per row, with a Next button to navigate from
one screen to another.

2. For each screen, provide a separate flow to either buy or sell, or to quote the
portfolio item.
 Chapter 15. Application for interactive mobile devices 261

The steps are illustrated in the UML activity diagram in Figure 15-8:

Figure 15-8 The portfolio screen flow UML activity diagram for WAP

The screen flow is further illustrated in Figure 15-9:

Figure 15-9 Portfolio flow for WAP
262 Mobile Applications with IBM WebSphere Everyplace Access Design and Development

The Buy and Sell buttons bring back the first row of the portfolio table, which in
functionality corresponds to the HTML version.

Obviously, this can be improved; one should, for example, introduce an
intermediary screen with a confirmation message, or insert the current price - for
information only - on the Buy and Sell screens.

Tables
As mentioned above in “Portfolio” on page 261, the only table we encountered
was the Portfolio table. We decided to remove some column values and present
one row per WML card. Also, because the browsers on the mobile phone have
only limited memory, only three cards are sent per deck. When the user arrives to
the third card and clicks Next, another call is made to the servlet and a WML
page (generated by a JSP) is returned with the next three cards.

Images
Although in this financial application the images did not present any added value,
we introduced two: one graphic on the login page and one photograph on
tradehome.jsp. We noticed a significant impact on response time after their
introduction.

15.1.2 Test clients for development
During development, we used two test clients: the UP.browser and the browser
that comes with the Nokia Development Toolkit. See also Section 10.3, “Tools for
testing the application” on page 182 for more details.

Our experience was that the two clients differ on the following levels:

� The Nokia WAP toolkit shows tables, the UP.browser break them into lists.

� The Nokia WAP toolkit shows GIF image files, the UP.browser does not
support this.

� The Nokia WAP toolkit shows different fields on a card at the same time,
together with any additional text; the UP.browser shows the fields one by one,
each on a different screen.

If the limitations of the UP.browser reflect limitations of existing devices, this is
actually a reason to include tests using the UP.browser (together with the Nokia
emulator).

We enabled cookie support on the emulators in order to avoid having to encode
the URLs. This, of course, can be changed if cookies are not supported on the
WAP gateway. See also Section 10.4, “Best practices” on page 192 for more
information.
 Chapter 15. Application for interactive mobile devices 263

15.1.3 New and modified code
Our work consisted almost exclusively in developing new JSPs in WML. The only
exceptions were the following:

� Since we did not use any PVC adapter, the TradeAppServlet.performTask
method had to recognize the client using the User-Agent from the HTTP
header.

� We had to set the content type of the header to text/vnd.wap.wml

This was done in the requestDispatch() method of the TradeServletAction
class (subclass from the abstract TradeServletAction class), in the package
direct.wml:

private void requestDispatch(
 ServletContext ctx,
 HttpServletRequest req,
 HttpServletResponse resp,
 String page)
 throws ServletException, IOException {

resp.setContentType("text/vnd.wap.wml");
ctx.getRequestDispatcher(page).include(req, resp);

}

� As mentioned above, in the portfolio application we sent the entries three by
three. Therefore, the start and end indexes of the rows were computed, given
the position of the current row in the corresponding HTML table. In order not
to overload the JSPs with Java code, we computed these indexes in the
doPortfolio() method of the TradeServletAction class.

Please note that we did not have to modify the underlying back-end components
(Access Beans, EJBs, etc.). As we had assumed, we were able to use the whole
existing back-end infrastructure for the new content.

15.1.4 Developing the content JSPs
We started the development of the new JavaServer Pages by taking copies of the
HTML pages in WebSphere Studio.

Note: The Everyplace Wireless Gateway, part of other WebSphere
Everyplace Suite offerings, supports cookies on behalf of the connected WAP
clients.
264 Mobile Applications with IBM WebSphere Everyplace Access Design and Development

In WebSphere Studio, we then removed any redundant information or data that
would not fit on the small screen of a mobile device:

� Header and footer of the page.

� Any sidebar that only contains links to external sites.

� All images.

In this case, no image was really relevant for the application. In other
circumstances, we might have kept images if they had presented some added
value.

We also shortened the titles of some screens in order to save screen space.

Before actually starting to code WML, first make sure WebSphere Studio
associates the extension .jsp with WML instead of the default HTML. To do this,
perform the following steps:

1. In WebSphere Studio, select Tools -> Registration, then for extension type
JSP. The window shown in Figure 15-10 appears.

Figure 15-10 Tools registration window in WebSphere Studio
 Chapter 15. Application for interactive mobile devices 265

2. Select the JSP extension and click Edit. The following screen appears:

Figure 15-11 MIME-type editing window

3. Associate the JSP extension with text/vnd.wap.wml.

This does not change this setting for the existing JSPs, however. In order to
associate existing JSPs with WML, edit the properties of each JSP and associate
it with text/vnd.wap.wml, as shown in Figure 15-12.
266 Mobile Applications with IBM WebSphere Everyplace Access Design and Development

Figure 15-12 Modification of MIME-type for existing JSPs

Note that this only has an impact on the parser and validator mechanism of
WebSphere Studio. During editing, the page designer will only support the
source editor for WML.

We also set the output characters for WML (in the Page Designer options) to
lower case, as shown in Figure 15-13.

Important: We noted that, when working with tables in WML, the
error-checking mechanism gives false error alerts. We recommend that you
ignore them in this case.
 Chapter 15. Application for interactive mobile devices 267

Figure 15-13 Setting the output characters to lower case

Now we are ready to code the pages in WML.

15.2 Content transcoding (HTML source)
Content transcoding is not an industry standard term, and is not used widely. In
this book, we chose this term to define those solutions where the transcoding
capabilities of WTP is utilized using an HTML source. The important factor is that
HTML is the source document in this case.

The content of established Web sites today is written in HTML. Rewriting all the
content to a markup-independent language like XML involves huge modifications
to a Web site. To overcome this problem, Section 9.3, “Mobile architecture” on
page 132 introduces a new technique called Web Intermediaries. This technique
helps Web sites to have their content transcoded easily. To demonstrate this, a
simple document originally written in HTML will be output in WML using the
annotation and transcoding features of WebSphere Transcoding Publisher.
268 Mobile Applications with IBM WebSphere Everyplace Access Design and Development

IBM WebSphere Transcoding Publisher 3.5 (WTP) implements the concept of
Web Intermediaries. The following examples introduce the features and functions
of WTP. The following issues will be addressed:

1. Preferences

2. Annotators

– Example using external annotators

– Example using internal annotators

3. Text clipping

4. Guidelines for content transcoding

5. HTML to cHTML

A prerequisite for successful content transcoding is that the data source written
in HTML be syntactically correct. This issue not only addresses the structure of a
document, but also the way in which the data is presented.

15.2.1 Preferences
WTP provides several preferences for representing specific networks and
devices. These are called profiles. Each individual profile has some
characteristics that give indications as to how a document that is delivered to that
device or network should be treated.

Network profiles
The network profile is used to determine a specific network type and apply the
registered characteristics to the document that is delivered to this network. The
following additional preferences can be activated within a network profile:

1. File extensions that are not supported

This preference allows you to prevent large files of a specific type (for
example *.mpeg or *.mp3) from being sent through a network.

2. Convert images into image links

Sending image links instead of images will give the user the option to view the
images of his/her choice, thereby reducing the bandwidth to send over the
network.

3. Remove images from HTML document

With this feature, images are not sent through the network, because due to
display limitations of specific device types, images may not appear as
originally intended.
 Chapter 15. Application for interactive mobile devices 269

4. Compress size of HTML text files

Compressing the size of an HTML output file results in the removal of
non-required attributes that are intended to enhance the output format and
the replacing of complex elements by simpler ones.

5. Image quality resolution

a. Compromise between quality and size

b. Favor high quality over reduced size

c. Favor small size over quality

6. Enable image transcoding

Images can be transcoded for better display on the client side. The better the
image on the client side, the bigger the size; hence the bandwidth is
increased.

With these settings, the speed, bandwidth and load pertaining to a specific
network can be decisively influenced. For example, on a wireless network,
images should be converted to links for a faster page upload. See the IBM
WebSphere Transcoding Publisher Version 3.5 Administrator's Guide for more
information on working with preferences.

Device profiles
The device profile is used to determine a specific device type and apply the
registered characteristics to the document that is delivered to this device. A
device type is mostly determined by its User Agent in the HTTP header, hence
each device type has a defined User Agent. If the User Agent is not sufficient to
define a device, then additional criteria can be added on, such as the Accept
value. The following is a list of available preferences:

1. Fragmentation preferences

A WML or HDML document is often too large and cannot be viewed on the
client’s device. Such a document should be fragmented into smaller pieces
with links to navigate through each piece. This preference allows you to set a
fixed number of bytes that should not be exceeded.

2. Output type preferences

Here, a desired content type and document type definition can be included.
Some types of devices can support several content types, and these can be
listed here.

3. Java/XML preferences

This preference allows the profile to support Java applets, JavaScript,
Cascading StyleSheets and objects.
270 Mobile Applications with IBM WebSphere Everyplace Access Design and Development

4. Image preferences

This preference determines whether images should be supported, scaled,
removed, or converted to links. Also, specific types of images can be
supported, such as *.mpeg or *.gif.

5. HTML/browser preferences

Some HTML/browser-specific properties can be specified here, such as
compressing the document, converting tables to lists and frame support.

6. Device-specific preferences

This preference allows the support of device-specific features.

Using these settings, the result document can be fine-tuned in order to obtain the
best viewing result on the client’s device. This is also a good means of getting a
better overview and makes it easier to administrate specific profiles. See the IBM
WebSphere Transcoding Publisher Version 3.5 Administrator's Guide for more
information on working with preferences.

15.2.2 Annotators
This section provides an example of annotators and their effects on documents.
An HTML document will be transcoded to WML and the result compared to the
result of using the direct approach discussed in Section 15.1, “Direct approach”
on page 256. A simple WAP client (Nokia WAP Toolkit 2.1) will be used to access
the requested document.

Note: The concept of annotators should be well understood before going
further into this chapter. For more information, read the IBM Redbook New
Capabilities in IBM WebSphere Transcoding Publisher Version 3.5 Extending
Web Applications to the Pervasive World, SG24-6233.
 Chapter 15. Application for interactive mobile devices 271

Data flow
The following diagram depicts the annotator flow under WTP.

Figure 15-14 Annotator flow

The process of applying an annotator is as follows:

1. WTP receives a HTML document.

2. A DOM object is generated from the HTML document.

3. The annotation engine is triggered and the annotator file is used to merge into
the HTML DOM object.

a. In case of external annotation, the registered annotation file is used.

b. In case of internal annotation, internal annotation instructions are used.

c. Internal and external are merged into the DOM object and the annotation
engine sets the modifications as specified.

4. The DOM object is transcoded into WML.

5. The transcoded WML document is sent to the WAP client.

Before the HTML document is transcoded to WML, it has been clipped by the
annotation engine using the registered annotator. This flow is not dependent on
whether internal or external annotators are used.

Note: The HTML DOM generator must be enabled if using a desktop browser
to view the applied annotation. Go to the Transcoding Publisher’s
Administrator Console and set the transcoder to Enabled.

1

HTM
document is
received

2

DOM is
generated
from HTML

3

Annotation
engine
modifies
HTML DOM

4

DOM is
transcoded
into other
format

5

Converted
data sent to
requesting
device

A1

<annot...>
<description...>

.

.
</annot>

Annotator

profiles
272 Mobile Applications with IBM WebSphere Everyplace Access Design and Development

Example using external annotators
This section focuses on using the external annotators with WTP, and provides an
example for the Trade2 sample.

Annotation file
The annotation file is a very simple one. The syntax used in specifying where
an annotation should be inserted uses the XML Path Language (XPath).
Using the XPath expression, the node where annotation should be applied
can be easily specified. The take-effect attribute of <description> indicates
whether the annotation should be applied before or after the node. The inner
tag then tell the annotation whether it should remove or keep the content. The
following are examples pertaining to the used annotator.

Example 15-1 Annotation example 1

<description take-effect="before" target="/HTML[1]/BODY[1]/*[1]">
<remove />

</description>

This annotation tag will be put before the first occurrence of a tag after the
<body> tag. The action of this description tag is to remove everything that
follows the <body> tag. Hence everything will be removed until the annotator
encounters another <description> tag.

Example 15-2 Annotation example 2

<description take-effect="before" target="/descendant::TABLE[5]">
<keep />

</description>

This annotation tag instructs to take effect before the fifth table of the
document, and the action is to keep the content from the 5th table before the
defining tag. Hence everything will be kept from the fifth table on until the
annotator encounter another <description> tag.

Example 15-3 Annotation example 3

<description take-effect="after" target="/descendant::TABLE[6]">
<remove />

</description>

This annotation tag instructs to take effect after the sixth table of the
document, and the action is to remove the content. Hence everything will be
removed after the 6th table tag.

These simple instructions are enough to extract the most important information
from a fully written HTML document.
 Chapter 15. Application for interactive mobile devices 273

Using annotators with the Trade2 application
The following is the HTML output of the requested document.

Figure 15-15 HTML output

Without even showing the WML output, we can see that this output will result in
many cluttered screens on a WAP client. This is not because the HTML source is
not transcoded well into WML by WTP, but because transcoding does not involve
any modification pertaining to presentation. WTP simply transcodes the content
and forwards it to the client. Therefore, the content must be annotated or clipped
before transcoding is applied.

The following is the annotator file that will be used in the example. Save this file
as TradeRegister.ann for registering in the WTP administration console; you can
also find the file within the additional materials provided with the book.

<?xml version="1.0" ?>
<annot version="1.0">

<description take-effect="before" target="/HTML[1]/BODY[1]/*[1]">
<remove />

</description>
<description take-effect="before" target="/descendant::TABLE[5]">

<keep />
</description>
274 Mobile Applications with IBM WebSphere Everyplace Access Design and Development

<description take-effect="after" target="/descendant::TABLE[6]">
<remove />

</description>
</annot>

See the IBM WebSphere Transcoding Publisher Version 3.5 Administrator's
Guide on how to register an annotator. While registering, specify the URL to
annotate as: url~*/trade/register*

Figure 15-16 URL to annotate

Another advanced value must be added in order for the registered annotator to
function. Use the Administration Console of WTP, click the registered annotator,
click Advance and input the following key and value into the Criteria matching
preferences fields:

Key=deviceType, Value=WML Device.

Then save and refresh the server.

This key/value restricts this annotation to WAP devices only.

Tip: Due to different display screen sizes on different mobile phones, a more
accurate design for each display can be implemented by adding other
key/value pairs and annotators.
 Chapter 15. Application for interactive mobile devices 275

Figure 15-17 Criteria matching preferences

The annotator is now ready to be used. In this example, the Nokia WAP Toolkit
2.1 is used as a WAP emulator. The following are the screenshots of the resulting
annotated and transcoded document.

Important:

Some HTML designers like to code variable in two different tokens, for
example

<input type=”text” name=”full name” value=””></input>.

If that is the case, WTP will simply keep the value of the name attribute and
not change it, but according to the WML 1.1 specification, the value of a name
attribute must be NMTOKEN. This results in an error at the WAP client when
such an document is received. To overcome this, the HTML and servlet source
needs to be changed.

Also, in HTML some tags can be set to readonly, but there is no such attribute
in WML 1.1 and WTP will not delete this attribute from that tag during
transcoding. This results again in a message from the WAP client stating that
an unknown attribute has been encountered.
276 Mobile Applications with IBM WebSphere Everyplace Access Design and Development

Figure 15-18 Externally annotated and transcoded document

Comparing the result to the result using the direct approach
See Figure 15-3 on page 258 for the result of direct approach. Actually, there
is not much difference between the result using direct approach and the
content transcoded result. From the developer’s point of view, there should
not be any differences using content transcoding. The most important
information is extracted by the annotator, so superfluous text or pictures are
removed from the document. The remaining document is also transcoded by
WTP correctly. The user can enter the information the same way as on a
normal Web browser. The resulting document is annotated to one WML deck,
because the user can still scroll the document to input the information. No
other communication is needed to request another fragment of the document.
This very much simplifies the data flow and logic.

Example using internal annotators
This section focuses on using the internal annotators with WTP, and provides an
example for the Trade2 sample.

Internal annotators
The syntax of internal annotators is almost the same as for external
annotators. Internal annotation tags only have to be included straight into the
HTML file. XPath is actually not needed if using internal annotators, but can
be included, allowing the user an easy migration from internal annotators to
external annotators. The following example shows a simple internal annotator.

<html>
<head>

Note: Note that the UP.Browser behaves differently from the Nokia WAP
browser. It has a different user experience, which is different in representing
the content and navigating the pages. Refer to the direct approach regarding
this in Section 15.1.2, “Test clients for development” on page 263.
 Chapter 15. Application for interactive mobile devices 277

<meta name="GENERATOR" content="IBM WebSphere Page Designer V3.5.3 for
Windows">
<meta http-equiv="Content-Style-Type" content="text/css">
<meta name="Annotation_v1.0" content="remove">
<title>Websphere Everyplace Access Redbook</title>

At the beginning of every document using internal annotators, there must be a
<meta> tag with attributes of name and content set. The value of the content
attribute sets the default clipping state of this document. Subsequent <annot>
tags are enclosed within the <body></body> tags.

Example 15-4 Internal annotators

...
<body bgcolor="#ffffff" onload="preloadImages();">
<!--

<?xml version="1.0" encoding="ISO-8859-1"?>
<annot version="1.0">

<keep />
<table majoraxis="row">

<column index="1" clipping="keep" />
<column index="2" clipping="remove" />
<column index="*" clipping="keep" />
<row index="*" clipping="keep" />

</table>
</annot>

-->
Portfolio for johnd
<p />
<table border="0" width="100%" class="lblu">

<tbody>
<tr>

<td align="center" width="10%">symbol</td>
<td align="center" width="10%">index</td>
<td align="center" width="10%">price</td>
<td align="center" width="10%">shares</td>
<td align="center" width="10%">value</td>
<td align="center" width="20%">buy</td>
<td align="center" width="15%">sell</td>
<td align="center" width="15%">quote</td>

</tr>
<tr>
...
278 Mobile Applications with IBM WebSphere Everyplace Access Design and Development

The main difference of syntax between internal and external annotators is that
each annotation instruction of internal annotation must start with the
declaration of <xml> and the instruction of whether to keep or remove must be
inside an <annot> tag. Inside the <annot> tag, any other annotation tags can
be used. The instructions must be placed before the section where annotation
occurs. Also, instructions must be placed inside a comment. In Example 15-5,
column 2 of the table will be removed, column 1 and any rows will be kept.

Example 15-5 Internal annotators

...
<form action="/trade/servlet/TradeAppServlet" method="post">

<td align="center" class="vlblu" valign="center">
<input type="submit" value="quote">
<input type="hidden" name="action" value="quote">
<input type="hidden" name="symbol" value="SUNW">

</form>
<tr>

<td colspan="8"> </td>
</tr>
</tbody>
</table>
<!--

<?xml version="1.0" encoding="ISO-8859-1"?>
<annot version="1.0">

<remove />
</annot>

-->
...

The instruction used here is fairly simple. Everything after that instruction
inside the document will be removed.
 Chapter 15. Application for interactive mobile devices 279

Using annotators with the Trade2 sample
This is the original HTML document that will be annotated.

Figure 15-19 Account document

Again, this document contains too much in the way of text and pictures, which are
not suitable for display on a WAP device. Hence, this document needs some
annotation before it can be transcoded to a final document. The annotation
technique introduced here uses internal annotation, which uses almost the same
syntax as external annotation. As the name implies, all annotation tags are
embedded inside a document which should be annotated, so there will be no
registration of an internal annotation as for external annotations.

The document contains many tables, therefore in the device profile of WAP the
feature Convert tables to lists within lists must be enabled (see Figure 15-20
on page 281).

Important: If WTP encounters nested tables in an HTML document, it could
be that the document is not transcoded correctly into WML. Use nested tables
sparsely!
280 Mobile Applications with IBM WebSphere Everyplace Access Design and Development

Figure 15-20 Convert tables to lists

This way, the elements will be sequentially shown on the screen. With annotator
tags embedded inside the HTML document, the document is ready to annotate.

The following is the result of using internal annotators inside an HTML document.

Figure 15-21 Internally annotated and transcoded document
 Chapter 15. Application for interactive mobile devices 281

The resulting document using internal annotators seems to achieve the
desired result. Tables are converted to lists and the user can easily scroll up
and down to reach the desired share. For each share, the user can buy, sell or
quote as on a normal desktop browser. Because of the large amount of data,
the document is broken down into fragments, so the user must choose to
continue in order to request another fragment for the document.

The internal annotation feature in WTP 3.5 has just been introduced and
more flexibility will be added soon. For now, once internal annotations are
embedded into a document, the document will be annotated by WTP every
time it is requested. There is no possibility of applying conditions to internal
annotators.

It is not possible to create a condition to specify when internal annotations
should be applied. Currently, with WTP 3.5, internal annotators support an all
or nothing approach, that is, there is conditional annotation (not supported).
With external annotation, it is possible to create an individual condition simply
by adding a key/value pair to the registered annotator. This means that no
matter which client is requesting an embedded document with internal
annotations, this document will definitely be annotated. The reason for this is
that the annotation engine (internal or external) is running before the
transcoding engine (see the data flow in Section 15.2.2, “Annotators” on
page 271). In the case of internal annotation, as soon as the annotation
engine encounters an annotation tag in the DOM object, it will modify the
object according to the annotation tags of the document.

Also, if annotation is not required, it must be deleted explicitly from the
document. If using external annotation, the annotator can be easily disabled.

Internal or external annotators
Table 15-1 gives some pointers on how to decide between internal or external
annotators for your application:

Table 15-1 Internal or external annotators

Internal annotator External annotator

Must have “write” access to the source. Reading the source is enough to develop
annotators externally.

Makes the original code difficult to
understand.

Does not make any modification on the
original source code.

Very easy to develop, since you only have
to put tags into the code, and you know
exactly where to find the appropriate part
of content.

Difficult to map the external annotators to
the original source. XPath references are
used for matching.
282 Mobile Applications with IBM WebSphere Everyplace Access Design and Development

One reason not to choose an internal annotator is that nowadays most of the
documents are created dynamically. This makes it difficult to decide when to
include internal annotation. WTP is not in control of the annotation of a
document. WTP has the function and ability to transcode, annotate and clip
documents, but by using internal annotation, a part of this responsibility is taken
away from WTP. Doing so makes the system more difficult to maintain.

Using external annotators is recommended, because WTP is still in control of the
annotating and transcoding of documents. Also, annotators are easily disabled
using the Administration Console. This makes it much easier for the developer to
write annotation in a separate file than in the already fully crowded original
source. If a document is generated using different frames and source files, then it
is more difficult to write internal annotators, because a source file is used not just
for one document, but for many other documents as well.

Future directions
Writing annotators requires a good understanding of each markup language and
of XPath. Unfortunately, in WTP 3.5 there is no such editor for writing external
annotators; this makes it easier to have the result presented directly in the editor.
Such an editor will relieve much of the difficulty encountered by the developer. In
the next release of WTP, such an editor will be shipped.

For internal annotator editing, WebSphere Studio v3.5 has tools which help the
developer to insert annotation tags into the document not only under the source
code editor but even in the visual editor mode.

Another alternative to using annotators is text clipping, which will be described in
the next section.

WebSphere Studio v3.5 Page Designer
supports the internal annotators.

This time there is no such external
annotator editor. WTP 4.0 will come with
an editor.

Easy to apply to dynamic content,
because the annotators are also created
dynamically.

Very difficult to apply dynamic content,
because the source is always changing
even if the structure is not.

Internal annotator External annotator
 Chapter 15. Application for interactive mobile devices 283

15.2.3 Text clipping
WTP offers the possibility to clip a document using a custom transcoder called
text clipper. This is a programmatic solution which must be written in Java.
Remember that the concept of Web Intermediaries infers that it is possible to
monitor, edit and generate a data stream. A text clipper is an editor that simply
edits a data stream and puts it back into the stream after editing. A text clipper
can edit a stream either as a DOM object or a text document.

A text clipper is only a customized transcoder inside WTP which has Response
Editors implemented. Like any other transcoder, it can be programmed using
either servlet API or WBI API.

Figure 15-22 depicts a sample data flow inside WTP using a text clipper. Due to
the possibility, in the properties file, of a MEG specifying trigger conditions, it is
possible that a MEG be triggered in the same flow multiple times.

Figure 15-22 Sample data flow of a text clipper

Tip: See http://www.w3.org/DOM for more information about DOM

Tip: See http://www.alphaworks.ibm.com for more information about WBI.

1

HTM
document is
received

2

DOM is
generated
from HTML

3

DOM is
transcoded
into other
format

4

Converted
data sent to
requesting
device

profiles

T1

Clipper can
modify
HTML DOM

T2

Clipper can
modify
transcoded
DOM
284 Mobile Applications with IBM WebSphere Everyplace Access Design and Development

1. An HTML document is received by WTP.

2. WTP generates a DOM object from the content of that HTML document.

T1: A registered clipper can be triggered and edit the DOM object.

3. Edited DOM object is then transcoded into another format.

T2: The same clipper can re-trigger and modify the transcoded DOM object.

4. The clipped and transcoded data is sent to the client.

The advantage of a clipper is that it is more flexible than annotators. A text clipper
can be triggered at any time during the whole flow, as opposed to annotators,
which can only be triggered before transcoding takes place.

The text clipper can access the document either as a text stream or as a DOM
object. This depends on the document itself. In general, the DOM object is
preferable. WTP already provides the functionality to access nodes inside a DOM
object, another reason to use the DOM object.

The following table may help decide whether to use a DOM-based clipper or a
text-based clipper:

Table 15-2 Text-based or DOM-based clipper

Writing a text clipper
The following section is designed to give the developer a starting point in writing
a text clipper. The development of a whole text clipper is beyond the scope of this
book.

As stated above, a text clipper is a customized transcoder that can be
programmed using Sun Java Servlet API v2.1 or WBI API v4.5. The example
provided uses WBI API v4.5.

Text-based DOM-based

Easy to understand and follow the content,
since it is linear.

Until you understand the structure of the
document, it is difficult to follow the
content and find the elements in the
hierarchy.

Very difficult to find the right element. Very easy to find and access the right
element.

Difficult to identify all the tags related to
the element.

Easy to handle the element with all the
tags.

Tip: See http://www.alphaworks.ibm.com for API documentation of WBI.
 Chapter 15. Application for interactive mobile devices 285

In terms of Web Intermediaries, any transcoder is a plug-in into the framework.
Before using any plug-in, it has to be registered in WTP using the Administration
Console. A plug-in can be either enabled for use or disabled. Each plug-in can
contain a set of MEGs (Monitor/Editor/Generator) which builds the whole
transcoder. A MEG has the ability to monitor, edit or generate data. In the case of
clipping, at least one MEG must be created as an editor. If a certain MEG is
triggered because the registered condition matches, the handleRequest()
method will be invoked by the framework. The input parameter of this method is
an object containing all the information and data that this method will need to clip
the text. After clipping the text, the object can either be forwarded to another
MEG or sent to the client.

Creating a MEG first
Since a MEG is the smallest working unit, it should be thoroughly designed. In
terms of WBI, a MEG must be inherited either from a monitor class, editor class
or generator class. The MEG class that is going to be coded is inherited from the
editor class. The WTP API comes with a Text clipper class that is of type editor,
and that is the super class for other implementations.

Since the Textclipper class is an abstract class with an abstract method String
getPropertiesName(), this must be implemented. Also, the editor class is an
abstract class as well with an abstract method handleRequest(RequestEvent e);
this must be overloaded as well. Hence, the MEG class looks like this:

Example 15-6 A MEG class

package com.itso.wea;

public class WEATradeEditor extends
com.ibm.transform.textengine.mutator.TextClipper {

private static final String INIT_PROPERTIES = "plugin/WEATradeClipper";

public WEATradeEditor() { }

public String getPropertiesName() {
return(INIT_PROPERTIES);

}

public void handleRequest(com.ibm.wbi.RequestEvent aRequestEvent) throws
com.ibm.wbi.RequestRejectedException, java.io.IOException {

}
}

Tip: Look in the WTP API to see whether a desired MEG is already written
before writing your own MEG.
286 Mobile Applications with IBM WebSphere Everyplace Access Design and Development

The variable INIT_PROPERTIES indicates the class in which to find the
properties file for this particular clipper. In this case, the properties file calls
WEATradeClipper.properties and is stored in the directory <WTP install
dir>/plugin. The handleRequest() method has an input parameter of type
com.ibm.wbi.RequestEvent. This type of object contains the information and data
this method needs to edit the data.

Accessing the data
The developer can either access the previously transcoded DOM object or the
original HTML DOM object before transcoding has taken place. If some
information is no longer available after transcoding, then the developer would
have to access the original HTML DOM object, otherwise the transcoded DOM
object would be used. The following examples show how to get the DOM object
in different phases of transcoding.

� Accessing the original HTML DOM object:

org.w3c.dom.Document vHTMLDoc = getOriginalDOM(aRequestEvent);

� Accessing the transcoded DOM object:

org.w3c.dom.Document vDOMDoc = getTranscodedDOM(aRequestEvent);

After the DOM document has been retrieved, the nodes can be accessed using
either DOM API or com.ibm.transform.textengine.mutator.DOMUtilities. For
example, to search for a particular text node, use the method org.w3c.dom.Node
DOMUtilities.findChildWithNodeMatchingPattern(Node, "*(NYSE: IBM*", true).
This method simply searches for a text node with the content string “(NYSE:
IBM*”. In general, inside the handleRequest() method the developer has all the
freedom to modify the data as needed, such as changing header values or
replacing text. It is important that the developer should separate each MEG in a
logical unit with a particular type of function. After the MEG is written, it can then
be used in the plug-in.

Generating a plug-in
The following example shows a very simple plug-in for WTP:

public class WEATradeClipper extends com.ibm.wbi.Plugin {
public void initialize() {

WEATradeEditor vTEditorMeg = new WEATradeEditor();
try {

addMeg(vTEditorMeg);
}
catch(com.ibm.wbi.PluginError vPError) {

vPError.printStackTrace();
}

}
}

 Chapter 15. Application for interactive mobile devices 287

WEATradeClipper extends the Plugin class of WBI. This is the first requirement of
creating a transcoder. Every time WTP is started, the initialize() method will be
invoked. The framework must know that there are some new MEGs, therefore
inside the initialize() method all MEGs should be added using the addMeg()
method. The enable() or disable() methods can also be used to carry out some
work, in case the transcoder is enabled/disabled.

After that, the class files need to be packaged and a properties file for the WBI
plug-in needs to be generated. Inside the properties file for the WBI plug-in, the
following properties must be included:

Class=com.itso.wea.WEATradeClipper
Description=Meg clip a document
DescriptiveName=a clipper sample
Major=1
Minor=0
Name=WEATradeEditor
Condition = ((path ~ */servlet/*) & !(content-type=text/vnd.wap.wml))
Priority = 1

Packaging a Web plug-in
The class files should be packaged according to the naming conventions of the
classes. The properties files should be packaged into another directory to
separate the classes from the properties files logically.

If there are two or more MEGlets, then each MEGlet has to be packaged into
separate .jar file. It is also possible to provide a properties file for each MEG to
add more flexibility to the transcoder.

See the WebSphere Transcoding Publisher Administration Guide 3.5 on how to
register a transcoder.

If registering using the Administration Console is successful, then the window
shown in Figure 15-23 on page 289 should be displayed.

Tip: For more information about packaging, please refer to the following Web
site: http://java.sun.com/docs/books/tutorial/overview/packaging.html
288 Mobile Applications with IBM WebSphere Everyplace Access Design and Development

Figure 15-23 Administration Console with new clipper

The following result will be displayed if starting the request viewer:

Figure 15-24 Request viewer with new clipper

Leaving this sample transcoder in the WTP environment does no good, because
the method public void handleRequest(com.ibm.wbi.RequestEvent) is not
implemented, but the developer now has the freedom to code anything to clip a
document. See <WTP install directory>/toolkit/apidoc/index.html for more
information on WTP API.
 Chapter 15. Application for interactive mobile devices 289

15.2.4 Guidelines for content transcoding
This section provides some information on how to write transcoder-friendly
HTML documents. HTML documents do not have strict restrictions on syntax and
structure. HTML tags do not need to be closed, tags can be written with different
capitalization, etc. In general, HTML can be very error tolerant and this makes it
difficult to parse, analyze and be presented. This may produce unpredictable
results. To overcome such problems, here are some guidelines that should be
followed to produce clean and transcoder-friendly HTML documents:

1. Always specify a closing tag to an opening tag.

<h1>heading</h1>

2. Specify end tags in the correct order.

<p>this is a paragraphbold <i>bold italic</i> bold</p>

3. Always end a tag with “/”

anchor

4. Either use capitalize letter or small letter for tags, but not both in the whole
document.

<h2>heading</h2> and not <H2>heading</h2>

5. Put values of attributes into quoting marks.

IMG

6. If a tag has no text, then end the tag with “/”

<hr width="80%" class="c4" />

7. Do not use nested tables, try using <th> and <td> instead.

15.2.5 HTML to cHTML
This section discusses content transcoding from HTML to cHTML, a subset of
HTML which is used for i-mode. For demonstration purposes, the i-mode
emulator from wapprofit.com i-mode emulator 1.1 is used. Since cHTML is a
subset of HTML, not all HTML tags are supported. See Section 10.1.8, “HTML,
cHTML, HDML, WML” on page 162 for more information on cHTML.

Still, these two markup languages are very much tied together and make
transcoding easier than does WML. This does not mean that every HTML
document can be transcoded into cHTML easily, however.

Tip: There are many of utilities available to help developers write
transcoder-friendly HTML document. See http://www.w3c.org.
290 Mobile Applications with IBM WebSphere Everyplace Access Design and Development

To some extent, annotations to the document are needed to clip the document
and to lower the bandwidth. The Wapprofit i-mode emulator has a different User
Agent than the i-mode browser in Japan; a new profile must therefore be created
to show the example. Carry out the following steps before any transcoding can
take place:

1. Create an explicit preference profile for Wapprofit’s i-mode emulator.

Actually, if a new preference profile is not wanted, then any previously created
i-mode profile can be used, but the User Agent value has to be modified. To
have a better overview of what device types are supported to be more flexible,
creating a device profile is recommended. Any profile can then be
dynamically disabled.

The following example shows the source code for an i-mode profile.

Example 15-7 i-mode.prop: source code for the i-mode profile

#Preference Profile for i-mode emulator
Description=i-mode emulator profile for WebSphere Everyplace Access Redbook
ConfigurableProperties=desiredContentTypes{text} disposeImages{bool}
textLinksPreferredToImages{bool} fixedImageScale{bool}
propagateFirstTableRowData{bool} transcodeImages{bool}
disposeImages=false
NonConfigurableProperties=supportedImages{text} screenCapability{text}
colorSupported{bool} createCHTML{bool} imodeLevel{itext}
propagateFirstTableRowData=false
colorSupported=true
deviceRule=User_Agent\=*Microsoft URL Control*
fixedImageScale=true
transcodeImages=false
imodeLevel=2.0
DescriptiveName=i-mode emulator
textLinksPreferredToImages=false
createCHTML=true
screenCapability=low
desiredContentTypes=[text/html]
supportedImages=[gif]

Register this new generated profile; see the Wtp Administration Guide on how
to register a profile.

2. Register the i-mode transcoder

By default, the i-mode transcoder is not registered; the administrator has to
explicitly register this transcoder. It can be found in <WTP install
directory>/plugins/ImodeTranscoder.jar. See the WTP Administration Guide
on how to register a transcoder.
 Chapter 15. Application for interactive mobile devices 291

The following example uses the registration page as did the previous one.

Figure 15-25 i-mode example

The result of this cHTML document is very similar to the original HTML document
without any annotation or clipping. WTP has broken the whole document into
many fragments. The user has to request each fragment, but the content is
structured and the document can be used as it is. It is not recommended to keep
this document, because too many fragments are generated and not all fragments
are needed to gather the information. For example, the starting picture in
Figure 15-25 which displays some information and alternative links is
superfluous to this document’s intent. It is therefore recommended to annotate
this document to disregard some of the information. To do this, external
annotations are recommended here, and the same annotation descriptions
TradeRegister.ann from the previous example can be used. Simply register
TradeRegister.ann again using the same configuration. If needed, special
conditions can also be defined with additional key/value pairs. Having registered
TradeRegister.ann, the following result will be shown when accessing the
document (see Figure 15-26 on page 293).
292 Mobile Applications with IBM WebSphere Everyplace Access Design and Development

Figure 15-26 Annotated document while accessing using an i-mode client

The external annotator has clipped the document to just one fragment, keeping
the most important information and disregarding the rest. In general, there are no
differences between annotating to WAP or to cHTML, because the original HTML
document is annotated, not the transcoded document. Hence, the same
annotation file can be used to achieve the same result.

15.3 Universal transcoding (XML source)
Universal transcoding is not an industry standard term and is not commonly
used. This term defines those solutions where the XSLT engine of WTP is
utilized. It is basically merging XML and XSL documents on the server side,
based on different conditions.

In this section, we will discuss the possibilities of using XML in the Trade2
application and how to handle it to produce multiple markup language output
formats. To produce this output, XSL StyleSheets and Document Type
Definitions (DTD) handled by the WebSphere Transcoding Publisher are used.

We outline problems we faced in our scenario and the solutions we assigned to
them. Furthermore, we discuss the alternatives to the solutions and the best
practice guidelines.
 Chapter 15. Application for interactive mobile devices 293

15.3.1 Converting XML to different markup languages
There are two different strategies to apply and handle an XML application in
combination with the WTP.

1. The first and most obvious possibility is to use a direct XSL approach. In this
case, an XSL StyleSheet is deployed to the WTP for every screen and for
every device class. The major advantage of this solution is the customized
specific user interface. Furthermore, the StyleSheet can access and display
all information and data from the given XML stream. Also, the different look
and feel of each markup language can be changed easily without impact to
the other contents. The application therefore becomes more flexible. The
disadvantage is the number of needed StyleSheets. For each device and for
each XML document, a separate XSL document has to be created, deployed
and maintained. An example: if there are M source XML documents and N
devices, M x N StyleSheets must be created. More development and
maintenance effort is required.

Figure 15-27 XML and XSL for transformation

2. There is the possibility of using HTML as a common intermediate format. In
this case, only one StyleSheet per page will be applied to generate the HTML
representation of the XML document. The result is rendered by the various
HTML transcoders in WTP in order to receive the desired markup language,
such as cHTML, WML or even VoiceXML (see Figure 15-28). The advantage
is simplified implementation because only one StyleSheet per page is
required, or even fewer if generalized StyleSheets can be used for multiple
XML documents. Less development and maintenance effort is needed. This
approach can speed up the development and later on, since the application is
already based on XML, the StyleSheets for each device class can be

XML

XSL for
HTML

XSL for
WAP

XSL for
VoiceXML

HTML

WAP

VoiceXML
294 Mobile Applications with IBM WebSphere Everyplace Access Design and Development

developed later. The disadvantage is the intermediate format. Changes in the
HTML format could have an impact on the other derived device-specific
content. Information from the original XML document can get lost during WTP
processing. Furthermore, the look and feel and the workflow of the different
markup languages depends on transcoder engines in WTP.

Figure 15-28 Using HTML as an intermediate format

You must decide whether it is better to have a separate StyleSheet for that
particular device, or to have only one for HTML then to transcode the HTML
content to the appropriate content format.

The best approach is always to use a hybrid solution, taking advantage of the
newer technologies, but using primarily the reliable, proven ones. In this case,
designers should count on using two sets of StyleSheets, one for the primary
device, usually desktop PCs using Web browsers (for example Netscape), the
second for the other devices. The second StyleSheet only produces an
intermediary format, which is easily adaptable to the other documents formats
required by the devices. The following diagram depicts this hybrid solution.

Figure 15-29 Hybrid XML and transcoder solution

XML XML
Processor

HTML
Text

Transcoding
Engine

*ML

WebSphere Transcoding Publisher

XML
document

HTML
page

StyleSheet
for HTML

+

universal
StyleSheet
for HTML

+
universal

HTML
page

*ML
transcoding
 Chapter 15. Application for interactive mobile devices 295

15.3.2 Trade2 example
In our sample for this scenario, we chose the simplified HTML as the result
content. Simplified HTML is normal HTML, the difference lies in the usage of
HTML. Simplifying the content means avoiding fancy, sophisticated HTML
formatting, and not using incompatible features.

15.3.3 Design decisions
First of all, we decided to modify the original Java classes to return the XML code
we needed. For this, only the second tier should be changed by adding new
functionality and code. Therefore, the inherited TradeAppServlet class has to be
modified. The EJBs and the database (third tier) are kept untouched.

The alternative to this solution is to use JSP files to produce the XML output. The
major advantage of this solution is that the code does not need to be modified at
all. Unfortunately, the MVC model is becoming inconsistent. The JSPs are no
longer only used to generate the view for the client (HTML, WML and so on).
Therefore, we decided to produce the XML content inside the Java classes.

The following picture shows the two different approaches for generating the XML
content.

1. The servlet writes the XML content directly into the response stream.

2. The servlet prepares the data, puts it into the scope (request, session or
application), then the JSP generates the XML content using the objects from
the scope.

Figure 15-30 XML data generation

In our sample, we choose the first option, where the servlet generates the XML
content.

WTP

client WAS

servletXML
stream

<xml>

JSP
object in
scope

disp
atch

1

2

296 Mobile Applications with IBM WebSphere Everyplace Access Design and Development

15.3.4 Defining the class concept
As mentioned before, we decided to modify the second tier of the Trade2
application. This means that we create a new subclass inherited from the
abstract TradeAppServlet. This subclass implements all the known methods from
the original class like doLogin(), doAccount(), doPortfolio() and so on (see
Section 14.3.1, “The three tier servlet architecture” on page 243).

In order to process the creation of the XML, we decided to add two classes
(TradeXMLHandler, TradeXMLHanlderException) and two interfaces
(ITradeXMLHandler, ITradeXMLHandlerException).

The first class TradeXMLHandler is defined as an abstract class. It implements
the two fields oTable (hashtable) and oXML (String), as well as the three
methods setInput() , getXML() and execute(). The first field, oTable, is used as a
container to transfer the dynamic data to the TradeXMLHandler object. This
dynamic data can be, for example, the user ID, account balance or a quote
object. The hashtable is set to the TradeXMLHandle object by the setInput()
method.

The execute() method is an abstract method. It is implemented by the subclasses
TradeXMLWelcome, TradeXMLHome, TradeXMLAccount, TradeXMLPortfolio
and TradeXMLQuote (see Figure 15-31 on page 297). The main purpose of this
method is to generate the XML data stream by using the dynamic data from the
set hashtable. This XML data stream is simply stored in the oXML field and can
be returned via the getXML() function.

Figure 15-31 Class design for the TradeXMLHandler
 Chapter 15. Application for interactive mobile devices 297

In addition, the TradeXMLHandler class also implements the ITradeXMLHandler
interface. The interface defines the used XML tagset for the Trade application
and allows the developer to easily adapt the tagset to minor changes in the XML
structure.

The second new class TradeXMLHandler manages the error handling of the
application. As shown in Figure 15-32 on page 298, it contains a private field,
StringBuffer XMLData and the three methods TradeXMLHandlerException(),
TradeXMLHandlerException() and getString().

Figure 15-32 Class design for the TradeXMLHandlerException

The link between the TradeXMLHandler and TradeXMLHandlerException() is the
oXML field. The variableXMLData is used to store the XML strings for errors. The
getString() method returns this string. To build the stream, the
TradeXMLHandlerException() is used. It wraps the given error code in the
defined XML structure and stores it in the XMLData variable.

For a comfortable maintenance of the TradeXMLHandlerException class, the
interface ITradeXMLHandler is added to the application. It contains the defined
XML tagsets and error codes for the handling. In this way, minor changes in the
XML structure and error code values can be dealt with by modifying the interface.

15.3.5 Defining XML structures
For the specification of the XML structures, we focused on the provided
information of the Trade2 application and the workflow. As a template, we used
the predefined dynamic data for the JSP files. A summary of all defined XML
structures and their behavior is given in Table 15-3 on page 299.
298 Mobile Applications with IBM WebSphere Everyplace Access Design and Development

Table 15-3 Overview of defined XML structure

Note that the TradeWelcome XML file is the only XML structure that is provided
static and dynamic. The reason for this is that the method for the logout of the
application should not reference the static XML file. Therefore, a new method,
doWelcome(), was implemented in the class (see Figure 15.3.8 on page 302 for
details).

15.3.6 Creating XML files
In order to develop the XSL StyleSheets for the application, we have to provide
the valid XML structure first. To create the XML documents, both tools,
WebSphere Studio 3.5 and XML Spy 3.5, were used (refer to Chapter 10,
“Application development” on page 153).

XML structure
name

Function Includes
dynamic data

Created by
application

TradeWelcome Used for the index page of the
application

NO YES

TradeLogin Used for the logon page NO NO

TradeRegister Used to register a new user NO NO

TradeHome Used for the homepage for a
logged on user (includes user
ID and account balance)

YES YES

TradeAccount Used to display the account
information of a user

YES YES

TradePortfolio Used to show the portfolio
information of a specific user

YES YES

TradeQuote Used to show quote
information for the stock
symbol

YES YES

TradeError Used for the error page
(includes error code)

YES YES

Note: The last column indicates that static XML data does not automatically
mean that the data is stored in a file; this column will indicate whether the XML
is generated by the application or whether it is a simple XML file in the
directory structure.
 Chapter 15. Application for interactive mobile devices 299

To store the new resources we define the following three new folders inside our
project file:

� xml/simphtml/xml : to store the XML

� xml/simphtml/xsl : to store the XSL and DTD files

� xml/dtd : to store the DTD files

To create the documents, we used the XML Spy software (see “XML Spy 3.5” on
page 179). In order to access it directly from the Studio Workbench, we
registered it as the default editor for XML, XSL and DTD resources.

15.3.7 Developing the XSL files and the user interface
In order to produce the simplified HTML code, our main goal was to delete the
nested tables and to reduce the number of pictures used in the original
application. The navigation bar therefore appears as an additional header and
below the original header at the top of the page. The link to the IBM Pervasive
Computing Web Site was included in the footer bar. The sidebar with the picture
and the link to the IBM PVC site is only used on very simple pages, for example
the welcome page. However, to preserve an appealing user interface it was
necessary to keep a number of tables (for example in the login page or portfolio
page).

In the next development step, we created the XSL files to display the data in the
user interface. We implemented the following XSL StyleSheets, according to the
workflow and the defined XML structures:

Table 15-4 Overview of defined and implemented StyleSheets

StyleSheet name Function Dynamic data
processed

Corresponding
XML structure

TradeWelcome To display the index
page

None TradeWelcome.xml

TradeLogin To display the login
panel

None TradeLogin.xml

TradeRegister To display the
register page

None TradeRegister.xml

TradeHome To display the
home page (after
login)

User ID and
balance

TradeHome.xml

TradeAccount To display the
account page

User account data TradeAccount.xml
300 Mobile Applications with IBM WebSphere Everyplace Access Design and Development

As shown in Table 15-4, we added a TradeTemplate StyleSheet to handle the
recurrent elements of the page. This template contains the HTML code for the
different headers, footers and navigation bars as well as a sidebar with a link to
the PVC home page. The TradeTemplate StyleSheet is included via the imported
statement in the other StyleSheets.

To create the XSL files, the following tools were used:

� IBM WebSphere Studio 3.5 to manage the resources and to bundle the
application

� XML spy 3.5: to create the XSL StyleSheets and to test the results in
combination with the defined XML structures

TradePortfolio To display the
portfolio
information

User portfolio data TradePortfolio.xml

TradeQuote To display the
quote information
for the stock
symbol

Quote data TradeQuote.xml

TradeError To display the error
page

Error code TradeError.xml

TradeTemplate Template to display
headers,
navigation bars,
sidebar and
footers; imported in
the other
StyleSheets

None None

Note: To run the StyleSheets in the WTP environment, you have to reference
the imported StyleSheets with the full directory path (see XSL in the Studio
project for an example). Otherwise, for relative referencing, the \etc directory
of the WTP installation is used.

StyleSheet name Function Dynamic data
processed

Corresponding
XML structure
 Chapter 15. Application for interactive mobile devices 301

15.3.8 Implementing the XML solution
To implement the XML solution we created a new package:
trade_client.xml.simplifiedhtml and a new subclass of the TradeAppServlet.
Furthermore, the defined classes and interfaces from the class design section
(see 15.3.4, “Defining the class concept” on page 297) were added. After these
modifications, the project panel of the Visual Age for Java (VAJ) Workbench
provides the following view:

Figure 15-33 Created classes for the trade XML application in VisualAge for Java

In order to produce the XML content, we had to change the main methods of the
inherited TradeAppServlet class. The following example presents a code
example of the new doHome() method:

Example 15-8 Code example of the doHome() method

try
{

//getting the balance from the TradeAction servlet
balance = tAction.getBalance(userID);

//step 1: initialzing new TradeHome class
TradeXMLHome tXMLHome = new TradeXMLHome();

//step 2: initializing new hashable and setting dynamical data
Hashtable hTable = new Hashtable();
302 Mobile Applications with IBM WebSphere Everyplace Access Design and Development

hTable.put("userID", userID);
hTable.put("balance", String.valueOf(balance));
hTable.put("results", results);

//step 3: transfering the hashtable to the TXMLHome object
tXMLHome.setInput(hTable);

//step 4: calling the execute method from TradeXMLHome instance to generate
the XML stream
tXMLHome.execute();

//step 5: reading the XML stream from the TradeXMLHome instance
String xmlData = tXMLHome.getXML();

if (xmlData != null) {

//printing out xmlData to the client
requestDispatch(ctx, req, resp, xmlData);

} else {
...

}

//step 6: additonal error handling
} catch ...

More precisely, the code is going through the following steps:

1. After retrieving the dynamic data from the existing functions, the application
initializes a new object (tXMLHome) from the TradeXMLHome class. As a
subclass, this class contains all specific fields and methods from the abstract
parent TradeHome.

2. A new hashtable (hTable) is created. The dynamic data (the user ID, the
balance and the result) are added to the hashtable.

3. The hashtable is transferred via the setInput() method to the tXMLHome
object.

4. The execute() method of the of tXMLHome is invoked. This method creates
the XML stream by using the dynamic data from the hashtable.

5. The application retrieves the XML data from the tXMLHome object via the
getXML() method and puts the stream to the output queue (done via the
requestDispatch method).

6. Additional error handling is performed.
 Chapter 15. Application for interactive mobile devices 303

The last step listed (error handling) is performed by the
TradeXMLHandlerException class. For every error, the application creates a new
instance of the class and passes the error code to the constructor. The
constructor then builds the XML structure for the error message. Finally, the
requestDispatcher method prints out the new XML data stream to the HTTP
response.

In addition to the discussed modifications, the two new methods doWelcome()
and doQuoteError() were added to the servlet. The doWelcome() method must
be implemented for the logout function of the application. Logout returns with an
empty XML structure using the TradeXMlWelcome class. This XML data stream
is needed to redirect the user to the welcome page.

To cover another feature of the original Trade2 application, the doQuoteError()
method was added to the servlet. It does the error handling in the case of invalid
input. In the original version, a new quote object with the error message was
simply passed to the JSP file. For the XML version, the doQuoteError() wraps the
error message in the original quote XML structure and puts it to the HTTP
response.

15.3.9 Registering the StyleSheets in WTP
To set up and register the StyleSheets in WTP, the following three steps have to
be taken.

Publishing XSL files
The first step is to publish the files from the WebSphere Studio project to a
defined target in the server directory. For more information, please refer to
“Publishing” on page 169.

Note: In the Trade2 application, you will find the variable result that is used to
print out status messages to the user. This variable is not supported and used
in the XML version of the Trade2 application.

Furthermore, a DTD reference is added to each error message created by the
TradeXMLHandler class. This reference is needed to invoke the appropriate
StyleSheet in the WTP environment (see 15.3.9, “Registering the StyleSheets
in WTP” on page 304 for more details).
304 Mobile Applications with IBM WebSphere Everyplace Access Design and Development

Register XSL files
In the second step, we first create a new folder (Trade/simplifiedhtml) in the WTP
Administrator console. The StyleSheets themselves are registered by selecting
Register -> XML StyleSheets... from the Administrator Console menu. A visual
user interface guides you through the different steps to collect the necessary
information, such as the location of the file or naming and directory issues.
Please make sure to store the XSL documents in the newly created folder.

A detailed description of registering XSL documents with WTP can be found in
Section 18.8.3, “Registering the StyleSheets” on page 374.

Setting rules and triggers
The third step is the most important one. Here we define the rules stating when a
StyleSheet should be applied to a XML file. WTP offers two possibilities:

1. Defining rules based on the request headers
The rules can be set up under the Advanced option of the XSL registration
page. Here you can define rules based on the header fields of the request.
For legal expressions, the Accept field or the User Agent field of the header,
for example, can be included. For the expressions, it is possible to use logical
operators (such as “&” for logical AND). Furthermore, you can combine the
rules with the defined profile preferences in the WTP environment. Please
note that by using the rules, the selection of the StyleSheet is controlled from
the client side.

2. Input DTD
This option can be used to control the selection of a StyleSheet from the
application side. For this purpose, you must define a DTD reference in the
output XML file as well as in the input field Optional input DTD name or
location on the registration page of the XSL file in WTP. To match the
StyleSheet, both entries must be equal. Please note that you must use
absolute paths.

In the Trade2 XML example, we use both options to apply the defined
StyleSheets to the application. In the first case, we are using the URL fields
inside the header of the HTTP request to control the selection of the StyleSheet.
An example is the portfolio page shown in Figure 15-34 on page 306. We define
that the StyleSheet should be used whenever the URL includes one of the
following strings:

TradeAppServlet?action=portfolio or

TradeAppServlet?porfolio
 Chapter 15. Application for interactive mobile devices 305

Figure 15-34 Settings for the TradePortfolio XSL in WTP

The second option is used for the error page. Here, we have to control the
selection of the XSL file from the application because we do not know
beforehand when an error will occur. To do this, we specify the DTD in the XML
file as well as on the settings page of the StyleSheet in WTP. Figure 15-35 on
page 307 shows the setup for WTP.
306 Mobile Applications with IBM WebSphere Everyplace Access Design and Development

Figure 15-35 Settings for the TradeError XSL in WTP

The advantage of DTD matching is that the developer does not have to build
unique URLs for the request.

The problem is that URL matching is only possible for different URLs or the same
URLs with different URL parameters, for example:
TradeAppServlet?action=login and TradeAppServlet?action=buy. Using forms
with the same URL, as in our case, where the application design is based on the
command application design pattern, is a problem for URL matching conditions.
For example, in the Trade2 application, we had to add unique identifiers to the
request (for example URL=TradeAppSerlet?portfolio) in order to build the rules.

Furthermore, it is not possible to trigger StyleSheets from the server side. If the
developer chooses the DTD matching, then a DTD for every displayed page has
to be defined and a reference must be placed in the generated XML structure.

15.3.10 Testing the application
The best way to test the XML application is to use a desktop Web browser. In our
sample, we set up the application to recognize the two browsers Opera and Lynx.
 Chapter 15. Application for interactive mobile devices 307

We recommend that you use WTP in the proxy mode; you will have to modify
your proxy preferences in the browser.

For more information about testing the application, please refer to Section 19.5,
“Testing the application” on page 395.

Note: The best way to run WTP for testing the application in combination with
the WebSphere Test Environment is the proxy mode. Unfortunately, in the
reverse proxy mode the WTP cannot reference images correctly. The WTE
port (typically 8080) gets lost during the transformation, and the client cannot
find the images because of the missing port number.
308 Mobile Applications with IBM WebSphere Everyplace Access Design and Development

Chapter 16. Voice application

In this chapter, we explore the possibilities of delivering a voice-driven Web
application.

The first section will give a clear picture of WebSphere Voice Server and its
different editions, and the following sections will describe these scenarios:

� Direct VoiceXML coding to generate pages for the VoiceXML browser with the
content.

� Using XML and XSL to generate the VoiceXML content.

� HMTL-to-VoiceXML transcoder.

� How to leverage the existing HTML content and use the transcoder to merge
with new VoiceXML content.

16
© Copyright IBM Corp. 2001 309

16.1 WebSphere Voice Server
First, a short introduction to WebSphere Voice Server is called for. After having a
clear understanding of how the voice server works in the background , it will be
easier to understand how the application works.

There are two different editions of WebSphere Voice Server:

� IBM WebSphere Voice Server with ViaVoice Technology

� IBM WebSphere Voice Server for DirectTalk

The development toolkit is IBM WebSphere Voice Server SDK.

IBM WebSphere Voice Server with ViaVoice Technology
This edition requires a VoIP gateway, which can switch between the PSTN and
the IP network.

Figure 16-1 IBM WebSphere Voice Server with ViaVoice Technology 1.5

Gateway

IBM WebSphere Voice Server with
ViaVoice technology

VoiceXML/HTTP

PSTN

TCP/IP

H.323

Web
Application

network
VoIP

Analog/Digital
310 Mobile Applications with IBM WebSphere Everyplace Access Design and Development

IBM WebSphere Voice Server for DirectTalk
With this edition, DirectTalk provides the connection to the PSTN and the voice
server is a DirectTalk application.

Figure 16-2 IBM WebSphere Voice Server for DirectTalk

IBM WebSphere Voice Server SDK
Additionally, there is the WebSphere Voice Server SDK, which is a development
toolkit. However, the same VoiceXML browser runs under the SDK as the Voice
server.

Figure 16-3 IBM WebSphere Voice Server SDK

IBM WebSphere Voice Server
for DirectTalk

PSTN

network VoiceXML/HTTP

TCP/IP

Web
Application

Speech
Server

Analog/Digital

IBM WebSphere Voice SDK

network VoiceXML/HTTP

TCP/IP

Web
Application
 Chapter 16. Voice application 311

To understand how the Voice Server works as a VoiceXML browser, we can
compare it to a visual browser. Both a VoiceXML browser and a visual browser
operate on documents based on a markup language.

The difference is that the browser for visual applications resides on the client
side, while the browser for voice applications is on the server side. It is like having
a regular Web browser running on a server and getting the picture on a display
on the client side; that is what a VoiceXML browser is doing. The voice server is
nothing more than a browser which runs on the server side, close to the Web
application server. Figure 16-4 is an illustration of this concept.

Figure 16-4 Understanding the VoiceXML browser

When you are developing VoiceXML applications, it is not necessary to set up a
voice server with the whole environment as just described. The same VoiceXML
browser runs within the voice server and the SDK. Using the SDK is the same as
running a server on your machine and using the machine’s peripherals (speaker
and microphone) instead of having a whole runtime environment for voice.

display
+

keyboard

speaker
+

microphone

visual
browser

VoiceXML
browser

Web
application

client server
vi

su
al

vo
ic

e

312 Mobile Applications with IBM WebSphere Everyplace Access Design and Development

Figure 16-5 Two different voice runtime environments

From the voice application developer’s standpoint, the two setups are the same;
they provide the same result. However, the second one using the SDK is very
useful during development, and much less expensive.

16.2 Direct approach
The direct approach means that the voice Web application is developed using the
native language for voice applications, that is, VoiceXML. The final content can
be produced using either static VoiceXML pages or JavaServer Pages to
generate the VoiceXML documents.

Most of the voice-specific parts of the application appear at the front end, so the
major part of the application follows common practices for the design and
development of a Web application.

16.2.1 The voice site
Figure 16-7 on page 315 introduces the Trade2 voice application site map. You
can follow the interaction between the Web application elements on the diagram.

There are differences between the voice application and the visual application
implementations.

IBM WebSphere Voice SDK

Gateway

PSTN

H.323 VoIP
Analog/Digital

TCP/IP

TCP/IP

speaker

microphone

IBM WebSphere Voice Server with
ViaVoice technology

1.

2.
 Chapter 16. Voice application 313

The most important difference is that there is no registration and no account
modification in the voice implementation. These pages require more flexibility
than a voice application can provide. In order to access these functions, the user
has to transfer to a customer representative (agent), or go directly to the Web
site.

Figure 16-6 describes the icons on the site map.

Figure 16-6 Legend for the site map

The dynamic pages are JavaServer Pages, the forms are VoiceXML forms, static
pages are static documents written in VoiceXML, and classes represent Java
classes.

You can see that one dynamic page can include several forms; this is shown by
the chain of forms beside the dynamic page.

The arrows are links, and point from the source page to the destination. The
destination can be either another dynamic or static page, or a servlet.

There is a special element on the site map, the EXIT. The link to the EXIT label
means that the application ends at that point and the communication with the
client closes. This feature is different from that of any other visual Web
application.

dynamic page

static page

form

class
314 Mobile Applications with IBM WebSphere Everyplace Access Design and Development

Figure 16-7 Trade2 Voice Application site map

About the sample application
The voice Web application is based on the original Web application for desktop
browsers. It has the same functions, except for the two which are not
implemented, and it has the same structure for navigation.
 Chapter 16. Voice application 315

There are two interesting pages within the sample voice application:

� Login page

� Portfolio page

Login page
The login page has to collect only two pieces of information from the user: the
user ID and the password, which need to be accurate; however, we need to avoid
annoying the user with a long login process.

The login process can be broken down into two parts which use the same
technique to collect the correct information.

The application asks for the value, and waits for only numbers. The user can
either say the numbers one by one, or use the keypad to type the numbers in.
Depending on the input, the user response can be terminated with a long break
or the pound (#) key on the keypad.

After retrieving the result, the application repeats the value and asks if it is
correct. If so, it will go on; if not, the process starts again with the same input
field.

When both values are available (the user ID and the password), the application
will check the user name and password for validity. In order to make the
challenge, it sends a request to the TradeAppServlet with the necessary
parameters:

<submit next="/trade/servlet/TradeAppServlet" namelist="action uid
passwd"/>

Where action has the value of the login, and uid and password are the values
collected from the user for the user ID and password. The <submit> tag ensures
that the information is sent through using the POST method. If using the <goto>
tag with the same parameterization, the GET method will be used.

Portfolio page
The portfolio is a dynamic VoiceXML page, where some of the information is
dumped out dynamically and the whole list of the portfolio is generated.

Each element in the portfolio is a form which starts by playing the information
about the element to the caller, then provides the following options: home, sell,
quote, restart. If the caller does not choose an option within a time out period
specified on the form, the next form is called. This process repeats until the last
form, which calls the first, and so on until the caller breaks out or hangs up.
316 Mobile Applications with IBM WebSphere Everyplace Access Design and Development

The home command will take the user to the welcome page, the restart
command will restart reading the portfolio from the beginning. The sell and
quote commands operate on the latest element read by the application.
Whenever the user gives the sell or quote command, the TradeAppServlet is
called with the actual parameters. In the case of the sell command, the
following link makes the call:

<goto next="/trade/servlet/TradeAppServlet" namelist="action index
symbol"/>

In our approach, the whole list of the portfolio is given in one dynamic VoiceXML
document generated by a JavaServer Page.

We chose the list because it requires less change to the original page and
application flow; however, it is only one solution and not the best approach for
this function.

It is better to break up the whole document into a header, which starts the
session, and a dynamic page which calls itself, instead of repeating it in one
document, refreshing the content dynamically each time.

Figure 16-8 shows two different approaches for the portfolio process. The first
one is implemented in our solution, where the whole process is implemented by
one dynamically generated document. The second solution is more elegant; in it,
the items are generated dynamically with a recursive loop.

Figure 16-8 Solutions for the portfolio process

16.2.2 Application design
The following paragraphs will go through some useful guidelines in order to help
design a voice application. We will start with general design techniques and tips,
then turn to a VoiceXML-specific (voice Web application) discussion. At the end
of this section, we will discuss some application-specific issues related to the
Trade2 application, which is provided with the book.

header

items on the list

(1..n)..1

header

item 1.

item 2.

item n.
...

our solution another, better solution
 Chapter 16. Voice application 317

Starting the design
1. Identify the main activities to be performed by the application with the users.

2. Together with users, design the dialog for each activity, concentrating on
everything proceeding smoothly. You must take into consideration all the
possible responses by the caller, remembering that they may have either
keys, speech, or both with which to respond.

3. Decide whether you are going to allow both keys and speech throughout the
call, or keys for some parts and speech for others.

4. As your dialog design progresses, make sure you document each of the
branches of the application.

5. Identify all the things that could go wrong: for example, the caller could hang
up in the middle of the call, the connection with a host computer could fail.

6. Again, with users, refine the dialog, taking into consideration all the things you
have identified that could go wrong. The business departments will want to be
assured that the caller is going to hear the right thing, whatever happens.
They do not want to lose business because of a poorly designed voice
application. If the voice application itself cannot continue, ideally, the caller
should be transferred to a human agent.

User participation in dialog design
Before recording anything, act out the dialogs, using the “Wizard-of-Oz”
technique, with one person reading out the application’s words out of sight
(behind a screen or curtain), and another person acting the part of a caller.

When you are fairly happy with the dialog design, record the voice segments
using the telephone, or synthesize them using text-to-speech. Start with
company employees as the callers, and, when you are happy with the dialog, try
it on potential customers or clients. If the service is aimed at company
employees, start with experienced employees, but do not forget to try it out on
newcomers. Only when you are satisfied with the dialog should you invest in
professional recording.

Designing the dialog
Customer satisfaction with your voice response service will depend on a number
of factors, including the voice you choose, the information you provide, and the
ease with which callers can get the information they want. The sound and feel of
the service is every bit as important as the look and feel of a visual computer
application. With careful design, the caller’s experience will be pleasurable; with
lack of attention to dialog design, the caller will get frustrated and hang up. At
best, this will result in your staff handling just as many calls as they ever did; at
worst, it may mean loss of business.
318 Mobile Applications with IBM WebSphere Everyplace Access Design and Development

When designing the dialog, you need to be aware of some of the limitations of
the medium. Compared with people, automated systems are inflexible,
demanding, and intolerant of deviations from the expected conversation. They
are best at handling very routine calls. Almost without exception, all voice
response services should offer help in some way, for example by offering the
choice of transferring to an operator or calling another number to speak to an
operator. You should give human factors and usability a high priority when
designing voice response services.

Design considerations
Compared with today’s multiwindow screen-based computer applications, voice
response applications have a number of potential limitations. With careful design,
you can overcome these limitations and make your application a joy to use:

� Auditory output is sequential, and hard to keep in short-term memory: you
have to take great care in wording the prompts.

� Auditory output can be slow: unfortunately, someone is paying for the call, and
wants the whole transaction to take as little time as possible.

� The very ubiquity and availability of telephones means that callers do not
have access to manuals and other supporting materials: the whole point is for
the voice response service to be usable from anywhere, so the application
itself must be completely self-documenting.

� Text-to-speech, while relatively acceptable for delivering frequently updated
information, is not really suitable for a dialog with the caller, which should
sound as natural as possible.

� Bear in mind that many callers may be using phones with an integral keypad
and handset (for example: mobile phones): they will take longer to press the
keys than callers using traditional phones with a separate keypad.

� Compared with the 100 or so keys on a computer keyboard, the standard
telephone has twelve keys. The standard keypad is fine for numeric input,
making simple choices, and answering yes-or-no questions, but what about
alphabetic input? In some countries, there are no alphabetic characters on
the keys at all; even in countries where telephones still have the alphabetic
characters on the number keys, people do not use them enough to be familiar
with their positions.

� Many telephones cannot transmit DTMF tones reliably or at all. In these
cases, the only reasonable input device is voice.
 Chapter 16. Voice application 319

Choosing a dialog style
No single dialog style is best for all applications, for all tasks within an
application, or for all callers:

� Callers may be familiar or unfamiliar with the mechanics of driving the
application.

� Callers may be familiar or unfamiliar with other voice response services.

� Callers may use the service frequently (and therefore acquire expertise with
the mechanics, or the content, over time) or infrequently (never acquiring
expertise).

� The content of the dialog may be familiar and predictable (for example, days
of the week) or relatively unfamiliar and unpredictable (for example, toppings
available for pizza).

� It may be appropriate to provide documentation or training sessions, for
example if callers are employees or students, but it is unreasonable to base
your design on the assumption that documentation will be read or training
sessions attended.

There are three basic styles of voice response dialog, suited to different types of
tasks:

1. Menu: suited to selecting one of a small number of options

2. List: suited to choosing multiple items, perhaps from a large number

3. Form: suited to providing input such as addresses and telephone numbers.

Within these basic styles, there are numerous variations. It is hard to provide
rules for good dialog design, but you need to classify your application and your
callers in these terms before considering the following questions:

1. Composite or separate actions? Composite actions may be simpler for the
caller, but separate actions provide more flexibility.

2. Keys or speech recognition? The application uses speech to communicate
with the caller, but should the caller be using speech or keys?

3. A mixture of key and speech input? You can mix key input and speech input in
a single application (though it is not recommended that you allow both at the
same time). For example, entering a Personal Identification Number (PIN) is
easier using keys, whereas recording a street address is easier with speech.

4. Command-driven or prompted? You need to make a decision about whether
to let callers interrupt the prompts or not. In general, you should let them
interrupt. Once they learn the choices at each point, they can key ahead (or
speak ahead), without waiting for the prompt to finish. There may, however, be
some prompts that you want to force play to the end; there may even be whole
applications in which you want all prompts to be force played. The type of
320 Mobile Applications with IBM WebSphere Everyplace Access Design and Development

dialog that allows key-ahead or speak-ahead is sometimes known as a
command-driven dialog, but you still need to play the prompts in a voice
application, because of the absence of documentation.

5. A single selection key or option-specific selection keys? With a single
selection key, you play each choice to the caller and give them a few seconds
to press the chosen key (for example, 1); if they do not press a key, you play
the next choice, and so on. The caller always presses 1 to select the current
option. There is less for callers to learn if, at any point, they have only two
choices: to select the current option or to proceed to the next; it can be useful
for long lists of options (for example film titles). On the other hand, this kind of
design tends to restrict the caller’s ability to key ahead and bypass menus.

With option-specific selection keys, you allocate a different key to each option.
This has the advantage of allowing callers to key ahead, but limits the options
available at any one time. It can also be difficult to ensure consistency of
key-allocation throughout the application (for example, on one menu, 3 may
correspond to “Delete message” while on another menu, it corresponds to
something else entirely). Again, infrequent use may point the designer toward
the single selection key and frequent use toward the option-specific selection
keys.

6. Passive or active advance through menus? Should each option drop through
to the next option, or should the caller have to press a key to proceed? This
becomes an issue if you provide a single selection key. Again, passive
advance is probably most suitable for callers who use the application
infrequently but, to avoid the problem of callers selecting an option just after
the menu has moved on to the next option, you need to include a few seconds
of silence between each option. Passive advance might seem easiest for the
caller, but only at first. Later, callers may become frustrated at having to wait
through entire menus.

Providing a Next key would seem to prevent this, but the drop-through
behavior often results in callers never learning about the Next key, unless the
menus mention it.

7. Long or short prompts? The more information you provide, the more likely the
caller is to learn how to drive the application. However, long prompts slow
down callers, particularly experienced ones. A choice of novice and expert
prompts can help. The difference between them is not necessarily verbose
versus terse: you could actually leave some information out of the expert
prompts altogether.

Always provide essential information before information that is merely helpful.
Provide Next and Previous keys, so that callers can skip information they do
not want to hear.
 Chapter 16. Voice application 321

Good things to do in voice applications
� Subdivide the recording of voice output to allow random access to it. Callers

can skip and scan.

� Make sure that callers know they are using a machine; do not try to make
them think they are talking to a human agent.

� Ask the caller whether they are using a phone that generates tones, by asking
them to press a specific key.

� Allow the caller to interrupt prompts (key ahead) wherever possible (that is, do
not force play the prompts).

� Refer to the # key as “pound” in the U.S. or “hash” in the U.K.

� Refer to the * key as “star”.

� Use the star key for the control menu.

� Refer to the 0 key as “zero”.

� Use the zero key to provide access to the operator.

� Always phrase your prompts so that the goal precedes the means of
achieving it (for example, “to contact the operator, press 0”); if you mention the
key first, the caller may forget which one it was before realizing that it was the
one they wanted.

� Use questions and commands rather than statements, to encourage callers to
take immediate action.

� Ask closed questions such as “Do you want a large, medium, or small pizza?”
rather than “What size pizza would you like?”.

� Add pauses to encourage the caller to take immediate action.

� Always try to allocate similar functions to the same keys.

� Use directional metaphors where appropriate (use the relative position of the
keys on the keypad to indicate some logical direction associated with the
command, for example, 7 for back, 8 for pause, and 9 for forward).

� Try to limit menus to about four options, with a fifth option for more choices if
necessary; this adheres to the rule of the “magic number 7 plus or minus 2”
items that people can hold in short-term memory; also, it will not take too long
to play.

� The order in which you play the options depends on the application: you might
choose to start with the most frequently used option, or the least-frequently
used, or play the options in ascending numerical sequence.

� Use simple, explicit language, for example: “Press” for single key entry (no
delimiter) and “Enter” for multiple keys (which need a delimiter).

� Give feedback: repeat long data entries back to the caller.
322 Mobile Applications with IBM WebSphere Everyplace Access Design and Development

� If the caller does not make a selection, repeat the menu.

� If the caller makes an error, explain the valid choices.

� Employ a professional to record the final version of the prompts.

� Do not mix prompts recorded in more than one voice, unless you do this
consistently to convey information (for example, voice A for menus and voice
B for data retrieved for playback to the caller). For this reason, you should get
the system voice segments recorded by the same professional as your other
voice segments.

� Correct wording of your prompts is particularly critical when you are using
speech recognition. Your prompts must tell the caller what to say, when to say
it, and how to say it.

� Ask for the same information no more than twice, to avoid irritating the caller
and jeopardizing the business transaction. The second prompt should
apologize to the caller, accept responsibility for the communication error, and
repeat the request. You might change the wording in the second request to
give additional clues or information.

Voice Web application design
Voice Web applications can be designed like normal Web applications, which is
certainly a great advantage. The client (VoiceXML browser) is working with
pages, static or dynamically generated on the server side. However, the
construction of the pages and the interaction flow are different from those in any
other visual Web application.

You can see on the site map that one page encapsulates one or more form.

These forms are just like the forms in the HTML document. There could be more
than one form in one document. The difference is that after a form is finished, it
must call another form or a whole new document; if not, the interaction finishes,
the application is ended and the call is terminated.

It is worth noting that unlike a visual Web application, a voice Web application
only runs in a single thread. With a visual browser, it is possible to open many
windows simultaneously, and switch between them. However, it is only possible
to listen to one voice application over the phone.

Note: a form represents one interaction between the user and the application,
where the application retrieves the answer for one input field. For example:

(Application) - What is your user ID?

(User) - 56463.
 Chapter 16. Voice application 323

Another important characteristic of the voice Web application is that the
application ends after the conversation. It has a deterministic end, occurring
when the browser exits. This exit can be programmatic (exit by request) or by
event (the telephone connection is cut off).

It is up to the developer to decide whether the forms are separated into different
files, or merged into one. It has to be decided at the beginning whether or not the
forms are reusable in a different set of conversations.

A good practice to design the pages is using forms, then merging them according
to the application flow and code reuse.

A good example of reusing forms instead of repeating them is the portfolio
function. To find out more about this function, read “Portfolio page” on page 316,
where we discuss two approaches, one using a list of the same forms, the other
reusing the same form.

How to design VoiceXML pages
The first challenge is to design the site in as linear a fashion as possible; the site
must provide only the main functions, and no other links. Wherever links to other
pages are provided, they should be tightly related to the actual position of the
connection. Every possible link on the site should not be listed on each page; this
is confusing, and the user will easily become lost. Users can navigate backwards
to previous pages or functions, but they should not jump to a different page.

To understand this better, try to imagine a tree, where at each node you can
make a decision as to which branch you want to go to next, and if you have failed
to find the right path, you can only go back to the previous node you
encountered. This system will let you browse through the whole tree without the
navigation being confusing.

Of course, designing the tree and putting the links in the right order and on the
right node are the keys to designing the voice application. The related links
should be listed or available on one page only.

Another important piece of advice for designing VoiceXML pages is that it is
always worth repeating the user’s answer for confirmation. This is standard
practice in traditional voice applications, so the same precept needs to be applied
in VoiceXML applications.

Login process
In our example, we wanted to keep the login session simple; that is why we
decided to use numbers for the user ID and password. The problem is the
limitations of an audio interface and the capabilities of the speech recognizer.
324 Mobile Applications with IBM WebSphere Everyplace Access Design and Development

With today’s speech recognizer engines, it is very difficult to implement the login
process. Login process here means asking the user for a user ID and for a
password. The best approach is to use numbers, either by using the keys on the
phone or by saying the numbers.

Web applications usually do not use numbers for the user ID and password;
instead, they use letters, numbers and signs mixed together. Using only numbers
with a voice application usually requires some changes in the original Web
application. The application has to be able to do the challenge using either the
original user ID and password or the numerically encoded user ID and password.
There are several possibilities to solve this issue.

� Use of numbers only for users’ ID and password.

� Storing the user ID and password encoded in the database.

� Implementing the encoding process during the database query; a stored
procedure will encode the user ID and the password during the query.

There are other solutions for logging in a user, of course. In this book, we have a
dedicated user, who uses numbers for a user ID and password. This user is the
only one able to log in via phone. The user ID is 56463, which is the encoded
string for johnd (j=5, o=6, h=4, n=6, d=3); the password is the same: 56463.

Back-end modifications
Implementing a voice solution into an existing application requires changes. The
question arises as to whether the back-end needs to be modified or not.

Unless the original application design supports major modifications or new
implementations, the question should not even arise. In most cases, the
back-end must be modified to support the functions required by the new voice
application.

This does not mean that the back-end has to be rewritten. Voice applications
require some special back-end functionalities, which are different from other Web
applications. These functions are usually related to the dynamic grammar. The
application has to quickly generate not only the document, which is common for
any Web application, but the grammar for voice recognition.

Plan ahead during the application design, even if voice implementation is not
certain or planned for later. For more information about voice application design,
refer to Chapter 8, “Solution design” on page 103.

16.2.3 Application development
The WebSphere Voice Server SDK provides a VoiceXML browser. The browser
has two runtime modes:
 Chapter 16. Voice application 325

� Audio: plays the audio files, synthesizes and recognizes speech.

� Text: writes out the text, replaces the audio files with the description, receives
the input via the keyboard or the simulated DTMF keypad.

Best practices for development
Using the Audio mode can be very slow, because of having to listen for the
directions, then use voice for input. The problem is that even with the “barge-in”
feature enabled, it takes time to interrupt the speech; also, false recognition could
waste time.

In this case, the best choice is to use the Text mode at the beginning of
development to create the functional site.

Once the functional site is available, the Audio mode becomes important
because the text can be surprisingly different from the speech. Typically,
additional information is required and some parts can sound strange.

The voice recognition depends very much on the dictionary, which the
recognition engine works from. Dictionaries may vary based on the language.
During application development, developers should further investigate the
dictionary. For example, some abbreviations exist in the dictionaries and some of
them do not. If “IBM” exists in the dictionary, then the speech synthesizer knows
how to pronounce this term, letter-by-letter (“I-B-M”); if it does not exist, then the
speech synthesizer will try to pronounce the term as one word, which will sound
strange.

The speech synthesizer engine has the ability to change the voice of the
speaker. This feature can help to organize the content more efficiently. Different
speakers can be applied to different situations. This has the same effect as using
bold, italic or underlined text with the visual browser. For example, information
and error messages can have different speakers.

Coding
The VoiceXML browser uses a cache like other browsers, and during
development this could be a problem, as with any other browser. The developer
wants to see the most recent version, not the cached one.

To disable the cache, change the following in the vsaudio.bat or in the vstext.bat.
Within the Execute: section, after the Java interpreter, but before the classpath
settings, add the following parameter: -Dvxml.cache=false.

The other solution is to delete the cache folder under the <WV SDK install
dir>/bin/cache directory.
326 Mobile Applications with IBM WebSphere Everyplace Access Design and Development

The problem with disabling the cache is that the VoiceXML browser does not
have a source viewer, so the cache is the only place where the final content can
be found. This problem arises when the application is using dynamically
generated pages, so the final content is very different from the source.

When JavaServer Pages are used to generate the content, the final documents
are only available for debugging from the cache. The final document can have a
variable amount of options or lists, dynamic grammar, and conditional elements,
which makes it very difficult to trace the operation following only the original
source code.

The other possibility to speed up the testing is to enable the “barge-in” feature in
the forms, so the developer does not have to listen the whole text.

16.2.4 Trade2 voice application
This implementation of the Trade2 voice application exercises direct coding using
the VoiceXML markup language. The voice application is also based on the base
application introduced in Chapter 14, “Base sample overview” on page 241;
however, it is a non-visual application.

The application flow is the same as with any visual implementation. The
difference is the registration and the account update pages, at which points the
user has to go to the Web site or speak to a customer representative, because
these pages cannot be implemented using this technology, or the solution is too
sophisticated.

Basically, during development the original HTML document has been encoded in
VoiceXML format following the specification and the best practices from the
product documentation.
 Chapter 16. Voice application 327

16.3 Content transcoding (HTML source)
Within the transcoding option, we make a further distinction between transcoding
full HTML pages and mining content from existing HTML pages to insert into
directly coded VoiceXML pages.

16.3.1 Full HTML-to-VoiceXML transcoding
If you are a company who has already invested significant resources in building
an e-commerce site or a customer self-service site, you can imagine that
WebSphere Transcoding Publisher’s (WTP) HTML-to-VoiceXML transcoder can
be employed to voice-enable your entire site with little effort on your part. As we
have already described, visual interfaces differ greatly from audio interfaces. If
you intend to voice-enable a Web site, you will invariably need to either apply
various WTP functions to simplify and mutate your content to make it easier to
transcode into VoiceXML, rework the HTML and the Web site in general to make
it easier to traverse using voice, or both.

WTP provides functions that can simplify an HTML page and make it more
usable as a voice application, such as the ability to split the document into
sections and to add annotations (see 10.2.3, “Development tools in WTP” on
page 176), but these only work on a page-by-page basis (see Figure 16-9).

The HTML-to-VoiceXML transcoder and the rest of WTP can only help improve
the page, not the entire site as a whole. Your Web site's navigation methods may
be too complex for a voice medium, or based largely on navigation bars and
graphic hot spots which cannot be associated well with the core content, or the
navigation could get lost altogether. If you face this problem, it can only be solved
if you have control over the original HTML source.

Figure 16-9 WTP uses annotator for VoiceXML transcoding
328 Mobile Applications with IBM WebSphere Everyplace Access Design and Development

Figure 16-9 shows that WTP uses annotation to remove unwanted data from an
HTML page before it is transcoded into VoiceXML.

Thus, when transcoding HTML-to-VoiceXML using WTP, extra care needs to be
taken in reducing the complexity of the data.

Even so, how (and how much) data is converted to VoiceXML is under the control
of the HTML-to-VoiceXML transcoder and of WTP in general?

Some of the navigational difficulties related to voice applications are accounted
for by the HTML-to-VoiceXML transcoder as it keys off certain HTML tags to
determine navigation points. It is up to the designer to ensure that the result is
usable and the visual elements from which the transcoder builds the navigation
are present in the source document. More information on this topic can be found
in Section 8.4.2, “Voice applied to the decision tree” on page 119.

Unfortunately, most HTML form input is not as bounded. Because all visual Web
browsers have some type of keypad or keyboard attached to them, almost
anything can be presented as input. When transcoding HTML to VoiceXML, one
of the most daunting tasks is to ensure that possible input is well bounded and
defined so that accurate grammars can be produced and error tendency
reduced. For example, if an HTML page requires that the user type in a US state
name, you can use WTP to turn that text input into a select list of 50 entries, for
which can have an associated grammar of 50 words and phrases. Better yet, if
you have access to the HTML source, rework the original HTML page so as to
have a select list from the start which improves both the VoiceXML produced by
WTP and the usability of the original HTML page.

16.3.2 Annotators
Potentially the most useful application of WTP's HTML to VoiceXML transcoder is
the ability to convert HTML content for use within a VoiceXML application. The
HTML content is usually mined from existing pages hosting dynamic data such
as weather updates, stock quotes, employee addresses and phone numbers,
catalogue information, etc. Once you fully understand the differences between
visual and audio interfaces, you might prefer to re-author the voice interface
entirely in VoiceXML.

Be careful, though. Even putting aside the complexity of deriving a usable vocal
interface from a visual one through transcoding, maintenance could be
cumbersome. In fact, visual interfaces tend to change quite often, requiring
modifications in how they are transcoded as a result. In any case, extensive
usability testing should be conducted on the solution to determine the best mix of
transcoded content versus static or native VoiceXML content and how to best
blend that mix.
 Chapter 16. Voice application 329

In this context, a VoiceXML application is maintained separately from its visual
counterpart and is tailored to the unique requirements of a listening audience.

The challenge is now to incorporate dynamic data within the VoiceXML
application. It would be duplicate work to try to get the dynamic data at the
source, especially if that data already exists on a Web page somewhere. It would
certainly be easier for the VoiceXML application designer to reuse existing HTML
data rather than reproduce it from other sources. WTP serves this purpose. It not
only provides the HTML-to-VoiceXML transcoder to render the HTML source in
the appropriate markup, but also provides the necessary tools to extract
information from a page with superfluous data (see 16.3.3, “Setting up the
HTML-to-VoiceXML transcoder” on page 330). The HTML to VoiceXML
transcoder can be used to derive either entire VoiceXML pages for use within the
voice application, or portions of content which are to be placed within a
VoiceXML page.

Figure 16-10 WTP uses annotation for VoiceXML transcoding

Figure 16-10 shows that WTP applies annotation to a page to derive the
necessary data before it is included within the VoiceXML application.

16.3.3 Setting up the HTML-to-VoiceXML transcoder
This section describes how to register the HTML-to-VoiceXML transcoder, how to
create a new device profile for the VoiceXML browser and how to register the
new profile into WebSphere Transcoding Publisher.
330 Mobile Applications with IBM WebSphere Everyplace Access Design and Development

Registering the transcoder
1. Start IBM Transcoding Publisher->Administration Console.

2. Select Register->Transcoder from the menu.

3. On the welcome screen, click Next.

4. Browse for the transcoder under the next screen. Select
ibm_VoiceXMLTranscoder.jar; the file with the appropriate path appears in
the text-box. Click Next.

5. In the following window, you have the opportunity to change the name of the
transcoder and the description; leave them as is and click Next.

6. You can enable the transcoder immediately after setting up. Select Yes, then
click Finish.

7. Select File->Refresh Server from the menu to refresh your configuration.

Now the HTML-to-VoiceXML transcoder is set up.

The next step is registering the VoiceXML device. You can either create your own
profile for the voice browser or just create and register the file below (see
Example 16-1 on page 333).

Creating a new device profile
First you must have the software called WebSphere Transcoding Publisher
Profile Builder. You can download it from:
http://www-4.ibm.com/software/webservers/transcoding/ ; select the Profile
Builder on the navigation bar, then download the software.

1. After downloading, run ProfileBuilder.bat; this will execute a Java
application, so you have to have JDK 1.2.2 or JRE 1.2.2 installed on your
machine.

2. In the Welcome window, select Create a new profile, then click Next.

3. In the Choose Profile Type window, select Device; then click Next.

4. The next window allows you to identify the profile. Give a name to your profile
and a short description, for example:

Name: Voice Browser

Description: Voice browser device profile for HTML-to-VoiceXML
transcoder

Then click Next.

5. In the Specify a User-Agent Value window, you can set up the condition,
which triggers the transcoder to transcode the content.

User-Agent value: (User_Agent=*Voice*)
 Chapter 16. Voice application 331

Click Next.

6. The Select Preferences window is a little bit sophisticated. You have to select
the following preferences and add them to the configuration by clicking the
Add button.

Add the following preferences to the Edit panel:

– Desired content types

– Convert tables to lists within lists

Add the following preferences to the View panel:

– Convert images into image links

– Use the first table row as labels for each list item

Click Next.

7. Set the preference values in the next window.

Desired content types: text/vxml, text/x-vxml, application/vxml,
application/x-vxml

– Convert tables to lists within lists: disabled

– Convert images into image links: enabled

– Use the first table row as labels for each list item: enabled

Click Next.

8. In the Specify Additional Preferences window, add the following key and
value, typing in:

– DeviceType

– VoiceXML Device

then click Add. Click Next.

9. Save the profile under the directory of your choice; you might want to consult
it later, so save it to a safe directory, where it can be easily found; you can
save it wherever you want, except in the <WTP install directory>/etc/...
directories, because WTP will copy it under this directory. Give a name, for
example: voicebrowser.prop; then click Next.

10.Click Finish.

Important: Make sure you have the parenthesis characters, and do not forget
that the expression is case sensitive.
332 Mobile Applications with IBM WebSphere Everyplace Access Design and Development

Here is the example voicebrowser.prop properties file for the voice device.

Example 16-1 voicebrowser.prop

#Preference Profile for Voice browser
DescriptiveName=Voice browser
Description=Voice browser device profile for HTML-to-VoiceXML transcoder
desiredContentTypes=[text/vxml, text/x-vxml, application/xml,
application/x-vxml]
propagateFirstTableRowData=true
textLinksPreferredToImages=true
deviceType=VoiceXML Device
deviceRule=(User_Agent\=*Voice*)
convertTablesToUnorderedLists=false
ConfigurableProperties=desiredContentTypes{text}
convertTablesToUnorderedLists{bool}
NonConfigurableProperties=textLinksPreferredToImages{bool}
propagateFirstTableRowData{bool}

Registering the device profile
After creating the profile, you have to register it in order to handle the new device.

Open the Administration console for WTP, and follow the following steps:

1. Select Register->Preference Profile... from the menu.

2. Click Next in the Welcome window.

3. Browse for the preference profile you have; in our example, we select
voicebrowser.prop; then click Next.

4. In the following window, you can change the name and the description of the
device profile. Leave them as they are, then click Next.

5. Select Yes in the next window; your profile will be enabled immediately.

6. Click Finish.

7. Select File->Refresh Server from the menu to refresh your configuration.

16.3.4 Result of the HTML-to-VoiceXML transcoder
Before you decide to select the HTML-to-VoiceXML transcoder, you should check
the results produced by the transcoder. It is always worth it to take the time and
get some experience by playing with the transcoder and feeding it different
documents from different sources. The following key elements are observed:

� Which part of the document remains and which part has been thrown out.

� How the options are organized.
 Chapter 16. Voice application 333

� How the input fields are handled.

� Which are the non-handled elements.

The transcoder tries to figure out the main content and identify the links through
the documents. Finally, the result is given with the following options:

� Main content: the collected content from the page.

� Links: the many links on the page.

� Exit: users always have this option.

Following this structure, the user can navigate through the whole Web site, as
with a desktop browser.

Of course there are complex, sophisticated pages, which the transcoder cannot
handle correctly; this is the reason why you have to get experience with the
transcoder. In case you want to take advantage of the HTML-to-VoiceXML
transcoder, you should design your HTML pages in a format such that the
transcoder can handle it if need be.

The other option is to use the annotators together with the HTML-to-VoiceXML
transcoder, then apply the annotator to the document to get the best result for the
transcoder.

16.3.5 Trade2 application
We have tried the HTML-to-VoiceXML transcoder on the Trade2 sample
application designed for mobile applications. The result was not worth
mentioning.

Most pages are not transcoder-friendly for the HTML-to-VoiceXML transcoder. In
several situations, the limitation was that the pages were designed for visual
applications.

We have found that it is not worth transcoding the whole site as a voice portal
because of the limitations of the transcoder.

The best approach is to enable certain services to be accessible using voice, for
example the following services: quote, portfolio, buy, sell. A query page is
required for these services to collect the necessary information using voice
recognition. These pages should be developed directly for these queries. Then
the result pages can come from the original application using the
HTML-to-VoiceXML transcoder together with annotators.
334 Mobile Applications with IBM WebSphere Everyplace Access Design and Development

16.4 Universal transcoding (XML source)
In this section, we discuss another universal transcoding scenario and how to
develop a VoiceXML application using XML as a generic datasource. We outline
possible problems solutions as well as practical guidelines.

The Trade2 sample voice Web application is also developed using the XML and
XSL technologies. Figure 16-11 shows the application flow of how the VoiceXML
document is produced from a single XML document.

Figure 16-11 Converting XML to VoiceXML using StyleSheets

16.4.1 Design decisions
The first decision is to develop the new solution based on the implemented
Trade2 XML application for simplified HTML. Many components can be reused
from the existing solution, which results in quick development.

As seen in the direct approach, the workflow is kept untouched (see
Section 16.2.1, “The voice site” on page 313). The functionality is reduced: the
Register and the Account pages will be not available for the voice application,
just as in the direct approach. However, the remaining workflow has the
advantage that the class concept as well as the defined XML structures can be
reused.

WebSphere Transcoding Publisher

Web Application Server

XML Text Engine XML
Handler

StyleSheets

voice
application VoiceXML Voice

Server
 Chapter 16. Voice application 335

The third decision is to use the static login VoiceXML file from the direct
approach to perform the login for the user. This should show you how you can
reduce the number of StyleSheets by using other already implemented
components.

We will use static grammar file for faster development.

16.4.2 Designing the class concept
As a consequence of the untouched workflow, the same class concept and the
same XML data of the simplified HTML solution can be used for the voice
application. In this case, the implemented TradeAppServlet as well as the
additional classes (TradeXMLHandler, TradeXMLHandlerException) and the
interfaces (ITradeXMLHandler, ITradeXMLHandlerException) do not have to be
modified. Also, no changes are necessary to the first and third tier.

For more information about the used class concept, please refer to 15.3.4,
“Defining the class concept” on page 297 and 15.3.8, “Implementing the XML
solution” on page 302.

Figure 16-12 depicts the similarities between the two different results, where one
is produced for a Web browser using HTML documents, and the other is
produced for a VoiceXML browser using VoiceXML documents. The diagram
makes it obvious that the presentation logic is absolutely the same in both cases;
only the StyleSheets, producing the final content, are different.

Figure 16-12 XML approach for simplified HTML and VoiceXML

Note: All relevant classes and interfaces are stored in the
trade_client.xml.simplifiedhtml package. For a better understanding you might
rename the package with an appropriate name (for example
trade_client.xml.solution).

servlet

presentation logic

XML

StyleSheet for
simplified HTML

StyleSheet for
VoiceXML VoiceXML

HTML
336 Mobile Applications with IBM WebSphere Everyplace Access Design and Development

16.4.3 Developing XML files
As mentioned in the discussion on design decisions above, we can use the same
XML structure as in the simplified XML solutions. The only difference is that we
do not need the TradeRegister and TradeAccount functions structure. Both
functions are disabled for the voice application. Furthermore, no TradeLogin
structure is needed because the static login.vxml is used (see 16.4.1, “Design
decisions” on page 335). Table 16-1 gives an overview of the remaining
structures.

Table 16-1 Overview of defined XML structures

Stored static in this context means that the XML file will be stored on the directory
structure of the Web server and will be used to display the appropriate page. In
this case, the XML files do not contain any dynamic data. Please note that the
TradeWelcome XML file is the only XML structure that is provided static and
dynamic. The reason for this is that the method to perform the logout of the
application should not reference the static XML file. Therefore, a new method,
doWelcome(), was added to the class (see 15.3.8, “Implementing the XML
solution” on page 302).

XML structure
name

Function Includes
dynamic data

Stored
static

Created by
application

TradeWelcome Used for the index
page of the application

NO YES YES

TradeHome Used for the home
page for a logged on
user (includes user ID
and account balance)

YES NO YES

TradePortfolio Used to show the
portfolio information
for a specific user

YES NO YES

TradeQuote Used to show quote
information for a stock

YES NO YES

TradeError Used for the error
page (includes error
code)

YES NO YES
 Chapter 16. Voice application 337

In order to store the XML files for the voice application separately in the Studio
Workbench, we created the following three new folders:

� xml/vxml/xml: to store the XML

� xml/vxml/xsl: to store the XSL

� xml/dtd: to store DTD files

The existing XML files can be copied from the /xml/simphtml/xml folder into this
folder. The static XML structures should be set publishable in order to deploy
them to the Web server later on.

16.4.4 Developing the XSL files
In the next step, create the XSL files to display the data on the user interface
based on the direct VoiceXML pages. For this purpose, implement the XSL files
as shown in the following table. In order to separate the VoiceXML StyleSheets
from the simplified HTML ones, add the ending .vxml to the files.

Table 16-2 Overview of defined and implemented StyleSheets

In comparison with the simplified HTML solution, no StyleSheets for the
registration, the login and the account information are needed. Also, no template
XSL file is used in the voice application.

Stylesheet name Function Processes
dynamic data

Corresponding
XML structure

TradeWelcome.vxml Used to display the
index page

No TradeWelcome.xml

TradeHome.vxml Used to display the
home page (after
login)

User ID and
balance

TradeHome.xml

TradePortfolio.vxml Used to display the
portfolio
information

User portfolio
data

TradePortfolio.xml

TradeQuote.vxml Used to display the
quote information
for a stock

Quote data TradeQuote.xml

TradeError.vxml Used to display the
error page

Error code TradeError.xml
338 Mobile Applications with IBM WebSphere Everyplace Access Design and Development

To create and handle the XSL files, the following tools were used:

� IBM WebSphere Studio 3.5 to manage the resources and to bundle the
application.

� XML Spy 3.5 to create the XSL StyleSheets and to test the results in
combination with the defined XML structures attaching the XML and XSL files
together.

16.4.5 Register the StyleSheets in the WTP
To set up and register the StyleSheets in WTP, the following four steps have to be
followed.

Adding voice profile
To access the application from the WTP, we have to set up and register a new
voice profile first. Please refer to , “Registering the device profile” on page 333 for
detailed guidelines.

Publishing XSL files
The second step is to publish the files from the WebSphere Studio project to a
defined target in the server directory. For more information, please refer to
18.3.2, “Publishing a WebSphere Studio project” on page 357.

Register XSL files
In the third step, we first create a new folder, Trade/voicexml, in the WTP
Administrator console. The StyleSheets themselves are registered by selecting
Register->XML Stylesheets... from the Administrator Console menu. A visual
use interface guides you through the different steps to collect the necessary
information such as the location of the file or naming and directory issues. Please
make sure to store the XSL documents in the newly created folder.

For more information on how to register the XSL files under WTP, refer to 18.8.3,
“Registering the StyleSheets” on page 374.

Setting up rules and triggers
The fourth step is the most important one. Here we have to define the rules as to
when a StyleSheet should be applied to the XML document, and which it should
be. WTP offers two possibilities: Defining rules based on the request headers and
Input DTD (see “Setting rules and triggers” on page 305). As in the simplified
HTML version, we use the HTTP request rules for the application, except for the
error pages (error pages are referenced via the DTD). All necessary rules for the
voice applications are listed in “Configuring the StyleSheets for VoiceXML” on
page 379.
 Chapter 16. Voice application 339

16.4.6 Testing the application
The best way to test the XML application is to use the IBM Voice Server SDK. We
recommend that you use the WTP in proxy mode.

For information on how to set up the WebSphere Voice Server SDK, please refer
to 18.7, “WebSphere Voice Server SDK configuration” on page 371.

For more information about testing the application, refer to 19.5, “Testing the
application” on page 395.

16.4.7 Further directions
The XML development shown was a first approach to enhancing the Trade2
application to support XML and XSL. The following list gives an overview of
individual ideas that can improve the completeness of the application:

� Improve error handling and logging of the application to allow the user to trace
exceptions.

� Enable the application so that it supports multiple languages. Multiple
language support can be achieved by adding new StyleSheets to the
application.

� Use only dynamic XML data streams. This means generating the static pages
in the Java classes as well. Otherwise, the static pages require more effort to
maintain.

16.5 Hybrid coding
The idea behind hybrid coding is to mix the new or recently developed
application, using the direct approach or the XML transformation technologies,
with the HTML-to-VoiceXML transcoder, which operates on existing pages.

Figure 16-13 on page 341 shows the concept of hybrid coding.

Note: The XML voice application uses static VoiceXML and grammar files of
the direct approach. Please make sure to publish those files to your
application server, too.
340 Mobile Applications with IBM WebSphere Everyplace Access Design and Development

Figure 16-13 Hybrid coding concept

For example, in our sample, the quote result page can be replaced by a
transcoded page from the Yahoo financial site, where the quotes are listed. Here
is the theory:

1. Instead of calling the TradeAppServlet from the Trade2 application if a quote
is requested (action=”quote”), the application submits to a different server
application:

http://finance.yahoo.com/q?s=ibm

where the URL responds with a page including the actual stock quote.

2. The request goes through the transcoder, and it realizes that there is a URL
matching condition:

URL=http://finance.yahoo.com/q?*

The matching criteria triggers the transcoder to retrieve the page from the
Yahoo site and apply the appropriate external annotation.

3. The external annotation will remove all the irrelevant information and keep
only the stock symbol and the value.

The annotator also inserts the necessary tags for the following options: buy,
refresh, home.

4. The WebSphere Transcoding Publisher sends back the result to the
VoiceXML browser.

HTML
page

VoiceXML
page

StyleSheet

XML
document

External
annotator

Enterprise's voice application

www.foo.dom

VoiceXML
page

VoiceXML
page

WebSphere Transcoding Publisher

+re
qu

es
t

re
sp

on
se
 Chapter 16. Voice application 341

The previous example assumes that the form action for the quote is rewritten,
WTP has been set up with the external annotator and the URL condition, and the
external annotator exists under WTP.

16.6 Where to find more information
� To find out more about VoiceXML refer to the documentation from the

VoiceXML group: VoiceXML specification.

� The other very useful resource is the Programming Guide, comes with the
WebSphere Voice SDK.

Note: The application only works together with the registered stock symbols. If
you want to buy a non-existing symbol, the application will report an error.
342 Mobile Applications with IBM WebSphere Everyplace Access Design and Development

Chapter 17. Application for both
interactive mobile device
and voice

This chapter will discuss those cases where both interactive mobile devices and
voice are involved in the solution at the same time.

The very first section describes two different situations where both the interactive
mobile device and voice are involved in one solution.

The following topics are then covered:

� Universal transcoding: using XML and XSL technologies together with
WebSphere Transcoding Publisher (WTP)

� Content transcoding: using the transcoding capabilities of WTP

� Multimodal applications: a new wave of mobile applications

17
© Copyright IBM Corp. 2001 343

17.1 Introduction
There are two different approaches to using both communication modes in one
application.

One approach involves the connections being independent and using separate
sessions. This approach only makes sense when the different modes are using
the same technology. For example, let us say that two different users are
accessing the Web application; one is using a wireless PC client, and the other is
using voice over a phone. In both cases, the application is using the same
technology: XML and StyleSheets to produce the content.

The other approach involves the two modes following each other in one session
and the application switching between them. It does not matter what kind of
technology lies behind the modes.

17.2 Universal transcoding
Previously, Section 15.3, “Universal transcoding (XML source)” on page 293 and
Section 16.4, “Universal transcoding (XML source)” on page 335 discussed how
to use the XML, XSL and XSLT technologies for your mobile Web application.

In both cases, a scenario was developed using universal transcoding techniques.
For interactive mobile devices, the simplified HTML pages are generated using a
set of XSLs based on a set of XMLs. For voice, the XSLs for VoiceXML are based
on the same set of XMLs as in the simplified HTML.

Figure 17-1 Generating simplified HTML and VoiceXML

presentation
logic

servlet XML

XSL for
VoiceXML

XSL for
simplified

HTML

+

VoiceXML

simplified
HTML

WTP
344 Mobile Applications with IBM WebSphere Everyplace Access Design and Development

Figure 17-1 shows two different scenarios for the solution developed for this
book. The XML generated in the presentation logic is common for the two
scenarios. The XML document is used for both generating the VoiceXML and the
simplified HTML pages. The XML document and the corresponding XSL
documents are merged by WTP, and the result is the final document in
accordance with the request.

This technique has the advantage of separating the data from the content on the
presentation level. Since the data is the common element for each form of
presentation, only the content has to be customized for each type of client
device.

Separating the content from the data makes the implementation easier when
visual and non-visual (voice) applications are implemented into the same
solution.

17.3 Content transcoding
Transcoding is the general means of translating one type of markup language
into another type of markup language. Transcoders transforms arbitrary content
into a different form that can be displayed by the client device. This involves
almost a complete transformation of the content.

The presented transcoding techniques use HTML as a base source and
transform it into another markup language. Why not use XML as the base
markup language? Because XML fits perfectly into this scenario, for several
reasons:

Since XML contains no presentation, a StyleSheet must be applied every time a
transformation is needed. If the data is presented in different markup languages,
a StyleSheet must be created not only for each markup language, but also for
every XML document. Hence, if there are M pieces of XML documents and N
types of content, then there are M x N different StyleSheets. Maintaining these
StyleSheets will require an enormous administration effort.

Transcoding has the advantage of implementing the transformation between the
different type of contents with less effort. WTP is not concerned about the final
content; it will do the transcoding based on the original HTML document.

The end result of the transcoder is questionable in some cases, but developers
can improve it by making only small modifications to the original code.
 Chapter 17. Application for both interactive mobile device and voice 345

There is also the possibility of using the XML, XSL and XSLT technologies to
produce different sets of HTML pages, then using the transcoder’s capabilities for
transforming the HTML document into the required format. For more information
about this option, read Section 15.3.1, “Converting XML to different markup
languages” on page 294.

Summary
Since content transcoding is based on HTML documents, and from the WTP
standpoint it does not matter what the final result is until WTP has the right
transcoder for that transformation, content transcoding is an ideal solution for
mobile Web applications where both interactive mobile devices and voice are
involved. It is even better if the solution can take advantage of the hybrid solution
and use the transcoding technology together with the XML, XSL and XSLT
technologies.

17.4 Multimodal applications
This section describe how different user interfaces can interact in multimodal
applications. Section 17.4.1, “Multimodal applications in WebSphere” on
page 348 describes how this is applied in WebSphere Everyplace Access.

Multimodal applications are applications that use one or more input devices (for
example keyboard, microphone, phone, etc.), recognize/understand the input,
and communicate new information back to the user using one or several different
output devices (for example screen loudspeaker, phone, etc.). This definition is
derived from Handbook of multimodal and spoken dialogue systems, by
D.Gibbon, I. Mertins, and R. Moore.

To see an illustration of this general concept of multimodal applications, see
Figure 17-2 on page 347.
346 Mobile Applications with IBM WebSphere Everyplace Access Design and Development

Figure 17-2 Scope of multimodal applications in general

On the input side, we can have:

� Speech, using the different types of speech recognition (see Chapter 3,
“Overview of speech technology” on page 33).

� Gestures:

– 2D gestures that, for example, point to an area on the map, on a screen.

– 3D gestures with, for example, position trackers or cameras.

� Handwriting recognition, on palmpads, for example.

� Observation of facial features such as lip movements. This can help improve
the speech recognition in some cases.

� Conventional input, like keyboards, mouse, etc.

On the output side, the possibilities are:

� Speech, using the text-to-speech technology.

� Text and graphics on a screen.

� Non-speech audio, for example sound clips, music, etc.

� Tactile, meaning the different kinds of movements a machine can produce
(movements, vibrations, etc.).

Speech can further be combined in talking heads and talking agents (talking
agents are images of whole bodies on the screen talking to the user).

In the following sections, we will concentrate on applications that use speech
input and/or output on the one hand and screen/keyboard on the other.

Multimodal
Application

Gesture
(2D, 3D)

Text

Handwriting
Graphics

Facial features (eyes,
lips)

Non-Speech audio
(for example, music)

Conventional input
(keyboard,...)

Tactile (for example,
movements of a

machine)

Speech Speech

and/or

and/or

and/or

and/or

and/or

and/or

and/or

and/or
 Chapter 17. Application for both interactive mobile device and voice 347

It is obvious, also from the other chapters in this redbook, that one will have to
choose carefully between those possibilities. The following guidelines appear to
have been validated by empirical evidence:

Table 17-1 Voice or visual output?

These are, of course, general guidelines to be used with sound judgement.

In the following paragraphs, we will concentrate on how current and future
WebSphere products can be used for building multimodal applications.

17.4.1 Multimodal applications in WebSphere
In the context of WebSphere, the relevant multimodal applications are enterprise
Web applications rather than document generation or command systems.

These multimodal Web applications use the same technologies and follow the
same patterns as the other applications described in this redbook, but they have
to address the additional challenge of combining the different user interfaces,
rather than just allowing the different devices to access the same application. For
example, one will have to decide how to combine the interactions described in
VoiceXML with those in WML. Some of the choices to make are:

� Will the markup languages used be tightly coupled or loosely coupled?

– Tight coupling in this context means using one markup language that
contains, for example, parts written in VoiceXML and other parts written in
WML. The synchronization is described in the markup document itself, as
shown in Example 17-1.

Use voice preferably within multimodal
applications when

Use visual output preferably when

The eyes of the user are focused on
something else (for example while driving
a car).

The eyes are visible.

Mobility is needed. Mobility is not needed.

The graphical interface is already
overloaded (for example in a plane).

Information can be added to the graphical
interface.

No spatial manipulations are required. Spatial manipulations are required.

Privacy is not an issue. Privacy is an issue.
348 Mobile Applications with IBM WebSphere Everyplace Access Design and Development

Example 17-1 Code sample in the case of tight coupling

<HTML>
<HEAD><TITLE>SBU Multi-modal Browser Demo</TITLE></HEAD>

<vxml version="1.0">
<form name="Welcome">

<block> Welcome to the SBU Multi-modal Browser Demo.
<goto next="#1"/>

</block>
</form>
<menu id="1">
<prompt> Say hello to authenticate user. </prompt>
<grammar type="text/jsgf"> hello </grammar>
<choice next="main.vxml" conext="main.html"> hello </choice>
</menu>

</vxml>

<BODY>
<H2 ALIGN = "CENTER"> Welcome to the

SBU Multi-modal Browser Demo </H2>
<P ALIGN="CENTER"> Release 1.00

</P>

</BODY>

</HTML>

– Loose coupling means that two separate (typically standard) markup
languages are used, in separate files. Synchronization has to be
performed by an external tool.

The pros and cons of tight versus loose coupling are listed in following table:

Table 17-2 Pros and cons of tight versus loose coupling.

Tight coupling Loose coupling

+ Easy synchronization within the markup
language.

- Synchronization has to be done outside
the markup language

- Non-standard markup language only. + Use of industry standard markup
languages, easier to generate.

+ Application developer maintains a single
file for voice and visual dialogues.

- Application developer has to maintain
two separate files for voice and visual
dialogues.
 Chapter 17. Application for both interactive mobile device and voice 349

The approach that will be presented in the next two paragraphs will take the
loose coupling as a starting point, and find ways to add the advantages of
tight coupling.

� Should the synchronization be put on the client device or on the server side?

Although both options are possible, the technology discussed in the next
section is put on the server; in other words, the client device is not supposed
to be multimodal (although the ability of a client device to support voice and
data simultaneously would be of great help, such devices do not yet exist on
the market).

� Should the applications be sequential or simultaneous?

One has a sequential application when one first has to interact with one
device, then close that communication, and then open the other connection to
be able to retrieve the response from it.

Simultaneous applications operate on two simultaneous connections.

Obviously, simultaneous applications should be much more convenient for the
user. But if one wants to run such an application on one device, that device
should support two simultaneous connections. For example, a WAP phone
should be able to handle voice and data transmission at the same time. As
mentioned before, such devices are not yet commercialized (they are
expected to come out in the next few years). For example, VIWO is a
sequential application, so it can run on one existing device.

17.4.2 VIWO
A VIWO (Voice In WAP Out) is an application that uses speech recognition as
input and WAP technology as output; the latter uses the push technology. The
VIWO product that will be available under WebSphere will typically be used for
sequential applications, that is, it will require the user to close the voice
connection before being able to take advantage of the WAP response.

+ No need to send a parameter to the
servlet about which markup to use, since
the markup is the same.

- Need to pass a parameter to the servlet
identifying which markup to send, or find
another solution.

- Requires higher overhead since the
entire markup stream, containing both the
voice and the visual dialogue, is sent to
both browsers.

+ Requires less overhead.

- Supports only a single embedded voice
document per visual component.

+ Supports complex voice dialogues.

Tight coupling Loose coupling
350 Mobile Applications with IBM WebSphere Everyplace Access Design and Development

Pros and cons
The main benefit of this application is that it provides a solution for owners of one
device to the painstaking problem of data input on a mobile phone. For the user,
the advantage is that there is no need to press the buttons on the smartphone
several times to type letters.

The current limitation is that the typical applications are sequential.

VIWO is therefore optimized for users having only one device, given the fact that
current devices cannot handle simultaneous connections.

How it works
Figure 17-3 shows an example of a typical data flow with the VIWO product.

Figure 17-3 Example of usage scenario of the VIWO application

1. The user calls the voice server and gives input, recognized by the voice
browser in the voice server.

2. The recognized input is sent as a parameter to the application server, in this
case to the Alert servlet.

3. The Alert servlet initiates a push to the WAP gateway, typically using the PAP
(Push Access Protocol). The information that is pushed is actually a URL with
the parameters of the user.

Voice Server

Phone

VoiceInput

Servlet

1

Application

 Server

Alert

Servlet

WAP

Gateway

2

3

4WML

Browser

5

FlightInfo

Servlet

6

DB/2

7

8

Transcoding

Publisher

9
XML

WML

Voice
 Chapter 17. Application for both interactive mobile device and voice 351

4. The WAP gateway pushes the URL to the smartphone, using SMS
messaging. In principle, WAP 1.2 Push could be used as well, but this
protocol has yet to be implemented on client devices.

The user now must switch off the voice connection in order to be able to
continue. This is because of the limitations of the current client devices.

5. The user accepts the URL, and the request is sent over WAP to the gateway.

6. The request is sent over HTTP to the servlet, which processes it.

7. The servlet sends XML output to the transcoder publisher (as will be clear
from this redbook, other alternatives exist, such as JSPs directly coded in
WML, or in transcoding from HTML to WML).

8. The transcoder produces WML output, based on the XSL StyleSheets, and
sends the WML output to the WAP gateway as an HTTP response.

9. The WML output is passed over WAP to the client device.

The question is, how can the WAP browser get the URL out from SMS? This
depends on the phone; some are capable of retrieving the URL for the WML
page from the SMS. The message server only has to send a well-formed SMS to
the user. When the user receives the message and opens it, it will initialize the
WAP browser with the encapsulated URL from the message automatically (the
user has to accept the action).

17.4.3 Future developments
In the coming years, we should see devices that handle voice and data
simultaneously. For example, the GPRS standard defines three classes of
devices, one of which is class A, meaning devices that can handle
packet-switched and circuit-switched connections simultaneously. At this point,
this is only a concept.

We should also see the use of that technology in the automotive industry,
especially in combination with location-based lookups.
352 Mobile Applications with IBM WebSphere Everyplace Access Design and Development

Part 5 Working
example

Part 5
© Copyright IBM Corp. 2001 353

354 Mobile Applications with IBM WebSphere Everyplace Access Design and Development

Chapter 18. Development environment
for the sample application

This chapter addresses the installation of the Trade2 sample application into the
pre-existing development environment consisting of:

� WebSphere Studio version 3.5.2 or newer

� Visual Age Java version 3.5.2 or newer

� WebSphere Voice Server SDK

� WebSphere Transcoding Publisher 3.5

For product installation information, refer to the documentation included with
each product.

Keep in mind that the aforementioned products have many features and therefore
many approaches are available to accomplish a task. In this chapter, we discuss
the features we found most useful in our efforts.

18
© Copyright IBM Corp. 2001 355

18.1 The development environment
The development environment requires different settings and configurations for
the application the developers are working on. This chapter will provide detailed
information about how to set up the Trade2 sample application in this
environment for further development purposes.

First, you must download the SG246259.zip file from
ftp://www.redbooks.ibm.com/redbooks/SG246259 (see Appendix A). Next,
create a directory on your local hard drive (for example: c:/weasamp on NT or
/tmp/weasamp for AIX) for the sample code, then unzip the file into the directory.

18.2 Application database
We assume that a DB2 database server is already set up in the development
environment and accessible from the developer machine.

The application connects to a back-end database, which has to be created
before you can start work on development.

Follow these steps to create your Trade2 database:

1. Log on as a database administrator on the database server.

2. Under the database directory, you can find the script which creates the
database and the tables, and also populates the database. The content for
the database is in the text (.txt) files.

3. Open a Command prompt window, change the directory to the database
directory.

4. Run init.bat.

5. A new Command prompt window will appear where the database script is
running.

After you are finished creating the database, close all the Command prompt
windows. Now the Trade database is set.

18.3 WebSphere Studio
WebSphere Studio provides an integrated development environment for the Web
applications. The following sections will describe how to import the studio archive
with the Trade2 application, then how to publish the application within the
development environment.
356 Mobile Applications with IBM WebSphere Everyplace Access Design and Development

18.3.1 Importing the Studio Archive File
Open WebSphere Studio; if this is the first time you are opening Studio, you will
be prompted with a welcome window that will allow you to create a new project,
open an existing project or import a Web site and create a new project. For the
sample application, we need to open an existing archive. This selection is not
available from the welcome window, therefore we select New and create a
dummy project.

1. From the menu bar, select File->Open Archive... to display the Open Studio
Archive File Panel.

2. Select trade.wsr and click Open.

3. Leave Create new project and extract entire archive selected, switch to the
Destination tab.

4. Select Custom locations.

5. Under the Project folder, set the directory for the Studio project, for example:
d:\wea\trade

6. Click Extract.

Now the Studio archive is extracted to the d:\wea\trade directory, and the project
is opened in Studio.

18.3.2 Publishing a WebSphere Studio project
WebSphere Studio supports Publishing Stages. Publishing stages allow a team
to test code in isolated stages. We found it beneficial to use as a model the
traditional software development model: function, unit and system test.
Therefore, three stages are included within the Studio archive. They are VAJ,
Test and Production. For the purposes of this book we used the Production stage
as the final testing environment. For real production environments, another stage
should be considered.

Table 18-1 Publishing stages

Publishing
stage

Environment Purpose

VAJ WebSphere Test Environment
running within VAJ

Function test; mainly for Java
code (for example JSP, servlet,
JavaBean and EJBs)

Test WebSphere Application Server Component test

Production WebSphere Application Server Runtime
 Chapter 18. Development environment for the sample application 357

Make sure that you have different server names under each publishing stage,
then you can apply different publishing targets to the directories. If the Studio
project has the same server name under different publishing stages, the
publishing stages will be the same for the servers and for the publishing stages.

To create a new server, follow these steps:

1. Select the top entry in the Publishing pane, for example VAJ; right-click the
entry, select Insert -> Server.

2. Give a unique name to the server, for example localhost_VAJ, and set the
server address to http://localhost.

3. Right click the server localhost_VAJ, select Properties; you will get the
following window:

Figure 18-1 Server properties: WebSphere Studio

4. To test any changes you have made, you need to have mapped drives
corresponding to the publishing targets we have established. To do this, share
the appropriate folder (restrict it to your ID) and map it to a network drive.
358 Mobile Applications with IBM WebSphere Everyplace Access Design and Development

Network drive mappings:

Table 18-2 Network drive mappings

5. Select Targets... then set up the following publishing targets for all the
publishing stages and the servers.

Publishing directories:

Table 18-3 Publishing directories for TEST

Table 18-4 Publishing directories for VAJ

Table 18-5 Publishing directories for Production

6. After finishing the target setup, click OK.

18.4 VisualAge for Java configuration
After installing VisualAge for Java (VAJ), several features are required for the
sample application to compile and run. Features can be added from the quick
start menu (which has an F2 shortcut key).

1. From the quick start menu select Features->Add features.

2. A list of features to add to the workspace will appear. For the purposes of the
sample application, add the following features.

– IBM EJB Development Environment

drive directory

V: <VAJ install directory>\ide\project_resources\IBM WebSphere
Test Environment\hosts\default_host\default_app

W: <WebSphere Install Dir>\hosts\default_host\trade2_App

Test - localhost_TEST

html w:\web

servlet w:\servlets

VAJ - localhost_VAJ

html v:\web

servlet v:\servlets

Production - <your server>

html your Web directory on the production server

servlet your servlet directory on the production server
 Chapter 18. Development environment for the sample application 359

– IBM Enterprise Toolkit for AS/400 3.5

(Do this even if you are not deploying on AS/400. The application is
capable of being deployed to AS/400 and needs this feature.)

– IBM WebSphere Test Environment

After the features above have been added to the workspace, you can verify
that the correct features have been added.

3. Select Quick start->Features->Delete feature and the following features (or
more) should be installed.

Figure 18-2 Listing installed features within VisualAge for Java

4. Press Cancel to return to the workspace.

18.4.1 Adding DB2 libraries to VisualAge for Java
In addition, the applications EJB container will need access to database drivers.
For the purposes of this redbook, the application was tested with DB2; however,
there is nothing inherent to the application that should prevent the use of other
databases.

1. Select Window -> Options to bring up the Options panel.

2. Select Resources on the left side of the navigation bar.

3. Set the Workspace class path by adding the following library to it: <DB2
install directory>\java\db2java.zip.

4. Cick OK.
360 Mobile Applications with IBM WebSphere Everyplace Access Design and Development

18.5 Importing the VisualAge for Java repository file
The following procedure will guide you through importing a VisualAge for Java
repository file, which contains the Trade2 application.

1. Select File->Import... from the VisualAge for Java menu.

Figure 18-3 Import

2. Select Repository and click Next.

Figure 18-4 Import repository

3. Use Browse to navigate to the trade.dat file in the temporary directory
created earlier.

4. Select the Projects radio button and click the adjacent Details... button. The
Project Import window should be displayed.
 Chapter 18. Development environment for the sample application 361

Figure 18-5 Project Import window

5. From the Project Import window, select the Trade project.

6. Select the latest version from the Versions Available pane, then click OK.

7. Ensure that Add most recent project edition to workspace is selected and
click Finish.
362 Mobile Applications with IBM WebSphere Everyplace Access Design and Development

18.5.1 Rebuilding the EJBs
The Trade2 application comes with several EJBs that must be mapped to
database tables (see Figure 18-6 on page 363).

1. This can easily be accomplished by right-clicking the TradeEJBs EJB group,
selecting Add then selecting Schema and Map from EJB Group.

Figure 18-6 Trade2 EJBs

2. The Trade2 servlets need to be able to access the EJBs. VisualAge for Java
greatly simplifies this task by generating Access Beans. These Access Beans
contain the logic for the JNDI lookup, establishing the RMI connection and
optionally caching the result.

Table 18-6 identifies the Trade2 application EJBs which require Access Beans
and the type of Access Bean required:

Table 18-6 EJBs with AccessBeans

EJB EJB Type Access Bean Type

Holding Entity Copy Helper

Profile Entity Copy Helper

Quote Entity Copy Helper

Trade Session Java Bean Wrapper
 Chapter 18. Development environment for the sample application 363

3. To generate an Access Bean, right-click the EJB and select Add->Access
Bean... The Create Access Bean SmartGuide dialog will be displayed.

4. The final step is to generate the deployed code. To do this, right-click the EJB
Group and select Generating Deployed Code.

Figure 18-7 Create Access Bean SmartGuide

5. If DB2 conversion is not required and if using DB2, click Finish. For other
databases, see the documentation for Java data types to determine if
conversion is required.

6. Create the Access Beans for the required EJBs (see Table 18-6 on
page 363).

18.5.2 Exporting the deployed EJBs
The EJBs for the Trade2 Web application handle the database tasks. You can
find the EJBs under VisualAge for Java; they are shipped together with the
example application.

In order to deploy the EJBs, the deployed EJB .jar file has to be produced.

1. Go to the EJB tab in VisualAge for Java, right-click the TradeEJBs EJB
group, then select Export->Deployed JAR....

This function only exports the classes related to the EJBs by default; this
application also has Access Beans, and other elements have to be packaged
together with the EJBs.

2. In the.jar file textbox, type in the directory and the filename for the .jar file; if it
is a temporary directory, then the .jar file has to be moved to the appropriate
364 Mobile Applications with IBM WebSphere Everyplace Access Design and Development

directory on the application server node. Now type:
c:\temp\Trade2Beans.jar.

All the beans should be selected by default, so the beans checkbox is
selected, and says 8 selected; below that, the .class checkbox is also
selected, and indicates that 119 class have been selected for export. In order
to select all the necessary class files, click the Details button beside the
.class label, and select the following classes also:

– HoldingAccessBean :: trade

– ProfileAccessBean :: trade

– QuoteAccessBean :: trade

– QuoteAccessBeanDated :: trade

– TradeAccessBean :: trade

3. Click OK.

4. Now some of the necessary classes are selected, but some are still missing.
Click the Select referenced types and resources button to automatically
select the missing classes; now it says that 135 class files are selected.

5. Click Finish to export the.jar file.

6. Now the deployed EJBs are in the Trade2Beans.jar file. Copy the file to the
<WAS install directory>\DeployedEJBs directory, then set them up under the
WebSphere Application Server using the Administrator’s Console.

For information on setting up EJBs in the runtime environment for WebSphere
Application Server, refer to the WebSphere V3.5 Handbook, SG24-6161.

18.6 WebSphere Test Environment configuration
The following sections will guide you through the steps to set up and configure
your WebSphere Test Environment (WTE) for the Trade2 application.

18.6.1 Setting up a new Web application under WTE
Creating a new Web application under WTE ensures that the application has the
same environment during the development phase and the final production.

The following steps will guide you through the process of setting up the Trade2
Web application under WTE. You can also find the setup directions in the
VisualAge for Java help.
 Chapter 18. Development environment for the sample application 365

1. Create the trade2_app directory under <VAJ install
directory>\ide\project_resources\IBM WebSphere Test
Environment\hosts\default_host.

2. Create the servlets and Web directory under trade2_app.

3. Copy the trade2_app.webapp file under the servlets directory from the
unpacked additional material’s directory. In the .webapp file, there is an entry
where the TradeAppServlet is defined.

4. Modify the default.servlet_engine under the <VAJ install
directory>\ide\project_resources\IBM WebSphere Test
Environment\Properties, add the new WebSphere-webgroup definition to the
file, after the default_app WebSphere-webgroup entry:

<WebSphere-webgroup name="trade2_app">
<description>Trade2 WebGroup</description>
<document-root>$approot$/web</document-root>
<classpath>$approot$/servlets$psep$$server_root$/servlets</classpath>
<root-uri>/trade/</root-uri>
<auto-reload enabled="true" polling-interval="3000"/>
<shared-context>false</shared-context>
</WebSphere-webgroup>

WTE is ready to run your new Web application under trade2_app, with the root
URI: /trade/.

For further information or if you encounter any problems, refer to IBM VisualAge
for Java Help (Creating and configuring new Web applications).

18.6.2 Adding MIME Types to WTE
In order to make the different kinds of pages work, you have to register the new
MIME types for WTE.

On your Windows NT development machine, go to the directory: <VAJ_install_
directory>\ide\project_resources\IBM WebSphere Test Environment\properties
and open the file: default.servlet_engine with a text editor (Notepad).

Find the following pattern of code:

<mime type="...">
...
</mime>
366 Mobile Applications with IBM WebSphere Everyplace Access Design and Development

There are many MIME type definitions. Go to the end of the definitions and add
yours:

<mime type="text/vnd.wap.wml">
<ext>wml</ext>

</mime>
<mime type="image/vnd.wap.wbmp">

<ext>wbmp</ext>
</mime>
<mime type="application/vnd.wap.wmlc">

<ext>wmlc</ext>
</mime>
<mime type="text/vnd.wap.wmlscript">

<ext>wmls</ext>
</mime>
<mime type="application/vnd.wap.wmlscriptc">

<ext>wmlsc</ext>
</mime>
<mime type="application/vnd.wap.wtls-ca-certificate">

<ext>ca</ext>
</mime>

18.6.3 Publishing the Studio project into WTE
1. Select the VisualAge for Java publishing stage by selecting Project ->

Publishing Stage -> VAJ.

2. Select the Server under the publishing stage name localhost_VAJ.

3. Right-click it, then select Publish this server.

4. Click OK in the window that appears, or set your publishing configuration
beforehand.

The files and directories should be published under the <VAJ install
directory>\ide\project_resources\IBM WebSphere Test
Environment\hosts\default_host\trade2_app\ directory. You should have the
following structure under the Web directory (see Figure 18-8 on page 368).
 Chapter 18. Development environment for the sample application 367

Figure 18-8 Trade2 directory content for the VisualAge for Java Web directory

Under the client, images and xml folders, there are other subfolders and files.

18.6.4 Starting the WebSphere Test Environment
Before you start WTE, make sure that the following services under Windows are
stopped:

� IBM HTTP Administration

� IBM HTTP Server

� IBM WS AdminServer

On the other hand, make sure that the DB2 server is running.
368 Mobile Applications with IBM WebSphere Everyplace Access Design and Development

To start WTE, follow these steps:

1. Start the WebSphere Test Environment by selecting Workspace->Tools->
WebSphere Test Environment... from the menu.

Figure 18-9 WebSphere Test Environment

2. Select Persistent Name Server and click Start Name Server in the adjacent
pane.

3. Select Servlet Engine and click Edit Class Path... in the adjacent pane.
 Chapter 18. Development environment for the sample application 369

Figure 18-10 Class path pane

4. Click Start Servlet Engine in the adjacent pane.

Now that the servlet engine is running within the WebSphere Test Environment, it
can serve the servlets and JSPs for Web clients.

18.6.5 Starting the EJB server
In order to access your EJBs, you have to start the EJB server, which manages
the container for the Beans. Follow these steps:

1. In the workspace, select the EJB tab.

2. Right-click the Trade2 EJB group TradeEJBs and select Add To ->Server
Configuration. If you have already added the group to the server
configuration, choose Open To ->Server Configuration.

3. A new window appears with your EJB server. Choose the appropriate EJB
server (you can have several) by selecting the EJB Group name in the right
pane of the window.

4. Right-click the selected EJB Server, then choose Start Server.
370 Mobile Applications with IBM WebSphere Everyplace Access Design and Development

It takes a while for the server to start; when the server is running, you can see a
small running figure right next to the entry.

Now the EJB server is running within the WebSphere Test Environment and
serving the EJBs under VisualAge for Java.

18.7 WebSphere Voice Server SDK configuration
WebSphere Voice SDK (WVS SDK) must undergo a post-installation process in
order to make it work together with WTP.

In order to set up the WebSphere Voice Server to a use proxy server, refer to
“Proxy settings for WebSphere Voice SDK” on page 182.

If you are using WTP as a reverse proxy, you do not have to go through the steps
described above.

18.8 WebSphere Transcoding Publisher configuration
The following section will cover the configuration of WebSphere Transcoding
Publisher for the Trade2 sample application. For more information about how to
install and set up WTP, read the IBM Redbook New Capabilities in IBM
WebSphere Transcoding Publisher Version 3.5 Extending Web Applications to
the Pervasive World, SG24-6233.

The Trade2 XML example can be used to produce simplified HTML as well as
VoiceXML output. The following sections will describe how to set up the example
for WTP.

18.8.1 Setting up the Voice transcoder
The HTML-to-VoiceXML transcoder does not come with WTP v3.51; you must
download it from the product’s Web site, then install it under WTP. Follow the
instructions in Section 16.3.3, “Setting up the HTML-to-VoiceXML transcoder” on
page 330.
 Chapter 18. Development environment for the sample application 371

18.8.2 WTP preference profile for voice application
In order to run the voice application with WTP, you must set up and register a
new device profile for the voice client, which will utilize the HTML-to-VoiceXML
transcoder. This is done by using the Profile Builder from WTP, which has to be
downloaded from the product’s Web site as a separate component (see “Profile
Builder” on page 177).

For more information about creating or modifying a device profile, please refer to
“Creating a new device profile” on page 331.

Modifying the preference profile
In order to set up the profile correctly, the Desired content types have to be
changed in the settings.

Please make sure that the value is set to text/vxml, as show in Figure 18-11.

Figure 18-11 Main setting panel for the voice preference profile
372 Mobile Applications with IBM WebSphere Everyplace Access Design and Development

Futhermore, to refer to the profile in our XSL settings we must define a a unique
key. This is done under the Advanced options in the Additional Preferences. You
should add here the key deviceType with the value VoiceProfile. See the
following figure for an example:

Figure 18-12 Advanced properties for the voice profile

In order to activate the changes made in the settings, you have to save the
settings (using the Save button in the right window) and refresh the server (by
selecting File -> Refresh Server). Otherwise, the changes do not take effect in
the application.

Additional configuration of the device profiles (optional)
When you are developing, for example, the voice application, you should disable
the other preference profiles. This is not a mandatory step; it will only help to
avoid any interference with other profiles during development.

In the next step, you should disable all profiles except the Default and the new
Voice profiles. To disable a profile, first select the profile, then click the Enabled
checkbox, deselect it, and save the changes using the Save button at the bottom
of the window.
 Chapter 18. Development environment for the sample application 373

Please make sure that the Desired content type of the Default profile is set to
text/html only. The settings in the Administrator Console should look like those
in Figure 18-13:

Figure 18-13 Overview of the device settings in WTP

18.8.3 Registering the StyleSheets
The next step is to register the StyleSheets in the WTP environment. This section
will describe how to register and configure the Stylesheets for the simplified
HTML and the VoiceXML (using universal transcoding) scenarios.

1. Open the WTP Administration Console if it is not running.

2. Create the following additional folders under the XML StyleSheet Selectors
folder:

– Trade/simplifiedHTML for the simplified HTML XSL documents

– Trade/voiceXML for the VoiceXML XSL documents

3. Under the folders, the appropriate StyleSheet should be registered. This can
be done by choosing Register -> XML StyleSheet from the menu bar.
374 Mobile Applications with IBM WebSphere Everyplace Access Design and Development

4. In the upcoming guide, you can select the StyleSheet and the folder in which
to store it in the WTP settings. After publishing the project (see 18.3.2,
“Publishing a WebSphere Studio project” on page 357), you should find the
XSL documents in the following folders:

– Simplified HTML XSL documents: <VAJ_install_
directory>\ide\project_resources\ IBM WebSphere Test
Environment\hosts\default_host\trade2_app\web\xml\simphtml\xsl

– VoiceXML XSL documents: <VAJ_install_
directory>\ide\project_resources\ IBM WebSphere Test
Environment\hosts\default_host\trade2_app\web\xml\vxml\xsl

The following steps will guide you through registering a StyleSheet with the WTP
Administration Console:

1. Select Register -> XML StyleSheet... from the menu.

2. In the Welcome window, click Next to get to the next window.

3. Find the required StyleSheet using the Browse button; after selecting the file,
the XSL file with the full path will appear in the text box. Leave the output
content format as it is; later, you can change it in the Properties panel.

4. Click Next.

5. Give a name to this entry with the registered XSL; this name should be
descriptive, and usually it is the same as the file name. You can add a
description to the entry if you wish.

6. Click Next.

7. In the next window, a tree appears with folders, where the StyleSheets will be
registered. Select your folder (for example: XML Stylesheet
Selector\trade\simphtml) then click Next.

8. The next window gives you the opportunity to set up the input and the output
DTD locations for your XML documents. Leave these fields empty unless you
want to use them (later you can also change these fields from the Properties
panel), then click Next.

9. The last window asks if the StyleSheet should be enabled or not after the
registration. Leave the default (= yes); then the StyleSheet will be enabled.

10.If you want to add another StyleSheet, click Another..; if you have finished,
click Finish.
 Chapter 18. Development environment for the sample application 375

The following tables list the StyleSheets for the Trade2 application.

Table 18-7 Simplified HTML StyleSheets

There is a TradeTemplate.shtml.xsl file published together with the StyleSheets
for the simplified HTML scenario. This file is a template, which should not be
configured under WTP; it is used by the other StyleSheets as an included file.

Table 18-8 VoiceXML StyleSheets

Name File name

TradeAccount TradeAccount.shtml.xsl

TradeError TradeError.shtml.xsl

TradeHome TradeHome.shtml.xsl

TradeLogin TradeLogin.shtml.xsl

TradePortfolio TradePortfolio.shtml.xsl

TradeQuote TradeQuote.shtml.xsl

TradeRegister TradeRegister.shtml.xsl

TradeWelcome TradeWelcome.shtml.xsl

Name File name

TradeError TradeError.vxml.xsl

TradeHome TradeHome.vxml.xsl

TradePortfolio TradePortfolio.vxml.xsl

TradeQuote TradeQuote.vxml.xsl

TradeWelcome TradeWelcome.vxml.xsl
376 Mobile Applications with IBM WebSphere Everyplace Access Design and Development

After registration, the window of the Administrator Console should look like this:

Figure 18-14 Overview of the registered XSL in the WTP

After any modifications to the profiles, click the Save button at the bottom of the
window.

Configuring the StyleSheets for simplified HTML
In order to run the application, the different StyleSheets have to be configured.
There are two main options to configure the StyleSheets: Input DTD or Condition
for Criteria Matching HTTP header.
 Chapter 18. Development environment for the sample application 377

Input DTD (in the main panel of the settings) can be used to match the
StyleSheet via a valid DTD entry. The referenced DTD has to be the same as in
the XML document. This option is only used for the two error StyleSheets. The
following table lists the values for the configuration:

Table 18-9 Overview of the configuration for the optional input DTD

Condition for Criteria Matching HTTP header (Advanced XML StyleSheet
Selection Properties) can be used to select the StyleSheet via defined criterias in
the HTTP header. For example, in the Trade2 XML application, we used it to
select StyleSheets with the help of the incoming URL. The following table lists
the values for the configuration.

Table 18-10 Overview of the configuration of the header matching preferences

Name of StyleSheet Optional input DTD name or location

TradeError.shtml.xsl file://C:/Program Files/IBM/VisualAge for
Java/ide/project_resources/IBM
WebSphere Test
Environment/hosts/default_host/trade2_a
pp/web/xml/simphtml/xml/TradeError.dtd
(can be chosen from the Browse panel)

Name of StyleSheet Condition for criteria matching HTTP
header

TradeWelcome.shtml.xsl (URL = "*Welcome.xml*") |
(URL = "*action=logout*")

TradeRegister.shtml.xsl (URL = “*TradeRegister.xml*”)

TradeLogin.shtml.xsl (URL = “*TradeLogin.xml*”)

TradeHome.shtml.xsl (URL = "*action=gohome*") |
(URL = "*action=register*") |
(URL = "*TradeAppServlet?login*")

TradeAccount.shtml.xsl (URL =*TradeAppServlet?account*) |
(URL =
"*TradeAppServlet?action=account*") |
(URL = "*action=updateAccount*")

TradeQuote.shtml.xsl (URL = "*TradeAppServlet?quote*")

TradePortfolio.shtml.xsl (URL = "*action=portfolio*") |
(URL = "*TradeAppServlet?portfolio*")
| (URL = "*action=buy*") |
(URL = "*action=sell*")
378 Mobile Applications with IBM WebSphere Everyplace Access Design and Development

Configuring the StyleSheets for VoiceXML
The following table lists the TradeError XSL for the voice application, using the
DTD for matching.

Table 18-11 Overview of the configuration for the optional input DTD

Table 18-12 lists the Stylesheets for the voice application with the HTTP header
matching.

Table 18-12 Overview for the configuration of the header matching preferences

Criteria matching preferences can be used to select a StyleSheet via defined
keys and values. This option is used in the Trade2 example to match the
StyleSheets to the voice application. Table 18-13 lists the values for the
configuration.

Table 18-13 Overview for the configuration of the criteria matching preferences

Name of StyleSheet Optional input DTD name or location

TradeError.vxml.xsl file://C:/Program Files/IBM/VisualAge for
Java/ide/project_resources/IBM
WebSphere Test
Environment/hosts/default_host/trade2_a
pp/web/xml/vxml/xml/TradeError.dtd
(can be chosen from the Browse menu)

Name of StyleSheet Condition for criteria matching HTTP
header

TradeWelcome.vxml.xsl (URL = "*TradeWelcome.xml*") |
(URL = "*action=logout*")

TradeHome.vxml.xsl (URL = "*action=login*") |
(URL = "*action=gohome*")

TradeQuote.vxml.xsl (URL = "*action=quote*")

TradePortfolio.vxml.xsl (URL = "*action=portfolio*") |
(URL = "*action=buy*") |
(URL = "*action=sell*")

Name of StyleSheet Criteria matching preferences

TradeWelcome.vxml.xsl deviceType = VoiceProfile

TradeHome.vxml.xsl deviceType = VoiceProfile

TradeQuote.vxml.xsl deviceType = VoiceProfile

TradePortfolio.vxml.xsl deviceType = VoiceProfile

TradeError.vxml.xsl deviceType = VoiceProfile
 Chapter 18. Development environment for the sample application 379

Make sure that the content-type for the voice StyleSheets is text/vxml.

18.9 TradeAppServlet configuration for voice
The voice application is implemented in two different scenarios; one is the direct
VoiceXML, the other is VoiceXML using universal transcoding.

In our example, these two scenarios cannot run at the same time. The developer
has to decide between the two and modify the code accordig to the chosen
approach.

Below is the source code from the TradeAppServlet class’
getTradeServletActionObject method. First, the User Agent will tell the servlet if
the client is a voice client, then it will instantiate the necessary object, which can
be:

� trade_client.direct.voice.TradeServletAction() for the direct approach.

� trade_client.xml.simplifiedhtml.TradeServletAction() for universal transcoding.

As you might noticed, for universal transcoding the same class is used as in the
case of the simplified HTML. The reason is that the application flow and the XML
data are the same in both cases; only the StyleSheets are different. The
StyleSheets are handled by WTP, so in this particular case, there is no reason
why we cannot use the same object.

Example 18-1 getTradeServletActionObject() method

1 // VoiceXML
2 else if (userAgent.indexOf("Voice") > -1){
3 // instantiating the object for the direct approach
4 tsAction=new trade_client.direct.voice.TradeServletAction();
5 // instantiating the object for the universal transcoding aproach
6 // tsAction=new trade_client.xml.simplifiedhtml.TradeServletAction();
7
8 session.setAttribute("devicetype","voice");
9 TradeLogging.logMessage("devicetype=voice");
10 }

The default setting for the Trade2 application is to use the direct approach. If you
want to switch to universal transcoding, you have to comment the fourth line
(where the object is instantiated) and uncomment the sixth line.

Note: In the case of the runtime environment with WebSphere Application
Server, export the class from VisualAge for Java, then restart the Web
application under WebSphere Application Server.
380 Mobile Applications with IBM WebSphere Everyplace Access Design and Development

18.10 StyleSheet import
The StyleSheets for simplified HTML use the <xsl:import=... /> tag. With this tag,
the TradeTemplate.xsl file is imported into the XSL, which contains several
supplemental content elements, such as header, navigation bar, and so on.

The <xsl:import=... /> tag accepts only absolute URLs for the imported file. In this
case, the tag should look like this:

<xsl:import=”file:///<Visual Age for Java install
path>\ide\project_resources\IBM WebSphere Test
Environment\hosts\default_host\trade2_app\web\xml\simphtml\xsl\TradeTem
plate.shtml.xsl” />

where the install path is the fully qualified install directory with the drive letter, for
example:

D:\Program Files\IBM\VisualAge for Java

The following StyleSheet files have the <xsl:import=... /> tag:

� TradeAccount.shtml.xsl

� TradeRegister.shtml.xsl

� TradeQuote.shtml.xsl

� TradePortfolio.shtml.xsl

� TradeLogin.shtml.xsl

� TradeHome.shtml.xsl

� TradeError.shtml.xsl

� TradeWelcome.shtml.xsl

Make sure that you have updated the XSL files’ import tags according to your
directory settings. For further information about this, refer to “Developing the XSL
files and the user interface” on page 300.
 Chapter 18. Development environment for the sample application 381

382 Mobile Applications with IBM WebSphere Everyplace Access Design and Development

Chapter 19. Runtime environment for the
sample application

This chapter will describe how to install the Trade2 Web Application into the
runtime environment.

The code for the Trade application, which is downloadable, includes the
deployable code for runtime and source code for development.

19
© Copyright IBM Corp. 2001 383

19.1 Runtime enviroment for the sample application
The development environment for the Trade2 application was already introduced
in the previous chapter. The same Trade2 application will be introduced here, but
this time it will be deployed in the runtime environment.

19.1.1 Runtime environment
In this book, we provide a working example with several scenarios for mobile
devices. The sample was run on the following architecture in our lab, shown in
Figure 19-1:

Figure 19-1 Runtime environment in the ITSO lab

The topology above depicts two separate cases, running in the same
environment. The two cases are:

� Using WebSphere Transcoding Publisher as a proxy, either forward or
reverse.

� Using WebSphere Transcoding Publisher as a filter servlet.

In the first case, a Windows NT machine has WTP running as a proxy, and
another Windows NT server is running WebSphere Application Server with our
Trade2 Web application.

Window s NT 4 SP6a
WebSphere

Transcoding
Publisher 3.5.1

Windows NT 4 SP6a
IBM HTTP Server 1.3.12
WebSphere Application
Server 3.5 fp2

Window s NT 4 SP6a
DB2 UDB

AIX 3.4.2
IBM HTTP Server 1.3.12
WebSphere Application
Server 3.5
WebSphere Transcoding
Publisher 3.5.1
384 Mobile Applications with IBM WebSphere Everyplace Access Design and Development

In the second case, WTP and WAS are running on the same AIX machine, and
WTP is deployed as a servlet filter.

In both cases, the same database server and the same database for the Trade2
application are used. Both WebSphere Application Server installations have their
own database: wasnt and wasaix.

When the client accesses the site, it can reach one of the Web applications by
using the right URL.

19.2 Installing and configuring the runtime environment
The following sections provide information about installing and configuring the
runtime environment. This book will not go into details in terms of product
installation, but refers to other books, and gives additional information on how to
install the products properly.

19.2.1 Database node
The database node runs on an Intel-based machine with Windows NT 4 and
Service Pack 6a. The database server is IBM DB2 UDB 6.1 with fixpack 4.

The node runs one instance of database server with three different databases:

Table 19-1 Databases

In our runtime environment, the database server is running on a dedicated
database node. The applications are accessing the server remotely, using a
database client.

Setting up the WebSphere Application Server databases
The WebSphere Application Server has to connect to a database server, where
the repository for the application server is stored. The WAS node contains the
DB2 client, and the client connects to the DB2 Server remotely.

The documentation for installing and configuring the DB2 Server on Windows NT
can be found in the WebSphere V3.5 Handbook, SG24-6161. Install DB2 server
and create an administrative database on page 1054.

Database Purpose

wasnt WebSphere Application Server repository for the NT server

wasaix WebSphere Application Server repository for the AIX server

trade The Trade2 application sample database
 Chapter 19. Runtime environment for the sample application 385

Create the two databases for the two WAS application server. Make sure that you
are using the appropriate database names for your WebSphere installation, as
shown on page 1056 of that book; wasnt for the Windows NT machine and
wasaix for the AIX machine.

Setting up the Trade2 database
The Trade2 application uses a database to store user information and data from
the stock market.

You must have the database and the tables under DB2, as well as some data to
test the application.

To find how to create the database and populate it using the scripts provided
within the additional materials, see Section 18.2, “Application database” on
page 356.

Of course, it is possible to populate the database with your own data; in that
case, use the sample text files under the database directory within the additional
materials.

19.2.2 Web application node without Transcoder
The Web application node runs on a Windows NT 4 Server with Service Pack 6a.

The following products must be installed on this node:

� DB2 client

� WebSphere Application Server

Installing the DB2 client
The documentation for installing the DB2 client on the application server machine
under Windows NT can be found in the WebSphere V3.5 Handbook, SG24-6161.

Installing WebSphere Application Server
The documentation necessary for installing WebSphere Application Server on
Windows NT can be found in the WebSphere V3.5 Handbook, SG24-6161, A.2.4
“WebSphere installation” on page 1063.
386 Mobile Applications with IBM WebSphere Everyplace Access Design and Development

After installation, make sure that you have the computer name set up under the
default_host node in the WebSphere Aministrator’s Console.

1. Start the WebSphere Administrator’s Console, then select the default_host
node in the left pane.

2. Under the General tab, there is a list within the Aliases box. Add the server
name, the server’s fully distinguished name and the local host to the list, if
they are missing. Optionally, you can also add the server’s IP address to the
list.

3. Click Apply.

4. You must restart the IBM WS AdminServer service for the changes to take
effect.

Setting up MIME types
The Web server and the Web application server both have to handle the new
mime types required by the mobile clients.

1. For the Web Server, the mime types are stored in the following file: <IBM http
server installation directory>\conf\mime.types; open the file with a text editor
such as Notepad.

2. Add the following lines to the end of the file:

text/vxml vxml
text/vnd.wap.wml wml
image/vnd.wap.wbmp wbmp
application/vnd.wap.wmlc wmlc
text/vnd.wap.wmlscript wmls
application/vnd.wap.wmlscriptc wmlsc

3. Save, then close the file.

4. Restart the IBM HTTP Server.

WebSphere Application Server also has to register the mime types.

1. Start the WebSphere Administrator’s Console, then select the default_host
node in the left pane.

2. Under the Advanced tab, there is a list within the MIME Types box. Add the
same mime types to the list as above, typing in first the extension, then the
type.

3. Click Apply.

4. Restart the application server.
 Chapter 19. Runtime environment for the sample application 387

19.2.3 Standalone Transcoder node
The standalone WebSphere Transcoding Publisher node runs on an NT 4 server
with SP6a.

Installing and configuring WebSphere Transcoding Publisher
The installation steps for WTP 3.51 on Windows NT can be found in the IBM
Redbook New Capabilities in IBM WebSphere Transcoding Publisher Version 3.5
Extending Web Applications to the Pervasive World, SG24-6233.

To configure WTP as a network proxy, follow the instructions in the IBM Redbook
New Capabilities in IBM WebSphere Transcoding Publisher Version 3.5
Extending Web Applications to the Pervasive World, SG24-6233.

19.2.4 Web application node with Transcoder
This node runs on AIX. First you must install WAS, then WTP as a servlet filter.

The following products should be installed on this node:

� DB2 client

� WebSphere Application Server

� WebSphere Transcoding Publisher

Installing the DB2 client
The installation steps for the DB2 client on AIX are the following:

1. Install the DB2 V6.1 client with fixpack 4. You can download the fixpack with
the client from the following site:
ftp://ftp.software.ibm.com/ps/products/db2/fixes/english-us/db2aixv6
1/client/runtime.

Download the following file: FP4_U471241_rtclnt.tar to a temporay directory.

2. Go to the directory where the file has been downloaded.

3. Untar the file with tar -xvf FP4_U471241_rtclnt.tar.

4. Run the setup: ./db2setup.

5. Check in the DB2 Runtime Client using the Space key. Make sure that the
Java Support is checked in under Customize...

6. Select OK.

7. In the following screen, select Create a DB2 Instance.

Important: Do not select the LDAP option when the installation asks for it.
388 Mobile Applications with IBM WebSphere Everyplace Access Design and Development

8. In the next screen, you will find the settings for db2inst1. Set the password to
db2inst1, then type it again to verify the password.

9. Select OK.

10.Select OK again.

11.Select Continue.

12.A warning window will appear; select OK. The DB2 client starts to install.

13.A Notice window will appear; select OK to acknowledge the Completed
Successfully message.

14.A Status Report window will appear; select OK.

15.Click Close, then OK.

Check to see if the directory, behind the /home/db2inst1/sqllib/java12 link, exists.
If not, you must install the Java support for DB2 manually.

1. Go to the directory where the DB2 client has been downloaded and
unpacked, then change the directory to db2/aix.

2. Run the smitty tool, then install db2_06_01.jdbc (Java Support).

The DB2 client has been installed.

The configuration steps for the WAS database connectivity with DB2 for AIX can
be found in the WebSphere InfoCenter, at the following URL:
http://www-4.ibm.com/software/webservers/appserv/doc/v35/ae/infocenter/
index.html

1. Select the Application Server AE item on the left side of the navigation bar.

2. Click the Planning and Installation item under Operating Systems... in the
right pane.

3. In the tree, select Components in a WebSphere environment->Planning
and skills for databases->Database skills->Configuring the DB2 Client
for UNIX.

4. Follow the installation steps.

Now the database for WAS running on AIX is ready.

Installing WebSphere Application Server
The installation steps for the DB2 client under AIX can be found at the
WebSphere InfoCenter, at the following URL:
http://www-4.ibm.com/software/webservers/appserv/doc/v35/ae/infocenter/
index.html.

1. Select Application Server AE on the left side of the navigation bar.
 Chapter 19. Runtime environment for the sample application 389

2. Click AIXunder Operating Systems... in the right pane.

3. Select the Using IBM HTTP Server and IBM DB2 UDB link.

4. In the new page, select Installing WebSphere Application Server 3.5.

5. Follow the installation steps.

At step 10d, make sure you are using the jdbc:db2:wasaix DB URL instead of
jdbc:db2:was.

After the installation, you should apply Fixpack 4.

1. Download Fixpack 4 to a temporary directory, then unpack it.

2. Stop the WebSphere Application Server and the IBM HTTP Server.

3. Run the script from the fixpack directory: ./install.sh.

When the installation is completed, Fixpack 4 is applied to WebSphere
Application Server.

Installing WTP as a servlet filter
For information about how to install WTP on AIX, see the product documentation
on the WTP product CD, under the docs\en directory tpdgmst.pdf. Select the
Installing link from the first page, then go to the Installing Transcoding
Publisher on AIX or Sun Solaris section. Follow the steps.

After finishing the installation, go to the next step under the Configuring
Transcoding Publisher as a WebSphere filter section. Select the trade2_app
application for deploying the filter.

19.2.5 Voice Server node
The WebSphere Voice Server node was not installed in our runtime environment.
Instead of the server, the WebSphere Voice SDK was running on the client with
the VoiceXML browser, using a speaker and a microphone and simulating the
telephony connection.

For information on how to use the WVS SDK, refer to Section 18.7, “WebSphere
Voice Server SDK configuration” on page 371.

For more information about the WebSphere Voice Server, refer to the product
documentation that comes with the WebSphere Voice Server.

Note: The installation is very similar to the previous WTP installation in
“Installing and configuring WebSphere Transcoding Publisher” on page 388,
except that WTP is deployed as a servlet filter.
390 Mobile Applications with IBM WebSphere Everyplace Access Design and Development

19.3 Deploying the sample application
There is a setup facility for the sample code which will install the Trade2 Web
application. There are prerequisites to be satisfied before you install the
application.

19.3.1 Prerequisites
The prerequisites for the Trade2 applications are:

� DB2 6.1 with Fixpack 4

� DB2 6.1 client

� WebSphere Application Server with Fixpack 4

� WebSphere Transcoding Publisher 3.51

� WebSphere Voice Server 1.5 or WebSphere Voice Server SDK 1.5

At the beginning of this chapter, you can find an explanation of the sample
runtime environment installation for the Trade2 application. There are other
topologies and configurations on different platforms where the application might
run. Of course, we cannot introduce them all, but do make sure that the listed
products above are installed and configured correctly in your runtime
environment.
 Chapter 19. Runtime environment for the sample application 391

19.3.2 NT
You must have administrator privileges to install the sample code under Windows
NT.

1. Download the SG246259.ZIP file from the redbook site
(http://www.redbooks.ibm.com) and follow the Additional Materials link.
Create a directory on your local hard drive (for example: c:\weasamp) for the
sample code, then unzip the file into the directory.

2. Open a command window.

3. Change the directory to the sample code directory: c:\weasamp.

4. The setup.bat file is in the root directory of the sample. Run the file.

5. The setup sequence will run automatically, when it is done, close the
command window.

The setup script copies the necessary files temporarily under WAS, then runs a
couple of XML-based configuration scripts. First, it creates the Application server
and the other components under WAS, then it deploys the Web application, and
finally it starts the Application server. In the end, the script cleans up the
temporary files from the WAS directory.

19.3.3 AIX
You must log on as a root to run the installation under AIX
(http://www.redbooks.ibm.com).

1. Download the SG246259.zip file from the redbook site and follow the
Additional Materials link. Create a directory on your local hard drive (for
example: /tmp/weasamp) for the sample code, then unzip the file into the
directory.

2. Open a terminal window.

3. First you must catalog the trade database. Change the user identity to the
database user: su - db2inst1

4. Type in: db2 catalog node trade at node <your database server name>

5. You can try the connection: db2 connect to trade user <user name> using
<password>, where username and password are the database user name and
password on the database server node, respectively.

6. Change the directory to the sample code directory: /tmp/weasamp.

7. Change setup.sh to be executable, chmod +x setup.sh.
392 Mobile Applications with IBM WebSphere Everyplace Access Design and Development

8. The setup.sh file is in the root directory of the sample. Run the setup by
entering ./setup.sh.

9. The setup sequence will run automatically, when it is done close the terminal
window.

The setup script for AIX does exactly the same thing as the one for Windows NT.

19.3.4 Configuring WTP for the Trade2 application
The Trade2 application requires you to install the HTML-to-VoiceXML transcoder,
then to register new device profiles for clients and the XSLs (StylesSheets) for
the universal transcoding approach.

HTML-to-VoiceXML transcoder
The installation steps for setting up the HTML-to-VoiceXML transcoder can be
found in Section 18.8.1, “Setting up the Voice transcoder” on page 371. Follow
the instructions there to install the transcoder in the runtime environment.

Device profile
The sample code distributed with the redbook contains the device profile file
ready to register. You can find the files under c:\weasamp\Wtp\profiles\. There
are two profiles:

� voicebrowser.prop

� Wapprofit_imode.prop

To install them under WTP, follow the instructions from Section 18.8.2, “WTP
preference profile for voice application” on page 372.

StyleSheets
The StyleSheets are published under WAS; they can be found in the directory
<WAS install directory>\hosts\default_host\trade2_app\web\xml\. There are three
subdirectories:

� dtd

� simphtml

� vxml

To register the StyleSheets with WTP, follow the instructions from Section 18.8.3,
“Registering the StyleSheets” on page 374.
 Chapter 19. Runtime environment for the sample application 393

Make sure that you are using the runtime environment directories for the
StyleSheets, instead of using the VisualAge for Java directories. Change the
TradeTemplate <...include...> tags in the simplified HTML XSL files; to do that,
refer to Section 15.3.7, “Developing the XSL files and the user interface” on
page 300.

The simplified HTML XSL pages have an <xsl:include ...> tag in the third
line, where the included StyleSheet is defined. There you have to change the
path for the included StyleSheet, for example:

<WebSphere install
path>\hosts\default_host\trade2_app\web\xml\simphtml\xsl\TradeTemplate.
shtml.xsl

19.4 Entry point for the Trade2 Web application
Handling all the different devices poses a small problem when users want to
access the first page of the application: each device requires an entry point
which conforms to the device type. In other words, a WAP phone requires a WML
page where the Web application can start, an i-mode phone requires a cHTML
page, a VoiceXML browser is looking for a VoiceXML document.

There are several solutions to the starting page problem.

� Each device can have a different base URL; for example, WAP has
wap.mysite.dom, voice has voice.mysite.dom, and so on.

� Each device can have a separate page for starting; for example, WAP has
www.mysite.dom/index.wml, voice has www.mysite.dom/index.vxml, and so
on.

� Other solutions are based on URL separation.

The Trade2 sample application utilizes a servlet, which is the common entry point
for each device. The servlet uses the same technique as the TradeAppServlet to
redirect the client to the right starting page based on the User-Agent.

The servlet is called StartPage, and it is deployed under WebSphere Application
Server using the following URI: /trade/index.

Having the StartPage servlet, each device can access directly the http://<your
server>/trade/index URL; the servlet will then redirect the device to the right
page.

Important: This tag cannot handle a relative path, but only an absolute path.
394 Mobile Applications with IBM WebSphere Everyplace Access Design and Development

19.5 Testing the application
Finally, when everything is set and the system is running together with the
sample application, there must be a test performed to find out if it is working, and
how it is working.

For information about the test clients and testing software, please refer to
Section 10.3, “Tools for testing the application” on page 182. There you can find
a list of the different testing clients, where you can download them, and how to
use them.

19.5.1 Test sequence
Here we provide a short test sequence which will guide you through the whole
Trade2 Web application. The walkthrough is based on the base sample
application for HTML browser running on a desktop PC.

1. Access the site at the very first URL, using the common entry point at
http://<server name>/trade/index.

2. The first page is a general welcome page; select the Login link.

3. The login page asks for a user ID and password (johnd/johnd); fill out the
fields then submit the form. The voice application will ask for the user ID and
the password (56463/56463), then do the challenge.

4. If the login was successful, the first page will be a personalized welcome page
for the user.

5. Access the Account page using the Account link, where you can update the
account information.

6. Change any of the fields you wish, then submit the form.

7. The Account page reappears with the modified fields.

8. Access the Portfolio page by clicking the Portfolio link.The stocks held by the
account are listed on the page.

9. Try buying one. Select the first one, modify the amount from 100 to 22, then
click Buy.

10.The new list of portfolio appears, including a new item at the end with 22
shares.

11.Now try selling stock. Select the first one again then click Sell. The updated
portfolio will show that the item has been sold.

12.Get quote for a stock. Choose one stock, then click the Quote button. The
page will show the most recent details of the requested stock.
 Chapter 19. Runtime environment for the sample application 395

13.When you are done, log out from the application using the Logout link.

14.The very first general welcome page reappears (index page).

19.5.2 Direct
To access the Trade application directly for testing, use the following address:

http://<server name>/trade/index

It is also possible to access the individual pages for each type of device:

� Base sample: http://<server name>/trade/index.html

� WAP emulator: http://<server name>/trade/direct/wml/index.wml

� WebSphere Voice SDK:
http://<servername>/trade/direct/voice/index.vxml

19.5.3 Content transcoding
Here, the client goes through the WebSphere Transcoding Publisher, meaning
that either the client has to be configured to use the proxy server, or the proxy
server has to run as a reverse proxy.

Wapprofit’s i-mode emulator can be found at http://<WTP server name>/trade/

19.5.4 Universal transcoding
In this case, as in the previous case, the client must go through WebSphere
Transcoding Publisher. You can set up the proxy settings for the client or use
WebSphere Transcoding Publisher as a reverse proxy.

Note: There is no extension after index, because the URL calls a servlet,
which is mapped to that alias. The original servlet is the StartPage class; it
receives the first request, checks the User-Agent, then dispatches the request
to the appropriate URL.

Note: In the case of the Wapprofit’s i-mode emulator, WebSphere Transcoding
Publisher must run as a reverse proxy, because the emulator does not provide
proxy settings for the client.
396 Mobile Applications with IBM WebSphere Everyplace Access Design and Development

� Simplified HTML:
http://<servername>/trade/xml/simphtml/xml/TradeWelcome.xml

� WebSphere Voice SDK:
http://<servername>/trade/xml/vxml/xml/TradeWelcome.xml

19.6 Notes for other platforms
In this example, the Trade2 application is deployed under Windows NT 4 SP6a
and AIX 4.3.2. Since this application is a pure Java Web application, it can be
deployed under any platform running WebSphere Application Server v3.5.
WebSphere Transcoding Publisher v3.51 is also available on several platforms
besides Windows NT and AIX.
 Chapter 19. Runtime environment for the sample application 397

398 Mobile Applications with IBM WebSphere Everyplace Access Design and Development

Part 6 IBM Web and
wireless
solutions

Part 6
© Copyright IBM Corp. 2001 399

400 Mobile Applications with IBM WebSphere Everyplace Access Design and Development

Chapter 20. Introduction to WebSphere
Everyplace Suite

In this chapter, other offerings of WebSphere Everyplace Suite will be introduced,
which provide runtime environment components for mobile Web applications.

In this book, only features related to the WebSphere Everyplace Access offering
will be discussed. We will try to answer the question of what to do once the
WebSphere Everyplace Access offering has been “outgrown.”

For more information about the WebSphere Everyplace Suite, please refer to the
IBM Redbook An Introduction to IBM WebSphere Everyplace Suite Version 1.1
Accessing Web and Enterprise Applications, SG24-5995.

20
© Copyright IBM Corp. 2001 401

20.1 What is it for?
WebSphere Everyplace Suite is a comprehensive service solution for mobile
service providers. It includes components for subscriber management, data
synchronization, notification, and optional wireless gateway.

20.2 Extending capabilities
There are customer demands which are not met with the capabilities of the
WebSphere Everyplace Access offering. WebSphere Everyplace Suite offers
three different editions for mobile e-businesses, in which WebSphere Everyplace
Access represents only the first step in enabling businesses for mobile clients.

Whenever a function is required which is not provided by WebSphere Everyplace
Access, it will be found within one of the other two offerings. The next section will
introduce the new functions provided by the other editions.

20.2.1 Editions
WebSphere Everyplace Suite boasted three editions at the time this book was
written:

� WebSphere Everyplace Access offering Version 1.1

� WebSphere Everyplace Server Enable offering Version 1.1

� WebSphere Everyplace Server Service Provider offering Version 2.1

These editions have different capabilities and features. From one edition to the
next, in the order shown above, the services provided become more numerous.
WebSphere Everyplace Access is the entry level offering for those who want to
implement mobile e-business solutions.

New functions in the WebSphere Everyplace Server Enable offering are:

� Synchronization services

� Device management

� Support for third-party subscriber databases and authentication

� Transaction queueing

New functions in the WebSphere Everyplace Server Service Provider offering
are:

� Instant messaging

� Advanced notification
402 Mobile Applications with IBM WebSphere Everyplace Access Design and Development

� Location-based services

� Subscriber administration and management

� User and device authentication

� Encryption and VPN services

20.3 Connectivity services
As mentioned in Section 8.1, “The different modes of pervasive computing” on
page 104, there are several modes of communication available for mobile
applications. Some of these modes are not provided by the WebSphere
Everyplace Access offering.

These services require other elements’ existence in the architecture and also
require support from the underlying infrastructure. The two following
communication modes are examples of other services provided in a different
offering in WebSphere Everyplace Suite.

20.3.1 Notification
In most cases, clients are not connected online to the network, and may not, in
fact, even be switched on. The user expects real-time, up-to-date information in
certain circumstances. Notification makes the server-to-client direction of the
communication possible, where the server pushes the information (with the
approval of the client) without requesting it from the client.

This technology requires additional services and elements in the infrastructure.

20.3.2 Asynchronous communication
Messaging and synchronization services between the client and another client or
a server is provided through asynchronous communication. It is a different form
of communication and requires support for protocols other than the synchronous
communication protocols.

20.4 Security
Security is one of the most essential parts of e-business solutions. The
WebSphere Everyplace Suite family provides a security infrastructure for the
applications. However, the WebSphere Everyplace Access offering does not
propose any particular solution to security demands; it relies on the underlying
security infrastructure.
 Chapter 20. Introduction to WebSphere Everyplace Suite 403

Since most e-business solutions require enhanced security, the base network
infrastructure or the application tier security usually cannot ensure the required
security.

The IBM WebSphere Everyplace Suite is designed to create a safe environment
to support pervasive computing. It is designed to have centralized user
authentication from limited points of entry. It provides single sigh-on for credential
sharing across the services hosted by the Suite. The Edge Server relies on a set
of industry standard security solutions, such as TLS/SSL and WTLS, to achieve
the security objectives for the service domain. The Suite uses the proxy
technology in conjunction with a firewall to define the secure boundary for the
service domain.

For more information about WebSphere Everyplace Security, please refer to the
IBM Redbook An Introduction to IBM WebSphere Everyplace Suite Version 1.1
Accessing Web and Enterprise Applications, SG24-5995.

20.5 Summary
The other WebSphere Everyplace Suite offerings provide new services and
components for mobile e-business applications. These require additional
elements in the infrastructure, either hardware or software components.

The main requirements which the other offerings can satisfy with more or better
solutions are:

� New connectivity services, such as notification and asynchronous
communication

� Advanced security infrastructure above the network layer

� Centralized application and solution management
404 Mobile Applications with IBM WebSphere Everyplace Access Design and Development

Chapter 21. Other products

The WebSphere family covers a wide set of products. Nowadays we can find a
solution to any of the various IT demands among the WebSphere products.

The products introduced here are just a set of the WebSphere product family,
related or close to mobile Web applications.

For more information about the WebSphere product family, please refer to the
IBM Web site: http://www.software.ibm.com/

21
© Copyright IBM Corp. 2001 405

21.1 WebSphere Portal Server
The IBM WebSphere Portal Server allows companies to build their own custom
portal Web site to serve the needs of employees, business partners and
customers. Users can sign on to the portal and receive personalized Web pages
providing access to the information, people, and applications they need. This
personalized single point of access to all necessary resources reduces
information overload, accelerates productivity, and increases Web site usage.

WebSphere Portal Server allows you to:

� Build multiple types of portals on a single integrated infrastructure based on
the WebSphere Portal Architecture

� Provide a scalable, single point of access for data, people, and applications
� Deliver an easy to use graphical interface suitable for both occasional and

expert users
� Crawl and categorize intranet and Internet repositories
� Execute a federated search against all forms of data, structured and

unstructured
� Aggregate and summarize information content for users
� Customize the look and content of home page displays by user
� Build rules-based and collaborative filtering personalization
� Integrate applications and workflow systems into the portal
� Add collaborative services such as e-mail, shared places, and instant

messaging
� Add pervasive wireless device support for remote and mobile users
� Provide multiple levels of security and authentication services
� Acquire syndicated information from over 50,000 databases for news and

research
� Add modules from Independent Software Vendors or custom-developed

modules
� Acquire Web site tools for JSP page building, performance monitoring,

caching, etc.
� Build next generation Web sites with standards such as XML, SOAP, CORBA,

and LDAP
� Manage users as individuals or within groups
� Access control at the Portlet level
� Use Portlets to access Lotus and Microsoft Office applications
� Use WebSphere Personalization as an integrated component
� Run distributed, heterogeneous searches across disparate data sources
� Implement a flexible architecture that enables integration with your current

Directory, Database, and Security infrastructure
406 Mobile Applications with IBM WebSphere Everyplace Access Design and Development

Figure 21-1 on page 407 gives a high-level overview of the WebSphere Portal
architecture.

Figure 21-1 WPS architecture

Nowadays, the demand for mobile Web portals is increasing. Mobile Web portals
are capable of serving not only desktop browsers, but other mobile devices such
as WAP-enabled phones, different PDAs and even phones using voice.

Find more information at http://www-4.ibm.com/software/webservers/portal/

21.2 WebSphere Personalization Server
IBM WebSphere Personalization Server for Multiplatforms, Version 3.5 provides
users of WebSphere Application Server Advanced and Enterprise Editions and
WebSphere Studio Advanced Edition with the capabilities to build an intranet or
extranet Web site which delivers Web pages customized to the interests and
needs of each site visitor.
 Chapter 21. Other products 407

Personalization targets Web content to meet a user's needs and preferences.
The WebSphere Personalization package contains support for two
personalization technologies:

1. Rules-based personalization

For a rules-based personalization solution, the business manager defines a
set of business rules that determine what Web content is displayed for a
particular user. Developed by IBM, the WebSphere Personalization
rules-based technology is tightly integrated into the WebSphere Application
Server programming model and scalability architecture. Rules-based
personalization is used across a wide spectrum of Web applications, such as
employee self-service sites, business partner extranets and customer
self-service sites.

2. Collaborative filtering powered by LikeMinds Personalization Server 5.2.1

The collaborative filtering technology employs recommendation engines that
use advanced statistical models and other forms of intelligent software to
extract trends from the behavior of Web site visitors. This approach adapts to
changing trends in visitors' interests without creating new business rules. The
Macromedia LikeMinds collaborative filtering technology is highly scalable
and can be exploited by WebSphere applications using the LikeMinds
Personalization Server Java APIs.

WebSphere Personalization for Multiplatforms includes three main engines:

1. Rules Engine: executes the business rules that determine which content is
displayed to each site visitor.

2. Resource Engine: enables Web site owners to optimize their personalization
strategy by calling upon content and profile information from multiple sources.

3. Recommendation Engine: uses collaborative filtering to offer content and
product recommendations to site visitors, enabling cross-selling and
up-selling.
408 Mobile Applications with IBM WebSphere Everyplace Access Design and Development

The following schematic diagram (Figure 21-2) depicts the runtime environment
for the personalization engine:

Figure 21-2 Personalization engine runtime environment

Personalization for mobile Web applications has the same purpose and
advantages as for any HTML-based Web application. Since the personalization
engine operates behind the scenes, any mobile Web application can acquire the
result and format it into any type of content.

21.3 SecureWay Wireless Gateway
IBM SecureWay Wireless Gateway and Client extend Internet Protocol (IP)
connectivity across a diverse set of wireless and wireline networks to enable
TCP/IP applications to seamlessly access enterprise networks. SecureWay
Wireless Gateway and Client, sometimes referred to as middleware, are
components of SecureWay Wireless Software. These components work together
to provide security for communications and improve the performance of mobile
computing applications.The SecureWay Wireless Client supports the mobile
worker’s need for real-time access to the same information that is available in the
office.

SecureWay Wireless Client resides on a user's mobile PC or handheld device
and communicates with the Wireless Gateway over any IP-based connection,
including wireless or dial-up networks. SecureWay Wireless Gateway integrates
the mobile networks and provides the connection to the enterprise network.

Mobile users can use the same Wireless Gateway and access the same
enterprise applications. SecureWay Wireless Gateway also enables mobile users
to connect to multiple applications, as they can do using desktop computers
within the enterprise network.
 Chapter 21. Other products 409

Companies can support multiple networks, which enables mobile users to use
the network that best meets their individual needs and cost objectives.

SecureWay supports many worldwide protocols, including DataTac, Mobitex,
AMPS, GSM, PSTN, Satellite, and Japanese networks. It supports applications
using industry-standard protocol sockets, so users do not need to learn special
interfaces or proprietary tools and protocols.

This comprehensive network access security solution features bidirectional user
authentication and data encryption.

Find more information at
http://www-3.ibm.com/pvc/products/secureway/index.shtml

21.4 WebSphere Translation Server
The IBM WebSphere Translation Server for Multiplatforms is a machine
translation (MT) offering that can help companies remove language barriers to
global communication and e-commerce. WebSphere Translation Server (WTS)
enables enterprises to provide Web pages, e-mail messages and chat
conversations in multiple languages and in real time. Specifically designed for
enterprise use, the WebSphere Translation Server allows companies to use their
existing Web infrastructure to provide content to users in their native language, at
a fraction of the cost of professional translation.

Based on IBM machine translation technology, WebSphere Translation Server is
designed for scalability on multiple platforms.

IBM WebSphere Translation Server for Multiplatforms Version 1.0 consists of:

� MT engines for translating text from one language into another

� User Dictionary Manager tools, that allow specific words to be added to a
domain

� WebSphere Translation Server, which makes the engines available for Web
page translation on the fly

� HTTP server support, providing interfaces for WebSphere, Domino,
Netscape, and Microsoft IIS

Supported languages include the following:

� English-to-French, French-to-English
� English-to-Italian, Italian-to-English
� English-to-German, German-to-English
� English-to-Spanish, Spanish-to-English
410 Mobile Applications with IBM WebSphere Everyplace Access Design and Development

� English-to-Chinese (simplified)
� English-to-Chinese (traditional)
� English-to-Japanese
� English-to-Korean

IBM has expanded WebSphere Translation Server to incorporate bundled
regional translation software licenses and services in the WebSphere Translation
offering.

Find more information at
http://www-4.ibm.com/software/speech/enterprise/ep_8.html

21.5 Where to find more information
� For IBM software products, please refer to the following URL:

http://www.software.ibm.com
 Chapter 21. Other products 411

412 Mobile Applications with IBM WebSphere Everyplace Access Design and Development

Part 7 Appendixes

Part 7
© Copyright IBM Corp. 2001 413

414 Mobile Applications with IBM WebSphere Everyplace Access Design and Development

Appendix A. Additional material

This redbook refers to additional material that can be downloaded from the
Internet as described below.

Locating the Web material
The Web material associated with this redbook is available in softcopy on the
Internet from the IBM Redbooks Web server. Point your Web browser to:

ftp://www.redbooks.ibm.com/redbooks/SG246259

Alternatively, you can go to the IBM Redbooks Web site at:

ibm.com/redbooks

Select Additional materials and open the directory that corresponds to the
redbook form number, SG246259.

Using the Web material
The additional Web material that accompanies this redbook includes the
following file:

File name Description
SG246259.zip The Trade2 mobile enabled sample application

A

© Copyright IBM Corp. 2001 415

ftp://www.redbooks.ibm.com/redbooks/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.ibm.com/redbooks/

System requirements for downloading the Web material
The following system configuration is recommended:

Hard disk space: 10 MB minimum
Operating System: Windows NT or AIX
Processor: 500MHz or higher
Memory: 512 MB or higher

How to use the Web material
Create a subdirectory (folder) on your workstation, and unzip the contents of the
Web material zip file into this folder. The contents of the unzipped file are used in
many of the examples throughout this redbook.

Refer to Chapter 18, “Development environment for the sample application” on
page 355 and Chapter 19, “Runtime environment for the sample application” on
page 383 for instructions on setting up the sample application for the
development environment and for the runtime environment.
416 Mobile Applications with IBM WebSphere Everyplace Access Design and Development

Related publications

The publications listed in this section are considered particularly suitable for a
more detailed discussion of the topics covered in this redbook.

IBM Redbooks
For information on ordering these publications, see “How to get IBM Redbooks”
on page 419.

� Mobile Commerce Solutions Guide using WebSphere Commerce Suite V5.1,
SG24-6171

� New Capabilities in IBM WebSphere Transcoding Publisher Version 3.5
Extending Web Applications to the Pervasive World, SG24-6233

� Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for
Java, SG24-5755

� The Front of IBM WebSphere Building e-business User Interfaces,
SG24-5488

� Programming with VisualAge for Java Version 3.5, SG24-5264

� How about Version 3.5? VisualAge for Java and WebSphere Studio Provide
Great New Function, SG24-6131

� WebSphere Personalization Solutions Guide, SG24-6214

� Version 3.5 Self Study Guide: VisualAge for Java and WebSphere Studio,
SG24-6136

� The XML Files: Using XML and XSL with IBM WebSphere V3.0, SG24-5479

� Enterprise JavaBeans Development Using VisualAge for Java, SG24-5429

� WebSphere V3.5 Handbook, SG24-6161

� Extending e-Business to Pervasive Computing Devices Using IBM
WebSphere Everyplace Suite Version 1.1.2, SG24-5996

� An introduction to IBM WebSphere Everyplace Suite Version 1.1 Accessing
Web and Enterprise Applications, SG24-5995
© Copyright IBM Corp. 2001 417

Other resources
These publications are also relevant as further information sources:

� Avrahm Leff and James T. Rayfried, IBM Research Report Web-Application
Development Using Model/View/Controller Design Pattern

� E.Gamma, R.Helm, R.Johnson and J.Vlissides, Design Patterns: Elements of
Reusable Object-Oriented Software, Addison-Wesley Pub.Co., ISBN:
0201633612

� D.Gibbon, I. Mertins and R.Moore, Handbook of Multimodal and Spoken
Dialogue Systems: Resources, Terminology and Product Evaluation, Kluwer
Academic Publishers, ISBN: 0792379047.

� B. Balentine, D. P. Morgan and W. Meisel, How to Build a Speech Recognition
Application, Enterprise Integration Group, Inc., ISBN: 0967127815.

� M. Schroeder (ed.), Speech and Speaker Recognition, S.Karger Publishing,
ISBN: 3805540124.

� A. Waibel and K.-F. Lee (ed.), Readings in Speech Recognition, Morgan
Kaufmann Publishers, ISBN: 1558601244.

Referenced Web sites
These Web sites are also relevant as further information sources:

� http://www.software.ibm.com/ IBM’s Software Web site

� http://www.openwave.com Openwave’s Web site

� http://www.syncml.com SyncML specification Web site

� http://www.voicexml.org VoiceXML specification Web site

� http://www-4.ibm.com/software/webservers/transcoding/ WebSphere
Transcoding Publisher Web site

� http://java.sun.com/docs/books/tutorial/java/concepts/object.html
Object oriented programming concepts in Java

� http://java.sun.com/products/ejb/ Sun’s EJB Web site

� http://java.sun.com/products/javabeans/ Sun’s JavaBeans Web site

� http://www.w3.org/XML W3C’s Web site about XML

� http://www.w3.org/Style/XSL W3C’s Web site about XSL

� http://www.w3.org/TR/xslt W3C’s Web site about XSLT

� http://www.w3.org./Markup/ W3C’s Web site about markup languages

� http://xml.apache.org Apache’s Web site, XML related projects
418 Mobile Applications with IBM WebSphere Everyplace Access Design and Development418 Mobile Applications with IBM WebSphere Everyplace Access Design and Development

� http://www.w3.org/TR/1998/NOTE-compactHTML-19980209/ W3C’s Web
site about compact HTML

� http://www.w3.org/DOM W3C’s Web site about DOM

� http://www.nttdocomo.com/i/ NTT DoCoMo’s i-mode Web site

� http://www.wapforum.org Wapforum Web sites

� http://voicexml.org VoiceXML Web site

� http://www.xmlspy.com XML Spy’s Web site

� http://www.alphaworks.ibm.com IBM’s Open Source development site

� http://www-4.ibm.com/software/speech/ IBM’s speech products site

� http://lynx.browser.org/ Lynx Web browser’s site

� http://www.opera.com Opera Web browser’s site

� http://www.nokia.com/corporate/wap/sdk.html Nokia’s WAP SDK site

� http://developer.openwave.com Openwave’s developer site

� http://www.wapprofit.com Wapprofit’s Web site

� http://www.ietf.org The Internet Engineering Task Force’s Web site

� http://www.rsa.com/rsalabs/rsa_algorithm/index.html RSA’s Web site
about the RSA algorithm

� http://www.certicom.com/research/wecc3.html Certicom’s Web site
about ECC

How to get IBM Redbooks
Search for additional Redbooks or redpieces, view, download, or order hardcopy
from the Redbooks Web site:

ibm.com/redbooks

Also download additional materials (code samples or diskette/CD-ROM images)
from this Redbooks site.

Redpieces are Redbooks in progress; not all Redbooks become redpieces and
sometimes just a few chapters will be published this way. The intent is to get the
information out much quicker than the formal publishing process allows.
 Related publications 419

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.ibm.com/redbooks/

IBM Redbooks collections
Redbooks are also available on CD-ROMs. Click the CD-ROMs button on the
Redbooks Web site for information about all the CD-ROMs offered, as well as
updates and formats.
420 Mobile Applications with IBM WebSphere Everyplace Access Design and Development420 Mobile Applications with IBM WebSphere Everyplace Access Design and Development

Special notices

References in this publication to IBM products, programs or services do not imply
that IBM intends to make these available in all countries in which IBM operates.
Any reference to an IBM product, program, or service is not intended to state or
imply that only IBM's product, program, or service may be used. Any functionally
equivalent program that does not infringe any of IBM's intellectual property rights
may be used instead of the IBM product, program or service.

Information in this book was developed in conjunction with use of the equipment
specified, and is limited in application to those specific hardware and software
products and levels.

IBM may have patents or pending patent applications covering subject matter in
this document. The furnishing of this document does not give you any license to
these patents. You can send license inquiries, in writing, to the IBM Director of
Licensing, IBM Corporation, North Castle Drive, Armonk, NY 10504-1785.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact IBM Corporation, Dept.
600A, Mail Drop 1329, Somers, NY 10589 USA.

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The information contained in this document has not been submitted to any formal
IBM test and is distributed AS IS. The use of this information or the
implementation of any of these techniques is a customer responsibility and
depends on the customer's ability to evaluate and integrate them into the
customer's operational environment. While each item may have been reviewed
by IBM for accuracy in a specific situation, there is no guarantee that the same or
similar results will be obtained elsewhere. Customers attempting to adapt these
techniques to their own environments do so at their own risk.

Any pointers in this publication to external Web sites are provided for
convenience only and do not in any manner serve as an endorsement of these
Web sites.
© Copyright IBM Corp. 2001 421

The following terms are trademarks of other companies:

C-bus is a trademark of Corollary, Inc. in the United States and/or other
countries.

Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Sun Microsystems, Inc. in the United States and/or other
countries.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of
Microsoft Corporation in the United States and/or other countries.

PC Direct is a trademark of Ziff Communications Company in the United States
and/or other countries and is used by IBM Corporation under license.

ActionMedia, LANDesk, MMX, Pentium and ProShare are trademarks of Intel
Corporation in the United States and/or other countries.

UNIX is a registered trademark in the United States and other countries licensed
exclusively through The Open Group.

SET, SET Secure Electronic Transaction, and the SET Logo are trademarks
owned by SET Secure Electronic Transaction LLC.

Other company, product, and service names may be trademarks or service
marks of others.
422 Mobile Applications with IBM WebSphere Everyplace Access Design and Development

Glossary

AMPS. Advanced Mobile Phone Services. A
common analog cellular telephone service
standard.

Applet. A Java applet is a small application
program that is downloaded to and executed on
a Web browser or network computer. A Java
applet typically performs the type of operations
that client code would perform in a client/server
architecture. It edits input, controls the screen,
and communicates transactions to a server,
which in turn performs the data or database
operations.

API. Application Program Interface.

Bean Managed Persistence. Bean Managed
Persistence (BMP) is a term used to describe a
type of entity Enterprise JavaBean where the
bean developer specifies how the bean is to be
persisted to a database by writing Java code in
the appropriate methods to perform the tasks
required.

Bluetooth. A short range (10 to 100 m.)
wireless radio transport.

Cache. A cache stores cachable responses in
order to reduce the response time and network
bandwidth consumption on future, equivalent
requests. Any client or server may include a
cache, though a cache cannot be used by a
server while it is acting as a tunnel.

Cache server. Some networks use a cache
server to store Web pages and other data, so
that if the same pages are requested frequently,
they can be served from the cache rather than
repeatedly retrieved from external Web servers.
The external cache is an HTTP proxy such as
IBM Web Traffic Express. IBM WebSphere
Transcoding Publisher can use it to store and
retrieve transcoded Web pages and
intermediate results to avoid repeating the
transcoding of frequently accessed pages,
delivering better performance.
© Copyright IBM Corp. 2001
CDMA. Code Division Multiple Access. A
second generation digital cellular network
standard.

CDPD. Cellular Digital Packet Data. Designed to
work as an overlay on analog cellular networks.

CGI. Common Gateway Interface. A standard
way of communicating between different
processes.

Cell phone. CELLular telePHONE is the first
ubiquitous wireless telephone. Originally analog,
all new cellular systems are now digital. This has
enabled the cell phone to turn into a smart phone
that has access to the Internet.

Clustering. Clustering is a technique used to
provide scalability through the use of multiple
copies of an application on the same machine or
on separate machines. Careful management of
the different applications is necessary to ensure
that they work together effectively. WebSphere
has limited clustering support in Version 2.x and
more support in Version 3.0.

cHTML. Compact HTML is a more efficient
variation of HTML specifically designed for use by
the i-mode wireless service.

Container Managed Persistence. Container
Managed Persistence (CMP) is a term used to
describe a type of entity Enterprise JavaBean
where the code to persist the bean to a
database is generated at deployment time by
the EJB container.

Dictionary. In this context the word ‘vocabulary’
can be used as well, although it would generally
have a slightly different meaning. In the book we
will use both words to refer to the set of words that
a speech recognition engine is capable of
identifying.
 423

e-business. e-business is a term used by IBM to
describe the use of Internet technologies to
transform business processes. What this means in
practice is using Internet clients such as Web
browsers as front ends for applications that access
back-end legacy systems to allow greater access.
See http://www.software.ibm.com/ebusiness for
more information.

Enterprise Java Beans. Despite the name,
Enterprise Java Beans (EJBs) are not Java
Beans. Enterprise Java Beans are server-side
Java components that are designed for
distributed environments. They do not exist in
isolation but rather are deployed in containers
that provide services such as security, naming
and directory services, and persistent storage.
WebSphere Application Server is just such a
container. See http://java.sun.com/products/ejb/
for more information.

EPOC. A 32-bit operating system for handheld
devices from Symbian Ltd. Used in Psion and
other handheld computers, it supports Java
applications, e-mail, fax, infrared exchange, data
synchronization with PCs and includes a suite of
PIM and productivity applications. See
http://(www.symbian.com for more information.

ESS. Enterprise Solution Structure defines a set
of technical reference architectures that are
included in SIMethod.

FIR/IIR. Finite and Infinite Impulse Response filters,
respectively.

Fricatives (or fricated sound). Sounds produced
by light contractions of the mouth, lips and tongue,
which forces the air through narrow gaps producing
audible friction.

Gateway. A server which acts as an intermediary
for some other server. Unlike a proxy, a gateway
receives requests as if it were the origin server
for the requested resource; the requesting client
may not be aware that it is communicating with a
gateway. Gateways are often used as server-side
portals through network firewalls and as protocol
translators for access to resources stored on
non-HTTP systems.

GPRS. General Packet Radio Service or GPRS is
an enhancement to the GSM mobile
communications system that supports data packets.
GPRS enables continuous flow of IP data packets
over the system for such applications as Web
browsing and file transfer. GPRS differs from GSM's
short messaging service (GSM-SMS) which is
limited to messages of 160 bytes in length.

GSM. Global System for Mobile Communications is
a digital cellular phone technology based on TDMA
that is the predominant system in Europe, but is
also used around the world. Developed in the
1980s, GSM was first deployed in seven European
countries in 1992. Operating in the 900 MHz and
1.8 GHz bands in Europe and the 1.9 GHz PCS
band in the U.S., GSM defines the entire cellular
system, not just the air interface (TDMA, CDMA,
etc.). As of 2000, there were more than 250 million
GSM users, which is more than half of the world's
mobile phone population.

Grapheme. The smallest part of written language
that can be analyzed. It consists of one or more
symbols used to represent a phoneme.

GPS. Geographical Positioning System.

Grammar. a set of rules to determine valid
concatenations of phonemes or words. In
VoiceXML, a grammar also includes the set of
recognizable words for an ASR engine.

Hidden Markov chain. A computational model
where the transition between two states A and B is
measured by the probability of reaching the state B
from the state A, that is p(B|A). The states are not
directly observable (hence, hidden) but each
produces observable outputs with a given
probability.

HDML. Handheld Device Markup Language is a
specialized version of HTML designed to enable
wireless pagers, cell phones, mobile phones and
other handheld devices to obtain information from
Web pages. HDML was developed by Phone.com
(formerly Unwired Planet) before the WAP
specification was standardized. It is a subset of
WAP with some features that were not included in
424 Mobile Applications with IBM WebSphere Everyplace Access Design and Development

WAP. AT&T Wireless launched the first
HDML-based service in 1996.

HTML. Hyper Text Markup Language is a
document format used on the World Wide Web.
Web pages are built with HTML tags, or codes,
embedded in the text. HTML defines the page
layout, fonts and graphic elements as well as the
hypertext links to other documents on the Web.
Each link contains the URL, or address, of a Web
page residing on the same server or any server
worldwide, hence the term “World Wide” Web.

HTTP proxy. An HTTP proxy is a program that
acts as an intermediary between a client and a
server. It receives requests from clients, and
forwards those requests to the intended servers.
The responses pass back through it in the same
way. Thus, a proxy has functions of both a client
and a server. Proxies are commonly used in
firewalls, caching and transcoding machines.

IBM WebSphere Transcoding Publisher. IBM
WebSphere Transcoding Publisher is network
software that modifies content presented to users
based on the information associated with the
request, such as device constraints, network
constraints, user preferences, and organizational
policies. Transforming content can reduce or
eliminate the need to maintain multiple versions
of data or applications for different device types
and network service levels.

Image Transcoder. Image Transcoder is a
transcoder that can scale, modify quality, and
modify color levels in JPEG and GIF images.
Additionally, the Image Transcoder can convert
JPEGs to GIFs for devices that do not render
JPEGs.

i-mode. A packet-based information service for
mobile phones from NTT DoCoMo (Japan). i-mode
provides Web browsing, e-mail, a calendar, chat
rooms, games, and customized news. It was the
first smart phone system for Web browsing and its
popularity grew very quickly after its introduction in
1999. i-mode is a proprietary system that uses a
subset of HTML, known as cHTML, in contrast to

the global WAP standard that uses a variation of
HTML, known as WML. The i-mode transfer rate is
9600 bps, but is expected to increase to 384 kbps in
2001, using W-CDMA.

IrDA. The Infrared Data Association develops
standards for wireless, infrared transmission
systems between computers. With IrDA ports, a
laptop or PDA can exchange data with a desktop
computer or use a printer without a cable
connection. IrDA requires line-of-sight transmission
like a TV remote control. IrDA products began to
appear in 1995. See http://www.irda.org for more
information.

JavaBeans. JavaBeans are Java components
designed to be used on client systems. They are
Java classes that conform to certain coding
standards. They can be described in terms of
their properties, methods and events. JavaBeans
may be packaged with a special descriptor class
called a BeanInfo class and special property
editor classes in a JAR file. Java Beans may or
may not be visual components. See
http://www.javasoft.com/beans/docs for more
information.

JavaServer Pages (JSP) . JSPs provide a
simplified, fast way to create dynamic Web
content. JSP technology enables rapid
development of Web-based applications that are
server and platform independent. JavaServer
Pages are compiled into servlets before
deployment.

JDBC. JDBC is a Java API that allows Java
programs to communicate with different database
management systems in a platform-independent
manner. Database vendors provide JDBC drivers
with their platforms that implement the API for
their database, allowing the Java developer to
write applications to a consistent API no matter
which database is used.

JNDI. Java Naming and Directory Interface
(JNDI) is an API that allows Java programs to
interface and query naming and directory
services in order to find information about
network resources. JNDI is used in WebSphere
to provide a directory of Enterprise Java Beans.
 Glossary 425

See http://java.sun.com/products/jndi/index.html
for more information.

JSP. See JavaServer Pages.

Language model. A mathematical description of
language-dependent features.

m-commerce. Mobile commerce refers to the use
of mobile devices to partially or completely perform
a transaction electronically from a commerce Web
site for the exchange of goods or services for
monetary consideration. Simply put, m-commerce
is electronic commerce using a mobile device such
as a mobile phone or PDA.

Mobile device. A mobile device is a portable,
generally small, wireless device that can be used to
access the Internet via a browser. It includes a wide
range of capability and functionality. Mobile devices
include mobile phones, wireless PDAs, and
wireless laptops.

Mobile phone. A mobile phone is a wireless smart
phone that has a microbrowser to access Internet
content. Other names for a mobile phone include
cell phone and wireless phone.

MQe. See MQ Everyplace.

MQ Everyplace. It is designed to satisfy the
messaging needs of lightweight devices and the
requirements that arise from the use of fragile
communication networks.

PDA. Personal Digital Assistant.

PCS. Personal Communications Services (PCS)
are wireless services that emerged after the U.S.
Government auctioned commercial licenses in
1994 and 1995. This radio spectrum in the 1.8-2
GHz range is typically used for digital cellular
transmission that competes with analog and digital
services in the 800 MHz and 900 MHz bands.

Persistence. Persistence is a term used to
describe the storage of objects in a database to
allow them to persist over time rather than being
destroyed when the application containing them
terminates. Enterprise Java Bean containers
such as WebSphere provide persistence services
for EJBs deployed within them.

Phoneme. The smallest linguistic unit that convey a
meaning distinction between words. Hence, words
can be split in units of individual sounds, each of
which is a phoneme.

PKI. Public Key Infrastructure.

PvC. Popular short form within IBM for pervasive
computing.

Proxy. Transcoding Publisher connects through a
proxy server that is configured with a firewall to
manage network traffic and to protect your
network from outside intrusion.

Pulse. A signal of short duration.

Push. Push refers to a technology that sends
data to a program without the program's request
(unsolicited).

RMI. Remote Method Invocation (RMI) is a
lightweight distributed object protocol that allows
Java objects to call each other across a network.
RMI is part of the core Java specification. See
http://java.sun.com/products/jdk/rmi/index.html for
more information.

Scalability. Scalability is an abstract attribute of
software that refers to its ability to handle
increased data throughput without modification.
WebSphere handles scalability by allowing
execution on a variety of hardware platforms that
allow increased performance and clustering.

Servlets. Servlets are Java classes that run on
Web servers to provide dynamic HTML content to
clients. The servlets take as input the HTTP
request from the client and output dynamically
generated HTML. For more information, see
http://www.software.ibm.com/ebusiness/pm.html#Servlet
s.

SMS. Short Message Service or SMS is a text
message service that enables short messages of
generally no more than 140-160 characters in
length to be sent and transmitted from a cell phone.
SMS is supported by GSM and other mobile
communications systems. Unlike paging, short
messages are stored and forwarded in SMS
centers.

SOCKS. A SOCKS server is a proxy server that
uses a special protocol, sockets, to forward
426 Mobile Applications with IBM WebSphere Everyplace Access Design and Development

requests. Transcoding Publisher connects
through a SOCKS server that is configured with a
firewall to manage network traffic and to protect
your network from outside intrusion (it supports
Versions 4 and 5 SOCKS servers).

SSL. Secure Sockets Layer. A secure protocol
used for authentication and encryption. SSL can
be used over HTTP, RMI, Telnet and other
protocols.

Stand-alone Network Proxy. When the IBM
WebSphere Transcoding Publisher is used as a
normal proxy in a browser, the data that flows
from the original source will be transcoded in the
proxy according to the device and network profile
needed.

StyleSheet Transcoder. StyleSheet Transcoder
is a transcoder that selects the style sheet and
applies it to an input Extensible Markup
Language (XML) document to produce a version
that is appropriate for the target device.

TCP/IP. TCP/IP is a set of protocols developed to
allow cooperating computers to share resources
across a network.

TDMA. Time Division Multiple Access. A second-
generation digital cellular network standard.

Text Transcoder. Text Transcoder is a transcoder
that can modify elements of a text document
based on device, network and, potentially, user
preference information. The primary use of this
Text Transcoder is to modify Hypertext Markup
Language (HTML) documents to remove
unsupported elements, reduce space usage,
replace features such as images or frames with
links, and otherwise tailor documents to allow for
their better display on devices with screen
limitations.

TLS. Transport Layer Security. The standard
(IEFT) security protocol on the Internet. It is
expected to eventually supersede SSL.

Transcoder. A transcoder is a program that
modifies the content of a document.

Transcoding. Transcoding is a new technology
that gives you the ability to make Web-based
information available on handheld and other new
type devices economically and efficiently, or on

the slow network connections like a dial up
modem connection. With transcoding, users
receive information (text and images) tailored to
the capabilities of the devices they are using and
also tailored to the capacity of the network being
used.

Transcoding is also the process whereby the
MEGs modify the request and generate the
original resource and all of the document (or
resource) editing (or transcoding).

Tunnel. A tunnel is an intermediary program
which acts as a blind relay between two
connections.

UMTS. Universal Mobile Telecommunications
System is the European implementation of the 3G
wireless phone system. UMTS, which is part of
IMT-2000, provides service in the 2 GHz band and
offers global roaming and personalized features.
Designed as an evolutionary system for GSM
network operators, multimedia data rates of up to 2
Mbps are expected using the W-CDMA technology.
In the meantime, GPRS and EDGE are interim
steps that will speed up wireless data for GSM. For
more information, visit http://www.umts-forum.org.

Understanding. In this context, we refer to the
possibility of identifying idiomatic expressions or
sentences where the meaning is affected by the
feelings of the speaker.

URL. Uniform Resource Locator. The URL
specifies the Internet address of a file stored on a
host computer connected to the Internet.

Voiced sound. A sound is said to be voiced when
vocal cords vibration is involved. Voiced sounds are
usually vowels, semi-vowels and nasals.

VXML. Voice XML is an extension of XML that
defines voice segments and enables access to the
Internet via telephones and other voice-activated
devices. AT&T, Lucent and Motorola created the
Voice XML Forum to support this development. For
more information, visit http://www.vxml.org.

Voice XML. See VXML.
 Glossary 427

VRU. A common synonym for VRU is Interactive
Voice Response, which historically refers to DTMF
applications.

WAP. Wireless Application Protocol. The point of
this standard is to serve Internet contents and
Internet services to wireless clients and WAP
devices, such as mobile phones and terminals. The
authoritative source for WAP is
http://www.wapforum.org.

Waveform. A graphical representation of periodic
signals.

Web application servers. A Web application
server is a software program designed to manage
applications at the second tier of three-tier
computing, that is, the business logic
components. A Web application server manages
applications that use data from back-end
systems, such as databases and transaction
systems, and provides output to a Web browser
on a client. For more information see
http://www.software.ibm.com/ebusiness/appsrvsw.html

Web browser. To access the World Wide Web,
you must use a Web browser. A browser is a
software program that allows users to access and
navigate the World Wide Web.

Wireless network. Used to transmit data
between wireless devices such as a mobile phone,
PDA, or personal computer without the use of a
physical cable or wire.

Wireless service provider. An organization that
provides wireless services, including cellular
services, satellite services and ISPs.

Wireless LAN. A wireless LAN is a local area
network that transmits over the air, typically using
an unlicensed frequency such as the 2.4 GHz band.
A wireless LAN does not require lining up devices
for line of sight transmission, as IrDA does.
Wireless access points (base stations) are
connected to an Ethernet hub or server and
transmit a radio frequency over an area of several
hundred to a 1000 feet, which can penetrate walls
and other non-metal barriers. Roaming users can
be handed off from one access point to another like
a cellular phone system. Laptops use wireless

modems that plug into an existing Ethernet port or
that are self contained on PC cards, while
stand-alone desktops and servers use plug-in cards
(ISA, PCI, etc.).

WLP. A modified version of the Point-to-Point
Protocol (PPP) used by the IBM Wireless
Gateway to support wireless (non-WAP) client
devices.

WML. Wireless Markup Language. XML-based,
WML tags are used to mark up content in decks
for WAP-enabled devices.

WTE. Web Traffic Express. An IBM caching proxy.

WTLS. Wireless Transport Layer Security. A
simplified version of TLS designed specifically for
WAP devices. It uses mini-certificates.

WTP. WebSphere Transcoding Publisher.

WWW. The World Wide Web (known as the Web)
is a system of Internet servers that supports
hypertext to access several Internet protocols on
a single interface.

X.509. A digital certificate specification used by
SSL and TLS. Mini-certificates are used by
WTLS.

XML. XML, or Extensible Markup Language, is a
platform-independent and
application-independent way of describing data
using tags. XML (a subset of SGML) is similar to
HTML in that it uses tags to describe document
elements, but different in that the tags describe
the structure of the data rather than how the data
is to be presented to a client. XML has the ability
to allow data providers to define new tags as
needed to better describe the data domain being
represented. For more information see
http://www.software.ibm.com/xml.

XSL. Extensible Style Language. XSL
stylesheets are documents that describe a
mapping between XML documents and visual
data that can be presented to a client in a
browser or mini-browser.
428 Mobile Applications with IBM WebSphere Everyplace Access Design and Development

Index

Symbols
“Wizard-of-Oz” technique 318

Numerics
4thpass Kbrowser 25

A
Access Beans 246
Access Integration pattern 69
Advanced notification 402
AMPS 15
annotators 271
Application Integration patterns 69
Application patterns 74
application server node 81, 84, 85
Articulation based synthesis 52
asynchronous 105
Asynchronous communication 403
Automatic Speech Recognition (ASR) 36
AvantGo 25

B
back-end 242
barge-in 326
Bean Management Persistence 158
Behavior 148
Behavioral patterns 147
Bluetooth 17
BMP 158
Business patterns 67

C
card 257
Cascading StyleSheets 161
cdmaOne 17
Cellular Digital Packet Data (CDPD) 15
cellular radio networks 11
CGI 130
cHTML 163, 290
circuit-switched 11
Classification and Regression Trees (CART) 50
© Copyright IBM Corp. 2001
CMP 158
Code Division Multiple Access (CDMA) 17
Collaboration business pattern 68
Collaborative filtering 408
Command pattern 149
Compact HTML 163
Compaq iPaq 26
Composite actions 320
Composite patterns 70
Computer Telephony Interface (CTI) 58
Computing modes 104
Concatenation based synthesis 52
Condition for Criteria Matching HTTP header 378
Container Management Persistence 158
Content transcoding 345
Continuous speech recognition 38
Controller 127, 139
Correct action 47
Correct rejection 45
Creational patterns 147
Customer Relationship Management (CRM) 34

D
database server node 82
DB2 Client 385
DB2 Server 385
DCS1900 13
Decision points 108
decision tree 107
Deletion 45
Design patterns 146
device class 107
Device management 402
device profiles 114
DHTML 80
Dialog Management (DM) 43
Dictation 38
Dictionaries 40
direct 256
Direct Spread - Code Division Multiple Access
(DS-CDMA) 16
directory and security services node 82, 84
directory dialer 56
 429

Discrete speech recognition 37
DMZ 81, 83, 84, 85
Document Style Semantics and Specification Lan-
guage 161
Document Type Definition (DTD) 159
DOM object 284
domain firewall 82, 83
Dual Tone Multi Frequency (DTMF) 34

E
EdgeMatrix WAPman 25
EDI (Electronic Data Interchange) 160
Editor agents 135
Editors 142
Emulator 29
Encryption and VPN services 403
Enterprise Java Beans (EJBs) 157
Enterprise JavaBeans 128
Entity Beans 158
EPOC 27
Ericsson 27
Existing 109
Extended Enterprise business pattern 68
Extensible HTML 164
eXtensible Markup Language 159
Extensible Stylesheet Language 160
Extensible Stylesheet Language Transformation
161
Ezos’s EzWAP 27

F
Factory pattern 150
False rejection 45
filter 98
filter servlet 384
footer 251
forms 256
Forward-proxy 99
front-end 242

G
Gateway 88
General Packet Radio Service(GPRS) 14
Generator agents 135
Grammars 40
GSM 13

H
Handheld Device Markup Language 163
Handspring Blazer 24
HDML 163
header 251
Hewlett-Packard Jornada 26
Hidden Markov Models (HMMs) 41
Hosting Service Providers 6
HTML 162
HTML-to-VoiceXML transcoder 328
HTTP 134
HTTP protocol 18
hybrid 295, 340
Hypertext Markup Language 162
Hyper-Text Transfer Protocol 134

I
IBM framework and Open Standards 67
IBM HTTP Server 96
IBM Universal Messaging 58
IBM ViaVoice 54
IBM WebSphere Voice Server for DirectTalk 310
IBM WebSphere Voice Server SDK 310
IBM WebSphere Voice Server with ViaVoice Tech-
nology 310
Identity 148
IEEE 802.11b 17
IETF (Internet Engineering Task Force) 217
i-mode 19
Information Aggregation business pattern 68
Infrared 10
Input DTD 305, 378
Insertion 45
Instant messaging 402
Integration patterns 69
Intellisync Browse-it 24
International Mobile Equipment Identifier 14
International Mobile Telecommunications-2000
(IMT-2000) 16
Internet Service Providers 30
Inter-word rejection 45

J
JavaBeans 156
JavaServer Pages 128
JavaServer Pages (JSPs) 154
J-PHONE 19
430 Mobile Applications with IBM WebSphere Everyplace Access Design and Development

K
KDDI 19

L
load balancer node 81
Locaton based services 403
Loose coupling 349

M
machine translation (MT) 410
MEG (Monitor, Editor, Generator) 135
MIME types 256, 366
Mobile applications 4
Mobile Service Providers 6
Mobile Services (M-services) 19
Mobitex 14
Model 127
Model-View-Controller (MVC) 122
Monitor agents 134
Multi Carrier - Code Division Multiple Access
(MS-CDMA) 17
Multi-modal 107
multimodal applications 346
multimodal Web applications 348

N
Natural Language Understanding (NLU) 42
navigation bar 251
neural networks (NNs) 42
Nokia 27
Nokia WAP toolkit 263
Non-existing 109
non-IP network 86
Non-rewriteable 110
non-visual 345
Notification 403
notification 105
NTT DoCoMo 19

O
object 148
object-oriented components 146
Official Site 20
OmniSky OmniSky 25
Out-of-dictionary/out-of-grammar rejection 45

P
packet-switched 11
Palm 23

HTTP browser 24
HTTP browsers

OmniSky 25
Qualcomm EudoraWeb 25

WAP browsers
4thpass Kbrowser 25
EdgeMatrix WAPman 25

Web Clipping
browser 26

PALM OS 23
PAP (Push Access Protocol) 351
Pattern matching algorithm 41
Patterns for e-business 66
PCT (Private Communication Transport) 217
Perfect word match 46
Personal Communications Services (PCS) 13
Personal Digital Assistant (PDA) 23
Personal Digital Cellular (PDC) 16
Platform 90
PocketIE 26
PocketPC 26

WAP browser 27
protocol firewall 82
proxy 384
Proxy pattern 151
PSION 27
Public Key Cryptography 218
Publishing Stages 357

Q
Qualcomm EudoraWeb 25

R
Recommendation Engine 408
Redbooks Web site 419

Contact us xvi
request headers 305
Resource Engine 408
Reverse-proxy 99
Rewriteable 110
RSA 218
Rule based synthesis 52
Rules Engine 408
Rules-based personalization 408
Runtime pattern 80
 Index 431

S
scenarios 242
Secureway Firewall 97
SecureWay Wireless Gateway 409
Security 403
Self-Service business pattern 68
separate actions 320
sequential applications 350
Service Level Characteristics 80
Servlet 128, 154
session beans 158
Short Message Services (SMS) 105
side bar 251
simplified HTML 335
Simulator 29
simultaneous applications 350
SMS 352
Speaker dependent system 37
Speaker independent system 37
spectral features 41
speech-to-text 36
SSL 80, 217
State 148
stateful session bean 158
Stateless session beans 158
Structural patterns 147
StyleSheet 294
Subscriber administration and management 403
Subscriber Identity Module (SIM) 13
Substitution 46
Synchronization 10
Synchronization services 402
synchronous mode 104
SyncML 106

T
Template pattern 149
text document 284
Thight coupling 348
third-party subscriber databases and authentication
402
three tier servlet architecture 243
TLS (Transport Layer Security) 217
Trade2 242
Trade2 Web application 249
Transaction queueing 402
transcoder friendly 290
Tweaking 113

U
UML activity diagram 260
Universal Mobile Telecommunications System
(UMTS) 16
universal transcoding 335, 344
UP.browser 263
User and device authentication 403
User interface (UI) 244
user node 80
Utterances 39

V
View 128, 140
visual 345
Visual Age for Java 8
VIWO (Voice In WAP Out) 350
Voice applications 106
Voice Extensible Markup Language 164
VoiceXML 164
VoiceXML forms 323
VoIP gateway 310
Voluntary Site 20

W
WAP 256

browser 25
WAP 1.2 Push 352
WAP gateway 351
WAP push 105
waveform 41
WBI API v4.5 285
Web application 365
Web application server node 81, 83, 84, 85
Web Clipping 20

proxy server 26
Web Clipping Application 20
Web Clipping proxy 20
Web Intermediaries 115, 132, 269
Web server node 81, 84, 85
Web server redirector node 81
WebSphere Application Server 7, 95
WebSphere Edge Server 96
WebSphere Everyplace Access Offering Version
1.1 402
WebSphere Everyplace Access V1R1 Offering 5
WebSphere Everyplace Server Enable Offering Ver-
sion 1.1 402
WebSphere Everyplace Server Service Provider Of-
432 Mobile Applications with IBM WebSphere Everyplace Access Design and Development

fering Version 2.1 402
WebSphere Everyplace Suite 402
WebSphere Personalization Server 407
WebSphere Portal Architecture 406
WebSphere Portal Server 406
WebSphere Studio 8
WebSphere Test Environment (WTE) 365
WebSphere Transcoding Publisher 7, 95
WebSphere Translation Server 410
WebSphere Voice Server 7, 95
Windows CE (WinCE) 26
Wireless Application Protocol (WAP) 18
wireless LAN 10, 17
Wireless Markup Language 163
Wireless networks

generations 12
Wireless Personal Area Networks 10
Wireless Service Providers 6
WML 163
WTLS 218

X
XHTML 164
XML 159, 293
XSL 160, 293
XSLT 161, 293
 Index 433

434 Mobile Applications with IBM WebSphere Everyplace Access Design and Development

(0.5” spine)
0.475”<

->0.875”
250 <

-> 459 pages

M
obile Applications w

ith IBM
 W

ebSphere Everyplace Access

®

SG24-6259-00 ISBN 0738422568

INTERNATIONAL
TECHNICAL
SUPPORT
ORGANIZATION

BUILDING TECHNICAL
INFORMATION BASED ON
PRACTICAL EXPERIENCE

IBM Redbooks are developed by
the IBM International Technical
Support Organization. Experts
from IBM, Customers and
Partners from around the world
create timely technical
information based on realistic
scenarios. Specific
recommendations are provided
to help you implement IT
solutions more effectively in
your environment.

For more information:
ibm.com/redbooks

Mobile Applications with IBM
WebSphere Everyplace Access
Design and Development

Mobile Web
applications using
Application Server
and Transcoding
Publisher

Voice applications
using Voice Server

Mobile extensions to
Patterns for
e-business

This redbook provides application designers and developers
with a broad overview of mobile e-business application
design and development using the WebSphere Everyplace
Access V1R1 offering.

The book gives an overview of the Patterns for e-business
and shows how to use the Patterns in the mobile e-business
environment.

It also discusses the design and development guidelines for
mobile e-business applications using the products bundled in
the WebSphere Studio and Visual Age for Java offerings.

This book provides detailed information about the sample
application by discussing scenarios and implementing
mobile applications exercising different techniques for
several type of clients.

It also provides detailed instructions for setting up the
development and runtime environment for WebSphere
Application Server, WebSphere Transcoding Publisher and
WebSphere Voice Server together with the sample shipped
with the redbook.

Back cover

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

	Front cover
	Contents
	Preface
	The team that wrote this redbook
	Special notice
	IBM trademarks
	Comments welcome

	Part 1 Introduction
	Chapter 1. Introduction to IBM WebSphere Everyplace Access V1R1
	1.1 Definitions
	1.2 Business drivers
	1.3 WebSphere Everyplace Access in this book
	1.4 Run-time applications
	1.4.1 WebSphere Application Server
	1.4.2 WebSphere Transcoding Publisher
	1.4.3 WebSphere Voice Server

	1.5 Development applications
	1.5.1 WebSphere Studio
	1.5.2 VisualAge for JavaEE

	Chapter 2. Overview of mobile technologies
	2.1 Technology background
	2.2 Mobile accessibility
	2.3 Wireless networks
	2.3.1 Mobile communications network history
	2.3.2 GSM
	2.3.3 GPRS
	2.3.4 Mobitex
	2.3.5 CDPD
	2.3.6 PDC
	2.3.7 IMT-2000
	2.3.8 Wireless LANS

	2.4 Wireless protocols
	2.4.1 HTTP protocol
	2.4.2 WAP
	2.4.3 M-services
	2.4.4 i-mode
	2.4.5 Web Clipping

	2.5 Mobile devices
	2.5.1 Phones for voice interaction
	2.5.2 Mobile phones
	2.5.3 PDAs
	2.5.4 Wireless laptops
	2.5.5 Mobile device pros and cons

	2.6 Emulators and mobile clients
	2.7 Content and markup languages
	2.8 Wireless Service Providers
	2.9 Where to find more information

	Chapter 3. Overview of speech technology
	3.1 Speech-enabled versus text-based applications
	3.1.1 Benefits of voice applications
	3.1.2 Limitations of voice applications

	3.2 Speech recognition
	3.2.1 System architecture
	3.2.2 Natural Language Understanding and Dialog Management
	3.2.3 Application styles
	3.2.4 Speech recognition errors
	3.2.5 Recognition performance

	3.3 Speech synthesis
	3.3.1 Synthesizer architecture
	3.3.2 Quality assessment for TTS

	3.4 IBM ViaVoice
	3.4.1 Multilingual support for ViaVoice
	3.4.2 ViaVoice limitations

	3.5 Examples of voice-enabled applications
	3.5.1 Speech reco applications
	3.5.2 TTS applications

	3.6 Future development
	3.7 Where to find more Information

	Part 2 Patterns for e-business
	Chapter 4. Patterns for e-business
	4.1 Using Patterns for e-business
	4.2 Business patterns
	4.3 Integration patterns
	4.4 Composite patterns
	4.5 The patterns used in this book
	4.6 Where to find more information

	Chapter 5. Application patterns
	5.1 Application patterns
	5.2 Application patterns for Access integration
	5.2.1 Pervasive Device Access application pattern

	5.3 Application patterns for Self-Service
	5.3.1 Stand-Alone Single Channel application pattern

	Chapter 6. Runtime patterns
	6.1 Runtime nodes
	6.2 Runtime pattern for the Self-Service application
	6.2.1 Basic Runtime pattern
	6.2.2 Runtime variation

	6.3 Runtime pattern for the Pervasive Device Access
	6.3.1 Base Runtime pattern
	6.3.2 Runtime pattern variation

	6.4 Gateway placement

	Chapter 7. Runtime product mappings
	7.1 Selecting products
	7.2 Product mappings
	7.2.1 The WebSphere Everyplace Access V1R1 offering
	7.2.2 Additional products for the offering

	7.3 WebSphere Transcoding Publisher considerations
	7.3.1 Proxy model
	7.3.2 Filter model in WebSphere Application Server
	7.3.3 Running JavaBean transcoders
	7.3.4 Choosing the right model

	7.4 Where to find more information

	Part 3 Wireless Internet application: guidelines
	Chapter 8. Solution design
	8.1 The different modes of pervasive computing
	8.1.1 Synchronous
	8.1.2 Notification
	8.1.3 Asynchronous
	8.1.4 Voice
	8.1.5 Multimodal

	8.2 Decision tree
	8.2.1 Device classes
	8.2.2 The decision tree
	8.2.3 When to apply tweaking
	8.2.4 Custom solutions

	8.3 Visual design
	8.4 Non-visual design: voice
	8.4.1 Challenges of voice versus visual applications
	8.4.2 Voice applied to the decision tree
	8.4.3 Other aspects of voice related to solution design

	Chapter 9. Application design
	9.1 Web application
	9.1.1 Model-View-Controller
	9.1.2 Sample Web application

	9.2 Extending a Web application to a mobile application
	9.2.1 Extending the architecture

	9.3 Mobile architecture
	9.3.1 Web Intermediaries
	9.3.2 A mobile application
	9.3.3 IBM WebSphere Transcoding Publisher

	9.4 Design patterns
	9.4.1 Object
	9.4.2 Command pattern
	9.4.3 Template pattern
	9.4.4 Factory pattern
	9.4.5 Proxy pattern
	9.4.6 Advantages of patterns

	9.5 Where to find more information
	9.5.1 IBM
	9.5.2 Outside of IBM

	Chapter 10. Application development
	10.1 Web application elements
	10.1.1 Java servlet
	10.1.2 JSPs
	10.1.3 JavaBeans
	10.1.4 Enterprise JavaBeans
	10.1.5 XML
	10.1.6 XSL
	10.1.7 XSLT
	10.1.8 HTML, cHTML, HDML, WML
	10.1.9 VoiceXML

	10.2 Development tools
	10.2.1 WebSphere Studio
	10.2.2 VisualAge for Java
	10.2.3 Development tools in WTP
	10.2.4 XML tools
	10.2.5 Voice SDK

	10.3 Tools for testing the application
	10.3.1 Overview
	10.3.2 Testing the HTML application
	10.3.3 Testing the simplified HTML application
	10.3.4 Testing the WML application
	10.3.5 Testing the cHTML application
	10.3.6 Testing the Voice application
	10.3.7 Other emulators

	10.4 Best practices
	10.4.1 Device management
	10.4.2 Session management
	10.4.3 Managing the content for different devices

	10.5 Development roles and responsibilities
	10.6 More information
	10.6.1 IBM related
	10.6.2 Not IBM related

	Chapter 11. System management
	11.1 General system management
	11.2 IBM HTTP Server
	11.3 WebSphere Application Server
	11.3.1 Administration console

	11.4 WebSphere Transcoding Publisher
	11.4.1 Administration console
	11.4.2 Common LDAP directory

	11.5 WebSphere Voice Server

	Chapter 12. Security
	12.1 Introduction
	12.2 Mobile versus conventional communications
	12.2.1 Authentication
	12.2.2 Confidentiality and message integrity
	12.2.3 Authorization
	12.2.4 Non-repudiation
	12.2.5 Secure boundary

	12.3 Security technologies for wireless transactions
	12.3.1 Security Socket Layer (SSL)
	12.3.2 Wireless Transport Layer Security (WTLS)
	12.3.3 Public key cryptography
	12.3.4 Elliptic Curve Cryptography (ECC)
	12.3.5 Public Key Infrastructure (PKI)

	12.4 Apparent problems in wireless security
	12.4.1 Broken secure connection in the WAP gateway
	12.4.2 Other gateways
	12.4.3 The WebSphere Transcoding Publisher and encrypted content

	12.5 More Information

	Chapter 13. Performance
	13.1 Load balancing
	13.1.1 Network Dispatcher approach
	13.1.2 DNS approach
	13.1.3 Reverse proxy approach

	13.2 Scalability
	13.3 Availability
	13.4 Caching
	13.5 Turning on transcoding
	13.6 Where to find more information

	Part 4 Scenarios
	Chapter 14. Base sample overview
	14.1 The base sample
	14.2 The scenarios
	14.3 The presentation logic
	14.3.1 The three tier servlet architecture

	14.4 The business logic
	14.4.1 Data model
	14.4.2 Access Beans

	14.5 Model diagram for the application
	14.6 Site map for the application
	14.6.1 Publishing

	14.7 Walkthrough
	14.7.1 Login scenario
	14.7.2 Portfolio

	14.8 Summary

	Chapter 15. Application for interactive mobile devices
	15.1 Direct approach
	15.1.1 Design issues
	15.1.2 Test clients for development
	15.1.3 New and modified code
	15.1.4 Developing the content JSPs

	15.2 Content transcoding (HTML source)
	15.2.1 Preferences
	15.2.2 Annotators
	15.2.3 Text clipping
	15.2.4 Guidelines for content transcoding
	15.2.5 HTML to cHTML

	15.3 Universal transcoding (XML source)
	15.3.1 Converting XML to different markup languages
	15.3.2 Trade2 example
	15.3.3 Design decisions
	15.3.4 Defining the class concept
	15.3.5 Defining XML structures
	15.3.6 Creating XML files
	15.3.7 Developing the XSL files and the user interface
	15.3.8 Implementing the XML solution
	15.3.9 Registering the StyleSheets in WTP
	15.3.10 Testing the application

	Chapter 16. Voice application
	16.1 WebSphere Voice Server
	16.2 Direct approach
	16.2.1 The voice site
	16.2.2 Application design
	16.2.3 Application development
	16.2.4 Trade2 voice application

	16.3 Content transcoding (HTML source)
	16.3.1 Full HTML-to-VoiceXML transcoding
	16.3.2 Annotators
	16.3.3 Setting up the HTML-to-VoiceXML transcoder
	16.3.4 Result of the HTML-to-VoiceXML transcoder
	16.3.5 Trade2 application

	16.4 Universal transcoding (XML source)
	16.4.1 Design decisions
	16.4.2 Designing the class concept
	16.4.3 Developing XML files
	16.4.4 Developing the XSL files
	16.4.5 Register the StyleSheets in the WTP
	16.4.6 Testing the application
	16.4.7 Further directions

	16.5 Hybrid coding
	16.6 Where to find more information

	Chapter 17. Application for both interactive mobile device and voice
	17.1 Introduction
	17.2 Universal transcoding
	17.3 Content transcoding
	17.4 Multimodal applications
	17.4.1 Multimodal applications in WebSphere
	17.4.2 VIWO
	17.4.3 Future developments

	Part 5 Working example
	Chapter 18. Development environment for the sample application
	18.1 The development environment
	18.2 Application database
	18.3 WebSphere Studio
	18.3.1 Importing the Studio Archive File
	18.3.2 Publishing a WebSphere Studio project

	18.4 VisualAge for Java configuration
	18.4.1 Adding DB2 libraries to VisualAge for Java

	18.5 Importing the VisualAge for Java repository file
	18.5.1 Rebuilding the EJBs
	18.5.2 Exporting the deployed EJBs

	18.6 WebSphere Test Environment configuration
	18.6.1 Setting up a new Web application under WTE
	18.6.2 Adding MIME Types to WTE
	18.6.3 Publishing the Studio project into WTE
	18.6.4 Starting the WebSphere Test Environment
	18.6.5 Starting the EJB server

	18.7 WebSphere Voice Server SDK configuration
	18.8 WebSphere Transcoding Publisher configuration
	18.8.1 Setting up the Voice transcoder
	18.8.2 WTP preference profile for voice application
	18.8.3 Registering the StyleSheets

	18.9 TradeAppServlet configuration for voice
	18.10 StyleSheet import

	Chapter 19. Runtime environment for the sample application
	19.1 Runtime enviroment for the sample application
	19.1.1 Runtime environment

	19.2 Installing and configuring the runtime environment
	19.2.1 Database node
	19.2.2 Web application node without Transcoder
	19.2.3 Standalone Transcoder node
	19.2.4 Web application node with Transcoder
	19.2.5 Voice Server node

	19.3 Deploying the sample application
	19.3.1 Prerequisites
	19.3.2 NT
	19.3.3 AIX
	19.3.4 Configuring WTP for the Trade2 application

	19.4 Entry point for the Trade2 Web application
	19.5 Testing the application
	19.5.1 Test sequence
	19.5.2 Direct
	19.5.3 Content transcoding
	19.5.4 Universal transcoding

	19.6 Notes for other platforms

	Part 6 IBM Web and wireless solutions
	Chapter 20. Introduction to WebSphere Everyplace Suite
	20.1 What is it for?
	20.2 Extending capabilities
	20.2.1 Editions

	20.3 Connectivity services
	20.3.1 Notification
	20.3.2 Asynchronous communication

	20.4 Security
	20.5 Summary

	Chapter 21. Other products
	21.1 WebSphere Portal Server
	21.2 WebSphere Personalization Server
	21.3 SecureWay Wireless Gateway
	21.4 WebSphere Translation Server
	21.5 Where to find more information

	Part 7 Appendixes
	Appendix A. Additional material
	Locating the Web material
	Using the Web material
	System requirements for downloading the Web material
	How to use the Web material

	Related publications
	IBM Redbooks
	Other resources

	Referenced Web sites
	How to get IBM Redbooks
	IBM Redbooks collections

	Special notices
	Glossary
	Index
	Back cover

