
Redbooks Paper

Lotus Domino and .NET coexistence

Lotus Domino and Microsoft .NET technologies can be integrated using Web
Services. Web Services are self-contained, self-describing, modular applications
that can be published to and invoked from the Web. Unlike traditional Web-based
applications, Web Services contain no user interface, which means that these
applications could be remotely invoked by other applications known as clients.
Web Services use technology standards such as XML, SOAP, WSDL, and UDDI.
In addition to this, Web Services applications communicate with each other by
using the HTTP protocol and SOAP messages.

Lotus Domino is ideal software for using Web Services to extend the
collaborative features of Notes/Domino across the enterprise. Domino
Application Server can either host or use Web Services. As we have also
discussed in this redbook, Microsoft .NET platform is a collection of tools from
Microsoft that let you both use and host Web Services.

Victoria Amor
Peter Kovari
© Copyright IBM Corp. 2004. All rights reserved. ibm.com/redbooks 1

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

Web Services integration
It is not the purpose of this paper to introduce Web Services concepts and their
architecture (you can find detailed information about these topics in the redbook
WebSphere Version 5 Web Services Handbook, SG24-689). This paper shows
how Web Services, developed on different languages and different tools, can
interact with each other.

The principal elements involved on the interoperability of Web Services are the
following:

� A service provider
� A service requester
� A way to code the data - XML language
� A way to define and describe the service - WSDL document
� A way to format remote calls -SOAP Protocol
� A network protocol - HTTP

Also in a runtime environment, we need:

� A Service Broker known also as a Service Registry.
� A way to publish and find services - UDDI

The Web Services model includes three roles: the service provider, the service
broker, and the service requester and the methods and properties are associated
with the service. The Web Service is published in an external or internal registry
using UDDI. Once the Web Service is publicly or privately available in the
appropriate UDDI registry, the service requester uses UDDI to find the Web
Service and consume it. SOAP is used to invoke a Web Service, therefore
binding the service requester to the service provider.

As mentioned before, Lotus Domino Application Server and Microsoft .NET
platform can host or provide Web Services. This means that it is possible to use
Lotus Domino Server to host Web Services as a service provider, because
Domino Applications can be modified to provide SOAP Interfaces and WSDL
Descriptions using XML, and use .NET clients to invoke the Lotus Domino
Service as a consumer or the other way around, using Lotus Domino as a
consumer (Service Requester), which involves calling or invoking the .NET
service and getting the response back.

Therefore, the purpose of this section is to explain the following scenarios:

� Lotus Domino as a provider and .NET as a consumer.
� .NET as a provider and Lotus Domino as a consumer.
2 Lotus Domino and .NET Coexistence

Domino provider, .NET consumer
As explained above, Lotus Domino applications can have a Web Service
interface that allows it to be accessed as a Web Service by remote users or by
Web server clients. The design elements needed to provide a Domino Web
Service are the following:

� A Lotus Script Web Agent: this agent is written to accept a SOAP request,
parse it, call the requested method (function), and return the result as a
SOAP response to the requester.

� Any standard LotusScript function stored in a Lotus Script library.

� A page containing a WSDL definition of the service. This is required only
because the database is going to be accessible by the .NET consumer.

The application components are represented in the following diagram.

Figure 1 Domino - .NET client interaction

To explain how to use Domino as a Web Service Provider, we have created a
Notes Sample Web Services .NET Database Application (WebServiceNet.nsf).
This database shows how you can easily write a 100% Lotus Script Web Service
that allows .NET clients to access the details of a particular upcoming ITSO
Residency by giving a Residency Code.
 Lotus Domino and .NET coexistence 3

For the development, we used the following product versions:

� Microsoft .NET Framework Software Development kit V1.1
� Microsoft Windows 2000 Server with Service Pack 4
� Lotus Domino Server V6.0.2 CF2
� Microsoft IE V5.5 or newer
� Lotus Domino Administration Client V6.0.2.
� Lotus Domino Designer Client V6.0.2.

For more details on how to install the software products, refer to the installation
manuals. Lotus Domino Administrator client and Lotus Domino Designer was
installed in another machine in order to administrate the Domino Server and to
design the Sample application.

Before starting, make sure that you have TCP/IP network configured (it is
recommended to have a fixed IP address), that it is possible to resolve the
machine host name (via Host file or DNS) and also that you have Domino Server
configured. For our example, the following Domino nomenclature was selected
within the configuration process, but of course it is possible to use another one.

Table 1 Domino nomenclature

Note: The example was created based on the Building Web Services using
Lotus Domino 6 Tutorial which was developed by IBMdeveloperWorks and
can be located in the following URL:
https://www6.software.ibm.com/reg/devworks/dw-lsdom6ws-i?S_TACT=103A
MW13&S_CMP=LDD. More information regarding developing Web Services in
Domino can be found in Lotus Domino Designer® 6 Help database.

Concepts Selected Name

Domino Domain Name TEST

Organization Name TEST

Server Name Domin6/TEST

Server Title Test Server

Notes Network Name TCPIP Network

Notes Administrator Name Notes Admin/TEST

Note: For more details about configuring a Domino Server, refer to the Lotus
Domino Administrator 6 help database.
4 Lotus Domino and .NET Coexistence

https:///dw-lsdom6ws-i?S_TACT=103AMW13&S_CMP=LDD
https:///dw-lsdom6ws-i?S_TACT=103AMW13&S_CMP=LDD

Once you have installed and configured the products to begin with the example,
follow these steps:

1. Create a new database.

2. Create the Forms and Views for the database.

3. Create a Lotus Script Web Agent (ResidencyWS).

4. Create a Lotus Script Library (Domino).

5. Create a WSDL page to describe the Domino Web Services.

6. Create a .NET client.

7. Test the application.

Creating a new database
Although included in this redbook is the sample database inside the additional
material, we are going to start from scratch by creating a new database in our
server.

Open Lotus Domino Designer 6 and select File -> Database -> New from the
menu. This opens the New Database dialog box as shown below.

Figure 2 Create database
 Lotus Domino and .NET coexistence 5

In the Server field, select: <The name of the Domino Server> (in our case
Domino6/TEST), as Database Title type: Web Service .NET and for File name:
WebServiceNET.nsf. Select -Blank- as the template. Click the OK button.

Creating the Forms and Views for the database
When a new database is created from scratch, it does not contain design
elements except one default view, so it is necessary to create all of the elements
needed for the application. Because the sample database is going to contain all
the details for the upcoming ITSO residencies, the minimum design elements to
create are:

1. A new Form to provide the structure for creating and displaying ITSO
Residency documents details.

Open Lotus Domino Designer 6 and select Forms in the Design pane, then
click New Form; an untitled blank form is displayed. Add the necessary fields
for display the residency information details such as: Residency Name,
Residency Code, Start date, End Date, Residency Contact, e-mail and
Location. Save the form with the Residencies name. The New Form could
look like the figure below.

Figure 3 Create Residencies Form
6 Lotus Domino and .NET Coexistence

2. A new View for access to the list of Residency documents is created in the
database.

Open Lotus Domino Designer 6 and select Views in the Design pane, and
then click New View or modify the default view initially created. Add the
following columns: Name, Residency Code, Start Date, Contact, email and
Location. Save the View with the name Residencies. The new view could look
like the figure below.

Figure 4 Residencies View

3. Also, create a hidden View called (By Code) with the first column ordered by
Residency Code. This hidden view is where the Domino Web Service is going
to access for locating the residency.

Creating a Lotus Script Web Agent
After the database is created, to route the SOAP Messages Request to the
appropriate function inside the Lotus Script Library, a Lotus Script Web Agent is
needed. Open the Lotus Domino Designer.

1. In the left pane, select Shared Code -> Agents. Click the New Agent action
button. The Agent properties dialog box is displayed.
 Lotus Domino and .NET coexistence 7

Figure 5 Web agent

Give ResidencyWS as the Domino Web Agent Name and select Shared as the
Agent Option. Set the agent trigger to the On event and also set Action menu
selection. The last thing to do is to set the Agent target to None which means
that the agent is going to work on fields of the current document such as
those launched from WebQueryOpen or WebQueryClose, or like a form
action or hotspot that also works on fields in the current document.

First of all, declare the incoming and response SOAP Messages variables as
string.

'Declare the response as String
Dim response As String
'Declare the incoming SOAP Message as String
Dim SOAPin As String

2. The next step is to create a NotesSession object by declaring the variable
session and setting it as New to create a new instance for that object. Then,
initialize the object variable doc using the DocumentContext property of the
NotesSession class. The agent can use this property to access the
in-memory document. The next line of code sets the SOAPin variable equal to
the content of the "Request_content" field using the GetItemValue method of
the NotesDocument class. This is where the SOAP message resides as a
result of a "Post," in the DocumentContext object.

Dim session As New NotesSession
Set doc = session.DocumentContext
SOAPin = doc.GetItemValue("Request_content")(0)
8 Lotus Domino and .NET Coexistence

3. For debugging purposes, a Log Message Function was created, with the
objective of writing a new document in the database with the incoming SOAP
Message. For that purpose, a new Form and a new View were added to the
database:

Messages View: the view that displays all the SOAP incoming Message
documents created.

Message Form: used for creating a document with the SOAP incoming
Message every time the Domino Web Services is accessed.

After the message is logged, a RemoveWhitespace function is used to remove
all spaces, tabs, and new line characters as shown below:

LogMessage(SOAPin)
SOAPin = RemoveWhitespace(Fulltrim(SOAPin))

4. A SOAP Message consists of the following parts: a SOAP Envelope which
marks the beginning and end of a message and a SOAP Body inside the
SOAP Envelope which includes the method signature to be executed and the
method arguments. The next piece of the code manually parses the SOAP
message using the Lotus Script Language string handle functions (Instr and
Mid) to extract the following items.

Table 2 SOAP Message table

Later, for parsing the SOAP content more efficiently, we will use the new
NotesDOMParser object. Note also the first line (On Error Goto ErrHandle),
which determines how an error will be handled in this case.

On Error Goto Errhandle
bodyPos= Instr(1,SOAPin,|<soap:Body
soap:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">|)+74
'parse out method signature
methodSigPos= Instr(bodyPos,SOAPin,|<|)+1
methodSigEnd=Instr(bodyPos,SOAPin,| |)
methodSignature = Mid(SOAPin,methodSigPos,(methodSigEnd-methodSigPos))

Note: For more details about the Log Message and RemoveWhitespace
functions created only for debugging purposes, refer to the sample
database included in the additional material.

Item Variable Stored In Definition

namespace NameSpace Script Library to load.

method MethodName Function to execute in the script library.

argument argValue Parameter to pass to function as the aString
variable.
 Lotus Domino and .NET coexistence 9

'parse out method name
methodPos= Instr(bodyPos,SOAPin,|:|)+1
methodEnd=Instr(methodPos,SOAPin,| |)
methodName = Mid(SOAPin,methodPos,(methodEnd-methodPos))
'parse out namespace
nameSpacePos= Instr(methodEnd,SOAPin,|uri:|)+4
nameSpaceEnd=Instr(nameSpacePos,SOAPin,|"|)
nameSpace=Mid(SOAPin,nameSpacePos,(nameSpaceEnd-nameSpacePos))

5. The next code slice maps the namespace, method, and argument from the
SOAP request to the script library, function, and parameter (respectively)
called by the Web agent, and captures the return value in the response
variable.

callString = |Use | & |"| & nameSpace & |"| & |
response = | & methodName & |(SOAPin)|

Execute the callString variable that makes the specified script library run.

Execute callString

6. The next step is to build the SOAP response which includes the response and
MethodName variables and store it in the strTmp variable.

strTmp = |<?xml version="1.0" encoding="UTF-8" standalone="no"?>| &_
|<SOAP-ENV:Envelope
xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">| & _
|<SOAP-ENV:Body>| & _
|<m:| & methodName & "Response" & | xmlns:m="uri:| & nameSpace & |"
SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">| &
response & _
|</m:| & methodName & |Response>| & _
|</SOAP-ENV:Body>| & _
|</SOAP-ENV:Envelope>|

By default, Domino translates Web agent content to HTML and, because the
response is going to be populated in XML, data is necessary to specify that
the content type of the agent is XML. Use the Print statement for that:

Print "Content-Type: text/xml"

7. To send the SOAP response to the requester, use the following code:

Print strTmp

To terminate execution of the current block statement, use:

Exit Sub

The last step is to include the error-handling routine that begins at the label
Errhandle defined previously:
10 Lotus Domino and .NET Coexistence

Errhandle:
Exit Sub

In our case, we include Exit Sub to terminate the execution and do nothing
but it is possible to include other Lotus Script code to handle the errors.

Creating a Lotus Script Library
As we defined in the SOAP incoming message skeleton, the method to be
executed has to be inside a Lotus Script Library. To create a Lotus Script Library,
open the database in Domino Designer 6 and select Script Libraries. Then click
New LotusScript Library. This opens a new Script Library as shown in the
figure.

Figure 6 New Script library

1. Before sending the details regarding a new ITSO residency to the client, it is
necessary to parse the content of the SOAP incoming Message using the
NotesDOMParser class. So first of all, create a NotesDOMParser object by
declaring the variable domParser in the Script Library (Declaration) section.
 Lotus Domino and .NET coexistence 11

This class is new in Lotus Domino 6 and is used to process input XML into a
standard DOM (Document Object Model) tree structure.

Dim domParser As NotesDOMParser

2. Create a new function with the ResCodeSearch name. This function will be
the method specified in the SOAP request.

Function ResCodeSearch(msg As String) As String

3. The next step is to create a NotesSession object by declaring the variable
session and setting it as New to create a new instance for that object. Initialize
the object variables.

Dim session As New NotesSession
Dim rootElement As NotesDOMDocumentNode
Dim nodeList As NotesDOMNodeList
Dim node As NotesDOMNode

4. Initialize the object variable domParser using the CreateDOMParser method of
the NotesSession class and use the process method to generate the DOM
tree. Set the object variable rootElement using the Document property of the
NotesDOMParser class to access the document node. Set the object variable
nodeList using the GetElementsByTagName method of the
NotesDOMDocumentNode class specifying * as the tag name. This will return
a NotesDOMNodeList of all the NotesDOMElementNode objects with this
given tag name. The list returned is arranged in the order in which they are
encountered. The last step is to locate the value of the Residency Code
inside the <code> tag of the in the node list and set it to the variable Code.

Set domParser = session.createDOMParser(msg)
domParser.process
Set rootElement = domParser.Document
Set nodeList = rootElement.GetElementsByTagName("*")
'locate Residency Code
For i=1 To nodeList.NumberOfEntries
Set node = nodeList.GetItem(i)

If(node.NodeName="code")Then
Code = node.FirstChild.NodeValue
Exit For

End If
Next

5. When the Code variable is retrieved, it is necessary to locate this code inside
the database. For that, set the variable db with the property CurrentDatabase

Note: For more information about the new NotesDOM classes in Domino
6, refer to the Lotus Domino Designer 6 Help. Also, more information about
DOM Document Object Model Core is found at:

http://www.w3.org/TR/DOM-Level-3-Core/core.html#ID-1590626202
12 Lotus Domino and .NET Coexistence

http://www.w3.org/TR/DOM-Level-3-Core/core.html#ID-1590626202

of the NotesSession class. Then, set the object variable view using the
GetView method, giving it the name of a view. After that, initialize the object
variable doc using the GetDocumentByKey method, giving it the Residency
Code located before and the true parameter because we want to find an
exact match.

Dim db As NotesDatabase
Dim view As NotesView
Dim doc As NotesDocument
Set db = session.CurrentDatabase
Set view = db.getView("(By Code)")
'locate Residency Code in database
Set doc = view.GetDocumentByKey(Code,True)

6. The last step is to create a response containing XML data for the SOAP
client, and return the result to the "ResidencyWS" agent which calls our
function ResCodeSearch.

tmp =|<Code xsi:type="xsd:string">| & doc.Code(0) &|</Code>|&_
|<Name xsi:type="xsd:string">| & doc.Name(0) &|</Name>|&_
|<StartDate xsi:type="xsd:string">| & doc.SDate(0) &|</StartDate>|&_
|<EndDate xsi:type="xsd:string">| & doc.EDate(0) &|</EndDate>|&_
|<Contact xsi:type="xsd:string">| & doc.Contact(0) &|</Contact>|&_
|<email xsi:type="xsd:string">| & doc.email(0) &|</email>|&_
|<Location xsi:type="xsd:string">| & doc.Location(0) &|</Location>|

ResCodeSearch = tmp

7. Save the new Lotus Script Library as Domino.

Creating a WSDL page to describe the Domino Web Services
WSDL allows a service provider to specify the following characteristics of a Web
Service:

� Name of the Web Service and addressing information.

� Protocol and encoding style to be used when accessing the public operation
of the Web Service.

� Type information: operations, parameters, and data types comprising the
interface of the Web Service, plus a name for this interface.

The anatomy of a WSDL document is as follows:

� Types: A container for data type definitions using some type system, such as
XML schema.

� Message: An abstract, typed definition of the data being communicated. A
message can have one or more typed parts.
 Lotus Domino and .NET coexistence 13

� Port type: An abstract set of one or more operations supported by one or
more ports. Each operation defines an input and an output message as well
as an optional fault message.

� Operation: An abstract description of an action supported by the service.

� Binding: A concrete protocol and data format specification for a particular
port type. The binding information contains the protocol name, the invocation
style, a service ID, and the encoding for each operation.

� Port: A single endpoint, which is defined as an aggregation of a binding and a
network address.

� Service: A collection of related ports.

WSDL specification uses XML syntax; therefore, there is an XML schema for it.

Because the Domino Web Service created before is going to be consumed by a
.NET client, a WSDL file is required. This WSDL file will be included in a Lotus
Domino Page. Create a new page in Domino; follow the steps below.

1. Open the database in Lotus Domino Designer and select Pages on the left
pane and click New Page; an untitled, blank page is displayed as shown in
the following figure.

Note: For more information about WSDL, refer to WebSphere Version 5 Web
Services Handbook, SG24-6891.
14 Lotus Domino and .NET Coexistence

Figure 7 Create a new Page

2. Give GetResidencyDetailsWSDL as the Page Name and select Other in the
Web Access - Content type section of the Page Info tab. Enter text/xml in the
text box as depicted in the following figure.
 Lotus Domino and .NET coexistence 15

Figure 8 Set the page content to XML

Leave the Character set to Unicode(UTF-8) and close the Properties box.

3. Create the WSDL file from scratch taking the following things into account:

a. The root element of the WSDL file is the <definitions> element, which
defines the namespaces used in the file. The targetNamespace should be
the name of the Domino Lotus Script Library.

b. The WSDL will contain two <message> type of interaction between the
service requestor and the service provider: the first type for the request
and the other for the response. The message request will contain the
Residency Code as the string type and the message response will contain
the data retrieved also as the string type.

c. The <portType> will be a request-response operation type which means
that there will be an input message (defined in the message part of the
WSDL file as the message request) followed by an output message
(defined in the message part of the WSDL file as the message Response).

d. In the <binding> part, you will have to specify the following:

• A name for the binding.

• The connection should be SOAP HTTP; the style must be RPC.

• The operation name must be the method name to be executed. In our
case, this will be the function (ResCodeSearch) inside the Domino
Script library.

• A SOAP Action.
16 Lotus Domino and .NET Coexistence

• A reference for the SOAP operation defining an input message and an
output message, both to be SOAP encoded because RPC/Literal Web
Service calls are not supported by Microsoft .NET. Notice that both
input and output messages must contain the name of the Lotus Script
Library as the namespace (namespace="uri:Domino").

e. In the <service> part, you will define the port that use the SOAP binding
specified before and the URL for the Web Service.

Example 1 Web Service WSDL

<?xml version='1.0' encoding='UTF-8'?>
<definitions name="ResCodeSearch" targetNamespace="Domino"
xmlns:http="http://schemas.xmlsoap.org/wsdl/http/"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:s="http://www.w3.org/2001/XMLSchema"
xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:tns="Domino"
xmlns:tm="http://microsoft.com/wsdl/mime/textMatching/"
xmlns:mime="http://schemas.xmlsoap.org/wsdl/mime/"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">
 <message name="ResCodeSearchRequest">
 <part name="code" type="s:string"/>
 </message>
 <message name="ResCodeSearchResponse">
 <part name="Code" type="s:string"/>
 <part name="Name" type="s:string"/>
 <part name="StartDate" type="s:string"/>
 <part name="EndDate" type="s:string"/>
 <part name="Contact" type="s:string"/>
 <part name="email" type="s:string"/>
 <part name="Location" type="s:string"/>
 </message>
 <portType name="ResCodeSearchPortType">
 <operation name="ResCodeSearch">
 <input message="tns:ResCodeSearchRequest" />
 <output message="tns:ResCodeSearchResponse" />
 </operation>
 </portType>
 <binding name="ResCodeSearchBinding" type="tns:ResCodeSearchPortType">
 <soap:binding transport="http://schemas.xmlsoap.org/soap/http" style="rpc"
/>
 <operation name="ResCodeSearch">
 <soap:operation
soapAction="capeconnect:ResCodeSearch:ResCodeSearchPortType#ResCodeSearch" />
 <input>
 <soap:body use="encoded" namespace="uri:Domino"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" />
 </input>
 Lotus Domino and .NET coexistence 17

 <output>
 <soap:body use="encoded" namespace="uri:Domino"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" />
 </output>
 </operation>
 </binding>
 <service name="FindResCode">
 <port name="ResCodeSearchPort" binding="tns:ResCodeSearchBinding">
 <soap:address location="http://127.0.0.1/WebServiceNET.nsf/ResidencyWS"
/>
 </port>
 </service>
</definitions>

4. Save the GetResidencyDetailsWSDL page. It is possible to access this
WSDL file from another development platform using the following URL:

http://<someserver>/WebServiceNet.nsf/GetResidencyDetailsWSDL?OpenPage

Creating a .NET client
For consuming the Domino Web Service, we are going to create a simple
console based Microsoft .NET application using C# as the programming
language and Microsoft .NET Framework Software Development Kit V1.1.

Before creating this, it is necessary to understand the way by which the clients
communicate with Web Services. Web Services use HTTP and SOAP to make
the business data available on the Web. A Web Service Consumer will use
SOAP over HTTP to execute Remote Procedure Calls (RPC) to Web Services
methods components.

For security reasons, client applications will not execute the Web Services
methods on the location where Web Services reside, but will use a 'proxy object'
to act on behalf of the original Web Service. The proxy object at the client side
communicates with the Web Service using HTTP/SOAP protocols. The WSDL
file which describes the Web Service is used to generate the proxy object. The
scenario is illustrated in the following figure.
18 Lotus Domino and .NET Coexistence

http://<someserver>/WebServiceNet.nsf/GetResidencyDetailsWSDL?OpenPage

Figure 9 Console .NET application as Web Services consumer

Therefore, the necessary steps for building a .NET client will be:

1. Create a proxy object to allow communication between the console client and
the Domino Web Service.

2. Create a simple C# console based application which will invoke methods of
the proxy class.

Creating a proxy object to act on behalf the Web Service
For creating a proxy object, use the Microsoft Web Services Description
Language Utility (wsdl.exe) included in Microsoft .NET Framework Software
Development Kit V1.1. This utility will generate code for Web Service clients from
WSDL files.

Before using the utility, make sure that the Domino server is running. After that,
type this simple command to generate the proxy class:

wsdl /nologo /language:CS /namespace:Domino http://<Domino server
name>/WebServiceNET.nsf/GetResidencyDetailsWSDL?OpenPage

Where <Domino server name> is the host name for the Domino server or the IP
address, http://<Domino_server_name>/WebServiceNET.nsf/GetResidencyDeta

Note: A full description of the utility is out of the scope of this document but
more information is found at the following URL:

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cptools/
html/cpgrfwebservicesdescriptionlanguagetoolwsdlexe.asp

Help information is also available in a command window: wsdl /?
 Lotus Domino and .NET coexistence 19

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cptools/html/cpgrfwebservicesdescriptionlanguagetoolwsdlexe.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cptools/html/cpgrfwebservicesdescriptionlanguagetoolwsdlexe.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cptools/html/cpgrfwebservicesdescriptionlanguagetoolwsdlexe.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cptools/html/cpgrfwebservicesdescriptionlanguagetoolwsdlexe.asp

ilsWSDL?OpenPage is the URL where the WSDL is located and 'language:CS' is
the programming language used to generate the proxy class (C#).

The result of the command will be a file called FindResCode.cs as shown in the
following figure.

Figure 10 Command line wsdl utility

Note that the name of the Proxy class is the same name given to the Service part
in the WSDL file.

<service name="FindResCode">
<port name="ResCodeSearchPort" binding="tns:ResCodeSearchBinding">

<soap:address
location="http://127.0.0.1/WebServiceNET.nsf/ResidencyWS" />

</port>
<service>

The next step is to compile the file FindResCode.cs with the C# .NET compiler
(csc.exe) included in the Microsoft .NET Framework SDK, by issuing the
following command from the directory where the proxy class was generated:

csc /nologo /out:FindResCode.dll /target:library FindResCode.cs

The result of this command will be a Dynamic Link Library called
FindResCode.dll (the proxy object).

Creating a simple C# console based application
For creating a simple console-style client application, add the following lines in
any text editor, this will generate a new C# source file called
NotesConsoleClient.cs.

Example 2 .NET client code

using System;
using Domino;
using System.Web.Services;
20 Lotus Domino and .NET Coexistence

amespace NotesConsoleClient
{
 /// <summary>
 /// Summary description for Class1.
 /// </summary>
 class Client
 {
 /// <summary>
 /// The main entry point for the application.
 /// </summary>
 [STAThread]
 static void Main(string[] args)
 {
 FindResCode WSResCodeSearchService=new FindResCode();
 String
rName="",rStartDate="",rEndDate="",rContact="",rEmail="",rLocation="";
 String result=WSResCodeSearchService.ResCodeSearch(args[0], out
rName, out rStartDate, out rEndDate, out rContact, out rEmail, out rLocation);

 System.Console.Out.Write(
 "Name: "+rName+"\r\n"+
 "Start date: "+rStartDate+"\r\n"+
 "End date: "+rEndDate+"\r\n"+
 "Contact: "+rContact+"\r\n"+
 "e-mail: "+rEmail+"\r\n"+
 "Location: "+rLocation+"\r\n"+
 "---------------------------\r\n");
 }
 }
}

The purpose of this client is to show the details of a particular ITSO residency
located in the Web Services .NET Database Application for a given Residency
Code. These details will be: Name, Start date, End Date, Contact, e-mail and
Location.

After saving the file, build an executable by compiling this code using the C#
library (FindResCode.dll) created before and by issuing the following command:

csc /r:FindResCode.dll NotesConsoleClient.cs

The result of this command will be an executable called NotesConsoleClient.exe.

Test the example
After building the NotesConsoleClient.exe executable (using C# library
FindResCode.dll), run it from the command line window in the directory where
the library is placed and after ensuring that the Domino Server is running.
 Lotus Domino and .NET coexistence 21

The NotesConsoleClient executable needs to have a Residency Code as an
input; as an example, test the Domino Web Service retrieving the information of
the Residency Code SA-W324; the result of running the client is shown in the
following figure.

Figure 11 Client application results

When the execution of the client had finished, it is possible to check the SOAP
incoming message generated by the .NET client message that was consumed
and processed by our Domino agent. Open the WebServiceNet.nsf database in a
Domino Client and select the Message view. A new Document will appear in the
view as shown below.

Figure 12 Message View

Open the document and look at the format of the SOAP incoming message.
Included within the SOAP Body is the method signature ResCodeSearch that will
be executed on the Domino server. Additionally, the method signature contains
the namespace where the method is located (Domino is our LotusScriptLibrary).
Notice also that the Residency Code to search for is wrapped within the code
argument. An example of the message is shown below with the method name,
namespace (Domino Script Library), and method argument highlighted in bold:

<?xml version="1.0" encoding="utf-8"?><soap:Envelope
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:tns="Domino" xmlns:types="Domino/encodedTypes"
22 Lotus Domino and .NET Coexistence

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"><soap:Body
soap:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
<q1:ResCodeSearch xmlns:q1="uri:Domino"><code
xsi:type="xsd:string">SA-W324</code></q1:ResCodeSearch>
</soap:Body></soap:Envelope>

Because we cannot control the format of the SOAP incoming message form of
the .NET client and because the Lotus Script Debugger in Domino is running
from the Notes client, when experiencing problems with the format of the SOAP
incoming message and Domino, a way to perform problem determination would
be:

1. Create a new Lotus Script agent for using from a Lotus Notes Client (use the
Lotus Script debugger). This agent will be the same as the ResidencyWS but
with the SOAPin variable previously initialized in the way that Domino treats
the SOAP incoming message as a string. For example, for the previous
SOAP message, the SOAPin variable will be:

SOAPin=|<?xml version="1.0" encoding="utf-8"?>| &_
 |<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:tns="Domino" xmlns:types="Domino/encodedTypes"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">|&_
 |<soap:Body
soap:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">|&_
 |<q1:ResCodeSearch xmlns:q1="uri:Domino">|&_
 |<code xsi:type="xsd:string">|&"SA-W324"&|</code>|&_
 |</q1:ResCodeSearch>|&_
 |</soap:Body>|&_
 |</soap:Envelope>|

2. Save the agent and launch the Lotus Script Debugger by selecting Menu ->
Tools -> Debug Lotus Script.

3. Run your agent form the Actions Menu and cover all the steps to isolate the
problem.

.NET service provider, Domino service consumer
Lotus Domino can also act as a service requester and consume a .NET service,
which means that you can invoke this service programmatically. Programming
languages inside Domino (Lotus Script and Java) and external tools such as the
Microsoft SOAP Toolkit can be used for accessing to a external .NET Web

Note: Be aware that the format of the incoming SOAP message for Domino is
very important and must include all the arguments highlighted in bold.
 Lotus Domino and .NET coexistence 23

Service. The objective of this section is briefly to explain how Domino can use
this tool for accessing .NET.

There are three ways to call a Web Service: HTTP GET, HTTP POST and SOAP.

1. HTTP Get

– Create a Lotus Script Agent for accessing a Web Service using the
Microsoft XML parser included in the Internet Explorer 5.0.1 or later by
setting the source using CreateObject ("Microsoft.XMLDOM"), using the
load method to access the URL for the .NET Web Service, selecting the
document with the documentElement method and then accessing the
fields of the document with the selectSingleNode method.

– Create a Java Agent using the following classes:

• URL Class to access the .NET Web Service URL (for example:
http://localhost/webservices/sample.asmx/GetResidencyDetails?
Code=SA-W324) and the URLConnection openConnection method that
returns a connection to the remote object referred to by the URL:

URL url = new url
(http://localhost/webservices/sample.asmx/GetResidencyDetails?Code=SA
-W324);
URLConnection connect = url.openConnection();

• BufferedReader and InputStreamReader classes for reading the
response from the Web Service.

2. HTTP Post

Create a Domino Form placing HTML in it by using the Form
method=postaction tag. HTTP Post will post data to the Web Service.

3. SOAP

– Create a Java Agent that send a SOAP request to the Web Service and
read the response with BufferedReader and InputStreamReader classes.

– Create a Lotus Script Agent for accessing the Web Services using the
Microsoft SOAP Toolkit. Download it from http://msdn.microsoft.com.
Set the SOAP Client with CreateObject ("MSSOAP.SoapClient) and then
initialize it with the mssoapinit method using the WSDL file.

Note: In Section , “Using the COM interface” on page 25 we created a .NET
service that can access Domino databases through COM. Running the
example in a Web browser will show that the NET Framework SDK will render
all the information needed for accessing a .NET Web Service
programmatically.
24 Lotus Domino and .NET Coexistence

http://msdn.microsoft.com

Using the COM interface
COM (Component Object Model) is an open software component specification
developed by Microsoft. It defines a specification for developing reusable binary
components across multiple software languages and platforms. COM
components can be written and called by any language that can call functions
through pointers, including C, C++, Delphi, Basic etc.

The COM specification provides:

� Rules for component-to-component interaction.

� A mechanism for publishing available functions to other components.

� Automatic use tracking to allow components to unload themselves when they
are no longer needed.

� Efficient memory usage.

� Transparent versioning.

Since Domino Release 5.0.2b, the back-end Domino objects have a COM
interface with the following benefits:

� COM requires the presence of Domino or Notes; the software can be Domino
server, Domino Designer, or Notes client.

� COM provides both early-binding (custom) and late-binding (dispatch)
interfaces. Early binding makes the Domino classes available as typed
variables with compile-time checking. Late binding can be used where the
language (for example, VBScript) precludes early binding.

� The COM interface is the same as the Lotus Script interface, with some
exceptions.

� Domino can act as a COM server or a COM Client.

Microsoft .NET can access Domino Objects through COM. To accomplish this,
.NET client or .NET Web Services can call Domino objects via a special wrapper.
This wrapper; known as Runtime-Callable Wrapper (RCW), is a piece of software
that can accept commands from a component, modify them and forward them to
another component. Microsoft .NET Common Language Runtime (CLR) uses
the RCW to operate with the unmanaged code by making COM calls to the
Domino objects as depicted in the following figure.

Note: For information on COM properties and methods and general
exceptions to Lotus Script specifications, refer to the Lotus Domino Designer 6
Help database. For information about the Domino Object Model, refer to
Domino Designer 6: A Developer's HandBook, SG24-6854.
 Lotus Domino and .NET coexistence 25

Figure 13 .NET call through RCW

In the same way, Lotus Domino can act as COM client and provide .NET objects
via a special wrapper known as a COM Callable Wrapper (CCW). The Domino
COM Client uses the CCW to operate with Microsoft .NET Common Language
Runtime (CLR) by making .NET calls to .NET servers, as depicted in the
following figure.

Figure 14 Domino call through CCW

The purpose of this section is to explain how .NET clients can access Domino
databases through COM. The example shows how to create a .NET Web
Service that returns the details of a particular ITSO Residency located in a Notes
database.

For more information on the sample database, refer to , “Domino as a COM
server, .NET as a client” on page 26, and , “Creating a Domino sample database”
on page 41.

Domino as a COM server, .NET as a client
For running this example, we used the following product versions:
26 Lotus Domino and .NET Coexistence

� .NET Framework Software Development kit V1.1

� Microsoft Windows 2000 Server with Service Pack 4

� Lotus Domino Server V6.0.2 CF2

� Microsoft Internet Information Services V5.0

� Microsoft IE V5.5 or newer

� Lotus Domino Administration Client V6.0.2

� Lotus Domino Designer Client V6.0.2

For more details on how to install the software products, refer to the installation
manuals. Internet Information Services is included with Microsoft Windows 2000
and it is possible to install it under the Add/Remove Windows Components
option inside Add/Remove Programs within the Control Panel.

Lotus Domino Administrator client and Lotus Domino Designer were installed in
another machine in order to administrate the Domino Server and to design the
sample application.

Before starting, make sure that you have TCP/IP network configured (it is
recommended that you have a fixed IP address), that it is possible to resolve the
machine host name (via Host file or DNS) and that you also have Domino Server
configured. For our example, the following Domino nomenclature was selected
within the configuration process, but of course it is possible to use other settings.

Table 3 Domino nomenclature

Once you have installed and configured the products to begin with the example,
follow these steps:

Concepts Selected Name

Domino Domain Name TEST

Organization Name TEST

Server Name Domin6/TEST

Server Title Test Server

Notes Network Name TCPIP Network

Notes Administrator Name Notes Admin/TEST

Note: For more details on configuring a Domino Server, refer to the Lotus
Domino Administrator 6 Help database.
 Lotus Domino and .NET coexistence 27

1. Set up Domino to work with IIS Server.

2. Make the Domino objects accessible to .NET and IIS.

3. Create a Domino sample database.

4. Create a .NET Web Service to access the Domino database.

5. Test the example.

Setting up Domino to work with the Internet Information
Services server

For using a Microsoft IIS Server as a front-end machine with Domino, it is
necessary to install the WebSphere Application Server 4.0.3 plugin for IIS on the
IIS server. The plugin files are packaged with the Domino 6 server and must be
copied from the Domino Server to the IIS server. After copying the plugin files,
configure the plugin. The last step is configuring the Domino server to work with
the plugin IIS. Note that is not necessary to install any other WebSphere
components on the IIS machine.

Install ing the WebSphere plugin on an IIS Server
1. First of all, create the following directory structure on the IIS machine (it is

possible to use another drive):

– C:\WebSphere\AppServer\bin

– C:\WebSphere\AppServer\config

– C:\WebSphere\AppServer\etc

– C:\WebSphere\AppServer\logs

2. Then, copy the following files located in the Domino data directory to the IIS
server:

– <Domino data directory>/domino/plug-ins/plugin-cfg.xml to
c:\WebSphere\AppServer\config.

– <Domino data directory>/domino/plug-ins/w32/iisWASPlugin_http.dll to
c:\WebSphere\AppServer\bin.

– <Domino data directory>/domino/plug-ins/w32/plug-in_common.dll to
c:\WebSphere\AppServer\bin.

The directory structure is shown in the following figure.
28 Lotus Domino and .NET Coexistence

Figure 15 Directory structure

3. Start the Internet Service Manager application by selecting Start -> Settings
-> Control Panel -> Administrative Tools -> Internet Service Manager.
Expand the Local Machine objects on the left pane to see all the services
configured on it, as shown in the following figure.
 Lotus Domino and .NET coexistence 29

Figure 16 IIS Services manager

4. Create a New Virtual Directory under the Default Web Site. IIS uses the
virtual directories to access directories on other machines or directories
outside a service's home directory. In this case, IIS uses the Virtual Directory
for access to the WebSphere plugin. Right-click the Default Web Site and
select New -> Virtual Directory. When the new Virtual Directory Creation
Wizard is displayed, click Next.

5. Enter sePlugins in the alias field as illustrated below (always use this name)
and click Next.
30 Lotus Domino and .NET Coexistence

Figure 17 Virtual Directory Alias

6. In the Directory field, browse to the WebSphere bin directory
(C:\WebSphere\AppServer\bin). Click Next.

7. Select Run Scripts and Execute for the access permission as depicted in the
following figure.
 Lotus Domino and .NET coexistence 31

Figure 18 Access Permissions

8. Click Next and then click Finish; the new Virtual Directory is shown on the
default Web site.
32 Lotus Domino and .NET Coexistence

Figure 19 Virtual Directory in IIS Manager

9. Right-click the machine name and select Properties. On the Internet
Information Services tab, select WWW Service as Master Properties and edit
it. The WWW Service properties dialog window will be displayed as shown in
the next figure.
 Lotus Domino and .NET coexistence 33

Figure 20 WWW Service Master Properties - Web Site

10.Select the ISAPI Filters tab and click Add; the Filter Properties Dialog
window will be displayed. In the Filter Name Field type iisWASPlugin and for
the Executable field, click Browse and open the WebSphere bin directory.
Select iisWASPlugin_http.dll and click OK. The parameters are illustrated in
the following figure.

Figure 21 Filter properties

The new ISAPI filter is displayed as depicted in the following figure.
34 Lotus Domino and .NET Coexistence

Figure 22 WWW Service Master Properties - ISAPI Filters

11.Close all open windows.

12.Open the Windows Registry file and go to HKEY_LOCAL_MACHINE ->
Software -> IBM. Create the key WebSphere Application Server. Then
select WebSphere Application Server and create a new key, 4.0. Then
select 4.0 and create a new string value, Plugin Config and set the value for
this variable to the location of the plugin-cfg.xml file, for example:
C:\WebSphere\AppServer\config\plugin-cfg.xml.

13.Restart your system.

Configuring the WebSphere plugin
The WebSphere configuration file plugin-cfg.xml controls the operation of the
plugin. In order for the plugin to relay requests to the target Domino server, it is
necessary to add directives to the file for defining a transport route to the server,
and pattern rules for the URL namespaces that identify requests which are to be
relayed to Domino. The plugin will only relay requests that match a namespace
rule. All other requests will be handled by the front-end Web server. To configure
the plugin-cfg.xml file, follow these steps.
 Lotus Domino and .NET coexistence 35

1. Open the file, plugin-cfg.xml, with WordPad.

2. Define a group identifying the Domino Server that handles NSF requests
forwarded from IIS. Server groups contain servers, and servers contain
transport definitions that give the plugin the information it needs to forward
requests to Domino.

...
<ServerGroup Name="domino_web_servers">

<Server Name="Domino Server">
<!-- The transport defines the hostname and port value that the web

server plugin will use to communicate with the application server. -->
<Transport Hostname="hansolo" Port="81" Protocol="http"/>

</Server>
</ServerGroup>

3. Define a URI group which specifies the strings within a URL that indicate to
IIS and the plugin that the request should be forwarded to Domino.

...
<UriGroup Name="domino_host_URIs">
<Uri Name="/*.nsf*"/>
<Uri Name="*/domjava*"/>
<Uri Name="*/icons*"/>
</UriGroup>

4. Define a virtual host group. Specify a Host Name and Port for the incoming
requests or specify an asterisk (*) for the Host Name, Port, or both.

...
<VirtualHostGroup Name="domino_host">

<VirtualHost Name="*:80"/>
<VirtualHost Name="*:81"/>

</VirtualHostGroup>

5. Define a route to tie the sections together, so any request that matches the
patterns listed in the domino_host_URIs group gets forwarded to the
server(s) listed in the domino_web_servers group.

...
<Route ServerGroup="domino_web_servers" UriGroup="domino_host_URIs"
VirtualHostGroup="domino_host"/>

6. Stop and restart the World Wide Web Publishing Service from the Windows
Services Control Panel.

Note: The Transport host name and Port number are the specified Host
name and Port for our example machine. Substitute the values with the
Host Name and Port number needed in every case.
36 Lotus Domino and .NET Coexistence

Configuring Domino Server to work with Microsoft IIS
1. In the Domino Server, edit the Notes.ini file located in the Domino directory, in

our case c:\Domino, and add the following line:

HTTPEnableConnectorHeaders=1

The setting enables the Domino HTTP task to process the special headers
added by the plugin to requests. These headers include information about the
front-end server's configuration and user authentication status. As a security
measure, the HTTP task ignores these headers if the setting is not enabled.
This prevents an attacker from mimicking a plugin.

2. Because the Domino Server is installed in the same machine as the IIS
Server, it is necessary to change the default HTTP port for Domino (80) to an
alternative number. We used the 81 port (this is why, in the plugin-cfg.xml file
inside <VirtualHostGroup Name="domino_host">, both ports are specified).
To change this, open the Domino Server Document from the Domino
Administrator by selecting Configuration Tab -> Server -> Current Server
Document and edit the field.

3. Select Ports -> Internet ports -> Web and specify the TCP/IP Port number
that the Domino HTTP stack should use, as shown in the following figure.

Figure 23 Domino - Web Internet Ports administration
 Lotus Domino and .NET coexistence 37

4. Select the Internet Protocols -> Domino Web Engine tab and configure the
Generating References section by selecting the appropriate protocol, Host
Name, and Port specified during the configuration of the WebSphere plugin,
as depicted below.

Figure 24 Domino Web Engine administration

Save the Domino Server Document with all the changes.

5. Make sure you have the HTTP Task running on the Domino Server. If not, add
HTTP to the ServerTasks line of the Notes.ini file. This guarantees that every
time the server starts, the HTTP Task is going to be loaded.

ServerTasks=Update,Replica,Router,AMgr,AdminP,CalConn,Sched,http

6. Restart the server.

Note: If Domino and IIS are on separate, dedicated machines, Domino can
use port 80 on its own system and no change in the Server document is
needed.

Note: For Domino 6, the setting "Does this server use IIS?" is not used.
38 Lotus Domino and .NET Coexistence

Verifying the configuration
To verify the configuration, do the following:

1. Enter the URL for the Web server in your Web browser.

2. Verify that the IIS server's home page loads as shown below.

Figure 25 Verify the plugin configuration

3. Append homepage.nsf to the URL in the address bar. If the Domino home
page loads, the configuration is successful, as shown in the following figure.
 Lotus Domino and .NET coexistence 39

Figure 26 Domino HTTP Server - homepage.nsf

Making the Domino Objects accessible to .NET and IIS
Because the Domino Objects are not included as standard within the .NET
Framework Software Developer Kit (SDK), there is a tool included in the software
called Tlbimp (type library imported) that reads the Domino COM Type Library
(domobj.tlb) and creates a matching CLR assembly (domobj.dll) which will be in
charge of calling the COM Components.

The Tlbimp tool is a command-line tool which will make the job of RCW easier
because it is capable of converting COM metadata to .NET metadata.

To create the domobj.dll, from the command prompt, go to the Domino Directory
and type tlbimp domobj.tlb /out:domobj.dll as shown in the following figure.

Note: More information about Tlbimp tool can be found at the following URL:

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cptools/
html/cpgrfTypeLibraryImporterTlbimpexe.asp
40 Lotus Domino and .NET Coexistence

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cptools/html/cpgrfTypeLibraryImporterTlbimpexe.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cptools/html/cpgrfTypeLibraryImporterTlbimpexe.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cptools/html/cpgrfTypeLibraryImporterTlbimpexe.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cptools/html/cpgrfTypeLibraryImporterTlbimpexe.asp

Figure 27 Creating the Domino Object

Once you have created the domobj.dll, to make it accessible to Microsoft IIS,
copy the DLL inside the bin directory included in c:\inetpub\wwwroot\.

Creating a Domino sample database
To show how Microsoft .NET can be integrated with Domino, we have created a
Notes sample Web Services .NET database application (WebServiceNet.nsf)
using Lotus Domino Designer 6.0.2, to serve as the repository for the upcoming
ITSO residencies details.

The application includes the following design elements:

� Residencies Form: this is the form used to create the information details for a
new upcoming residency, such as Residency Name, Residency Code, Start
Date, End Date, Residency Contact, e-mail and Location.

� Residencies View: the is the view that shows all the residencies to the user.

� (By Code) View: this hidden view is ordered by the Residency Code and is
where the .NET and the Domino Web Service will find access to locate the
residency.

� Message Form: this form is used for creating a document with the SOAP
incoming message every time Domino Web Services is accessed.

� Messages View: this is the view that displays all the SOAP Incoming
Messages documents created.

� ResidencyWS: this is the Domino Web Agent for our Domino Web Services
and is the one in charge of routing the SOAP request, parsing it, calling the
requested method (function), and returning the result as a SOAP response to
the requester.
 Lotus Domino and .NET coexistence 41

� Domino Script Library: this contains the method (function) for the Domino
Web Service.

� GetResidencyDetailsWSDL Page: this contains the WSDL definition of the
Domino Services.

To test the integration between both technologies, download the additional
material that comes with this redbook, extract the database and then follow the
next steps:

1. Copy the database to the Domino server Data Directory and open Lotus
Domino Administrator 6.0.2.

2. Log in as a user with administrative privileges, then open the Domino Server
from the left server bookmark pane; then click the Files tab as shown in the
following figure.

Figure 28 Domino Administrator

3. Select the WebService .NET database application and open the Database
toolbar located on the right side of the tools pane; select Sign.
42 Lotus Domino and .NET Coexistence

4. A new dialog box appears. Leave the default parameters selected and click
the OK button (see below).

Figure 29 Domino - Sign Database

5. A new dialog box will appear stating Your Name and Address Book does not
contain a cross certificate for this organization (for example: TEST).
Click Yes to create a new cross-certificate.

6. All the design elements of the database will be signed with the actual ID.
When the process is completed, a dialog box shows the number of databases
processed and the number of errors that occurred (if any).

Creating a .NET Web Service to access the Domino database
To show how you achieve can .NET access to Domino using the COM interface,
we have created a Web Service file (Sample.asmx) using a standard text editor
(Notepad) and C# as the developing language.

The Web Service returns the details of a particular ITSO residency located in the
Web Services .NET Database Application. When the Web Service is called,
perform the following operations:

1. Open the Local Web Services .NET Database (WebServiceNet.nsf).
 Lotus Domino and .NET coexistence 43

2. Open the hidden view (By Code) which contains all the residencies ordered
by Residency Code.

3. For a given Residency Code, locate the corresponding document.

4. Access the fields inside the document.

5. Return the values for this particular residency.

Let's analyze the Web Service code:

1. The first line tells the compiler to run the code in Web Service mode and the
name of the C# Class:

<%@ WebService Language="C#" class="ResidencyDetailsWebService" %>

2. The next lines make references to the classes that the compiler needs to use
during the compilation process. These classes are System and
System.WebServices and of course, it will be necessary to use the Domino
Objects (domobj.dll) classes for accessing the database.

using System;
using System.Web.Services;
using domobj;

3. A C# program file can contain one or more namespaces; a namespace can
also contain classes, structs, interfaces, etc. The following line makes a
reference to a Web Service namespace which contains our
ResidencyDetailsWebService Class, which inherits the functionality of the
Web Service class:

[WebService(Namespace="http://127.0.0.1/")]
public class ResidencyDetailsWebService : WebService

4. The Web Service requires the user to enter a Residency Code and will return
the details for this particular residency, such as Residency Name, Residency
Code, Start Date, End Date, Residency Contact, e-mail and Location. To
handle these data values, we used the C# "structs".

// The object to return residency details
public struct DocumentResult {
 public string ResCode;
 public string ResName;
 public string ResStartDate;
 public string ResEndDate;
 public string ResContact;
 public string ResLocation;
 public string Resemail;
 }

5. This Web Service is going to be accessed through HTTP. The data that we
are going to access is not sensitive and is available to the public, so we used
44 Lotus Domino and .NET Coexistence

the [Web method] keyword. The description tag inside the keyword is used to
describe the Web Service functionality.

[WebMethod(Description="This method will get the Residency details for the
specified code.")]
public DocumentResult GetResidencyDetails(string Code) .

6. At this time, we are going to access the Notes database using the Domino
classes. First, we need to create a NotesSession object by declaring the
variable session and setting it as New to create a new instance for that object.
Next, we initialize (explicitly) this COM session; there are two ways to achieve
this:

– Using the Initialize Method: this method can be used on a computer with
a Notes client or Domino server and bases the session on the current user
ID. If a password is specified, it must match the user ID’s password.

– InitializeUsingNotesUserName: this method can be used only on a
computer with a Domino server. If a name is specified, the
InitializeUsingNotesUserName method looks it up in the local Domino
Directory and permits access to the local server depending on the "Server
Access" and "COM Restrictions" settings. The password must match the
Internet password associated with the name. If no name is specified,
access is granted if the server permits Anonymous access.

In our case, we used the second method because we used a computer with a
Domino Server, specifying the user name and password.

// Connect to Notes and find the details for the residency.
NotesSession session = new NotesSession();
session.InitializeUsingNotesUserName("Notes Admin/TEST","lotusnotes");

7. The next step is to declare the variables db, view, doc, Name, StartDate,
EndDate, Contact, email and Location. To get the values of the residencies’
form fields, we need to follow the hierarchical path from the top to the lower
one. In this example, we go from a NotesSession object to a NotesItem
object:

NotesSession -> NotesDatabase -> NotesView -> NotesDocument ->
NotesItem

We initialize the variable db with the property GetDatabase, indicating the
server name (in our case "" because it is a local machine), database name
(in our case WebServiceNET.nsf) and false for the [createonfail]
parameter, of the higher level object (NotesSession). We set the object
variable view using the GetView method, giving it the name of a view. We
initialize the object variable doc using the GetDocumentByKey method, giving it
the Residency Code and the true parameter because we want to find an

Note: Use the user name and password corresponding to your server.
 Lotus Domino and .NET coexistence 45

exact match. The last step is to set the rest of the variables using the
GetFirstItem method which for a given a name, returns the first item of the
specified name belonging to the document.

NotesDatabase db = session.GetDatabase("", "WebServiceNET.nsf",false);
NotesView view = db.GetView("(By code)");
NotesDocument doc = view.GetDocumentByKey(Code,true);
NotesItem Name = doc.GetFirstItem ("Name");
NotesItem StartDate = doc.GetFirstItem ("SDate");
NotesItem EndDate = doc.GetFirstItem ("EDate");
NotesItem Contact = doc.GetFirstItem ("Contact");
NotesItem email = doc.GetFirstItem ("email");
NotesItem Location = doc.GetFirstItem ("Location");

8. Create a new DocumentResult object and assign the returning values
recovered from the database to the initial parameters, defined in the
DocumentResult struct, using the NotesItem Text property class.

// Create a new DocumentResult object and return the values.
DocumentResult dr = new DocumentResult();
dr.ResCode = Code;
dr.ResName = Name.Text;
dr.ResStartDate = StartDate.Text;
dr.ResEndDate = EndDate.Text;
dr.ResContact = Contact.Text;
dr.Resemail = email.Text;
dr.ResLocation = Location.Text;
return dr;

9. Save the file with the .asmx extension.

Now, we are ready to test our Web Service; before proceeding, place the file
(sample.asmx) inside the IIS Web directory path, for example
c:\inetpub\wwwroot\webservices. If you do not have a Web Services directory,
create one.

Testing the example
Open Microsoft IE Web Browser and type the URL:
http://<hostmachine>/webservices/sample.asmx. It will bring up a page that is
created automatically by the .NET Framework, as shown in the following figure.

Note: For more information about these Lotus Script Classes and
Methods, refer to Lotus Domino Designer 6 Help.
46 Lotus Domino and .NET Coexistence

Figure 30 Web Service test client in IIS 1.

This page has two links: one for the GetResidencyDetails method defined in the
ResidencyDetailsWebService class and a link for the WSDL file which describes
the Web Service also created by .NET Framework SDK.

Click the GetResidencyDetails link and you will see the next page, also
rendered by .NET Framework.
 Lotus Domino and .NET coexistence 47

Figure 31 Web Service test client in IIS 2.

This second page gives you the opportunity to test the Web Service and presents
a good deal of useful information because the output (returned in the form of
HTTP GET, HTTP POST and SOAP) provides all the hints you need for calling
this Web Service programmatically, as shown in the following figures.
48 Lotus Domino and .NET Coexistence

� HTTP GET:

Figure 32 Web Service request/response format - HTTP GET
 Lotus Domino and .NET coexistence 49

� HTTP POST:

Figure 33 Web Service request/response format - HTTP POST
50 Lotus Domino and .NET Coexistence

� SOAP Request:

Figure 34 Web Service request format - SOAP
 Lotus Domino and .NET coexistence 51

� SOAP Response:

Figure 35 Web Service response format - SOAP

Introduce a Residency Code and click the Invoke button. The XML result page is
depicted in the next figure.
52 Lotus Domino and .NET Coexistence

Figure 36 Sample XML response

The team that wrote this Redpaper
This Redpaper was produced by a team of specialists from around the world
working at the International Technical Support Organization, Raleigh Center.

Peter Kovari is a WebSphere Specialist at the International Technical Support
Organization, Raleigh Center. He writes extensively about all areas of
WebSphere. His areas of expertise include e-business, e-commerce, security,
Internet technologies and mobile computing. Before joining the ITSO, he worked
as an IT Specialist for IBM in Hungary.

Victoria Amor is an IT Specialist in IBM WebSphere and Lotus Domino within
IBM Spain. Her areas of expertise include WebSphere support, particularly the
areas of security and administration, and design and consultancy in Lotus
Domino. She has worked within IBM for six years, participating in remarkable
e-business projects such as the Sydney Olympic Games as the responsible of all
Lotus Domino Servers in the Games System Center. Currently, she is working for
ITS department in Services Delivery. She has previously co-authored the IBM
WebSphere V4.0 Advanced Edition: Security Redbook.
 Lotus Domino and .NET coexistence 53

54 Lotus Domino and .NET Coexistence

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult
your local IBM representative for information on the products and services currently available in your area.
Any reference to an IBM product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product, program, or service that
does not infringe any IBM intellectual property right may be used instead. However, it is the user's
responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document.
The furnishing of this document does not give you any license to these patents. You can send license
inquiries, in writing, to:
IBM Director of Licensing, IBM Corporation, North Castle Drive Armonk, NY 10504-1785 U.S.A.

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer
of express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made
to the information herein; these changes will be incorporated in new editions of the publication. IBM may
make improvements and/or changes in the product(s) and/or the program(s) described in this publication at
any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in any
manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of the
materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Information concerning non-IBM products was obtained from the suppliers of those products, their published
announcements or other publicly available sources. IBM has not tested those products and cannot confirm
the accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on
the capabilities of non-IBM products should be addressed to the suppliers of those products.

This information contains examples of data and reports used in daily business operations. To illustrate them
as completely as possible, the examples include the names of individuals, companies, brands, and products.
All of these names are fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:
This information contains sample application programs in source language, which illustrates programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs in
any form without payment to IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating platform for which the
sample programs are written. These examples have not been thoroughly tested under all conditions. IBM,
therefore, cannot guarantee or imply reliability, serviceability, or function of these programs. You may copy,
modify, and distribute these sample programs in any form without payment to IBM for the purposes of
developing, using, marketing, or distributing application programs conforming to IBM's application
programming interfaces.
© Copyright IBM Corp. 2004. All rights reserved. 55

This document created or updated on April 5, 2004.

Send us your comments in one of the following ways:
� Use the online Contact us review redbook form found at:

ibm.com/redbooks
� Send your comments in an Internet note to:

redbook@us.ibm.com
� Mail your comments to:

IBM Corporation, International Technical Support Organization
Dept. HZ8 Building 662, P.O. Box 12195
Research Triangle Park, NC 27709-2195 U.S.A.

Trademarks
The following terms are trademarks of the International Business Machines Corporation in the United States,
other countries, or both:

Eserver®
Redbooks (logo) ™
developerWorks®
ibm.com®

Domino Designer®
Domino®
IBM®
Lotus Notes®

Lotus®
Notes®
Redbooks™
WebSphere®

The following terms are trademarks of other companies:

Intel, Intel Inside (logos), MMX, and Pentium are trademarks of Intel Corporation in the United States, other
countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the
United States, other countries, or both.

Java and all Java-based trademarks and logos are trademarks or registered trademarks of Sun
Microsystems, Inc. in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

SET, SET Secure Electronic Transaction, and the SET Logo are trademarks owned by SET Secure
Electronic Transaction LLC.

Other company, product, and service names may be trademarks or service marks of others.

®

56 Lotus Domino and .NET Coexistence

http://www.redbooks.ibm.com/
http://www.ibm.com/redbooks/
http://www.ibm.com/redbooks/
http://www.redbooks.ibm.com/contacts.html

	Lotus Domino and .NET coexistence
	Web Services integration
	Domino provider, .NET consumer
	.NET service provider, Domino service consumer

	Using the COM interface
	Domino as a COM server, .NET as a client

	The team that wrote this Redpaper

	Notices
	Trademarks

